Accession Number:

AD0614662

Title:

A STATISTICAL THEORY OF WORK-HARDENING.

Descriptive Note:

Interim technical rept.,

Corporate Author:

HARVARD UNIV CAMBRIDGE MASS DIV OF ENGINEERING AND APPLIED PHYSICS

Personal Author(s):

Report Date:

1965-03-22

Pagination or Media Count:

47.0

Abstract:

The consequences of a random distribution of obstacles to the movement of dislocations are examined. Firstly, it is proven that a critical applied stress exists it is determined by a critical value of the fraction of passable obstacles such that the average dislocation segment can keep moving. There is thus no limit to the expandability of a convex dislocation loop however, the moving dislocation leaves debris behind in the form of concave loops around areas surrounded entirely by impassable obstacles. The rate of this primary dislocation storage with strain, if one considers monopoles only, is very low and again depends on the critical fraction of passable obstacles only, not on any properties of the distribution, i.e., not on the arrangement of dislocations. The absence of large-scale regularity in the obstacle structure alone whatever the nature of the obstacles may be can thus explain stage II hardening which is characterized by a value of about 1300 of the shear modulus, independent of all conceivable parameters within wide limits. The structure of the work-hardened crystal, thus derived in a semi-phenomenological way, also offers itself for appealing mechanistic interpretations of more complicated phenomena such as latent hardening, dynamic recovery, and some metallographic observations. Author

Subject Categories:

Distribution Statement:

APPROVED FOR PUBLIC RELEASE