UNCLASSIFIED

AD NUMBER
ADB283904

NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov’t. agencies only; Proprietary Info.; Jun 2002. Other requests shall be referred to US Army Medical Research and Materiel Comd., 504 Scott St., Fort Detrick, MD 21702-5012.

AUTHORITY
USAMRMC ltr, 27 Feb 2003

THIS PAGE IS UNCLASSIFIED
NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT PROCUREMENT DOES NOT IN ANY WAY OBLIGATE THE U.S. GOVERNMENT. THE FACT THAT THE GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY OTHER PERSON OR CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

LIMITED RIGHTS LEGEND

Award Number: DAMD17-01-1-0512
Organization: Dana-Farber Cancer Institute

Those portions of the technical data contained in this report marked as limited rights data shall not, without the written permission of the above contractor, be (a) released or disclosed outside the government, (b) used by the Government for manufacture or, in the case of computer software documentation, for preparing the same or similar computer software, or (c) used by a party other than the Government, except that the Government may release or disclose technical data to persons outside the Government, or permit the use of technical data by such persons, if (i) such release, disclosure, or use is necessary for emergency repair or overhaul or (ii) is a release or disclosure of technical data (other than detailed manufacturing or process data) to, or use of such data by, a foreign government that is in the interest of the Government and is required for evaluational or informational purposes, provided in either case that such release, disclosure or use is made subject to a prohibition that the person to whom the data is released or disclosed may not further use, release or disclose such data, and the contractor or subcontractor or subcontractor asserting the restriction is notified of such release, disclosure or use. This legend, together with the indications of the portions of this data which are subject to such limitations, shall be included on any reproduction hereof which includes any part of the portions subject to such limitations.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION.

[Signature]

10/14/02
Inactivation of normal function of the retinoblastoma protein (pRB) contributes to the majority of cancers including breast cancer. The broad objective of this research is to understand the impact of promotion of differentiation by pRB to its tumor suppression function. To accomplish this goal, we need to understand first function of pRB in differentiation at the molecular level. We aimed to identify proteins with which pRB interacts to promote differentiation. In screenings using Dual Bait System, we identified several cellular proteins that still interact with the pRB mutants associated with a low risk of retinoblastoma. Unlike high risk of cancer mutants, these mutants retain the ability to promote differentiation. To understand role of the identified proteins in differentiation, we started with pRB-Binding Protein 2 (RBP2) whose homolog, PLU-1, has been shown to be closely associated with the malignant phenotype in breast cancer. We propose that disregulation of RBP2 interaction with pRB in the cause of mutation may lead to cancer.
Table of Contents

Cover.. 1

SF 298... 2

Introduction... 4

Body.. 4

Key Research Accomplishments.. 7

Reportable Outcomes... 7

Conclusions... 8

References.. 9

List of Personnel... 10

Appendices... 12
INTRODUCTION: The retinoblastoma gene (\(Rb\)) is frequently mutated in many types of tumors including breast cancer [1-5]. From the emerging of cancer biology as a field, pRB has become a paradigm of tumor suppressor gene. The tumor suppression effects of pRB have been hypothesized to be due to its ability to cause cell cycle arrest. Much evidence now suggests its diverse function in differentiation. The purpose of my research is to identify proteins that interact with pRB to promote cellular differentiation. This would aid in understanding the contribution of pRB-mediated differentiation to tumor suppression. The scope of research is to search for proteins that bind specifically to pRB mutants that retain the ability to promote differentiation.

BODY: To dissect pRB function in differentiation, I used selective pRB mutants recently described in our laboratory [6]. All tumor-derived pRB mutants examined to date are unable to bind transcription factor E2F-1 and are unable to repress transcription (Fig. 1). Among these, pRB mutants associated with a high risk of retinoblastoma, such as RBA22, encoded by a somatically altered \(Rb\) allele, are also unable to induce differentiation, manifested, for example, in induction of flat cells in an osteosarcoma cell line. However, certain germ-line \(Rb\) mutants give rise to retinoblastoma at a much lower frequency than expected for a null \(Rb\) allele. These partially penetrant alleles preserve, to some extent, the ability to suppress tumor formation. Our lab has addressed functional differences of the mutants associated with the low risk of cancer, for instance naturally occurring mutants RB661W, RB\&ex4, and \textit{in vitro} mutants RB\&651 and RB\&663. In transient transfection experiments in Saos-2 (\(Rb/-\)) cells, all mutants from this category were unable to bind E2F-1 and were unable to induce a cell cycle arrest but retained the ability related to induction of differentiation such as flat cell formation and modulation activation by glucocorticoids ([6] and Fig. 2).

I used selective pRB mutants, such as RBA663 and RBA22, in immunoprecipitation experiments and yeast two-hybrid system to identify protein interactions essential for differentiation.

<table>
<thead>
<tr>
<th></th>
<th>A/B pocket</th>
<th>C pocket</th>
<th>E2F bind.</th>
<th>G1/S block.</th>
<th>Transcription repression</th>
<th>Cell differentiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>RB(WT)</td>
<td>379 752 646 572 928</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>RBA22</td>
<td>379 752 775 567 928</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RB567L</td>
<td>379 567 663 928</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RBA663</td>
<td>379 663 928</td>
<td></td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

1. **Using coimmunoprecipitation assays for detection of pRB interacting proteins**

My experimental plan was to overproduce epitope-tagged versions of wild-type pRB, and selected mutants thereof, in mammalian cells using a retroviral system. The
Outline of performed experiments: 1) Production of ecotropic retroviruses encoding different pRB derivatives and retroviral infection of Saos-2/EcoR (Rb-/-) cells; 2) Analytical immunoprecipitation of proteins from infected cells using antibodies to the epitope tag. First, I generated cell lines stably expressing ecotropic receptor (Saos-2/EcoR and U-20S/EcoR lines, derivatives of Saos-2 and U-20S, respectively). They can be efficiently infected with retroviruses produced by an ecotropic packaging cell line. Saos-2/EcoR cells infected with the respective pRB encoding retroviruses were analyzed for flat cell formation. As expected, the generation of flat cells, indicative of differentiation, was observed for the Rb(WT) and RBA663, but not for the vector, RBA22 and RB567L. The pRB derivatives were produced as EE- or HA-tagged versions. I grew the infected Saos-2 cells in the presence of 35S methionine and performed immunoprecipitations with the anti-EE or anti-HA affinity matrix. Proteins bound to the affinity matrix were eluted with the EE (or HA) peptide and separated by SDS-PAGE gels. Bound proteins were visualized by silver staining or by using metabolic labeling of cells. Any proteins that coimmunoprecipitate with Rb(WT) and RBA663, but not RBA22 and RB567L, would be of potential interest with respect to pRB’s role in differentiation.

Problems: Using immunoprecipitation, I failed to detect a protein (call it 'X') that binds to pRB(WT) and pRBA663, but not to pRBA22 and RB567L. I’d like to mention at least several possibilities why the proteins important for differentiation are hard to isolate. One caveat is that 'X' may be unstable and/or of low abundance. I anticipated that protein 'X' may be rapidly degraded upon cell-cycle exit that is dependent on the pRB binding of MDM2 which functions as an E3 ubiquitin ligase [8]. I used a Rb-/- cell line defective in ubiquitin-dependent degradation to "trap" interaction of RBA663 with a protein 'X' which is no longer degraded, but didn’t revealed any specific interactions either. pRB is bound to chromatin/nuclear matrix. Another caviat is that pRB interacting proteins are presumably low-extractable nuclear proteins. Also, epitope tag might be “hidden” from recognition by antibodies, unless exposed applying specific conditions. I have explored the influence of salt concentration and pH on binding to optimize the conditions for extraction and immunoprecipitation. Next, although I examined extracts prepared at different time points after induction of differentiation, binding of 'X' to pRB might be confined to a very narrow time interval that I failed to catch. Finally, it is possible that the pRB-'X' complex is very unstable. In other words, maybe pRB is acting 'catalytically' rather than stoichiometrically. Indeed, from my experience with RBP2 (data not shown), conditions for extraction, purification of complexes and time considerations are critical for detection of the pRB interacting proteins. Due to the failure to detect selective pRB complexes applying immunoprecipitation, I used a modified yeast two-hybrid assay as a backup strategy.

2. **Using of a modified two-hybrid system for detection of pRB interacting proteins**

The yeast two-hybrid assay is very sensitive but has the drawback of generating 'false positives'. A novel adaptation of the two-hybrid system named the dual bait system [9] allows one to minimize false positives by the simultaneous analysis of two baits in a single cell (Fig. 3). As the 1st bait, I used RB(379-928)α663 fused to DNA-binding
domain of LexA bacterial repressor protein. As the 2d bait, I used RB(379-928)Δ22 fused to DNA-binding domain of bacteriophage λ repressor protein cl. I transformed a human cDNA library in the yeast strain of genotype MATα ura3 his3 trp1 cIop-LYS2 lexAop-LEU2 and looked at the expression of three reporter genes indicative of interaction. **Outline of performed experiments:** 1) Subcloning of RB(379-928)Δ663 and RB(379-928)Δ22 in Dual Bait vectors; 2) Testing of the pRB fusion proteins; 3) Screening of a cDNA library for interacting proteins with the configuration of baits described in Fig. 3; 4) The DNA of the positive clones was rescued and the number of discrete genes represented among the clones was determined; 5) as a second example of Dual Bait utility, initially isolated preys were retransformed into yeast containing swapped DNA binding domain fusions. The swapped fusions eliminated a substantial number of the originally isolated clones, which were presumptively binding to a unique configuration of the original baits; 6) prey DNA was transformed in yeast carrying RB(WT) and low-penetrant mutants (Fig. 2); all of the clones, with a single exception, interacted selectively; 7) studies related to biological relevance of the identified interactions. In total, from three libraries screened, I identified six preys which interacts with pRB mutants retaining the ability to promote differentiation (Table). E7 HPV-18 oncoprotein was selected from two different fetal brain libraries. Although a legitimate RB interactor, as E7 is not normally expressed in brain, it may represent an artifact of library construction. I isolated RBP2 that was cloned originally by its interaction with pRB [10]. RBP2 is a large nuclear phosphoprotein [11]. Function of three other proteins has never been related to pRB. These are all nuclear proteins and contain Zn finger domains.

Table. Positives identified in Dual Bait screenings with the pRB Δ663 (interacting) and Δ22 (non interacting) as the baits.

<table>
<thead>
<tr>
<th>Protein name</th>
<th>Description</th>
<th>Number of hits</th>
<th>Localization</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>E7</td>
<td>human papilloma (HPV-18) oncoprotein</td>
<td>>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2F-2</td>
<td>E2F family of transcription factors</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RBP2</td>
<td>RB-binding Protein 2</td>
<td>1</td>
<td>N</td>
<td>PHD</td>
</tr>
<tr>
<td>PLZF</td>
<td>Promyelocytic Leukemia Zinc Finger protein</td>
<td>12</td>
<td>N/C</td>
<td>C2H2</td>
</tr>
<tr>
<td>HIRIP4</td>
<td>HIRA interacting protein 4 (dnaJ-like)</td>
<td>1</td>
<td>N</td>
<td>dnaJ</td>
</tr>
<tr>
<td>AK000050</td>
<td>NEDO human cDNA sequencing project</td>
<td>1</td>
<td></td>
<td>C2H2</td>
</tr>
</tbody>
</table>

Apriori, except of E2F-1 we don’t know which pRB interacting proteins fail to bind to the synthetic mutant RBΔ663. Binding of the E7 and adenovirus E1A
oncoprotein is known strongly interferes with cellular differentiation. Mutants that retain the ability to promote differentiation are expected to be able to bind to viral oncoproteins. I showed that RBΔ663 mutant interacts with the viral oncoproteins in both yeast two-hybrid system and in mammalian cells (Fig. 4). Cellular proteins that has been shown do not interact with RBΔ663 in mammalian cells, do not interact in yeast either.

Low-penetrant mutants are known to be unstable alleles with temperature-sensitive properties. To gain understanding of the biological relevance of interactions, I looked whether the interactions are temperature-sensitive. First, to check whether growing yeast at different temperatures causes gross changes in the pRB, including a misfolding, we compared binding to Large T antigen (Fig. 5). There were no much differences in binding to Large T antigen at different temperatures suggesting that pRB protein achieves proper folding at these temperatures. However, there was a reduced binding of low-penetrant mutants but not wild type pRB to RBP2 suggesting that their RBP2-binding activity is near the threshold level. In contrast, the binding of the RBΔex4 scored only at 24°C. Δex4 has biochemical properties that are distinct from other mutants. Proteins identified in our Dual Bait screen all showed temperature-sensitivity of binding to the pRB mutants: they didn’t bind at 37°C (Fig. 6). Second, they bound to these mutants at 30°C when the E2F-1 binding was abrogated. Finally, there were conditions when all four are bound to the mutants. The conclusion is these mutants retain in vivo binding to a subset of cellular proteins when there is no binding to the E2F-1.

What might be the consequences of the loss of these proteins in human cells? I concentrated my efforts on RBP2, since its homolog, PLU-1 (Fig. 7), is specifically upregulated in the invasive and in situ components in primary breast cancers [12]. I applied RNAi technique to downregulate RBP2 expression in Rb-/- and Rb+/+ p16-/- (non-functional pRB) background (Saos-2 and U-2OS cells, Fig. 8). The steady-state level of RBP2 protein was determined by Western blot analysis. Dowregulation of RBP2 results in profound changes in cell morphology associated with G1 arrest and differentiation.

KEY RESEARCH ACCOMPLISHMENTS:
1. Identified six proteins that bind to low risk of cancer pRB mutants and wild-type pRB, but not high risk of cancer pRB mutants: RBP2, PLZF, HIRIP4, AK000050, E2F-2 and E7.
2. pRB mutants able to promote differentiation are unstable alleles and retain binding to all identified proteins when there is no binding to the transcription factor E2F-1.
3. Lack of RBP2 causes profound changes in cell phenotype associated with cell cycle arrest and differentiation.

REPORTABLE OUTCOMES:
1. Development of Saos-2/EcoR and U-2OS/EcoR osteosarcoma cell lines carrying stably integrated ecotropic receptor.
Brain (B42 AD, OriGene Tech.). Frontal cortex from a 22-week old fetus; 3. Human Fetal Brain (GAL4 AD, Gibco BRL) from a 37-week female.

3. Developments of pRB, RBP2, PLZF, HIRIP4, AK000050 derivatives in mammalian expression vectors and RBP2 reagents for RNAi experiments.

CONCLUSIONS:
I determined which cellular proteins bind to wild-type pRB and low-risk of retinoblastoma mutants, but not to high-risk of cancer mutants. I provided some evidence that at least one of these proteins, RBP2, affects cellular differentiation. One validation of my Dual Bait screening is that, besides cellular proteins, I identified also E7 oncoprotein. At least Large T antigen of SV-40 is known to interact with some low-risk of cancer mutants. This is consistent with my observations that these mutants interact with E7 in both mammalian cells and yeast two-hybrid system. Low-penetrant mutations have been suggested to be unstable allelic with temperature-sensitive protein-binding activities. So, temperature-sensitivity of interaction would be another validation of the screen. To the best of my knowledge, this is the first case, when cellular proteins interacting in temperature-sensitive manner with low-risk of cancer pRB mutants have been identified. Among the proteins interacting pRB mutants retaining the ability to promote differentiation, I identified RBP2. One might suggest that unstable interaction with RBP2, for example, may be a molecular basis for the variable frequency of tumor development in families with the phenotype of incomplete penetrance of retinoblastoma and breast cancers where pRB is mutated.

The nature of the identified proteins partially explains my failure to coimmunoprecipitate them from mammalian cells overproducing pRB derivatives. RBP2 is exclusively a nuclear protein. RBP2 and the other three proteins contain domains common to chromatin-bound proteins, so these pRB complexes are most probably attached to chromatin and not extractable by convenient methods.

The role of RBP2 in the development of breast cancer has never been explored. However, it has been shown that expression of its homolog, PLU-1 (Fig. 7), is upregulated in breast cancers, and the highest expression is seen in the invasive component [12]. It is likely that pRB acts at a “differentiation checkpoint” coordinating cell cycle exit and commitment to differentiation. I can imagine several models, perhaps the two simplest would be that: 1) RBP2 inhibits differentiation and is neutralized by pRB or 2) RBP2, in conjunction with pRB, promotes differentiation. These possibilities can be dissected using differentiation assays as described in [6], and applying the newly developed RNAi experiments. In this interest of space, let me indicate that trying to place RBP2 upstream or downstream of pRB will ultimately require the construction of RBP2 mutants that do or do not bind to pRB. While RBP2 represents immediate interest for a breast cancer program, three other identified proteins are necessary to be investigated as well.

As shown in my RNAi experiments, downregulation of RBP2 in several times induces profound effects on the neoplastic phenotype of cells. This is consistent with upregulation of PLU-1 in breast cancers compared to benign lesions. These data make PLU-1 and probably RBP2 potentially amenable to pharmacological manipulation in tumors of breast and other tissues.
REFERENCES:

BIOGRAPHICAL SKETCH

Provide the following information for the key personnel in the order listed on Form Page 2. Follow this format for each person. DO NOT EXCEED FOUR PAGES.

<table>
<thead>
<tr>
<th>NAME</th>
<th>POSITION TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elizaveta Benevolenskaya, Ph.D.</td>
<td>Research Associate in Medicine</td>
</tr>
</tbody>
</table>

EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as nursing, and include postdoctoral training.)

<table>
<thead>
<tr>
<th>INSTITUTION AND LOCATION</th>
<th>DEGREE (if applicable)</th>
<th>YEAR(s)</th>
<th>FIELD OF STUDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moscow State University, Moscow, Russia</td>
<td>M.S.</td>
<td>1990</td>
<td>Molecular Biology</td>
</tr>
<tr>
<td>Institute for Molecular Genetics RAN, Russia</td>
<td>Ph.D.</td>
<td>1995</td>
<td>Animal Molecular Genetics</td>
</tr>
</tbody>
</table>

A. Research and Professional Experience:

- **1990-1992** Predoctoral Fellow, Department of Molecular Biology, Biological College, Moscow State University, Moscow, Russia
- **1992-1995** Graduate Student, Department of Molecular Biology, Biological College, Moscow University, Moscow, Russia
- **1995-1999** Postdoctoral Fellow, Division of Biological Sciences, University of Missouri-Columbia
- **1999-** Research Associate in Medicine, Department of Adult Oncology, Dana-Farber Cancer Institute, Boston, MA
- **1999-** Research Fellow in Medicine, Harvard Medical School, Boston, MA

Awards and Honors:

- **1990-1992** Predoctoral Fellowship from Moscow State University, Moscow, Russia
- **1995-1997** Soros graduate student, International Soros Science Education Program
- **2001-** Associate Appointment through Howard Hughes Medical Institute, Boston, MA

B. Selected Peer-Reviewed Publication:

APPENDICES:

Figure legends

Figure 2. pRB constructs used for a detail study of specificity of interaction of isolated cDNA clones. A. A diagram of full-length and large pocket pRB and p107 derivatives. They were fused to the cI DBD to be used in the Dual Bait System. B. Expression of pRB and p107 derivatives in yeast as revealed by cI immunoblotting.

Figure 3. Selective pRB interactions in yeast Dual Bait System. Interaction with two baits introduced in a single cell is monitored by expression of three reporter genes. To reveal interactions specifically retained by mutants defective in cell cycle arrest, we set up the system in a way to screen for proteins which interact with the Δ663, but not Δ22 mutant of pRB. Specificity of interaction is always a major issue in two-hybrid screenings. Introduction of the second bait, RBΔ22, provides internal control for interaction specificity.

Figure 4. Δ663 pRB mutant that retains the ability to promote differentiation is able to bind to viral oncoproteins and some cellular proteins. A. The pRB derivative Δ663 and HA-tagged E7 were overexpressed in Saos-2 (Rb-/-) osteosarcoma cells and their interaction was determined by immunoprecipitation with anti-HA antibody (HA 11, Babco). The precipitated proteins were detected by immunoblotting with anti-RB antibody (XZ56). Input proteins are 10% of that used in immunoprecipitation. Δ663 like RB(WT) can be co-immunoprecipitated with E7 oncoprotein when coexpressed in Saos-2 (Rb-/-) osteosarcoma cells. On the contrary, Δ22 is not immunoprecipitated with E7. B. Likewise, E7 is strongly interacting with Δ663 in yeast Dual Bait system. Top, Large pocket of RB(WT), Δ663 and Δ22 were transformed in yeast as cI-fusions. Interaction between an activation domain-fused prey and bait was determined by measuring activity of the gus A reporter and reported by blue staining of clones. Bottom, Consistent with biochemical data, Δ663 does not bind to E2F-1 and EID-1, while WT does bind. Interestingly, in screening of cDNA library we isolated E2F-2 indicating that Δ663 retains residual interaction to E2F-2. We also isolated RBP2 which was first identified by screening a cDNA expression library with recombinant pRB protein.

Figure 5. RBP2-binding activity is temperature sensitive in low-penetrant pRB mutants. Several full length RB derivatives generated as cI-fusions (Fig. 2) were transformed in yeast to be investigated for temperature-sensitivity of interaction with RBP2 and Large T antigen, as preys. The clones were replica plated on three plates and assayed for gus A reporter activity after growing cells at 23°C, 30°C or 37°C. Assay was performed in quadruplet.

Figure 6. Binding to proteins identified in Dual Bait screening is temperature sensitive in pRB mutants retaining the ability to promote differentiation. pRB derivatives (Fig. 2) were cotransformed with indicated preys in yeast and analyzed for interaction as in Figure 5. Staining was performed in quadruplet for each temperature.
Figure 7. **RBP2 is a close homolog of human protein PLU-1 upregulated in breast cancer.** Sequence alignment was done by program ALIGN in DNASTAR software.

Figure 8. **RBP2 siRNA inhibition in osteosarcoma cells.** RNAi experiments were applied to downregulate RBP2. Saos-2 and U-2OS cells were transfected with two different RBP2 siRNA duplexes or control duplexes, unrelated GL3 and scrambled. **A.** On the 5th day after transfection, pictures of cells were taken using phase contrast microscopy. **B.** Subsequently, cytoplasmic and nuclear fractions were prepared, loaded on SDS-PAGE and immunoblotted with RBP2, pRB, or Eps15 and Lamin A as controls of fractionation. The RBP2-specific band was revealed in the nuclear, but not in the cytoplasmic fraction.
Figure 2B

vector
WT
Δ663
Δ651
661W
Δex4
LP WT
LPΔ567
p107LP
LPΔ663
LPΔex22
Figure 4

A

<table>
<thead>
<tr>
<th>input</th>
<th>IP:HA</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA-E7</td>
<td>HA-E7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LP Δ663</th>
<th>LP WT</th>
<th>LP Δ663</th>
<th>LP WT</th>
<th>LP Δ663</th>
<th>LP WT</th>
<th>LP Δ22</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>pRB</td>
<td>IgG</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

- cl op

- gusA

- pRB

- E7
- EID-1
- E2F-1
- E2F-2
- RBP2

vector

- LP WT
- LP Δ663
- LP Δ22
Figure 5

<table>
<thead>
<tr>
<th>pRB mutant</th>
<th>low-penetrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>Δ663</td>
</tr>
<tr>
<td>Δ651</td>
<td>Δ61W</td>
</tr>
<tr>
<td>Δex4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RBP2 Large T</th>
<th>23°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBP2 Large T</td>
<td>30°C</td>
</tr>
<tr>
<td>RBP2 Large T</td>
<td>37°C</td>
</tr>
</tbody>
</table>
Figure 6

<table>
<thead>
<tr>
<th></th>
<th>RBP2</th>
<th>PLZF</th>
<th>unknown</th>
<th>E2F-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ663</td>
<td>●●●●●</td>
<td>●●●●●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ651I</td>
<td>●●●●●</td>
<td>●●●●●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ661W</td>
<td>●●●●●</td>
<td>●●●●●</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δex4</td>
<td>●●●●●</td>
<td>●●●●●</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **23°C**:
 - RBP2
 - PLZF
 - unknown
 - E2F-1

- **30°C**: RBP2

- **37°C**: RBP2

This table represents the interaction of RB mutant low-penetrant with different conditions and proteins at specified temperatures.
Figure 7

V700 v710 v720 v730 v740 v750 v760

pRBP2
RLVCLYHPDDLCMMKCLRYYRPPLEDLPSSLYGYVRAQSVDIWVSRVTEALSANFMHKDLOELFV
pPLU-1
LLVCLH/HKeLSCFFPPKYKLRRYRTLDLPPMMNALKLRAESINMAKNFALAEKTRKKSLVSKFA
^850 ^860 ^870 ^880 ^890 ^900 ^910
^v770 ^v780 ^v790 ^v800 ^v810 ^v820 ^v830

pRBP2
MLEAEDZKYPENDFLRRLDAVKAETCASVAQLLSSKQQHQRSQEOSGGRTRKLTVVEELKAFQQLFS
pPLU-1
LIEESERMKFPPNDLLRLRVTQDAEKCASVQLNGKROIYRSGGGQNLSTNVNLQFVTLYA
^920 ^930 ^940 ^950 ^960 ^970 ^980
^v840 ^v850 ^v860 ^v870 ^v880 ^v890 ^v900

pRBP2
LPCVSQAFQVNKLDDVEEFHERAQEAMMDETDPDSKLLQMLIDGSSLVELELPFLKQELQARWLD
pPLU-1
LPCVLQQTFLKLDNEVEFPQOHSQKLLESETPSAELQOQDLIDSVFPEYVELEPQALMRKTRLEQARWLE
^990 ^1000 ^1010 ^1020 ^1030 ^1040 ^1050
^v910 ^v920 ^v930 ^v940 ^v950 ^v960 ^v970

pRBP2
EVRLTSQVQTVLNMKLLDGSLGALPHHAVEatKAMELQELIVSEWEERAKCQLAFRPHSASVL
EV :: DP .. TDL M :::LID GVLAP: AVEKAM:QLELLIVSE W KAK ::LARPHE SL
pPLU-1
EVQACQLDPSSTLIDQRRLKLETGSLGAVSKAMELQELIVSEWOMDLKSLKARFPHSASVL
^1060 ^1070 ^1080 ^1090 ^1100 ^1110 ^1120
^v980 ^v990 ^v1000 ^v1010 ^v1020 ^v1030 ^v1040

pRBP2
SIVNEAKNIPLFLNLVLSKEALQKAREWTVKARFQGSGNYAYLQESLSACRKPFLVREALQVES
: V:E ::IPA.LN:::LK ::Q:AR W :::VE: Q:G :: L.L:::L:: :GR IPV L ::LP: E:
pPLU-1
TAVKEEJTIPAYLPLGAALKDSQARDMVLDVQGRLAYMRKETLKRFLNLPSLLET
^1130 ^1140 ^1150 ^1160 ^1170 ^1180 ^1190
^v1120 ^v1130 ^v1140 ^v1150 ^v1160 ^v1170 ^v1180

pRBP2
QQAAARMEERTGRFLKNSHSTLQLQVLSFRTDIGWYGSGKNNRKKVKEEKLDEEPLSDELF
VA AN:E :::TFL :NS ::LL:VE PR:DIG :G K.: ::K KE ::::K K ::LE LSDLE:
pPLU-1
LVAEVOQKSCBVNFTFTENPSYSLLELCPRCDTGLLG-LKRRQKLKEPFLANGKSSKLLESLSDELF
^1200 ^1210 ^1220 ^1230 ^1240 ^1250 ^1260
^v1120 ^v1130 ^v1140 ^v1150 ^v1160 ^v1170 ^v1180

pRBP2
GLETETRTPAMVAVFKERBQETAMLEHSLRANLAMTMVDRILAEVFKICIKNKTPASGFLLCQELCDWF
pPLU-1
ALITSEKTAPIAVMTRGELNRMELQGLRANGKILLLEQLIPLDQVDIKCLQRAAAPAMIQCELCRDFAF
^1270 ^1280 ^1290 ^1300 ^1310 ^1320 ^1330
^v1190 ^v1210 ^v1220 ^v1230 ^v1240 ^v1250

pRBP2
NSCVPLPSSQSKKQQSQAKEVFKCLPCLMRSRRPRLQETTLSSLVSLQKLIPVRLEGEALQLCIEMRAS
SCV: P S ::::W LCP:C RS::PLE:IL LL:SLQ: VRLPEG AL: ER :
pPLU-1
TSCVAVP--SISQGLTW-------LCFHKRRSEPKFLEKTLPLASLQTRVRLEPDAIMRTERTVN
^1340 ^1350 ^1360 ^1370 ^1380 ^1390
^v1260 ^v1270 ^v1280 ^v1290 ^v1300 ^v1310 ^v1320

pRBP2
WQDRARQALIDESL SALAKL:::SVL--SQRMVDFQARERKETKILISREQLKAAANPLQGFLPSEQQAFN
WQ RA Q:L::: L :::: L S: :::::T K :::: ::::FE: ::::S :S:F:
pPLU-1
WQKRAQQLLSGLKFQDVRGSGGLYSSRQASEGSTDNKVSQPSFGTSSFLEDUNRTSYLHSFFS
^1400 ^1410 ^1420 ^1430 ^1440 ^1450
^v1260

pRBP2
RIVVSVS
:::S :
pPLU-1
TGRSCTP
^1470
Figure 8

A
1 GL3
2 RBP2-1
3 RBP2-2
4 RBP2-2sc
Saos-2(Rb−/−)

U-2OS(Rb+/+)

B

<table>
<thead>
<tr>
<th></th>
<th>Saos-2</th>
<th>U-2OS</th>
<th>Saos-2</th>
<th>U-2OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4</td>
<td>1 2 3 4</td>
<td>1 2 3 4</td>
<td>1 2 3 4</td>
<td></td>
</tr>
</tbody>
</table>

RBP2

background band

Eps15

Lamin A/C
cytoplasmic nuclear
MEMORANDUM FOR Administrator, Defense Technical Information Center (DTIC-OCA), 8725 John J. Kingman Road, Fort Belvoir, VA 22060-6218

SUBJECT: Request Change in Distribution Statement

1. The U.S. Army Medical Research and Materiel Command has reexamined the need for the limitation assigned to the enclosed list of technical documents. Request the limited distribution statement assigned to the documents listed be changed to "Approved for public release; distribution unlimited." These documents should be released to the National Technical Information Service.

2. Point of contact for this request is Ms. Judy Pawlus at DSN 343-7322 or by e-mail at judy.pawlus@det.amedd.army.mil.

FOR THE COMMANDER:

Encl

PHYLIS M. RINEHART
Deputy Chief of Staff for Information Management
ADB243021
ADB262474
ADB284009
ADB257455
ADB257446
ADB261351
ADB259684
ADB282142
ADB285141
ADB272522
ADB284022
ADB283904