NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov’t. agencies only; Administrative/Operational Use; 11 MAR 1982. Other requests shall be referred to USAF School of Aerospace Medicine, Attn: USAFSAM/BR, Brooks AFB, TX 78235.

AUTHORITY
USAF/AFIOH ltr, 31 Aug 2007
A COMPUTER MODEL PREDICTING THE THERMAL RESPONSE TO MICROWAVE RADIATION

David K. Cohoon, Ph.D.
John W. Penn, B.A.
Earl L. Bell, M.S.
David R. Lyons, B.S.
Arthur G. Cryer, Staff Sergeant, USAF

December 1982

Distribution limited to U.S. Government agencies only; official/operational use: 11 March 1982. Other requests for this document must be referred to USAFSAM/BR.
This final report was submitted by personnel of the Biomathematics Modeling Branch, Data Sciences Division, USAF School of Aerospace Medicine, Aerospace Medical Division, AFSC, Brooks Air Force Base, Texas, under job order 2312-V7-02.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed and is approved for publication.

David K. Cohoon
DAVID K. COHOON, Ph.D.
Project Scientist

Richard A. Albanese M.D.
RICHARD A. ALBANESE, M.D.
Supervisor

ROY L. DEHART
Colonel, USAF, MC
Commander
Report Documentation Page

1. **REPORT NUMBER**
 SAM-TR-82-22

2. **GOVT ACCESSION NO.**
 8071726

3. **RECIPIENT'S CATALOG NUMBER**

4. **TITLE (and Subtitle)**
 A COMPUTER MODEL PREDICTING THE THERMAL RESPONSE TO MICROWAVE RADIATION

5. **TYPE OF REPORT & PERIOD COVERED**
 Final Report
 Jan 1980 - Nov 1980

6. **PERFORMING ORG. REPORT NUMBER**

7. **AUTHOR(s)**
 David K. Cohoon, Ph.D.; John W. Penn, B.A.;
 Earl L. Bell, M.S.; David R. Lyons, B.S.;
 and Arthur G. Cryer, Staff Sergeant, USAF

8. **CONTRACT OR GRANT NUMBER(S)**

9. **PERFORMING ORGANIZATION NAME AND ADDRESS**
 USAF School of Aerospace Medicine (BRM)
 Aerospace Medical Division (AFSC)
 Brooks Air Force Base, Texas 78235

10. **PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS**
 61102F
 2312-V7-02

11. **CONTROLLING OFFICE NAME AND ADDRESS**
 USAF School of Aerospace Medicine (RZP)
 Aerospace Medical Division (AFSC)
 Brooks Air Force Base, Texas 78235

12. **REPORT DATE**
 December 1982

13. **NUMBER OF PAGES**
 152

14. **MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)**

15. **DEPARTMENT OF DEFENSE UNCLASSIFIED REPORTS DISTRIBUTION STATEMENT (of this report)**
 Distribution limited to U.S. Government agencies only; official/operational use; 11 March 1982. Other requests for this document must be referred to USAFSAM/BR.

16. **ABSTRACT (of this Report)**
 We compare the theoretical predictions of the temperature excursions that would be included in a simulated, spherically symmetric autothermally regulated biostructure by a source of microwave radiation with experimental measurements. The predictions were made by using the divergence of the Poynting vector as a source term for the heat equation, and the measurements were made for a single-layer structure filled with simulated muscle material with a Vitek probe; these measurements were made by John Burr and were described in a

17. **ABSTRACT (of the abstract entered in Block 20, if different from Report)**

18. **SUPPLEMENTARY NOTES**

19. **KEY WORDS (Continue on reverse side if necessary and identify by block number)**
 - Microwave heating
 - Spherically symmetric simulated biostructures
 - Computer prediction
 - Partial differential equations
 - Heat equation (nonhomogeneous)
 - Mie solution
 - Electromagnetic radiation
 - Newton cooling law boundary condition
 - Bioeffects of microwaves

20. **ABSTRACT (Continue on reverse side if necessary and identify by block number)**
 We compare the theoretical predictions of the temperature excursions that would be included in a simulated, spherically symmetric autothermally regulated biostructure by a source of microwave radiation with experimental measurements. The predictions were made by using the divergence of the Poynting vector as a source term for the heat equation, and the measurements were made for a single-layer structure filled with simulated muscle material with a Vitek probe; these measurements were made by John Burr and were described in a
20. ABSTRACT (Continued)

publication which appeared in Vol. BME-27, Nov. 8, of the IEEE Transactions on Biomedical Engineering. The results of these measurements are discussed in this report.

We describe a shooting method for solving the eigenvalue and eigenfunction determination problem for a multilayered, penetrable, spherically symmetric, autothermally regulated, simulated biostructure when there is heat removal by blood flow in some but possibly not all of the layers. This requires study of a new type of special function.

While originally our computer program experienced difficulty when the frequency of the incoming radiation was as high as 10 GHz or when the radius of the sphere bounding the ball of biotissue was as large as 48 cm, we have overcome this problem with a hybrid scheme for computing spherical Bessel functions.

Our computer program also permits the computation of temperature excursions that would be experienced by the simulated biostructure when the source of radiation is pulsed in a complex way. We develop exact formulas which enable us to express the expansion coefficients of the temperature in terms of integrals with respect to the spatial coordinates only. To save computing time, the points that will be used in the Gaussian quadrature are determined in advance and care is taken to make certain that no calculation is needlessly repeated.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INTRODUCTION.</td>
<td>9</td>
</tr>
<tr>
<td>2. RESULTS AND DISCUSSION.</td>
<td>11</td>
</tr>
<tr>
<td>3. MATHEMATICAL PRELIMINARIES.</td>
<td>29</td>
</tr>
<tr>
<td>3.1. Notation.</td>
<td>29</td>
</tr>
<tr>
<td>3.2. Induced Electromagnetic Field Distribution.</td>
<td>34</td>
</tr>
<tr>
<td>3.3. Heat Operator Eigenvalues and Eigenfunctions</td>
<td></td>
</tr>
<tr>
<td>for a Newton Cooling Law Boundary Condition</td>
<td>40</td>
</tr>
<tr>
<td>3.3.1. The Radiative Heat Transfer Problem</td>
<td>40</td>
</tr>
<tr>
<td>3.3.2. Eigenvalue Determination.</td>
<td>43</td>
</tr>
<tr>
<td>3.3.3. Eigenfunction Computation</td>
<td>47</td>
</tr>
<tr>
<td>3.4. Details of the Temperature Computation Including</td>
<td></td>
</tr>
<tr>
<td>Complex Pulse Heating Schemes</td>
<td>50</td>
</tr>
<tr>
<td>3.4.1. Series Expansion of the Temperature</td>
<td>50</td>
</tr>
<tr>
<td>3.4.2. Complex Pulse Heating Scheme</td>
<td>51</td>
</tr>
<tr>
<td>3.5. Simulated Biostructures.</td>
<td>56</td>
</tr>
<tr>
<td>3.5.1. Description of Structures to be Studied</td>
<td>56</td>
</tr>
<tr>
<td>3.5.2. Microwave Heating of a Muscle-Equivalent Sphere</td>
<td>57</td>
</tr>
<tr>
<td>3.5.3. Microwave Heating of a Simulated Fetal Structure</td>
<td>58</td>
</tr>
<tr>
<td>3.5.4. Microwave Heating of a Simulated Cranial Structure</td>
<td>61</td>
</tr>
<tr>
<td>4. PROGRAM DESCRIPTION</td>
<td>81</td>
</tr>
<tr>
<td>4.1. Purpose of the Program.</td>
<td>81</td>
</tr>
<tr>
<td>4.2. Accessing the Program from the Library</td>
<td>82</td>
</tr>
<tr>
<td>4.3. Glossary of Variables and Their Meaning</td>
<td>83</td>
</tr>
<tr>
<td>4.4. Input Data Preparation.</td>
<td>89</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (Cont.)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5. The Output and its Meaning.</td>
<td>97</td>
</tr>
<tr>
<td>4.6. Program Size and Running Time</td>
<td>102</td>
</tr>
<tr>
<td>4.7. Error Messages</td>
<td>103</td>
</tr>
<tr>
<td>4.8. Program and Subprogram Description</td>
<td>108</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>110</td>
</tr>
</tbody>
</table>

APPENDIXES:

A--LISTING OF THE PROGRAM .. 113

LIST OF ILLUSTRATIONS

Figure

2.1 Electromagnetic plane wave impinging on a cranial model composed of an inner core sphere and N concentric spherical shells .. 12

2.2 Temperature rise along the z-axis of a 3.3-cm radius homogeneous muscle-equivalent sphere exposed to 1.2 GHz, CW, 70 mW/cm², RF in the far field for 30 s 13

2.3 Temperature rise along the x-axis of a 3.3-cm radius homogeneous muscle-equivalent sphere exposed to 1.2 GHz, CW, 70 mW/cm², RF in the far field for 30 s 14

2.4 Temperature rise along the y-axis of a 3.3-cm radius homogeneous muscle-equivalent sphere exposed to 1.2 GHz, CW, 70 mW/cm², RF in the far field for 30 s 15

2.5 Temperature rise along the z-axis of a 3.3-cm radius homogeneous muscle-equivalent sphere exposed to 2.5 GHz, CW, 100 mW/cm², Rr in the far field for 30 s 16
LIST OF ILLUSTRATIONS (Cont.)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>Temperature rise along the x-axis of a 3.3-cm radius homogeneous muscle-equivalent sphere exposed to 2.5 GHz, CW, 100 mW/cm², RF in the far field for 30 s.</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>Temperature rise along the y-axis of a 3.3-cm radius homogeneous muscle-equivalent sphere exposed to 2.5 GHz, CW, 100 mW/cm², RF in the far field for 30 s.</td>
<td>18</td>
</tr>
<tr>
<td>2.8</td>
<td>Temperature rise along the z-axis of a 3.3-cm radius homogeneous muscle-equivalent sphere exposed to 1.2 GHz, CW, 70 mW/cm², RF in the far field for 3 min.</td>
<td>19</td>
</tr>
<tr>
<td>2.9</td>
<td>Temperature rise along the x-axis of a 3.3-cm radius homogeneous muscle-equivalent sphere exposed to 1.2 GHz, CW, 70 mW/cm², RF in the far field for 3 min.</td>
<td>20</td>
</tr>
<tr>
<td>2.10</td>
<td>Temperature rise along the y-axis of a 3.3-cm radius homogeneous muscle-equivalent sphere exposed to 1.2 GHz, CW, 70 mW/cm², RF in the far field for 3 min.</td>
<td>21</td>
</tr>
<tr>
<td>2.11</td>
<td>The predicted and measured temperature excursion versus time at the center of a 3.3-cm radius homogeneous muscle-equivalent sphere at 2 GHz, CW, 70 mW/cm².</td>
<td>22</td>
</tr>
<tr>
<td>2.12</td>
<td>Temperature excursion in the midbrain of a living (blood flow case) and dead (no blood flow case) Macaca mulatta (rhesus monkey) head exposed to 70 mW/cm², CW, RFR in the far field, 1.2 GHz.</td>
<td>23</td>
</tr>
<tr>
<td>2.13</td>
<td>Effect of the blood flow term (b) on the temperature excursion in the center of a 4.5-cm radius homogeneous muscle-equivalent sphere.</td>
<td>24</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>2.14</td>
<td>Comparison of the Kritikos and Schwan source term used in [5] and the Mie solution generated source term used in this paper. The magnitude of the Kritikos and Schwan source term is 10,000 W/m3. The Mie solution assumes that the incident power is 10 mW/cm2 (field strength = 194.09 V/m), that the frequency is 1000 MHz, that the real part of the relative permittivity is 34.4, that the ionic plus polarization current conductivity = $\sigma' + \omega \varepsilon'' = 0.8$ mhos/m, and that the outer boundary of this scattering body is a sphere whose radius is 5 cm.</td>
<td>26</td>
</tr>
<tr>
<td>2.15</td>
<td>Comparison of the Kritikos-Schwan predictions in [5] (marked with an *) and our solution (smooth curve). We assumed, following Kritikos and Schwan, that the blood flow was normal (b = 0.00186 cal/cm3/s) and that the exposure time was 200 s; we used the parameters $K = 0.001$ cal/cm/°C, $\rho = 1.0$ g/cm3, and $C = 1.0$ cal/g · °C that were used in [5].</td>
<td>27</td>
</tr>
<tr>
<td>2.16</td>
<td>Electromagnetic field interaction model for which there would be a nonthermal effect.</td>
<td>28</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Complex pulse heating pattern typical of radar emissions with a burst of three pulses followed by a quiet period and with the pattern being repeated periodically.</td>
<td>52</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Power density induced in a muscle-equivalent sphere by 4.5-GHz continuous-wave radiation with a power of 10 mW/cm2.</td>
<td>63</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Thermal response of a muscle-equivalent sphere to a 1-min exposure to 4.5-GHz continuous-wave radiation with a power of 10 mW/cm².</td>
<td>64</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Thermal response of a muscle-equivalent sphere to a 5-s exposure of 4.5-GHz continuous-wave radiation with a power of 10 mW/cm².</td>
<td>65</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Power density across the z-axis of a simulated fetal structure exposed to 1-GHz continuous-wave microwave radiation with a power of 10 mW/cm².</td>
<td>66</td>
</tr>
<tr>
<td>3.5.5</td>
<td>Thermal response of a simulated fetal structure to a 1-hr exposure to 1-GHz radiation with a power of 10 mW/cm². The temperature is computed across the x-axis. The orientation of the axes is given in Figure 2.1.</td>
<td>67</td>
</tr>
<tr>
<td>3.5.6</td>
<td>This is the same as Figure 3.5.5 except that the temperature is computed along the y-axis.</td>
<td>68</td>
</tr>
<tr>
<td>3.5.7</td>
<td>This is the same as Figure 3.5.5 except that the temperature is computed along the z-axis.</td>
<td>69</td>
</tr>
<tr>
<td>3.5.8</td>
<td>Temperature distribution along the z-axis for a simulated fetal structure exposed to 1-GHz (10 mW/cm²) radiation for 1 s.</td>
<td>70</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>3.5.9</td>
<td>Temperature distribution along the z-axis of a simulated fetal structure exposed to 1-GHz (10 mW/cm²) radiation for 1 min.</td>
<td></td>
</tr>
<tr>
<td>3.5.10</td>
<td>Temperature rise along the z-axis of a simulated fetal structure exposed to 1-GHz (10 mW/cm²) radiation for 15 min.</td>
<td></td>
</tr>
<tr>
<td>3.5.11</td>
<td>Temperature rise along the z-axis of a simulated fetal structure exposed to 1-GHz (10 mW/cm²) radiation for 1 hr.</td>
<td></td>
</tr>
<tr>
<td>3.5.12</td>
<td>Temperature rise along the z-axis of a simulated fetal structure exposed to 1-GHz (10 mW/cm²) radiation for 2 hr.</td>
<td></td>
</tr>
<tr>
<td>3.5.13</td>
<td>Temperature rise along the z-axis of a simulated fetal structure exposed to 1-GHz (10 mW/cm²) radiation for 3 hr.</td>
<td></td>
</tr>
<tr>
<td>3.5.14</td>
<td>Temperature rise along the z-axis of a simulated fetal structure exposed to 1-GHz (10 mW/cm²) radiation for 4 hr.</td>
<td></td>
</tr>
<tr>
<td>3.5.15</td>
<td>Temperature rise along the z-axis of a simulated fetal structure exposed to 1-GHz (10 mW/cm²) radiation for 8 hr.</td>
<td></td>
</tr>
<tr>
<td>3.5.16</td>
<td>Power density along the z-axis of a six-layer simulated cranial structure exposed to 800-MHz radiation with a power of 10 mW/cm².</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS (Cont.)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.17</td>
<td>Thermal response of a six-layer simulated cranial structure exposed to 800-MHz radiation for 3 min</td>
</tr>
<tr>
<td>3.5.18</td>
<td>Thermal response of a six-layer simulated cranial structure exposed to 800-MHz radiation for 30 s</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Job control language for calling the microwave thermal response program from the library</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Typical time envelope function describing some radar emission patterns</td>
</tr>
<tr>
<td>4.4.2</td>
<td>The first three data sets for the computation of the thermal response of a one-layer brain tissue structure exposed to 70 mW/cm^2 and 2450-MHz radiation for 30 s at 60 spatial points</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Data set describing points on the z-axis in spherical coordinates</td>
</tr>
<tr>
<td>4.4.4</td>
<td>Data set describing points on the x-axis in spherical coordinates</td>
</tr>
<tr>
<td>4.4.5</td>
<td>Data set describing points on the y-axis in spherical coordinates</td>
</tr>
</tbody>
</table>

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.1</td>
<td>Parameters for a one-layer muscle-equivalent sphere exposed to 4500-MHz radiation</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Parameters defining a simulated fetal structure exposed to 1000-MHz radiation</td>
</tr>
</tbody>
</table>
LIST OF TABLES (Cont.)

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.3 Parameters defining a six-layer simulated cranial structure exposed to 800-MHz radiation</td>
<td>61</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

This paper describes a method of computing the thermal response of an autothermally regulated body such as a biological body to a source of microwave radiation. The description of this method is divided into five parts. It includes (1) a discussion of the symbols (and their units) used in developing the solution, (2) the induced electromagnetic field distribution and the power density distribution that represents the source term for the heat transfer problem, (3) the modified heat operator eigenvalues and eigenfunctions associated with a Newton cooling law boundary condition, (4) the computation of temperature excursions induced by microwave radiation including complex pulse heating schemes, and (5) a discussion of the spreading of temperature distributions with time in three types of simulated biological structures. These are discussed in Sections 3.1-3.5 respectively.

In [2] we developed a computer model to determine the temperature distribution in a penetrable, homogeneous, and spherically symmetric body that has been irradiated by microwave radiation. Heat removal by blood flow could be considered, provided that only one layer was used in the model. In the present paper a shooting method for solving the eigenvalue and eigenfunction determination problem for a multilayered, penetrable, but spherically symmetric scatterer is solved when the heat equation describing the microwave heating includes the possibility of blood-flow-heat-removal terms in some, but not necessarily all layers. This innovation is described in Section 3.
Also, originally our program in [2] experienced some difficulty in computing expansion coefficients used in determining the induced electric field when the frequency of the incoming radiation was high (>10 GHz) or when the radius of the outer sphere was as large as 48 cm; the procedure by which we overcame this difficulty is described in Section 2. Some experimental microwave bioenvironmentalists look for a nonthermal microwave effect and consequently attempt to control temperature in their microwave exposure systems by using a complex microwave pulse heating scheme with a low duty factor. Section 4 therefore contains a description of a formula which permits one to express the expansion coefficients associated with a complex temporal heating pattern in terms of integrals with respect to only the spatial variables. Finally we note that several people—including MacLatchy and Clements [9] and Washisu and Fukai [11] have proposed microwave-induced temperature excursions as a nonperturbing method of measuring or estimating field strengths. Consequently, in Section 3.5 of this paper we have included a discussion of the potential and limitations of this method of field measurement. Also, because microwave heating may be used to treat tumors in humans (c.f. Zimmer et al. [12]), we give in Section 3.5 some new computer calculations showing possible thermal effects on simulated biological structures.
2. RESULTS AND DISCUSSION

In this paper the authors extend the computer model which generated the results of [2]. We consider as before that a plane wave irradiates a spherically symmetric structure in the manner indicated in Figure 2.1. We allow, however, time profiles similar to that of the PAVE PAWS radar so that heating from any radar emission can be estimated directly. We note that with this capability and the possibility of estimating temperature derivatives that one can, by solving the equations of thermoelasticity, describe radar acoustic effects in a quantitative way. This is important in view of large efforts by other branches of the armed services to study this effect. We can also, by going to more general geometries and using an integral equation method, describe quantitatively the effect of microwave radiation on biochemical processes and fetal development which are strictly thermal in nature.

Figures 2.2-2.10 compare computer model predictions with measurements made by John G. Burr at Brooks AFB and give a comparison of our ability to predict spatial variations in temperature for two radiofrequencies (RF), 1.2 GHz and 2.5 GHz, and for a short 30-s and for a longer 3-min exposure. The capability of predicting the thermal response to pulsed radiation is demonstrated in Figure 2.11.

We now discuss the effect of blood flow in removing heat from a living system subjected to microwave-radiation-induced thermal excursions. John Burr and Jerome Krupp of the Radiation Sciences Division of the USAF School of Aerospace Medicine reported in [3] the results of Figure 2.12 showing temperature measurements in the head of a living and dead *Macaca mulatta*. In Figure 2.13 we use blood flow rates supplied in [9] to estimate the effect of the blood flow term in giving a lower predicted value of a radiation-induced temperature increase.
Figure 2.1. Electromagnetic plane wave impinging on a cranial model composed of an inner core sphere and N concentric spherical shells.
Figure 2.2. Temperature rise along the z-axis of a 3.3-cm radius homogeneous muscle-equivalent sphere exposed to 1.2 GHz, continuous wave (CW), 70 mW/cm², RF in the far field for 30 s.
Figure 2.3. Temperature rise along the x-axis of a 3.3-cm radius homogeneous muscle-equivalent sphere exposed to 1.2 GHz, CW, 70 mW/cm2, RF in the far field for 30 s.
Figure 2.4. Temperature rise along the y-axis of a 3.3-cm radius homogeneous muscle-equivalent sphere exposed to 1.2 GHz, CW, 70 mW/cm², RF in the far field for 30 s.
Figure 2.5. Temperature rise along the z-axis of a 3.3-cm radius homogeneous muscle-equivalent sphere exposed to 2.5 GHz, CW, 100 mW/cm², RF in the far field for 30 s.
Figure 2.6. Temperature rise along the x-axis of a 3.3-cm radius homogeneous muscle-equivalent sphere exposed to 2.5 GHz, CW, 100 mW/cm², RF in the far field for 30 s.
Figure 2.7. Temperature rise along the y-axis of a 3.3-cm radius homogeneous muscle-equivalent sphere exposed to 2.5 GHz, CW, 100 mW/cm², RF in the far field for 30 s.
Figure 2.8. Temperature rise along the z-axis of a 3.3-cm radius homogeneous muscle-equivalent sphere exposed to 1.2 GHz, CW, 70 mW/cm², RF in the far field for 3 min.
Figure 2.9. Temperature rise along the x-axis of a 3.3-cm radius homogeneous muscle-equivalent sphere exposed to 1.2 GHz, CW, 70 mW/cm², RF in the far field for 3 min.
Figure 2.10. Temperature rise along the y-axis of a 3.3-cm radius homogeneous muscle-equivalent sphere exposed to 1.2 GHz, CW, 70 mW/cm², RF in the far field for 3 min.
Figure 2.11. The predicted and measured temperature excursion versus time at the center of a 3.3-cm radius homogeneous muscle-equivalent sphere at 1.2 GHz, CW, 70 mW/cm².
Figure 2.12. Temperature excursion in the midbrain of a living (blood flow case) and dead (no blood flow case) *Macaca mulatta* (rhesus monkey) head exposed to 70 mW/cm², CW, RFR in the far field, 1.2 GHz [3].
Figure 2.13. Effect of the blood flow term (b) on the temperature excursion in the center of a 4.5-cm radius homogeneous muscle-equivalent sphere.
We see that there are qualitative differences in the curvature of the temperature versus time curves in Figures 2.12 and 2.13 that are at this point unexplained although the measured and predicted values seem to be reasonably close.

Finally we give a comparison between our computer model and the simpler model developed by Kritikos and Schwan [5]. This comparison is given in Figures 2.14 and 2.15.

We note that consideration of the thought experiment depicted in Figure 2.16 makes it obvious that there is such a thing as a nonthermal effect. We consider a structure that will not drift in a microwave field but which will necessarily respond differently to a microwave field and to an equivalent amount of thermal energy. We consider a simple molecule with three charges in a row connected by two chemical bonds that we approximate by two linear springs with identical spring constants. The outside two moieties have charge q and the middle moiety has charge $-2q$.

Since all three masses are the same, the thermal energy of the solvent will act in the same way on all three moieties, but the electric field will exert twice as much force on the inner moiety.
Figure 2.14. Comparison of the Kritikos and Schwan source term used in [5] and the Mie solution generated source term used in this paper. The magnitude of the Kritikos and Schwan source term is 10,000 W/m3. The Mie solution assumes that the incident power is 10 mW/cm2 (field strength = 194.09 V/m), that the frequency is 1000 MHz, that the real part of the relative permittivity is 34.4, that the ionic plus polarization current conductivity = $\sigma' + \omega\epsilon_0\epsilon''$ = 0.8 mhos/m, and that the outer boundary of this scattering body is a sphere whose radius is 5 cm.
Figure 2.15. Comparison of the Kritikos-Schwan predictions in [5] (marked with an *) and our solution (smooth curve). We assumed, following Kritikos and Schwan, that the blood flow was normal ($b = 0.00186 \text{ cal/cm}^3/\text{s}$) and that the exposure time was 200 s; we used the parameters $K = 0.001 \text{ cal/cm/}^{\circ}\text{C}$, $\rho = 1.0 \text{ g/cm}^3$, and $c = 1.0 \text{ cal/g} \cdot {^\circ}\text{C}$ that were used in [5].
Figure 2.16. Electromagnetic field interaction model for which there would be a nonthermal effect.
3. MATHEMATICAL PRELIMINARIES

3.1. Notation

The variables used in this paper are

ENGLISH

\[A_i = \text{dimensionless, coefficient of the radial eigenfunction that is regular at the origin,} \]

\[a(\varepsilon, \rho) = \text{expansion coefficient for the odd regular vector wave functions,} \]

\[a^{(m,n)}(t) = \text{the temperature decay factor of the solution } u \text{ associated with the radial eigenvalue } \lambda_{(n,k)} \text{ and the Legendre transform } L^m_n, \]

\[b(r) = \text{the product of the number of grams of blood per gram of tissue per second, the tissue density in grams of tissue per cubic centimeter of tissue, and the specific heat of the blood (typically } b = .0122), \]

\[B_i = \text{dimensionless coefficient of the radial eigenfunction that is singular at the origin,} \]

\[b(\varepsilon, \rho) = \text{expansion coefficient for the even regular vector wave functions,} \]

\[b^{(m,n)}(t) = \text{the temperature decay factor of the source term } S \text{ (associated with the radial eigenvalue } \lambda_{(n,k)} \text{ and the Legendre transform } L^m_n, \]

29
\(c(r)\) = tissue specific heat in calories per gram degree centigrade (typically \(c = .84\)),

\(\mathbf{E}\) = the electric field intensity in volts per meter (10 milliwatts per square centimeter corresponds to 194.087 volts per meter),

\(f\) = frequency in Hertz,

\(H\) = Newton cooling constant in calories per square centimeter per degree per second (typically \(H = .0000572\)),

\(\mathbf{H}\) = magnetic field intensity in Henrys per meter (10 milliwatts per square centimeter corresponds to .5151 Henrys per meter)

\(h_n\) = spherical Hankel function \(j_n - iy_n\) that is used in expanding the electromagnetic fields in Tesserai harmonics,

\(J(\lambda, r, r, n)\) = the radial eigenfunction, used in expanding the temperature, that is nonsingular at the origin,

\(j_n\) = the spherical Bessel function of order \(n\),

\(K\) = thermal conductivity in calories per centimeter per degree centigrade per second (typically \(K = .0012\)),

\(m\) = the index of the finite cosine transform (\(m = 0\) or \(1\) in our application),
\[n = \text{the index of the Legendre polynomial used in expanding the field,} \]

\[P_n^m(\cos(\theta)) = \text{the associated Legendre polynomial,} \]

\[r = \text{the distance from the center of the scatterer in centimeters,} \]

\[R_i = \text{the radius of the } i\text{th bounding sphere in centimeters,} \]

\[S = \text{the source term for the heat equation in calories per cubic centimeter per second,} \]

\[S(\lambda, r) = (\lambda \rho(r) c(r) - b(r))/K(r), \]

\[S_i(\lambda) = \text{a constant value of } S(\lambda, r) \text{ occurring when } R_{i-1} < r < R_i, \]

\[t = \text{time in seconds,} \]

\[u = \text{temperature excursion above the ambient temperature,} \]

\[Y_n = \text{spherical Bessel function of the second kind,} \]

\[Y_{n+1/2} = \text{half order Bessel function of the second kind (Weber function of order } n+1/2), \]

\[Y_S(\lambda, r, n) = \text{the radial eigenfunction, used in expanding the temperature, that is singular at the origin,} \]

\[Z_{n,k}(r) = \text{the radial eigenfunction associated with the eigenvalue } \lambda(n,k), \]
GREEK

\(\alpha(\varepsilon, \rho) \) = expansion coefficient for the odd singular vector wave functions,

\[\alpha_i(\lambda, R, n) = \mathcal{J}(S_1(\lambda), r, n), \]

\[\tilde{\alpha}_i(\lambda, R, n) = K_i[(\partial/\partial r)\mathcal{J}(S_1(\lambda), r, n)] \text{ evaluated at } r = R, \]

\[\beta(\varepsilon, \rho) \) = expansion coefficient for the even singular vector wave functions,

\[\beta_i(\lambda, R, n) = \mathcal{Y}(S_1(\lambda), R, n), \]

\[\tilde{\beta}_i(\lambda, R, n) = K_{i+1}[(\partial/\partial r)\mathcal{Y}(S_1(\lambda), r, n)] \text{ evaluated at } r = R, \]

\[\Delta_i(\lambda, R_1, n) = \alpha_{i+1}(\lambda, R_1, n)\tilde{\beta}_{i+1}(\lambda, R_1, n) - \tilde{\alpha}_{i+1}(\lambda, R_1, n)\beta_{i+1}(\lambda, R_1, n), \]

\(\varepsilon \) = permittivity in farads per meter,

\(\theta \) = spherical coordinate--angle of ray to a point with the positive z-axis,

\(\lambda \) = eigenvalue associated with radial harmonics,

\(\rho \) = density in grams per cubic centimeter,

\(\sigma \) = conductivity in ohms per meter,

\(\tau \) = dummy variable of integration used in expressing temperature decay factors as a convolution integral,

\(\phi \) = spherical coordinate of the x-y plane,

\(\omega \) = frequency in radians per second,

32
and

\[x(N_p, T_p, T_{p_1}, T_p) = \text{a cutoff function for the temporal envelope of the pulse heating scheme.} \]

MISCELLANEOUS

\[\partial = \text{partial derivative symbol} \]

ENGLISH SCRIPT

\[B(T_d, T_p, N_p, T_{p_1}, T_R, t) = \text{the pulse heating scheme temporal envelope function,} \]

\[C_m = \text{the finite cosine transform,} \]

\[L^m_n = \text{the Legendre transform,} \]

\[S(T_p, T_{p_1}, N_p, T_d, T) = \text{part of a temperature decay factor associated with a heating pattern defined by equation (3.4.14),} \]

\[T(T_p, T_{p_1}, N_p, T_d, T) = \text{part of a temperature decay factor associated with a complex pulse heating scheme defined by equation (3.4.15),} \]

and

\[T(n, k) = \text{the radial transform used in getting expansion coefficients to express a function of } r \text{ in terms of radial eigenfunctions that satisfy the Newton cooling law boundary condition.} \]

Other notation that is introduced in the text of the paper is defined and used locally.
3.2. Induced Electromagnetic Field Distribution

A new practical method of developing Tesseral harmonic expansion coefficients for the electromagnetic field induced in a penetrable scatterer with spherical symmetry is described here. Our numerical technique will permit us to use the Mie-solution method to determine the response of a body with a large size to a higher frequency radiation than we could with the standard methods described in the references of [1].

