AD NUMBER

ADB130078

NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to DoD only; Foreign Government Information; SEP 1988. Other requests shall be referred to the Australian Embassy, 1601 Massachusetts Avenue, NW, Washington, DC 200036.

AUTHORITY

Dept. of Defence, Australian ltr dated 9 Nov 1989
AERONAUTICAL RESEARCH LABORATORY
MELBOURNE, VICTORIA

AERODYNAMICS TECHNICAL MEMORANDUM 405

A MATHEMATICAL MODEL OF THE ON-DECK HELICOPTER/SHIP DYNAMIC INTERFACE (U)

by
J. Blackwell and R.A. Feik

DISTRIBUTION STATEMENT B: Distribution authorized to DoD Components only. Other requests shall be referred to
Embassy of Australia
Attn: Joan Bliss
Head, Pub. Sec. - Def/Sci.
1601 Massachusetts Ave., NW
Washington, DC 20036

Australian Department of Defence and Defense Force Personnel and their equivalent in UK, USA, Canada and New Zealand may have access to this document. Other inquiries should refer to Director, Aeronautical Research Laboratory.

(C) COMMONWEALTH OF AUSTRALIA 1988
SEPTEMBER 1988-
A MATHEMATICAL MODEL OF THE ON-DECK HELICOPTER/SHIP DYNAMIC INTERFACE

by

J. BLACKWELL and R.A. FEIK

SUMMARY

A mathematical model of the on-deck helicopter/ship dynamic interface has been developed and implemented on an ELXSI 6400 computer. The purpose of this work is to provide a capability for investigating helicopter/ship dynamic interactions, such as deck clearances on landing, swaying, toppling and sliding criteria, and tie-down loads. Different helicopter types can be readily examined, given their undercarriage representation. The model takes account of arbitrary ship motion, and includes features such as brakes on or off, tyre deformation and tyre sliding.

© COMMONWEALTH OF AUSTRALIA 1988

POSTAL ADDRESS: Director, Aeronautical Research Laboratory, P.O. Box 4331, Melbourne, Victoria, 3001, Australia.
CONTENTS

<table>
<thead>
<tr>
<th>NOTATION</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. OUTLINE OF PROBLEM</td>
<td>1</td>
</tr>
<tr>
<td>3. FORCES ACTING ON HELICOPTER</td>
<td>2</td>
</tr>
<tr>
<td>3.1 Weight</td>
<td>2</td>
</tr>
<tr>
<td>3.2 Undercarriage</td>
<td>3</td>
</tr>
<tr>
<td>3.2.1 Oleo and Tyre Loads in z_0 Direction</td>
<td>3</td>
</tr>
<tr>
<td>3.2.2 Side and Fore/Aft Tyre Forces</td>
<td>4</td>
</tr>
<tr>
<td>(I) Brakes Full On</td>
<td>4</td>
</tr>
<tr>
<td>(II) Brakes Off</td>
<td>6</td>
</tr>
<tr>
<td>4. MOMENTS ACTING ON HELICOPTER</td>
<td>6</td>
</tr>
<tr>
<td>4.1 Weight</td>
<td>7</td>
</tr>
<tr>
<td>4.2 Undercarriage</td>
<td>7</td>
</tr>
<tr>
<td>5. EXPRESSIONS FOR LINEAR AND ANGULAR ACCELERATION</td>
<td>7</td>
</tr>
<tr>
<td>5.1 Linear Acceleration</td>
<td>7</td>
</tr>
<tr>
<td>5.2 Angular Acceleration</td>
<td>8</td>
</tr>
<tr>
<td>6. APPLICATIONS</td>
<td>9</td>
</tr>
<tr>
<td>7. CONCLUDING REMARKS</td>
<td>11</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>11</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>12</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>13</td>
</tr>
<tr>
<td>FIGURES</td>
<td></td>
</tr>
</tbody>
</table>
NOTATION

\(a \) Acceleration of ship
\(C_x, C_y \) Tyre spring coefficients in drag, slide directions
\(C_1, C_2, C_3 \) Constants used in \(C_x \) and \(C_y \) (dependent on tyre properties)
\(C_z \) Tyre spring constant (\(z_s \) direction)
\(d \) Oleo Deflection
\(d_o \) Oleo Break Point
\(d' \) Tyre compression (\(z_s \) direction)
\(F \) Force acting on helicopter - subscripts tot (total), g (gravity), u (undercarriage), t (thrust), aer (aerodynamic), r (restraining devices)
\(F_u, F_g \) etc. Frames of reference
\(F'_u \) Undercarriage force without sliding or dragging included
\(g \) Acceleration due to gravity
\(g \) Gravity vector
\(G \) Moment about helicopter cg. Subscripts as for \(F \)
\(G_1, G_2 \) Damping constants for oleo
\(G_x, G_y, G_z \) Damping constants for tyre
\(h \) Angular momentum of helicopter about its cg
\(\mathbf{I} \) Matrix determined from moments of inertia for helicopter
\(I_x, I_y, I_z \) Moments of inertia for helicopter
\(I_{xy}, I_{xz}, I_{yz} \) Moment of inertia crossed terms for helicopter
\(\mathbf{J}^{\text{rel}} \) Matrix required for conversion from \(\mathbf{\dot{\omega}}^s \) to \(\mathbf{\dot{\omega}}^r \)
\(K_1, K_2 \) Spring constants for oleo
\(L \) Oleo load, magnitude, \(L_1 \)
\(\mathbf{L}_{bs} \) Change of reference frame matrix from frame \(s \) to \(b \) (Appendix A)
\(L_x, L_y, L_z \) Gear moment arms (location of top of oleos relative to helicopter cg, in \(x, y \) and \(z \) directions)
\(L_1, L_2 \) Magnitude of oleo load, tyre load
\(M \) Mass of helicopter
\(r \) Position vector from ship cg to helicopter cg
\(r' \) Position vector from helicopter cg to tyre contact point with deck
\(R \) Reaction force of tyre (normal to deck)
\(\Delta x_a, \Delta y_a \) Tyre deformation in fore/aft, side directions
\(\Delta Y, \Delta z \) Rate of tyre deformation in fore/alt, side directions

\(\phi^b, \theta^b, \psi^b \) Helicopter attitude (Euler angles from earth frame to helicopter frame); roll, pitch, yaw

\(\phi^{ei}, \theta^{ei}, \psi^{ei} \) Relative attitude (Euler angles from ship frame to helicopter frame); roll, pitch, yaw

\(\phi^s, \theta^s, \psi^s \) Ship attitude (Euler angles from earth frame to ship frame); roll, pitch, yaw

\(\mu_x, \mu_y \) Drag and slide tyre friction coefficients

\(\omega^b \) Absolute angular velocity of helicopter (relative to earth)

\(\omega^{ei} \) Angular velocity of helicopter relative to ship

\(\omega^s \) Absolute angular velocity of ship (relative to earth)

SUBSCRIPTS (AXES SYSTEM)

- a: Aligned axes system
- b: Body (helicopter) axes system
- e: earth axes system (assumed inertial)
- s: ship axes system

SUPERSCRIPTS

- j refers to \(j^{th} \) undercarriage gear, eg. \(F_j \) is undercarriage force due to \(j^{th} \) gear

GENERAL

- Vectors written in bold type, eg. \(r \)
- Matrices distinguished by a tilde, eg. \(\tilde{L} \)
1. INTRODUCTION

The current use of helicopters with non aviation ships creates many difficulties, especially during landing in the presence of high winds and rough seas (Ref. 1). Some of these problems are being partially addressed by the development of devices such as the “Landing Period Designator” (Ref. 2), which attempts to predict relatively quiescent deck motion intervals. However, once the helicopter is on the deck, new problems arise. The deck motion now acts directly on the helicopter landing gear and may cause the helicopter to oscillate or slide, making deck operations hazardous. In high sea states, the helicopter may even topple, causing possible damage and putting deck personnel at risk.

The Aircraft Behaviour Studies - Rotary Wing (ABS-RW) Group at Aeronautical Research Laboratory (ARL) is currently engaged in a project to examine the on-deck aspect of the helicopter/ship dynamic interface problem. This document describes a mathematical model which simulates helicopter interactions with a moving deck. Rotor thrust and other aerodynamic forces are not included in the model at this stage. However their inclusion is relatively straightforward, and will be implemented during the validation stage.

Section 2 briefly outlines the problem and discusses the various frames of reference utilised. Sections 3 and 4 examine the forces and moments which act on the helicopter while on an arbitrarily moving deck. These comprise mainly the undercarriage forces, which are modelled using non-linear equations. Features such as brakes on or off, tyre deformation and tyre sliding are included in the model. In Section 5, the linear and angular accelerations are deduced. Section 6 uses the mathematical model to predict helicopter motions under a variety of deck conditions. Section 7 concludes the document, whilst Appendix A outlines the unsteady equations required by the model.

The model, which is not specific to a particular helicopter, was implemented on an ELXSI 6400 computer. A standard FORTRAN version, as well as a simulation language version (ACSL, Ref. 3) was written.

2. OUTLINE OF PROBLEM

Consider a helicopter resting on a ship. Forces acting on the helicopter (eg. gravity, undercarriage) can be analysed in terms of forces on the helicopter cg and moments about the cg. These forces and moments create both linear and angular accelerations of the helicopter relative to the ship. The accelerations can be integrated numerically to determine position and attitude of the helicopter relative to the ship as a function of time, for various ship motions. Note that we are calculating the position and attitude of a moving reference frame (helicopter) relative to a different moving reference frame (ship), see Fig. 1, and hence the full unsteady equations of motion are required (see eg. Ref. 4). Those unsteady equations required by the model are summarised in Appendix A.
The axes systems used here are earth, body (helicopter) and ship. They are represented by subscripts e, b and s respectively (Fig 2). A further axes system, represented by subscript a, is introduced in Section 3.

3. FORCES ACTING ON HELICOPTER

The forces acting on the helicopter are:

- Weight (gravity)
- Undercarriage
- Rotor Thrust
- Aerodynamic Forces
- Restraining Devices

The net force, \(F_{\text{net}} \), is the sum of the above forces:

\[
F_{\text{net}} = F_W + F_u + F_r + F_{\text{aer}} + F_r
\]

We consider here only the weight and undercarriage terms.

3.1 Weight

Gravity acts vertically downwards in earth frame:

\[
g_e = \begin{pmatrix} 0 \\ 0 \\ 9 \end{pmatrix}
\]

Converting to ship axes (see Appendix A), we obtain:

\[
g_s = \mathbf{\tilde{e}}_{\text{se}} g_e
\]

where:

\[
\mathbf{\tilde{e}}_{\text{se}} = \begin{pmatrix} \cos \phi \cos \psi & \cos \phi \sin \psi & -\sin \phi \\
\sin \phi \sin \theta \cos \psi - \cos \theta \sin \psi & \sin \phi \sin \theta \sin \psi + \cos \theta \cos \psi & \sin \phi \cos \theta \\
\cos \phi \sin \theta \sin \psi + \cos \theta \cos \psi & \cos \phi \sin \theta \cos \psi - \sin \theta \sin \psi & \cos \phi \cos \theta
\end{pmatrix}
\]

with superscript \(s \) referring to the Euler angles of the ship frame relative to the earth frame.

The force due to gravity, \(F_g \), is given by:

\[
F_{gs} = M g_s = M g_s \begin{pmatrix} -\sin \theta \\ \cos \theta \sin \psi \\ \cos \theta \cos \psi \end{pmatrix}
\]
3.2 Undercarriage

For each gear, consider the model shown in Fig. 3.

3.2.1 Oleo and Tyre Loads in \(z_b \) Direction

The oleos are assumed to compress parallel to the body \(z \)-axis, a condition that can be relaxed relatively easily. Each oleo is represented as a two-stage non-linear damped spring with a break point (described in Ref. 5). The oleo load, \(L_1 \), is given by:

\[
L_1 = \begin{cases}
K_1 d^2 + G_1 \dot{d} & \text{(for } d < d_0) \\
K_1 d_0^2 + K_2 (d - d_0)^2 + G_2 \dot{d} & \text{(for } d \geq d_0)
\end{cases}
\]

where \(d \) is the oleo deflection. The tyre on the end of each oleo will also deform under a \(z_b \) load. Each tyre (\(z_b \) direction) is represented by a linear, damped spring, with load, \(L_2 \), given by:

\[
L_2 = C_2 d' + G_2 \dot{d}'
\]

where \(d' \) is the tyre compression in the \(z_b \) direction. \(L_1 = L_2 \) since the tyre is assumed to be a massless spring. See Fig. 4.

The oleo load due to the jth gear, \(L_1^j \), in body axes is given by:

\[
L_1^j = \begin{pmatrix} 0 \\ 0 \\ L_1^j \end{pmatrix}
\]

In ship axes, the oleo load is:

\[
L_1^j = \mathcal{L}_{q_0} L_1^j
\]

where:

\[
\mathcal{L}_{q_0} = \begin{pmatrix}
\cos^2 \theta \cos^2 \psi^{rel} & \sin \theta \sin^2 \theta \cos \psi^{rel} & \cos \theta \sin \theta \sin \psi^{rel} + \sin \theta \cos \psi^{rel} \\
\cos^2 \theta \sin^2 \psi^{rel} & \sin \theta \cos \theta \sin \psi^{rel} + \cos \theta \cos \psi^{rel} & \cos \theta \sin \theta \sin \psi^{rel} - \sin \theta \cos \psi^{rel} \\
\sin^2 \theta & \cos \theta \cos \psi^{rel} & \cos \theta \sin \psi^{rel}
\end{pmatrix}
\]

with superscript \(\text{rel} \) referring to the Euler angles of the helicopter frame relative to the ship frame.

Hence:

\[
L_1^j = \mathcal{L}_{q_0} \begin{pmatrix}
\cos^2 \theta \sin \theta \sin \psi^{rel} + \sin \theta \cos \psi^{rel} \\
\cos^2 \theta \sin \psi^{rel} - \sin \theta \cos \psi^{rel} \\
\cos \theta \sin \psi^{rel}
\end{pmatrix}
\]
3.2.2 Side and Fore/Aft Tyre Forces

All the undercarriage wheels are assumed to point in the direction of the body x-axis at this stage, i.e. no provision has been made for a castoring tail wheel. The brakes on each wheel can be either full on (wheel locked) or off (wheel can rotate freely).

I) Brakes Full On

If a tyre is in contact with the deck \((L_1 > 0) \), any movement of the oleo base (wheel axle) parallel to the plane of the deck will be opposed by a friction force at the point of contact between the tyre and the deck, which will deform the tyre and create a restoring force. When the maximum static friction force is exceeded, the wheel will skid over the deck.

It is necessary to define a new reference frame, the a-frame (a for aligned), obtained by simply rotating the ship-axes frame about the z-axis through angle \(\psi^{rel} \). This takes account of the ship and helicopter not being aligned and is required because whilst any skidding of the helicopter clearly takes place in the plane of the deck \((x_s,y_s) \) plane, restoring forces are likely to differ for sliding (skidding in the direction of the component of \(y_b \) in the \(x_s,y_s \) plane, the side direction, \(y_a \)) and dragging (skidding in the direction of the component of \(x_b \) in the \(x_s,y_s \) plane, the fore/aft direction, \(x_a \)). See Fig. 5. The representation of these restoring forces for the side and fore/aft directions is a function of tyre geometry.

The L-matrix from frame s to frame a is:

\[
L_{as} = \begin{pmatrix}
\cos \psi^{rel} & \sin \psi^{rel} & 0 \\
-sin \psi^{rel} & \cos \psi^{rel} & 0 \\
0 & 0 & 1
\end{pmatrix}
\] \[9\]

Given the updated position and attitude of the helicopter during a time history calculation, it is possible to determine the position of each oleo. Assuming that the tyre base is at its original (ie. previous iteration) position, the possible tyre deformation in the plane of the deck, \((\Delta x_a, \Delta y_a) \) is deduced and hence \((\Delta x_a, \Delta y_a) = (\cos \psi^{rel} \Delta x_s + \sin \psi^{rel} \Delta y_s, \cos \psi^{rel} \Delta y_s - \sin \psi^{rel} \Delta x_s) \) is obtained (Fig. 6). If however the tyre should leave the deck, the deformation is set equal to zero.

Restoring forces in the \(x_a \) and \(y_a \) directions are assumed to be directly proportional to tyre deformations \(\Delta x_a \) and \(\Delta y_a \) respectively (Ref. 6), and are given by \((-C_x \Delta x_a, -C_y \Delta y_a)\). The spring coefficients \(C_x \) and \(C_y \) are not taken as constant, but are assumed to vary with vertical tyre deflection, \(d' \) according to the approximate relation (Loc. Cit.) :

\[
C_x = C_1 \cdot \Delta d' \\
C_y = C_2 - C_3 \Delta d' \] \[10\] \[11\]

for constants \(C_1, C_2 \) and \(C_3 \) which depend on the tyre properties.

The damping in the \(x_a \) and \(y_a \) directions is assumed to be directly proportional to the rate of tyre deformation in the respective directions, \(\dot{\Delta} x_a \) and \(\dot{\Delta} y_a \).
The total undercarriage forces in the side and fore/aft directions may also contain a component of the oleo load, \(L_j^i \) if the oleo is not perpendicular to the deck. From equations (8) and (9), the \(j \)th oleo load in the a-frame, \(L_j^i \) is given by:

\[
L_j^i = L_{\text{rel}} \begin{pmatrix} \cos \theta \sin \theta \\ \sin \theta \\ -\cos \theta \cos \theta \end{pmatrix} L_j^i \tag{12}
\]

Thus, the total force acting on the \(j \)th gear (in \(z \)-axes), assuming deck contact and assuming no sliding or dragging, is:

\[
F_{\text{a}j}^i = \left(\begin{array}{c} -C_x^j \Delta x_j^i - G_j^i \Delta x_j^i - \cos \theta \sin \theta \cos \theta^i L_j^i \\ -C_y^j \Delta y_j^i - G_y^i \Delta y_j^i + \sin \theta \cos \theta \cos \theta^i L_j^i \\ -\cos \theta \cos \theta \cos \theta^i L_j^i \end{array} \right) \left\{ \begin{array}{c} \text{total force in fore/aft direction} \\ \text{total force in side direction} \\ \text{total force normal to deck} \end{array} \right\} \tag{13}
\]

If the \(j \)th tyre is off the deck, \(F_{\text{a}j}^i \) is clearly zero. The forces for a sliding or dragging tyre are discussed next.

The limiting friction forces in the fore/aft and side directions are \(\mu_j^i \Delta F_j^i \) and \(\mu_j^i \Delta F_j^i \) respectively. \(\Delta F_j^i \), the force normal to the deck, is given by the modulus of \(F_{\text{a}j}^i \), i.e. equation (13), and is equal to \(\cos \theta \cos \theta \cos \theta^i L_j^i \). If the modulus of the fore/aft force (or side force) in equation (13) exceeds the limiting drag (slide) friction, then the fore/aft (side) force is set equal to the limiting friction and the tyre base is moved rigidly with the oleo, such that the deck normal \(\Delta F_j^i \) is in the plane of the deck of the previous iteration is retained. Thus, no new tyre deformation in the plane of the deck is assumed to occur and the tyre drags (slides). If the fore/aft (side) force does not exceed the limiting value, the tyre base is not moved and instead the tyre deforms. See Fig. 7.

Final equations for the \(j \)th gear load, \(F_{\text{a}j}^i \) are:

\[
F_{\text{a}j}^i = \left(\begin{array}{c} F_{\text{a}j}^i \Delta x_j^i \\ F_{\text{a}j}^i \Delta y_j^i \\ -\Delta F_j^i \end{array} \right) \tag{14}
\]

where:

\[
\Delta F_j^i = \cos \theta \cos \theta \cos \theta^i L_j^i \tag{15}
\]

\[
F_{\text{a}j}^i \Delta x_j^i = \left\{ \begin{array}{ll} F_{\text{a}j}^i \Delta x_j^i & \text{if } |F_{\text{a}j}^i \Delta x_j^i| \leq \mu_j^i \Delta F_j^i \\ \mu_j^i \Delta F_j^i \cdot \text{sign}(F_{\text{a}j}^i \Delta x_j^i) & \text{if } |F_{\text{a}j}^i \Delta x_j^i| > \mu_j^i \Delta F_j^i \end{array} \right\} \tag{16}
\]

(lyre doesn't drag)

(lyre drags)
\[F_{ua}^I \begin{cases}
F_{ua}^I \parallel y = \left\{ \begin{array}{ll}
F_{ua}^I \parallel y & |F_{ua}^I \parallel y| \leq \nu_y \|R^I\| \quad \text{(tyre doesn't slide)} \\
\mu_y \|R^I\| \cdot \text{sign}(F_{ua}^I), & |F_{ua}^I \parallel y| > \mu_y \|R^I\| \quad \text{(tyre slides)}
\end{array} \right.
\end{cases} \]

with:

\[F_{ua}^I \parallel x = -C_f \Delta x_{ux} - G_f \Delta y_{ux} - \cos \phi_{rel} \sin \theta_{rel} L_{ux} \]

(18)

\[F_{ua}^I \parallel y = -C_f \Delta y_{uy} - G_f \Delta y_{uy} + \sin \phi_{rel} L_{uy} \]

(19)

\[\text{sign}(F) = \frac{F}{|F|} \]

(20)

unless the \(j \)-th gear is off the ground, in which case \(F_{ua}^I = 0 \).

ii) Brakes Off

For the case of brakes off, the undercarriage wheel (assuming frictionless bearings and neglecting rolling friction) can rotate freely in the \(x_a \) direction and so does not drag or deform. This affects the \(x_a \) forces as shown below. The sliding or deformation in the \(y_a \) direction is assumed to be unaffected by the status of the brakes, and so behaves as in the preceding section.

Given the updated position of the oleo, the tyre is assumed to move in the \(x_a \) direction such that it is in line with the oleo, i.e. no deformation takes place, and hence no restoring force acts in the \(x_a \) direction. Thus, the \(x_a \) component of \(F_{ua}^I \) contains only the \(x_a \) component of oleo load and is modified from equation (16) to read:

\[F_{ua}^I \parallel x = -\cos \phi_{rel} \sin \theta_{rel} L_{ux} \]

(21)

with \(y_a \) and \(z_a \) components assumed to be unaffected.

For brakes on or off, the oleo load \(L_{ux} \) is determined from the oleo and tyre \(z_a \) deflections. These are obtained from the helicopter position and attitude, as are the tyre displacements in the plane of the deck, \(\Delta x_{uy} \) and \(\Delta y_{uy} \). Summation of \(F_{ua}^I \) over the separate gears leads to the resultant undercarriage force, \(F_{ua} \):

\[F_{ua} = \bar{L}_{uu} F_{ua}^I \]

(22)

\[F_{us} = \sum_{j} F_{us}^I \]

(23)

4. MOMENTS ACTING ON HELICOPTER

The forces discussed in Section 3 do not in general act at the helicopter cg, and hence moments are created about the cg. The net moment about the cg, \(\mathcal{G}_{ot} \), is defined as the sum of the moments due to the above mentioned forces:
with only the weight and undercarriage terms considered here.

4.1 Weight
The moment due to gravity, G_w, is zero since gravity acts at the helicopter cg.

4.2 Undercarriage
The net force acting on the jth gear is given by F_j, equations [14] - [17]. The moment about the helicopter cg due to this force, G_{u_j} is:

$$G_{u_j} = F_j \times r_j^i$$

where r_j^i is the position vector from the helicopter cg to the jth tyre contact point with the deck (Fig. 8).

Summation of G_{u_j} over the separate gears leads to the resultant moment about the helicopter cg due to undercarriage forces, G_u:

$$G_{u_i} = \sum_{j} G_{u_j}$$

$$G_u = -G_{u_i}$$

Given the force acting on the helicopter cg and the moment tending to rotate the helicopter about its cg, the linear and angular accelerations can be determined. Numerical integration (fourth-order Runge-Kutta) is then used to deduce the position, attitude and velocity of the helicopter with respect to the ship.

5. EXPRESSIONS FOR LINEAR AND ANGULAR ACCELERATION
Not only is the position and attitude of the helicopter relative to the ship changing with time, but the ship's position and attitude relative to the earth is also constantly changing. Hence it is necessary to use the full unsteady equations of motion which take account of the moving reference frames.

5.1 Linear Acceleration
If r is the position vector of the helicopter cg relative to the ship cg (Fig. 9), then from Ref. 4:

$$\ddot{r}_s = \frac{F_{wm}}{M} - a_s - \omega_s^2 \times \dot{r}_s - 2\omega_s^2 \times r_s - \omega_s^2 \times (\omega_s^2 \times r_s)$$

[28]
where:

\[a = \text{acceleration of ship cg (relative to earth)} \]
\[\omega^s = \text{angular velocity of ship (relative to earth)} \]
\[M = \text{mass of helicopter} \]
\[F_{tot} = \text{total force acting on helicopter} \]

Thus, given the net force acting on the helicopter cg in ship axes (calculated in Section 3), the ship's acceleration, angular velocity and angular acceleration relative to earth (input to model), and the current position and velocity of the helicopter cg relative to the ship (deduced by numerical integration over the previous time step), we can calculate the acceleration of the helicopter relative to the ship, \(\ddot{r}_h \). Numerical integration is then used to determine updated values for the velocity and position of the helicopter, \(\dot{r}_h \) and \(r_h \).

5.2 Angular Acceleration

If \(\omega^b \) is the absolute angular velocity of the helicopter (relative to earth), and \(G_{tot} \) is the net moment about the helicopter cg, calculated in Section 4, then the angular acceleration of the helicopter, \(\ddot{\omega}^b \) is given by (see Appendix A):

\[
\ddot{\omega}^b = \dot{\mathbf{I}}^{-1} \left[G_{tot} - \mathbf{I} \times (\dot{\mathbf{I}} \omega^b) \right]
\]

where \(\dot{\mathbf{I}} \) is obtained from the helicopter moments of inertia, and is given by:

\[
\dot{\mathbf{I}} = \begin{pmatrix}
I_x & -I_y & -I_z \\
-I_y & I_x & -I_z \\
-I_z & -I_y & I_x
\end{pmatrix}
\]

Numerical integration is then used to determine an updated value for \(\omega^b \), which is used to deduce the angular velocity of the helicopter relative to the ship, \(\omega^{rel} \) from the relation:

\[
\omega^{rel} = \omega^b - \mathbf{I}_{bb} \omega^s
\]

The Euler angle rates are developed in Ref. 4, and as shown in Appendix A are given by:

\[
\begin{pmatrix}
\dot{\phi}^{rel} \\
\dot{\theta}^{rel} \\
\dot{\psi}^{rel}
\end{pmatrix} = \mathbf{J}^{rel} \omega^{rel}
\]

Numerical integration can now be used to determine \(\phi^{rel}, \theta^{rel} \) and \(\psi^{rel} \), the attitude of the helicopter relative to the ship.

Given updated values of relative position and attitude, the whole procedure is now repeated.
6. APPLICATIONS

Consider a helicopter "dropped" from a horizontal position, onto a ship deck which has a variety of attitudes and motions. For the purpose of illustration, we restrict ourselves to $\psi_0 = 0^\circ$ (helicopter and ship aligned), and the ship is allowed to deviate from the horizontal position in roll only (Fig. 10). The helicopter considered has two main landing gears with brakes ON, and a single tail gear without brakes (ie. tail brake taken as OFF in the mathematical model). Rotor thrust and other aerodynamic forces are taken as zero for this idealised case.

The following cases are considered:

- **case 1** - deck horizontal and stationary
- **case 2** - deck at 10° roll and stationary
- **case 3** - deck rolling sinusoidally from -10° to $+10^\circ$ with period 10 seconds

The various parameters representing the helicopter are listed in Tables 1 and 2.

<table>
<thead>
<tr>
<th>Table 1. Helicopter Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>I_x</td>
</tr>
<tr>
<td>I_y</td>
</tr>
<tr>
<td>I_z</td>
</tr>
<tr>
<td>I_{xx}</td>
</tr>
<tr>
<td>I_{xy}</td>
</tr>
<tr>
<td>I_{xz}</td>
</tr>
</tbody>
</table>

The mathematical model developed earlier is used to predict the variation of oleo load and oleo deflection with time for the above three cases.

Case 1 - See Fig. 11. The oleo load and deflection variation for gears 1 and 2 are the same due to symmetry. The helicopter comes to rest in about three seconds, with greater compression of the tail wheel oleo than the main gear oleos.

Case 2 - See Fig. 12. Due to the initial horizontal attitude of the helicopter, the left main gear (1) makes contact with the deck first, followed by the tail gear (3) and finally the right main gear (2). After making deck contact, gear 1 actually leaves the deck for a short while. Case 2
takes longer to damp out than case 1, as expected, and the helicopter comes to rest after about six seconds, with the right main gear (2) more compressed than the left main gear (1).

Case 3 - See Fig. 13. The relatively gentle ship rolling motion has little effect on oleo load and deflection during the initial impact (compare Figs. 12 and 13), however by five seconds, when the ship deck is now inclined the other way, a reversal of the loads on the main gears has taken place. If the variation of oleo load and deflection is examined over a greater time span (Fig. 14), it is seen that a periodicity in the helicopter motion soon develops, with period 10 seconds equal to that of the ship. The helicopter is seen to oscillate between the two main gears, with the tail gear oleo load and deflection remaining virtually constant.

Table 2. Helicopter Landing Gear Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MAIN GEAR</th>
<th>TAIL GEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_1</td>
<td>$3.6 \times 10^5 \text{ Nm}^{-2}$</td>
<td>$(7.5 \times 10^3 \text{ lbf/ft}^2)$</td>
</tr>
<tr>
<td>K_2</td>
<td>$5.0 \times 10^6 \text{ Nm}^{-2}$</td>
<td>$(1.0 \times 10^6 \text{ lbf/ft}^2)$</td>
</tr>
<tr>
<td>G_1</td>
<td>$2.2 \times 10^4 \text{ Nsm}^{-1}$</td>
<td>$(1.5 \times 10^3 \text{ lbf s/ft})$</td>
</tr>
<tr>
<td>G_2</td>
<td>$4.0 \times 10^4 \text{ Nsm}^{-1}$</td>
<td>$(2.7 \times 10^3 \text{ lbf s/ft})$</td>
</tr>
<tr>
<td>d_o</td>
<td>0.238 m</td>
<td>(0.781 ft)</td>
</tr>
<tr>
<td>C_z</td>
<td>$6.0 \times 10^5 \text{ Nm}^{-1}$</td>
<td>$(4.1 \times 10^4 \text{ lbf/ft})$</td>
</tr>
<tr>
<td>C_1</td>
<td>$1.4 \times 10^6 \text{ Nm}^{-1}$</td>
<td>$(6.5 \times 10^4 \text{ lbf/ft})$</td>
</tr>
<tr>
<td>C_2</td>
<td>$4.5 \times 10^6 \text{ Nm}^{-1}$</td>
<td>$(3.1 \times 10^4 \text{ lbf/ft})$</td>
</tr>
<tr>
<td>C_3</td>
<td>$1.2 \times 10^6 \text{ Nm}^{-2}$</td>
<td>$(2.5 \times 10^4 \text{ lbf/ft})$</td>
</tr>
<tr>
<td>G_1</td>
<td>$2.0 \times 10^4 \text{ Nsm}^{-1}$</td>
<td>$(1.4 \times 10^3 \text{ lbf s/ft})$</td>
</tr>
<tr>
<td>G_2</td>
<td>$2.0 \times 10^4 \text{ Nsm}^{-1}$</td>
<td>$(1.4 \times 10^3 \text{ lbf s/ft})$</td>
</tr>
<tr>
<td>Q_z</td>
<td>$1.0 \times 10^4 \text{ Nsm}^{-1}$</td>
<td>(685 lbf s/ft)</td>
</tr>
<tr>
<td>L_x</td>
<td>1.5 m</td>
<td>(4.92 ft)</td>
</tr>
<tr>
<td>L_y</td>
<td>1.4 m</td>
<td>(4.59 ft)</td>
</tr>
<tr>
<td>L_z</td>
<td>0.8 m</td>
<td>(2.62 ft)</td>
</tr>
<tr>
<td>μ_x</td>
<td>0.7</td>
<td>(0.7)</td>
</tr>
<tr>
<td>μ_y</td>
<td>0.7</td>
<td>(0.7)</td>
</tr>
</tbody>
</table>

A possible further application of the model is to examine the varying distance between the ship deck and a part of the helicopter. For instance, the Sikorsky SH-60B Sea Hawk has a radome located under its chin which could possibly come close to the deck during a heavy landing, or while the helicopter is on the deck during rough seas. In Fig. 15, the distance between the deck and a hypothetical radome (location [2.5, 0, 1.5]m relative to the helicopter deck)
cg), is plotted for the conditions of case 3. More realistic situations would require the use of measured ship motions as forcing inputs.

7. CONCLUDING REMARKS

A mathematical model has been described which models a helicopter on an arbitrarily moving deck. The model has been successfully implemented on an ELXSI 6400 Computer. Results so far, for a deck at rest and oscillating sinusoidally, agree with expected trends. It is planned to validate the model using actual helicopter data in the near future.

The oleo load and deflection have been examined here, but other variables of interest, such as deck clearance of a portion of the helicopter, or clearance with nearby obstacles due to swaying, can be easily determined. The model can also be used for developing sliding and toppling criteria.

The addition of restraining devices (tip down and RAST1 loads) is desired to extend the capabilities of the on-deck model. It is also intended to include rotor thrust and aerodynamic forces in the model, and a stability augmentation system (SAS), so that actual landings on an arbitrarily moving deck can be studied. Other assumptions, for example that oleo loads act in the direction of the body z-axis, can be relatively easily relaxed.

The model is readily adaptable to different helicopter types. In particular, the undercarriage representation can be varied, either by changing the parameters in the present model, or by providing an alternative representation, without changes being required in other parts of the model.

Finally, the model has been developed so as to facilitate the incorporation of either part or all of it into wider system studies of the helicopter/ship dynamic interface.

ACKNOWLEDGMENT

The authors wish to thank Ashley Arney for improving the graphics output of the simulation language, ACSL.

1 Recovery Assist Secure and Traverse system
REFERENCES

APPENDIX A

Unsteady Equations of Motion

Due to the non-steady nature of the on-deck problem, the unsteady equations of motion are required. For a full discussion of these equations, see eg. Ref.4. The main relationships used in this document are listed below, with the relevant section number from Ref. 4 listed in brackets where appropriate. The earth frame is assumed to be inertial throughout.

Position and Velocity Vectors in Different Reference frames

Consider two reference frames eg. bands. If \(r_b \) is a vector viewed from frame \(b \), and \(r_s \) is the same vector viewed from frame \(s \), then \(r_b \) and \(r_s \) are related to one another as follows:

\[
\begin{align*}
\mathbf{r}_b &= \mathbf{I}_{sb} \mathbf{r}_s \quad (§4.4) \\
I_{sb} &= \begin{pmatrix}
\cos^2\theta & \cos\theta\sin\theta & -\sin\theta \\
\sin\theta\cos\phi & \cos\phi \cos^2\theta + \sin^2\theta & \cos\phi \sin\theta \\
\sin\theta\sin\phi & -
\end{pmatrix}
\end{align*}
\]

where \(\mathbf{I}_{sb} \) is the change of reference frame matrix from \(s \) to \(b \) given by:

\[
\begin{align*}
\mathbf{r}_b &= \mathbf{I}_{sb} \mathbf{r}_s \\
\mathbf{I}_{sb} &= \begin{pmatrix}
\cos^2\theta & \cos\theta\sin\theta & -\sin\theta \\
\sin\theta\cos\phi & \cos\phi \cos^2\theta + \sin^2\theta & \cos\phi \sin\theta \\
\sin\theta\sin\phi & -
\end{pmatrix}
\end{align*}
\]

and \(\phi, \theta \) and \(\psi \) are the Euler angles that take frame \(s \) to frame \(b \).

Note that:

\[
\mathbf{I}_{sb} = \mathbf{I}_{bs} \quad (§4.4)
\]

Angular Rates In Different Reference frames

If \(\mathbf{G} \) is the moment and \(\mathbf{h} \) the associated angular momentum of a body about its cg, then in body axes, \(b \):

\[
\mathbf{G}_b = \dot{\mathbf{h}}_b + \omega_b^b \times \mathbf{h}_b \quad (§5.6)
\]

providing that the origin of the body axes is the body cg. \(\omega^b \) is the absolute angular velocity of frame \(b \) (relative to earth).

For a rigid body, the angular momentum is given by:

\[
\mathbf{h}_b = \mathbf{\bar{I}_b} \omega_b^b \quad (§5.4)
\]

where \(\mathbf{\bar{I}_b} \) is obtained from the body (helicopter) moments of inertia.
\[
\bar{I} = \begin{pmatrix}
I_x & -I_y & -I_z \\
-I_y & I_x & -I_z \\
-I_z & -I_y & I_x
\end{pmatrix}
\] \hspace{1cm} \text{[A6]}

and:

\[
I_x = \int (y^2 + z^2) \, dm \quad \text{etc.} \hspace{1cm} \text{[A7]}
\]

\[
I_y = \int xy \, dm \quad \text{etc.} \hspace{1cm} \text{[A8]}
\]

Equations [A4] and [A5] result in:

\[
\bar{G}_b = \bar{I} \, \bar{\omega}_b^e + \omega_b^e \times (\bar{I} \, \bar{\omega}_b^e) \hspace{1cm} \text{[§5.6] \text{[A9]}}
\]

