Accession Number:

AD0007413

Title:

THE STEADY MOTION OF A SYMMETRICAL OBSTACLE ALONG THE AXIS OF A ROTATING FLUID

Descriptive Note:

Technical rept. no. 1

Corporate Author:

JOHNS HOPKINS UNIV BALTIMORE MD DEPT OF CIVIL ENGINEERING

Personal Author(s):

Report Date:

1952-12-01

Pagination or Media Count:

33.0

Abstract:

An extension was made of an investigation by Taylor Proc. Cambridge Phil. Soc. 20326-329, 1920 Proc. Roy. Soc. London A 102180-189, 1922 and ibid 104213-218, 1923 of the steady motion of an obstacle along the axis of a rotating fluid. Taylors particular solution was proved to be one of an infinity of functions comprising the general solution. The theory was applied to motions in a rotating cylinder of fluid, and a critical Rossby number was derived, below which the flow around the obstacle is wave-like. When the Rossby number is greater than the critical value, the flow consists only of a local perturbation that dies out rapidly on both sides of the obstacle. Various other critical numbers exist, below which additional modes of oscillation become dynamically possible. An experiment which was designed to test the theoretical results used an obstacle moving along the axis of a long cylinder of rotating water. The resulting 3-dimensional flow patterns, which were observed visually and photographically, appeared to be the same as those in the theoretical solution.

Subject Categories:

  • Fluid Mechanics

Distribution Statement:

APPROVED FOR PUBLIC RELEASE