DEPARTMENT OF THE NAVY
OFFICE OF COUNSEL
NAVAL UNDERSEA WARFARE CENTER DIVISION
1176 HOWELL STREEET
NEWPORT RI 02841-1708

Attorney Docket No. 82829
Date: 2 February 2004

The below identified patent application is available for licensing. Requests for information should be addressed to:

PATENT COUNSEL
NAVAL UNDERSEA WARFARE CENTER
1176 HOWELL ST.
CODE 000C, BLDG. 112T
NEWPORT, RI 02841

Serial Number 10/672,969
Filing Date 9/29/03
Inventor Michael T. Ansay

If you have any questions please contact James M. Kasischke, Deputy Counsel, at 401-832-4736.

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited
SUBMARINE AIR BAG LAUNCH ASSEMBLY

TO ALL WHOM IT MAY CONCERN:

BE IT KNOWN THAT (1) MICHAEL T. ANSAY, and (2) JOHN R. LITTLE, citizens of the United States of America, employees of the United States Government, and residents of (1) Johnston, County of Providence, State of Rhode Island, and (2) Swansea, County of Bristol, Commonwealth of Massachusetts, have invented certain new and useful improvements entitled as set forth above, of which the following is a specification.

JAMES M. KASISCHKE, ESQ.
Reg. No. 36562
Naval Undersea Warfare Center
Division, Newport
Newport, RI 02841-1708
TEL: 401-832-4736
FAX: 401-832-1231
ATTORNEY DOCKET NO. 82829

SUBMARINE AIR BAG LAUNCH ASSEMBLY

STATEMENT OF GOVERNMENT INTEREST

The invention described herein may be manufactured and used by and for the Government of the United States of America for Governmental purposes without the payment of any royalties thereon or thereto.

BACKGROUND OF THE INVENTION

(1) Field of the Invention

The present invention relates to a launch assembly for expelling bodies from an underwater vehicle, and more particularly to an air bag launch assembly for launching weapons and/or vehicles from a submarine.

(2) Description of the Prior Art

Traditionally, weapons and other vehicles have been stowed inside a submarine's torpedo room where they are protected from the corrosiveness of the ocean. The weapons may thereafter be launched from the submarine torpedo tubes as needed. An alternate launch method used by submarines involves launching weapons from individual air tight pressure vessels that are located external to the submarine's pressure hull. These
individual pressure vessels are stored within modular, external
bays and protect the individual weapons from the high pressure
and corrosiveness of the ocean environment.

The traditional method of storing weapons inside the
submarine's pressure hull theoretically allows for very dense
packing of weapons. However, if the space occupied by the
torpedo tubes, impulse tanks, shutter doors, inlet cylinders,
muzzle doors, breech doors, weapon launchers, and the weapon
loading and handling system is added to the space occupied by
the weapons, the apparent packing density of weapons is lost.
By locating vehicles external to the submarine's pressure hull,
the weight of the vehicles is greatly reduced. This is due to
the buoyant force difference between air and water. This weight
difference allows for a smaller less costly submarine volume to
float the weight of the vehicles.

Individual weapons located in individual pressure vessels
external to the submarine's pressure hull also occupy excessive
space thus limiting the packing density, and adding significant
weight to the submarine. Each individual pressure vessel has
its own thick walled cylinder, self contained gas generator,
launch capsule, muzzle door, weapon positive pressure
ventilation system, and operational hydraulics and linkages.
This adds to the complexity as well as the weight of the system.
Accordingly, there is needed in the art a launch system which is low in cost to construct and operate, high in reliability, easy to maintain, and safe to operate. Preferably, the launch system should also be simple in design, quiet during operation, relatively lightweight, and compact.

SUMMARY OF THE INVENTION

The present invention is directed to an air bag launch assembly which allows for modular loading onto a submarine, the launch of weapons external to the submarine pressure hull, while also achieving greater packing densities. The air bag launch assembly provides a simple method of launching weapons and/or vehicles from densely packed storage bins located within modular payload bays on submarines. According to one embodiment, the air bag launch assembly includes a large, watertight pressure container or payload bay, one or more smaller, watertight weapon canisters used to contain the weapon and/or vehicle and which is sized to fit within the larger pressure container; and one or more air bag inflators attached to the top and/or sides of the small weapon canisters. A support framework designed to hold multiple weapon canisters in position within the larger container may also be provided. Preferably, the containers are designed to withstand pressure to the deepest operating depths of the submarine to which they are attached, whereas the
smaller, weapon canisters need only be capable of withstanding shallow sea pressures since they are housed within the larger containers.

BRIEF DESCRIPTION OF THE DRAWINGS

It should be understood that the drawings are provided for the purpose of illustration only and are not intended to define the limits of the invention. The foregoing and other objects and advantages of the embodiments described herein will become apparent with reference to the following detailed description when taken in conjunction with the accompanying drawings in which:

FIG. 1 is a perspective view of an air bag launch assembly according to the present invention in a closed, non-operative position;

FIG. 2 is a perspective view of the air bag launch assembly of FIG. 1 in an open position;

FIG. 3 is a cross-sectional view of the air bag launch assembly taken along lines 3-3 of FIG. 2; and

FIG. 4A and 4B are diagrammatic representations of the air bag launch assembly of FIG. 1 during launch of a weapon or other device.
DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to the Figures, the air bag launch assembly includes a payload bay or pressure container designed to be mounted externally on a hull, one or more smaller canisters for storing a weapon, vehicle, or other device (not shown) and which is sized to fit within the larger pressure container; and one or more air bag inflators supported on a corresponding canister. The larger pressure container is preferably watertight and should be made of a material that can withstand ocean pressure to the deepest operating depths of the submarine hull to which the pressure container is to be attached. The containers may be removably attached to the hull of the submarine in any known manner and may preferably include a body sized to hold the smaller canisters, and a cover or hatch which is moveable between a closed (FIG. 1) and an open (FIG. 2) position for launching the canisters. The body may preferably be cylindrical, as shown, or any alternate shape. In the closed position, the pressure container will normally be filled with air until a canister launch is desired. Because the large pressure containers are used to protect the devices stored within the smaller canisters from the corrosive seawater, they should also be made of a corrosion resistant material. A watertight seal may also be provided so
that the containers remain watertight when closed as the
submarine maneuvers through the ocean environment.

The smaller canisters 14 can be provided to protect the
weapon, vehicle or other device during a dry launch as it
travels a short distance through the ocean water and up to the
ocean’s surface. The canisters 14 may include a cylindrical
body 22 that houses the weapon, vehicle, or other device to be
launched, as shown, or any alternate shape and a top enclosure
24. Once the ocean’s surface is reached, the top enclosure 24
of the canister 14 is opened to allow the device to exit. The
canister design is similar to past Harpoon weapon canisters used
when Harpoon weapons were launched from horizontal torpedo
tubes. If desired, canister 14 can have a bottom enclosure 26
which may also be opened to allow exhaust gases to escape during
launch of the device from the canister 14. An optional tether
27 is shown for providing communication between body 18 or
submarine and canister 14 after release. The watertight
canisters 14 also prevent corrosion and/or electrical damage to
the stored device, as the devices remain dormant until needed.
In particular, when the large container 12 is flooded to
equalize pressure with the ambient ocean surroundings, the small
canister protects their stored weapons and/or vehicles. Thus,
the individual canisters 14 get wet each time the large
container 12 is flooded to launch a weapon and/or vehicle. The
watertight canisters 14 are also provided to help reduce the
weight of the weapon and/or vehicle, and assist in ascending the
devices to the ocean's surface.

For a weapon and/or vehicle that can withstand the ocean's
depth pressures and corrosiveness, the watertight canister 14
need not be provided. In such a case, the air bag inflators 16
can be attached directly to the weapon and/or vehicle without
the use of a separate canister. Alternately, the individual
watertight canisters 14 can be designed to withstand sea
pressure to the full operational depths of the submarine. This
would eliminate the need for the single large airtight pressure
container 18. However, it would require that the smaller
canisters 14 be designed for continuous seawater immersion. The
individual weapon and/or vehicle canisters may also be tethered
to the large pressure container, or to the submarine, so that
the canisters can be retracted back into the submarine, if
necessary.

Air bag inflators 16 are used to lift the canisters 14 from
the pressure container 12 using the buoyancy of air in water.
One or more inflators 16 are preferably attached to the body 22
and/or top enclosure 24 of the individual canisters 14. The air
bag inflator 16 on the top enclosure 24 of the canister 14A is
preferably used to lift the canister out of the pressure
container during launch. First, the large container 12 is flooded, equalized in pressure, and the hatch 20 is opened.

Each air bag assembly 16 has an air bag 17A and an inflator 17B joined in communication with air bag 17A. Air bag 17A can be any fluid impermeable bag that is capable of being stowed in the available space. This bag can be made from Mylar, rubber, a polymer material or the like. In a first embodiment, the inflator 17B can be a gas generator that is electrically activated to generate an inflation gas on receipt of an electrical signal. Gas generators are well known in the art of automobile air bag inflators. As an alternative, the inflator 17B can be a compressed gas source having an electrically actuated valve that releases the compressed gas into air bag 17A on receipt of a control signal. In either embodiment, inflator 17B should provide sufficient gas to lift canister 14 at the operational depth while not providing excessive gas that could rupture air bag 17A. Lifting air bag assemblies 16 must have a mechanism for coping with launches at depth and changing air pressures as the canister ascends. Stabilizing air bag assemblies 17C can be activated near the surface and have less need to accommodate depth pressures.

Once the container 12 is opened the air bag or bags are deployed to raise the weapon and/or vehicle canister 14 out of the submarine and into the water environment for a wet launch,
or up to the ocean's surface for a dry launch. The buoyant
force on the gas filled air bag provides the lift force to raise
the weapon canister out of the container. Given that the weapon
canisters contain air, and due to the buoyant force of water,
the weapon canisters are relatively light in water and only a
small lift force is necessary to raise the weapon canister.
Once the weapon canister is a sufficient distance from the
submarine, the top air bag 17A and/or the inflator 17B may be
jettisoned and side air bag inflators may be deployed.
The side air bag inflators 17C are preferably used during a
dry launch to buoy the weapon canister the remaining distance up
through the ocean water and to the ocean's surface. Once the
ocean's surface is reached, the side air bags may be used to
stabilize the canister as it floats, and may thereafter be used
to stabilize the weapon during launch. After the weapon is
launched, the air bag inflator and the weapon canister may
remain on the ocean's surface until they can be recovered.
For a wet launch, the side air bags are not needed. During
a wet launch, after the top air bag has removed the canister a
safe distance from the submarine, the weapon or vehicle's own
propulsion system preferably directs the weapon and/or vehicle
toward its target. The top air bag can be jettisoned at that
time.
A support framework 28 (FIGS. 2 and 3) may be provided to loosely hold the canisters 14 inside the larger containers 12. A loose, non-rigid connection may preferably be provided between the canisters 14 and the support framework 28 in order to allow for easy loading and launching. A rigid connection is not needed, as the canisters 14 will be held in place by the normally vertical orientation of the submarine and the weight of the canisters. However, a soft, shock absorbent material may be used to cover the support framework and interior portions of the container in order to cushion the canisters during aggressive submarine maneuvers and shock loads.

Operation of the air bag launch assembly 10 will now be described with reference to the Figures.

Once a weapon launch is called for, the submarine assumes a position sufficiently close to the ocean’s surface. The large watertight containers 12 are then filled with water to equalize its pressure with the surrounding ambient ocean conditions. The water will occupy the air space around the small weapon canisters 14 inside the large container 12. When the pressure inside the large container 12 is balanced against the ambient ocean pressure, the top hatch 20 on the large container 12 is opened. Once the container 12 is opened, the air bag or bags are deployed to raise the weapon and/or vehicle canister 14 out of the submarine and into the water environment for a wet
launch, or up to the ocean’s surface for a dry launch. As described above, the top air bags 17A are preferably used to raise the canisters out of the containers. The side air bags 17C are preferably used during a dry launch to ascend the weapon canister the remaining distance up through the ocean water and to the ocean’s surface. Once the ocean’s surface is reached, the side air bags may be used to stabilize the canister as it floats, and may thereafter be used to stabilize the weapon during launch. As previously noted, for a wet launch, the side air bags are not needed and the top air bag may be jettisoned when the weapon and/or vehicle’s own guidance and propulsion system takes over. Preferably, the air bags are launched from a vertical position within the canisters. However, the air bags may also be sized to launch from many small angles from vertical. In doing so the air bag buoyant force merely has to overcome the frictional force and the weapon and/or vehicles weight to lift the weapon and/or vehicle out of the support framework.

As will be appreciated, the combination of a large watertight pressure container, a small airtight weapon canister, a support framework, and an air bag inflator represent an improved method of launching weapons underwater. The advantages of the launch assembly include; easy loading/unloading of weapons, increased weapon packing density, cost and weight
savings, and reliability advantages. The weapons can be
loaded/unloaded individually or as an entire cartridge inside
the support framework making them easy to load and unload. In
either case, the weapon canister or weapons cartridge is simply
lowered vertically into the large container or raised vertically
out of it. Once loaded, the weapons are naturally secured in
place due to their own weight, the designated space limitations,
and the normally vertical orientation of the submarine.

Using the air bag launcher assembly also increases the
packing density of the weapons. Given a higher packing density,
either more weapons can be carried on a same size submarine or
the same number of weapons can be carried on a smaller
submarine. Current systems use individual pressure vessels for
each weapon and large weapon launching systems such as gas
generators, air turbine pumps, ram pumps, and elastomeric
ejection systems. All these components occupy a significant
amount of space. In contrast, one air bag inflator is small
enough to fit into a person’s hand.

The air bag launch assembly also eliminates the need for
several complicated, expensive, and heavy components. If it is
used to replace the existing torpedo tube weapon launching
systems, several torpedo room components can be eliminated.
Example components that may be eliminated include: impulse
tanks, torpedo tubes, air turbine pumps, inlet cylinders,
shutter doors, high efficiency inlets, and the weapon loading
and handling systems. If it is used to replace the existing
vertical launch system components such as the gas generator, the
individual thick walled pressure vessel, the individual capsule,
the individual muzzle door, and the individual hydraulic systems
can be eliminated. In addition, the air bag launch assembly
will be less costly to maintain since there are fewer components
that require servicing.

Since the air bag assembly has fewer components that make
up the entire launch system it is expected to have increased
reliability and reduced maintenance. Because the air bag
launcher itself has no moving parts, the wearing of parts over
time is not a concern. Air bag inflators have demonstrated such
reliability that they are used in millions of automobiles for
personnel safety. The other components that make up the air bag
vertical launch system are also well understood and known to be
reliable.

It will be understood that many additional changes in the
details, materials, steps and arrangement of parts, which have
been herein described and illustrated in order to explain the
nature of the invention, may be made by those skilled in the art
within the principle and scope of the invention as expressed in
the appended claims.
SUBMARINE AIR BAG LAUNCH ASSEMBLY

ABSTRACT OF THE DISCLOSURE

An air bag launch assembly is disclosed which allows for modular loading onto a submarine, the launch of weapons or vehicles external to the submarine pressure hull, while also achieving greater packing density. The air bag launch assembly includes a large, watertight pressure container; one or more smaller, watertight canisters used to contain the weapon or vehicle. The canisters are sized to fit within the larger pressure container. An air bag inflator is attached to the top and/or sides of the small canister to buoy the canister out of the container.