The electric field induced in the pth interior region by a wave of the form

\[\mathbf{E}^{(3)} = \mathbf{E}_0 \exp(-i\omega(t - \frac{x}{c})) \]

is given in the pth region by

\[\mathbf{E}_p = \mathbf{E}_0 \sum_{l=1}^{\infty} \frac{2^{l+1}}{l(l+1)} \left[a^{(l,p)}(1,l) \mathbf{M}^{(0,3)}(l+1) - ib^{(l,p)}(1,l) \mathbf{N}^{(e,1)}(1,l) + \alpha^{(l,p)}(1,l) \mathbf{M}^{(0,3)}(1,l) \right] \]

\[- \left[\frac{\mathbf{x}^{(e,3)}}{(l,p)(1,l)} \right] \]

where

\[\frac{\mathbf{x}^{(e,j)}}{(1,n)} = -\frac{1}{\sin(\theta)} z_n^j(k r) P_n^1(\cos(\theta)) \sin(\theta) \hat{e}_\theta \]

\[- z_n^j(k r) \left[\frac{d}{d\theta}(P_n^1(\cos(\theta))) \right] \cos(\phi) \hat{e}_\phi, \]

\[(3.2.3) \]
\[M_{(1,n)}(0,j) = \frac{1}{\sin(\theta)} z_n^j (k_p r) p_n^1 (\cos(\theta)) \cos(\phi) \hat{e}_\theta \]

\[- z_n^j (k_p r) \left(\frac{d}{d\theta} \right) p_n^1 (\cos(\theta)) \sin(\phi) \hat{e}_\phi, \quad (3.2.4) \]

\[N_{(1,n)}(0,j) = \frac{n(n+1)}{k_p r} z_n^j (k_p r) p_n^1 (\cos(\theta)) \cos(\phi) \hat{e}_r \]

\[+ \left(\frac{1}{k_p r} \right) \left(\frac{a}{a r} \right) (r z_n^j (k_p r)) \left(\frac{d}{d\theta} \right) p_n^1 (\cos(\theta)) j \cos(\phi) \hat{e}_\theta \]

\[- \frac{1}{((k_p r) \sin(\theta))} \left(\frac{a}{a r} \right) (r z_n^j (k_p r)) p_n^1 (\cos(\theta)) \sin(\phi) \hat{e}_\phi \quad (3.2.5) \]

and

\[N_{(1,n)}(0,j) = \frac{n(n+1)}{k_p r} z_n^j (k_p r) p_n^1 (\cos(\theta)) \sin(\phi) \hat{e}_r \]

\[+ \frac{1}{k_p r} \left(\frac{a}{a r} \right) (r z_n^j (k_p r)) \left(\frac{d}{d\theta} \right) p_n^1 (\cos(\theta)) \sin(\phi) \hat{e}_\theta \]

\[+ \frac{1}{((k_p r) \sin(\theta))} \left(\frac{a}{a r} \right) (r z_n^j (k_p r)) p_n^1 (\cos(\theta)) \cos(\phi) \hat{e}_\phi, \quad (3.2.6) \]

where

\[k_p = \text{sign}(\omega) \sqrt{ \frac{\mu \varepsilon \omega^2 + \sqrt{\mu^2 \varepsilon^2 \omega^4 + \mu^2 \sigma^2 \omega^2}}{2} } + i \left(\sqrt{ \frac{-\mu \varepsilon \omega^2 + \sqrt{\mu^2 \varepsilon^2 \omega^4 + \mu^2 \sigma^2 \omega^2}}{2} } \right). \quad (3.2.7) \]
in (3.2.3) - (3.2.6) functions \(P_n^l \) are the associated Legendre polynomials and

\[
h_n^1(z) = (j_n + iy_n)(z) \quad \text{if} \quad j = 3
\]

\[
z_n^j(z) = j_n(z) \quad \text{if} \quad j = 0
\]

where \(j_n \) and \(y_n \) are respectively the spherical Bessel functions of the first and second kind. Part of the difficulty is that we cannot use (3.2.7) to compute \(h_n^1 \) even if we know \(j_n \) and \(y_n \) exactly. For example, \(z = u + iv \) implies that

\[
h_0^1(z) = (1/z)[\sin(u)(\cosh(v) - \sinh(v)) + i \cos(u)(\sinh(v) - \cosh(v))]
\]

which is uncomputable on a digital computer if \(v \) is large enough so that \(\cosh(v) \) and \(\sinh(v) \) are indistinguishable.

A better way is the use of the formula

\[
h_n^1(z) = i^{-n}z^{-1}\exp(iz) \sum_{k=0}^{n} (n+1/2,k)(-2iz)^k
\]

(3.2.10)

coupled with the Hankel symbol formula,

\[
(n+1/2,k) = \frac{(n+k)!}{k!(n-k)!} = \frac{(n+k)(n+k-1)\cdots(n+1)n(n-1)\cdots(n-(k-1))}{k!}
\]

(3.2.11)

when the complex number \(z \) is such that \((n+1/2,k)(-2iz)^k \) are of such a size that round-off error is not encountered in the computation of (3.2.10).
The reader can verify (3.2.10) by induction using the three-term recursion formula

\[h_{n+1}^1 = \frac{(2n+1)}{z} h_n^1 - h_{n-1}^1 \]

(3.2.12)

is satisfied and by showing that (3.2.10) is true for \(n = 0 \) and \(n = 1 \)

since from (3.2.8) we know that

\[h_0^1(z) = \frac{\sin(z)}{z} + i(\frac{-\cos(z)}{z}), \]

(3.2.13)

and

\[h_1^1(z) = (\frac{\sin(z)}{z^2} - \frac{\cos(z)}{z}) + i(\frac{-\cos(z)}{z^2} - \frac{\sin(z)}{z}). \]

(3.2.14)

For intermediate values of \(z \), another method must be used to compute \(h_n^1(z) \). We observe that equation (3.2.12) implies that

\[\frac{h_{n-2}^1(z)}{h_{n-1}^1(z)} = \frac{2n-1}{z} - \frac{h_n^1(z)}{h_{n-1}^1(z)}. \]

(3.2.15)

The basic idea is to write

\[a_{n+1/2} = \frac{h_{n-1}^1(z)}{h_n^1(z)} = \frac{H_{n-1+1/2}(z)}{h_n^1(z)} \]

(3.2.16)

and then observe that equations (3.2.15) and (3.2.16) imply that

\[a_{n+1/2} = \frac{2(n+1)-1}{z} - \frac{1}{a_{n+1+1/2}} \]

(3.2.17)
Hence, $v = n + 1/2$ and $n = v - 1/2$ and equation (3.2.17) imply that

$$a_v = \frac{2v}{z} - \frac{1}{a_{v+1}} \quad (3.2.18)$$

Thus, from (3.2.16) we get immediately a continued fraction expansion

$$a_v = \frac{2v}{z} - \frac{1}{\frac{2(v+1)}{z} + \frac{1}{a_{v+2}}} \quad (3.2.19)$$

et cetera, which by the following Lemma is always convergent.

Lemma (Wall [10], p. 50). We have uniform convergence of the continued fraction,

$$c = b_0 + \frac{a_1}{b_1 + \frac{a_2}{b_2 + \frac{a_3}{b_3 + \frac{a_4}{b_4 + \ldots}}} \quad (3.2.20)$$

if there exists constants $g_p \in (0, 1)$ such that

$$\left| \frac{a_{p+1}}{b_pb_{p+1}} \right| \leq (1 - g_p)g_{p+1} \quad (3.2.21)$$

In our situation

$$b_0 = \frac{2v}{z} \quad (3.2.22)$$

$$b_p = \frac{2(v+p)}{z} \quad p = 1, 2, \ldots \quad (3.2.23)$$
and

$$a_p = 1 \quad p = 1, 2, \ldots$$ \hspace{1cm} (3.2.24)

Thus, for every \(z \) there is an \(N_z > 0 \) such that if \(p > N_z \) then

$$\left| \frac{a_{p+1}}{b_{p} b_{p+1}} \right| \leq \frac{|z|^2}{4(v+p)(v+p+1)} \leq (1-g_p)g_{p+1}$$ \hspace{1cm} (3.2.25)

provided that \(N_z \) is such that \((N_z+v) \geq |z| \) and \(g_p = 1/2 \) for all \(p \). Thus in view of the Lemma the continued fraction expansion theoretically converges for all \(z \neq 0 \).

The idea then is not to compute the spherical Bessel functions of the second kind \(y_n \) at all, but rather use a direct method for obtaining the \(h_n^1 \). Observe that

$$h_n^1 = \left(\frac{h_n^1}{h_{n-1}^1} \right) \left(\frac{h_n^1}{h_{n-1}^0} \right) \cdots \left(\frac{h_n^1}{h_0^1} \right) \frac{(-1)^{n+1}}{z}$$ \hspace{1cm} (3.2.26)

The functions \(\delta_n(z) \) used in the expansion are successfully computed by the methods of Lentz [8].

39
3.3. Heat Operator Eigenvalues and Eigenfunctions for a Newton Cooling Law Boundary Condition

3.3.1. The Radiative Heat Transfer Problem. From the E field determination of the preceding section, we develop an expression for a source

$$S = \text{div}(\mathbf{E} \times \mathbf{H})/(10^6 \times 4.184)$$

(3.3.1)

of internal energy generation which is used as a term in the heat equation,

$$\rho c \frac{\partial u}{\partial t} - \text{div}(K \text{grad}(u)) + bu = S,$$

(3.3.2)

where ρc is the product of density and specific heat, b is a blood-flow cooling term, and K is the thermal conductivity. Assume that the scattering body is a union of material regions bounded by spheres $r = R_i$ for i in $\{1, \ldots, N\}$ (with $N \leq 6$ in our computer program) and

$$0 = R_0 < R_1 < \ldots < R_N.$$

(3.3.3)

Assume that $\rho(r), c(r), K(r)$ have the constant values ρ_i, c_i, K_i respectively for $R_{i-1} < r < R_i$. Then for $R_{i-1} < r < R_i$ equation (3.2) may be written

$$\rho_i c_i \frac{\partial}{\partial t}u = K_i \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right) + \frac{1}{r^2 \sin(\theta)} \frac{\partial}{\partial \theta} \left(\frac{\partial u}{\partial \theta} \right) \right] - b_i u + S,$$

(3.3.4)
where the initial condition is that

\[u(r, \theta, \phi, 0) = 0, \quad (3.3.5) \]

continuity of temperature and heat flux implies

\[
\lim_{\varepsilon \to 0} u(R_i - \varepsilon, \theta, \phi, t) = \lim_{\varepsilon \to 0} u(R_i + \varepsilon, \theta, \phi, t), \quad (3.3.6)
\]

and

\[
\lim_{\varepsilon \to 0} K_i \left(\frac{\partial}{\partial r} \right) u(R_i - \varepsilon, \theta, \phi, t) = \lim_{\varepsilon \to 0} K_i \left(\frac{\partial}{\partial r} \right) u(R_i + \varepsilon, \theta, \phi, t), \quad (3.3.7)
\]

and the Newton cooling law implies that

\[K_N \left(\frac{\partial}{\partial r} \right) u(R_N, \theta, \phi, t) + H u(R_N, \theta, \phi, t) = 0. \quad (3.3.8) \]

We define the finite cosine transform of the temperature excursion \(u(r, \theta, \phi, t) \) by the rule,

\[
(C_m u)(r, \theta, \phi, t) = \frac{1}{\pi} \int_{-\pi}^{\pi} u(r, \theta, \phi, t) \cos(m \phi) d\phi, \quad (3.3.9)
\]

for positive integers \(m \) and

\[
(C_0 u)(r, \theta, \phi, t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(r, \theta, \phi, t) d\phi. \quad (3.3.10)
\]

We define the Legendre transform operator \(L_n^m \) on the temperature excursion \(u(r, \theta, \phi, t) \) by the rules,

\[
(L_n^m u)(r, \phi, t) =
\frac{(2n+1)((n-m)!)^2}{(n+m)!} \int_0^\pi u(r, \theta, \phi, t) P_n^m(\cos(\theta)) \sin(\theta) d\theta \quad (3.3.11)
\]

41
and

\[L_n^0 u(r, \phi, t) = \frac{(2n+1)}{(2\pi)} \int_0^\pi u(r, \theta, \phi, t) P_n(\cos(\theta)) \sin(\theta) d\theta. \] (3.3.12)

Thus, if we combine (3.3.9), (3.3.10), (3.3.11), (3.3.12), and (3.3.4) we see that if \(\rho, c, \) and \(K \) are simply functions of \(r \), then

\[\frac{\partial}{\partial t} L_n^m c u = \left[\frac{1}{\rho c^2} \right] \left[(\partial/\partial r)(r^2 K(r)) (\partial/\partial r) L_n^m c u \right] \]

\[- K(r)n(n+1)L_n^m c u - \left(b/(\rho) \right) L_n^m c u + L_n^m c (S/\rho c) \] (3.3.13)

Let us attempt to write

\[(L_n^m c u)(r, t) = \sum_{k=1}^\infty a_k^{(m, n)}(t) Z_{(n, k)}(r), \] (3.3.14)

and

\[L_n^m c (S/\rho c)(r, t) = \sum_{k=1}^\infty b_k^{(m, n)}(t) Z_{(n, k)}(r), \] (3.3.15)

where

\[(d/dr)(K(r)r^2 (d/dr))Z_{(n, k)}(r) + \]

\[\left(\lambda_{(n, k)} \right)^2 \rho c - Kn(n+1) - br^2 \right) Z_{(n, k)}(r) = 0, \] (3.3.16)

\[\lim_{\epsilon \to 0^+} (n, k)(R_1^+ \epsilon) = \lim_{\epsilon \to 0^+} Z_{(n, k)}(R_1^- \epsilon) \] (3.3.17)

\[\lim_{\epsilon \to 0^+} K(R_1^+ \epsilon)(Z_{(n, k)})'(R_1^+ \epsilon) = \lim_{\epsilon \to 0^+} K(R_1^- \epsilon)(Z_{(n, k)})'(R_1^- \epsilon) \] (3.3.18)
for

\[i = 1, \ldots, N-1 \]

where the \(\lambda_{(n,k)} \) are positive numbers for which

\[
(Z_{(n,k)})'(R_N) + (H/K_N)Z_{(n,k)}(R_N) = 0. \quad (3.3.19)
\]

Thus, we conclude that

\[
a_k^{(m,n)}(t) + \lambda_{(n,k)} a_k^{(m,n)}(t) = b_k^{(m,n)}(t) \quad (3.3.20)
\]

and consequently that

\[
a_k^{(m,n)}(t) = \int_0^t \exp(-\lambda_{(n,k)}(t-\tau)) b_k^{(m,n)}(\tau)d\tau. \quad (3.3.21)
\]

By defining for every function \(g(r) \)

\[
T_{(n,k)}(g) = \frac{\int_0^R g(r)Z_{(n,k)}(r)(\rho c)(r)r^2dr}{\int_0^R |Z_{(n,k)}(r)|^2(\rho c)(r)r^2dr} \quad (3.3.22)
\]

we see that

\[
b_k^{(m,n)}(t) = T_{(n,k)} z_h^m c_m^i \frac{(S)}{\rho c^i}. \quad (3.3.23)
\]

3.3.2. **Eigenvalue Determination.** We wish to describe here a computer algorithm for computing the \(\lambda_{(n,k)} \) and the \(Z_{(n,k)}(r) \) when \(\rho, c, b, \) and \(K \) are nonnegative piecewise constant functions. While this is trivial when \(b(r) \) is a constant function, the problem becomes interesting when \(b(r) \) is positive in some intervals \((R_{i-1}, R_i) \) and is identically zero in others.
To begin with we define

\[S(\lambda, r) = \frac{\lambda \rho(r) c(r) - b(r)}{K(r)} \]

(3.3.24)

and we obtain in each interval \((R_i, R_i+1)\) one of three different classes of solutions of the problem (3.3.16) - (3.3.19) depending on whether or not \(S(\lambda(n,k), r)\) is uniformly positive, zero, or negative in this interval. We, therefore, write

\[Z(r, \lambda) = A_i j(S(\lambda, r), r, n) + B_i \chi(S(\lambda, r), r, n) \]

(3.3.25)

and require that

\[\lim_{r \to 0} \frac{A_i j(S(\lambda, r), r, n)}{r^n} = 1 \]

(3.3.26)

and

\[B_1 = 0 \]

(3.3.27)

In general for \(S(\lambda, r) > 0\) we have setting

\[z = r \sqrt{\frac{\lambda c - b}{K}} = r \sqrt{S(\lambda, r)} \]

(3.3.28)

the fact that (3.3.16) is equivalent to

\[r^2 (d/dr)^2 Z_n + 2r (d/dr) Z_n + r^2 S(\lambda, r) Z_n - n(n+1) Z_n = 0 \]

(3.3.29)

and if we change variables by the rule

\[z = \sqrt{S(\lambda, r)} r \]

(3.3.30)
and observe that

\[\frac{d}{dr} = \frac{dz}{dr} \frac{d}{dz}, \quad (3.3.31) \]

we see that if

\[Z_{(n,k)}(r) = W(z), \quad (3.3.32) \]

then

\[z^2W'' + 2zW' + (z^2 - (n(n+1))W = 0, \quad (3.3.33) \]

which implies that in \((R_{i-1}, R_i)\) we have

\[W(z) = A_i j_n(z) + B_i y_n(z), \quad (3.3.34) \]

where

\[j_n(z) = \left[\frac{z^n}{\prod_{k=1}^{n} (2k-1)} \right] \sum_{m=0}^{\infty} \frac{(-1)^m (z^2/2)^m}{m! \prod_{k=0}^{m} (2k+1+2n)}. \quad (3.3.35) \]

Thus, to make (3.3.34) consistent with (3.3.26) when \(i = 1\), we must have

\[A_1 = 1/\left(\prod_{k=1}^{n+1} (2k-1) \right) \left(\sqrt{\xi(\lambda,r)} \right)^n. \quad (3.3.36) \]

If \(\xi(\lambda,r) = 0\) we have

\[J(\xi(\lambda,r), r, n) = r^n \quad (3.3.37) \]
\[Y(S(\lambda, r), r, n) = r^{-n-1} \]

(3.3.38)

If \(S(\lambda, r) = S_1(\lambda) < 0 \) in \((R_{i-1}, R_i) \) we have in this interval

\[J(S(\lambda, r), r, n) = J(S_1(\lambda), r, n) \]

\[= \sum_{m=0}^{\infty} \frac{(\sqrt{S_1(\lambda)} r^{2/2})^m}{m! \prod_{k=1}^{m} (2k+1+2n)} \left[\frac{n}{\prod_{k=0}^{n} (2k+1)} \right] \]

and

\[Y(S(\lambda, r), r, n) = Y(S_1(\lambda), r, n) \]

\[= \left(\sum_{m=0}^{\infty} \frac{(\sqrt{S_1(\lambda)} r^{2/2})^m}{m! \prod_{k=1}^{m} (2k-1-2n)} \right) \left[\prod_{k=0}^{n} (2k-1) \right] \left[\sqrt{S_1(\lambda)} r^{n+1} \right] \]

(3.3.40)

The functions defined by (3.3.39) and (3.3.40) do not satisfy Bessel's differential equation, but they may be expressed in terms of Bessel functions of a purely imaginary argument. This is the way they are developed in our computer program.

We begin our search for eigenvalues by finding the unique solution \(Z_n(r, \lambda) \) of equation (3.3.29) which satisfies the condition

\[\lim_{r \to 0} \frac{Z_n(r, \lambda)}{r^n} = 1 \]

(3.3.41)
and the requirement that \(Z_n(r,\lambda) \) and \(K(r)(\partial/\partial r)Z_n(r,\lambda) \) be continuous on \([0, R_N]\). We then define a function of \(\lambda \) by the rule,

\[
F_n(\rho, c, K, \lambda) = \lim_{r \to R_N} \left[K_n(\partial/\partial r)Z_n(r,\lambda) \right] = HZ_n(r,\lambda) .
\] (3.3.42)

where \(R_N \) is the radius of the bounding sphere of the scattering body. We then use a root-finding routine to find for each \(n \) an ascending sequence,

\[
k + \lambda(n,k)
\] (3.3.43)

of positive real numbers such that \(\lambda = \lambda(n,k) \) implies that

\[
F_n(\rho, c, K, \lambda) = 0 .
\] (3.3.44)

These numbers \(\lambda(n,k) \) are the eigenvalues associated with the net transfer problem and have the units of reciprocal seconds. The numbers \(t(n,k) = 1/\lambda(n,k) \) estimate the time needed for the \((n,k) \)th mode of the temperature solution to decay to \((1/e)\) times its original value.

3.3.3. Eigenfunction Computation.

We assume here that the eigenvalue \(\lambda = \lambda(n,k) \) that we are using to develop the radial eigenfunction is known and use the initial condition (3.3.26) and the regularity conditions (3.3.17) and (3.3.18) to uniquely determine the eigenfunction \(Z(n,k) \).

A first step in carrying this out is the determination of the eigenfunction coefficients \(A_i \) and \(B_i \) used in expressing the eigenfunction \(Z(r,\lambda) \) by the relation (3.3.25). We observe that \(A_i \) and \(B_i \) are given by equations (3.3.26) and (3.3.27) and that if \(A_i \) and \(B_i \) are known, then
\[
A_{i+1} = \frac{\det \begin{bmatrix}
A_1 \alpha_1(\lambda, R_i, n) + B_1 \beta_1(\lambda, R_i, n) & \beta_{i+1}(\lambda, R_i, n) \\
A_1 \tilde{\alpha}_1(\lambda, R_i, n) + B_1 \tilde{\beta}_1(\lambda, R_i, n) & \tilde{\beta}_{i+1}(\lambda, R_i, n)
\end{bmatrix}}{\Delta_i(\lambda, R_i, n)}
\]

\[
B_{i+1} = \frac{\det \begin{bmatrix}
\alpha_{i+1}(\lambda, R_i, n) & A_1 \alpha_1(\lambda, R_i, n) + B_1 \beta_1(\lambda, R_i, n) \\
\tilde{\alpha}_{i+1}(\lambda, R_i, n) & A_1 \tilde{\alpha}_1(\lambda, R_i, n) + B_1 \tilde{\beta}_1(\lambda, R_i, n)
\end{bmatrix}}{\Delta_i(\lambda, R_i, n)}
\]

where

\[
\alpha_1(\lambda, r, n) = \mathcal{J}(S_1(\lambda), r, n),
\]

\[
\tilde{\alpha}_1(\lambda, r, n) = K_1(\partial/\partial r)\mathcal{J}(S_1(\lambda), r, n),
\]

\[
B_1(\lambda, r, n) = \mathcal{Y}(S_1(\lambda), r, n),
\]

and

\[
\tilde{\beta}_1(\lambda, r, n) = K_1(\partial/\partial r)\mathcal{Y}(S_1(\lambda), r, n),
\]

defines the entries in the numerators of (3.3.45) and (3.3.46) and where

\[
\Delta_i(\lambda, R_i, n) = \alpha_{i+1}(\lambda, R_i, n)\tilde{\beta}_{i+1}(\lambda, R_i, n)
\]

\[
- \tilde{\alpha}_{i+1}(\lambda, R_i, n)\beta_{i+1}(\lambda, R_i, n)
\]

defines the determinant of the matrix multiplying the column vector whose entries are \(A_{i+1}\) and \(B_{i+1}\). Thus, the relations (3.3.45) and (3.3.46) determine \(A_i\) and \(B_i\) for all \(i \in \{1, \ldots, N\}\). Consequently, if \(\lambda = \lambda(n, k)\) the eigenfunction \(Z(n, k)(r)\) has for \(r\) in \([R_{i-1}, R_i]\) the explicit representation

\[
Z(n, k)(r) = A_i \mathcal{J}(S_i(\lambda), r, n) + B_i \mathcal{Y}(S_i(\lambda), r, n)
\]
where the form of the functions J and Y depend on whether or not

$$S_i(\lambda) = \frac{\lambda p(r)c(r) - b(r)}{K(r)} \quad (R_{i-1} < r < R_i) \quad (3.3.53)$$

is positive, zero, or negative in the manner indicated in Section 3.2.
3.4. Details of the Temperature Computation Including Complex Pulse Heating Schemes

3.4.1. Series Expansion of the Temperature. In this section we describe the computational procedure for determining the solution u of equation (3.3.2) under the assumption that we know the eigenvalues $\lambda(n,k)$ and eigenfunctions $Z(n,k)$ described in Section (3.3.1). Now that this is done we express the solution $u(r,\theta,\phi,t)$ by the series

$$u(r,\theta,\phi,t) = \sum_{k=1}^{\infty} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_k^{(m,n)}(t) p_n^{(n)}(\cos(\theta)) \cos(m\phi) Z(n,k)(r)$$

where $a_k^{(m,n)}(t)$ is defined by equation (3.21) and

$$a_k^{(m,n)}(t) = \left(T_{(n,k)} E_m C_n u \right)(t)$$

$$= \int_0^t b_k^{(m,n)}(\tau) \exp(-\lambda(n,k)(t-\tau)) d\tau$$

with the operators $T_{(n,k)}$, E_m^n, and C_n being defined by equations (3.3.22), (3.3.11) - (3.3.12), and (3.3.9) - (3.3.10) respectively. Almost all of the computing time is taken up in the computation of the coefficients $b_k^{(m,n)}(t)$, defined by equation (3.3.23), that are used in expanding the source function (S/pc). While each of these represents the result of a triple integration, the total running time is still only between 3 and 4 min on an IBM 360 for results which are good to within the capabilities of experimental measurement.
3.4.2. Complex Pulse Heating Scheme. We wish to consider a pulse heating scheme (e.g., Figure 3.4.1) in which a group of pulses with a duty time and period followed by a period of quiescence defines a function that is periodic with respect to the total duty time of the pulse group plus the length of time of the quiescent period.

