AD NUMBER
ADB262292

NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov't. agencies only; Proprietary Info.; Oct 99. Other requests shall be referred to U.S. Army Medical Research and Materiel Command, 504 Scott St., Fort Detrick, MD 21702-5012.

AUTHORITY


THIS PAGE IS UNCLASSIFIED
Award Number: DAMD17-98-1-8212

TITLE: Risk of Breast Cancer Associated with Reproductive and Fertility Factors According to a Family History of Breast Cancer

Thomas Sellers, Ph.D.
PRINCIPAL INVESTIGATOR: Dawn Grabrick, MPH

CONTRACTING ORGANIZATION: Mayo Foundation
Rochester, Minnesota 55905

REPORT DATE: October 1999

TYPE OF REPORT: Annual Summary

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Distribution authorized to U.S. Government agencies only (proprietary information, Oct 99). Other requests for this document shall be referred to U.S. Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, Maryland 21702-5012.

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT PROCUREMENT DOES NOT IN ANY WAY OBLIGATE THE U.S. GOVERNMENT. THE FACT THAT THE GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY OTHER PERSON OR CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

LIMITED RIGHTS LEGEND

Award Number: DAMD17-98-1-8212
Organization: Mayo Foundation

Those portions of the technical data contained in this report marked as limited rights data shall not, without the written permission of the above contractor, be (a) released or disclosed outside the government, (b) used by the Government for manufacture or, in the case of computer software documentation, for preparing the same or similar computer software, or (c) used by a party other than the Government, except that the Government may release or disclose technical data to persons outside the Government, or permit the use of technical data by such persons, if (i) such release, disclosure, or use is necessary for emergency repair or overhaul or (ii) is a release or disclosure of technical data (other than detailed manufacturing or process data) to, or use of such data by, a foreign government that is in the interest of the Government and is required for evaluational or informational purposes, provided in either case that such release, disclosure or use is made subject to a prohibition that the person to whom the data is released or disclosed may not further use, release or disclose such data, and the contractor or subcontractor asserting the restriction is notified of such release, disclosure or use. This legend, together with the indications of the portions of this data which are subject to such limitations, shall be included on any reproduction hereof which includes any part of the portions subject to such limitations.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION.

[Signature]

[Date: 12/21/00]
**1. AGENCY USE ONLY (Leave blank)**

**2. REPORT DATE**
October 1999

**3. REPORT TYPE AND DATES COVERED**
Annual Summary (01 Oct 98 - 30 Sep 99)

**5. FUNDING NUMBERS**
DAMD17-98-1-8212

**6. AUTHOR(S)**
Thomas Sellers, Ph.D.
Dawn Grabrick, MPH

**7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**
Mayo Foundation
Rochester, Minnesota 55905

e-mail: grabrick.dawn@mayo.edu

**9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)**
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

**12a. DISTRIBUTION / AVAILABILITY STATEMENT**
Distribution authorized to U.S. Government agencies only (proprietary information, Oct 99). Other requests for this document shall be referred to U.S. Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, Maryland 21702-5012.

**13. ABSTRACT (Maximum 200 Words)**
Early age at menarche, nulliparity, late age at first birth, and late age at menopause have been consistently associated with an increased risk of breast cancer. The association of these factors in addition to other reproductive and fertility factors with risk of breast cancer is less well characterized in women with a family history of breast cancer. The scope of this research is to examine the association of reproductive and fertility factors with risk of breast cancer among sisters, daughters, granddaughters, and nieces of 426 breast cancer probands as well as women who married into the 426 families. We found that women who have used oral contraceptives and also have a first-degree relative with breast cancer were at significantly increased risk of breast cancer compared to genetically comparable women who never used oral contraceptives. The association was particularly strong in families with multiple cases of breast and ovarian cancer and for oral contraceptive use before 1975. Further follow-up is needed of younger women who used oral contraceptives after 1975. These findings are very important in light of the published recommendations that women with a hereditary predisposition to breast and ovarian cancer take oral contraceptives to lower risk of ovarian cancer.

**14. SUBJECT TERMS**
Breast Cancer, Family History, Risk Factors, Interaction, Reproduction, Fertility

**15. NUMBER OF PAGES**
43

**16. PRICE CODE**

**17. SECURITY CLASSIFICATION OF REPORT**
Unclassified

**18. SECURITY CLASSIFICATION OF THIS PAGE**
Unclassified

**19. SECURITY CLASSIFICATION OF ABSTRACT**
Unclassified

**20. LIMITATION OF ABSTRACT**
Limited

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102
FOREWORD

Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the U.S. Army.

Where copyrighted material is quoted, permission has been obtained to use such material.

Where material from documents designated for limited distribution is quoted, permission has been obtained to use the material.

Citations of commercial organizations and trade names in this report do not constitute an official Department of Army endorsement or approval of the products or services of these organizations.

In conducting research using animals, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Resources, National Research Council (NIH Publication No. 86-23, Revised 1985).

For the protection of human subjects, the investigator(s) adhered to policies of applicable Federal Law 45 CFR 46.

In conducting research utilizing recombinant DNA technology, the investigator(s) adhered to current guidelines promulgated by the National Institutes of Health.

In the conduct of research utilizing recombinant DNA, the investigator(s) adhered to the NIH Guidelines for Research Involving Recombinant DNA Molecules.

In the conduct of research involving hazardous organisms, the investigator(s) adhered to the CDC-NIH Guide for Biosafety in Microbiological and Biomedical Laboratories.

