Surface destruction and change of solids properties under the plasma influence.

A.L. Bondareva, G.I. Zmiievskaya

Keldysh Institute of Applied Mathematics Russian Academy of Sciences

1. Introduction.

The study of phenomena of interaction between plasma or ions beams and solids surface is very important for technologies. It concerns with cosmo-physics, nanotechnology and controlled thermonuclear reactor. The phenomena result in change of surface relief and properties of materials. Experiments in space and thermonuclear experiments are very difficult and expensive. In this connection, computer simulation of such processes is very important.

This paper is devoted to computer simulation of fluctuation stage of high-temperature blistering. Blistering is phenomenon of development of gas bubbles in solids surface layer. Such gas bubbles are named blisters. Blistering results from irradiation of solids surface by ions of bad soluble gases. The fluctuation stage is very short, but it determines further development of blistering. The duration of the stage is 10^{-4} see approximately. Bubbles sizes are approximately 10.4 during this stage.

The behaviour of gas-vacancy pores in Ni crystal lattice under the influence of He ions with energy from 1 keV to 35 keV and radiation dose from 10^{17} to 10^{19} ions/cm2 is examined in this paper. Such terms can arise in solar wind and thermonuclear reactor. The phenomena result in change of surface relief and properties as well as ions beams or plasma characteristics. The influence of blistering on solids properties is examined in the paper. The stochastic model of blistering is presented. The evolution of distribution functions of bubbles versus bubbles sizes and coordinates in lattice is received. The depth dependence of porosity and tensions, which are created by bubbles, are calculated using the distribution functions.

2. Stochastic model of blistering and equations.

The stochastic model of fluctuation stage of high-temperature blistering had been put forward by authors [1,2]. Brownian motion model of particles with variable mass was accepted as a basis. Blistering investigation deals with computer simulation of superposition of the stochastic processes of bubbles sizes change and bubbles migration in crystalline lattice. It is possible because processes of increase of bubbles sizes and bubbles migration in lattice have appreciably different time scales. Solution of kinetic equations for Brownian motion model is non-linear problem. Therefore authors use stochastic analog method to solve these kinetic equations. Main idea of this method is change of kinetic equations by their stochastic analogs and solution of stochastic differential equations. Scheme of splitting on physical processes and coordinates was used for solution of examined problem. The system of four stochastic differential equations was received after the splitting. Increase of size, migration on lattice, fusion of bubbles, exit of blisters on surface and bubbles destruction on it are examined in this paper. The stochastic equation for size change is following

$$\frac{dg}{dt} = -\frac{1}{kT}D(g,t)\frac{\partial \Delta \Phi (g,f,r,t)}{\partial g} - \frac{1}{2} \frac{\partial D(g,t)}{\partial g} + \sqrt{2D(g,t)}W_g(t)$$

$t_0 \leq t \leq T_k, g(t_0) = g_0 \in \{g_{\min}; g_{\max}\}, g(t) > 2$ is bubble size, $\Delta \Phi (g,f,r,t)$ is Gibbs potential, $D(g,t)$ is diffusion coefficient in sizes space, $W_g(t)$ is Wiener process, T_k is duration of fluctuation stage.

$$\Delta \Phi (g_{\min},f,r,t) = \Delta \Phi (g_{\max},f,r,t) = \Delta \Phi (g_{cr},f,r,t) - kT, g_{\min} < g_{cr} < g_{\max}$$

$\Delta \Phi (g,f,r,t)$ and $D(g,t)$ nonlinearly depend from bubble size. Heterogenous condensation on bubbles surfaces, difference between chemical potential of phases, surface tension on bubbles surface, elastic reaction of solids lattice, nonequivalence of bubbles position in lattice, break of connections of crystal lattice are considered using $\Delta \Phi (g,f,r,t)$ and $D(g,t)$. The stochastic equation for depth is following

$$z(t) = z(t_0) + \int_{t_0}^{t} H_z(\tau,x(\tau),y(\tau),z(\tau))d\tau + \int_{t_0}^{t} \sigma(z,\tau)dW_\tau(\tau)$$

$H_z(\tau,x(\tau),y(\tau),z(\tau)) = -\frac{1}{\gamma M_b} \frac{\partial U}{\partial z} - \frac{1}{2} \frac{\partial D_z}{\partial z}$