More precisely the time profiles we consider include time harmonic radiation whose basic frequency is that of a radar transmitter multiplied by a function of time \((T_d, T_p, N_p, T_p, T_R, t)\) defined for \(0 < T_d < T_p \leq N_p T_p \leq T_p\) and \(T_R > 0\) by the initialization rule

\[
B(T_d, T_p, N_p, T_p, T_R, t) =
\begin{align*}
0 & \quad t > T_R, \\
1 & \quad 0 \leq t \leq T_d \text{ and } t \leq T_R, \\
0 & \quad T_d < t < T_p, \\
0 & \quad N_p T_p < t < T_p,
\end{align*}
\] (3.4.3)

and the periodicity rules,

\[
B(T_d, T_p, N_p, T_p, T_R, t + T_p) = B(T_d, T_p, N_p, T_p, T_R, t)
\] (3.4.4)

if \(t + T_p \leq T_R\) and \(t + T_p \leq N_p T_p\) and

\[
B(T_d, T_p, N_p, T_p, T_R, t + T_p) = B(T_d, T_p, N_p, T_p, T_R, t)
\] (3.4.5)

if \(t + T_p \leq T_R\), where

\[T_d = \text{the pulse duration},\]
\[T_p = \text{the intrapulse group period},\]
\[N_p = \text{the number of pulses per group},\]
Figure 3.4.1. Complex pulse heating pattern typical of radar emissions with a burst of three pulses followed by a quiet period and with the pattern being repeated periodically. In the above figure we have \(N_p = 3 \) pulses per group, \(T_d = .1 \) millisecond (ms), \(T_p = .2 \) ms, \(T_p = .9 \) ms, \(T_R = 1.6 \) ms, and \(t = 2.05 \) ms.
T_p = the period,

T_R = the time that the source has been on,

and

t = the time of observation of the radiation effect.

The basic idea is to assume that T_d is large enough that the continuous-wave solution accurately predicts the electromagnetic field distribution and consequently the source term of the heat transfer equation. That is to say, if

$$b_k^{(m,n)}(t) = b_k^{(m,n)} g(T_d, T_p, N_p, T_p, T_R, t), \quad (3.4.6)$$

then $T = T_R$ implies that

$$a_k^{(m,n)}(t) = \frac{[T/T_p] N_p (j-1)T_p + (k-1)T_p + T_d}{\sum_{k=1}^{N_p} \sum_{j=1}^{T_p} \exp(-\lambda(t-\tau))d\tau} \cdot \min(\{(T - (T/T_p)T_p)/(T_p)\}, N_p)$$

$$\cdot \left\{ \begin{array}{l} \{[T/T_p]T_p + (j-1)T_p + T_d \} \\
\exp(-\lambda(t-\tau))d\tau \\
\{[T/T_p]T_p + (j-1)T_p \} \\
\exp(-\lambda(t-\tau))d\tau \\
\} \right\} \quad (3.4.7)$$

where \min is an abbreviation for the minimum function and $\lfloor x \rfloor$ denotes the greatest integer function ($\lfloor x \rfloor$ denotes the largest integer not exceeding x).
Some changes of variables and introduction of notation will make it easier to develop computer code to evaluate the preceding three integrals. We therefore define

\[
r(k,j) = (j-1)T_p + (k-1)T_p, \tag{3.4.8}
\]

\[
s(j) = \left[\frac{T}{T_p}\right]T_p + (j-1)T_p, \tag{3.4.9}
\]

\[
M(T,N_p) = \min\left(\left\lfloor \frac{T - \left[\frac{T}{T_p}\right]T_p}{T_p} \right\rfloor, N_p \right), \tag{3.4.10}
\]

\[
t(T,N_p,T_p,T_p) = M(T,N_p)T_p + \left[\frac{T}{T_p}\right]T_p, \tag{3.4.11}
\]

\[
\chi = \chi(N_p,T,T_p,T_p) = \begin{cases}
0 & \text{if } \left\lfloor \frac{T - \left[\frac{T}{T_p}\right]T_p}{T_p} \right\rfloor \geq N_p, \\
1 & \text{otherwise}
\end{cases} \tag{3.4.12}
\]

\[
\bar{t}(T,N_p,T_p,T_p) = \min\left(t, \frac{T(N_p,T_p)}{T_p} + T\chi(N_p,T,T_p,T_p) \right), \tag{3.4.13}
\]

\[
S(T_p,T_p,N_p,T_d,T) = \sum_{k=1}^{[T/T_p]} \sum_{j=1}^{N_p} \exp(\lambda r(k,j)) = \frac{\exp(\lambda N_p T_p) - 1}{\exp(\lambda T_p) - 1} \frac{\exp(\lambda [T/T_p] T_p) - 1}{\exp(\lambda T_p) - 1}, \tag{3.4.14}
\]

and

\[
T(T_p,T_p,N_p,T_d,T) = \sum_{j=1}^{M(T,N_p)} \exp(\lambda s(j)) = \frac{\exp(\lambda M(T,N_p) T_p) - 1}{\exp(\lambda T_p) - 1}. \tag{3.4.15}
\]
Putting all this together we find that

\[
a_k^{(m,n)}(t) = b_k^{(m,n)} \left\{ \frac{\exp(\lambda T_d) - 1}{\lambda} \left[S(T_p, T_p, N_p, T_d, T) \\
+ T(T_p, T_p, N_p, T_d, T) \right] \right\}
\]

\[+ \frac{\exp(\lambda T_p(T_p, T_p)) - \exp(\lambda T_p(T_p, T_p))}{\lambda}, \]

This completes the discussion of our temperature computation method.
3.5. Simulated Biostructures

3.5.1. Description of Structures to be Studied. In a previous paper [2], the authors made a study of the thermal response of a ball of muscle-equivalent material; this study is extended in this paper to multi-layer simulated biological structures. In [2] analytical results were compared with measurements made with Vitek-Model 101 Electromyelgia monitor; in this paper we compare the shape of the thermal response curve with the electromagnetic power density curve which serves as a source term for the heat equation. We study a one-layer structure with blood flow at a higher frequency (4.5 GHz) than was considered in [2], three-layer simulated fetal structures with and without blood flow, and six-layer simulated cranial structure with blood flow.

For one-layer structures Figures 2.2.2-2.2.4 show the agreement between theory and experimental measurement; from the results described in Figure 3.5.1 we see that there are striking resonance effects in a simply one-layer structure exposed to 4.5-GHz radiation; we demonstrate by the results shown in Figures 3.5.2 and 3.5.3 that the temperature distribution curve has a shape very similar to that of a power density distribution—particularly when the exposure time is short.

Next we treat simulated fetal structures. M. J. Edwards [4] observation that microwave heating of rat embryos can cause teratogenic effects suggests that a quantitative analysis of a simulated fetal structure's response to microwave radiation may assist in the assessment of the potential hazard of a source of microwave radiation. We use a three-layer model whose layers consist of fetal tissue, amniotic fluid, and maternal tissue in simulating the response of the fetus to microwave radiation. Figure 3.5.4 shows the power density across the diameter of the three-layer structure; this diameter coincides with the z-axis of a coordinate system whose origin is the center of
sphere; the wave is assumed to propagate in the direction of the positive z-axis. The temperature distributions across the parts of the x, y, and z-axes of the structure within its interior after a 1-hr exposure are given in Figures 3.5.5-3.5.7 where we include blood flow. Figures 3.5.8-3.5.15 show how this temperature distribution changes as exposure time increases when we don't assume removal of heat by blood flow.

Finally we consider a six-layer simulated cranial structure exposed to microwave radiation. Figure 3.5.16 shows the power density across a six-layer simulated structure exposed to 800-MHz radiation. Figures 3.5.17 and 3.5.18 show the thermal response of the structure to 800-MHz microwave radiation for 30-s and 1-min exposures.

3.5.2. Microwave Heating of a Muscle-Equivalent Sphere. In this section we study the manner in which a microwave-induced temperature profile is smoothed as exposure time increases. We conclude that short-time temperature measurements would serve as an adequate means of validating computer predictions of internal field distributions even when there are resonance effects which cause the power density profile (e.g., Figure 3.5.1) to have many relative maximums and minimums; this particular assertion is valid for continuous-wave exposure, but is not established for a general pulse exposure scenario. The thermal response for 5-s and 1-min exposures is shown in Figures 3.5.2 and 3.5.3. The electromagnetic field strength for the results portrayed in Figures 3.5.1-3.5.3 was 194.09 V/m or 10 mW/cm².

Table 3.5.1 defines the parameters used in making the computer runs.
TABLE 3.5.1. PARAMETERS FOR ONE-LAYER MUSCLE EQUIVALENT SPHERE EXPOSED TO 4500-MHZ RADIATION

ELECTRICAL PROPERTIES

<table>
<thead>
<tr>
<th>Tissue type</th>
<th>Radius of bounding sphere (cm)</th>
<th>Relative permittivity</th>
<th>Conductivity (mhos/meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muscle</td>
<td>3.3</td>
<td>48.25</td>
<td>2.75</td>
</tr>
</tbody>
</table>

THERMAL PROPERTIES (centimeter-gram-second units)

<table>
<thead>
<tr>
<th>Tissue type</th>
<th>Thermal conductivity</th>
<th>Density</th>
<th>Specific heat</th>
<th>Blood flow cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muscle</td>
<td>.00126</td>
<td>1.050</td>
<td>.883</td>
<td>.00186</td>
</tr>
</tbody>
</table>

3.5.3. Microwave Heating of a Simulated Fetal Structure. To estimate the potential hazard of a source of microwave radiation, we have made a simulated fetal structure comprised of three tissue regions delimited by concentric spheres. The parameters used in the computer runs are given in Table 3.5.2. The field strength used in the runs was 194.09 v/m, which is equivalent to 10 mW/cm².
TABLE 3.5.2. PARAMETERS DEFINING A SIMULATED FETAL STRUCTURE EXPOSED TO 1000-MHz RADIATION

ELECTRICAL PROPERTIES

<table>
<thead>
<tr>
<th>Tissue type</th>
<th>Radius of bounding sphere (cm)</th>
<th>Relative permittivity</th>
<th>Conductivity (mhos/meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fetal</td>
<td>1.6</td>
<td>50.5</td>
<td>1.65</td>
</tr>
<tr>
<td>Amniotic fluid</td>
<td>2.8</td>
<td>72.0</td>
<td>2.00</td>
</tr>
<tr>
<td>Maternal</td>
<td>3.3</td>
<td>50.5</td>
<td>1.65</td>
</tr>
</tbody>
</table>

THERMAL PROPERTIES

(centimeter-gram-second units)

<table>
<thead>
<tr>
<th>Tissue type</th>
<th>Thermal conductivity</th>
<th>Density</th>
<th>Specific heat</th>
<th>Blood flow cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fetal</td>
<td>.00126</td>
<td>1.050</td>
<td>.883</td>
<td>.00186</td>
</tr>
<tr>
<td>Amniotic fluid</td>
<td>.00124</td>
<td>1.007</td>
<td>.998</td>
<td>.00000</td>
</tr>
<tr>
<td>Maternal</td>
<td>.00126</td>
<td>1.050</td>
<td>.883</td>
<td>.00186</td>
</tr>
</tbody>
</table>
We get some qualitative information (e.g., the shielding effect of the amniotic fluid) about the vulnerability of the fetus to microwave exposure from the computer results for the simple model given in this paper. Since Edwards [4] suggests that thermal pulses can affect cell cycles and that there are teratogenic effects associated with elevated fetal temperatures, it would probably be valuable to carry out this analysis for a whole-body model and use (1) the smallest fetal temperature known to cause abnormal fetal development and (2) the computer model for predicting fetal temperature excursions as a definitive way of stating that a particular source of microwave radiation is a potential health hazard.

Figure 3.5.4 shows the power density across a simulated fetal structure when the exposure was carried out in the manner described in Figure 2.1. Figures 3.5.5-3.5.7 show the thermal response of the simulated fetal structure after a 1-hr exposure, and Figures 3.5.8-3.5.15 show how the temperature distribution across the structure changes with time when there is no removal of heat by an autothermal regulatory process. While our autothermal regulatory process model is based on actual physiological parameters relating to blood flow, it can at best be considered phenomenological since we have not modeled the details of the flow of blood through vessels in the tissue and have in essence only added a dissipative term to the heat equation. However, Figures 3.1.5-3.5.7 suggest that there is in the blood flow case a net heating of the amniotic fluid due to the absence of autothermal regulation.
3.5.4. Microwave Heating of a Simulated Cranial Structure. In this section we study the response of a simulated cranial structure to microwave radiation. The manner in which the structure is exposed is described in Figure 2.1. The power density in the simulated cranial structure is shown in Figure 3.5.16. The observed thermal response after 30-s and 1-min exposures to 800-MHz radiation is described in Figures 3.5.17 and 3.5.18.

The parameters used in carrying out these computations are described in Table 3.5.3.

TABLE 3.5.3. PARAMETERS DEFINING A SIX-LAYER SIMULATED CRANIAL STRUCTURE EXPOSED TO 800-MHz RADIATION

<table>
<thead>
<tr>
<th>Tissue type</th>
<th>Radius of bounding sphere (cm)</th>
<th>Relative permittivity</th>
<th>Conductivity (mhos/meter)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain</td>
<td>2.68</td>
<td>33.76</td>
<td>0.960</td>
</tr>
<tr>
<td>CSF</td>
<td>2.88</td>
<td>79.47</td>
<td>1.740</td>
</tr>
<tr>
<td>Dura</td>
<td>2.93</td>
<td>45.64</td>
<td>1.230</td>
</tr>
<tr>
<td>Fat</td>
<td>3.13</td>
<td>5.61</td>
<td>0.096</td>
</tr>
<tr>
<td>Bone</td>
<td>3.20</td>
<td>5.61</td>
<td>0.096</td>
</tr>
<tr>
<td>Skin</td>
<td>3.30</td>
<td>45.64</td>
<td>1.230</td>
</tr>
</tbody>
</table>

THERMAL PROPERTIES
(centimeter-gram-second units)

<table>
<thead>
<tr>
<th>Tissue type</th>
<th>Thermal conductivity</th>
<th>Density</th>
<th>Specific heat</th>
<th>Blood flow cooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin</td>
<td>.0012300</td>
<td>1.0000</td>
<td>.900</td>
<td>.001002242</td>
</tr>
<tr>
<td>Fat</td>
<td>.0003822</td>
<td>.8500</td>
<td>.600</td>
<td>.000000000</td>
</tr>
<tr>
<td>Bone</td>
<td>.0027780</td>
<td>1.5000</td>
<td>.380</td>
<td>.000000000</td>
</tr>
<tr>
<td>Dura</td>
<td>.001230</td>
<td>1.0000</td>
<td>.900</td>
<td>.000000000</td>
</tr>
<tr>
<td>CSF</td>
<td>.001240</td>
<td>1.0062</td>
<td>.998</td>
<td>4.498x10^-6</td>
</tr>
<tr>
<td>Brain</td>
<td>.001260</td>
<td>1.0500</td>
<td>.883</td>
<td>.00743742</td>
</tr>
</tbody>
</table>
We see from the results described in Figures 3.5.17 and 3.5.18 that there is fairly rapid smoothing of the temperature distributions. Indeed, we have assumed mathematically that both the temperature excursion u and $K(x,y,z)\text{grad}(u)$, where $K = K(x,y,z)$ is the thermal conductivity, are continuous. Thus, since in our calculation K is constant, we see that u and its derivatives are continuous. The electrical properties of the six tissue types are given in [7]. The model is capable of predicting the microwave-induced temperature excursion when there is blood flow in some of the layers, and typical values of these blood flow parameters can be obtained from [6].
Figure 3.5.1. Power density induced in a muscle-equivalent sphere by 4.5-GHz continuous-wave radiation with a power of 10 mW/cm2.
Figure 3.5.2. Thermal response of a muscle-equivalent sphere to a 1-min exposure to 4.5-GHz continuous-wave radiation with a power of 10 mW/cm². Parameters defining the problem are given in Table 3.5.1.
Figure 3.5.3. Thermal response of a muscle-equivalent sphere to a 5-s exposure of 4.5-GHz continuous-wave radiation with a power of 10 mW/cm². Parameters defining the problem are given in Table 3.5.1.
Figure 3.5.4. Power density across the z-axis of a simulated fetal structure exposed to 1-GHz continuous-wave microwave radiation with a power of 10 mW/cm². Parameters defining the problem are given in Table 3.5.2.
Figure 3.5.5. Thermal response of a simulated fetal structure to a 1-hr exposure to 1-GHz radiation with a power of 10 mW/cm². The temperature is computed across the x-axis. The orientation of the axes is given in Figure 2.1. The parameters defining the problem are given in Table 3.5.2.
Figure 3.5.6. This is the same as Figure 3.5.5 except that the temperature is computed along the y-axis.
Figure 3.5.7. This is the same as Figure 3.5.5 except that the temperature is computed along the z-axis.
Figure 3.5.8. Temperature distribution along the z-axis for a simulated fetal structure exposed to 1-GHz (10 mW/cm²) radiation for 1 s. The parameters defining the problem are given in Table 3.5.2, except that all blood flow terms are set to zero.
Figure 3.5.9. Temperature distribution along the z-axis of a simulated fetal structure exposed to 1-GHz (10 mW/cm²) radiation for 1 min. The parameters defining the problem are given in Table 3.5.2, except that all blood flow terms are set to zero.
Figure 3.5.10. Temperature rise along the z-axis of a simulated fetal structure exposed to 1-GHz (10 mW/cm²) radiation for 15 min. The parameters defining the problem are given in Table 3.5.2, except that all blood flow terms are set to zero.
Figure 3.5.11. Temperature rise along the z-axis of a simulated fetal structure exposed to 1-GHz (10 mW/cm²) radiation for 1 hr. The parameters defining this problem are given in Table 3.5.2, except that all blood flow terms are set to zero.
Figure 3.5.12. Temperature rise along the z-axis of a simulated fetal structure exposed to 1-GHz (10 mW/cm²) radiation for 2 hr. The parameters defining this problem are given in Table 3.5.2, except that all blood flow terms are set to zero.
Figure 3.5.13. Temperature rise along the z-axis of a simulated fetal structure exposed to 1-GHz (10 mW/cm²) radiation for 3 hr. The parameters defining this problem are given in Table 3.5.2, except that all blood flow terms are set to zero.
Figure 3.5.14. Temperature rise along the z-axis of a simulated fetal structure exposed to 1-GHz (10 mW/cm²) radiation for 4 hr. The parameters defining this problem are given in Table 3.5.2, except that all blood flow terms are set to zero.
Figure 3.5.15. Temperature rise along the z-axis of a simulated fetal structure exposed to 1-GHz (10 mW/cm²) radiation for 8 hr. The parameters defining this problem are given in Table 3.5.2, except that all blood flow terms are set to zero.
Figure 3.5.16. Power density along the z-axis of a six-layer simulated cranial structure exposed to 800-MHz radiation with a power of 10 mW/cm². The parameters defining this problem are given in Table 3.5.3.
Figure 3.5.17. Thermal response of a six-layer simulated cranial structure exposed to 800-MHz radiation for 3 min. The parameters defining this problem are given in Table 3.5.3.
Figure 3.5.18. Thermal response of a six-layer simulated cranial structure exposed to 800-MHz radiation for 30 s. The parameters defining this problem are given in Table 3.5.3.
4. PROGRAM DESCRIPTION

4.1. Purpose of the Program

The computer program described in this report will predict the thermal response of an autothermally regulated, spherically symmetric, dielectric body with a finite microwave conductivity to a time-harmonic source of microwave radiation. The calculation can be carried out at any point in the interior of this body at any positive time. We also allow the source to be pulsed in the sense that the source of time harmonic radiation may be turned on and off in a complex manner such as that described in Figure 3.4.1. The scattering body consists of from one to six homogeneous regions bounded on the outside by a sphere of finite but positive radius; a description of a six-layer body is shown in Figure 3.5.1. The radiation source is given by an amplitude E_0 in volts per meter and a frequency FREQ in megahertz. The calculation is carried out by the evaluation of an analytical expression involving an infinite linear combination of spherical harmonics. The coefficients in this infinite linear combination are functions of time computed from a set of eigenvalues and a knowledge of the manner in which the microwave source has been turned on and off. We also permit a nonzero heat removal term BFRP in one or more of the layers.
4.2. Accessing the Program from the Library

The Job Control Language needed to access the program from the library is shown in Figure 4.2.1. The data deck, whose preparation will be explained in Section 4.2, goes between the card marked

//GO.SYSIN DD *

and the card

/*

The space requirement specified by the expression

REGION.GO=252K

will not change out if one desires temperature information at more points one needs to increase the running time parameter,

TIME.GO=4

and the effective time parameter,

EFFTIME=10

which represents elapsed time in our timesharing computing system. The parameter values listed in Figure 4.2.1 were adequate to determine the temperature excursions for a single fixed time at 13 different locations in space.

//HBR16TKS JOB(3H01,B020,........,00),'HBM3790@10R COHON',CLASS=C,

// MSGLEVEL=(2,0)

/*/JOBPARM RESTART,SINGLE, EFFTIME=10,LINES=1,CARDS=0

//STEP1 EXEC PLOTGO,PROGRAM=HBR16TRF,REGION.GO=252K,TIME.GO=4

//GO.SYSIN DD *

** DATA CARDS GO HERE **

/*

Figure 4.2.1. Job control language for calling the microwave thermal response program from the library.
4.3. Glossary of Variables and Their Meaning

All FORTRAN variables used for input and output and important internal
FORTRAN variables are listed here in alphabetical order. We, with each vari-
able, give an explanation of its meaning. These variables are:

\textbf{ALPNP}(NNN) = \text{the ALPHA SUB (L,P) coefficient used in formula}
\text{(3.2.2) to expand the electromagnetic field with}
\quad NNN = (NREG-1)*NMIN+NN

and

\text{ALPNP}(NNN) = \text{ALPHA SUB (NN,NREG) where NN is the spherical}
\text{Bessel function order and NREG is the layer number.}

\textbf{ANP} = \text{the A SUB (L,P) coefficient used in expanding the electric field and}
\text{which appears in formula (3.2.2) which is stored in a single array with}
\text{ANP((NREG-1)*NMIN+NN) corresponding to the coefficient A SUB (NN,NREG) where}
\text{NN indexes the spherical Bessel functions used in the expansion.}

\textbf{BETNP}(NNN) = \text{the BETA SUB (L,P) coefficient used in formula (3.2.2) to expand}
\text{the electromagnetic field with}
\quad NNN = (NREG-1)*NMIN+NN

and

\text{BETNP(NNN) = BETA SUB (NN,NREG) where NN is the spherical}
\text{Bessel function order and NREG is the layer number.}

\textbf{BFRP}(1) = \text{the blood flow radial perviousness term or the number of grams of}
\text{blood per gram of tissue per second, with a typical value for brain tissue}
\text{being .0122}

\textbf{BNP} = \text{the B SUB (L,P) coefficient used in formula (3.2.2) to expand the}
\text{electromagnetic field and which is stored in a single array with}
\text{BNP((NREG-1)*NMIN+NN) corresponding to the coefficient B SUB (NN,NREG) where}
\text{NN indexes the spherical Bessel functions used in the expansion.}

\textbf{RP(I)} = \text{the product of BFRP(I), the number of grams of blood per gram of}
\text{tissue per second, CRP = .98 = the specific heat of blood in calories per gram}
\text{degree Centigrade, and the density RHOBP = 1.06 = the number of grams of}
\text{tissue per cubic centimeter of tissue.}

\text{CALL BJYH(BJNP,BHNP,O,NC,STOPR,MAX) = a call to a subroutine which determines}
\text{the values of spherical Bessel functions of the first kind RJNP and spherical}
\text{Hankel functions BHPN at the complex argument O. We attempt to generate up to}
\text{MAX such functions as we are limited by STOPR and we end up putting only NC}
\text{such functions in the array.}

\text{CALL COEF = a call to a subroutine which produces the expansion coefficients}
\text{A SUB(L,P), ALPHA SUB(L,P),}
\text{B SUB(L,P) and BETA SUB(L,P) used in expanding the electromagnetic field using equation (3.2.2)
CALL DRTMI(X,F,FNCAL,SL,SR,W,V,E,NITR) = the call to the bisection routine DRTMI which returns a value X such that FNCAL(X) = F = 0 to within an accuracy of E with less than NITR iterations where FNCAL(SL) = W, FNCAL(SR) = V and W and V are on opposite sides of 0 on the real line.

CALL EPROP(FREQ,ITIS(I),EP,SIG) = a call to a subroutine which determines the relative permittivity EP and microwave conductivity SIG of tissue type ITIS(I) at the microwave frequency FREQ.

CALL PL = a call to a subroutine which computes the array P of associated Legendre polynomials of the first kind and order 1 and an array DP of their derivatives.

CALL TERM(NCK,T,KEY) = a call to a subroutine which computes the I**L multiplied by T appearing in formula (3.2.2) based on its preceding value, where the value of NCK ranges from 1 to 4 since I**1, I**2, I**3, I**4 ranges over all possible values of the square root of (-1) raised to a power, and where KEY takes on the value 1 or 0 depending on where in the process of summing the series we are computing I**L multiplied by the complex term T appearing in equation (3.2.2).

CP(1) = the tissue specific heat in calories per gram per degree centigrade.

DEN(VSBF,M2,NRT) = the integral of the square of the radial eigenfunction multiplied by the square of the radial coordinate, the density, and the specific heat from zero to the outer radius of the scatterer.

EO = the strength of the incident electric field vector which may be read in a certain number of milliwatts per square centimeter if IEO = 1 but must be expressed in volts per meter if IEO = 0, where we understand that if IEO = 1, then EO will be converted internally into volts per meter.

EPHI = the phi component of the electric field vector when the electric field is expressed in spherical coordinates and which consequently represents a tangential field component when the point at which the field is being computed is on a sphere defining a boundary of the body being heated by microwaves.

EPS = the relative error associated with the expansion of the electromagnetic field.

EPSP(I) = the relative dielectric constant of the Ith tissue layer at the frequency FREQ of the incoming radiation.

ERAD = the radial component of the electric vector in volts per meter where we assume that we have expressed the field vectors in the spherical coordinate system and which consequently represents the component of electric vector that is perpendicular to a boundary layer when the point at which the electric field is being computed is on a sphere defining a boundary of the body being heated.

ETHETA = the theta component of the electric field vector when the electric field is expressed in spherical coordinates and which consequently represents a tangential field component when the point at which the field is being computed is on a sphere defining a boundary of the body being heated by microwaves.
ETIME(NRT) = the time profile function, defined by dividing the right side of equation (3.4.7) by $b_{-\bar{K}(M,N)}$ or $b_{(m,n)}$, which describes the radar pulse emission patterns.

F = the factor in front of the integral on the right side of equation (3.3.11) in general equal to \((2n+1)((n-m)!)/((n+m)!))\) multiplied by the factor in front of the integrals on the right side of equation (3.3.9) or (3.3.10) whichever is appropriate.

