TO:
Approved for public release; distribution is unlimited.

FROM:
Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; JUL 1975. Other requests shall be referred to Air Force Flight Dynamics Laboratory, FER, Wright-Patterson AFB, OH 45433.

AUTHORITY
afwal ltr, 9 aug 1985
Authority AFWAL 1tr, 9 Aug 85
A STUDY TO IDENTIFY DATA VOIDS IN THE APPLICATION OF HI-GLIDE CANOPIES TO REMOTELY PILOTED VEHICLES (RVP)

RECOVERY AND CREW STATION BRANCH
VEHICLE EQUIPMENT DIVISION

JANUARY 1976

TECHNICAL REPORT AFFDL-TR-75-129
FINAL REPORT FOR PERIOD 23 OCTOBER 1974 – 30 JUNE 1975

Distribution limited to U.S. Gov't Agencies only; test and evaluation; July 1975. Other requests for this document must be referred to Air Force Flight Dynamics Laboratory (FER), Wright-Patterson Air Force Base, Ohio 45433.
NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This technical report has been reviewed and is approved for publication.

LAURENCE L. GLEASON
Project Engineer

FOR THE COMMANDER

WILLIAM D. CLARKE III, Lt. Colonel, USAF
Actg. Chief, Recovery and Crew Station Branch
Vehicle Equipment Division
Air Force Flight Dynamics Laboratory

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE - 18 MARCH 1976 - 100
Report Title: Study to Identify Data Voids in the Application of Hi-Glide Canopies to Remotely Piloted Vehicles (RVP)

Abstract: Substitution of an all-flexible Hi-Glide canopy in a Remotely Piloted Vehicle (RPV) recovery system offers many advantages over the use of a conventional parachute. However, prior to the incorporation of a Hi-Glide canopy system into an RPV, a comparative analysis of the various canopies available (Parawing, Ram-air, Sailwing) should be conducted; this requires a determination be made that sufficient data is available to conduct such an analysis. Potential Hi-Glide canopy applications for RPV's, definition of data voids which prevent a comparative analytical evaluation of the various Hi-Glide canopies for RPV application.

Key Words: Parachutes, Steerable Parachutes, Gliding Parachutes, Remotely Piloted Vehicles, Vehicle Recovery, Maneuverable Parachute, Parawing, Parafoil, Sailwing, Hi-Glide Canopy.
ABSTRACT (Cont'd)

and program outlines for filling selected data voids are presented. A comprehensive literature search was made which resulted in the tabulation of Hi-Glide canopy characteristics and capabilities. A number of data voids were found to exist which would prevent the accomplishment of a meaningful comparative analysis of the application of Hi-Glide canopies to RPV's. A Hi-Glide canopy bibliography, originally published as AFFDL-TM-73-25-FER, is included. Bibliographies extracted from two NASA Parawing publications are included.
FOREWORD

This Technical Report was prepared by the Recovery and Crew Station Branch, Air Force Flight Dynamics Laboratory (AFFDL/FER), Wright-Patterson Air Force Base, Ohio, under Project 1964, "Advanced Launch and Recovery", within the scope of a Memo of Agreement between AFFDL and the Aeronautical Systems Division's Remotely Piloted Vehicle (RPV) Systems Program Office (SPO). The work covered the period from 23 October 1974 to 30 June 1975.

This report was submitted in October 1975.
TABLE OF CONTENTS

SECTION	PAGE
I | INTRODUCTION
1. Background | 1
2. Purpose, Scope, and Approach of the Study | 3
II | IDENTIFICATION OF DATA REQUIREMENTS
1. Potential Applications | 7
2. Operational Sequence/Data Requirements | 9
III | ANALYSIS OF DATA Voids
1. Identification of Hi-Glide Canopy Characteristics/Capabilities | 12
2. Identification/Categorization of RPV Related Data Requirements | 22
3. Identification of Voids Which Prevent a Hi-Glide Canopy Comparative Analysis | 22
 a. Canopy Related Data Voids | 24
 (1) Packing | 24
 (2) Canopy Wing Area/Payload/Wing Loading | 24
 (a) Canopy Wing Area | 24
 (b) Canopy Payload | 25
 (c) Wing Loading | 25
 (3) Reefing | 26
 (4) Canopy Control Data | 26
 (5) Scaling Techniques | 26
 (6) Reliability, Maintainability, and Cost | 27
TABLE OF CONTENTS (Cont'd)

SECTION	PAGE
(7) Miscellaneous Data Voids | 27
 (a) Materials | 27
 (b) Canopy Design | 27
b. RPV Related Data Voids | 28
 (1) Acceptable Impact Condition | 28
 (2) RPV Operational Requirements | 28
IV | PROGRAM OUTLINES TO FILL SELECTED DATA VOIDS | 29
1. Hi-Glide Canopy Aerodynamic Reefing Program | 29
2. Hi-Glide Canopy Wing Loading Program | 31
3. Hi-Glide Canopy Hi-Density Packing Program | 32
4. Ram-Air Canopy Wing Area/Payload Program | 33
5. Ram-Air Canopy Landing Flare Control Program | 34
V | CONCLUSIONS | 36
REFERENCES | 38
BIBLIOGRAPHIES | 43
1. AFFDL-TM-73-25-FER | 43
2. Flexible Wings For Transportation | 66
3. Recent Flexible Wing Research | 79
LIST OF ILLUSTRATIONS

FIGURE	PAGE
1 |
Hi-Glide Canopy Configurations
a. Parawing | 2
b. Ram-Air | 2
c. Sailwing | 2
1 |
Hi-Glide Canopy Sketches | 4
3 |
Hi-Glide Canopies as Applied To RPV's | 8

