Accession Number:

AD0619988

Title:

DYNAMIC EFFECTS ARISING FROM HIGH-SPEED SOLIDIFICATION

Descriptive Note:

Final rept.

Corporate Author:

NAVAL RESEARCH LAB WASHINGTON DC

Personal Author(s):

Report Date:

1965-06-09

Pagination or Media Count:

29.0

Abstract:

Convective mass transfer occurs during solidification because of the difference in mass density between the participating solid and liquid phases. The relationship between interphase mass transfer and the mechanical behavior of a bounded system undergoing rapid solidification is developed from an analysis of the kinematics and dynamics of dendritic freezing. The kinematic analysis yields theoretical expressions for the displacement, velocity, and acceleration imparted to the center of mass of a constrained melt by the solidificationinduced mass transfer, whereas the dynamical analysis relates the changes in external force and internal pressure with the accelerations of the solidifying bodys mass center. These analyses reveal that a critical degree of supercooling exists, above which the dendrite velocity can increase without a concomitant increase in the acceleration of the center of mass, and that this condition coincides with the onset of cavitation in the specimen. Next, some new experiments which provide quantitative information on the mechanical behavior of rapidly freezing bismuth melts are discussed. Finally, a unified approach to solidification dynamics is presented in a discussion of the following effects a the emission of acoustical disturbances during solidification, b the occurrence of an anomalous refinement in the as-cast grain size of nickel and cobalt specimens frozen from highly supercooled melts, c the development of cavitation pits on the constrained surfaces of rapidly frozen transition metal speciments, and d the presence of pressure pulses both during and after rapid dendritic growth.

Subject Categories:

  • Thermodynamics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE