NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov’t. agencies only; Proprietary Information; Jul 1999. Other requests shall be referred to U.S. Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, MD 21702-5012

AUTHORITY
USAMRMC ltr, 27 Feb 2003
GRANT NUMBER: DAMD17-98-1-8071

TITLE: Pathophysiologic Impact of Doxorubicin and Radiation Therapy on the Heart of Patients Treated for Breast Cancer

PRINCIPAL INVESTIGATOR: Patricia H. Hardenbergh, M.D.

RECIPIENT ORGANIZATION: Duke University Medical Center
 Durham, North Carolina 27710

REPORT DATE: July 1999

TYPE OF REPORT: Annual

PREPARED FOR: Commander
 U.S. Army Medical Research and Materiel Command
 Fort Detrick, Frederick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Distribution authorized to U.S. Government agencies only (proprietary information, Jul 99). Other requests for this document shall be referred to U.S. Army Medical Research and Materiel Command, 504 Scott Street, Fort Detrick, Maryland 21702-5012.

The views, opinion and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA INCLUDED IN THIS DOCUMENT FOR ANY PURPOSE OTHER THAN GOVERNMENT PROCUREMENT DOES NOT IN ANY WAY OBLIGATE THE U.S. GOVERNMENT. THE FACT THAT THE GOVERNMENT FORMULATED OR SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR OTHER DATA DOES NOT LICENSE THE HOLDER OR ANY OTHER PERSON OR CORPORATION; OR CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

LIMITED RIGHTS LEGEND

Award Number: DAMD17-98-1-8071
Organization: Duke University Medical Center

Those portions of the technical data contained in this report marked as limited rights data shall not, without the written permission of the above contractor, be (a) released or disclosed outside the government, (b) used by the Government for manufacture or, in the case of computer software documentation, for preparing the same or similar computer software, or (c) used by a party other than the Government, except that the Government may release or disclose technical data to persons outside the Government, or permit the use of technical data by such persons, if (i) such release, disclosure, or use is necessary for emergency repair or overhaul or (ii) is a release or disclosure of technical data (other than detailed manufacturing or process data) to, or use of such data by, a foreign government that is in the interest of the Government and is required for evaluational or informational purposes, provided in either case that such release, disclosure or use is made subject to a prohibition that the person to whom the data is released or disclosed may not further use, release or disclose such data, and the contractor or subcontractor or subcontractor asserting the restriction is notified of such release, disclosure or use. This legend, together with the indications of the portions of this data which are subject to such limitations, shall be included on any reproduction hereof which includes any part of the portions subject to such limitations.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION.

[Signature]
[Date: 12/20/00]
Pathophysiologic Impact of Doxorubicin and Radiation Therapy on the Heart of Patients Treated for Breast Cancer (97Breast)

Patricia H. Hardenberg, M.D.

Duke University Medical Center
Durham, North Carolina 27710

E-Mail: pmh@radonc.duke.edu

Purpose: To assess the incidence and extent of radiation induced regional cardiac perfusion defects and functional abnormalities in patients with left-sided breast cancer following RT with and without chemotherapy.

Methods: Fifty-one patients with left-sided breast cancer have undergone pre-treatment (SPECT) cardiac perfusion scans to evaluate regional myocardial perfusion and cardiac function by LVEF. At six month intervals the patients have follow-up perfusion scans and physical exams for a minimum of 2 years. Radiation doses and heart/left ventricle volumes are calculated on a computed tomography (CT) based 3-D treatment planning system (PLUNC).

Results: Thirteen patients have had a 6 month follow-up cardiac perfusion scan. Eight of thirteen patients have a new visibly detectable perfusion defect on the post radiation scan in the anterior region of the left ventricle which correlates with the tangential radiation beams. There appears to be a dose-dependent change with a 20% reduction in perfusion in the volume of heart receiving 40-50 Gy. No patient has had a change in their LVEF or evidence of functional defect in the heart.