LIST OF TABLES

TABLE	PAGE
1 |
Recovery Applications-Phase of Operation and Data Requirements | 10
2 |
Identification of Hi-Glide Canopy Characteristics/Capabilities | 13-20
3 |
Identification/Categorization of RPV Related Data Requirements | 23
LIST OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>Aspect Ratio (\frac{b^2}{S})</td>
</tr>
<tr>
<td>aero</td>
<td>aerodynamic</td>
</tr>
<tr>
<td>b</td>
<td>Span; feet</td>
</tr>
<tr>
<td>bal</td>
<td>balance</td>
</tr>
<tr>
<td>(C_D)</td>
<td>Drag Coefficient (\frac{\text{drag force}}{q S})</td>
</tr>
<tr>
<td>(C_L)</td>
<td>Lift Coefficient (\frac{\text{lift force}}{q S})</td>
</tr>
<tr>
<td>(C_M)</td>
<td>Pitching Moment Coefficient (\frac{\text{pitching moment}}{q S})</td>
</tr>
<tr>
<td>(C_R)</td>
<td>Resultant Force Coefficient (\frac{\text{resultant force}}{q S})</td>
</tr>
<tr>
<td>(C_{To})</td>
<td>Opening Force Coefficient (\frac{\text{opening force}}{q S})</td>
</tr>
<tr>
<td>(C_{TR})</td>
<td>Reefed Opening Force Coefficient (\frac{\text{reefed opening force}}{q S})</td>
</tr>
<tr>
<td>cu. ft.</td>
<td>cubic feet</td>
</tr>
<tr>
<td>F.F</td>
<td>Free Flight</td>
</tr>
<tr>
<td>fps</td>
<td>feet per second</td>
</tr>
<tr>
<td>Ft² or sq. ft.</td>
<td>Square feet</td>
</tr>
<tr>
<td>g or g's</td>
<td>[\frac{\text{applied force}}{\text{body weight}}]</td>
</tr>
<tr>
<td>GN&C</td>
<td>Guidance, Navigation, and Control</td>
</tr>
<tr>
<td>h</td>
<td>Altitude; feet</td>
</tr>
<tr>
<td>KEAS</td>
<td>Knots Equivalent Airspeed</td>
</tr>
<tr>
<td>l</td>
<td>Reference Length; feet</td>
</tr>
<tr>
<td>L/D</td>
<td>Lift to Drag Ratio</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS AND ABBREVIATIONS (Cont'd)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l_k)</td>
<td>Parawing Keel Length; feet</td>
</tr>
<tr>
<td>MH</td>
<td>Manhours</td>
</tr>
<tr>
<td>psf</td>
<td>pounds per square foot</td>
</tr>
<tr>
<td>(q)</td>
<td>dynamic pressure (\left(\frac{1}{2} \rho V^2 \right)); psf</td>
</tr>
<tr>
<td>RPV</td>
<td>Remotely Piloted Vehicle</td>
</tr>
<tr>
<td>S</td>
<td>Reference Area; sq. ft.</td>
</tr>
<tr>
<td>SPO</td>
<td>Systems Program Office</td>
</tr>
<tr>
<td>T/O</td>
<td>Take-Off</td>
</tr>
<tr>
<td>(V)</td>
<td>Velocity; feet per second</td>
</tr>
<tr>
<td>(W) or wt.</td>
<td>Weight; pounds</td>
</tr>
<tr>
<td>W/S</td>
<td>Wing-Loading (\left(\frac{\text{body weight}}{\text{reference wing area}} \right))</td>
</tr>
<tr>
<td>(\rho)</td>
<td>air density ((0.002378 \text{ slug/cu. ft.}))</td>
</tr>
<tr>
<td>(\Lambda_0)</td>
<td>flat planform leading edge sweep; degrees</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>flight path angle; degrees</td>
</tr>
<tr>
<td>#</td>
<td>pounds</td>
</tr>
</tbody>
</table>

SUBSCRIPTS

<table>
<thead>
<tr>
<th>Subscript</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>depl</td>
<td>deployment</td>
</tr>
<tr>
<td>FF</td>
<td>Free Flight</td>
</tr>
<tr>
<td>L.S.</td>
<td>Line Stretch</td>
</tr>
<tr>
<td>max</td>
<td>maximum</td>
</tr>
<tr>
<td>min</td>
<td>minimum</td>
</tr>
<tr>
<td>Par</td>
<td>Parawing</td>
</tr>
<tr>
<td>ref</td>
<td>reference</td>
</tr>
<tr>
<td>TOT</td>
<td>Total</td>
</tr>
<tr>
<td>V</td>
<td>Vertical</td>
</tr>
</tbody>
</table>
SECTION I
INTRODUCTION

1. BACKGROUND

The current Air Force use of a conventional parachute system for Remotely Piloted Vehicle (RPV) recovery, either midair or surface impact, provides for a minimum descent rate/impact velocity of approximately 13 to 15 feet per second and provides no control over the system's trajectory during descent. The substitution of an all-flexible Hi-Glide (L/D ≥ 2.25) canopy for the conventional parachute system could provide a reduced descent rate and impact velocity, flight path control, homing to a precise surface impact location (automatic or manual), a wind offset capability, and the possibility of powered flight utilizing the RPV propulsion system during the recovery operation to increase the period of time available for recovery. Hi-Glide canopies could also be used to augment the RPV wing during take-off, thus significantly improving RPV launch performance. However, prior to the incorporation of a Hi-Glide canopy system(s) into RPV's, a comparative analysis of the various canopies available should be conducted to select the optimum configuration for a given application. This requires a determination be made that sufficient data is available to conduct such an analysis.

The candidate Hi-Glide canopies which represent the third generation of advanced lifting decelerators (References 1 and 2) are categorized as:

1. Parawing (Figure 1b)
2. Ram-Air (Figure 1a and d)
3. Sailwing (Figure 1c)
Figure 1. Hi-Glide Canopy Configurations
The Parawing Hi-Glide canopy is characterized by a single membrane surface of single or twin keel design (Figure 2a) which inflates to a cambered airfoil section by proper rigging of the suspension lines. Suspension lines are attached along the leading edges and keel(s). Directional control is accomplished by deflection of the outboard tip lines.

The Ram-Air Hi-Glide canopies are characterized, in general, by an upper and lower membrane and internal airfoil shaped fabric ribs, forming cells (Figure 2b). The planform is rectangular and the leading edge is open to allow ram-air to inflate the cells and shape the canopy. Suspension lines are attached to the lower surface. Various methods of directional control have been attempted; among these are trailing edge deflection and leading edge collapse.

The Sailwing Hi-Glide canopy is characterized by a single membrane surface of essentially a rectangular planform with rolled leading edge which is inflated by ram-air (Figure 2c). The planform is divided into lobes by suspension line flares. Directional control is accomplished by deflecting lines which change the shape of the outer lobe.

2. PURPOSE, SCOPE, AND APPROACH OF THE STUDY

The purpose of this study is the identification of potential Hi-Glide canopy applications for RPV's, the definition of data voids which would prevent a comparative analytical evaluation of the various Hi-Glide canopies for application to RPV's, the development of program
Figure 2. Hi-Glide Canopy Sketches
outlines for filling selected data voids, and the documentation of the study results. It should be stressed at this point that the study was not to conduct a Hi-Glide canopy comparative analysis but rather to identify the data voids which would prevent such an analysis.

The RPV chosen by the RPV SPO for this study as representative of the current generation of RPV's was the AQM-34V. This RPV has a maximum gross weight of 4520 lbs. with a maximum allowable g limit established for the study of 3.72 g's at maximum gross weight. A target deployment q value for the Hi-Glide canopy was established at 100 psf. Vertical descent velocity should be less than the 15 fps currently available with the ability to minimize total velocity for surface impact to minimize impact damage. A landing accuracy for surface impact recovery of 1/2 mile diameter circle is desired.

The approach adopted for this study was to first establish the candidate Hi-Glide canopies available and their potential applications for RPV's. An analysis of the various phases (as defined in Table 1) of each application (e.g. midair recovery) led to identification of the system data requirements for the various phases of each application. A literature search was then conducted to identify the capabilities of each candidate canopy. It should be stressed at this point that only data documented in the published literature was considered in this study. A comparison of data requirements and data available resulted in identification of the data voids. Programs were developed which would attempt to fill selected voids.
It should be emphasized here that the programs outlined are those required to fill the selected Hi-Glide canopy data voids; this does not imply that the entire program outline for a given void must be accomplished as a single effort. The outlined programs may be subdivided into smaller efforts.
SECTION II
IDENTIFICATION OF DATA REQUIREMENTS

1. POTENTIAL APPLICATIONS

A review of current RPV operations resulted in the identification of the general categories of recovery and take-off as potential areas for Hi-Glide canopy application. For recovery, Hi-Glide canopies offer the potential of reduced descent rates (including the possibility of zero descent rate under powered flight), increased wind penetration capability, flight path control, homing (manual or automatic) to a specific impact point, and reduced impact velocities. For take-off, a Hi-Glide canopy offers additional wing area to reduce the required take-off speed, thus reducing take-off distance.

