Accession Number:

AD0649616

Title:

UNSTEADY PROPELLER LIFTING-SURFACE THEORY WITH FINITE NUMBER OF CHORDWISE MODES

Descriptive Note:

Technical Report

Corporate Author:

STEVENS INST OF TECH HOBOKEN NJ HOBOKEN United States

Personal Author(s):

Report Date:

1966-12-01

Pagination or Media Count:

128.0

Abstract:

A continuing investigation is concerned with improvement of the mathematical model developed for the evaluation of the steady and time-dependent loading distributions on the blades of marine propellers operating in spatially non-uniform flow. The surface integral equation resulting from the theory was solved by means of the collocation method, in conjunction with the generalized lift operator, for a prescribed set of chordwise modes which reproduce the proper leading-edge singularity and fulfill the Kutta condition at the trailing edge. General programs were developed to accommodate any geometry of propeller operating in a specified non-uniform inflow condition for a large but finite number of chordwise modes. The calculations indicate that the spanwise loading distribution and the steady and time-dependent thrust reach stable values after three to five chordwise modes, but the chordwise distribution does not converge to its final form, particularly in the neighborhood of the leading and trailing edges. A comparison of theoretical and experimental results for the vibratory thrust shows satisfactory agreement on the whole.

Subject Categories:

Distribution Statement:

APPROVED FOR PUBLIC RELEASE