Finally, the rate of change of the relative Euler angles are related to the relative angular velocity by:

\[
\begin{pmatrix}
\dot{\gamma}^\text{rel} \\
\dot{\beta}^\text{rel} \\
\dot{\psi}^\text{rel}
\end{pmatrix} = \bar{J}^\text{rel} \, \omega_b^\text{rel} \hspace{1cm} \text{[§5.2] \text{[A10]}}
\]

where:

\[
\bar{J}^\text{rel} = \begin{pmatrix}
1 & \sin\gamma^\text{rel} \tan\beta^\text{rel} & \cos\gamma^\text{rel} \tan\beta^\text{rel} \\
0 & \cos\gamma^\text{rel} & -\sin\gamma^\text{rel} \\
0 & \sin\gamma^\text{rel} \sec\beta^\text{rel} & \cos\gamma^\text{rel} \sec\beta^\text{rel}
\end{pmatrix} \hspace{1cm} \text{[A11]}
\]

and:

\[
\omega_b^\text{rel} = \bar{I}_b \, \omega_b^e \hspace{1cm} \text{[§5.2] \text{[A12]}}
\]

with \(\omega_b^e \) being the absolute angular velocity of frame s (relative to earth).
Figure 1. Schematic Diagram of Helicopter on Ship Deck
Figure 2. Axes Systems used
Figure 3. Mathematical Model of Oleo and Tyre
Figure 4. Oleo and Tyre Loads and Deflections in Body z Direction

\[L_1 = \text{Oleo Load} \]
\[L_2 = \text{Tyre Load} \]
\[d = \text{Oleo Compression (} z_2 \text{ Direction)} \]
\[d' = \text{Tyre Compression (} z_2 \text{ Direction)} \]
\[d + d' = \text{Total Gear Deflection (Oleo + Tyre)} \]
Figure 5. Relationship between Body Axes, Ship Axes and Aligned Axes
Figure 6. a) Tyre Deformation in Side (y_a) Direction, b) Tyre Deformation in Fore-Aft (x_a) Direction
Figure 7. a) Tyre Sliding and b) Tyre Deformation in Sideways Direction (Tyre Dragging and Deformation in Fore-Aft Direction is Similar)
Figure 8. Forces due to jth Gear
Figure 9. Relationship between Helicopter, Ship and Earth Axes
Figure 10. Helicopter "dropped" onto a Rolling Ship Deck
Figure 11. Oleo Deflection and Load for Helicopter "Dropped" onto Ship Deck. Deck Horizontal and Stationary.
Figure 12. Oleo Deflection and Load for Helicopter "Dropped" onto Ship Deck. Deck at 10° Roll and Stationary
Figure 13. Oleo Deflection and Load for Helicopter "Dropped" onto Ship Deck. Deck Rolling Sinusoidally from -10° to +10° with Period 10 Seconds
Figure 14. Oleo Deflection and Load for Helicopter "Dropped" onto Ship Deck. Deck Rolling Sinusoidally from -10° to +10° with Period 10 Seconds.
Figure 15. Deck Clearance of Radome.
Deck Rolling Sinusoidally from -10° to +10° with Period 10 Seconds
DISTRIBUTION

AUSTRALIA

Department of Defence

Defence Central

Chief Defence Scientist
Assist Chief Defence Scientist, Operations (shared copy)
Assist Chief Defence Scientist, Policy (shared copy)
Counsellor, Defence Science, London (Doc Data Sheet Only)
Counsellor, Defence Science, Washington (Doc Data Sheet Only)
S.A. to Thailand MRD (Doc Data Sheet Only)
S.A. to the DRC (Kuala Lumpur) (Doc Data Sheet Only)
OIC TRS, Defence Central Library
Document Exchange Centre, DISB (7 copies)
Joint intelligence Organisation
Librarian H Block, Victoria Barracks, Melbourne
Director General – Army Development (NSO) (4 copies)
Defence Industry and Materiel Policy, FAS

Aeronautical Research Laboratory

Director
Library
Chief – Aerodynamics and Aero Propulsion Division
Head – Aerodynamics Branch
Branch File – Aerodynamics
Authors: J. Blackwell R.A. Feik
C.A. Martin
C. Sutton
N.E. Gilbert
A.M. Arney
N. Matheson
K.R. Reddy
R.H. Perrin
R. Toffoletto

Materials Research Laboratory

Director/Library

Defence Science & Technology Organisation – Salisbury
Library

WSRL
Maritime Systems Division (Sydney)

Navy Office

Navy Scientific Adviser
Aircraft Maintenance and Flight Trials Unit
Director of Naval Aircraft Engineering
Director of Naval Air Warfare
Superintendent, Aircraft Maintenance and Repair
Director of Naval Ship Design

Army Office
Scientific Adviser - Army (Doc Data sheet only)

Air Force Office
Air Force Scientific Adviser (Doc Data sheet only)
Aircraft Research and Development Unit
Scientific Flight Group
Library
Engineering Division Library
Director General Aircraft Engineering - Air Force
HQ Support Command (SLENGO)

Universities and Colleges
NSW
Library, Australian Defence Force Academy

SPARES (10 copies)
TOTAL (56 copies)
A mathematical model of the on-deck helicopter/ship dynamic interface has been developed and implemented on an ELXSI 6400 computer. The purpose of this work is to provide a capability for investigating helicopter/ship dynamic interactions, such as deck clearances on landing, swaying, toppling and sliding criteria, and tie-down loads. Different helicopter types can be readily examined, given their undercarriage representation. The model takes account of arbitrary ship motion, and includes features such as brakes on or off, tyre deformation and tyre sliding.

J. Blackwell and R.A. Feik

AERONAUTICAL RESEARCH LABORATORY
P.O. BOX 4331, MELBOURNE VIC 3001
This page is to be used to record information which is required by the establishment for its own use but which will not be added to the DISITIS data unless specifically requested.

<table>
<thead>
<tr>
<th>16. Abstract (cont.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

17. Imprint

AERONAUTICAL RESEARCH LABORATORY, MELBOURNE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AERODYNAMICS TECHNICAL</td>
<td>511155</td>
<td></td>
</tr>
<tr>
<td>MEMORANDUM 405</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

21. Computer Programs Used

ROLL12.ACCL
ROLL11.F

22. Establishment File Ref. (5)

23. Additional Information (as required)