The potential applications are depicted in Figure 3 and include midair recovery and surface impact recovery. Midair recovery will utilize an uncontrolled canopy, be powered or unpowered, and be conducted in daytime under visual (good weather) flight conditions. Surface impact recovery will be accomplished through automatic homing or manual guidance of a powered or unpowered vehicle. Under each of these categories of guidance, a possibility of two further subdivisions exists - use of canopy control surfaces or use of RPV control surfaces. Automatic homing will be accomplished in daytime or night and in all weather. Manual guidance will be limited to daytime/good weather only.
Figure 3. Hi-Glide Canopies as Applied to RPV's
2. OPERATIONAL SEQUENCE/DATA REQUIREMENTS

A consideration of the RPV operations during each of the potential applications led to identification of a sequence of events or phases of operation occurring during each application. An analysis of each phase of operation resulted in the identification of the system data requirements necessary to perform a Hi-Glide canopy comparative analysis. Through this analysis it was determined that all data requirements identified for a recovery application encompassed those identified for a take-off application. Therefore, only the recovery application will be addressed in the remaining sections of this study. It should be noted that a program to fill a data void under the recovery applications will, in general, be more extensive than one to fill the same data void under the take-off application due to the additional restrictions imposed on the recovery application (e.g. volume constraint).

The phases of the recovery system utilization and the data required for evaluation of the recovery system within each phase are given in Table 1:
<table>
<thead>
<tr>
<th>PHASE</th>
<th>DATA REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Packed and stored in the RPV</td>
<td>a. Achievable packing densities for Hi-Glide materials.</td>
</tr>
<tr>
<td></td>
<td>b. Material types for Hi-Glide application.</td>
</tr>
<tr>
<td></td>
<td>c. RPV weight and balance data.</td>
</tr>
<tr>
<td></td>
<td>d. RPV aerodynamic data.</td>
</tr>
<tr>
<td></td>
<td>e. RPV structural data.</td>
</tr>
<tr>
<td></td>
<td>f. RPV recovery system volume available.</td>
</tr>
<tr>
<td>2. Deployed from the RPV</td>
<td>a. RPV "g" limitations for all axes.</td>
</tr>
<tr>
<td></td>
<td>b. RPV recovery envelope.</td>
</tr>
<tr>
<td></td>
<td>c. RPV recovery weight.</td>
</tr>
<tr>
<td></td>
<td>d. Hi-Glide canopy deployment capabilities</td>
</tr>
<tr>
<td></td>
<td>. Dynamic Pressure</td>
</tr>
<tr>
<td></td>
<td>. Reefing</td>
</tr>
<tr>
<td></td>
<td>. Opening Forces</td>
</tr>
<tr>
<td></td>
<td>. Reliability</td>
</tr>
<tr>
<td></td>
<td>b. Hi-Glide canopy stability data.</td>
</tr>
<tr>
<td></td>
<td>c. Hi-Glide canopy control data</td>
</tr>
<tr>
<td></td>
<td>. Forces</td>
</tr>
<tr>
<td></td>
<td>. Travel</td>
</tr>
</tbody>
</table>
PHASE

<table>
<thead>
<tr>
<th>Phase</th>
<th>Data Requirements</th>
</tr>
</thead>
</table>
e. Desired/allowable descent rate.
f. Desired wind offset capability.
g. Ability to design a canopy for a given weight range.
h. RPV aerodynamic data.
i. RPV stability data.
j. RPV control data.
k. RPV engine data.
l. RPV guidance, navigation, and control capabilities. |
| 5. Turnaround | a. All items of Number 3 above.
b. RPV "g" limits.
c. Midair recovery constraints.
d. Acceptable impact conditions.
e. Impact accuracy requirements.
f. Surface based control equipment requirements. |
b. Packing facilities required.
a. Canopy cost.
b. Reliability.
c. Maintainability. |
SECTION III
ANALYSIS OF DATA VOIDS

1. IDENTIFICATION OF HI-GLIDE CANOPY CHARACTERISTICS/ CAPABILITIES

Following compilation of the data required for conducting a comparative analysis (Table 1), a literature search was conducted to determine which of these data are available for each of the candidate Hi-Glide canopies. This information is presented in Table 2.

The available data has been divided into several categories in Table 2. Table 2a presents various physical characteristics of the candidate Hi-Glide canopies as they exist today. Free flight wing loading, \((W/S)_{FF}\), is indicated as having a potential lack of data due to its interrelationship with other factors such as wing area, payload weights, and overall system performance requirements. For example, volume constraints might be such that a canopy of sufficient area could be stowed which would carry the payload within the demonstrated \((W/S)_{FF}\) capability. However, the requirement for a smaller recovery system volume or for increased system wind offset capability might easily push the \((W/S)_{FF}\) requirement above the current demonstrated capability. It should be noted at this time that due to the flexible nature of Hi-Glide canopies an increase in wing loading tends to distort the canopy as the increased load is distributed into the canopy, causing a degradation in performance. This shortcoming is partially due to the inability to analytically predict the stress distribution throughout the canopy for a given application. Table 2b presents Hi-Glide canopy deployment...
TABLE 2

IDENTIFICATION OF HI-GLIDE CANOPY CHARACTERISTICS/CAPABILITIES

a. PHYSICAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>PARAFLYING</th>
<th>ACHIEVABLE PACKING DENSITY</th>
<th>MATERIAL TYPES</th>
<th>WING AREAS DEMONSTRATED</th>
<th>ASPECT RATIOS INVESTIGATED</th>
<th>PAYLOAD WEIGHTS</th>
<th>FREE FLIGHT WING LOADING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hand Packed</td>
<td>(Rip-Stop Nylon, coated)</td>
<td>Up to 4000 Ft²</td>
<td>(3)</td>
<td>3.0 ($A_o = 45^\circ$)</td>
<td>Up to 6000 #</td>
<td>Up to 1.5 psf**</td>
</tr>
</tbody>
</table>

| RAM-AIR | Hand Packed | (Rip-Stop Nylon, coated) | Up to 864 Ft² | Up to 3 Personnel 1.5+2.0 | Up to 2000 # | Up to 2.7 psf** |

| SAILWING | Hand Packed | (Rip-Stop Nylon, coated) | Up to 2700 Ft² | Up to 4.0 | Up to 1000# | Up to .75 psf |

* Numbers in parentheses denote a reference.

