Accession Number:

AD0723652

Title:

Magnetic Structure of Skew Ionizing Shock Waves

Descriptive Note:

Corporate Author:

COLUMBIA UNIV NEW YORK PLASMA RESEARCH LAB

Personal Author(s):

Report Date:

1970-07-01

Pagination or Media Count:

67.0

Abstract:

Initially nonconducting gas is ionized by a thin viscous shock wave. Upstream there can be no magnetohydrodynamic interaction because of the zero conductivity, but the conducting downstream region may have a magnetic structure which interacts with the flow variables. A theoretical analysis is made in the zero-magnetic-Prandtl-number non-viscous limit, i.e., Ohmic dissipation is the dominant diffusion mechanism. Unlike magnetohydrodynamic shocks in a pre- ionized gas, ionizing shock waves are not necessarily plane-polarized. Thus skew shock structures can exist, in which the upstream and downstream magnetic field vectors and the shock wave normal do not all lie in a single plane. The existence of the viscous subshock at the front of the magnetic layer requires the upstream Mach number to be greater than unity. Explicit solutions are given for typical values of the governing parameters, showing how the magnetic field vector rotates about the shock wave normal as its transverse component chages in magnitude through the shock layer. Skew shocks are necessarily sub-Alfvenic downstream. Unlike the pre-ionized case, the range of trans-Alfvenic shock waves is not excluded, since these shocks can absorb Alfven waves within their structure. With strong magnetic fields it is possible to achieve very high downstream temperatures by Joule heating. Alternately, in some cases, magnetic energy can be fed into directed kinetic energy, producing an overall expansion shock.

Subject Categories:

  • Plasma Physics and Magnetohydrodynamics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE