
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP020678
TITLE: Representation and Reasoning for DAML-Based Policy and
Domain Services in KAoS and Nomads

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Proceedings of the International Joint Conference on Autonomous
Agents and Multiagent Systems [2nd], Held in Melbourne, Australia on
July 14-18, 2003

To order the complete compilation report, use: ADA440476

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP020574 thru ADP020817

UNCLASSIFIED

Representation and Reasoning for DAML-Based Policy
and Domain Services in KAoS and Nomads

J. Bradshaw3, A. Uszok 3, R. Jeffers 3, N. Suri3, P. Hayes3, M. Burstein 2, A. Acq uisti4,
B. Benyo2, M. Breedy3, M. Carvalho3 , D. Diller2 , M. Johnson3, S. Kulkarni3,

J. Lott3, M. Sierhuis 1 , and R. Van Hoof1
1 RIACS and QSS, NASA Ames, MS T35B-1, Moffett Field, CA 94035,

{msierhuis, rvanhoof}@mail.arc.nasa.gov
2 BBN Technologies, 10 Moulton St., Cambridge, MA 02138,

{burstein, bbenyo, ddiller}@bbn.com
3 IHMC/UWF, 40 S. Alcaniz, Pensacola, FL 32501

jbradshaw, auszok, rjeffers, nsuri, phayes, mbreedy, mcarvalho, mjohnson, skulkarni,
jlott}@ai.uwf.edu

4 SIMS, UC Berkeley, 102 South Hall, Berkeley, CA 94720,

acquisti@mail.arc.nasa.gov

ABSTRACT specification, management, conflict resolution, and enforcement
To increase the assurance with which agents can be deployed in of policies within the specific contexts established by complex
operational settings, we have been developing the KAoS policy organizational structures. Following a description of these
and domain services. In conjunction with Nomads strong mobility capabilities (section 2), we will conclude with a brief summary of

and safe execution features, KAoS services and tools allow for the current applications (section 3) and a brief outline of future
specification, management, conflict resolution, and enforcement directions (section 4).
of DAML-based policies within the specific contexts established
by complex organizational structures. In this paper, we will KAoS AND NOMADS POLICY AND
discuss results, issues, and lessons learned in the development of DOMAIN SERVICES
these representations, tools, and services and their use in military KAoS is a collection of componentized agent services compatible
and space applications with several popular agent frameworks, including Nomads [27],

the DARPA CoABS Grid [18], the DARPA ALP/Ultra*Log
Keywords: social order, conventions, norms, social control; Cougaar framework (http://www.cougaar.net), CORBA
cultural norms and institutions, ontologies for agents and social (http://www.omg.org), and Voyager (http://www.recursionsw.
modeling; ontologies in agent-based information systems and comrosi.asp). The adaptability of KAoS is due in large part to its
knowledge management, DAML, policy, domains, KAoS, pluggable infrastructure based on Sun's Java Agent Services
Nomads, human-agent teamwork, adjustable autonomy, coalition, (JAS) (http://java.agent.org). While initially oriented to the
augmented cognition, cognitive prosthesis dynamic and complex requirements of software agent

applications, KAoS services are also being adapted to general-
INTRODUCTION purpose grid computing (http://www.gridforum.org) and Web
The increased intelligence afforded by software agents is both a services (http://www.w3.org/2002/ws/) environments as well [17].
boon and a danger. By their ability to operate independently For a full description of KAoS, the reader is referred to [5; 6; 7; 8;
without constant human supervision, they can perform tasks that 9].
would be impractical or impossible using traditional software Nomads combines the capabilities of Aroma, an enhanced Java-
applications. On the other hand, this additional autonomy, if compatible Virtual Machine (VM), with the Oasis agent execution
unchecked, also has the potential of effecting severe damage in environment [26]. It is designed to provide environmental
the case of buggy or malicious agents. Techniques and tools must protection of two kinds:
be developed to assure that agents will always operate within the
bounds of established behavioral constraints and will be 11 assurance of availability of system resources, even in the face
continually responsive to human control. Moreover, the policies of changing resource priorities, buggy agents or denial-of-
that regulate the behavior of agents should be continually adjusted service attacks;
so as to maximize their effectiveness in both human and 11 protection of agent execution state, even in the face of
computational environments. unanticipated system failure.
Under DARPA and NASA sponsorship, we have been developing These basic capabilities of Nomads provide essential features of
the KAoS policy and domain services to increase the assurance reliability and safety required for interaction with humans in
with which agents can be deployed in a wide variety of dynamic and demanding application environments. We are
operational settings. In conjunction with Nomads strong mobility currently working with Sun Microsystems on incorporating
and safe execution features, KAoS services and tools allow for the resource management features similar to Nomads into a future