[Signature]
PI - Signature 10/25/99
Date

3
# Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Form (SF) 298</td>
<td>2</td>
</tr>
<tr>
<td>Foreword</td>
<td>3</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>4</td>
</tr>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>Body</td>
<td>5</td>
</tr>
<tr>
<td>Research Accomplishments</td>
<td>7</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>7</td>
</tr>
<tr>
<td>Manuscripts and Abstracts</td>
<td></td>
</tr>
</tbody>
</table>
**Introduction**

Several reproductive factors, including an early age at menarche, nulliparity, late age at first birth, and late age at menopause have been consistently associated with an increased risk of breast cancer. The association of these factors in addition to other reproductive and fertility factors with risk of breast cancer is less well characterized in women with a family history of breast cancer. The scope of this research is to examine the association of reproductive and fertility factors with risk of breast cancer among sisters, daughters, granddaughters, and nieces of 426 breast cancer probands as well as among women who married into the 426 families. Variables to be examined include age at menarche, age at menopause, parity, age at first and last birth, oral contraceptive use, DES exposure, difficulty becoming pregnant, reason for difficulty becoming pregnant, and use of Clomid. The results of this research could have important implications for breast cancer prevention and early detection in women with a family history of breast cancer.

**Body**

Much progress has been made on the proposed research. Task 1, which involved preparing the data for analyses, has been completed. Consistency checks of the data were performed. Datasets were merged together and appropriate exclusion criteria applied to create the analytic cohort.

Task 2 is to perform the statistical analyses examining the risk of breast cancer associated with the interaction of a family history of breast cancer with reproductive and fertility factors. Because these analyses are being performed in the context of a family study, the first step was to become familiar with statistical methods for analyzing family data. To account for the nonindependence of observations within a family, we are using a robust variance estimate. This is an approximation to the jackknife estimate of variance, which involves repeated sampling of the data, but is computationally faster.

Analyses of oral contraceptive use have been completed, and analyses of other reproductive and fertility factors have recently begun. Our research on oral contraceptive use has yielded important findings for women with a family history of breast cancer. Ever use of oral contraceptives was associated with significantly increased risk of breast cancer among sisters and daughters of breast cancer probands (relative risk=3.3; 95% C.I.: 1.6-6.7), but not among granddaughters and nieces of probands or among marry-ins. Results were essentially unchanged after adjustment for parity, age at first birth, age at menarche, age at menopause, oophorectomy, smoking, and education.

Since granddaughters and nieces may have a closer affected relative than the original proband in the family, analyses of oral contraceptive use were also run with degree of relationship redefined as one's closest affected relative. This resulted in 176 granddaughters and nieces being reclassified into the highest risk category. The results were virtually unchanged.

To study families most likely to be carrying a mutation in BRCA1 or BRCA2, analyses were conducted in high-risk families defined by the number of breast and ovarian cancers among the blood relatives. Among 132 high risk families in which at least 3 blood relatives were diagnosed with breast or ovarian cancer, the interaction of oral contraceptive use with degree of relationship reached even stronger statistical
significance (p=0.006) than in the entire cohort of 426 families. Among sisters and daughters, ever use was associated with a relative risk of 4.6 (95% C.I.: 2.0-10.7). Use of oral contraceptives by granddaughters, nieces, and marry-ins was not associated with significantly increased risk of breast cancer. When the analysis was limited to 35 very high risk families in which at least 5 blood relatives were diagnosed with breast or ovarian cancer, the risk among sisters and daughters was even greater (relative risk=11.4; 95% C.I.: 2.3-56.4).

We questioned whether the elevated risk of breast cancer associated with oral contraceptive use in sisters and daughters of the proband was due to these individuals being more likely to have been exposed to the earlier formulations of oral contraceptives that contained higher doses of estrogen. The amount of estrogen in oral contraceptives has decreased from an initial 150 micrograms to less than 50 micrograms currently, with concurrent decreases in the level of progestogens. While we had collected data on the particular years of oral contraceptive use, we did not ascertain exact formulations or dosages. With the data available, we examined estimated years of exposure to high dose and years of exposure to low dose formulations. Since all oral contraceptives initially marketed after 1975 contain less than 50 micrograms of ethinyl estradiol and 1 mg or less of several progestins, we used this year as the cutpoint. No association was observed between oral contraceptive use after 1975 and risk of breast cancer for any category of family history, although statistical power was limited. However, the risk of breast cancer associated with oral contraceptive use prior to 1975 was elevated among women with a first degree family history of breast cancer (relative risk=3.3; 95% C.I.: 1.5-7.2), but not among women with a second degree family history (relative risk=1.3; 95% C.I.: 0.8-2.0) or among marry-ins (relative risk=1.2; 95% C.I.: 0.8-1.9).

Our results suggest that the use of oral contraceptives in women with a strong family history of breast cancer may further elevate their breast cancer risk. Because the mean age at interview of women with a first degree family history of breast cancer who used oral contraceptives after 1975 was only 43 years, further follow-up is needed to investigate any association between current formulations of oral contraceptives and breast cancer incidence in these high-risk women. Therefore, we conclude that women who have a first degree family history of breast cancer and any oral contraceptive exposure may want to be particularly vigilant regarding appropriate breast cancer screening practices.

These findings were presented as a 4-day poster at the 49th Annual Meeting of the American Society of Human Genetics in San Francisco this month. In addition, we are ahead of schedule on task 3: manuscript preparation, scheduled for months 18-24. We recently submitted a manuscript on the oral contraceptive findings to the New England Journal of Medicine.
**Key Research Accomplishments**

- Women who have used oral contraceptives and have a first degree family history of breast cancer may be at particularly high risk for breast cancer.
- The association between oral contraceptive use and breast cancer in first degree relatives was particularly strong in families with multiple cases of breast and ovarian cancer and for oral contraceptive use prior to 1975.
- The oral contraceptive findings were presented as a poster at the 49th Annual Meeting of the American Society of Human Genetics, and have been submitted for publication to the New England Journal of Medicine.

**Reportable Outcomes**

**Manuscripts**

**Abstracts**
A large genomic deletion of hMLH1 in a family with Multi-Torse syndrome, J.J.P. Gille1, M.H.P. Strunk1, R.J. van Schooten2, L. Jaspar1, M.H. Vermeulen3, G. Patel1, P.H. Mittendorf4, A. de la Chapelle5, J.E. Olson1, V.S. Pankratz6, L.C. Van Note1, J. Ewald1, D.M. Morse2, R.A. Czauderna2, M.R. DeMars3, W.M. Bartram4, R.J. Hirsch1, S. Berry1, B. Bostrom2, A. B. 1) Genetic Epidemiology Branch, UIC, 2) Urologic Oncology Branch, National Cancer Institute, 3) Laboratory of Immunology, National Cancer Institute, 4) Genetic Epidemiology Branch, National Institutes of Health, Bethesda, MD; 5) Laboratory of Immunobiology, Frederick National Laboratory for Cancer Research and Development Center, Frederick, MD.