Conclusion: It appears that radiation causes a dose-dependent regional cardiac perfusion defect in 60% of patients studied. To date these changes do not correlate with function or clinical sequelae.
July 29, 1999

US Army Medical Research and Materiel Command
Fort Detrick, MD 21702-5012

To Whom It May Concern:

Re: Grant #: DAMD17-98-1-8071

Please know that this annual report contains unpublished data and that distribution should be limited. The first presentation of the data herein will be delivered in October, 1999. The pages with protected information are marked, "confidential".

Sincerely,

Patricia Hardenbergh, M.D.
Assistant Professor

PH:dsw
Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the U.S. Army.

Where copyrighted material is quoted, permission has been obtained to use such material.

Where material from documents designated for limited distribution is quoted, permission has been obtained to use the material.

Citations of commercial organizations and trade names in this report do not constitute an official Department of Army endorsement or approval of the products or services of these organizations.

In conducting research using animals, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Resources, national Research Council (NIH Publication No. 86-23, Revised 1985).

For the protection of human subjects, the investigator(s) adhered to policies of applicable Federal Law 45 CFR 46.

In conducting research utilizing recombinant DNA technology, the investigator(s) adhered to current guidelines promulgated by the National Institutes of Health.

In the conduct of research utilizing recombinant DNA, the investigator(s) adhered to the NIH Guidelines for Research Involving Recombinant DNA Molecules.

In the conduct of research involving hazardous organisms, the investigator(s) adhered to the CDC-NIH Guide for Biosafety in Microbiological and Biomedical Laboratories.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STANDARD FORM 298</td>
<td></td>
</tr>
<tr>
<td>FOREWORD</td>
<td></td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>5</td>
</tr>
<tr>
<td>BODY</td>
<td>6</td>
</tr>
<tr>
<td>KEY RESEARCH ACCOMPLISHMENTS</td>
<td>7</td>
</tr>
<tr>
<td>REPORTABLE OUTCOMES</td>
<td>7</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>8</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>9</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>10</td>
</tr>
<tr>
<td>1. ASTRO ABSTRACT</td>
<td>11-12</td>
</tr>
<tr>
<td>2. CURRICULUM VITAE</td>
<td>13-17</td>
</tr>
</tbody>
</table>
INTRODUCTION:

In the primary management of breast cancer, radiotherapy is playing an increasingly important role and, as a result, there has been more concern about long-term side effects of radiation. Cardiac complications in patients with breast cancer have been thought to be caused by ischemic heart disease, with a time of onset of several years after the radiotherapy (1). Some series of post-mastectomy radiated patients have demonstrated an excess number of cardiovascular deaths in the radiated group (2).

The concern for cardiotoxicity is complicated by the widespread use of adjuvant systemic therapy, in particular anthracycline-containing drug regimens. Doxorubicin is a well-known cardiotoxin, the principle effects being on the myocardium with an increasing incidence of congestive heart failure (CHF) correlated with increasing doses (3). Radiotherapy to the heart in conjunction with doxorubicin appears to increase the risk of developing cardiac damage (4). Therefore, additional investigations into cardiac toxicity of radiation in combination with chemotherapy are timely and appropriate.

Conventional radiation treatment planning involves calculating radiation dose in a single plane or, at most, in two to three planes. Although generally adequate for most clinical situations, it does not enable one to quantitatively determine the volume of a given organ irradiated or the dose received by that organ, particularly when the field arrangement is complex and the dose distribution heterogeneous. Most reports in the literature describing radiation induced heart disease have been unable to indicate the dose and volume of heart irradiated with precision (5,6). New three-dimensional (3D) radiation treatment planning tools now provide the opportunity to know the dose distribution in any tissue precisely (7). Furthermore, 3D planning software allows for dose calculation from complex field arrangements with the ability to correct for density differences within any tissue. Thus, a dose volume histogram may be generated for any organ of interest giving us the dose of radiation received by the various portions of that organ. Advances in image registration allow us to superimpose the 3D dose distribution onto noninvasive nuclear medicine 3D cardiac imaging studies (8).

In this work, we will exploit recent advances in 3D radiation treatment planning with 3D functional nuclear medicine imaging to better understand the physiologic effects of radiation on regional heart function. We will relate the regional radiation dose and volume of heart irradiated to subsequent regional perfusion changes, the latter being used as a surrogate for both myocardial damage and coronary artery blood flow. Changes in organ function assessed by subclinical (ejection fraction) and clinical (congestive heart failure) endpoints will be related to the degree and extent of change of regional perfusion. The findings from this study may impact on standard treatment recommendations for patients receiving radiotherapy and chemotherapy for left-sided breast cancer.

Specific hypothesis to be tested include:

Hypothesis 1: A radiation dose and volume dependent reduction in regional cardiac perfusion will be observed within 18-24 months following radiation therapy.

Hypothesis 2: The changes in regional cardiac perfusion will be enhanced in patients who have received chemotherapy and radiotherapy compared to patients treated with radiotherapy alone.

Hypothesis 3: Changes in ejection fraction after chemotherapy and radiotherapy are related to the extent and degree of regional perfusion changes.

Hypothesis 4: The use of 3D computer assisted radiotherapy planning may result in a reduction of radiation dose to the heart compared with conventional 2D planning while not reducing coverage of the tumor region itself.
Methods:

All patients with left-sided breast cancers undergoing radiation therapy are eligible. Appropriate informed consent is obtained prior to enrollment.

Prior to initiation of chemotherapy, and at the completion of chemotherapy, prior to the initiation of radiotherapy, the following studies are performed:

1. Rest radionuclide angiography to determine cardiac ejection fractions.
2. Rest Tc-99m sestamibi SPECT cardiac perfusion scan to provide a 3D map of the regional cardiac perfusion.
3. A thoracic CT scan in the treatment position for 3D treatment planning and dose calculation is done once prior to radiotherapy.

Follow-up evaluations will be performed at 6-month intervals following completion of radiotherapy for a period of two years. At the time of follow-up the following studies will be performed:

1. Ejection fractions assessed by first-pass radionuclide angiography.
2. Rest Tc99m sestamibi SPECT cardiac perfusion scans.
3. Clinical evaluation to assess tumor status and any cardiac symptoms or disease.

Using the pre-radiation CT scan, a 3D radiation dose calculation, with lung density correction, will be done to determine the radiation dose delivered to the heart. Computer software (Plan University of North Carolina) will be used to visually register the SPECT cardiac images with the pretreatment CT cardiac contour. The entire 3D radiation dose distribution is then overlaid onto the SPECT scan. By calculating the number of SPECT counts on each radiation dose level, a dose-count histogram is generated. Dose-count histograms are calculated for all of the SPECT scans. The reduction in percent of the SPECT counts at a particular dose level (compared to the pretreatment scan) is calculated at each dose level. We will compare changes in regional perfusion by calculating dose count histograms by this method. The reduction in percent of SPECT counts will be examined at a particular radiation dose level with respect to the chemotherapy dose received for a patient.

Results:

At present 51 patients with left-sided breast cancer have been enrolled on the study. This has exceeded our estimated planned accrual rate of 30 patients/year. The patient’s age range is from 36 to 81 years old. The racial distribution includes 39 white patients, 7 African-American patients, 1 Hispanic-American patient, and 4 unknown racial orientation. To date, two patients have withdrawn from the study prematurely. The distribution of treatment of patients enrolled on the study include: 20 patients will undergo radiation therapy only, 31 patients are being treated with a combination of radiation and chemotherapy. The prescribed tangent RT dose was 46 Gy for all patients. The percent volume of heart and left ventricle irradiated at the 50% isodose line ranged from 1.8 to 10% and 2.9 to 19% respectively. Thirteen patients have had an initial 6 month follow-up cardiac perfusion scan.

Hypothesis #1: To date, 8 of the 13 patients with six month follow-up post-radiation perfusion imaging have a new visibly detectable perfusion defect on the post RT scan. All 8 patients have a new perfusion defect in the anterior region of the left ventricle which correlates with the tangential RT beams. Four of these 8 patients with new perfusion defects have received Adriamycin chemotherapy. Correlating the dose distribution with pre and post RT SPECT scans in five patients who received radiation therapy to the breast identified a dose-dependent reduction in the regional cardiac perfusion, \(R^2 = .90 \). There was no evidence of reduction in regional cardiac perfusion in the volume of the heart receiving 10 Gy, a 10% reduction in perfusion in the volume of the heart receiving 20-30 Gy, and a 20% reduction in perfusion in the volume of the heart receiving 40-50 Gy.
Hypothesis #2: At present with only 8 patients to evaluate, our numbers are too small to detect a difference between patients who are receiving both chemotherapy and radiation versus radiation alone.