FKP(NREG) = the complex electromagnetic propagation constant associated with layer NREG which is defined by equation (3.2.7).

FREQ = the frequency of the incoming radiation in megahertz or millions of cycles per second.

FUNCTION ALP(N,M,X) = a function subroutine computing the associated Legendre function of the first kind of degree N and order M at the point X with the restriction that N and M are nonnegative integers and M does not exceed N.

FUNCTION FNCAL(EIGV) = a function subroutine whose output is the value of the Newton cooling function defined by equation (3.3.42) when LAMDA = EIGV.

IEO = a parameter for determining the way the input data EO is interpreted with IEO = 0 meaning that EO is a certain number of volts per meter and IEO = 1 meaning that EO is a certain number of milliwatts per square centimeter.

II = in the last print statement an index describing the number of the data card containing the point at which the temperature is being computed with II = I for the point on the first card and II = NOCR for the point on the last card.

ISAR = a parameter determining the way that the output data is expressed with ISAR = 0 if the predicted power density that is printed next to the predicted temperature is to be expressed in milliwatts per kilogram, and ISAR = 1 if it is to be expressed in watts per cubic meter.

ITIS(I) = the tissue type of the Ith tissue layer equal to 1,2,3,4,5,6, or 7 if the tissue type is (i) cerebrospinal fluid, (ii) blood, (iii) muscle, (iv) skin or dura, (v) brain, (vi) fat or bone, or (vii) yellow bone marrow, respectively.

KMAX = the number of radial eigenfunctions associated with a given order of Bessel function with the greatest accuracy being achieved by setting KMAX equal to its maximum value of 25.

MP = the number of points to be used in the Gauss quadrature integration scheme that executes the radial transform defined by equation (3.3.22) with this number being one of 32, 48, 64, or 80 and with the larger numbers giving the more accurate results.

MP1 = the number of points used in the Gauss quadrature scheme that performs the Legendre transform defined by equation (3.3.1) with the number being 32 or 48 and where the latter number gives the most accurate results.
NC = the maximum number of Bessel functions available based on the value of the particular point at which the field is being computed and the microwave electrical properties of the layer in which the point is located.

NMAX = the number of orders of spherical Bessel functions that will be used to describe the radial variation of the microwave radiation-induced temperature excursion with the greatest accuracy being achieved by setting NMAX equal to its maximum value of 12.

NMIN = the number of expansion coefficients available based on the radii of the spheres bounding the tissue layers and the microwave electrical properties of the material in these layers.

NNN = (NREG - 1)*NMIN + NN, where NN denotes the spherical Bessel function order.

NREG = the number of the layer in which the point at which the temperature is being computed is found.

NOCR = the number of spatial points at which the input data set is to be computed, the maximum value of the index II of the output temperature data for a particular exposure time, and the number of cards in the fourth input data set.

NORG = the number of layers in the model where NORG is 1 if the scatterer is a homogeneous ball and where NORG equals its maximum value of 6 if the body in which the microwave-induced temperature is being predicted is a ball surrounded by five outer layers.

NPOINT(I) = the Ith entry of a 5-element array containing allowable numbers of points that may be used in a Gauss quadrature scheme for evaluating expansion coefficients.

NPUL = the number of pulses in a group, where for example NPUL = 3 if the radar emission pattern being modeled consists of 3 bursts of radiation followed by a quiet period, 3 bursts and a quiet period, et cetera.

NSBF = FORTRAN index equal to one plus the order of the Bessel function being considered in the computation of the microwave-induced temperature.

PAVG = the total absorbed power divided by the total volume of the region in which the temperature increase is being predicted expressed in watts per cubic meter.

PAVG1 = the total absorbed power divided by the total mass in kilograms of the body in which the temperature excursion is being predicted expressed in milliwatts per kilogram.

PCEBF = the relative error in temperature computation associated with using one less order of Bessel function but keeping the same number of eigenvalues for each Bessel function order which, for example, would mean computing the temperature SBFM1 using NMAX-1 Bessel functions and the full KMAX eigenvalues per Bessel function and defining PCEBF = (TRM-SBFM1)/TRM to be this relative error.
PCER = the relative error associated with leaving off the last eigenfunction or, for example, using 24 eigenfunctions instead of 25 eigenfunctions for each Bessel function order.

PD = the value of the divergence of the Poynting vector at the point whose spherical coordinates are (SAVER, THETAD, PHID) which value represents the number of milliwatts of power being deposited per cubic centimeter of tissue.

PHID = the phi coordinate of the point at which the microwave-induced temperature is to be computed, where phi is the spherical coordinate that ranges between zero and 360 degrees.

R = the radial coordinate of the point at which the temperature is being computed.

RHO(I) = the tissue density of the Ith tissue layer in grams per cubic meter where typically RHO(I) = 1.

SBDP(I) = the radius in centimeters of the smallest sphere containing the Ith tissue layer where I ranges from 1 to NORG.

SBI-I = the predicted temperature obtained by using KMAX roots per Bessel function order but only NMAX-I Bessel function orders in approximating the infinite sum of equation (3.4.1).

SIGP(I) = the conductivity in mhos per meter of the Ith tissue layer where I ranges from 1 to NORG.

SRM1 = the estimated temperature using NMAX Bessel function orders and KMAX-I eigenvalues per Bessel function order.

STOPR = a termination indicator for stopping the generation of Bessel functions based on the fact that STOPR exceeds the maximum absolute value of any of the spherical Bessel functions of the second kind used in describing the dependence of the induced and scattered electromagnetic fields on the radial variable with a typical value being 1.E35.

TBPER = the period of the pulse group envelope, where, for example, if there is a radar emission pattern consisting of a burst of three pulses of duration 3*TPER followed by a quiet period, a burst of three pulses followed by a quiet period, et cetera, then TBPER is equal to 3*TPER plus the major quiet period, where, of course, we define the major quiet period to be total quiet period minus the time between the individual pulses in the group or as the T-SUB-p in Figure 4.3.1.

TCP(I) = the thermal conductivity in calories per centimeter per degree centigrade per second of the Ith tissue layer where I ranges from 1 to NORG with a typical value being .0012.

TCUT = the time at which the source of pulsed microwave radiation is shut down or the T-SUB-R of Figure 4.4.1.
TDUR = the up time in seconds of an isolated pulse in a pulse group or the value of $T_{\text{SUB-d}}$ in Figure 4.4.1.

THETAD = the theta coordinate of the point at which the temperature is being computed, where this is the spherical coordinate that ranges between zero and 180 degrees.

TIME = the time in seconds at which the microwave-induced temperature is to be computed.

TOTPOW = the total absorbed power in watts determined by carrying out an energy balance on the surface of the scatterer using the Poynting vector for the incident and reflected radiation.

TRM = the microwave-induced temperature obtained by adding up terms in an eigenfunction expansion at the point whose spherical coordinates are specified by the three-tuple, ($S_{\text{AVER}}, \text{THETAD}, \text{PHID}$).

$U(\text{NSBF}, M_2, K) =$ the expansion coefficient which is defined by equation (3.4.16) at the observation time TIME and which is used in equation (3.4.1), where NSBF is one plus the order of the Bessel function, M_2 is 1 or 2 depending on whether the index of the cosine transform defined by equations (3.3.9) and (3.3.10) is 0 or 2, and K is the index of the eigenvalue associated with a given Bessel function order.

VOL = the volume of the body in which the microwave-induced temperature is being predicted in cubic meters.

$X_{\text{LAMDA}}(K, \text{NSBF}) = $ an element of a K_{MAX} by N_{MAX} array (dimensioned as 25 by 12) which represents the Kth eigenvalue associated with the Bessel function of order NSBF, where each of these numbers is used to define a combination of spherical Bessel functions satisfying the Newton cooling law at the outer boundary with this combination of Bessel functions being the eigenfunction used in the eigenfunction expansion of the microwave-induced temperature.

$X_{\text{MASS}} = $ the mass of the scattering body in kilograms.

$X_{\text{NUM}}(\text{NSBF}, M_2, NRT) = $ the transform of the source term with respect to its spatial variables.

$Z_{\text{LAB}}(1) = $ the first element of an alpha array containing the expression 'W/M**3'.

$Z_{\text{LAB}}(2) = $ the second element of an alpha array containing the expression 'MW/KG'.

88
4.4. Input Data Preparation

The purpose of this section is to tell a user how to prepare data to run the computer program to predict the thermal response of a spherically symmetric penetrable body to microwave radiation. The incoming radiation, the precision with which the response to this radiation will be calculated, the temporal envelope of the incoming radiation and the time at which the temperature response is to be computed, and the thermal and electrical properties of the body in which the temperature excursion is being predicted are described in the first three data sets. Data set three is a multi-card set with the number of cards being equal to the number of layers of the scattering body. The fourth data set is the collection of points at which one seeks to compute the temperature; each point is on a separate card.

The following paragraphs give details concerning the composition of the four data sets used by the computer program. Figures at the end give some data sets that direct the program to predict the microwave-radiation-induced temperature on the x, y, and z axes of the sphere.

Data set one consists of a single card containing \text{FREQ}, \text{EO}, \text{STOPR}, \text{NORG}, \text{NMAX}, \text{KMAX}, \text{MP}, \text{MPI}, \text{IEO}, and \text{ISAR} which is read in via the statements:

\begin{verbatim}
READ 5,FREQ,EO,STOPR,NORG,NMAX,KMAX,MP,MP1,IEO,ISAR
5 FORMAT(3D10.0,7I5)
\end{verbatim}

In the above
\text{FREQ} = the frequency of the incoming radiation in megahertz,
\text{EO} = the strength of the incoming E-field in volts per meter (if \text{IEO} = 0) and in milliwatts per square centimeter (if \text{IEO} = 1),
\text{STOPR} = a termination indicator for stopping the generation of Bessel functions based on the fact that \text{STOPR} exceeds the absolute value of any of the spherical Bessel functions \text{Y} that will be used in describing the dependence of the induced and scattered fields on the radial variable with a typical value being 1.E35.
NORG = the number of layers in the model where NORG is 1 if the scatterer is a homogeneous ball and NORG equals its maximum value of 6 for a ball surrounded by 5 outer layers,

NMAX = the number of orders of spherical Bessel functions that will be used to help describe the microwave-radiation-induced temperature with the greatest accuracy being achieved by setting NMAX equal to its maximum value of 12,

KMAX = the number of radial eigenfunctions associated with a given order of Bessel function where the greatest accuracy is achieved by setting KMAX equal to its maximum value of 25,

MP = the number of points used in the Gauss quadrature scheme that carries out the radial transform defined by the formula (3.22) with this number being one of 32, 48, 64, or 80 and with the larger numbers giving the more accurate results,

MP1 = the number of points used in the Gauss quadrature scheme that carries out the Legendre transform defined by equation (3.11) with this number being 32 or 48,

IEO = a parameter for determining the way the input data EO is interpreted with IEO = 0 meaning that EO is a certain number of volts per meter and IEO = 1 meaning that EO is a certain number of milliwatts per square centimeter,

and

ISAR = a parameter determining the way that the output data is expressed with ISAR = 0 if the predicted power density is to be expressed in milliwatts per kilogram and ISAR = 1 if the predicted power density is to be written out and labeled as a certain number of watts per cubic meter.

Data set two consists also of a single card containing TDUR, TPER, TBPER, TCUT, TIME, NPUL, and NOCR, which is read in through the statements:

```
10 READ(5,15,END=350)TDUR, TPER, TBPER, TCUT, TIME, NPUL, NOCR, IPL1, IPL2
15 FORMAT(5D10.0,2F15)
```

In the above

TDUR = the duration of the pulse or the value of T-sub-d in Figure 4.4.1,

TPER = the period in the primary pulse group or the value of T-sub-p in Figure 4.4.1,

TBPER = the period of the pulse group envelope or the T-sub-P in Figure 4.4.1, possible time envelope function for incoming radiation. This is similar to some radar emission patterns.

TCUT = the time at which the source is shut down or the T-sub-R in Figure 4.4.1,

TIME = the time at which the microwave-induced temperature is to be computed,
NPUL = the number of pulses per group, where we note that NPUL=2 in Figure 4.4.1 and NPUL=3 in Figure 3.4.1,

NOCR = the number of spatial points at which the temperature is to be computed.

IPL1 = an integer ranging from 0 to 7, which will indicate which of certain plots of temperature across the sphere diameters coinciding with the coordinate axes will be given. A value of IPL1 equal to
- 0 means no axis plots of temperature will be produced,
- 1 means a plot of temperature across the z-axis will be given,
- 2 means a plot of temperature across the x-axis will be given,
- 3 means a plot of temperature across the y-axis will be given,
- 4 means combined results of 1 and 2 are given,
- 5 means combined results of 1 and 3 are produced,
- 6 means combined results of 2 and 3 are produced, and
- 7 means combined results of 1, 2, and 3 are given,

and

IPL2 = an integer ranging from 0 to 7, which will indicate which of certain contour plots of isotherms will be produced on the plotting file FOR008.DAT. In the following description the x-z plane refers to the intersection of the plane containing the x-axis and the z-axis with the interior of the bounding sphere. The y-z plane will mean the plane containing the y and z axes or the plane x = 0. The x-y plane means the plane z = 0. A value of IPL2 equal to
- 0 means no axis plots of temperature will be produced,
- 1 means a contour plot in the x-z plane will be given,
- 2 means a contour plot in the y-z plane will be given,
- 3 means a contour plot in the x-y plane will be given,
- 4 gives the combined results of 1 and 2,
- 5 gives the combined results of 1 and 3,
- 6 gives the combined results of 2 and 3, and
- 7 gives the combined results of 1, 2, and 3.
Figure 4.4.1. Typical time envelope function describing some radar emission patterns. In the above figure we have $N_p = 2$ pulses per group, $T_d = .025$ milliseconds (ms), $T_p = .050$ ms, $T_p = 9$ ms, and $T_R = .4125$ ms.
Data set three consists of NORG cards indexed by the parameter I augmented from 1 to NORG in a DO LOOP. The Ith card contains SBDP(I), EPSP(I), SIGP(I), TCP(I), RHOP(I), CP(I), BFRP(I), and ITIS(I) read in by means of the statements:

```
30 FORMAT(7F10.0,I5)
   DO 6E I = 1,NORG
      READ 30, SBDP(I), EPSP(I), SIGP(I), TCP(I), RHOP(I),
         1CP(I), BFRP(I), ITIS(I)
      ****
      ****
   65 PRINT 70, I, SBDP(I), EPSP(I), SIGP(I),
      1TCP(I), RHOP(I), CP(I), BFRP(I),
      2TISSUE(ITIS(I))
   70 FORMAT(14,F12.2,F12.2,F13.3,F15.6,F13.4,  
              1F10.3,F12.5,3X,A8)
```

In the above, the properties of the Ith layer are specified by letting

\[
\begin{align*}
SBDP(I) &= \text{its outer radius in centimeters,} \\
EPSP(I) &= \text{its relative permittivity,} \\
SIGP(I) &= \text{its conductivity in mhos per meter,} \\
TCP(I) &= \text{its thermal conductivity in calories per centimeter per degree centigrade per second (typically TCP(I) = .0012),} \\
RHOP(I) &= \text{tissue density in grams per cubic centimeter (typically RHOP(I) = 1),} \\
CP(I) &= \text{tissue specific heat in calories per gram degree centigrade (typically CP(I) = .84),} \\
BFRP(I) &= \text{the blood flow term that is equal to the product of the number of grams of blood per gram of tissue per second, the tissue density in grams of tissue per cubic centimeter of tissue, and the specific heat of the blood (typically b = .0122),}
\end{align*}
\]

and

\[
\begin{align*}
ITIS(I) &= \text{the tissue type indicated by a positive integer where ITIS(I) = 1,2,3,4,5,6, or 7 denotes cerebrospinal fluid, blood, muscle, skin or dura, brain, fat or bone, or yellow bone marrow, respectively.}
\end{align*}
\]
If EPSP(I) or SIGP(I) are read in as O.DO, then the values of EPSP(I) or SIGP(I) or both are replaced by values determined from values stored in data tables by means of the commands:

55 IF(EPSP(I).NE.O.DO.AND.SIGP(I).NE.O.DO)
160 TO 60
CALL EPROP(FREQ,ITIS(I),EP,SIG)
IF(EPSP(I).EQ.O.DO) EPSP(I) = EP
IF(SIGP(I).EQ.O.DO) SIGP(I) = SIG
60 FAC2 = EPSP(I)/2.DO

The fourth data set contains NOCR cards each containing the spherical coordinates \((R, \theta, \phi)\) of a point whose cartesian coordinates are \((X, Y, Z) = (R \sin(\theta) \cos(\phi), R \sin(\theta) \sin(\phi), R \cos(\phi))\) at which the microwave-induced temperature rise is to be computed. The cards are read in via the statements:

30 FORMAT(7F10.0)
DO 345 II=1,NOCR
READ 30,R,THETAD,PHID
345 CONTINUE

Finally a typical problem is presented as it would be given to the user and the proper response is indicated. The user directions are to compute the thermal response of a one-layer spherically symmetric ball of brain tissue with a 2.804-cm radius, a permittivity of 31.09, a microwave conductivity of .0012, a density of 1.0, a specific heat of .84, and a blood flow perviousness term of 0.0 to a steady 30-s exposure to 2450-MHz radiation with a power of 70 mW/cm\(^2\). The user is to compute the temperature along the x, y, and z-axes with x, y, and z-values being taken from the collection, -2.8, -2.45, -2.10,
-1.75, -1.40, -1.15, -.8, -.45, -.1, -.E-4, +1.E-4, +.1, +.45, +.8, +1.15, +1.40, +1.75, +2.10, +2.45, and +2.8. The user is to obtain these results with maximum accuracy. The proper response is indicated in Figures 4.4.2 - 4.4.5.

<table>
<thead>
<tr>
<th>2804.D-3</th>
<th>3109.D-2</th>
<th>1414.D-3</th>
<th>12.D-4</th>
<th>1.D0</th>
<th>.84D+0</th>
<th>0.D0</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.D0</td>
<td>30.D0</td>
<td>30.D0</td>
<td>30.D0</td>
<td>30.D0</td>
<td>1</td>
<td>60</td>
</tr>
<tr>
<td>2450.D0</td>
<td>70.D0</td>
<td>1.D35</td>
<td>1</td>
<td>12</td>
<td>25</td>
<td>80</td>
</tr>
</tbody>
</table>

Figure 4.4.2. The first three data sets for the computation of the thermal response of a one-layer brain tissue structure exposed to 70 mW/cm² and 2450-MHz radiation for 30 s at 60 s! points.

<table>
<thead>
<tr>
<th>280.E-2</th>
<th>180.E0</th>
<th>0.E0</th>
</tr>
</thead>
<tbody>
<tr>
<td>245.E-2</td>
<td>180.E0</td>
<td>0.E0</td>
</tr>
<tr>
<td>210.E-2</td>
<td>180.E0</td>
<td>0.E0</td>
</tr>
<tr>
<td>175.E-2</td>
<td>180.E0</td>
<td>0.E0</td>
</tr>
<tr>
<td>140.E-2</td>
<td>180.E0</td>
<td>0.E0</td>
</tr>
<tr>
<td>115.E-2</td>
<td>180.E0</td>
<td>0.E0</td>
</tr>
<tr>
<td>80.E-2</td>
<td>180.E0</td>
<td>0.E0</td>
</tr>
<tr>
<td>45.E-2</td>
<td>180.E0</td>
<td>0.E0</td>
</tr>
<tr>
<td>10.E-2</td>
<td>180.E0</td>
<td>0.E0</td>
</tr>
<tr>
<td>1.E-4</td>
<td>180.E0</td>
<td>0.E0</td>
</tr>
<tr>
<td>1.E-4</td>
<td>0.E0</td>
<td>0.E0</td>
</tr>
<tr>
<td>10.E-2</td>
<td>0.E0</td>
<td>0.E0</td>
</tr>
<tr>
<td>45.E-2</td>
<td>0.E0</td>
<td>0.E0</td>
</tr>
<tr>
<td>80.E-2</td>
<td>0.E0</td>
<td>0.E0</td>
</tr>
<tr>
<td>115.E-2</td>
<td>0.E0</td>
<td>0.E0</td>
</tr>
<tr>
<td>140.E-2</td>
<td>0.E0</td>
<td>0.E0</td>
</tr>
<tr>
<td>175.E-2</td>
<td>0.E0</td>
<td>0.E0</td>
</tr>
<tr>
<td>210.E-2</td>
<td>0.E0</td>
<td>0.E0</td>
</tr>
<tr>
<td>245.E-2</td>
<td>0.E0</td>
<td>0.E0</td>
</tr>
<tr>
<td>780.E-2</td>
<td>0.E0</td>
<td>0.E0</td>
</tr>
</tbody>
</table>

Figure 4.4.3. Data set describing points on the z-axis in spherical coordinates. The points on the z-axis at which the temperature is to be computed are shown. The columns in which the data entries end are respectively 10, 20, and 30.
280.E-2 90.E0 0.E0
245.E-2 90.E0 0.E0
210.E-2 90.E0 0.E0
175.E-2 90.E0 0.E0
140.E-2 90.E0 0.E0
115.E-2 90.E0 0.E0
 80.E-2 90.E0 0.E0
 45.E-2 90.E0 0.E0
 10.E-2 90.E0 0.E0
 1.E-4 90.E0 0.E0
 1.E-4 90.E0 180.E0
 10.E-2 90.E0 180.E0
 45.E-2 90.E0 180.E0
 80.E-2 90.E0 180.E0
115.E-2 90.E0 180.E0
140.E-2 90.E0 180.E0
175.E-2 90.E0 180.E0
210.E-2 90.E0 180.E0
245.E-2 90.E0 180.E0
280.E-2 90.E0 180.E0

Figure 4.4.4. Data set describing points on the x-axis in spherical coordinates. The points on the x-axis at which the data entries end are shown. The columns in which the data entries end are respectively 10, 20, and 30.

280.E-2 90.E0 270.E0
245.E-2 90.E0 270.E0
210.E-2 90.E0 270.E0
175.E-2 90.E0 270.E0
140.E-2 90.E0 270.E0
115.E-2 90.E0 270.E0
 80.E-2 90.E0 270.E0
 45.E-2 90.E0 270.E0
 10.E-2 90.E0 270.E0
 1.E-4 90.E0 270.E0
 1.E-4 90.E0 90.E0
 10.E-2 90.E0 90.E0
 45.E-2 90.E0 90.E0
 80.E-2 90.E0 90.E0
115.E-2 90.E0 90.E0
140.E-2 90.E0 90.E0
175.E-2 90.E0 90.E0
210.E-2 90.E0 90.E0
245.E-2 90.E0 90.E0
280.E-2 90.E0 90.E0

Figure 4.4.5. Data set describing points on the y-axis in spherical coordinates. The points on the y-axis at which the temperature is to be computed are shown. The columns in which the data entries end are respectively 10, 20, and 30.
4.5. The Output and its Meaning

The output of our program to predict the thermal response of a spherically symmetric body to microwave radiation includes (i) the printing of the input data defining the scattering problem, (ii) the weight and volume of the scatterer, (iii) the average and total absorbed power, (iv) the eigenvalues associated with radial eigenfunctions, (v) the expansion coefficients used in expanding the temperature in spherical harmonics, and finally (vi) the predicted microwave-induced temperature increases and estimates of the theoretical error in our predictions.

The input data which defines the input radiation is printed out and is identified by labels. This data includes the frequency, the field strength, STOPR which is defined in Section 4.3, the up time of a single pulse or Tdur, its period or TPER, the number NPUL of pulses in a single pulse train, the time TBPER that a single pulse train lasts which includes the quiet period after the initial burst of NPUL pulses, the time TCUT after which the incident wave is cut off and the TIME at which one observes the temperature; this output data set is printed by the commands:

```
PRINT 20, FREQ,E01,UNIT(IEO+1),STOPR,Tdur,TPER,
1NPUL,TBPER,TCUT,TIME
20 FORMAT('THERMAL RESPONSE OF CONCENTRIC SPHERICAL',
1'HEAD MODEL TO RFR';'FREQUENCY =',F9.2,
1'MHZ------FIELD STRENGTH =',F9.2,1X,A8,
16X,'STOPR =',PD12.4/
1'O FOR ONE PULSE, UP TIME IS',D12.4,'SEC'
1' AND PERIOD IS',D12.4,'SEC.'/
1'O ONE PULSE TRAIN CONTAINS',I4,'PULSES AND LASTS',
1D12.4,'SEC.';'O THE INCIDENT WAVE IS CUT OFF AFTER',
1D12.4,'SEC. AND THE TEMPERATURE',
1 'IS OBSERVED AFTER',D12.4,'SEC.')
```
The next set of output data defines the body in which the microwave-induced temperature is to be predicted. We print out NORG lines of data, each of which defines the outermost bounding sphere of radius SBDP(I), the relative permittivity EPSP(I), the microwave conductivity SIGP(I), the thermal conductivity TCP(I), the density RHOP(I), the specific heat CP(I), the blood flow radial perviousness term BFRP(I), and the tissue type ITIS(I) for the Ith tissue layer. This output data set is defined by the following lines:

```
PRINT 25
25 FORMAT('-REGION',3X,'SURFACE',4X,'RELATIVE',5X,
  'ELECTRIC',7X,'THERMAL',6X,'DENSITY',3X,
  'SPECIFIC',3X,'BLOOD FLOW',4X,'TISSUE'/9X,
  'BOUNDARY',3X,'DIELECTRIC',2X,'CONDUCTIVITY',
  12X,'CONDUCTIVITY',16X,'HEAT',8X,'RATE',7X,
  'TYPE'/21X,'CONSTANT'/11X,'(CM)',20X,'(MHO/M)',3X,
  '(CAL/CM-SEC-C)',3X,'(G/CM3)',2X,'(CAL/G/S)',4X,
  '(CC/SEC)'/)
```

DO 65 I = 1,NORG
65 PRINT 70,I,SBDP(I),EPSP(I),SIGP(I),TCP(I),RHOP(I),
 CP(I),BFRP(I),TISSUE(ITIS(I))
70 FORMAT(14,F12.2,F13.3,F15.6,F13.4,F10.3,
 F12.5,3X,A8)

The next set of output data describes intermediate output resulting from defining the microwave heat source term for the heat transfer equation. The data printed out includes the mass XMMASS, in kilograms, of the scattering body, its volume VOL, in cubic meters, the average absorbed power PAVG per unit volume expressed in watts per cubic meter, and the average absorbed power PAVG1 per unit mass expressed in milliwatts per kilogram. This mode by which output is printed is described by the statements:

```
PRINT 98
98 FORMAT('REGION',3X,'SURFACE',4X,'RELATIVE',5X,
  'ELECTRIC',7X,'HEAT',8X,'RATE',7X,
  'TYPE'/21X,'CONSTANT'/11X,'(CM)',20X,'(MHO/M)',3X,
  '(CAL/CM-SEC-C)',3X,'(G/CM3)',2X,'(CAL/G/S)',4X,
  '(CC/SEC)'/)
```

DO 65 I = 1,NORG
65 PRINT 70,I,SBDP(I),EPSP(I),SIGP(I),TCP(I),RHOP(I),
 CP(I),BFRP(I),TISSUE(ITIS(I))
70 FORMAT(14,F12.2,F13.3,F15.6,F13.4,F10.3,
 F12.5,3X,A8)
The last phrase '-ROOTS OF THE EIGENFUNCTION' is a heading for the next output data set which is the set of eigenvalues needed to define the eigenfunctions used in expressing the microwave-induced temperature excursion.

The next set of output data provide us with the array XLAMDA of eigenvalues defined by equations (3.3.42) and (3.3.44), and which are used to define the radial eigenfunctions used in expanding the microwave-induced temperature excursion. The eigenvalues are printed using the statements:

```
DO 90 NSBF = 1,NMAX
   N1 = NSBF - 1
90 PRINT 95,N1,(XLAMDA(K,NSBF),K = 1,KMAX)
95 FORMAT(1H ,15,1PD12.4,9PD12.4/(7X,1OD12.4))
```

Each row of printing in this output data set displays the sequence defined by equation (3.3.43) where the row index N1 denotes the actual Bessel function order and K is the index of the sequence in equation (3.3.43).