293 Renal Neoplasms in a Familial Multisystem Syndrome with Fibrofolliculomas as a Clinical Feature. D. Westermark1, G.M. Glenn2, M.M. Walter3, J.R. Torossian4, S. Wheat2, P.D. Clark2, G. Wintjens2, M.M. Walter1, W.M. Bartram1, C. Bostrom1,2,3 1) Lab. de Genetique, Hôpital E. Herriot, Lyon, France; 2) Hospital Huerzelle, Lille, France; 3) Hospital La Timone, Marseille, France; 4) Department of Medical Genetics, University Hospital Vrije Universiteit, Amsterdam, The Netherlands.


295 Methylenetetrahydrofolate reductase polymorphism in the MTHFR gene with breast and endometrial cancer risk in Jewish women, R. Gershon-Biich1, M. E. Dagan1, D. M. S. B. /, S. D. M. Tm, 1) Department of Obstetrics, Rambam Medical Center, Haifa, Israel; 2) Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa, Israel; 3) Sussie Levy Gerher Oncogenetics Unit, Chaim Sheba Medical Center, Tel-Aviv University.

296 Mutation analysis of the RET proto-oncogene in 200 French MEN 2 families: a genomic-phenotype correlation. S. Giraud1, S. Grandguillaume1, A. Zingaro2, A. Mura2, M. Billaud2, G. Lenoir2, GETCO3, 1) Lab. de Genetique, Hopital E. Herriot, Lyon, France; 2) Hospital Huerzelle, Lille, France; 3) Hospital La Timone, Marseille, France.

297 Constitutional chromosomal instability and predisposition to childhood solid tumors. J.J. P. Gille1, M.H.P. Strunk1, R.J. van Schooten2, L. Jaspar1, M.H. Vermeulen3, G. Patel1, P.H. Mittendorf4, A. de la Chapelle5, J.E. Olson1, V.S. Pankratz6, L.C. Van Note1, J. Ewald1, D.M. Morse2, R.A. Czauderna2, M.R. DeMars3, W.M. Bartram4, R.J. Hirsch1, S. Berry1, B. Bostrom2, A. B. 1) Genetic Epidemiology Branch, UIC, 2) Urologic Oncology Branch, National Cancer Institute, 3) Laboratory of Immunology, National Institutes of Health, Bethesda, MD; 4) Genetic Epidemiology Branch, National Institutes of Health, Bethesda, MD; 5) Laboratory of Immunobiology, Frederick National Laboratory for Cancer Research and Development Center, Frederick, MD.

298 Posters - 4-Day WITS: Cancer Genetics


Oral contraceptives (OCs) are weakly associated with an increased risk of breast cancer. The association between chromosomal instability (CI) and predisposition to childhood solid cancer families may consider OC use to reduce their ovarian cancer risk. We analyzed CI and correlated family data, to model the association between a time-dependent genotype of this disorder. Recently a sibling to CIB1 was born with IUGR, microcephaly and anomalies, and/or abnormalities. Three children (CIA1, CIB1, CIC2) developed cancer families may consider OC use to reduce their ovarian cancer risk. We analyzed CI and correlated family data, to model the association between a time-dependent genotype of this disorder. Recently a sibling to CIB1 was born with IUGR, microcephaly and anomalies, and/or abnormalities. Three children (CIA1, CIB1, CIC2) developed...
Increased risk of breast cancer associated with oral contraceptive use in women with a strong family history of breast cancer

Dawn M. Grabrick, M.P.H., Lynn C. Hartmann, M.D., James R. Cerhan, M.D., Ph.D., Robert A. Vierkant, M.A.S., Terry M. Therneau, Ph.D., Celine M. Vachon, Ph.D., M.P.H., Janet E. Olson, Ph.D., M.P.H., Fergus J. Couch, Ph.D., Kristin E. Anderson, Ph.D., M.P.H., Shane Pankratz, Ph.D., Thomas A. Sellers, Ph.D., M.P.H.

From the Departments of Health Sciences Research (D.M.G., J.R.C., R.A.V., T.M.T., C.M.V., J.E.O., S.P., T.A.S.), Medical Oncology (L.C.H.), and Laboratory Medicine and Pathology, Biochemistry, and Molecular Biology (F.J.C.), Mayo Clinic and Mayo Clinic Cancer Center, Rochester, Minn.; and the Division of Epidemiology, University of Minnesota School of Public Health, and University of Minnesota Cancer Center, Minneapolis, Minn (K.E.A.). Address reprint requests to Dr. Sellers at the Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905.

Supported by grants from the National Cancer Institute (RO1 CA55747) and the Department of Defense (DAMD17-98-1-8212). Dr. Cerhan was supported in part by a Preventive Oncology Academic Award (K07-CA64220).
Running Head: Oral contraceptive use in breast cancer families

Word Count: 3,784
Abstract

**Background** Oral contraceptive use is weakly associated with breast cancer risk in the general population. The association among women with a familial predisposition to breast cancer is less clear.

**Methods** We conducted a historical cohort study of 426 breast cancer families ascertained between 1944 and 1952. Data on oral contraceptive use and incidence of breast cancer through 1996 were obtained from 394 sisters and daughters of the probands, 3,002 granddaughters and nieces, and 2,754 women who married into the families.

**Results** After accounting for age and birth cohort, ever use of oral contraceptives was associated with significantly increased risk of breast cancer among sisters and daughters of the proband (relative risk=3.3; 95% C.I.: 1.6-6.7), but not among granddaughters and nieces of the proband or among marry-ins. Results were essentially unchanged after adjustment for parity, age at first birth, age at menarche, age at menopause, oophorectomy, smoking, and education. Risks associated with oral contraceptive use in 35 families with 5 or more breast/ovarian cancers were further increased among sisters and daughters (RR=11.4; 95% C.I.: 2.3-56.4); a small effect was observed among granddaughters and nieces (RR=1.4; 95% C.I.: 0.6-3.3). The elevated risk
among women with a first degree family history of breast cancer was most evident for oral
contraceptive use prior to 1975, formulations likely to contain higher doses of estrogen (>50
micrograms).

**Conclusions** Women who have ever used earlier formulations of oral contraceptives and also
have a first degree relative with breast cancer may be at particularly high risk for breast cancer.

Further follow-up of these women with a strong family history who used more recent low-
estrogen formulations of oral contraceptives is needed to determine how women with a familial
predisposition to breast cancer should be advised regarding oral contraceptive use today.

**Key Words:** Breast neoplasms; contraceptives, oral; epidemiology; risk factors; genetics
Background

In general population samples, oral contraceptives (OCs) have been observed to be weakly associated with risk of breast cancer up to ten years after a woman discontinues use.\(^1\)

However, much less is known regarding this association among women with a familial predisposition to breast cancer, with some studies showing a higher risk among women with a family history\(^2\)-\(^7\), while others have found little or no such evidence.\(^8\)-\(^18\) Observational studies have demonstrated a reduction in risk of ovarian cancer with oral contraceptive use. As a result, women from high-risk breast-ovarian cancer families are often counseled to take OCs to reduce their ovarian cancer risk.\(^19\), \(^20\) However, a small study of Ashkenazi Jewish women with breast cancer suggests that oral contraceptive use may more greatly increase the risk of breast cancer in carriers of BRCA1 or BRCA2 mutations than in noncarriers.\(^21\)

Since a family history of breast cancer may not only reflect shared genes but also shared exposures, a family study that incorporates carefully ascertained risk factor data is a robust approach to examine the potential interaction of OC use with family history. We evaluated the association between oral contraceptive use and breast cancer risk by family history of the disease in a large historical cohort of Minnesota breast cancer families. In addition, we have data on
total duration and dates of oral contraceptive use, including the ages of exposure, and on potential confounding factors. To our knowledge, this is the first study to examine this interaction in the context of a multigenerational family study, where detailed data on three generations of women are available.

Methods

Study Population

Details of the study design and methods have been published.\textsuperscript{2} Briefly, this study originated from a case-control family study initiated in 1944 at the Dight Institute for Human Genetics at the University of Minnesota.\textsuperscript{23} A consecutive series of 544 women diagnosed with breast cancer were ascertained between 1944 and 1952 to examine the influence of childbearing, breastfeeding, and hereditary susceptibility on the risk of breast cancer.

A follow-up study of the families of these probands was conducted between 1991 and 1996.\textsuperscript{22} Of 544 families in the cohort at the start of follow-up in 1952, we excluded 40 families because the proband had prevalent breast cancer (diagnosed before 1940) and 42 families because no or very few relatives were alive at baseline. Of the remaining 462 families, 20 were lost to follow-up, 10 had no living members in the sampling frame, and 6 families refused to
participate. A total of 426 families (92.2% after baseline exclusions) were successfully updated.

The current analysis was restricted to adult sisters, daughters, granddaughters, nieces, and marry-ins in these families who participated in a telephone interview.

**Data Collection**

Data on cancer history and risk factors for breast cancer were collected through a telephone interview. The participation rate for the telephone interview was 93.0%. A sample of 104 breast cancers has been validated, and the accuracy of self-report has been shown to be very high (99%). To increase validity of reports, collection of data on oral contraceptive use was limited to women who were still living and able to complete the telephone interview. Data include ever versus never use of oral contraceptives, age use began, and age use stopped.

**Statistical Analyses**

Analyses were performed using Cox proportional hazards regression. Exclusions were made for cancers (other than skin) diagnosed before baseline (defined as proband’s date of breast cancer diagnosis). Follow-up began at age 18 or age when the proband in the family was diagnosed, whichever was later. Follow-up continued until age at breast cancer diagnosis or age at interview, whichever came first.
Survival was modeled as a function of age, since age is a better predictor of breast cancer risk than is length of follow-up time in this study. Oral contraceptive use was modeled as a time-dependent variable. Only OC exposure occurring prior to breast cancer diagnosis was included. Analyses were stratified by birth cohort to control for potential cohort effects in OC use and breast cancer incidence. In addition, we accounted for the nonindependence of observations within families by using a robust variance estimate.

The overall association of oral contraceptive use with breast cancer risk in the entire cohort was examined first. Subsequent analyses evaluated whether the degree of relationship to the proband modified the effect of OC use on breast cancer risk. Never OC users were defined as the reference group for each category of relationship to the proband.

Since granddaughters and nieces may have a closer affected relative than the original proband in the family, analyses of oral contraceptive use were also run with degree of relationship redefined as one’s closest affected relative. This resulted in 176 granddaughters and nieces being reclassified into the highest risk category. The results were essentially unchanged. Therefore, analyses define family history as relationship to the proband unless otherwise specified.
Potential confounding variables were evaluated for each model after allowing for the interaction of relationship to proband with oral contraceptive use. A variable was considered a confounder if its addition changed the hazard ratio for any of the OC by relationship variables by more than 10%. There was no evidence for confounding by the following variables: parity and age at first birth, education, age at menarche, age at menopause, oophorectomy, lifetime alcohol intake, and body mass index. Diabetes, smoking, and fibroid tumors of the uterus, potential contraindications for OC use, were also ruled out as confounders. Polycystic ovaries and endometriosis, possible indications for using OCs, were evaluated as potential confounders, but they also did not influence the results. In addition to evaluating potential confounders on an individual basis, we fit multivariate models with simultaneous adjustment for parity, age at first birth, age at menarche, age at menopause, oophorectomy, smoking, and education. Since the risk ratios generally changed by less than 10% in these multivariate models, we have presented the most parsimonious models, unadjusted for these variables but accounting for age, birth cohort, and nonindependence of observations within a family. Any meaningful changes upon adjustment are presented in the results. Data analyses were performed using the SAS (SAS Institute, Inc., Cary, NC) and Splus (Mathsoft, Inc., Seattle, WA) software systems.
Results

Description of the Cohort

The age at diagnosis of breast cancer among the original probands showed wide variation, with a range of 21 to 88 years. This is reflected in the birth cohorts of the relatives (Table 1). The study cohort consists of 3,396 blood relatives and 2,754 marry-ins (6,150 total).

Breast cancer occurred in 153 of the blood relatives and 86 of the marry-ins during the follow-up period since 1952. The age at onset of breast cancer ranged from 25 to 83. The mean length of follow-up was 31.6 years.

In the study cohort, the lifetime prevalence of ever having used OCs was 51% overall and was similar for blood relatives and marry-ins (p=0.99); 6.5% of ever users reported current use of oral contraceptives. Among women who ever took OCs, the average length of use was 7.0 years (range 0.5 to 37.5 years).

Table 2 describes oral contraceptive use by relationship to the proband. Sisters and daughters of the proband were less likely to have used oral contraceptives than were nieces, granddaughters, and marry-ins, and were more likely to start and end OC use at later ages. The
duration of use did not markedly differ by relationship, but was slightly lower among sisters and daughters.

Table 3 shows the distribution of breast cancer risk factors by oral contraceptive use.

Women who had ever used oral contraceptives were much more likely to be premenopausal at the time of interview than women who had never used OCs (52% vs. 9%). Oophorectomy was slightly less common among OC users, while smoking was more common among users than nonusers. OC users also tended to have a higher level of education.

Association of Oral Contraceptives with Breast Cancer

Among the entire cohort, ever use of oral contraceptives was associated with a relative risk of 1.4 (95% C.I.: 1.0-2.0) for breast cancer. Risk did not differ by duration of use (defined by the median split). The relative risk (RR) associated with 1 to 4 years of OC use versus never use was 1.5 (95% C.I.: 1.0-2.3), while greater than 4 years of use conferred a RR of 1.3 (95% C.I.: 0.9-1.9).

Modification of the OC-Breast Cancer Association by Relationship to Breast Cancer Probands

To determine if the apparent risk associated with OC use was modified by genetic background, analyses were performed within strata defined by relationship to the proband (Table
4). Never users served as the reference group within each stratum. In the 426 families, sisters and daughters who ever used OCs were at significantly increased risk of breast cancer compared with sisters and daughters who never used OCs (RR=3.3; 95% C.I.: 1.6-6.7). The risk of breast cancer associated with OC use was not elevated among granddaughters, nieces, or marry-ins. The test for interaction between degree of relationship to the proband and OC use was statistically significant (p=0.03). Although based on a relatively small number of cases, risk ratios did not significantly differ for any relationship category by duration of OC use (1-4 years versus >4 years), by age at first use (≤25 versus >25 years old), by time since first use (≤10 versus >10 years), or by time since last use (≤10 versus >10 years; data not shown).

Analyses in High-Risk Families

To study families most likely to be carrying a mutation in BRCA1 or BRCA2, analyses were conducted in high-risk families defined by the number of breast and ovarian cancers among the blood relatives (Table 4). Among 132 high risk families in which at least 3 blood relatives were diagnosed with breast or ovarian cancer, the interaction of OC use with degree of relationship reached even stronger statistical significance (p=0.006) than in the entire cohort of 426 families. Among sisters and daughters, ever use was associated with a relative risk of 4.6

12
(95% C.I.: 2.0-10.7). Use of OCs by granddaughters, nieces and marry-ins was not associated with significantly increased risk of breast cancer. When the analysis was limited to 35 very high risk families in which at least 5 blood relatives were diagnosed with breast or ovarian cancer, the risk among sisters and daughters was even greater (RR=11.4; 95% C.I.: 2.3-56.4).

Since defining high risk families on the basis of the number of cancers does not take into account family size, we also calculated standardized incidence ratios. This was done by applying Iowa's 1973-1977 age-specific incidence rates for breast and ovarian cancer in Caucasian women to the age structure of the at-risk women. A family was defined as high risk for this analysis if at least one more breast or ovarian cancer was observed than was expected based on population incidence rates. This resulted in 98 families being classified as high risk. The results were in the same direction as when high risk was based on a simple count of the number of cancers in the family: RR=3.6 (95% C.I.: 1.5-8.7) for sisters and daughters, RR=1.0 (95% C.I.: 0.5-2.0) for granddaughters and nieces and RR=1.1 (95% C.I.: 0.7-1.7) for marry-ins. When the analysis was conducted in 38 families with two excess breast or ovarian cancers, the relative risk of breast cancer among sisters and daughters who used OCs increased to 7.1 (95% C.I.: 2.5-19.7), and the relative risk among granddaughters and nieces increased to 1.7 (95% C.I.: 0.7-13.0).
Adjustment for parity, age at first birth, age at menarche, age at menopause, oophorectomy, smoking, and education decreased the relative risk for sisters and daughters to 5.2 (95% C.I.: 1.9-14.3) and increased the relative risk for granddaughters and nieces to 2.3 (95% C.I.: 0.8-6.2).

*Dates of Oral Contraceptive Use*

We questioned whether the elevated risk of breast cancer associated with oral contraceptive use in sisters and daughters of the proband was due to these individuals being more likely to have been exposed to the earlier formulations of OCs that contained higher doses of estrogen. The amount of estrogen in oral contraceptives has decreased from an initial 150 micrograms to less than 50 micrograms currently, with concurrent decreases in the level of progestogens. Although we collected data on the particular years of oral contraceptive use, we did not ascertain exact formulations or dosages. With the data available, we examined estimated years of exposure to high dose and years of exposure to low dose formulations. Since all OCs initially marketed after 1975 contain less than 50 micrograms of ethinyl estradiol and 1 mg or less of several progestins 27, we used this year as the cutpoint. Results are presented by closest affected relative to maximize statistical power (Table 5). (Results were unchanged when
analyses were conducted by relationship to the proband.) No association was observed between OC use after 1975 and risk of breast cancer for any category of family history, although statistical power was limited (e.g., only two cases among 60 exposed women with a first degree family history of breast cancer). However, the risk of breast cancer associated with OC use prior to 1975 was elevated among women with a first degree family history of breast cancer (RR=3.3; 95% C.I.: 1.5-7.2), but not among women with a second degree family history (RR=1.3; 95% C.I.: 0.8-2.0) or among marry-ins (RR=1.2; 95% C.I.: 0.8-1.9).

Discussion

Our results suggest that the use of oral contraceptives in women with a strong family history of breast cancer may further elevate their breast cancer risk. Sisters and daughters of the proband who ever used OCs had over a 3-fold increased risk of breast cancer compared to genetically comparable women who never used OCs. The risk was further elevated when analyses were conducted in high-risk families. Upon stratification by oral contraceptive use before or after 1975, the elevated risk of breast cancer was most evident for women with a first degree family history of breast cancer who used oral contraceptives prior to 1975. However, the
mean age at interview for those who used oral contraceptives after 1975 was only 43 years (range 26-67 years).

We expected the risk of breast cancer associated with oral contraceptive use among women with a second degree family history of breast cancer to fall somewhere in-between that for first degree relatives and marry-ins. Although this was not evident in the entire cohort of 426 families, there was some suggestion of an increased risk among second degree relatives when the analyses were conducted in high-risk families and adjustment was made for other breast cancer risk factors. The lack of substantial evidence for an increased risk in the second degree relatives may be due to the younger age of these women. The mean age of the granddaughters at the time of interview was only 45.3 years.

To our knowledge, this study is the first to examine the association of oral contraceptive use with risk of breast cancer within the context of a multigenerational family study. Previously it was recommended that women with mutations in BRCA1 or BRCA2 consider oral contraceptive use to reduce their risk of ovarian cancer.19 Although our findings are not directly comparable since we did not analyze DNA for these mutations for all cases, the results seen in our highest risk families suggest that women with a genetic predisposition may be at greatly
elevated risk of breast cancer if they use oral contraceptives. Effective prevention against

ovarian cancer is certainly desirable given the high mortality associated with this malignancy and

the difficulty of early detection. However, breast cancer is a more common occurrence than

ovarian cancer in these high-risk families. Additional evidence for women at high risk avoiding

OC use comes from a recent study which suggests OCs may more greatly increase the risk of

breast cancer in BRCA1 or BRCA2 mutation carriers than in non-carriers, although these results

should be viewed with caution given the small sample size.21

We found that women who have the highest risk of breast cancer associated with oral

contraceptive use are also most likely BRCA1 or BRCA2 mutation carriers. In fact, 5 of the 16

women with a first degree family history of breast cancer who were exposed to oral

contraceptives and had breast cancer themselves are in families segregating a mutation in

BRCA2 (3 are in families not found to be segregating a mutation in BRCA1 or BRCA2; 8 are in

families not yet tested). A mutation has been verified in 3 of these 5 individuals. Of the two

remaining individuals, one tested negative for the mutation while the other individual has not

been tested. Only two of the 16 individuals had any OC exposure after 1975. Although the risk

of breast cancer appears to be greatly increased in the highest risk families, the elevated risk seen
in sisters and daughters of the probands in the entire cohort of 426 families is still of considerable magnitude.

We are not aware of any studies that have examined the risk of breast cancer associated with oral contraceptive use classified according to estrogen dose in women with a family history of breast cancer. Considering the years of ascertainment in most published studies that examined oral contraceptive use and breast cancer risk by a family history of breast cancer, women could have been exposed to either low or high dose formulations or both. It is possible that this heterogeneity of exposure led to some of the inconsistencies observed in previous studies. Several studies, including the Nurses’ Health Study 14, 18 and the Cancer and Steroid Hormone Study 11, 15 did not observe increased risks of breast cancer associated with oral contraceptive use among women with a family history of breast cancer. Our findings may have differed because our cohort is enriched for a family history of breast cancer. Other studies that have shown an increased risk of breast cancer associated with OC use include studies focusing on early onset cases with a first degree family history of breast cancer (e.g., UK National Case-Control Study Group5) and studies of known BRCA1 or BRCA2 mutation carriers.21
In vitro experiments on breast cancer cell lines have shown that wild-type BRCA1 inhibits the transcription activity of the estrogen receptor ER-α. Mutations in BRCA1 may remove this inhibitory effect, thereby increasing estrogen-dependent epithelial proliferation in the breast. This proposed interaction between BRCA1 and the estrogen receptor may contribute to the increased risk associated with oral contraceptive use observed in some of our families.

The Minnesota Breast Cancer Family Study is a unique, well-defined resource for genetic epidemiologic studies. One important advantage of this resource of multigenerational families is that the selection of the original breast cancer probands was essentially population-based. Participation rates have been very high (>93%), with on average only one or two individuals per family lost to follow-up. The length of follow-up for an individual in this analysis of oral contraceptive use and breast cancer risk was extensive, on average over 30 years and as long as 64 years. Recall of oral contraceptive use is expected to be quite accurate for the characteristics we analyzed, namely ever versus never use, total duration of use, and ages of use. Agreement between recalled history and records of prescribing gynecologists for these aspects of oral contraceptive use have been shown to be reasonably good and nondifferential with regard to case/control status.
Several complicating factors must be considered when interpreting the results of this study, however. Trends in oral contraceptive use in the United States have been quite pronounced. Prevalence of OC use has increased markedly over time, especially among younger women. Total duration of use has increased as well. In addition, substantial changes in the type and concentration of the estrogen and progestin components of oral contraceptives have occurred since their introduction in 1960, from 150 micrograms of mestranol to less than 50 micrograms of ethinyl estradiol, and 9.85 milligrams of norethynodrel to 1 milligram or less of several progestins. The rising incidence of breast cancer over the years of follow-up further complicates the analysis. Although we adjusted for quartiles of birth cohort, we were unable to completely control for all temporal trends. Our estimation of low versus high dose formulations of oral contraceptives was based on use before or after 1975 since all formulations of OCs initially marketed after 1975 contain less than 50 micrograms of ethinyl estradiol and 1 milligram or less of several progestins. Therefore, some misclassification of high dose versus low dose exposure likely occurred. Since most instances of misclassification would result in individuals with low dose exposure being classified as having high dose exposure, we consider this to be a conservative approach.
Surrogate data on OC use were not collected due to their potentially low reliability.

Therefore, data on OCs are limited to women who were alive and able to complete the telephone interview between 1991 and 1996. If OCs are associated with improved survival after breast cancer, one would expect to see an increased risk of breast cancer associated with OC use in this cohort. While some evidence exists for breast cancers in OC users being earlier stage, it is unknown whether this stems from earlier detection of breast cancer in these women, from the biological effects of the OCs, or a combination of reasons. As evidence against survivor bias, the relative risk of breast cancer associated with OC use among the marry-ins in our cohort is comparable to published estimates in general population samples.

In summary, women with a first degree family history of breast cancer who used oral contraceptives prior to 1975 were at significantly increased risk of breast cancer. We saw no evidence for an increased risk of breast cancer associated with use of oral contraceptives after 1975 in first degree relatives, second degree relatives, or marry-ins. However, only 60 women with a first degree family history of breast cancer used oral contraceptives after 1975 and only 2 of these were diagnosed with breast cancer, so our estimated relative risk is somewhat unstable for this group of younger women. Also, because of the potential for misclassification of
exposure, we are hesitant to draw conclusions regarding the influence of more recent OC formulations on breast cancer risk in women with a first degree family history of breast cancer.

Further follow-up is needed to investigate any association between current formulations of oral contraceptives and breast cancer incidence in these high-risk women. In addition, we will be completing BRCA1/2 mutation screening in the high risk families to determine whether these or other genes are responsible for the modifying effect of family history on the association between oral contraceptive use and breast cancer. Women who have a first degree family history of breast cancer and oral contraceptive exposure may want to be particularly vigilant regarding appropriate breast cancer screening practices.
References


Table 1. Description of a cohort of 426 families ascertained through probands diagnosed with breast cancer at the University of Minnesota between 1944 and 1952.

<table>
<thead>
<tr>
<th>Relationship to Proband</th>
<th>Sisters</th>
<th>Daughters</th>
<th>Granddaughters</th>
<th>Nieces</th>
<th>Marry-ins</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth cohort:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;1913</td>
<td>30 (41%)</td>
<td>30 (9.3%)</td>
<td>3 (0.2%)</td>
<td>133 (8.4%)</td>
<td>143 (5.2%)</td>
<td>339 (5.5%)</td>
</tr>
<tr>
<td>1913-1925</td>
<td>38 (52.8%)</td>
<td>130 (40.4%)</td>
<td>65 (4.6%)</td>
<td>590 (37.5%)</td>
<td>639 (23.2%)</td>
<td>1462 (23.8%)</td>
</tr>
<tr>
<td>1926-1941</td>
<td>4 (5.6%)</td>
<td>140 (43.5%)</td>
<td>339 (23.8%)</td>
<td>592 (37.6%)</td>
<td>955 (34.7%)</td>
<td>2030 (33.0%)</td>
</tr>
<tr>
<td>≥1942</td>
<td>0 (0%)</td>
<td>22 (6.8%)</td>
<td>1020 (71.5%)</td>
<td>260 (16.5%)</td>
<td>1017 (36.9%)</td>
<td>2319 (37.7%)</td>
</tr>
<tr>
<td>Mean age (range), years&lt;sup&gt;a&lt;/sup&gt;</td>
<td>79.0 (62-93)</td>
<td>67.6 (36-89)</td>
<td>45.3 (18-84)</td>
<td>65.0 (20-95)</td>
<td>57.5 (21-94)</td>
<td>57.4 (18-95)</td>
</tr>
<tr>
<td>Number of breast cancers&lt;sup&gt;b&lt;/sup&gt;</td>
<td>6</td>
<td>32</td>
<td>24</td>
<td>91</td>
<td>86</td>
<td>239</td>
</tr>
<tr>
<td>Mean age at breast cancer onset (range), years</td>
<td>60.0 (50-73)</td>
<td>56.6 (34-83)</td>
<td>50.4 (25-72)</td>
<td>57.0 (26-81)</td>
<td>57.5 (27-82)</td>
<td>56.5 (25-83)</td>
</tr>
</tbody>
</table>

<sup>a</sup> At time of interview

<sup>b</sup> Diagnosed between 1952 and 1996
Table 2. Characteristics of oral contraceptive use by relationship to proband in a cohort of 426 families.

<table>
<thead>
<tr>
<th>Relationship to Proband</th>
<th>Sisters, (n=394)</th>
<th>Nieces, (n=3002)</th>
<th>Daughters</th>
<th>Granddaughters</th>
<th>Marry-ins (n=2754)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Never used</td>
<td>76.9%</td>
<td>45.0%</td>
<td>48.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current users</td>
<td>0%</td>
<td>4.5%</td>
<td>2.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Former users</td>
<td>23.1%</td>
<td>50.5%</td>
<td>48.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean age at first OC use, years (SD)</td>
<td>30.1 (7.1)</td>
<td>23.8 (6.8)</td>
<td>24.5 (6.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean age at end OC use, years (SD)</td>
<td>35.6 (7.4)</td>
<td>30.5 (8.1)</td>
<td>30.8 (8.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean duration of OC use, years (SD)</td>
<td>6.0 (5.8)</td>
<td>7.2 (5.9)</td>
<td>6.8 (5.8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*a includes current users*

<table>
<thead>
<tr>
<th>Risk Factors</th>
<th>Ever (n=3156)</th>
<th>Never (n=2994)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parity/Age at first birth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nulliparous</td>
<td>11.4%</td>
<td>12.6%</td>
</tr>
<tr>
<td>1-2, ≤20 years</td>
<td>11.3%</td>
<td>6.1%</td>
</tr>
<tr>
<td>1-2, &gt;20 years</td>
<td>29.9%</td>
<td>25.7%</td>
</tr>
<tr>
<td>3+, ≤20 years</td>
<td>23.0%</td>
<td>19.7%</td>
</tr>
<tr>
<td>3+, &gt;20 years</td>
<td>24.5%</td>
<td>35.9%</td>
</tr>
<tr>
<td>Mean age at menarche, years (SD)</td>
<td>12.9 (1.5)</td>
<td>13.1 (1.6)</td>
</tr>
<tr>
<td>Menopausal Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Premenopausal</td>
<td>51.5%</td>
<td>8.6%</td>
</tr>
<tr>
<td>Age at menopause &lt;44 years</td>
<td>21.1%</td>
<td>26.2%</td>
</tr>
<tr>
<td>Age at menopause 45-50 years</td>
<td>16.6%</td>
<td>35.5%</td>
</tr>
<tr>
<td>Risk Factor</td>
<td>OC Use: Yes (%)</td>
<td>OC Use: No (%)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Age at menopause &gt;50 years</td>
<td>10.8%</td>
<td>29.7%</td>
</tr>
<tr>
<td>Oophorectomy</td>
<td>11.0%</td>
<td>18.2%</td>
</tr>
<tr>
<td>Smoking History</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never smoked</td>
<td>45.8%</td>
<td>62.0%</td>
</tr>
<tr>
<td>≤20 pack-years</td>
<td>30.3%</td>
<td>17.2%</td>
</tr>
<tr>
<td>&gt;20 pack-years</td>
<td>24.0%</td>
<td>20.9%</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt; High school graduate</td>
<td>11.7%</td>
<td>29.7%</td>
</tr>
<tr>
<td>High school graduate</td>
<td>37.1%</td>
<td>35.4%</td>
</tr>
<tr>
<td>Some college</td>
<td>33.4%</td>
<td>25.1%</td>
</tr>
<tr>
<td>College graduate</td>
<td>17.8%</td>
<td>9.8%</td>
</tr>
</tbody>
</table>

*a Distribution of each risk factor differs significantly by OC use, p<0.001*
Table 4. Association of oral contraceptive use with risk of breast cancer, by relationship to proband, in high risk breast-ovarian cancer families.

<table>
<thead>
<tr>
<th>Relationship to Proband</th>
<th>Oral contraceptive use</th>
<th>Entire cohort (426 families)^a</th>
<th>3+ Breast or ovarian cancers (132 families)^b</th>
<th>5+ Breast or ovarian cancers (35 families)^b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>RR (95% C.I.)</td>
<td>Number</td>
<td>RR (95% C.I.)</td>
</tr>
<tr>
<td>Proband</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sisters,</td>
<td>Ever</td>
<td>13</td>
<td>3.3</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2533</td>
<td>(1.6-6.7)</td>
<td>733</td>
</tr>
<tr>
<td>Daughters</td>
<td>Never</td>
<td>25</td>
<td>1.0</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15063</td>
<td>(ref)</td>
<td>5534</td>
</tr>
<tr>
<td>Nieces,</td>
<td>Ever</td>
<td>37</td>
<td>1.2</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38178</td>
<td>(0.8-2.0)</td>
<td>14885</td>
</tr>
<tr>
<td></td>
<td>Never</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>78</td>
<td>67522</td>
<td>1.0</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>(ref)</td>
<td>(ref)</td>
<td>(ref)</td>
<td>(ref)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ever</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>33930</td>
<td>1.2</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Never</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>67940</td>
<td>1.0</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>(ref)</td>
<td>(ref)</td>
<td>(ref)</td>
<td>(ref)</td>
</tr>
</tbody>
</table>

\(a\) p-interaction < 0.05

\(b\) p-interaction ≤ 0.01

\(c\) Marry-ins are from all 426 families for all analyses
Table 5. Association of oral contraceptive use before and after 1975 with breast cancer risk, by closest affected relative.a

<table>
<thead>
<tr>
<th>Closest affected relative</th>
<th>Period</th>
<th>OC use</th>
<th>Number of breast cancers</th>
<th>Person-years</th>
<th>RR (95% C.I.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No</td>
<td>29</td>
<td>20264</td>
<td>1.0 (ref)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>16</td>
<td>3896</td>
<td>3.3 (1.5-7.2)</td>
<td></td>
</tr>
<tr>
<td>First degree</td>
<td>No</td>
<td>43</td>
<td>23231</td>
<td>1.0 (ref)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>2</td>
<td>929</td>
<td>0.9 (0.2-4.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>75</td>
<td>67213</td>
<td>1.0 (ref)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>33</td>
<td>31923</td>
<td>1.3 (0.8-2.0)</td>
<td></td>
</tr>
<tr>
<td>Second degree</td>
<td>No</td>
<td>103</td>
<td>86661</td>
<td>1.0 (ref)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>5</td>
<td>12475</td>
<td>0.6 (0.2-1.3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>60</td>
<td>71302</td>
<td>1.0 (ref)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>26</td>
<td>30568</td>
<td>1.2 (0.8-1.9)</td>
<td></td>
</tr>
<tr>
<td>Marry-ins</td>
<td>No</td>
<td>80</td>
<td>92143</td>
<td>1.0 (ref)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>6</td>
<td>9727</td>
<td>1.1 (0.4-2.6)</td>
<td></td>
</tr>
</tbody>
</table>

a Women who used oral contraceptives both before and after 1975 contribute person-years to both groups.
MEMORANDUM FOR Administrator, Defense Technical Information Center (DTIC-OCA), 8725 John J. Kingman Road, Fort Belvoir, VA 22060-6218

SUBJECT: Request Change in Distribution Statement

1. The U.S. Army Medical Research and Materiel Command has reexamined the need for the limitation assigned to technical report written for Grant DAMD17-98-1-8212. Request the limited distribution statement for Accession Document Number ADB262292, be changed to "Approved for public release; distribution unlimited." This report should be released to the National Technical Information Service.

2. Point of contact for this request is Ms. Judy Pawlus at DSN 343-7322 or by e-mail at judy.pawlus@det.amedd.army.mil.

FOR THE COMMANDER:

PHYLIS M. RINEHART
Deputy Chief of Staff for Information Management