Hypothesis #3: Of the 13 patients with 6 month follow-up cardiac perfusion scan, none have had a decrease in their left ventricular ejection fraction regardless of the extent or degree of regional perfusion changes. This may be preliminary evidence that although radiotherapy is inducing regional perfusion changes in some patients, the function of the heart is not compromised.

Hypothesis #4: A subset of patients have undergone comparison of 2D radiation planning to 3D radiation planning. Presently 20 patients have been evaluated. Of these, 10 patients had radiation therapy to the left side with the inclusion of internal mammary nodes, 10 patients had radiation therapy to the left breast without including regional lymph nodes. Of the patients who had radiation therapy planned to include the internal mammary nodes (IMN) 10 of 10 appeared to benefit from the 3D treatment planning when analyzed with respect to dose volume histograms of the heart and the target tissue. The heart was blocked from the radiotherapy beam more successfully in the radiation treatment plans where 3D treatment planning was used. This was an improvement over the 2D radiation planning. Additionally, all 10 patients with planned IMN RT had an improvement in the IMN target coverage when the 3D radiation planning was performed. Patients who did not have IMN planned in the radiation therapy field did not appear to have a measurable difference in comparing the 2D versus the 3D radiation treatment planning. These results are preliminary.

KEY RESEARCH ACCOMPLISHMENTS:

- Radiation appears to cause a dose dependent regional cardiac perfusion defect in some patients.
- Regional perfusion changes from radiation do not correlate with a change in cardiac function or cardiac events.
- It is unclear whether chemotherapy influences the extent or degree of regional perfusion defects.
- 3D radiation planning has an important role in treatment planning of patients with internal mammary nodes included within the radiation field.

REPORTABLE OUTCOMES:

American Society of Therapeutic Radiation Oncology Platform presentation, October, 1999, San Antonio, TX

Abstract: Pathophysiologic Impact of Doxorubicin (Dox) and Radiation Therapy (RT) on the Heart of Patients Treated for Breast Cancer.
CONCLUSIONS:

This cardiac toxicity study was designed to assess the incidences of regional cardiac perfusion defects, as well as functional abnormalities in patients with left sided breast cancer following radiation with or without chemotherapy. In addition, the study examines the extent of RT-induced changes in the regional perfusion and attempts to determine whether it is related to cardiac volume irradiated, cardiac function, or clinical sequelae.

To date, at 6 months follow-up radiation appears to cause a dose-dependent regional cardiac perfusion defect in 60% of the patients studied (8/13). To date, these regional perfusion changes do not correlate with a change in left ventricular ejection fraction or clinical cardiac events. To date it does not appear that Adriamycin chemotherapy influences the extent of regional perfusion defects, however at this point in the study our numbers are too small. This is an ongoing study and updated results will be reported with longer follow-up and more extensive information on patients who are treated with combined modality of doxorubicin and radiation. It appears that 3D radiation treatment planning for left-sided breast cancer has an important role for improving treatment planning in patients who the internal mammary nodes are included in the radiation field. Three-dimensional planning in this group of patients limits the volume of heart irradiated and improves coverage on the target.
REFERENCES:

Thank you for submitting to the 41st Annual Scientific Meeting of the American Society for Therapeutic Radiology and Oncology

PLEASE READ THE FOLLOWING:

- The following abstract has been successfully submitted.
- Please print this page and keep it for your records.
- You will need the Abstract ID number to make any revisions.
- You may revise this abstract as often as you like until April 13, 1999.
- To make future revisions, re-enter this submission module (http://astro.cjp.com) and choose "Revise Abstract" on the appropriate screen.