** Potential data void depending on other factors.
Table 2. (Cont'd)

b. Canopy Free Flight Deployment Capabilities - Para-Wing

<table>
<thead>
<tr>
<th>MAXIMUM SPEED SUCCESSFUL DEPLOYMENT</th>
<th>ASSOCIATED CANOPY AREA (FT2)</th>
<th>ASSOCIATED MAXIMUM OPENING FORCES (g's)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REEVED (9) 220 KEAS (q_{\text{max}} = 9 \text{g}) to 20000'</td>
<td>400</td>
<td>4.2 - 6 to 20000'</td>
</tr>
<tr>
<td>(10) UNREEVED 160 KEAS (q_{\text{max}} = 87) to 1000'</td>
<td>276.5</td>
<td>24 - 37 (Minimal Data)</td>
</tr>
</tbody>
</table>

ARE METHODS AVAILABLE TO SCALE OPENING FORCES

A method has been demonstrated for unreeved para-wings up to \(l_k = 24' \), \(S = 400 \text{ FT}^2 \)

<table>
<thead>
<tr>
<th>MAXIMUM CANOPY AREA (FT2)</th>
<th>ASSOCIATED SPEED SUCCESSFUL DEPLOYMENT</th>
<th>ASSOCIATED MAXIMUM OPENING FORCES (g's)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REEVED 4000</td>
<td>180 KEAS to 22000' (q_{L,S} = 76)</td>
<td>2.8 - 4 to 22000'</td>
</tr>
<tr>
<td>(3) UNREEVED 4000</td>
<td>NO DATA</td>
<td>NO DATA</td>
</tr>
</tbody>
</table>
TABLE 2. (Cont’d)

b. CANOPY FREE FLIGHT DEPLOYMENT CAPABILITIES - RAM-AIR

<table>
<thead>
<tr>
<th></th>
<th>MAXIMUM SPEED SUCCESSFUL DEPLOYMENT</th>
<th>ASSOCIATED CANOPY AREA (PT²)</th>
<th>ASSOCIATED MAXIMUM OPENING FORCES (g's)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REEFED (12)</td>
<td>200 KEAS to 15000' q_max=100</td>
<td>230</td>
<td>14 - 18 to 15000'(Higher at 22000')</td>
</tr>
<tr>
<td>UNREEFED (12)</td>
<td>100 KEAS to 3000' q_max=32</td>
<td>230</td>
<td>NO DATA</td>
</tr>
</tbody>
</table>

ARE METHODS AVAILABLE TO SCALE OPENING FORCES

? (5)
Possible Scaling of
\[
\frac{C_{To}}{C_{Tr}}
\]
(Minimal Data)

<table>
<thead>
<tr>
<th></th>
<th>MAXIMUM CANOPY AREA (PT²)</th>
<th>ASSOCIATED SPEED SUCCESSFUL DEPLOYMENT</th>
<th>ASSOCIATED MAXIMUM OPENING FORCES (g's)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REEFED (5)</td>
<td>864</td>
<td>130 KEAS TO 3000'</td>
<td>8 - 10 Low Altitude (Minimal Data)</td>
</tr>
<tr>
<td>UNREEFED (5)</td>
<td>864</td>
<td>NO DATA</td>
<td>NO DATA</td>
</tr>
</tbody>
</table>
TABLE 2. (Cont'd)

b. CANOPY FREE FLIGHT DEPLOYMENT CAPABILITIES - SAILWING

<table>
<thead>
<tr>
<th>REEFED (8)</th>
<th>119KEAS to 1500'</th>
<th>q = 4.6</th>
<th>400</th>
<th>UNAVAILABLE*</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNSWEPT</td>
<td>NO DATA</td>
<td>NO DATA</td>
<td>NO DATA</td>
<td></td>
</tr>
</tbody>
</table>

Tests at 59KEAS and 1500' (q=12psf) produced $g_{max} = 13.5$
TABLE 2. (Cont'd) c. AERODYNAMIC PERFORMANCE AND CONTROL DATA** - PARAWING

<table>
<thead>
<tr>
<th>PERFORMANCE</th>
<th>CANOPY CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Turn Control</td>
</tr>
<tr>
<td></td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>UP TO 400 FT²</td>
</tr>
<tr>
<td></td>
<td>4000 FT²</td>
</tr>
<tr>
<td>S</td>
<td>✓</td>
</tr>
<tr>
<td>AR_{Par}</td>
<td>Up to 4</td>
</tr>
<tr>
<td>q</td>
<td>Up to 4 psf</td>
</tr>
<tr>
<td>C_L</td>
<td>✓</td>
</tr>
<tr>
<td>C_D</td>
<td>✓</td>
</tr>
<tr>
<td>C_M</td>
<td>✓</td>
</tr>
</tbody>
</table>

Methods Available to Scale Steady State Performance

| | Not specifically; but much data on many sizes is available |

NOTE:

1. A check (✓) indicates that this data is available.

2. Stability*: W. T. - Stability data shows only trends due to types of testing techniques (constraints) used.

 F. F. - Stability data is qualitative in most instances.

* This applies to all three types of Hi-Glide Canopies.

** This information is contained in many sources in the bibliographies.
TABLE 2. (Cont'd)

c. AERODYNAMIC PERFORMANCE AND CONTROL DATA-RAM AIR

<table>
<thead>
<tr>
<th>PERFORMANCE</th>
<th>CANOPY CONTROL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wind Tunnel</td>
<td>Up to 300 ft²</td>
</tr>
<tr>
<td>Free Flight</td>
<td>Up to 864 ft²</td>
</tr>
<tr>
<td>S</td>
<td>Up to 3</td>
</tr>
<tr>
<td>AR</td>
<td>Up to 4.3 psf</td>
</tr>
<tr>
<td>q</td>
<td>Up to 4.3 psf</td>
</tr>
<tr>
<td>C_L</td>
<td>✓</td>
</tr>
<tr>
<td>C_D</td>
<td>✓</td>
</tr>
<tr>
<td>C_M</td>
<td>✓</td>
</tr>
</tbody>
</table>

TURN CONTROL
- Aero Data: ✓ ✓ NO DATA
- Force: ✓ ✓ NO DATA
- Stroke: ✓ ✓ NO DATA
- Response Time: ✓ ✓ NO DATA

LANDING CONTROL
- Aero Data: NO DATA NO DATA
- Force: NO DATA NO DATA
- Stroke: NO DATA NO DATA
- Δ V: NO DATA NO DATA

Methods Available to Scale Steady State Performance: No, but much data is available from which methods may be developed

Methods Available to Scale Control Characteristics: NONE
TABLE 2. (Cont'd)

AERODYNAMIC PERFORMANCE AND CONTROL DATA - SAILWING

<table>
<thead>
<tr>
<th>PERFORMANCE</th>
<th>Wind Tunnel</th>
<th>Free Flight</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Up to 328 (\text{ft}^2)</td>
<td>Up to 2700 (\text{ft}^2)</td>
</tr>
<tr>
<td>AR</td>
<td>NO DATA</td>
<td>NO DATA</td>
</tr>
<tr>
<td>q</td>
<td>Up to 12 psf</td>
<td>Up to 1.5 psf</td>
</tr>
<tr>
<td>Cl</td>
<td>LIMITED DATA</td>
<td>NO DATA</td>
</tr>
<tr>
<td>Cd</td>
<td>LIMITED DATA</td>
<td>NO DATA</td>
</tr>
<tr>
<td>Cm</td>
<td>LIMITED DATA</td>
<td>NO DATA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CANOPY CONTROL</th>
<th>S</th>
<th>95.5 (\text{ft}^2)</th>
<th>328 (\text{ft}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>1 psf</td>
<td>UP TO 6 psf</td>
<td></td>
</tr>
</tbody>
</table>

TURN CONTROL
- Aero Data: LIMITED DATA
- Force: NO DATA
- Stroke: LIMITED DATA
- Response Time: NO DATA

LANDING CONTROL
- Aero Data: NO DATA
- Force: NO DATA
- Stroke: NO DATA

Methods Available to
Scale Steady State
Performance: NONE

Are Methods Available to Scale Control Characteristics: NO
TABLE 2 (Concluded)

d. MISCELLANEOUS INFORMATION

<table>
<thead>
<tr>
<th></th>
<th>DEMONSTRATED FIELD PACKED CAPABILITY</th>
<th>COST ESTIMATING DATA BASIS</th>
<th>RELIABILITY*</th>
<th>MAINTAINABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARAWING</td>
<td>Personnel size only</td>
<td>Cost for fabricating personnel sized wings</td>
<td>NO DATA</td>
<td>NO DATA</td>
</tr>
<tr>
<td>RAM-AIR</td>
<td>Personnel size only</td>
<td>Cost for fabricating personnel sized wings</td>
<td>NO DATA</td>
<td>NO DATA</td>
</tr>
<tr>
<td>SAILWING</td>
<td>NO DATA</td>
<td>NO DATA</td>
<td>NO DATA</td>
<td>NO DATA</td>
</tr>
</tbody>
</table>

NOTE: Hi-Glide Canopies are inherently reliable in their opening. Efforts to control the opening forces creates problems in reliability.
capabilities. The Sailwing data presented is based on a minimal amount of test information (e.g. only one successful test a \(q = 20 \) psf for the 2700 ft\(^2\) Sailwing). The 4000 sq. ft. Parawing was developed under a NASA program (Reference 3) and employed a complex five-stage pyrotechnic reefing system which would probably be unacceptable for the RPV application under consideration. Under this and other NASA programs the ability to scale the opening forces for Parawings up to 4000 sq. ft. \((l_k = 24 \) ft.), Reference 11, from model results has been demonstrated. This scaling technique has not been verified for other Hi-Glide canopies. An attempt to predict the reefed opening forces of the 4000 sq. ft. Parawing from test results of a 400 sq. ft. "model" were largely unsuccessful due in part to a mismatch between desired and actual test conditions of the verification tests, Reference 3. Under an Air Force program, Reference 5, a possible scaling of the ratio of opening force to reefed opening force for a Ram-air canopy was demonstrated; however, this is based on minimal data. Table 2c presents the aerodynamic performance and control data. As indicated in the table, no specific methods are presently available to directly scale the steady state flight performance of Hi-Glide canopies. The limited wind tunnel aerodynamic performance data for the Sailwing is contained in References 13, 14, and 15. However, the range and numbers of variables included are not considered sufficient to adequately predict the aerodynamic performance of other Sailwing configurations. No free flight aerodynamic performance data or canopy control data is available for the Sailwing. Table 2d represents additional miscellaneous information.
required to round out the complete comparative analysis. Due to the limited investigation of large scale (>300 sq. ft.) Hi-Glide canopies, cost, reliability, and maintainability information is virtually non-existent.

2. IDENTIFICATION/CATEGORIZATION OF RPV RELATED DATA REQUIREMENTS

The information presented in Table 3 represents the RPV related information required to conduct a Hi-Glide canopy comparative analysis. A check mark (✓) indicates that sufficient data is available. The term GN&C stands for guidance, navigation, and control. These terms are defined (Reference 16) as follows:

Navigation - Ability to determine position relative to a given position.

Guidance - Ability to establish a suitable ground track and flight condition in order to reach the given position.

Control - Ability to cause the vehicle to follow the desired flight path.

RPV Operational Requirements include, but are not limited to:

Acceptable system descent velocity.
Acceptable impact conditions.
Acceptable weather conditions.
Acceptable turn capabilities and response.
Acceptable recovery envelope.

3. IDENTIFICATION OF DATA VOIDS WHICH PREVENT A HI-GLIDE CANOPY COMPARATIVE ANALYSIS

Having identified (1) the potential applications and data requirements for evaluation of the RPV recovery system and (2) the
TABLE 3
IDENTIFICATION/CATEGORIZATION OF RPV RELATED DATA REQUIREMENTS

<table>
<thead>
<tr>
<th>WT & BAL DATA</th>
<th>AERO DATA</th>
<th>STRUCTURAL DATA</th>
<th>G LIMITS</th>
<th>RECOVERY WT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NO DATA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RPV OPERATIONAL REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAKE-OFF</td>
</tr>
<tr>
<td>MID-AIR</td>
</tr>
<tr>
<td>GROUND IMPACT</td>
</tr>
<tr>
<td>NO DATA</td>
</tr>
<tr>
<td>✓</td>
</tr>
</tbody>
</table>
published Hi-Glide canopy characteristics/capabilities, the latter can be balanced against the former to establish the canopy data voids which exist. It is recognized that many areas are interrelated (e.g. the successful flight demonstration of a large Ram-Air canopy will not insure its ability to meet all the requirements of the RPV application under consideration). However, for the sake of simplicity, the data voids will be addressed separately.

a. Canopy Related Data Voids - The following canopy data voids have been identified and, unless specifically stated otherwise, apply to all Hi-Glide canopy configurations. An additional lack of data in the area of aerodynamic performance data and canopy control data also exist for the Sailwing.

(1) Packing - To meet the RPV recovery system volume constraints the Hi-Glide canopy system may have to be pressure packed to densities greater than those currently demonstrated for low-permeability materials. No data is currently available of the effects on material and canopy performance of pressure packing the low-permeability materials currently utilized in Hi-Glide canopy fabrication.

(2) Canopy Wing Area/Payload/Wing Loading

(a) Canopy Wing Area - An estimate of the canopy area required for application of the RPV recovery can be calculated as follows:

\[W_{\text{max}} = 4520\# \]
\[V_{v_{\text{max}}} = 24 \text{ fps based on midair recovery requirement} \]
AFFDL-TR-75-129

assume, \(L/D = 3.0 \)
\(h = 10,000 \text{ ft.} \)
\(C_{R_{\text{ram-air}}} = 0.65 \)

\[
V_{\text{TOT}} =
\frac{V_v}{\sin \gamma} =
\frac{24}{\sin \left(\arctan \left(\frac{1}{3.0} \right) \right)}
= 76 \text{ fps}
\]

\[
V_{\text{TOT}} = \frac{2W}{\rho SC_R}
\]

\[
S'_{\text{min}} = \frac{2(4520)}{(0.001756)(0.65)(76)^2} = 1371 \text{ sq. ft.}
\]

Parawings have been successfully demonstrated to wing areas of 4000 sq. ft. The demonstration of Ram-Air canopies of areas up to only 864 sq. ft. have been documented, resulting in a data void in this category for Ram-Air canopies. The data available on the 2700 sq. ft. Sailwing is minimal.

(b) Canopy Payload - Ram-Air canopies have successfully flown with payloads up to 2000 lbs. This represents only approximately 1/2 of the payload (4520 lbs) under consideration. Parawing payloads to 6000 lbs have been successfully demonstrated.

(c) Wing Loading - This category represents a possible data void for all HI-Glide canopies depending upon other factors in the RPV application (e.g. available volume, achievable packing density). Due to the interrelationship among the various factors it cannot definitely be determined that a data void exists in this area for the application under consideration. However, due to the desire for wind offset
capability (a function, in part, of wing loading) and minimum volume for recovery system, it is felt that wing loadings above those in Table 2a will be desirable. The inability to predict the effect of increased wing loading on canopy performance is due, in part, to the lack of accurate methods to predict the stress distribution in the all-flexible canopy under a given loading. Thus, wing loading is identified as a potential data void for all Hi-Glide canopies.

(3) Reefing - The Hi-Glide canopy deployment q has been established as 100 psf for the application under consideration with a g limit of 3.72 at maximum gross weight. No reefing system has been demonstrated to date which will meet these conditions. The five stage pyrotechnic system used by NASA on the 4000 sq. ft. Parawing comes closest to meeting them; however, reefing system complexity would probably preclude its use for RPV application.

(4) Canopy Control Data - Ram-Air canopy turn control data is nonexistent for systems larger than approximately 300 sq. ft. and landing flare control data is minimal or nonexistent for systems larger than 300 sq. ft. Data on Parawings up to 4000 sq. ft. is available.

(5) Scaling Techniques - Scaling techniques for unreefed opening forces have been validated for Parawings of areas up to 400 sq. ft. An attempt to extend these techniques to reefed opening forces of a 4000 sq. ft. Parawing system was not completely successful due, in part, to a mismatch between desired and actual test conditions. No scaling techniques for opening forces have been documented for Ram-Air canopies. Specific techniques are not available for accurate scaling of Hi-Glide canopy free-flight performance.
(6) Reliability, Maintainability, and Cost - Hi-Glide canopies are inherently reliable in their opening; efforts to control or reduce the opening forces create problems in reliability. All Hi-Glide canopy types are capable of gliding (with reduced performance) with considerable damage (e.g. holes in the canopy fabric). Production costs are available only for personnel sized canopies. Limited quantity costs are available for larger sized canopies.

(7) Miscellaneous Data Voids

(a) Materials - Materials, per se, may not be a factor preventing a comparative analysis of Hi-Glide canopies unless system constraints (e.g. volume) are such that, for a given material, one canopy could be incorporated and another one not. If this were the case, utilization of a different material might allow for incorporation of both canopies. The predominant material used to date in the construction of Hi-Glide canopy systems has been a coated and/or calendered rip-stop nylon. An evaluation of alternate materials may yield others equally suited for Hi-Glide canopy application but with possible advantages of increased packing efficiency, decreased weight, etc.

(b) Canopy Design - The ability to successfully design a Hi-Glide canopy larger than personnel size, ~300 sq. ft., for a specific application has not been demonstrated. This inability is a result of many of the data voids previously presented.
b. RPV Related Data Voids

(1) Acceptable Impact Conditions - A definition of acceptable impact conditions is required to allow the establishment of recovery systems parameters such as acceptable impact velocity/acceleration.

(2) RPV Operational Requirements - A definition of the RPV operational requirements is needed for surface impact recovery and take-off applications. These requirements include such items as weather conditions, turn capability and response, recovery envelope, etc.
Following identification of existing Hi-Glide canopy data voids, programs were outlined which attempt to fill specific voids or combinations of voids. The general format of the program outlines which follow is: title, background/payoff, and approach. To reiterate a previous statement, it should not be interpreted that an entire program must be accomplished as outlined; most of the programs outlined are capable of being broken into subprograms. If all data voids are not filled before a comparative analysis is conducted, the program outlines are listed below in a prioritized order which attempts to minimize the effect on the analysis of the assumptions required by those voids which are not filled.

All programs generated to fill selected data voids as outlined below also apply to the Sailwing with the exception of the manhour estimates. The estimates given do not include the Sailwing since programs to fill most Sailwing data voids will be much more extensive than those for the Parawing and/or Ram-Air canopies due to the minimal amount of published information currently available.

1. TITLE: HI-GLIDE CANOPY AERODYNAMIC REEFING PROGRAM

OBJECTIVE: To evaluate an aerodynamic reefing system(s) for Hi-Glide canopy systems applicable to RPV recovery.

BACKGROUND/PAYOFF: A pyrotechnic reefing system was developed by NASA for a 4000 ft2 Parawing Hi-Glide canopy system. This reefing
The system comes closest to meeting RPV recovery requirements; however, it consists of five stages and is probably unacceptable for RPV recovery application due to its complexity. Other pyrotechnic systems used to date on Parawings and Ram-Air Hi-Glide canopy systems will not limit opening forces to those required throughout the entire RPV recovery envelope encompassed by this study. An aerodynamic reefing system is currently used successfully on personnel sized Ram-Air canopies; however, little data is available to determine its applicability to other Hi-Glide canopy systems or larger Ram-Air systems. This type reefing system offers the potential of a simple reefing system which is dynamic pressure sensitive, an attribute which a pyrotechnic system lacks.

APPROACH: The overall approach to this program involves three phases. Phase 1 involves the review of available data on dynamic pressure sensitive reefing systems and the analysis and testing of model (20-40 ft\(^2\)) Hi-Glide canopy systems. An attempt will be made to develop a scaling technique for the deployment loads of unreefed and reefed Hi-Glide canopies. Model canopies will be designed and fabricated for wind tunnel deployment testing and drop testing. The drop testing would be similar to that accomplished by NASA in testing unreefed Parawings inside a large building. These tests will provide input to the deployment force scaling technique to predict deployment forces on a small scale (200 to 300 ft\(^2\)) system. Phase 2 involves a program similar to Phase 1 but for a small scale system(s). Free flight drop tests are included.

AFFDL-TR-75-129
in this phase to provide, in conjunction with the "building" drop tests, a data base for comparison and modification, if required, of the predicted deployment forces. Phase 3 represents a follow-on evaluation of aerodynamic reefing applied to a full scale (>1000 ft²) system(s) involving the design, fabrication, flight testing and documentation of this system(s).

2. TITLE: HI-GLIDE CANOPY WING LOADING PROGRAM

OBJECTIVE: To evaluate the performance of Hi-Glide canopy systems at high wing loadings (2 to 5 psf) for application to RPV recovery.

BACKGROUND/PAYOFF: To minimize recovery system stowed weight and volume for mid-air recovery applications, it is desirable to utilize the maximum Hi-Glide canopy wing loading consistent with the vertical descent rate constraints of the recovery vehicle. To maximize system wing penetration (offset) capability for RPV ground impact applications it is desirable to utilize the maximum Hi-Glide canopy wing loading consistent with the RPV ground impact velocity requirements and canopy landing flare capabilities.