Once the eigenvalues defined as the solution of equation (3.3.44) are determined, we can compute the radial transform, defined by equation (3.3.22), of the source term and subsequently obtain the expansion coefficients $U(NSBF,M2,K)$, defined by equation (3.4.2), that are used in representing the microwave-induced temperature TRM. The expansion coefficients are indexed by
NSBF, which is one plus the order of the Bessel function under consideration,
M2 which is 1 if the order of the cosine transform is 0 and is 2 if this is
the order of the associated cosine transform, and finally K which is the index
of the eigenvalue associated with a given Bessel function order. The expan-
sion coefficients are printed out through the instructions:

```plaintext
DO 270 NSBF = 1,NMAX
     
270 CONTINUE
```

The final and most important output describes the location of the point at
which the temperature is sought, the predicted microwave-induced power den-
sity, the temperature excursion, and an estimate of the error associated with
approximation of the infinite sum, defined by equation (3.4.1), by only a
finite sum. This output is described by the statements:

```plaintext
PRINT 275,ZLAB(ISAR+1)
275 FORMAT(100)
```
DO 345 II = 1, NOCR

PRINT 340, I, NREG, SAVR, THETAD, PHID, PD,
1TRM, PCEBF, PCER
340 FORMAT (14, 18, F10.3, 2F8.2, F19.8, 1PD20.4, 2P2F12.2)
345 CONTINUE

In the above ZLAB(ISA.+1) is an alpha array containing the label 'MW/KG' which stands for milliwatts per kilogram or 'W/M**3' which stands for watts per cubic meter. The parameters II and NREG denote, respectively, the index, ranging from 1 to NOCR, of the point at which the temperature is to be computed and the layer number, ranging from 1 to NORG, of the layer in which the point is found. The three-tuple (SAVER, THETAD, PHID) is the spherical coordinate representation of the point at which the temperature is to be computed. The variables PD and TRM denote, respectively, the microwave power per unit volume, and the microwave-induced temperature excursion at the point (SAVER, THETAD, PHID). The error estimation parameter PCEBF denotes the relative error in temperature prediction associated with using, NMAX - 1 orders of Bessel functions and KMAX eigenvalues per Bessel function instead of using NMAX and KMAX to get a temperature estimate SBFM1. On the other hand, we see whether or not we have used enough eigenvalues per Bessel function order by using NMAX orders of Bessel functions and KMAX - 1 eigenvalues per Bessel functions order obtaining a temperature estimate SRM1 and computing the relative error PCER by the statement,

PCER = (TRM - SRM1)/TRM
4.6. Program Size and Running Time

The program requires 252K on the 'GO' step for an IBM 360 and has a running time that is dependent on the accuracy demanded and the number of layers in the model. For a one-layer model demanding maximum accuracy and computing the temperature at 60 points for one exposure time, the time on the 'GO' step was 2.93 minutes.

Gaussian quadrature is used to compute cosine, Legendre, and radial transforms of the source term divided by the product of the density and specific heat. We do these computations in an optimal way by precomputing needed values and taking care not to compute any complex function more than once at the same argument.
4.7. Error Messages

In this section we explain the error messages that the program provides to the user when he has inadvertently provided unsuitable input data. Some of the errors are fatal and some merely provide a warning to the user regarding the accuracy of their results.

An example of the latter occurs often when one attempts to compute the thermal response at points on the positive z-axis in that the series expansion of the electric field vector may not have enough terms in it to guarantee eight significant digits of accuracy in the answer. The coding which prints out this error message is given by the statements:

```
PRINT 30,NMIN,NC,STOR,ESP
30 FORMAT(15X, 'NMIN = ', I3, ' NC =', I3, 2X,
1 'STOR = ', 1PD14.4, 'IS TOO SMALL',
1 'FOR ACCURACY OF ', D18.4)
```

where NC is the number of spherical Bessel functions available to estimate the field at a given point, NMIN is the number of expansion coefficients available based on the location of the layer electrical properties, and EPS is the relative error demanded in the solution.

The error messages are described next in the order in which they are found in the main program. The first message in the main program gives an obvious constraint on the parameters defining the time profile of the beam. This is printed out when appropriate by the statements:

```
IF (NPUL.GT.0.AND.TDUR.GT.0.D0.
1 AND.TCUT.GT.0.D0.AND.TIME.GT.0.D0)GO TO 24
21 PRINT 22
22 FORMAT('****ERROR IN TIMES****')
```
STOP
24 IF(TPER.LT.TDUR.OR.TBPER.LT.NPUL*TPER)GO TO 21

The next fatal error messages deal with the fact that the radii of the layers should be in ascending order and that there are only 7 possible tissue types, recognized by the program, assignable to a layer. These messages, when appropriate, are printed by the commands:

 IF(I.EQ.1.OR.SBDP(I).GT.SBDP(I-1))GO TO 45
 PRINT 40
 40 FORMAT('****LAYER RADII MUST BE',
 ' IN ASCENDING ORDER****)
 STOP

45 IF(ITIS(I).GT.0.ANDoITIS(I).LT.8)GO TO 55
 PRINT 50,I,ITIS(I)

The next control on the input is based on the fact that the number of points used in the Gauss quadrature integration scheme for determining the expansion coefficients can only assume certain discrete values contained in a five-element array NPOINT. These error messages controlling the number of points requested to be used in evaluating the radial transform are, when appropriate, printed by means of the commands:

 DO 100 I = 1,5
 IF(MP.EQ.NPOINT(I))GO TO 110
 100 CONTINUE
 PRINT 105,MP
 105 FORMAT('INTEGRATION CONTROL =',I9,2X,
 ' IS NOT AVAILABLE')
 STOP
The error message controlling the number of points requested to be used in evaluating the Legendre transform is, when appropriate, printed by means of the commands:

\[
\text{DO 115 } I = 1,5 \\
\text{IF(MP1.EQ.NPOINT(I))GO TO 120} \\
\text{115 CONTINUE} \\
\text{PRINT 105, MP1} \\
\text{STOP}
\]

The above errors are fatal in the sense that the program stops execution as soon as the errors are recognized.

The next error message is another check on the accuracy with which the electric vectors are computed. This check deals with the computation of fields at the Gauss quadrature points for the purpose of eliminating the temperature excursion induced by the microwave radiation. The message described at the beginning of this section dealt with the computation of power density at the points at which the temperature is to be computed or, said differently, with the accuracy of column 6 in the last output data table. These error messages are described by the following statements:

\[
\text{IR = 0} \\
\text{DO 165 } N = 1, NC \\
\text{FAC1 = 2*N + 1} \\
\text{IF(IR.EQ.1)GO TO 155} \\
\text{T = P(N)*TR(N)} \\
\text{ERAD = ERAD + T} \\
\text{IF(CDABS(T).LT.CDABS(ERAD)*EPS) IR = 1} \\
\text{155 IF(ITP.EQ.1)GO TO 160}
\]
NP1 = N + 1
RATIO = FAC1/(N*NP1)
A = RATIO*P(N)/SINTH
B = -RATIO*DP(N)
C = A*TEI(N) + B*TE(N)
ETHETA = ETHETA + C
T = A*TEI(N) + B*TE(N)
EPHI = EPHI + T
IF(CABS(C).LT.CDABS(ETHETA)*EPS) ITP = i
160 IF(IR + ITP.EQ.2) GO TO 175
165 CONTINUE
PRINT 170, NMN, NC, THETA, R, STOPR, EPS
170 FORMAT(15X, 'NMN=', I3, 'NC=', I3, 'THETA=', F9.6, 'R=', 2PF9.6,
 'STOPR=', 1PD9.2, 'IST TOO SMALL FOR', 1X,
 'ACCURACY OF', D9.2)
175 ERAD = ERAD/Q

We note that in the above code C represents an amount to be added to the
series representation of ETHETA. Thus, if CDABS(C) is small in comparison to
CDABS(ETHETA)*EPS, then we say that adding the term C affected the value of
ETHETA in the decimal place equal to the integer value of 1/EPS or, said
differently, that EPS is the relative error associated with using one less
term in the series representation of ETHETA. It is also clear from the above
coding that the term T is used in the same way to describe the accuracy with
which ERAD, the component of the electric field vector in the radial direc-
tion, and EPHI, the component of the electric field vector in phi direction,
are computed.

The final error message of the control program is a nonfatal error
message that warns the user when he attempts to predict the microwave heating
in the free space outside the body that is being irradiated. This message,
when appropriate, is printed by means of the commands:
DO 285 NREG = 1,NORG
 IF(R.LE.SBDP(NREG))GO TO 300
285 CONTINUE
290 NREG = 1000000000
 PRINT 295,U,NREG,SAVR,THETAD,PHEID
295 FORMAT(114,I8,F10.3,3X,'**THE RADIUS',1X,
 'IS OUTSIDE THE SPHERE***)
 GO TO 345
300 IREG = NREG

The statement

 GO TO 345

directs the program around the temperature computation part of the program when this error message is printed. In other words, the computer program will not let the user waste his time by attempting to compute microwave-induced temperature excursions at points outside the body being irradiated.
4.8. Program and Subprogram Description

In this section we give an executive description of the overall program, list the subroutines called, and give their purpose.

The main program is divided into five parts. These parts carry out (i) the scattering problem definition by reading in the data and using subroutine EPROP, (ii) the electromagnetic field expansion coefficient determination and surface energy balance from the results of the COEF subroutine, (iii) the determination of the eigenvalues of the elliptic part of the heat transfer operator using the RFNDR subroutine, (iv) the microwave heat source expansion and thermal expansion coefficient using the subroutines RJYH, TERM, PL, ALP, and SRBF, and finally (v) the power density, temperature and error estimation portion using only the subroutines SRBF and ALP. The beginning and ending of the above five sections are marked by comment cards in the listing of the program in Appendix A.

In the next part of this section we describe all of these subroutines in the order in which they occur in the main program.

The subroutine EPROP determines, by interpolating tabulated data, the relative permittivity or microwave conductivity of any of the seven tissue types from tabulated data. The subroutine is called by the statement,

```fortran
CALL EPROP(FREQ, ITIS(I), EP, SIG)
```

The user must supply FREQ, the frequency of the incoming radiation in megahertz, and the tissue type ITIS(I) of the Ith layer of the scatterer, where ITIS(I) = 1, 2, 3, 4, 5, 6, or 7 depending on whether the tissue type is cerebrospinal fluid, blood, muscle, skin or dura, brain, fat or bone, or yellow bone marrow, respectively.
The subroutine COEF generates expansion coefficients ANP, RNP, ALPNP, and BETNP used in expanding the electromagnetic field. It is called by the statement,

CALL COEF

The subroutine RFNDR is used to determine the eigenvalues of the elliptic part of the heat transfer operator by a shooting method. Basically we start out with a trial value of the eigenvalue, an assumption about the asymptotic behavior of the radial eigenvalue at the origin so that with this assumption the solution of the singular ordinary differential equation with which the eigenvalue is associated is unique. We then check and see if the Newton cooling condition on the boundary is satisfied. If it is, we know that we have an eigenvalue. If the Newton cooling condition or equation (3.3.44) is not satisfied, we increase the trial value slightly and try again.

When we find two trial values at which the Newton cooling function, the output of the function subroutine FNCAL, differ in sign, we then use a bisection routine DRTMI to get the value of the eigenvalue to as many decimal places as is desired.

The subroutine BJYH generates arrays BJNP and BHNP of spherical Bessel functions and Hankel functions, respectively, used in the determination of the functions defined in equations (3.2.2) - (3.2.6). It is called by the statement,

CAL BJYH(BJNP,BHNP,Q,NC,STOPR,MAX)

where \(Q \) is equal to a sphere radius multiplied by the complex propagation constant \(FKP(NREG) \) defined by equation (3.2.7). We compute up to \(MAX \) values limited by the size constraint \(STOPR \), but we fill the arrays with only \(NC \) values since we have the same number of spherical Bessel functions in all regions.
The subroutine TERM computes the product of the square root of (-1) raised to the power NCK and the factor of I**L appearing in equation (3.2.2) where here "I" denotes the square root of -1.

The subroutine PL computes an array P of associated Legendre polynomials of the first kind and order 1 and an array DP of their derivatives.

The function subroutine ALP computes the associated Legendre function of the first kind, degree N and order M with M and N being nonnegative integers and with M not exceeding N. It is a function subroutine returning a single value at a single point.

The function subroutine SRBF computes the spherical Bessel functions XJ and XY of the first and second kind, respectively, and their respective derivatives DJ and DY at the value equal to the square root of S1 multiplied by SAVR or the arguments appearing in the discussion in Section 3.3.

REFERENCES

APPENDIX A

LISTING OF THE PROGRAM
PROGRAM TRP

THERMAL RESPONSE OF CONCENTRIC SPHERICAL HEAD MODEL TO RFR

IMPLICIT REAL*8 (A-H,O-Z)

COMPLEX*16 FKP, ANP, BNP, ALPNP, BETNP, BJNP, BHNP, ERAD, ETHETA, EPHI, T, C,
IW, YI, ZI, TE(50), TEI(50), TR(50)

COMMON FKP(7), ANP(300), BNP(300), ALPNP(300), BETNP(300), BJNP(100), BH
1NP(100), BP(6), P(51), DP(50), R, THETA, COSTH, PHI, SINTH, STOPR, EO

COMMON /A/NORG, NREG, NSBF, NMIN, NC, ICODE

COMMON /B/ FACT(6,25,18), AJ(6,25,18), BY(6,25,18), XLAMDA(25,18), SBP
1(6), RHOP(6), CP(6), BP(6), TCP(6), H

COMMON /C/AJ1, S1, F, R1, IREG

IN-rEGER*2 IFL(102,102)

REAL*4 R3(304), TR3(304), X2(102), DAR(102,102), CLAB(3,3), ANG, AX1, AY

DIMENSION U(18, 2, 25), EPSP(6), SIGP(6), BFRP(6),
1S(80,64,2), XNUM(18,2,25), DAR(102,102), CLAB(3,3), ANG, AX1, AY

DATA TISSUE/'CS FLUID', 'BLOOD', 'MUSCLE', 'SKIN-DUR', 'BRAIN', 'FAT-BO
1NE', 'Y,B,M.' /

DATA UNIT/'V' /

1Eg. C.'/, 'WM/CM**2/', 'ZLAB'/' MW/KG', 'W/M**3'/
1,EPS/1.D-8 /

DATA CLAB/'E PL', 'ANE', 'PL', 'ANE', 'X-Y', 'PLAN', 'E'/
1, BLAB/'Z-AXIS C', 'COORDINAT'
1,'X (CM)', 'AX/ Z-AXIS C', 'X-AXIS C', 'Y-AXIS C'/,
1, DLAB/'TEMPERAT', 'URE RISE', (D

DATA NPOINT/32, 48, 64, 80, 8/, KEY/1,17, 41, 73, 113, 117/

DATA Y/0.048307665688D0, 1.444719615800D0, 2.392873622500D0, 3.3186860228D0
10.421351276130D0, 5.06899908930D0, 8.57715577240D0, 6.63042466930D0, 7.32
11.82118740D0, 9.44367957970D0, 8.9362115770D0, 9.34960607D0
19.40D0, 9.46762255990D0, 9.9561151550D0, 9.9726386185D0, 9.323081709630D0,
1.0970046992090D0, 1.61223560720D0, 2.2476379039D0, 2.87362478360D0, 3.487
15.58892690D0, 4.08686481990D0, 4.66902904750D0, 5.23160974270D0, 5.772247260
18.00D0, 6.28867396780D0, 6.7872379630D0, 7.24034130920D0, 7.6715903250D0, 8
10.706620430D0, 8.43588261620D0, 8.76572020760D0, 9.05879136720D0, 9.313866
19.9710D0, 9.529877303160D0, 9.70591592550D0, 9.84124583720D0, 9.93530172720D0,
1., 9.98771007250D0, 2.423502926630D0, 3.072993121780D0, 3.1246281930D0, 3.16
16.644420420D0, 2.17423643740D0, 2.64687162210D0, 3.11322871990D0, 3.57220158
13.40D0, 4.02270157960D0, 4.46366017250D0, 4.89403145710D0, 5.31279464020D0,
1.5319564620D0, 6.1115535517D0, 6.48965471250D0, 6.85236313050D0, 7.198818
15.0170D0, 7.52819907260D0, 7.83972358940D0, 8.1326315120D0, 8.40629296250D0,
1., 8.6599398150D0, 8.8931544600D0, 9.10522137080D0, 9.92956917230D0, 9.4641
10.374860D0, 9.610008796650D0, 9.73326827790D0, 9.83336253880D0, 9.9910337140D0,
10., 9.96340116770D0, 9.993035041740D0, 1.0195113832570D0, 0.585044371520D0, 0.974083984420D0, 1.36164022

114
**********FIRST DATA CARD - CONTROL PARAMETERS

FREAD (5,5)FREQ,EO,STOPR,NORG,NMAX,KMAX,MP,MPI,IEO,ISAR

FORMAT (3010.0,715)

FREQ FREQUENCY IN MEGAHERTZ
EO STRE. H OF INCIDENT E-FIELD
STOPR CUTOFF FOR SAF COMPUTATIONS
NORG NUMBER OF LAYERS IN SPHERE
NMAX NUMBER OF ORDERS OF BESSEL FUNCTIONS USED. MAX=12
KMAX NUMBER OF ROOTS FOR EACH ORDER. MAX=25
MP NUMBER OF POINTS FOR INTEGRATION FOR RADIUS. 32, 48, 64 OR 80. (. IS AVAILABLE FOR TEST RUNS)
MPI NUMBER OF POINTS FOR INTEGRATION FOR THETA. 32 OR 48
IEO INPUT EO UNITS
 0 - VOLS/METER
 1 - MILLI WATTS/SQUARE CENTIMETER
ISAR OUTPUT POWER DENSITY UNITS
 0 - MILLI WATTS/KG
 1 - WATTS/CUBIC METER

EOI=EO
IF (IEO.EQ.0) GO TO 10
IEO=1
EOr-.gSQRT(3767.DO*EO)

**********SECOND DATA CARD. TIMES IN SECONDS FOR INCIDENT WAVE PULSES.
FIRST PULSE TURNS ON AT ZERO SECONDS.
10 READ (5,15,END=495) TDUR,TPER,TBPER,TCUT,TIME,NPUL,NOCR,IPL1,IPL2,INTP
15 FORMAT (5D19.0,515)
 TDUR TIME DURATION OF A PULSE
 TPER PERIOD FROM START OF A PULSE TO START OF NEXT PULSE.
 TBPER PERIOD FOR A GROUP OF PULSES.
 TCUT TIME AT WHICH WAVE IS CUT OFF
 TIME TIME WHEN TEMPERATURE RISE IS OBSERVED.
 NPUL NUMBER OF PULSES IN A GROUP
 NOCR NUMBER OF POINTS IN SPHERE AT WHICH TEMPERATURE RISE

*** PRINT OUT TITLE AND BASIC INPUT DATA
20 FORMAT ('OTHERMAL RESPONSE OF CONCENTRIC SPHERICAL HEAD MODEL TO R
FR'/'-FREQUENCY =',F9.2,' MHZ FIELD STRENGTH =',F9.2,1X,A8,6
1X,'STOPR =',1PD12.4/
1'FOR ONE PULSE, UP TIME IS',D12.4,' SEC. AND PERIOD IS',D12.4,' SEC.
2EC.'/'ONE PULSE TRAIN CONTAINS',I4,' PULSES AND LASTS',D12.4,' SEC.
3C.'/'THE INCIDENT WAVE IS CUT OFF AFTER',D12.4,' SEC. AND THE TEM
4PERATURE IS OBSERVED AFTER',D12.4,' SEC.'
IF (NPUL.GT.0.AND.TDUR.GT.0.DO.AND.TCUT.GT.0.DO.AND.TIME.GT.0.DO) 146
1 GO TO 24
21 PRINT 22
22 FORMAT ('**** ERROR IN TIMES ****1)
STOP
24 IF (TPER.LT.TDUR.OR.TBPER.LT.NPUL*TPER) GO TO 21
ITME=ITME+1
IF (ITME.GT.1) GO TO 215
PRINT 25
25 FORMAT ('SECOND REGION SURFACE RELATIVE ELECTRIC THERMAL DENSITY SPECIFIC BLOOD FLOW TISSUE'/
1D9X,'BOUNDARY DIELECTRIC CONDUCTIVITY',16X,'HEAT',8X,'RATE TYPE'/
1X,'21X,'CONSTANT'/11X
1D9X,'CAL/CMS-D?,CAL/MS-C?',G/CM3,CAL/G/S,CC/ISEC')
OMEGA=2.D6*PIE*FREQ
FAC1=OMEGA/VEL
START=1.D38
XMASS=0.DO
GLDVL=0.DO

**********READ LAYER PROPERTIES AND COMPUTE PROPAGATION CONSTANTS
DO 65 I=1,NORG
READ (5,30)SBDP(I),EPSP(I),SIGP(I),TCP(I),RHOP(I),CP(I),BFRP(I),ITIS(I)
1 ITIS(I)
30 FORMAT (7F10.0,15)
 SBDP OUTER RADIUS OF LAYER IN CENTIMETERS
 BDP LAYER OUTER RADIUS IN METERS
 EPSP PERMITTIVITY(RELATIVE)
 SIGP CONDUCTIVITY (MHOS PER METER)
 TCP THERMAL CONDUCTIVITY
 RHOP DENSITY
 CP SPECIFIC HEAT
 BFRP BLOOD FLOW RADIAL PERVERCIVITY
 ITIS CODE FOR LAYER TISSUE TYPE
1 DENOTES CEREBROSPINAL FLUID
2 DENOTES BLOOD
3 DENOTES MUSCLE
4 DENOTES SKIN OR DURA
5 DENOTES BRAIN
6 DENOTES FAT OR BONE
7 DENOTES YELLOW BONE MARROW
 BDP(I)=SBDP(I)/1.D2
 VOL=4.DO*PIE*BDP(I)**3/3.DO
 RVOL=VOL-OLDVOL
 XMASS=XMASS+RVOL*RHOP(I)*1.D3
 OLDVOL=VOL
 BP(I)=RHOBP*CBP*BFRP(I)
 A=BP(I)/(RHOP(I)*CP(I))
 IF(A.LT.START) START=A
 IF (I.EQ.1.OR.SBDP(I).GT.SBDP(I-1)) GO TO 45
 PRINT 40
40 FORMAT ('O**** LAYER RADII MUST BE IN ASCENDING ORDER ****')
 STOP
45 IF (ITIS(I).GT.0.AND.ITIS(I).LT.8) GO TO 55
 PRINT 50,I,ITIS(I)
50 FORMAT ('O****TISSU.E TYPE CODE FOR LAYER',I2,' IS',I5,1,
 IHE RANGE 1-7****')
 STOP
55 IF (EPSP(I).NE.0.DO.AND.SIGP(I).NE.0.DO) GO TO 60
 CALL EPROP(FREQ,ITIS(I),EP,SIG)
 IF (EPSP(I).EQ.0.DO) EPSP(I)=EP
 IF (SIGP(I).EQ.0.DO) SIGP(I)=SIG
60 FAC2=EPSP(I)/2.DO
 FAC3=DSQRT(1.DO+(1.DO/(EPSO*OMEGA)**2)*(SIGP(I)/EPSP(I))**2)
 FKP(I)=DCMPLX(FAC1*DSQRT(FAC2*(FAC3+1.DO)),FAC1*DSQRT(FAC2*(FAC3-1
 1.DO)))
65 PRINT 70,I,SBDP(I),EPSP(I),SIGP(I),TCP(I),RHOP(I),CP(I),BFRP(I),TI
 SSUE(ITIS(I))
 FKP(NORG-1)=DCMPLX (FACI .0.D0)
 IF (START.EQ.0.DO) START=1.D-9
 COMPUTE EXPANSION COEFFICIENTS AND TOTAL ABSORBED POWER
 CALL COEF
 NN=NORG*NMIN
 QS=0.DO
 QT=0.DO
 DO 75 N=1,NMIN
 FACN=2*N+1
N+NN+NN
X3=FACN*REAL(ALPNP(NNN) + BETNP(NNN))
Y3=FACN*(CDAABS(ALPNP(NNN))**2+CDAABS(BETNP(NNN))**2)
QT=QT-X3
QS=QS+Y3
IF(DABS(X3).LT.DABS(QT)*1.D-6.AND.Y3.LT.QS*1.D-6) GO TO 242
75 CONTINUE
PRINT 241
241 FORMAT('**** TOO FEW EXPANSION COEFFICIENTS ****')
242 TOTPOW=2.5441D-3*EO**2*PIE*(QT-QS)/(2.DO*FAC1*FAC1)
PAVG=TOTPOW/VOL
PAVG1=1.3*TOTPOW/XMASS
*** PRINT OUT AVERAGE ABSORBED POWER DENSITY AND TOTAL ABSORBED
*** POWER
PRINT 80,XMASS,VOL,PAVG,ZLAB(2),PAVG1,ZLAB(1),TOTPOW
80 FORMAT('WEIGHT =',1PD12.4,,a
/O.Volume =',Dl2.4,' M**3/
1'FOR A CONTINUOUS WAVE THE AVERAGE ABSORBED POWER IS',Dl3.5,A7,
10',D13.5,A7/
1'TOTAL ABSORBED POWER =',D13.5,' WATTS'/
1'ROOTS OF THE EIGENFUNCTION'/)
GET ROOTS OF EQUATION
STEP=1.D-8
ICODE=0
AJ1=1.DO
PRINT 543,START,STEP
543 FORMAT('START =',1PD15.7,' STEP =',D15.7)
DO 90 NSBF=1,NMAX
AJ1=AJ1*(2*NSBF-1)
CALL RFHNDR(START,STEP,1.D-6,KMAX,1000,10000)
START=XLAMDA(1,NSBF)
STEP=(XLAMDA(2,NSBF)-XLAMDA(1,NSBF))/10.DO
N1=NSBF-1
PRINT 95,N1,(XLAMDA(K,NSBF),K=1,KMAX)
95 FORMAT('ROOTS =',15,1PD12.4,9D12.4/(7X,10D12.4))
IF (NSBF.EQ.1) GO TO 90
DO 89 K=1,KMAX
IF (XLAMDA(K,NSBF).LE.XLAMDA(K,NSBF-1)) GO TO 500
89 CONTINUE
90 CONTINUE
ICODE=1
DEVELOP U(N,M,K) ARRAY
DO 100 I=1,5
IF (MP.EQ.NPOINT(I)) GO TO 110
100 CONTINUE
PRINT 105,MP
105 FORMAT('INTEGRATION CONTROL =',I9,' IS NOT AVAILABLE')
STOP
110 JF=KEY(I)
JL=KEY(I+1)-1
DO 115 J=1,5
IF (MP1.EQ.NPOINT(I)) GO TO 120
115 CONTINUE
PRINT 105,MP1
STOP
120 JF1=KEY(I)
JL1=KEY(I+1)-1
PD2=PIE/2.DO
Q=R*FKP(NREG)
CALL BJYH(BJNP,BHNP,Q,NC,STOPR,NMIN+2)
NC=MINO(NC-2,NMIN)
NCK=0
DO 150 N=1,NC
FAC1=2*N+1
NNN=NN+N
W=BNP(NNN)
X=BJNP(N+1)
Y1=BETNP(NNN)
Z=BHNP(N+1)
NCK=NCK+1
T=FAC1*(W*X+Y1*Z)
CALL TERM(NCK,T,1)
TR(N)=T
T=ANP(NNN)*X+ALPNP(NNN)*Z
CALL TERM(NCK,T,0)
TE(N)=T
A=N+1
B=N
T=(W*(A*R.1NP(N)-B*BJNP(N+2))+Y1*(A*BHNP(N)-BtBHNP(N+2)))/FAC1
CALL TERM(NCK,T,1)
TE(N)=T
150 IF (NCK.EQ.4) NCK=0
THEN CALCULATE THETA DEPENDENT PART OF SOURCE TERM
DO 180 J2=1,MP1
THETA=THET1(J2)
SINTH=SINTH1(J2)
COSTH=COSTH1(J2)
CALL PL
ERAD=DCMPLX(0.DO,0.DO)
ETHETA=DCMPLX(0.DO,0.DO)
EPHI=DCMPLX(0.DO,0.DO)
ITP=0
IR=0
DO 165 N=1,NC
FAC1=2*N+1
IF (IR.EQ.1) GO TO 155
T=P(N)*TR(N)
ERAD=ERAD+T
IF (CDABS(T).LT.CDABS(ERAU))*EPS) IR=1
155 IF (ITP.EQ.1) GO TO 160
NP1=N+1
RATIO=FAC1/(N*NP1)
A=RATIO*P(N)/SINTH
B=-RATIO*DP(N)
C=A*TE(N)+B*TE1(N)
ETHETA=ETHETA+C
T=A*TE1(N)+B*TE(N)
EPHI=EPHI+T
IF (CDABS(C).LT.CDABS(ETHETA)*EPS.AND.CDABS(T).LT.CDABS(EPHI)*EPS)
1ITP=1
160 IF (IR+ITP.EQ.2) GO TO 175
CONTINUE
PRINT 170,NMIN,NC,THETA,R,STOPR,eps
170 FORMAT (15X,'NMIN =',I3,' NC =',I3,' THETA =',F9.6,' R =',2PF9.6,' 1 STOPR =',1PD9.2,' IS TOO SMALL FOR ACCURACY OF',N9.2)
STOPR =',1PD9.2,' IS TOO SMALL FOR ACCURACY OF',N9.2)
175 \text{ERAD} = \text{ERAD}/Q

\text{STORE SOURCE TERM TIMES PHI INTEGRAL}

\text{ERT} = \text{DREAL(ERAD*DCONJG(FRAD) + ETHETA*DCONJG(ETHETA))}

\text{EP1} = \text{DREAL(EPHI*DCONJG(EPHI))}

\text{S(J,J2,1) = FAC*PIE*(ERT+EP1)}

180 \text{S(J,J2,2) = FAC*PD2*(ERT-EP1)}

\text{CALCULATE NUMERATOR AND DENOMINATOR INTEGRALS}

\text{DO 210 NSBF=1,NMAX}
\text{N1=NSBF-1}
\text{DO 210 M=1,NSBF}
\text{IF (M.NE.1.AND.M.NE.3) GO TO 210}
\text{M2=M/2+1}
\text{M1=M-1}
\text{DO 185 J=1,MP1}
\text{ALPOL(J) = ALP(N1,M1,COSTH1(J))*SINTH1(J)}
\text{DO 195 J3=1,MP}
\text{SUMJ2 = 0.DO}
\text{DO 190 J2 = 1,MP1}
\text{SUMJ2 = SUMJ2 + WTTH(J2)*S(J3,J2,M2)*ALP0L(J2)}
\text{SUM2(J3,M2) = SUMJ2}

\text{SUM2 IS THE INTEGRAL OF THE SOURCE TERM TIMES ALPOL}
\text{ALPOL IS THE PRODUCT OF THE LEGENDRE POLYNOMIAL TIMES THE SINE OF THETA}
\text{J2 IS AN INDEX FOR THE THETA COORDINATE ASSOCIATED WITH GAUSSIAN INTEGRATION}

\text{DO 205 NRT=1,KMAX}
\text{INTEGRATE OVER RADIUS}
\text{F = FACT(IREG,NRT,NSBF)}
\text{S1 = XLAMDA(NRT,NSBF)*RCP-BP(IREG)}
\text{SUM = 0.DO}
\text{SUM3 = 0.DO}
\text{DO 200 J3=1,MP}
\text{R = RR(J3)}
\text{R1 = R}
\text{CALL SRBF(XJ,XY,DJ,DY)}
\text{ZZ = AJ(NREG,NRT,NSBF)*XJ + BY(NREG,NRT,NSBF)*XY}
\text{IF (DABS(XY).GT.1.D34) PRINT 666,NSBF,M,NRT,AJ(NREG,NRT,NSBF),}
\text{IXJ,BY(NREG,NRT,NSBF),XY,ZZ}
\text{666 FORMAT (3I5,1P7D15.7)}
\text{RSQ = R*R}
\text{INTEGRATE OVER THETA}
\text{J = JF+(J3-1)/2}
\text{WTJ = WT(J)*ZZ*RSQ}
\text{SUM = SUM + WTJ*ZZ}
\text{200 SUM3 = SUM3 + WTJ*SUM2(J3,M2)}
\text{DEN(NSBF,M2,NRT) = DEN(NSBF,M2,NRT) + RCP*SUM*RAVG}
\text{205 XNUM(NSBF,M2,NRT) = XNUM(NSBF,M2,NRT) + SUM3*RAVG}
\text{210 CONTINUE}

\text{CALCULATE COEFFICIENTS U(N,M,K)}

121
TA = TIME - TDUR - (IA - 1) * TBPER - (NPUL - 1) * TPER
TB = TIME - TDUR - IA * TBPER - (IB - 1) * TPER
PRINT 220
220 FORMAT ('OU COEFFICIENTS')
DO 270 NSBF = 1, NMAX
PRINT 225
225 FORMAT ('')
N1 = NSBF - 1
DO 270 M = 1, NSBF
IF (M .NE. 1 .AND. M .NE. 3) GO TO 270
M1 = M - 1
M2 = M / 2 + 1
NMM = N1 - M1
NPM = N1 + M1
F = 1.0 DO
IF (M1 .EQ. 0) GO TO 255
IF (N1 .NE. M1) GO TO 240
DO 235 I = 2, NPM
F = F * I
GO TO 250
II = 2 * M1
F1 = NMM + 1
DO 245 I = 1, II
F = F * F1
GO TO 241
F1 = F1 + 1.
DO 250
F = 1.0 / F
F = (2.0 * N1 + 1.0) / (2.0 * PIE) * F * PD2
DO 260 NRT = 1, KMAX
XR = XLAMDA(NRT, NSBF)
D = 0.0 DO
IF (IA + IB .EQ. 0) GO TO 258
X1 = XR * TPER
X3 = 1.0 DO
IF (X1 .LE. 40.0 DO) X3 = 1.0 - DEXP(-X1)
IF (IA .LE. 0) GO TO 240
XR * TA
X4 = XR
IF (X4 .GT. 87.0 DO) GO TO 256
X1 = XR * NPUL * TPER
X5 = 1.0 DO
IF (X1 .LE. 40.0 DO) X5 = 1.0 - DEXP(-X1)
X1 = XR * TBPER
X6 = 1.0 DO
X7 = 1.0 DO
IF (X1 .GT. 40. DO) GO TO 261
X6 = 1.0 - DEXP(-X1)
X1 = X1 * IA
IF (X1 .LE. 40.0 DO) X7 = 1.0 - DEXP(-X1)
D = D + DEXP(-X4) * X5 * X7 / (X3 * X6)
261 IF (IB .LE. 0) GO TO 257
X4 = XR * TB
IF (X4 .GT. 87.0 DO) GO TO 257
X1 = XR * IB * TPER
X5 = 1.0 DO
IF (X1 .LE. 40.0 DO) X5 = 1.0 - DEXP(-X1)
D = D + DEXP(-X4) * X5 / X3
257 X1 = XR * TDUR
X4=1.DO
IF (X1.LE.40.DO) X4=1.DO-DEXP(-X1)
D=D*X4

258 IF (XU.LE.XL) GO TO 259
X1=XR*(TIME-XU)
IF (X1.GE.87.DO) GO TO 259
X3=XR*(XU-XL)
X4=1.DO
IF (X3.LE.40.DO) X4=1.DO-DEXP(-X3)
D=D+DEXP(-X1)*X4

259 ETIME(NRT)=D/XR
260 U(NSBF,M2,NRT)=ETIME(NRT)*F*XNUM(NSBF,M2,NRT)/DEN(NSBF,M2,NRT)
PRINT 265,N1,M1,(U(NSBF,M2,K),K=1,KMAX)
265 FORMAT (2I3,1P10D12.4/(8X,10D12.4))
270 CONTINUE

*** ABSORBED-POWER DENSITY AND TEMPERATURE RISE AT
*** GIVEN POINTS INTERIOR TO P-TH REGION
IF (ISAR.NE.O) ISAR=1
PRINT 275,LAB(ISAR+1)
275 FORMAT ('O',29X,'INTERNAL POINT',11X,'ABSORBED POWER',7X,'TEMPERATURE'
1/8X,'POINT REGION RADIUS THETA PHI',12X,'DENSITY',14X,'RISE'
1/8X,'CM DEG DEG',12X,A7,13X,'PER CENT'/)
DO 34E II=1,NOCR
READ (5,30) R,THETAD,PHID
R: R-COORDINATE OF PT
THETA: THETA COORDINATE(DEGREES)
PHI: PHI-COORDINATE(IN EQUATORIAL PLANE)(DEGREES)
IF (R.LE.O.DO) GO TO 290
DO 285 NREG=1,NORG
IF (R.LE.SBDP(NREG)) GO TO 300
285 CONTINUE
290 NREG=1000000000
PRINT 295,II,NREG,R,THETAO,PHID
295 FORMAT (114,18,3F10.3,'THE RADIUS IS OUTSIDE THE SPHERE ')
GO TO 345
300 IREG=NREG
R=II
R=R/1.D2
THETA=THETAD/RAD
PHI=PHID/RAD
CALL BJYH(BJNP,BHNP,FKP(NREG)*R,NC,STOPR,NMIN+2)
NC=MIND(NC-2,NMIN)
SINTH=DSIN(THETA)
COSTH=DCOS(THETA)
CALL PL
CALL EVEC(PD)
PD=SDO*SIGP(NREG)*PD
KMAX1=KMAX
K1=KMAX-1
DO 315 KMAX=K1,KMAX1
TRM=0.DO
315 DO 315 NSBF=1,NMAX
N1=NSBF-1
DO 315 M=1,NSBF

123
IF (M.NE.1.AND.M.NE.3) GO TO 315
M1=M-1
M2=M/2+1
ALPNM=ALP(N1,M1,COSTH)*DCOS(M1*PHI)
IF (ALPNM.EQ.0.DO) GO TO 310
SUM=0.DO
DO 305 NRT=1,KMAX
S1=XLAMDA(NRT,NSBF)*RHOP(IREG)*CP(IREG)-BP(IREG)
F=FACT(IREG,NRT,NSBF)
CALL SRBF(XJ,XY,DJ,DY)
305 SUM=SUM+U(NSBF,M2,NRT)*(AJ(NREG,NRT,NSBF)*XJ+BY(NREG,NRT,NSBF)*XY)
310 TRM=TRM+SUM*ALPNM
IF (M.NE.3) GO TO 315
IF (KMAX.EQ.KI.AND.NSBF.EQ.NMAX) SRM1-TRM
IF (KMAX.EQ.KMAX1.AND.NSBF.EQ.NMAX-1) SBFM1=TRM
315 CONTINUE
KMAX=KMAX1
PCER=(TRM-SRM1)/TRM
PCEBF=(TRM-SBFM1)/TRM
*** PRINT PARTICULARS OF INTERIOR POINT OF REGION P
PRINT 340,11,NREG,R1,THETAD,PHID,PD,TRM,PCEBF,PCER
340 FORMAT (114,18,F10.3,2F8.2,F19.8,1PD20.4,2P2Fl4.7)
345 CONTINUE
IF (IPL1.EQ.0.AND.IPL2.EQ.0) GO TO 10
IF (IPLSW.EQ.1) GO TO 350
IPLSW=1
CALL PLOTS(0,0,8)
CALL PLOT(O.,-11.,-3)
CALL PLOT(O.,2.,-3)
NTR=MAXO(NTR, 1L)
NTR=MINO(NTR,5)
350 IF (IPL1.EQ.0) GO TO 405
*** PLOT POWER DENSITIES ALONG Z, X AND/OR Y AXIS
NPTS=300
NPTD2=NPTS/2
NP2=NPTD2+1
DX=SBDP(NORG)/NPTD2
DO 400 KJI=1,3
IF (KJI.EQ.1.AND.(IPL1.EQ.2.OR.IPL1.EQ.3.OR.IPL1.EQ.6)) GO TO 400
IF (KJI.EQ.2.AND.(IPL1.EQ.1.OR.IPL1.EQ.3.OR.IPL1.EQ.5)) GO TO 400
IF (KJI.EQ.3.AND.(IPL1.EQ.1.OR.IPL1.EQ.2.OR.IPL1.EQ.4)) GO TO 400
PRINT 355
355 FORMAT ('O')
TRMAX=0.
COSTH=0.DO
IF (KJI.EQ.1) COSTH=1.DO
IREG=NORG
R1=SBDP(NORG)
*** CALCULATE POWER DENSITIES ALONG SPHERE DIAMETER
DO 370 I=1,NP2
RC=RHOP(IREG)*CP(IREG)
BP1=BP(IREG)
TRM=0.DO
TRM1=0.DO
DO 365 NSBF=1,NMAX
N1=NSBF-1
365
COSMP=1.DO
DO 365 M=1,NSBF
IF (M.NE.1.AND.M.NE.3) GO TO 365
IF (KJI.EQ.3.AND.M.EQ.3) COSMP=-1.DO
M1=M-1
M2=M/2+1
SUM=0.DO
DO 360 NRT=1,KMAX
S1=XLAMDA(NRT,NSBF)*RC-BP1
F=FACT(IREG,NRT,NSBF)
CALL SRBF(XJ,XY,DJ,DY)
SUM=SUM+U(NSBF,M2,NRT)*(AJ(IREG,NRT,NSBF)*XJ+BY(IREG,NRT,NSBF)*XY)
TRM=TRM+SUM*ALP(N1,M1,COSTH)*COSMP
TRM1=TRM1+SUM*ALP(N1,M1,-COSTH)*COSMP
365 CONTINUE
R3(I)=R1
TR3(I)=TRM
R3(NPTS-I+3)=-R1
TR3(NPTS-I+3)=TRM1
TRMAX=OMAX1(TRM,TRM1,TRMAX)
R1=R1-DX
IF (IREG.GT.1.AND.R1.LT.SBDP(IREG-1)) IREG=IREG-1
370 IF (R1.LT.0.0I0) R1=0.0001
*** DETERMINE PLOT SCALE FOR POWER DENSITIES
PD3=.0001
DO 375 I=1,10
PD3=5.*PD3
IF (TRMAX.LT.PD3) GO TO 380
PD3=PD3*2.
IF (TRMAX.LT.PD3) GO TO 380
375 CONTINUE
380 TRMAX=PD3
*** PLOT POWER DENSITY ALONG DIAMETER ON Z, X OR Y AXIS
BLAB(!)=AX(KJI)
DO 390 I=1,NTR
ANG=2*(I-1)*PIE/NTR
AX1=.01*COS(ANG)
AY=.01*SIN(ANG)
IF (NTR.EQ.1) AX1=0.
CALL PLOT(AX1,AY,-3)
390 CALL PLTCV1(R3,TR3,5.,6.,BLAB,DLAB,22,26,NPTS+2,0,1,1,-R3(1),
IR3(1),0.,TRMAX,0.0.,14,R3(1)/3.,TRMAX/5.,1)
CALL PLOT(7.,0.,-3)
400 CONTINUE
405 IF (IPL2.EQ.0) GO TO 10
*** PLOT POWER DENSITY CONTOURS IN E PLANE, H PLANE AND/OR X-Y PLANE
NPTS=100
NPTD2=NPTS/2
NPTP2=NPTS+2
X1=SRDP(NORG)
XF=10./(2.*X1)
DX=X1/NPTD2
X3=X1
DO 410 I=1,NPTD2
X2(I)=X3
X2(NPTS+3-I)=-X3
410 X3=X3-DX
X2(NPTD2+1)=.0001
X2(NPTD2+2)=-.0001

CALCULATE POWER DENSITIES AT POINTS IN PLANE
N12=NPTP2/2
DO 465 KJI=1,3
IF (KJI.EQ.1.AND.(IPL2.EQ.2.OR.IPL2.EQ.3.OR.IPL2.EQ.6)) GO TO 465
IF (KJI.EQ.2.AND.(IPL2.EQ.1.OR.IPL2.EQ.3.OR.IPL2.EQ.5)) GO TO 465
IF (KJI.EQ.3.AND.(IPL2.EQ.1.OR.IPL2.EQ.2.OR.IPL2.EQ.4)) GO TO 465
Y3=0.
X3=0.
Z3=0.
DO 455 I=1,N12
 I1=NPTS+3-I
 DO 455 J=1,N12
 J1=NPTS+3-J
 IF (KJI.GT.1) GO TO 415
 X3=X2(I)
 Z3=X2(J)
 GO TO 425
415 IF (KJI.GT.2) GO TO 420
 Y3=X2(I)
 Z3=X2(J)
 GO TO 425
420 X3=X2(I)
 Y3=X2(J)
425 R1=DSQRT(X3*X3+Y3*Y3+Z3*Z3)
 IF (R1.LT.X1) GO TO 430
 DAR(I,J)=-1.
 DAR(I,J1)=-1.
 GO TO 453
430 DO 435 IREG=1,NORG
 IF (R1.LT.SRDP(IREG)) GO TO 440
 CONTINUE
435 CONTINUE

CALCULATE TEMPERATURE RISE AT POINTS IN PLANE
COSTH=Z3/R1
 PHI=DATAN2(Y3,X3)
 RC=RHOP(IREG)*CP(IREG)
 BP1=BP(IREG)
 TRM=0.0
 TRM1=0.0
 DO 450 NSBF=1,NMAX
 N1=NSBF-1
 M1=NSBF-1
 SUM=0.0
 DO 445 NRT=1,KMAX
 S1=XLAMDA(NRT,NSBF)*RC-BP1
 F=FACT(IREG,NRT,NSBF)
 CALL SRBF(XJ,XY,DJ,DY)
 SUM=SUM+U(NSBF,M2,NRT)*(AJ(IREG,NRT,NSBF)*XJ+BY(IREG,NRT,NSBF)*XY)
 445 CONTINUE
 TRM=TRM+SUM*ALP(W1,M1,COSTH)*DCOS(M1*PHI)
 TRM1=TRM1+SUM*ALP(N1,M1,-COSTH)*DCOS(M1*PHI)
 450 CONTINUE
 DAR(I,J)=TRM
 DAR(I,J1)=TRM1
453 DAR(I1,J)=DAR(I,J)
455 DAR(I1,J1)=DAR(I,J1)
*** PLOT CONTOURS
DO 460 I=1,NTR
 ANG=2*(I-1)*PIE/NTR
 AX1=.01*COS(ANG)
 AY=.01*SIN(ANG)
 CALL PLOT(AX1,AY,-3)
 CALL SYMBOL(-.5,6.,.21,CLAB(I,KJI),0.,9)
460 CALL CNTRP1(X2,NPTP2,X2,NPTP2,DAR,10,0,IFL)
 CALL PLOT(10.,0.,-3)
465 CONTINUE
GO TO 10
495 IF (IPLSW.NE.0) CALL PLOT(0.,0.,999)
500 STOP
END
SUBROUTINE COEF
IMPLICIT REAL*8 (A-H,O-Z)
GENERATES EXPANSION COEFFICIENTS
COMPLEX*16 FKP,ANP,BNP,ALPNP,BJNP,BHNP,BJHP1(500),BJHP2(500)
1,SJNP1(100),SHNP1(100),DELP1,SNT11,SNT12,SNT21,SNT22,TNT11,TNT12,
INT12,INT22,ETAP1,ETAP2,EP1,EP2,SNP11,SNP12,SNP21,SNP22,TNP11,TNP
12,TNP21,TNP22,DEL1,DEL2,RATIO,Z
COMMON FKP(7),ANP(300),BNP(300),ALPNP(300),BJNP(300),BHNP(300),BJHP1(300),BJHP2(300),BNP(100),BHN
1P(100),BDP(6),P(51),DP(50),R,THETA,COSTH,PHI,SINTH,STOPR,EO
COMMON /A/NORG,NREG,NRT,NSBF,NMINNC,ICODE
DIMENSION NTER(6)
 COMPUTE EXPANSION COEFFICIENTS AN1,BN1,ANN,BNN,ALPN1,BETN1,
 ALPNN,BETNN
N1=1
NMIN=100
DO 10 NR=1,NORG
 CALL BJYH(SJNP1,SHNP1,FKP(NR)*BDP(NR),N,STOPR,NMIN)
 CALL BJYH(BJNP,BHNP,FKP(NR+1)*BDP(NR),NN,STOPR,NMIN)
 NMIN=MINO(N,NN,NMIN)
 N2=N1+NMIN
 DO 5 I=1,NMIN
 ALPNP(I)=DCMPLX(0.DO,0.DO)
 RETNP(I)=DCMPLX(0.DO,0.DO)
 5 N2=N2+1
 N1=N1+NMIN
10 NTER(NR)=NMIN
 NMIN=NMIN-2
 IF (NMIN.LE.50.AND.N2.LE.301) GO TO 20
 PRINT 15,N2,NMIN
15 FORMAT ('OCOEF ERROR: N2 =',13,' NMIN =',13,' DIMENSIONS ARE TOO
 SMALL')
 STOP
20 DO 25 I=1,NMIN
 ALPNP(I)=DCMPLX(0.DO,0.DO)
 RETNP(I)=DCMPLX(0.DO,0.DO)
25
NSUM = NORG * NMIN
DO 35 I = 1, NMIN
JJ = 0
KK = 0
XI = I
XI1 = I + 1
XI2 = 2 * I + 1
SNT1 = DCMPLX(1.0D0, 0.0D0)
SNT2 = DCMPLX(0.0D0, 0.0D0)
SNT21 = SNT12
SNT22 = SNT11
TNT11 = SNT11
TNT12 = SNT12
TNT21 = SNT12
TNT22 = SNT11
DO 30 J = 1, NORG
KK = KK + NTER(J)
KKI = KK + I
JJI = JJ + I
ETAP1 = (XI1 * BJHP1(JJI) - XI * BJHP1(JJI + 2)) / XI2
ETAP2 = (XI1 * BJHP2(JJI) - XI * BJHP2(JJI + 2)) / XI2
ZEP1 = (XI1 * BJHP1(KKI) - XI * BJHP1(KKI + 2)) / XI2
ZEP2 = (XI1 * BJHP2(KKI) - XI * BJHP2(KKI + 2)) / XI2
DELNP = BJHP1(JJI + 1) * ZEP1 - BJHP1(KKI + 1) * ETAP1
RATIO = FKP(J + 1) / FKP(J)
Z = RATIO * ETAP2
SNP1 = (Z * BJHP1(JJI + 1) - Z * BJHP1(KKI + 1)) / DELNP
SNP2 = (Z * BJHP2(JJI + 1) - Z * BJHP2(KKI + 1)) / DELNP
Z = SNP2
SNT11 = SNT11 + SNP1 + SNP2
SNT12 = SNP1 + SNP2
Z = SNT11
SNT21 = SNT21 + SNP1 + SNP2
SNT22 = SNP1 + SNP2
Z = SNP2
Z = SNP2
TNP1 = (Z * BJHP2(JJI + 1) - BJHP1(KKI + 1) * ETAP1) / DELNP
TNP2 = (Z * BJHP2(KKI + 1) - BJHP1(KKI + 1) * ZEP1) / DELNP
Z = TNP1
TNP21 = (BJHP1(JJI + 1) * ETAP2 - Z * BJHP2(JJI + 1)) / DELNP
TNP22 = (BJHP1(JJI + 1) * ZEP2 - Z * BJHP2(KKI + 1)) / DELNP
Z = TNP1
TNT11 = TNT11 + TNP1 + TNP2
TNT12 = TNP1 + TNP2
Z = TNT1
TNT21 = TNT21 + TNP1 + TNP2
TNT22 = TNP1 + TNP2
J = JJ + 2 * NTER(J)
30
KK = KK + NTER(J)
ANP(1) = SNT11 - (SNT12 * SNT21) / SNT22
BNP(1) = TNT11 - (TNT12 * TNT21) / TNT22
LL = NSUM + I
ANP(LL) = DCMPLX(1.0D0, 0.0D0)
BNP(LL) = DCMPLX(1.0D0, 0.0D0)
ALPNP(LL) = - SNT21 / SNT22
SUBROUTINE EVEC(PD)
IMPLICIT REAL*8 (A-H,O-Z)
COMPUTES THE RADIAL,COLATITUDE, AND AZIMUTHAL
COMPONENTS OF ELECTRIC FIELD VECTOR E FOR
REGION P AND SCALAR PRODUCT E.E*
COMPLEX*16 FKP,ANP,BNP,ALPNP,BETNP,BJNP,BHNP,ERAD,ETHETA,EPHI,T,T1

35 BETNP(LL)=TNT21/TNT22
IF (NORG.EQ.1) RETURN
COMPUTE EXPANSION COEFFICIENTS AN2,...,AN(N-1);BN2,...,BN(N-1);
;ALPN2,...,ALPN(N-1);BETN2,...,BETN(N-1)
JJ=0
KK=0
MM1=0
MM2=NMIN
NRM1=NORG-1
DO 45 J=1,NRM1
KK=KK+NTER(J)
DO 40 I=1,NMIN
JJ=J+I
XI=I
XII=I+1
XI2=Z*I+1
ETAPI=(XI1*BJHP1(JJI)-XI*BJHP1(JJI+2))/XI2
ETAP2=(XI1*BJHP2(JJI)-XI*BJHP2(JJI+2))/XI2
ZEP1=(XI1*BJHP1(KKI)-XI*BJHP1(KKI+2))/XI2
ZEP2=(XI1*BJHP2(KKI)-XI*BJHP2(KKI+2))/XI2
DELNP=BJHP1(JJI+1)*ZEP1-BJHP1(KKI+1)*ETAPI
RATIO=FKP(J+1)/FKP(J)
Z=RATIO*ETAP2
SNP11=(ZEP1*BJHP2(JJI+1)-Z*BJHP1(KKI+1))/DELNP
SNP21=(Z*BJHP1(JJI+1)-ETAP1*BJHP2(JJI+1))/DELNP
Z=RATIO*ZEP2
SNP12=(ZEP1*BJHP2(KKI+1)-Z*BJHP1(KKI+1))/DELNP
SNP22=(Z*BJHP1(JJI+1)-ETAP1*BJHP2(KKI+1))/DELNP
DEL1=SNP11*SNP22-SNP12*SNP21
Z=RATIO*ZEP1
TNPI1=(Z*BJHP2(JJI+1)-BJHP1(KKI+1))*ETAP2)/DELNP
TNP12=(Z*BJHP2(KKI+1)-BJHP1(KKI+1))*ZEP2)/DELNP
Z=RATIO*ETAP1
TNP21=(BJHP1(JJI+1)*ETAP2-Z*BJHP2(JJI+1))/DELNP
TNP22=(BJHP1(JJI+1)*ZEP2-Z*BJHP2(KKI+1))/DELNP
DELP=TNP11*TNP22-TNP12*TNP21
NN1=MM1+I
NN2=MM2+I
ANP(NN2)=(ANP(NN1)*SNP22+ALPNP(NN1)*SNP12)/DELP
BNP(NN2)=(BNP(NN1)*TNP22-BETNP(NN1)*TNP12)/DELP
ALPNP(NN2)=(-ANP(NN1)*SNP21+ALPNP(NN1)*SNP11)/DELP
40 BETNP(NN2)=(-BNP(NN1)*TNP21+BETNP(NN1)*TNP11)/DELP
JJ=JJ+2*NTER(J)
KK=KK+NTER(J)
MM1=MM1+NMIN
45 MM2=MM2+NMIN
RETURN
END
1, C, W, X, Y, Z
COMMON FKP(7), ANP(300), BNP(300), ALPNP(300), BETNP(300), BJNP(100), BH
1NP(100), BDP(6), P(51), DP(50), R, THETA, COSTH, PHI, SINTH, STORP, EO
COMMON / A/NORG, NREG, NRT, NSBF, NMIN, NC, ICODE
DATA EPS/1.D-8/
ERAD = DCMPLX(0.DO, 0.DO)
ETHETA = DCMPLX(0.DO, 0.DC)
EPHI = DCMPLX(0.DO, 0.DO)
NCK = 0
NN = (NREG - 1) * NMIN
IR = 0
DO 25 N = 1, NC
FAC1 = 2 * N + 1
nnn = nnn
W = BNP(NNN)
X = BJNP(N + 1)
Y = BETNP(NNN)
Z = BHNP(N + 1)
NCK = NCK + 1
IF (IR.EQ.1) GO TO 5
T = FAC1 * P(N) * (W * X + Y * Z)
CALL TERM(NCK, T, 1)
ERAD = ERAD + T
IF (CDABS(T).LT.CDABS(ERAD) * EPS) IR = 1
5 IF (ITP.EQ.1) GO TO 20
T = ANP(NNN) * X + ALPNP(NNN) * Z
CALL TERM(NCK, T, 0)
NP1 = N + 1
RATIO = FAC1 / (N * NP1)
A = NP1
R = N
T1 = (W * (A * BJNP(N) - B * BJNP(N + 2)) + Y * (A * BHNP(N) - B * BHNP(N + 2))) / FAC1
CALL TERM(NCK, T1, 1)
IF (SINTH.GT.1.D-6) GO TO 10
A = FAC1 / 2.DO
IF (THETA.GE.3.141591.DO) A = A * (-1.DO)**WP1
GO TO 15
10 A = RATIO * P(N) / SINTH
15 C = A * T + B * T1
ETHETA = ETHETA + C
T = A * T1 + B * T
EPHI = EPHI + T
IF (CDABS(C).LT.CDABS(ETHETA) * EPS .AND. CDABS(T).LT.CDABS(EPHI) * EPS)
ITP = 1
20 IF (IR + ITP.EQ.2) GO TO 35
25 IF (NCK.EQ.4) NCK = 0
PRINT 30, NMIN, NC, STORP, EPS
30 FORMAT (15X, 'NMIN = ', I3, ', NC = ', I3, ', STOPR = ', I1PD14.4, ' IS TOO SMALL FOR ACCURACY OF', D14.4)
CALL FOR DREAL (ECOSPH = EO * DCONJG(EPHI)
ERAD = -ECOSPH / (FKP(NREG) * R) * ERAD
ETHETA = ECOSPH * ETHETA
EPHI = EO * DCONJG(EPHI)
PD = DREAL (ERAD * DCONJG(ERAD)) + DREAL (ETHETA * DCONJG(ETHETA)) + DREAL (EPHI)
II*DCONJG(EPHI))
RETURN
END

