# Accession Number:

## AD0668759

# Title:

## INVARIANT IMBEDDING AND FREDHOLM INTEGRAL EQUATIONS WITH PINCHERLE-GOURSAT KERNELS,

# Descriptive Note:

# Corporate Author:

## RAND CORP SANTA MONICA CALIF

# Personal Author(s):

# Report Date:

## 1968-04-01

# Pagination or Media Count:

## 20.0

# Abstract:

An analytical procedure for solving Fredholm integral equations of the second kind with Pincherle-Goursat degenerate kernels is discussed. In the invariant imbedding approach used, the solution at a fixed value of t is studied as the length of the interval is varied. A Cauchy problem is derived, and it is verified that the initial-value method produces a solution of the integral equation. Such a procedure should prove a valuable alternative to the usual algebraic method, and should find application in signal detection, gas dynamics, radiative transfer, and mathematical biology. Author

# Descriptors:

# Subject Categories:

- Numerical Mathematics