The current demonstrated wing loading capabilities for the various Hi-Glide canopy systems are:

- Parawing - 1.5 psf
- Ram-Air - 2.7 psf

Providing an increased W/S capability could significantly reduce the recovery system stowed volume/weight requirements and increase the system wind offset capabilities.
APPROACH: The overall approach to this program involves four phases. Phase 1 involves the acquisition and analysis of existing data, development of a structural (stress) analysis methodology for both Parawing and Ram-Air Hi-Glide canopy systems, the prediction of steady state glide performance for the higher wing loadings on small scale systems (200 to 300 ft²), and develop scaling techniques for steady state glide performance for larger canopies. These developments will be applicable to the entire W/S range in question. Phases 2 through 4 involve the design, fabrication, testing, and documentation of these efforts for W/S of 2, 3, and 4, respectively, for both small scale Parawing and Ram-Air Hi-Glide canopy systems. During Phases 2 through 4 the result of the prediction techniques will be compared with test results and modified as required. Testing will include wind tunnel (if applicable), tow, and drop tests. Drop test will be conducted on an instrumented range to acquire the data necessary to evaluate system performance.

3. HI-GLIDE CANOPY HI-DENSITY PACKING PROGRAM

OBJECTIVE: To evaluate the effect of high density packing on the properties of low permeability materials and on the Hi-Glide canopy deployment and free flight performance.

BACKGROUND/PAYOFF: To date, the primary method of packing Hi-Glide canopy systems has been by hand. This method results in relatively low packing densities which may not meet the Hi-Glide canopy volume constraints for application to RPV recovery. The ability to pack a Hi-Glide canopy system to sufficient density to allow it to be used in an RPV
recovery system could provide the RPV system with a decreased descent rate, wind offset capability, homing capability (trajectory control), multiple recovery capability, and decreased vertical impact velocity.

APPROACH: The overall approach to the program involves three phases. Phase 1 would evaluate the hi-density packing of Hi-Glide canopy materials. Here the problems associated with the pressure packing of low permeability materials would be identified and resolved. Phase 2 involves the high-density packing of candidate Hi-Glide canopies themselves, addressing the problems of pressure packing system components in addition to the low permeability material. Phase 3 provides for the flight testing of high density packed Hi-Glide canopy systems to evaluate the effect of hi-density packing on canopy deployment and flight performance.

4. **TITLE:** RAM-AIR CANOPY WING AREA/PAYLOAD PROGRAM

OBJECTIVE: To demonstrate a Ram-Air Hi-Glide canopy applicable to RPV recovery (> 3000 lb payload) and to evaluate this design for application to a 4520 lb vehicle at increased wing loadings.

BACKGROUND/PAYOFF: Ram-Air Hi-Glide canopies are currently being used by sport parachutists at wing loadings of less than 2.0. The largest documented wing loading to date is 2.7 psf on an 864 ft² Parafoil. This combination is insufficient for the desired application. An effort is currently underway in the RPV SPO to demonstrate a 3200 ft² Parafoil for recovery of an RPV. Successful completion of this effort will substantially fill this data void for Ram-Air canopies if sufficient/acceptable data is obtained.
AFFDL-TR-75-129

APPROACH: It is difficult to break this program into phases since it deals only with the demonstration of one size (large) canopy. The program consists of an analysis of existing data, turn control, landing flare control, and scaling technique for steady state performance; the design and fabrication of a large scale system(s); tow and drop tests of this system; and documentation of all of the above. The drop tests will include steady state glide evaluation, turn control tests, and landing flare tests.

5. TITLE: RAM-AIR CANOPY LANDING FLARE CONTROL PROGRAM

OBJECTIVE: To quantify the landing flare capability of a small scale (300 ft2) Ram-Air canopy.

BACKGROUND/PAYOFF: A limited landing flare capability for Parawing Hi-Glide canopy systems was established under the NASA 4000 ft2 system tests. Manned application of Ram-Air canopies indicates, at least qualitatively, better landing flare control capability with Ram-Air canopies than with Parawing canopies. Providing a Hi-Glide system with landing flare capability for RPV recovery offers the potential of increased wind penetration while maintaining a given ground impact velocity, reducing recovery system weight and volume, or reducing impact velocity.

APPROACH: The overall approach to this program involves two phases. Phase I involves the analysis and tow testing of a small scale Hi-Glide Ram-Air canopy system(s). The analysis will consider existing control information and establish possible techniques for accomplishing landing flare. Following design and fabrication of the canopies and
control system, tow tests will be conducted on an instrumented range. It is possible that the control system might be eliminated by performing instrumented manned tests on an instrumented test range. Phase 2 involves drop tests on an instrumented test range.
SECTION V
CONCLUSIONS

As a result of this study a number of data voids were found to exist which may prevent the accomplishment of a meaningful comparative analysis of Hi-Glide canopies as applied to RPV's.

Hi-Glide Canopy related data voids include:

<table>
<thead>
<tr>
<th></th>
<th>Parawing</th>
<th>Ram-Air</th>
<th>Sailwing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure Packing</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Canopy Wing Area</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Canopy Payload</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Canopy Wing Loading</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Reefing</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Canopy Control Data</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Opening Force Scaling Techniques</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Reliability, Maintainability, Cost</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Materials</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Canopy Design</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

RPV related data voids include:
Acceptable Impact Conditions
RPV Operational Requirements

The nature of the above data voids is such as to prevent the accomplishments of a meaningful comparative analysis of the application of Hi-Glide canopies to RPV's.
It should be noted that additional information may be available on the various canopies (especially the Sailwing) in unpublished form through manufacturers or other government agencies.
REFERENCES

REFERENCES (Cont’d)

12. DoD Joint Parachute Test Facility Test Report (Project 2-73)
 #0303N74 30 Apr 74
 #0302N74 30 Apr 74
 #0301N74 8 Apr 74
 #0300N74 8 Apr 74
 #0225N74 4 Apr 74
 #0224N74 4 Apr 74

BIBLIOGRAPHIES

The following bibliographies dealing with Hi-Glide canopies have been extracted in whole from their respective reports, as indicated. No attempt has been made to remove duplicate listings.
STEERABLE PARACHUTE
FLEXIBLE WING BIBLIOGRAPHY
AFFDL-TM-73-25 (FER)

Compiled by:
M. Higgins
R. Speelman

SEPTEMBER 1971

This bibliography is limited to steerable parachutes/flexible wings intended to operate non-rigidized in the subsonic flight regime.

AIR FORCE FLIGHT DYNAMICS LABORATORY
VEHICLE EQUIPMENT DIVISION
RECOVERY AND CREW STATION BRANCH
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433
BIBLIOGRAPHY

1. Abbott, N. J.; Lannefeld
 Development of Low Permeability Fabrics
 AD 853 228

2. Abbott, N. J.; Lannefeld, T. E.
 Fabrics for Gliding Decelerators
 AIAA Paper No. 70-1180

 Technical Report No. 69-11
 Air Force Flight Test Center

4. All American Engineering Company
 Extracts from a Study of Mid-Air Retrieval of a 500 Pound Target
 Drone

5. Anderson, Melvin S.; Bohon, Herman L.; Mikulas, Martin M.
 A Structural Merit Function for Aerodynamic Decelerator
 NASA TN-D-5535

6. Automated Pressure Analysis of Impact Attenuators
 1971

7. Barish, D. T.
 Phase III Deployment Investigation of Full Scale Sailwing Models
 X67-83502 TR 65-4

8. Barish, D. T.
 Preliminary Drop Tests of the Barish Sailwing for Personnel Applications

 Sailwing Glide Dispersion Investigations
 X66-17264# TR-66-1 AD 369 556

10. Barish, D. T.; Erlandsen, P. O.
 Sailwing Wind Tunnel Investigation of Four Foot Span Models - Phase I
 X65-19902# TR 65-2 AD 360 746