<table>
<thead>
<tr>
<th>Abstract ID number:</th>
<th>1207</th>
</tr>
</thead>
</table>
| **Contact/Presenting Author:** | Dr. Patricia H. Hardenbergh
Duke University Medical Center
P O Box 3085
Durham, 27710
USA |
| **Presenting Author:** | Dr. Patricia H. Hardenbergh |
| **Preferred presentation type:** | Oral/Poster |
| **Notes:** | • The name: P. H. Hardenbergh appears as a contributing author on 2 submitted abstracts. |

Abstract created on 4/9/99 at 9:38:30 AM.

Abstract Title: PATHOPHYSIOLOGIC IMPACT OF DOXORUBICIN (DOX) AND RADIATION THERAPY (RT) ON THE HEART OF PATIENTS TREATED FOR BREAST CANCER

Presenting Author: Dr. Patricia H. Hardenbergh

Contributing Authors: Hardenbergh PH¹, Munley MT¹, Bentel GC¹, Strickland J¹, Borges-Neto S², Hollis D³, Prosnitz LR¹, Marks LB¹

Institutions: Radiation Oncology, Duke University Medical Center¹; Nuclear Medicine, Duke University Medical Center²; Duke Comprehensive Cancer Center, Duke University Medical Center, Durham, NC, USA³

Key Words: Breast neoplasm, Cardiac, Radiation
Abstract: **Purpose:** To assess the incidence of regional cardiac perfusion defects and functional abnormalities in patients with left-sided breast cancer following RT with and without chemotherapy. To determine if the extent of RT-induced changes in regional cardiac perfusion is related to the volume of heart irradiated, cardiac function, or clinical sequelae.

Materials and Methods: Forty patients with left-sided breast cancer have undergone pre-treatment single photon emission computed tomography (SPECT) cardiac perfusion scans to evaluate regional myocardial perfusion and cardiac function by left ventricular ejection fraction (LVEF). Seventeen patients were treated with RT only and 23 patients were treated with Dox-based chemotherapy prior to RT. Risk factors for cardiac disease were obtained. At six month intervals patients have follow-up cardiac perfusion scans and a physical exam for a minimum of 2 years. Radiation doses and heart/left ventricle volumes were calculated on a computed tomography (CT) based 3-D treatment planning system (Plan University of North Carolina). Pre-RT and follow-up cardiac perfusion scans were registered to the dose distribution using image registration software. The relationship between changes in regional cardiac perfusion and RT dose was assessed.

Results: Six month follow-up cardiac perfusion scans have been obtained on 5 patients treated with RT only to the breast (no lymph nodes). The prescribed tangent RT dose was 46 Gy for all patients. The percent volume of heart and left ventricle irradiated at the 50% isodose line ranged from 1.8 to 10% and 2.9 to 19%, respectively. In 4 of 5 patients there were visibly detectable perfusion defects on the post RT scan in the inferior anterior region of the left ventricle that correlated with the tangential RT beams.

Correlating the dose distribution with the pre and post RT SPECT scans identified a dose-dependent reduction in the regional cardiac perfusion, \(R^2 = .90 \). There was no evidence of a reduction in regional cardiac perfusion in the volume receiving 0-10 Gy, a 10% reduction in perfusion in the volume receiving 20 to 30 Gy, and a 20% reduction in perfusion in the volume receiving 40-50 Gy. There were no changes in the LVEF or clinical evidence of a cardiac event.

Conclusions: At six months follow-up, RT appears to cause dose-dependent regional cardiac perfusion defects in most patients with left-sided breast cancer. To date regional perfusion changes do not correlate with a change in LVEF or clinical cardiac events. This is an ongoing study and updated results will be reported including follow-up on patients treated with Dox and RT, and correlation of the volume of heart irradiated with the extent of perfusion defects.

This work was funded by Department of Defense Breast Cancer Research Grant, #BC972695.

Short Anonymous Survey

Return to ASTRO homepage

Submit Another Abstract

12
NAME: Patricia Harrigan Hardenbergh, M.D.

ACADEMIC APPOINTMENT: Radiation Oncology

SOCIAL SECURITY NUMBER:

DUKE APPOINTMENT: Assistant Professor

MEDICAL LICENSURE: National Board of Medical Examiners (Parts I - III)

SPECIALTY CERTIFICATION: Radiation Oncology Boards Part I

DATE OF BIRTH:

PLACE:

CITIZEN: U.S.A.

EDUCATION:

<table>
<thead>
<tr>
<th>PLACE</th>
<th>DATES</th>
<th>DEGREE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notre Dame-Bishop Gibbons HS</td>
<td>9/75 - 6/79</td>
<td>H.S.</td>
</tr>
<tr>
<td>Boston College</td>
<td>9/79 - 6/83</td>
<td>B.A.</td>
</tr>
<tr>
<td>Brown University Medical School</td>
<td>9/87 - 6/91</td>
<td>M.D.</td>
</tr>
</tbody>
</table>

POST DOCTORAL TRAINING AND CAREER

<table>
<thead>
<tr>
<th>PLACE</th>
<th>DATES</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>St. Joseph Hospital University of Colorado Affiliate, Denver, CO</td>
<td>7/91-7/92</td>
<td>Medical Intern</td>
</tr>
<tr>
<td>Joint Center for Radiation Therapy Harvard Medical School, Boston, MA</td>
<td>7/92-7/96</td>
<td>Rad Onc Resident</td>
</tr>
</tbody>
</table>

PROFESSIONAL AWARDS AND SPECIAL RECOGNITIONS

1998 Department of Defense Breast Cancer Research Award
1997 American Society of Therapeutic Radiation Oncology Travel Award

1997 American Society of Clinical Oncology / American Association for Cancer Research Methods and Clinical Research Trials Award

1995 American Society of Clinical Oncology Merit Award

1995 - 1996 American Cancer Society Clinical Fellowship

1989 Norris Cotton Cancer Center, Dartmouth Medical School

PROFESSIONAL SOCIETIES

American Society of Therapeutic Radiation Oncology
American College of Radiology
American Medical Association
American Women's Medical Association
North Carolina Medical Society
American Association of Cancer Research
Radiation Research Society

TEACHING EXPERIENCE

1996 - present Informal and formal teaching of medical students and residents, Duke University Medical Center

1983 - 1985 Thomas Aquinas High School, Nassau Bahamas
Full-time, 10th - 12th grade English teacher

PUBLICATIONS IN REFEREED JOURNALS

BOOK CHAPTERS

ABSTRACTS

GRANT SUPPORT

Pilot project grant awarded from the DUMC SPORE Breast Cancer Grant entitled "Pathologic Impact of Chemotherapy and Radiation Therapy on the Heart of Patients treated for Breast Cancer. PH Hardenbergh, Principal Investigator. 1997-1998, $20,000 total costs.

PERSONAL INFORMATION

Home address:

e-mail address:

Telephone:
 work: 919-660-2130

Marital status: Emergency Medicine Physician
Durham Regional Hospital

Children:

UNIVERSITY/DEPARTMENT SERVICE:

Member, Residency Admissions Committee, Department of Radiation Oncology, 1996 - present.

Member, Medical School Admissions Committee, Duke University Medical School, 1996 - present.

Member, Cancer Pain Committee, Duke University Medical Center, 1996 - present.

Member, Chemotherapy Steering Committee, Duke University Medical Center, 1996-present.
MEMORANDUM FOR Administrator, Defense Technical Information Center (DTIC-OCA), 8725 John J. Kingman Road, Fort Belvoir, VA 22060-6218

SUBJECT: Request Change in Distribution Statement

1. The U.S. Army Medical Research and Materiel Command has reexamined the need for the limitation assigned to the enclosed list of technical documents. Request the limited distribution statement assigned to the documents listed be changed to "Approved for public release; distribution unlimited." These documents should be released to the National Technical Information Service.

2. Point of contact for this request is Ms. Judy Pawlus at DSN 343-7322 or by e-mail at judy.pawlus@det.amedd.army.mil.

FOR THE COMMANDER:

[Signature]

PHYLIS M. RINEHART
Deputy Chief of Staff for Information Management
ADB243021
ADB262474
ADB284009
ADB257455
ADB257446
ADB261351
ADB259684
ADB282142
ADB285141
ADB272522
ADB284022
ADB283904