version of the commercial Java platform.
Following a discussion of the background and motivation for

Permission to make digital or hard copies of all or part of this work for KAoS and Nomads policy and domain services (section 2.1), we
personal or classroom use is granted without fee provided that copies are will provide an overview of the KAoS Policy Ontologies (KPO),
not made or distributed for profit or commercial advantage and that which represent both policies and relevant application and
copies bear this notice and the full citation on the first page. To copy organizational state declaratively using the DARPA Agent
otherwise, or republish, to post on servers or to redistribute to lists, Markup Language (DAML) (section 2.2). We introduce the KAoS
requires prior specific permission and/or a fee.
AAMAS '03, July 14-18, 2003, Melbourne, Australia.
Copyright 2003 ACM 1-58113-683-8/03/0007...$5.00.

835

Policy Administration Tool (KPAT)', which provides a graphical support dynamic runtime policy changes, and not merely
user interface to create, structure, and administer domains and static configurations determined in advance;
policies without needing to master all the details of DAML
(section 2.3). KAoS and Nomads policy and domain services are work involuntarily with respect to the agents, that is, without
used to define, manage, and enforce constraints assuring coherent, requiring the agents to consent or even be aware of the
safe, effective, and natural interaction among collaborating groups the simplest agents can comply with policy; and
of human and agents. Subsequent sections describe algorithms
and mechanisms for policy conflict resolution (2.4), policy wherever possible they are enforced preemptively,
distribution (2.5), and policy enforcement (2.6), followed by an preventing buggy or malicious agents from doing harm in
example (2.7). advance rather than rewarding them or imposing sanctions

on them after the fact.
1.1 Background and Motivation To increase the likelihood of human acceptability of agent
The tae iding strong social laws into intelligent systems technology, successful systems must attend to both the technicalcan be traced at least as far back as the 1940s to the science and social aspects of policy [22]. From a technical perspective, we
fiction writings of Isaac Asimov [3). In his well-known stories of want to be able to help ensure the protection of agent state, the
the succeeding decades he formulated a set of basic laws that were viability of agent communities, and the reliability ofthe resources
built deeply into the positronic-brain circuitry of each robot so on which they depend [9]. To accomplish this, we must guarantee,
that it was physically prevented from transgression. Though the insofar as is possible, that the autonomy of agents can always be
laws were simple and few, the stories attempted to demonstrate bounded by explicit enforceable policy that can be continually
just how difficult they were to apply in various real-world adjusted to maximize the agents' effectiveness and safety in botisituations,2 human and computational environments. From a social
Shoham and Tennenholtz [24] introduced the theme of social laws perspective, we want agents to be designed to fit well with how
into the agent research community, where investigations have people actually work together. Explicit policies governing human-
continued under two main headings: norms and policies. Drawing agent interaction, based on careful observation of work practice
on precedents in legal theory, social psychology, social and an understanding of current social science research, can help
philosophy, sociology, and decision theory [34], norm-based assure that effective and natural coordination, appropriate levels
approaches have grown in popularity [4; 12; 19; 20]. In the multi- and modalities of feedback, and adequate predictability and
agent system research community, Conte and Castelfranchi [11] responsiveness to human control are maintained [8; 14]. These
found that norms were variously described as constraints on and similar technical and social factors are key to providing the
behavior, ends or goals, or obligations. For the most part, reassurance and trust that are the prerequisites to the widespread
implementations of norms in multi-agent systems share three basic acceptance of agent technology for non-trivial applications.
features: Some important features of KAoS are worth noting here before
- they are designed offline; or giving a detailed description. First, the approach does not assume

that the policy-governed system is comprised of a homogeneous- they are learned, adopted, and refined through the purposeful set of components that have been designed in advance to workdeliberation of each agent; and with KAoS services. Rather the goal is to be able to have KAoS
- they are enforced by means of incentives and sanctions, services work with arbitrarily written components after the fact
Interest in no/icy-based approaches to multi-agent and distributed through support being added transparently at the platform level.

e st aolcasod aproancost uidraby ind dsre tyeas Second, insofar as possible the KAoS framework supportssy ste m s 'a s a lso g ro w n c o n sid erab ly in rec en t y e a rsd y a i ru t m p o cy h ng s a d n t m e ly t t c
(http://www.policy-workshop.org).dynamic runtime policy changes, and not merely staticcomponwwwtphynorm-bshoprorg) Whe oie T sharing pmuchines configurations determined in advance. Third, the framework is
common with norm-based approaches,policy-basedperspectives extensible to a variety of execution platforms that might be
differ in subtle ways. Whereas in everyday English the term norm simultaneously running with different enforcement mechanisms-
denotes a practice, procedure, or custom regarded as typical or in principle any platform for which policy enforcement
widespread, a policy is defined by the American Heritage Online mechanis may betwri forthch pol fra mewkdicionry s "curs ofacion gudin pincple orprcedre ecanisms may be written. Fourth, the KAoS framework is
dictionary as a "course of action, guiding principle, or procedure intended to be robust and adaptable in continuing to manage and
considered expedient, prudent, or advantageous." Thus, in enforce policy in the face of attack or failure of any combination
contrast to the relatively descriptive basis and self-chosen of components. Finally, KAoS addresses the need or easy-to-use
adoption (or rejection) of norms, policies tend to be seen as o b addination toos a ble of n g domainprescriptive and externally imposedentities. Whereas norms in policy-based aministration tools capable of containing domaineveryday life emerge gradually from group conventions and knowledge and conceptual abstractions that let applicationrecurrent patterns gradually are consc ions and designers focus their attention more on high-level policy intentre rn t patte of interaction, policies are consciously designed than on implementation details. Such tools require sophisticated
and put into and out of forcS at arbitrary times by virtue of graphical user interfaces for monitoring, visualizing, and
explicitly-recognized authority. These differences are generally dynamicall u dfing olicies at runtime.
retlected in the way most policy-based approaches differ from yn iy modifyig p
norm-based ones with respect to the three features mentioned 1.2 KAoS Policy Ontologies
above. Policy-based approaches: In principle, developers could use a variety of representations to

express policies. At one extreme, they might write these policies
in some propositional or constraint representation. At the other
extreme lie a wide variety of simpler schemes, each of which
gives up some types of expressivity. For an assessment of current

1 Pronounced "KAY-pat." description-logic-based representations and tools for policy based
2 In an insightful essay, Roger Clarke explores some of the implications of on our experience with KAoS, see [33]; for a comparison between

Asimov's stories about the laws of robotics for information the KAoS, Rei, and Ponder approaches to policy management, see
technologists [10]. Weld and Etzioni [35] were the first to discuss the [32].
implications of Asimov's first law of robotics for agent researchers.
Like most norm-based approaches described below (and unlike most Overview of DAM- and KPO. The KAoS Policy Ontologies
policy-based approaches) the safety conditions are taken into account as (KPO) are currently expressed in DAML (http://www.daml.org).
part of the agents' own learning and planning processes rather than as Designed to support the emerging "Semantic Web," DAML
part of the infrastructure. In an important response to Weld and extends RDF to allow users to specify ontologies composed of

,tzioni's "call to arms," Pynadath and Tambe [23] develop a hybrid taxonomies of classes and inference rules. These ontologies can
approach that marries the agents' probabilistic reasoning about be used by people for a variety of purposes, such as enabling more
adjustable autonomy with hard safety constraints to generate "policies" accurate or complex Web searches. Agents can also use semantic
governing the actions of agents. The approach assumes a set of markup languages to understand and manipulate Web content in
homogeneous agents who are motivated to cooperate and follow significant ways; to discover, communicate, and cooperate with
optimally-generated policies. other agents and services; or, as we outline in this paper, to
While it is true that over time norms can be formalized into laws, interact with policy-based management services and control

policies are explicit and formal by their very nature at the outset, mechanisms. OWL, a W3C-approved successor to DAML

836

(http://www.w3.org/2001/sw/WebOnt), is currently being 1.3 Define Policies and Domains with KPAT
finalized and will be adopted in KAoS as soon as needed tools are KPAT provides a graphical user interface for specifying and
in place. modifying policies and domains. 5 In addition, KPAT can be used

The current version of KPO defines basic ontologies for actions, to browse and load ontologies and to deconflict newly defined
actors, groups, places, various entities related to actions (e.g., policies. As policies, domains, and application entities are defined
computing resources), and policies. There are currently about 80 using KPAT, the appropriate DAML representations are generated
classes and 40 properties defined in the basic ontologies. It is automatically in the background and asserted into or retracted
expected that for a given application, developers will further from the system, insulating the user from having to know DAML
extend KPO. As the application runs, classes and individuals or any other policy language. A generic DAML policy editor may
corresponding to new policies and application entities are also be used for this purpose (see figure 5 below). Specialized policy
transparently added and deleted as needed. templates can also be defined to allow various classes of policy

definitions to be defined as high-level domain-specific
Actors, actions, groups, and places. The actor ontology abstractions. A rich set of queries is also available through KPAT
distinguishes between people and various classes of artificial or through programmatic interfaces.
agents. Most agents are only permitted to perform ordinaiy
actions, however various agents that are part of the infrastructure Groups of agents are structured into agent domains and
as well as authorized human users may variously be permitted or subdomains to facilitate policy administration. Domains may
obligated to perform certain policy actions, such as policy represent any sort of group imaginable, from potentially complex
approval and enforcement. Groups of actors or other entities may organizational structures to administrative units to dynamic task-
be distinguished according to whether the set of members is oriented teams with continually changing membership. A given
defined extensionally (i.e., through explicit enumeration in some domain can extend across host boundaries and, conversely,
kind of registry) or intensionally (i.e., by virtue of some common multiple domains can exist concurrently on the same host.
property such as a joint goal that all actors possess or a given Domains may be nested indefinitely and, depending on whether
place where various entities may temporarily or permanently be policy allows, agents may become members of more than one
located), domain at a time.

Policies. The policy ontology distinguishes between
authorizations (i.e., constraints that permit or forbid some action) no,•*, "m :,n
and obligations (i.e., constraints that require some action to be
performed, or else serve to waive such a requirement) [13]. A .
policy is represented as a DAML instance of the appropriate
policy type with associated values for properties: priority, update "

time stamp and a site of enforcement. The most imported I l•....
property value is the name of a controlled action class. In most
cases a new action class is built automatically whenever a policy
is defined. Through various property restrictions, a given policy
can be variously scoped, for example, either to individual agents,
to agents of a given class, to agents belonging to a particular ------
group, or to agents running in a given physical place or F em,'
computational environment. Additional aspects of the action
context can be precisely described by restricting values of its Figure 1. KPAT with the domain view showing multiple nested
properties. domains.

The policy example below, drawn from the DARPA CoAX
experiment (described in section 3), stipulates that the members of 1.4 Policy Conflict Resolution
a domain named Arabello-HQ are forbidden to communicate 4with The KAoS Policy Ontologies are used for various forms of online
those outside this domain using unencrypted communication: or offline inference and analysis, including query-based policy
<daml:Class rdf1ID="P1Action"> disclosure management, reasoning about future actions based on

<rdfs:subClassOfrdf'resource="#CommnunicationAction"/> knowledge of policies in force, and in assisting users of policy
<rdfsvsubClassQf> specification tools to understand the implications of defining new

<daml:Restriction> policies given the current context and the set of policies already in
<danilonProperty force.

rdf'resource "#peiformnedBy"> f
<daml:toClass Changes or additions to policies in force, or a change in status of

rdf.resource="#MemnbersOfDomnainArabello-HQ"i> an actor (e.g., an agent joining a new domain or moving to a new
</daml:Restriction> host) or some other entity may require logical inference to

</rdfts.subClassOfr determine first of all which policies are in conflict and second
<rdfs:subClassOf> how to resolve these conflicts [21]. We have implemented a

<daml:Restriction> eneral-purpose algorithm for policy conflict detection and
<danilonProperty ,,nharmpuiz ose ag ithm r policy cofict dete anrdfresource=#hsDestination > armonization whose initial results promise a high degree of
<danil:toClass efficiency and scalability.
rdf'resource="#notMembersOfDomain Figure 2 shows the three types of conflict that can currently be
Arabello-HQ"/> handled: positive vs. negative authorization (i.e., being

</daml:Restriction> simultaneously permitted and forbidden from performing some
</rdfs.subClassOfr action), positive vs. negative obligation (i.e., being both required

</daml.'Class> and not required to perform some action), and positive obligation
<poliey.NegAuthorizationPoliy rdf.iD=,PX > vs. negative authorization (i.e., being required to perform a

<policy:controlsrdf resource= "#P]Aetion" /5 forbidden action). The use of policy deconfliction and
<polihcy.hasSiteOfEnforcemnent rdf.resource=-#ActorSite" /> harmonization algorithms that incorporate subsumption-based
<policy:lhasPriority> </policy.'hasPriority> reasoning means that policy conflicts can be detected and resolved
<policy.'has Update TimeStainp>446744445544</policy:hasU even when the actors, actions, or targets of the policies are

pdateTimneStamnp> specified at very different levels of abstraction. The policy conflict
</policy:NegAuthorizationPolicy resolution algorithms rely on a version of Stanford's Java

Theorem Prover (http://www.ksl.stanford.edu/software/JTP/)

4 Of course the DAML policy is not meant to be written or
analyzed directly by an administrator; instead the KPAT user
interface would be used to hide the complexity of the 5 Policies can also be defined, analyzed, or modified programmatically by
underlying representations trusted software components.

837

P1\P4 = subP1 + subP2 + ... + subPnwhere
subPk =Authorzed Fobidden(DI lnD21) x ... x (DlI(k- 1) n D2(k- 1)) x (DlIk\D2k) x

Dl(k+l) x.. x Din

Action Property

Actor Riange

Not R u Required AotiOn Type Range

Harmonization

priority P1 < priority P4

combined with our own KAoS-specific reasoning and query
extensions.
Steps in policy conflict resolution. KAoS performs several steps in
order to resolve policy conflicts:
2. A DAML policy conflict ontology must be loaded into JTP

along with the set of DAML policies to be deconflicted.
3. A Java list of all policies is constructed and sorted according

to user-defined criteria for policy precedence.6

4. For each policy in the sorted list, iterate through all the Figure 3. Graphical representation of policy harmonization.
elements with a lower precedence and check to see if there is
a policy conflict. A policy conflict occurs if the two policies Figure 3 shows a 3-D graphical representation of policy
are instances of conflicting types and if the JTP subsumption harmonization. The illustration, based on the example described
mechanism determines that the actions (comprising the in section 2.7 below, contains only a single action property.
action itself along with the actor and other entities associated Mapping the mathematical definition above to the generation of
with the action) that the two policies control are not disjoint, harmonized policies we get the following:

5. The lower precedence policy from the conflicting pair of 1. The first harmonized policy has a range of actors that
policies is removed from the Java list and the policy corresponds to the difference between the ranges of the two
harmonization algorithm is invoked. It attempts to modify original policies and a controlled action and range of values
the policy with the lower precedence to the minimum degree on the action properties that correspond to those of the
necessary to resolve the conflict. If precedence cannot be lower-precedence policy.
determined otherwise, KAoS will ask the administrator to 2 The second harmonized policy has a range of actors that
determine the appropriate action: either removing the policy, correspond tot inersection ofsth range of the two
changing precedence, splitting the policy, or continuing with corresponds to the intersection of the ranges of the two
harmonization [33]. The harmonization algorithm may original policies, a controlled action that corresponds to the
generate zero, one or several new policies to replace the differences between those of the two policies, and a range of
removed policy. values on the action roperties that correspond to that of the

6. The newly constructed harmonized policies inherit the lower-precedence poiicy.

precedence and the time of last update from the removed 3. Additional harmonized policies are built to correspond to
policy, and a pointer to the original policy is maintained so each action property in the two original policies. The range
that it can be recovered if necessary as policies continue to of actors corresponds to the intersection of the ranges of the
be added or deleted in the future. two original policies and the controlled action corresponds tothe intersection between those of the two policies.

Details of policy harmonization. The derivation of the newly- the resu ctin any of the abo policiesm

generated set of harmonized policies from the original policies The results of computing any of the above policies may be empty,
P1 and P4) can be understood by imagining an intersection of in which case the result can be discarded. Recently, we havetwo N-dimensional Cartesian products: modified KAoS conflict resolution handling to obviate the need

to Nfor harmonization in many cases, further increasing performance.
If

P1 and P4 are two Cartesian products7 defined as: 6.1 Policy Distribution
PI = DlI x D12 x xDln6. PoiyDsrbtnP4 =D21 x D22 x x D2n Figure 4 shows the major components of KAoS policy and

then domain services framework. During the initialization process, the
core policy ontologies are loaded into the KAoS Directory Service
(DS) using the namespace management capabilities of KPAT.

6 Additional application-specific or platform-specific ontologiesWe currently rely on numeric policy priority assignments by users to then can be loaded dynamically from KPAT orprogrammatically
determine precedence. In the future we intend to allow people complete using the appropriate Java method. As the end-user application
flexibility in designing the nature and scope of precedence conditions.
For example, it would be possible to define precedence based on the executes, instances relating to application entities are added and
relative authorities of the individual who defined or imposed the deleted as appropriate. For specific applications and platforms, the
policies in conflict, which policy was defined first, which has the KAoS framework can be further extended and specialized by
largest or smallest scope, whether negative or positive authorization creating plug-ins for [33]:
trumps by default, whether subdomains takes precedence over - Policy template and custom action property editors;
superdomains or vice versa, etc.

7 A Cartesian product is the collection of all ordered n-tuples that can be - Enforcers controlling, monitoring, or facilitating general or
formed so that they contain one element of the first set, one element of specific actions;
the second, and so forth until you reach the nth set. This collection can - Classifiers to determine if a given instance is in the scope of
be seen as constituting an n-dimensional space in which each n-tuple
designates a cell. the given class.

838

The DS implements domain management functionality, system answering the question, in the case of authorization
determining, for example, whether agents can join their domain policies, "Is a given action authorized or not?"8

and analyzing or deconflicting policies as required. The DS is In applications to date, we have relied on several different kinds
responsible for notifying Guards about changes in policy or other of enforcement mechanisms. Enforcement mechanisms built into
aspects of system state that may affect their operation. th exuo n eniron ment m achin e levelthe execution environment (e.g., OS or Virtual Machine level

protection) are the most powerful sort, as they can generally be
..... , used to assure policy compliance for any agent or program

Manager running in that environment, regardless of how that agent or
use i --- "te e,KPAT program was written. For example, the Java Authentication and

K 1LEdilorl ---- Authorization Service (JAAS) provides methods that ties access
control to authentication. In KAoS, we have in the past developed

NAI., methods based on JAAS that allow policies to bescoped to
-tc ,(individual agent instances rather than just to Java classes.

-'0, Currently, JAAS can be used with Java VMs; in the future it
should be possible to use JAAS with the Aroma VM as well. As
described above, the Aroma VM provides, in addition to Java VM
protections, a comprehensive set of resource controls for CPU,

ocDectory Ontologyspecifc disk and network. The resource control mechanisms allow limitsS of.Altors., 'IT 1 y Jfo,t lh to be placed on both the rate and the quantity of resources used by
Atiouls, load Service l environment(s) l Java threads. Guards running on the Aroma VM can use the

resource control mechanisms to provide enhanced security (e.g.,
X ,prevent or disable denial-of-service attacks), maintain quality of
Minssierfor service for given agents, or give priority to important tasks.
Lpe •ty A second kind of enforcement mechanism takes the form of

extensions to particular agent platform capabilities. Agents that
Guard Ot ci participate in that platform are generally given more permissions

e fr to the degree they are able to make small adaptations in their
Atoo/ Prope, agents to comply with policy requirements. For example, in

applications using the DARPA CoABS Grid, we have defined a
KAoSAgentRegistrationHelper to replace the default
GridAgentRegistrationHelper. Grid agent developers

Z creae need only replace the class reference in their code to participate in
create e- *.. , -agent domains and be transparently and reliably governed by

onf.s fbor ý policies currently in force. On the other hand, agents that use the
A --a AtnClass2ý- €,,o- default GridAgentRegistrationHelper do not participate---- in domains and as a result they are typically granted very limited

permissions in their interactions with domain-enabled agents.
Finally, a third type of enforcement mechanism is necessary for
obligation policies. Because obligations cannot be enforced
through preventive mechanisms, enforcers usually only monitor
agent behavior and determine after the fact whether a policy has
been followed. For example, if an agent is required by policy to

Figure 4. KAoS policy and domain services architecture, report its status to its supervisor every five minutes, an enforcer

Following conflict detection, policies are distributed to guards be deployed to watch whether this is in fact happens, and if
baselowing informadetectionabout tpoes ofarens cntroted bth, gnot to either try to diagnose and fix the problem, or alternativelybased on information about types of agents controlled by them. take appropriate sanctions against the agent (e.g., reduce
Guards activate appropriate enforcers based on received policy permissions or publish the observed instance of noncompliance to
types. While KPAT, the DS, and the Guards are intended to work an agent rep tation service). In addition to enforcers that monitor
identically across different agent platforms (e.g., DARPA CoABS the performn rnce of obligations, a second type of enforcer called
Grid, Cougaar, CORBA) and execution environments (e.g., Java th era ne of blaonsmalseond to enorcer cale
VM, Aroma VM), enforcement mechanisms are typically an enabler goes beyond simple monitoring to proactively facilitate
designed for a specific platform and execution environment. Our or perform the obligation on behalf of the agent. For example, a
approach enables policy uniformity in domains that might be monitor might not only watch whether the agent described abovesimutanousl ditriuted acrss mltile latfrmsand reports every five minutes, but actively facilitate the fulfillment ofsimultaneously distributed across multiple platforms and it olgation by querying its status every iemntsadmkn
execution environments, as long as semantically equivalent the report to its supervisor on its behalt e five minutes and making
monitoring and enforcement mechanisms are available,.h eott t uprio nisbhlEach policy has a property that defines the site of policy
Because policy analysis and policy conflict resolution normally enforcement. For example, access control policies are typically
take place prior to the policy being given to the Guard for enforced by a mechanism directly associated with the resource to
enforcement, the operation of the Guards and enforcement be protected (i.e., the target). However in some cases,
mechanisms can be lightweight and efficient. administrators may not have control over this resource and instead

may require the policy to be enforced by a mechanism associated
6.2 Policy Enforcement with the actor (i.e., the subject) or some other entity under their
Enforcers are the mechanism by which Guards ensure compliance purview.
with authorization or obligation policies. The grounding of
enforcers to platforms and environments cannot always be made 6.3 Policy Example
fully generic. However, they can often be made fully general and To better explain policy conflict resolution we will describe a
understand abstract ontology action classes via their property simple Explan poaicy ofit roce and rescribe
implementedBy (which maps them to concrete environment simple English-language example of the process and results. The
operations) and through the use of reflection and security
mechanism of the environment. Other environments require pre- 8 To better support policy exploration we are implementing a variety of
building enforcers based on the ontology description of the additional policy disclosure mechanisms to help users or framework
controlled action class, potentially using a preprocessor. Finally, components answer various "what if' and "how to" questions, e.g., test
some cases required fully custom built enforcers. What can be permission, get obligations, learn options, test alternatives, or get
made generic however is the interface to the policy disclosure consequences.9 Enablers can also be used in conjunction with certain kinds of

authorization policies.

839