SUBROUTINE TERM(NCK,T,KEY)
IMPLICIT REAL*8 (A-H,O-Z)
COMPUTES I**NCK*(N-TH TERM IN SERIES)
COMPLEX*16 T
IF (KEY.EQ.1) GO TO 5
GO TO (10,15,20,25),NCK
5 T=DCMPLX(-DIMAG(T),DREAL(T))
GO TO 25
10 T=-T
GO TO 25
20 T=DCMPLX(DIMAG(T),-DREAL(T))
25 RETURN
END

SUBROUTINE PL
IMPLICIT REAL*8 (A-H,O-Z)
ASSOCIATED LEGENDRE FUNCTIONS OF THE FIRST KIND, DEGREE K AND ORDER 1 AND THEIR FIRST DERIVATIVES
COMPLEX*16 FKP,ANP,BNP,ALPNP,BETNP,BJNP,BHNP
COMMON FKP(7),ANP(300),BNP(300),ALPNP(300),BETNP(300),BJNP(100),BH1NP(100),BDP(6),P(51),DP(50),R,THETA,COSTH,SINTH,STOPR,EO
COMMON /A/NORG,NREGNRT,NSBF,NMINNC,ICODE
P(1)=SINTH
P(2)=3.DO*SINTH*COSTH
DP(1)=COSTH
DO 10 M=2,NC
A=M
MP1=M+1
P(MP1)=(2.DO*A+1.DO)/A*COSTH*P(M)-(A+1.DO)*P(M-1)
IF (SINTH.GT.1.D-6) GO TO 5
DP(M)=M*MP1/2
IF (THETA.GE.3.141591DO)DP(M)=(-1.DO)**M*DP(M)
GO TO 10
5 DP(M)=(A*COSTH*P(M)-(A+1.DO)*P(M-1))/SINTH
10 CONTINUE
RETURN
END

FUNCTION ALP(N,M,X)
IMPLICIT REAL*8 (A-H,O-Z)
ASSOCIATED LEGENDRE FUNCTIONS OF THE FIRST KIND, DEGREE N AND ORDER M. N AND M GTE 0, N GTE M
FM=M
IF (M.GT.0) GO TO 5
P1=1.DO
GO TO 25
5 IF (M.GT.1) GO TO 10
SUM=2.DO
GO TO 20
10 J=2*M
 SUM=J
 IS=M-1
 DO 15 I=1,IS
15 SUM=SUM*(J-I)
20 PI=SUM*((1.DO-X*X)**(FM/2.DO))/(2.DO**M)
25 IF (N.NE.M) GO TO 30
 ALP=PI
 GO TO 40
30 ALP=(2.DO*FM+1.DO)*X*PI
 IF (N.EQ.M+1) GO TO 40
 IS=N-M
 DO 35 I=2,IS
 P2=ALP
 C1=2*(M+I)-1
 ALP=(C1*X*P2-(C1-I)*PI)/I
35 PI=P2
40 RETURN
END

SUBROUTINE RFNDN(RSTART,STEP1,E,NRTS,M1,NITR)
IMPLICIT REAL*8 (A-H,O-Z)

ROOT FINDER
COMMON /A/NORG,NREG,NRT,NSBF,NMIN,NC,ICODE
COMMON /B/FACT(6,25,18),AJ(6,25,18),XLAMDA(25,18),SBDP1(6),RHOP(6),CP(6),BP(6),TCP(6),H
EXTERNAL FNICAL
STEP=STEP1
M=M1-3
I=1
SL=RSTART
5 X=SL
 NRT=I
 W=FNICAL(X)
10 IF (W) 15,55,25
15 DO 20 J=1,M
 X=X+STEP
 V=FNICAL(X)
 IF (V) 50,55,30
20 W=V
 GO TO 35
25 DO 30 J=1,M
 X=X+STEP
 V=FNICAL(X)
 IF (V) 50,55,30
30 W=V
35 IF(M.GT.1000) GO TO 40
 M=M+1
 STEP=STEP*1.D1
 GO TO 10
40 PRINT 45,SL,X
45 FORMAT ('ORFNDR ERROR: NO ROOTS FROM',1PE14.4,' TO',E14.4)
STOP
50 SL=X-STEP
SR=X
CALL DRTMI(X,F,FNCAL,SL,SR,W,V,E,NITR)

55 XLAMDA(I,NSBF)=X
SL=X+STEP
IF (I+NSRF.EQ.2) STEP =DMAX1(X/10.DO,STEP)
IF (I.GT.1)STEP=(X-XLAMDA(I-1,NSBF))/10.DO
I=I+1
IF (I.LE.NRTS) GO TO 5
RETURN
END

SUBROUTINE DRTMI(X,F,FCT,XLI,XRI,FLI,FRJ,EPSIEND)
IMPLICIT REAL*8 (A-H,O.-Z)

BISECTION METHOD
XL=XLI
XR=XRI
FL=FLI
FR=FRJ
I=0
TOLF=100.DO*EPS
DO 30 K=1,IEND
X=.5D0*(XL+XR)
F=FCT(X)
IF (F.EQ.0.DO) GO TO 45
IF (DSIGN(1.DO,F)+DSIGN(1.DO,FR).NE.0.DO) GO TO 10
TOL=XL
XL=XR
XR=TOL
TOL=FL
FL=FR
FR=TOL
TOL=F-FL
A=F*TOL
A=A+A
IF (A.GE.FR*(FR-FL)) GO TO 25
IF (I.GT.IEND) GO TO 25
A=FR-F
DX=(X-XL)*FL*(1.DO+F*(A-T0L)/(A*(FR-.FL)))/TOL
XM=X
FM=F
X=XL-DX
F=FCT(X)
IF (F.EQ.0.DO) GO TO 45
TOL=EPS
A=DABS(X)
IF (A.GT.1.DO)TOL=EPS*A
IF (DABS(DX).GT.TOL) GO TO 15
IF (DABS(F).LE.TOLF) GO TO 45
15 IF (DSIGN(1.DO,F)+DSIGN(1.DO,FL).NE.0.DO) GO TO 20
XR=X
FR=FM
GO TO 5
20 XL=X
FL=F
XR=XM
FR=FM
GO TO 5
25 XR=X
FR=F
TOL=EPS
A=DABS(XR)
IF (A.GT.1.DO)TOL=TOL*A
IF (DABS(XL-XR).GT.TOL) GO TO 30
IF (DABS(FR-FL).LE.TOL) GO TO 40
30 CONTINUE
PRINT 35,XL,XR
35 FORMAT ('ODRTMI ERROR: ROOT BETWEEN',1PD15.7, ', AND',D1S.7,,' MAY BE INACCURATE')
40 IF (DABS(FR).LE.DABS(FL)) GO TO 45
X=XL
F=FL
45 RETURN
END

FUNCTION FNCAL(EIGV)
FUNCTION EVALUATOR USED IN THE DETERMINATION OF THE EIGENVALUES LAMBDAK
IMPLICIT REAL*8 (A-H,O-Z)
COMMON /B/FACT(6,25,18),AJ(6,25,18),BY(6,25,18),XLAMDA(25,18),SBDP
1(6),RHO(6),CP(6),BP(6),TCP(6),H
COMMON /C/AJ1,S,F,R,,1
COMMON /A/NORG,NREG,NRT',NSBF,NMIN,NC,ICODE
BY(I,NRT,NSBF) = 0.00
DO 35 I = 1,NORG
S = (EIGV*RHO(I)*CP(I)-BP(I))/TCP(I)
F=DSQRT(DABS(S))
FACT(I,NRT,NSBF)=F
IF (I.NE.1) GO TO 27
IF (F.NE.O.DO) GO TO 5
AJ(I,NRT,NSBF)=AJ1
GO TO 30
5 AJ(I,NRT,NSBF)=AJ1/F**(NSBF-1)
IF (S.LT.0.DO) AJ(I,NRT,NSBF)=AJ(I,NRT,NSBF)/((-1)**((NSBF-1)/2))
GO TO 30
27 R=SBDP(I-1)
CALL SRBF(AM,BM,ATM,BTM)
DELTA = AM*BTM-ATM*BM
T1 = AJ(I-1,NRT,NSBF)*A + BY(I-1,NRT,NSBF)*BE
T2 = AJ(I-1,NRT,NSBF)*AT + BY(I-1,NRT,NSBF)*BT
AJ(I,NRT,NSBF) = (T1*BTM-T2*BM)/DELTA
BY(I,NRT,NSBF) = (T2*AM-T1*ATM)/DELTA
30 R=SBDP(I)
35 CALL SRBF(A,BE,AT,BT)
FNCAL=AJ(NORG,NRT,NSBF)*AT+BY(NORG,NRT,NSBF)*BT
1 +H*(AJ(NORG,NRT,NSBF)*A+BY(NORG,NRT,NSBF)*BE)
RETURN
END

SUBROUTINE BJYH(BJNP,BHNP,Z,N,STOPR,NBF)
IMPLICIT COMPLEX*16(A-H,O-Z)
DIMENSION BJNP(62),BHNP(62)
REAL*8 STOPR,X,XNPH,DREAL,DIMAG
BJNP(1)=CDSIN(Z)/Z
BJNP(2)=(BJNP(1)-CDCOS(Z))/Z
ZTI=DCMPLX(-DREAL(Z),DREAL(Z))
T1=DEXP(ZTI)/Z
T1=DCMPLX(DIMAG(T1),-DREAL(T1))
BHNP(1)=T1
BHNP(2)=DCMPLX(DIMAG(T1),-DREAL(T1))*((1.DO-1.DO/ZTI)
ZSO=Z*Z
TIZ=2.DO/Z
X=1.DO/STOPR
DO 15 N=3,NBF
XNPH=DFLOAT(N)-.D
XNU=-(XNPH+1.DO)*TDZ
A1=XNPH*TDZ
DEN=XNU+1.DO/A1
F=XNU/(DEN*A1)
CF=-TDZ
DO 5 I=2,200
CF=-CF
A1=CF*(XNPH+I)
XNU=A1+1.DO/XNU
DEN=A1+1.DO/DEN
F1=XNU/DEN
F=F*F1
IF (DABS(CDABS(F1)-1.DO).LT.1.D-14) GO TO 10
5 CONTINUE
N=N-1
120 IF (N.LT.5) PRINT 25,N,Z
25 FORMAT (25X,'ONLY',13,'BESSEL FUNCTIONS FOR Z =',1P2D12.4)
RETURN
END

SUBROUTINE SRBF (A,Y,AD,YD)
GET J, J', Y AND Y' FOR NEWTON'S COOLING FUNCTION AND RETURN
THE APPROPRIATE PART OF COMPLEX VALUES ADJUSTED FOR REAL
VALUE CALCULATIONS
IMPLICIT REAL*8 (A-H,O-Z)
COMMON /NORG,NREG,NRT,NSBF,NMIN,NC,ICODE
COMMON /FACT(6,25,18),AJ(6,25,18),BY(6,25,18),XLAMDA(25,18),SBDP
l(6),RHOP(6),CP(6),BP(6),TCP(6),H
COMMON /C/AJ1,S,F,R,I
COMMON*16 BJ,YF,BJD,BYD
COMMON /BES/BJ,YF,BJD,BYD,RJ,RY,RJD,RYD
IF (S) 5,15,20
5 CALL CSBFD(DCMPLX(0.DO,R*F))
FOR S<0.
IF (NSBF.EQ.2*(NSBF/2)) GO TO 10
FOR S<0. AND EVEN ORDER BESSEL FUNCTIONS
A=DREAL(BJ)
Y=DIMAG(YF)
135
IF (ICODE.EQ.1) GO TO 25
C=TCP(I)*F
AD=-C*DIMAG(BJD)
YD=C*DREAL(BYD)
GO TO 25
FOR S<0. AND ODD ORDER BESSEL FUNCTIONS
10 A=DIMAG(BJ)
Y=DREAL(YF)
IF (ICODE.EQ.1) GO TO 25
C=TCP(I)*F
AD=C*DREAL(BJD)
YD=-C*DIMAG(BYD)
GO TO 25
FOR S=0.
15 A=R**(NSBF-1)
Y=1.DO/R**(NSBF)
IF (ICODE.EQ.1) GO TO 25
AD=TCP(I)*(NSBF-1)*R**(NSBF-2)
YD=-TCP(I)*(NSBF)/R**(NSBF+1)
GO TO 25
FOR S>0.
20 CALL SBFAD(R*F)
A=RJ
Y=RY
IF (ICODE.EQ.1) GO TO 25
C=TCP(I)*F
AD=C*RJD
YD=C*RYD
25 RETURN
END

SUBROUTINE SBFAD(Z)
SPHERICAL BESSEL FUNCTIONS OF THE FIRST
AND SECOND KINDS AND THEIR FIRST DERIVATIVES
FOR REAL ARGUMENT
IMPLICIT REAL*8 (A-H,O-Z)
COMMON /A/NORG,NREG,NRr,NSBF,NMIN,NC,ICODE
COMPLEX*16 BJYF,BJD,BYD
COMMON /BES/BJ,YF,BJD,BYD,RJ,RY,RJD,RYD
COMMON /C/AJI,S,F,R,I
SINZ = DSIN(Z)/Z
COSZ = DCOS(Z)/Z
YI = -COSZ
RY = YI/Z - SINZ
IF(NSBF.GE.3) GO TO 12
IF(NSBF.GE.3) GO TO 12
IF(NSBF.GE.3) GO TO 12
RJ = SINZ
RY=-COSZ
IF(ICODE.EQ.1) GO TO 55
RJD= COSZ - SINZ/Z
RYD = SINZ + COSZ/Z
GO TO 55
12 IF (I.EQ.1) GO TO 25
DO 15 M = 3,NSBF
YO=YI
YI=RY
15
IF (DARS(Y1).GT.1J) PRINT 500,NRT,M,NSBF,Z,Y1 1308
500 FORMAT (' SBFAD: ROOT',I3,' FOR BF',I3,' OF',I3,' Z = ',1PD12.4, 1309
1' Y = ',D12.4) 1310
1311 15 RY = (2*M-3)*Y1/Z - Y0 1312
25 C = DABS(Z) 1313
IF(C.GE.3.DO) GO TO 30 1314
RJ = BESI(NSBF-1,Z) 1315
GO TO 35 1316
30 RJ = SBFJ(NSBF-1,Z) 1317
35 IF(ICODE.EQ.1) GO TO 55 1318
IF(NSBF.GT.2) GO TO 40 1319
BJ1 = SINZ 1320
GO TO 50 1321
40 IF(C.GE.3.DO) GO TO 45 1322
BJ1 = BESI(NSBF-2,Z) 1323
GO TO 50 1324
45 BJ1 = SBFJ(NSBF-2,Z) 1325
50 RJD = RJ1 - NSBF*RJ/Z 1326
RYD = Y1 - NSBF*RY/Z 1327
55 RETURN 1328
END 1329
1330
FUNCTION BESI(N,Z) 1331
IMPLICIT REAL*8 (A-H,O-Z) 1332
BESI=DSIN(Z)/Z 1333
IF (N.EQ.0) GO TO 15 1334
TDZ=2.DO/Z 1335
I=0 1336
DO 10 M=1,N 1337
XNUPH=DFLOAT(M)+.5DO 1338
AO=XNUPH*TDZ 1339
A1=-(XNUPH+1.DO)*TDZ 1340
RNUM=A1+1.DO/AO 1341
RDEN=A1 1342
COLD=AO*RNUM/RDEN 1343
CFAC=-TDZ 1344
DO 5 I=2,200 1345
CFAC=-CFAC 1346
A=CFAC*(XNUPH+I) 1347
RNUM=A+1.DO/RNUM 1348
RDEN=A+1.DO/RDEN 1349
C=RNUM/RDEN 1350
COLD=COLD*C 1351
IF (DABS(DABS(C)-1.DO).LT.1.D-8) GO TO 10 1352
5 CONTINUE 1353
10 BESI=BESI/COLD 1354
15 RETURN 1355
END 1356
1357
FUNCTION SBFJ(N,Z) 1358
IMPLICIT REAL*8 (A-H,O-Z) 1359
Q=0.DO 1360
P=1.DO 1361
IF (N.EQ.0) GO TO 10 1362
XN1=N+1 1363
1364
XN2=N
F=1.DO
Z2=2.DO*Z
T=1.DO
5 T=T*((XN1*XN2)/(F*Z2))
Q=Q+T
IF (XN2.EQ.1.DO) GO TO 10
XN1=XN1+1.DO
XN2=XN2-1.DO
F=F+1.DO
T=-T*((XN1*XN2)/(F*Z2))
P=P+T
IF (XN2.EQ.1.DO) GO TO 10
XN1=XN1+1.DO
XN2=XN2-1.DO
F=F+1.DO
GO TO 5
10 A=Z-N*1.5707963267948965D0
SBFJ=(P*DSIN(A)+Q*DCOS(A))/Z
RETURN
END

SUBROUTINE CSBFD(Z)
IMPLICIT COMPLEX*16 (A-H,O-Z)
COMMON /BES/BJ,YF,BJD,BYD
COMMON /A/NORG,NREG,NRT,NSBF,NMIN,NC,ICODE
COMMON /C/AJ1,S,F,R
REAL*8 C,AJ1,S,F,R
C = CDABS(Z)
SINZ = CDSIN(Z)/Z
COSZ = CDCOS(Z)/Z
Y1 = -COSZ
YF = Y1/Z - SINZ
IF (NSBF.GE.3) GO TO 12
IF (NSBF.GT.1) GO TO 25
BJ = SINZ
YF = -COSZ
IF (ICODE.EQ.1) GO TO 55
BJD = COSZ - SINZ/Z
BYD = SINZ + COSZ/Z
GO TO 55
12 IF (I.EQ.1) GO TO 25
DO 15 M = 3,NSBF
YO=Y1
Y1=YF
15 YF = (2*M-3)*Y1/Z - YO
25 IF (C.GE.15.DO) GO TO 30
BJ = BES1C(NSBF-1,Z)
GO TO 35
30 BJ = SBFJC(NSBF-1,Z)
35 IF (ICODE.EQ.1) GO TO 55
IF (NSBF.GT.2) GO TO 40
BJ1= SINZ
GO TO 50
40 IF (C.GE.15.DO) GO TO 45
BJ1 = BES1C(NSBF-2,Z)
GO TO 50

45 BJ1 = SBFJC(NSBF-2,Z)
50 BJD = BJ1 - NSRF*BJ/Z
BYD = Y1 - NSBF*YF/Z
55 RETURN
END

FUNCTION BESIC(N,Z)
IMPLICIT COMPLEX*16 (A-H,O-Z)
BESIC = COSIN(Z)/Z
IF(N.EQ.0) GO TO 15
BESIC = (BESIC-COSIN(Z))/Z
IF (N.EQ.1) GO TO 15
TDZ = 2.DO/Z
DO 10 M = 2,N
CM = DCmplx(DFLOAT(M),O.DO)
XNUPH = CM + .5DO
AO = XNUPH*TDZ
A1 = -(XNUPH + 1.DO)*TDZ
RNUM = A1 + 1.DO/AO
RDEN = A1
COLD = AO*RNUM/RDEN
CFAC = -TDZ
DO 5 I = 2,200
CI = DCmplx(DFLOAT(I),O.DO)
CFAC = -CFAC
A = CFAC*(XNUPH + CI)
RNUM = A + 1.DO/RNUM
RDEN = A + 1.DO/RDEN
C = RNUM/RDEN
COLD = COLD*C
IF(DABS(CDABS(C)-1.DO).LT.1.D-8) GO TO 10
5 CONTINUE
10 BESIC = BESIC/COLD
15 RETURN
END

FUNCTION SBFJC(N,Z)
IMPLICIT COMPLEX*16 (A-H,O-Z)
REAL*8 XN1,XN2,F,DREAL,DIMAG
Q=O.DO
P=1.DO
IF (N.EQ.0) GO TO 10
XN1=N+1
XN2=N
F=1.DO
Z2=2.DO*Z
T=1.DO
5 T=T*((XN1*XN2)/(F*Z2))
Q=Q+T
IF (XN2.EQ.1.DO) GO TO 10
XN1=XN1+1.DO
XN2=XN2-1.DO
F=F+1.DO
T=-T*((XN1*XN2)/(F*Z2))
P=P+T
IF (XN2.EQ.1.DO) GO TO 10
XN1=XN1+1.DO
XN2=XN2-1.DO
F=F+1.DO
GO TO 5
10 A =? - DCMPLX(DFLOAT(N)*1.5707963267948965D0,0.DO)
T = (P*COSIN(A)+Q*DCOS(A))/Z
IF (DREAL(Z).EQ.0.DO) GO TO 17
SBFJC=T
GO TO 20
17 IF (N.NE.2*(N/2)) GO TO 15
SBFJC=DCMPLX(DREAL(T),0.DO)
GO TO 20
15 SBFJC=DCMPLX(0.DO,DIMAG(T))
20 RETURN
END

SUBROUTINE EPROP(F,ITIS,EPS,SIG)
IMPLICIT REAL*8 (A-H,O-Z)
INTERPOLATE EPS AND SIGMA FROM TABLES
F FREQUENCY IN MEGAHERTZ
ITIS TISSUE TYPE
1 DENOTES CEREBROSPINAL FLUID
2 DENOTES BLOOD
3 DENOTES MUSCLE
4 DENOTES SKIN OR DURA
5 DENOTES BRAIN
6 DENOTES FAT OR BONE
7 DENOTES YELLOW BONE MARROW
EPS REAL PART OF DIELECTRIC CONSTANT
SIG CONDUCTIVITY
DIMENSION FR(32),EA(32,7),SA(32,7),SA1(128),SA5(96),EA1(128),EA5(9)
EQUIVALENCE (SA1,SA),(SA5,SA(1,5)),(EA1,EA),(EA5,EA(1,5))
DATA FR/0.1D8,.1259D8,.1585D8,.1995D8,.2512D8,.3162D8,.3981D8,.501D8/1515
12D8,.6310D8,.7943D8,.109,.1259D9,.1585D9,.1995D9,.2512D9,.3162D9,.31516
12D10,.3162D10,.3981D10,.5012D10,.631D10,.7943D10,.891D10,.1D11/1518
DATA SA1/.75D0,.762D0,.7800,.798D0,.816D0,.84D0,.876D0,.900,.96D0,1519
1.102D0,.114D1,.122D1,.130D1,.139D1,.145D1,.152D1,.157D1/1620
1.164D1,.174D1,.181D1,.193D1,.206D1,.229D1,.261D1,.3D4D1/1521
1.374D1,.471D1,.642D1,.918D1,.1076D1,.123D2,.6875D0,.6985D0,.711522
150D0,.7315D0,.748D0,.7700,.80300,.825D0,.88D0,.935D0,.104D0,.112D0/1523
11.119D0,.127D0,.133D1,.139D1,.144D1,.147D0,.150D1,.159D1,1524
1.166D1,.177D1,.189D1,.21D1,.239D1,.282D1,.343D1,.432D1,.51525
188D1,.841D1,.986D1,.113D2,.625D0,.635D0,.6500,.665D0,.68D0,.7D1526
10.73D0,.75D0,.78D0,.85D0,.95D0,.102D0,.109D0,.116D0,.121D0,.127D1/1527
1.131D0,.134D1,.137D1,.145D1,.151D1,.161D1,.172D1,.191D1,.218D1,.241528
17D1,.312D1,.39D1,.53D0,.765D1,.897D1,.1D3D2,.531D0,.593D0,.551529
12D50,.565D0,.587D0,.595D0,.620D0,.637D0,.68D0,.722D0,.807D0,.851530
1.867D0,.926D0,.986D0,.102D0,.108D0,.114D0,.119D0,.116D0,.12331531
101,.128D1,.136D1,.146D1,.162D1,.185D1,.218D1,.265D1,.334D1,1532
1.454D0,.650D1,.762D0,.875D0/1533
DATA SA5/.4116D0,.4181D0,.428D0,.437D0,.447D0,.461D0,.480D0,.5134
14939D0,.526D0,.559D0,.625D0,.671D0,.718D0,.7639D0,.7968D0,.831535
SUBROUTINE PLTCV1(X,Y,XLEN,YLEN,XTL,YTL,NXTL,NYTL,NP,ICRCT,ISYM,
IMM,XMIN,XMAX,YMIN,YMAX, INPLT,LINTYP,SOCH,OELX,DELY,
NDEC)

WE ARE PLOTTING Y AS A FUNCTION OF X
**** THIS IS A VARIATION OF PLTCRV TO PERMIT SPECIFYING THE BLIP INTERVAL AND THE NUMBER OF DECIMAL PLACES AND CHARACTER SIZE FOR SCALE NUMBERS AND LABELS.

X ARRAY TO PLOT ON X (HORIZONTAL) AXIS - DIMENSION (NP+2)
Y ARRAY TO PLOT ON Y (VERTICAL) AXIS - DIMENSION (NP+2)
XLEN LENGTH IN INCHES OF X AXIS
YLEN LENGTH IN INCHES OF Y AXIS
XTTL ARRAY CONTAINING X AXIS TITLE
YTTL ARRAY CONTAINING Y AXIS TITLE
NX NUMBER OF CHARACTERS IN XTTL
NY NUMBER OF CHARACTERS IN YTTL
NP NUMBER OF POINTS TO PLOT IN ARRAYS X AND Y
ICRCT 0 - PLOT AXES AND LINE PLOT
1 - PLOT LINE ON EXISTING AXES
ISYM CODE (0-13) TO SELECT SYMBOL TO MARK PLOTTED POINTS
IMM 0 - GET SCALE END VALUES BY SCANNING X AND Y ARRAYS
1 - GET SCALE END VALUES FROM INPUT ARGUMENTS
XMIN MINIMUM VALUE ON X AXIS
XMAX MAXIMUM VALUE ON X AXIS
YMIN MINIMUM VALUE ON Y AXIS
YMAX MAXIMUM VALUE ON Y AXIS
INPLT 0 - DRAW SCALES AND LINE
1 - GET MAXIMA AND MINIMA OF X AND Y ARRAYS, NO PLOT
LINPYP MAGNITUDE GIVES FREQUENCY OF SYMBOLS - EVERY LINPYP PTS.
=0 - LINE PLOT, NO SYMBOLS
>0 - LINE PLOT WITH SYMBOLS
<0 - NO LINE, SYMBOLS ONLY
SOCH CHARACTER HEIGHT FOR TITLE AND SCALE (INCHES)
DELY FOR X AXIS, POSITIVE VALUE TO DEFINE UNITS BETWEEN TIC MARKS (USER UNITS). IF DELY = 0., TIC MARKS WILL BE ONE INCH APART.
DELY FOR Y AXIS, POSITIVE VALUE TO DEFINE UNITS BETWEEN TIC MARKS (USER UNITS). IF DELY = 0., TIC MARKS WILL BE ONE INCH APART.
NDEC NUMBER OF DECIMAL PLACES IN SCALE NUMBERS
>=0 - SPECIFIES NUMBER OF DECIMAL PLACES AFTER DECIMAL POINT
-1 - ROUNDED INTEGER DRAWN
DIMENSION X(NP),Y(NP),XTL(1),YTL(1)
IF(ICRCT.EQ.1) GO TO 20
IF(IMM.EQ.1) GO TO 10
XMIN = 1.E35
XMAX = -1.E35
YMIN = 1.E35
YMAX = -1.E35
DO 5 I = 1,NP
XMIN=AMIN1 (X(I),XMIN)
YMIN=AMIN1 (Y(I),YMIN)
XMAX=AMAX1 (X(I),XMAX)
YMAX=AMAX1 (Y(I),YMAX)
5 IF (INPLT.EQ.1) RETURN
10 DELVX = (XMAX-XMIN)/XLEN
DELY = (YMAX-YMIN)/YLEN
CALL BAXIS (0.,0.,XTL,-NXTL,XLEN,0.,XMIN,DELVX,DELY,SOCH,NDEC)
CALL BAXIS (0.,0.,YTL,NYTL,YLEN,90.,YMIN,DELY,DELY,SOCH,NDEC)
20 IF(ISYM.LT.0.OR.ISYM.GT.13) ISYM = 1
X(NP+1) = XMIN
Y(NP+1) = YMIN
X(NP+2) = (XMAX-XMIN)/XLEN
Y(NP+2) = (YMAX-YMIN)/YLEN
CALL LINE(X,Y,NP,1,LINTYP,ISYM)
RETURN
END

SUBROUTINE BAXIS (XPAGE,YPAGE,IBCD,NCHAR,AXLEN,ANGLE,FIRSTV,DELTAV 1,DELTIC,SOCH,NDEC)
THIS SUBROUTINE IS AN EXTENSION OF THE CALCOMP 'AXIS' ROUTINE TO ALLOW THE USER TO SPECIFY THE SIZE OF CHARACTERS, THE DISTANCE BETWEEN TIC MARKS AND THE NUMBER OF DECIMAL PLACES IN THE SCALE NUMBERS.
XPAGE - X COORDINATE OF AXIS STARTING POINT (INCHES)
YPAGE - Y COORDINATE OF AXIS STARTING POINT (INCHES)
IBCD - ARRAY WITH AXIS TITLE
NCHAR - NUMBER OF CHARACTERS IN AXIS TITLE
<0 - ALL NOTATION ON CLOCKWISE SIDE OF AXIS
>0 - ALL NOTATION ON COUNTERCLOCKWISE SIDE
AXLEN - AXIS LENGTH (INCHES) (MUST BE POSITIVE)
ANGLE - ANGLE (POSITIVE OR NEGATIVE) AT WHICH AXIS IS DRAWN (DEGREES)
FIRSTV - STARTING VALUE (MAX OR MIN) OF AXIS AT FIRST TIC (USER UNITS)
DELTAV - INCREMENT OR DECREMENT VALUE ASSOCIATED WITH ONE INCH ON AXIS (USER UNITS)
DELTIC - POSITIVE VALUE TO DEFINE UNITS BETWEEN TIC MARKS (USER UNITS) IF DELTIC = 0., TIC MARKS WILL BE ONE INCH APART.
SOCH - CHARACTER HEIGHT FOR TITLE AND SCALE (INCHES)
NDEC - NUMBER OF DECIMAL PLACES
>=0 - SPECIFIES NUMBER OF DECIMAL PLACES AFTER DECIMAL POINT
-1 - ROUNDED INTEGER DRAWN
DIMENSION IBCD(1)
IF (AXLEN.GT.0..AND.DELTIC.GE.0..AND.NDEC.LE.9) GO TO 10
PRINT 5,AXLEN,DELTIC,NDEC
5 FORMAT ('0**** BAXIS ERROR: AXLEN =',1PD15.7,' DELTIC =,D15.7,' NDEC =',15,' **l')
STOP
10 IF (NDEC.LT.-1)NDEC=-1
AIR=3.1415927*ANGLE/180.
CA=COS(AIR)
SA=SIN(AIR)
DRAW AXIS LINE
CALL PLOT(XPAGE,YPAGE,3)
CALL PLOT(XPAGE+AXLEN*CA,YPAGE+AXLEN*SA,2)
FSTV=FIRSTV
DELV=DELTAV
A=AMAX1(ABS(FSTV),ABS(FSTV+DELV*AXLEN))
M=ALOG10(A)
IF (A.LT..1)M=M-1
TM=10.**M
DTIC=ABS(DELTIC/DELV)
IF (DELTIC.EQ.0)DTIC=1.0
DELV=DELV/TM
FSTV=FSTV/TM
XI=SOCH/2.
TICH=XI
IF (NCHAR.LT.0)TICH=-TICH
XT=-TICH*SA
YT=TICH*CA

COMPUTE POSITION OF AXIS SCALE NUMBERS RELATIVE TO TIC MARKS AND ADJUST FOR NUMBER OF DECIMAL POINTS

FN=X1
IF (NDEC.GE.0)FN=FN*(2+NDEC)
FN=FN-.429*X1
XN=1.4*XT-FN*CA
YN=1.4*YT-FN*SA
IF (NCHAR.GT.0) GO TO 20
 FOR TICS ON CLOCKWISE SIDE OF AXIS, NUMBERS MUST BE MOVED AWAY FROM AXIS BY ONE CHARACTER WIDTH
XN=XN+2.*XT
YN=YN+2.*YT
20 XTIC=XPAGE
YTIC=YPAGE
DX=DTIC*CA
DY=DTIC*SA
FPN=FSTV
DTIC=DTIC*DELV
XN=.571*SOCH-FN
IL=0
LOOP TO DRAW TICS AND SCALE NUMBERS
25 CALL PLOT(XTIC,YTIC,3)
CALL PLOT(XTIC+XT,YTIC+YT,2)
IF (IL.EQ.0.AND.NDEC.GE.0) GO TO 30
X=0.
IF (FPN.LT.0.)X=X1
30 CALL NUMBER(XTIC+XN-X*CA,YTIC+YN-X*SA,SOCH,FPN,ANGLE,NDEC)
XTIC=XTIC+DX
YTIC=YTIC+DY
FPN=FPN+DTIC
ALEN=(XTIC-XPAGE-DX*.5)/CA
IF (ALEN.GT.AXLEN) GO TO 45
IL=IL+1
IF (IL.LE.100) GO TO 25
PRINT 40
40 FORMAT ('0**** BAXIS ERROR: MORE THAN 100 TIC MARKS ****')
STOP
CENTER AXIS TITLE AND PLOT IT
45 IL=IABS(NCHAR)
IF (M.NE.0)IL=IL+4
X=IL*SOCH
HTL=(AXLEN-X)/2.
XN=XPAGE+4.6*XT+HTL*CA
YN=YPAGE+4.6*YT+HTL*SA
IF (NCHAR.GT.0) GO TO 50
 LEAVE ROOM FOR TITLE CHARACTERS ON CLOCKWISE SIDE OF AXIS
XN=XN+2.*XT
YN=YN+2.*YT
50 CALL SYMBOL(XN,YN,SOCH,IBCD,ANGLE,IABS(NCHAR))
IF (M.EQ.0) GO TO 55
ADD SCALE FACTOR
CALL SYMBOL(999.,999.,SOCH,' *10',ANGLE,4)
XN=YN+X*CA-X1*SA
YN=YN+X*SA+1.5*X1*CA
CALL NUMBER(XN,YN,X1,FLOAT(M),ANGLE,-1)
55 RETURN
END

SUBROUTINE CNTRP1(X,NROW,Y,NCOL,D,NLEV1,NSYM1,IFL)
DIMENSION X(NROW) ,Y(NCOL),D(NROW,NCOL),FLEV(10),XST(60),YST(60)
INTEGER*2 IFL(NROW,NCOL),IST(60),JST(60)
NLEV=NLEV1
IF (NLEV.LT.1)NLEV=1
IF (NLEV.GT.10)NLEV=10
NSYM=NSYM1
IF (NSYM.LE.0)NSYM=NROW*NCOL
AXLEN=6.
SCALE THE DATA FOR THE COORDINATE AXES
ZMAX=-1.E38
ZMIN=1.E38
XMAX=-1.E38
XMIN=1.E38
DO 5 I=1,NROW
IF (X(I).GT.XMAX)XMAX=X(I)
IF (X(I).LT.XMIN)XMIN=X(I)
DO 5 J=1,NCOL
IF (D(I,J).GT.ZMAX)ZMAX=D(I,J)
5 IF (D(I,J).GT.0..AND.D(I,J).LT.ZMIN)ZMIN=D(I,J)
YMAX=-1.E38
YM1-1.E+38
DO 10 J=1,NCOL
IF (Y(J).GT.YMAX)YMAX=Y (J)
10 IF (Y(J).LT.YMIN)YMIN=Y (J)
PRINT 15,XMIN,XMAX,YMIN,YMAX,ZMIN,ZMAX
15 FORMAT ('OX RANGE',1P2E12.4,,' Y RANGE',2E12.4,,' Z RANGE',2
1E12.4)
XFAC=AXLEN/(XMAX-XMIN)
YFAC=AXLEN/(YMAX-YMIN)
CDIF1=(ZMAX-ZMIN)/(2*NLEV)
IL=-ALOG10(CDIF1)+1.
20 T=10.**IL
ICDIF=5*((IFIX(CDIF1*T)+2)/5)
S=(ZMIN+ZMAX-FLOAT(2*NLEV*ICDIF))/T.
IS=0
IF (S.NE.0.)IS=5*((IFIX(S*T+2.5*S/ABS(S))/5)
T1=FLOAT(IS+ICDIF)/T
CDIF=FLOAT(2*ICDIF)/T
S=T1+CDIF*(NLEV-1)
S1=CDIF+.1
IF (ZMIN.LT.T1-S1.AND.ZMAX.GT.S+S1.AND.ZMAX.LT.S+CDIF) GO TO 25
IL=IL+1
GOTO 20
25 FLEV(1)=T1
IF (NLEV.EQ.1) GO TO 35
DO 30 K=2,NLEV
30 FLEV(K)=T1+FLOAT(2*ICDIF*(K-1))/T
35 AXLP1=AXLEN+.5
AXLP2=AXLEN+.75
RSQ=X(1)**2
AX2=AXLEN/2.
AX2S=(.985*AX2)**2
NROWM1=NROW-1
NCOLM1=NCOL-1
DO 40 K=1,NLEV
S=FLEV(K)+.001*CDIF
T=FLEV(K)-.001*CDIF
DO 40 I=1,NROW
DO 40 J=1,NCOL
DO 380 K=1,NLEV
F=FLEV(K)
IEND=0
DO 150 I=1,NROWM1
DO 150 J=1,NCOLM1
IFL(I,J)=0
DIJ=D(I,J)
DIJJ=D(I+1,J)
DIJJ1=D(I,J+1)
DIJ1J1=D(I+1,J+1)
IF (DIJ.GT.F.OR.DIJ1L.T.F) GO TO 85
T=DIJ1-F
A=DIJ
B=DIJJ1
45 IF (I.GT.1) GO TO 60
IF (A.GT.0.) GO TO 50
YC=SQR(RSQ-X(I)**2)
IF (Y(J+1).LT.0.)YC=-YC
GO TO 55
50 S=(F-DIJ)/(DIJ1-DIJ)
YC=Y(J)+S*(Y(J+1)-Y(J))
55 IEND=IEND+1
YST(IEND)=YC
XST(IEND)=X(I)
IST(IEND)=0
JST(IEND)=J
60 IF (T.GT.0.) GO TO 80
65 IF (J.LT.NCOLM1) GO TO 80
IF (B.GT.0.) GO TO 70
XC=SQR(RSQ-Y(J+1)**2)
IF (X(I+1).LT.0.)XC=-XC
GO TO 75
70 S=(F-DIJ1)/(DIJ1-JIJ1)
XC=X(I)+S*(X(I+1)-X(I))
75 IEND=IEND+1
YST(IEND)=XC
XST(IEND)=Y(J+1)
IST(IEND)=I
JST(IEND)=NCOL
80 IFL(I,J)=1
GO TO 95
85 IF (DIJ.GT.F.OR.DIJ1.GT.F) GO TO 90
T=F-DIJ1
A=DIJ
B=A
146
GO TO 45
90 B=DI1J
 IF (DIJ.LT.F.AND.DI1J1.GT.F) GO TO 65
 R=DI1J1
 IF (DIJ.GT.F.AND.DI1J1.LT.F) GO TO 65
95 IF (DIJ.GT.F.OR.DI1J.LT.F) GO TO 140
 T=DI1J1-F
 A=DI1J
 B=DI1J1
 100 IF (J.GT.1) GO TO 115
 IF (A.GT.0.) GO TO 105
 XC=SQRT(RSQ-Y(J)**2)
 IF (X(I+1).LT.0.) XC=-XC
 GO TO 110
 105 S=(F-DI1J)/DI1J1-DIJ)
 XC=X(I)+S*(X(I+1)-X(I))
 110 IEND=IEND+1
 XST(IEND)=XC
 YST(IEND)=Y(J)
 IST(IEND)=I
 JST(IEND)=O
 115 IF (T.GT.0.) GO TO 135
 IFL(I,J)=IFL(I,J)+2
 120 IF (I.LT.NROWM1) GO TO 135
 IF (B.GT.0.) GO TO 125
 YC=SQRT(RSQ-X(I+1)**2)
 IF (Y(J+1).LT.0.) YC=-YC
 GO TO 130
 125 S=(F-DI1J)/DI1J1-DIJ)
 YC=Y(J)+S*(Y(J+1)-Y(J))
 130 IEND=IEND+1
 YST(IEND)=YC
 XST(IEND)=X(I+1)
 IST(IEND)=I
 JST(IEND)=J
 135 IF (IFL(I,J).EQ.0) IFL(I,J)=1
 GO TO 150
 140 IF (DIJ.LT.F.OR.DI1J.GT.F) GO TO 145
 T=F-DI1J1
 A=DI1J
 B=A
 GO TO 100
 145 B=DI1J
 IF (DIJ.LT.F.AND.DI1J1.GT.F) GO TO 120
 B=DI1J1
 IF (DIJ.GT.F.AND.DI1J1.LT.F) GO TO 120
 150 CONTINUE
 155 IF (IEND.EQ.0) GO TO 160
 SET UP TO PLOT NEXT CONTOUR FROM EDGE OF GRID
 I=IST(1)
 J=JST(1)
 IOLD=I
 JOLD=J
 CALL PLOT((XST(1)-XMIN)*XFAC,(YST(1)-YMIN)*YFAC,3)
 IF (I.EQ.0) I=1
 IF (J.EQ.0) J=1
 IF (I.EQ.NROW) I=NROW}

IF (J.EQ.NCOL) J=NCOL+1
ISTC=1
GO TO 180

ALL CONTOURS THAT LEAVE GRID HAVE BEEN DRAWN
SET UP TO: PLOT NEXT CONTOUR THAT DOES NOT LEAVE GRID

160 I1=1
165 J1=1

170 IF (IFL(I1,J1).NE.0) GO TO 175
 J1=J1+1
 IF (J1.LT.NCOL) GO TO 170
 I1=I1+1
 IF (I1.LT.NROW) GO TO 165
 GO TO 375
175 ISTC=0
 I=I1
 J=J1

180 ISYM=NSYM-1

FIND ENDS OF LINES IN UPPER LEFT TRIANGLE

185 DIJ=D(I,J)
 DIIJ=D(I+1,J)
 DIJ1=D(I,J+1)
 DIIJ1=D(I+1,J+1)
 IF (DIJ.GT.F.OR.DIJ1.LT.F) GO TO 220
 T=DIIJ1-F
 A=DIJ
 B=DIIJ1
 IF (A.GT.0.) GO TO 195
 YC=SQRT(RSQ-X(I)**2)
 IF (Y(J+1).LT.0.) YC=-YC
 GO TO 200
190 IF (A.GT.0.) GO TO 195
 YC=SQR(RSQ-X(I)**2)
 IF (Y(J+1).LT.0.) YC=-YC
 GO TO 200
195 S=(F-DIJ1)/(DIJ1-DIJ)
 YC=Y(J)+S*(Y(J+1)-Y(J))
200 XC=X(I)
 IB=I-1
 JB=J

IF (T.GT.0.) GO TO 250
IF (IFL(I,J).EQ.2) GO TO 250
IF (B.GT.0.) GO TO 205
XD=SORT(RSQ-Y(J)**2)
IF (X(I+1).LT.0.) XD=-XD
GO TO 210
205 S=(F-DIJ1)/(DIJ1-DIJ)
 XD=X(I)+S*(X(I+1)-X(I))
210 YC1=Y(J+1)
 IE=1
 JE=J+1

IF (IOLD.EQ.IB.AND.JOLD.EQ.JB) GO TO 215
IF (IOLD.NE.IE.OR.JOLD.NE.JE) GO TO 250
215 IFL(I,J)=IFL(I,J)-1
 GO TO 310
220 IF (DIJ.GT.F.OR.DIJ1.GT.F) GO TO 225
 T=F-DIJ1
 A=DIJ1
 B=A
 GO TO 190
225 IF (DIJ.GT.F.OR.DIJ1.GT.F) GO TO 245
 IF (DIJ1.GT.0.) GO TO 235
230 \(XC = \sqrt{RSQ - Y(J+1)^2} \)
\[\text{IF} \ (X(I+1).LT.0.) \ XC = -XC \]
\[\text{GO TO} \ 240 \]

235 \(S = (F-DIJ1)/(DI1J1-DIJ1) \)
\[XC = X(I)+S*(X(I+1)-X(I)) \]

240 \(YC = Y(J+1) \)
\[IB = 1 \]
\[JB = J+1 \]
\[\text{GO TO} \ 250 \]

245 \(\text{IF} \ (DIJ.LT.F \text{ OR} \ DI1J1.GT.F) \ \text{GO TO} \ 250 \)
\[\text{IF} \ (DI1J1.GT.0.) \ \text{GO TO} \ 235 \]
\[\text{GO TO} \ 230 \]

\[\text{FIND ENDS OF LINES IN LOWER RIGHT TRIANGLE} \]

250 \(\text{IF} \ (DIJ.GT.F \text{ OR} \ DI1J.LT.F) \ \text{GO TO} \ 290 \)
\[T = DI1J1-F \]
\[A = DIJ \]
\[B = DI1J1 \]

255 \(\text{IF} \ (A.GT.0.) \ \text{GO TO} \ 260 \)
\[XC1 = \sqrt{RSQ - Y(J)^2} \]
\[\text{IF} \ (X(I+1).LT.0.) \ XC1 = -XC1 \]
\[\text{GO TO} \ 265 \]

260 \(S = (F-DIJ)/(DI1J-DIJ) \)
\[XC1 = X(I)+S*(X(I+1)-X(I)) \]

265 \(\text{IF} \ (T.GT.0) \ \text{GO TO} \ 285 \)
\[\text{IF} \ (IFL(I,J).LT.2) \ \text{GO TO} \ 310 \]
\[XC = XC1 \]
\[YC = Y(J) \]
\[IB = I \]
\[JB = J-1 \]
\[IFL(I,J) = IFL(I,J)-2 \]

270 \(\text{IF} \ (B.GT.0.) \ \text{GO TO} \ 275 \)
\[YC1 = \sqrt{RSQ - X(I+1)^2} \]
\[\text{IF} \ (Y(J+1).LT.0) \ YC1 = -YC1 \]
\[\text{GO TO} \ 280 \]

275 \(S = (F-DI1J)/(DI1J1-DI1J) \)
\[YC1 = Y(J)+S*(Y(J+1)-Y(J)) \]

280 \(XC1 = X(I+1) \)
\[IE = I+1 \]
\[JE = J \]
\[\text{GO TO} \ 310 \]

285 \(YC1 = Y(J) \)
\[IE = I \]
\[JE = J-1 \]
\[IFL(I,J) = 0 \]
\[\text{GO TO} \ 310 \]

290 \(\text{IF} \ (DIJ.LT.F \text{ OR} \ DI1J.GT.F) \ \text{GO TO} \ 295 \)
\[T = DI1J1-F \]
\[A = DIJ \]
\[B = A \]
\[\text{GO TO} \ 255 \]

295 \(\text{IF} \ (DIJ.GT.F \text{ OR} \ DI1J1.LT.F) \ \text{GO TO} \ 305 \)
\[B = DI1J1 \]

300 \(IFL(I,J) = 0 \)
\[\text{GO TO} \ 270 \]

305 \(B = DI1J1 \)
\[\text{IF} \ (DIJ.GT.F \text{ AND} \ DI1J1.LT.F) \ \text{GO TO} \ 300 \]

310 \(\text{IF} \ (ISTC.NE.0) \ \text{GO TO} \ 320 \)
FIRST SEGMENT OF NEW CONTOUR
CALL PLOT(((XC1-XMIN)*XFAC,(YC1-YMIN)*YFAC,3)
ISTC=:
315 PX=(XC-XMIN)*XFAC
PY=(YC-YMIN)*YFAC
IOLD=I
JOLD=J
I=IB
J=JB
GO TO 340
MATCH CURRENT PEN POSITION TO ONE END OF NEW LINE SEGMENT
320 IF (IOLD.EQ.IB.AND.JOLD.EQ.JB) GO TO 335
IF (IOLD.EQ.IE.AND.JOLD.EQ.JE) GO TO 315
PRINT 330,I,J,IOLD,JOLD,IE,JEND,IJ,DI,DIJ,DIIJ,DI1J1
330 FORMAT ('-LOGIC ERROR: AT',213,' FROM',213,' TO',213,' OR',213,4
1F8.4)
STOP
335 PX=(XC1-XMIN)*XFAC
PY=(YC1-YMIN)*YFAC
IOLD=I
JOLD=J
I=IE
J=JE
PLOT LINE SEGMENT
340 RISQ=(PX-AX2)**2+(PY-AX2)**2
IF (RISQ.GT.AX2S) GO TO 345
ISYM=ISYM+1
IF (ISYM.LT.NSYM) GO TO 345
CALL SYMBOL(PX,PY,.O7,K,.O.,-2)
ISYM=O
GO TO 350
345 CALL PLOT(PX,PY,2)
DETERMINE WHETHER CONTOUR HAS ENDED
350 IF (I.EQ.0.OR.I.EQ.NROW.OR.J.EQ.0.OR.J.EQ.NCOL) GO TO 355
IF (IFL(I,J).NE.O) GO TO 185
IF (IEND.EQ.1) GO TO 370
DO 365 L=2,IEND
IF (I.EQ.IST(L).AND.J.EQ.JST(L)) GO TO 365
II=II+1
XST(II)=XST(L)
YST(II)=YST(L)
IST(II)=IST(L)
JST(II)=JST(L)
365 CONTINUE
370 IEND=II
GO TO 155
PUT SYMBOL AND LEVEL ON PLOT
375 FLK=FLOAT(K-1)*.6
CALL SYMBOL(AXL1,FLK+.08,14,K,.O.-1)
CALL FNUM(AXL2,FLK,FLEV(K),2,.O.,14)
380 CONTINUE
*** PLOT AXES
CALL PLOT(A2,AXLEN,3)
CALL PLOT(AX2,0.,2)
CALL PLOT(0.,AX2,3)
CALL PLOT(AXLEN,AX2,2)
*** PLOT CIRCLE AROUND CONTOURS
DTH=2.*3.1415927/288
THETA=DTH
DO 385 K=1,288
R=AX2*(1.+COS(THETA))
P=AX2*(1.+SIN(THETA))
THETA=THETA+DTH
385 CALL PLOT(R,P,2)
RETURN
END

SUBROUTINE FNUM(XPAGE,YPAGE,FPN,ND,ANGLE,HEIGHT)
EDIT A FLOATING POINT NUMBER FOR THE PLOTTER
XPAGE X COORDINATE OF STARTING POINT (INCHES)
YPAGE Y COORDINATE OF STARTING POINT (INCHES)
FPN NUMBER TO BE PLOTTED
ND IF 10.**-ND <= FPN < 10.**ND, THE NUMBER IS PLOTTED WITHOUT EXPONENT
ANGLE ANGLE AT WHICH NUMBER IS PLOTTED (DEGREES)
HEIGHT CHARACTER SIZE (INCHES)
DIMENSION B(6)
DATA B/.999999,.99999,.9999,.999,.99,.9/
X=ABS(FPN)
M=ND
IF (X.NE.O.) GO TO 5
PLOT ZERO
CALL NUMBER(XPAGE,YPAGE,HEIGHT,X,ANGLE,I)
RETURN
5 N=ALOG10(X)
IF (X.LT.1.)N=N-1
X=X*10.**(-N)
T=X/10.-X*1.E-7
DO 10 J=1,6
T1=T-INT(T)
IF (T1.LE.O) GO TO 15
IF (T1.GE.B(J)) GO TO 15
10 T=T*1O.
15 J=J-1
T=ABS(FPN)
IF (T.GE.10.**M) GO TO 20
IF (T+.5*10.**N6.LT.10.**(-M)) GO TO 20
PLOT NUMBERS WHICH DO NOT NEED EXPONENTS
M=J-N-1
IF (M.LT.1)M=1
IF (M.GT.9)M=9
CALL NUMBER(XPAGE,YPAGE,HEIGHT,FPN,ANGLE,M)
RETURN
PLOT NUMBERS WITH EXPONENTS
20 IF (J.GT.1) GO TO 25
X=1.
N=N+1
J=2
25 IF (FPN.LT.0.)X=-X
CALL NUMBER(XPAGE,YPAGE,HEIGHT,X,ANGLE,J-1)
CALL SYMBOL(999.,999.,HEIGHT,3H*10,ANGLE,3)
X1=HEIGHT/2
A=3.1415927*ANGLE/180.
SA=SIN(A)
CA=COS(A)
NC=J+4
IF (FPN.LT.0.)NC=NC+1
S=NC*HEIGHT
PX=XPAGE+S*CA-X1*SA
PY=YPAGE+S*SA+1.5*X1*CA
CALL NUMBER(PX,PY,X1,FLOAT(N),ANGLE,-1)
RETURN
END
MEMORANDUM FOR DTIC-OCQ

ATTN: LARRY DOWNING
8725 JOHN J. KINGMAN ROAD, SUITE 0944
FORT BELVOIR, VA 22060-6218

FROM: AFIOH/DOBP (STINFO)
2513 Kennedy Circle
Brooks City-Base TX 78235-5116

SUBJECT: Changing the Distribution Statement on a Technical Report

This letter documents the requirement for DTIC to change the distribution statement from “B” to “A” (Approved for public release; distribution is unlimited.) on the following technical report: AD Number ADB071126, SAM-TR-82-22, A Computer Model Predicting the Thermal Response to Microwave Radiation.

If additional information or a corrected cover page and SF Form 298 are required please let me know. You can reach me at DSN 240-6019 or my e-mail address is sherry.mathews@brooks.af.mil.

Thank you for your assistance in making this change.

SHERR Y. MATHEWS
AFIOH STINFO Officer