$\sigma_z(x,t) = \sqrt{2D_z(x,t)}$ $U = U_b + U_{ab}$

W_τ is Wiener process, z is depth of bubble from surface under irradiation, M_b is blister mass, x, y, z are bubble coordinate in crystal lattice, D_z is diffusion coefficient, U_{ab} is interaction potential between blisters by phonons and oscillation of electron density, U_b is potential of
interaction between bubbles and surface.

\[U_{\text{bl}} = \sum_{j \neq i} \left(a_r - b_r \cos(c_r(|\mathbf{r}_i - \mathbf{r}_j|)^3) \right) \frac{b_r}{|\mathbf{r}_i - \mathbf{r}_j|^2} \]

\[b_r \left((x_i - x_j)^4 + (y_i - y_j)^4 + (z_i - z_j)^4 \right) \]

\[|\mathbf{r}_i - \mathbf{r}_j|^2 \]

\[a_r, b_r, c_r \] are model coefficients, \(\mathbf{r}_i \) and \(\mathbf{r}_j \) are radius-vector of two interactive bubbles. Two bubbles can fuse if fusion condition is carried out. The fusion condition is \[|\mathbf{r}_i - \mathbf{r}_j| \leq r_{HHe} (g_i^{1/3} + g_j^{1/3}) + \Delta_f. \] \(\Delta_f \) is model parameter. \(0 \leq \Delta_f \leq a, a \) is lattice parameter, \(r_{HHe} \) is radius of He atom.

Authors modified Artem'ev method to solve the stochastic equations and used new method to solve system of four concerned with each other stochastic equations with nonlinear coefficients.

The developed model allows to receive the following characteristics: distribution function of bubbles from bubbles size and position on crystal lattice, mathematical expectations and dispersions of bubble size and distance from surface, evaluations of porosity of solids layers and tensions in layers.

3. Conclusions.

1. According to classical theory bubbles destroy if their sizes are less than \(g_{cr} \) and bubbles increase if their sizes are more than \(g_{cr} \). However, numerical experiments demonstrate that blisters can increase if their sizes are more than \(g_{0\text{min}} \) and less than \(g_{cr} \). Bubbles can destroy if their sizes belong to interval from \(g_{cr} \) to \(g_{0\text{max}} \). The part of increased blisters with sizes \(\in [g_{0\text{min}}; g_{cr}] \) is larger than the part of destroyed blister with sizes \(\in [g_{cr}; g_{0\text{max}}] \).

2. The bubbles migration into the surface under irradiation if bubble radius is less than 5 Å, otherwise bubbles stop;

3. Layer-like structure of near-surface layer is discovered. Layers with accumulation of bubbles alternate with layers where number of blisters is small;

4. The greatest porosity is observed on depths of \(\sim 0.85 \cdot R_p \) and \(\sim 0.35 \cdot R_p \), \(R_p \) is middle depth of projection run; The porosity of solid layers from depth at time of finish of fluctuation stage is shown on Figure 1. The depths of two biggest maximums of porosity correspond to depths of development of two kinds of blisters. The depth \(\sim 0.85 \cdot R_p \) conforms to depth of "large" bubbles. And the depth \(\sim 0.35 \cdot R_p \) agrees with "small" bubbles.

5. Rate of increasing of bubble size reduces if blister size is bigger than 12 Å. This phenomenon connects with great number of connections breaks in crystal lattice;

\[\begin{align*}
\text{Figure 1:} & \text{ The porosity of solid layers from depth at time of finish of fluctuation stage is represented on this picture. The depth from surface (z) is measured in lattice parameters. 0 is surface. 400 corresponds to 2 \cdot R_p. The porosity is considered as ratio of layer porosity from porosity of all sample at initial time.}
\end{align*} \]

\[\begin{align*}
\text{Figure 2:} & \text{ This figure shows the tensions in solid layers at finish time. The tension is measured in 2 \cdot 10^6 \text{Pa. The depth from surface (z) is measured in lattice parameters. 0 is surface. 400 corresponds to 2 \cdot R_p.}
\end{align*} \]

6. Tensions in solid layers at finish time are shown on Figure 2. Largest tensions are observed on depths \(\sim 0.85 \cdot R_p \) and \(\sim 0.35 \cdot R_p \). Stress is pronounced near surface.

7. Distribution functions of bubbles from sizes and coordinates in lattice are nonequilibrium.

The work was partially supported by grant RFBR 02-01-01004.

4. References