11. Barte, George R.
 Flexible Wings for Maneuvering and Landing Application in the De-
 Coupled Concept
 AIAA Paper No. 67-200

 Theoretical Investigation of the Lift and Drag Characteristics
 of Flexible Parawings at Subsonic Speeds
 Journal of Aircraft, Vol. 7, No. 2 pp 130-137
AFFDL-TR-75-129

 Cost-Effectiveness Analyses of Paraglider Delivery Concepts
 X66-21146# CORG-M-196 AD 371 928

14. Belknap, S.
 Gliding Parachute Flight Performance Capability - Final Report
 X67-86809 PTM-565A

15. Benson, H. E.; McCullough, J. E.; Stafford, F. A.
 Attenuation of Landing Impact for Manned Spacecraft
 N65-3525*# NASA-CR-53291

 Babish, C. A.; Pinnell, W. R.; Watson, L.L.
 Project Pinpoint Review Report

17. Bloetscher, F.
 Slow Descent Deployment Systems

18. Boeing Company
 Parafoil Fog Dispersal System

 Users Guide to Legendre Fitting Program

20. Boisseau, P.C.; Chambers, J. R.
 A Theoretical Analysis of the Dynamic Lateral Stability and
 Control of Parawing Vehicle
 N66-29211*# NASA-TN-D-3461

 Development of the Para-Sail Parachute as a Landing System for
 Manned Spacecraft
 N65-88479# NASA-TM-X-51586

22. Bryant, L. W.; Brown, M. A.; Sweeving, N. E.
 Collected Researches on the Stability of Kites and Towed Gliders
 London Tech Report R&M 2303

23. Bugg, Frank M.
 Effects of Aspect Ratio and Canopy Shape on Low-Speed Aerodynamic
 Characteristics of 50.0 Swept Parawings
 NASA TN-D-2922

24. Bugg, F. M.; Sleeman, W. C.
 Low Speed Tests of an All-Flexible Parawing for Landing a Lifting-
 Body Spacecraft
 Langley Working Paper LWP-311

25. Burk, S. M.
 Free Flight Investigation of the Deployment, Dynamic Stability, and
 Control Characteristics of a 1/2 Scale Dynamic Radio-Controlled
 Model of a Large Booster and Parawing
 N63-19607*# NASA-TN-D-1932
26. Burk, S. M. and Ware, G. M.
Static Aerodynamic Characteristics of Three Ram-Air-Inflated
Low-Aspect-Ratio Fabric Wings
NASA-TN-D-4182

27. Burnell, J. A.; Nielsen, J. N.
Theoretical Aerodynamics of Flexible Wings at Low Speeds Pt. V -
Engineering Method for Estimating Parawing Performance
VIDYA Rep. 209 (NONR-3728/00) AD628 79

28. Burnell, J. A.; Nielsen, J. N.
Theoretical Aerodynamics of Flexible Wings at Low Speeds, Part IV -
Experimental Program and Comparison with Theory
VIDYA Rep. 172 (NONR-3728/00) AD 617 925

29. Burnell, J. A.; Nielsen, J. N.
Theoretical Aerodynamics of Flexible Wings at Low Speeds

30. Burns, T. A.; Eichel, D. A.
Data Report - Wind Tunnel Evaluation of Radioplane Glidesail
Parachute No. 62SD4572

Spacecraft Landing Systems - Design Criteria and Components
A65-12561*

32. Chambers, J. R.
An Investigation of the Dynamic Lateral Stability and Control of a
Parawing Vehicle (M.S. Thesis, Virginia Polytechnic Inst)
M66-29712*# NASA-TM-X-57693

33. Clemmons, Dewey L.
Some Analysis of Parawing Behavior During Free Flight Deployment
AIAA Paper No. 70-1189

34. Cook Technological Center
Proposal for Investigation of Steerable Parachute Configurations

35. Cook Technological Center
Proposal for the Investigation of Steerable Parachutes to Achieve
Landing Point Control

36. Cook Technological Center
Proposal for the Investigation of Steerable Parachutes to Achieve
Landing Point Control
TP3989A

37. Coonce, C. A.
Para-Foil Free-Flight Test Data
SC-TM-66-2616
38. Coskren, R. J.; Chu, C. C.
Investigation of the High Speed Impact Behavior of Fibrous Materials

39. Coskren, Robert J.; Chu, C. C.
Investigation of the High Speed Impact Behavior of Fibrous Materials
Part II: Impact Characteristics of Parachute Materials
ASD Technical Report 60-511, Part II

40. Coskren, R. J.; Chu, C. C.
Investigation of the High Speed Impact Behavior of Fibrous Materials
Part III: Impact Characteristics of Parachute Materials
Tech Documentary Rpt No. WADD-TR-60-511, Part III

41. Cota, G.; Sakamoto, N.
Flexible Wing Air Cargo Glider Delivery System Final Summary Report
N65-29838# TRECOM-TR-65-11 AD 615 908

42. Cota, G.; Sakamoto, N.
Flexible Wing Light Utility Glider - Final Report
N67-15968# USAAVLABS-TR-66-2 Rpt 64B139 AD 640 987

43. Croom, Delwin P.
Deployment Loads Data from a Free-Flight Investigation of All-
Flexible Parawings at Small Scale
NASA TM X2307

44. Croom, Delwin R.
Deployment Loads Data from a Free-Flight Investigation of 4000
Square Foot Wing Area All-Flexible Parawings
Proposed NASA Tech Memo L-7843

45. Croom, D. R.; Naeseth, R. L.; Sleeman, W. C.
Effects of Canopy Shape on Low-Speed Aerodynamic Characteristics
of a 55 Degree Swept Parawing with Large Diameter Leading Edges
N65-11341# NASA-TN-D-2551

46. Davidson, D. A.
The Mechanical Behavior of Fabrics Subjected to Biaxial Stress
Part I: Theoretical Analysis of the Plain Weave
Tech Document Rpt No. ASD-TDR-63-485, Part I

47. Defense Documentation Center
X70-15078# AD 867 100 DDC-TAS-69-76

48. Dunlop, John W.
Survey and Evaluation of Electrical Power Sources as to Their
Potential Application with the 500-Pound Controlled Airdrop Cargo System
49. Dylewski, T. J.
Criteria for Selecting Curves for Fitting to Data
AIAA Journal, Vol. 8, No. 8

50. Eichblatt, David L.; Moore, Robert H.; Barton, Richard L.
Experimental Verification of Scale Factors for Parawing Opening Characteristics
NASA TN D-4665

51. Engelland, J. A.; Peterson, G. L.; Simmons, C. E.
Design Study in Techniques of Recovery of Target Avionics Packages from Rocket Powered Targets
Technical Rpt AFATL-TR-69-75

52. Epple, Henry K.
Results of Tests with a Tandem Recovery System Using a Gliding Main Parachute
Aerospace Report No. TOR-0200(4110-01)-27

53. Epple, H. K.; McClow, J. H.
A Study on Defining Minimum Weight Two-Stage Deceleration Systems for Aerial Recovery
Aerospace Rpt No. TR-0158(3110-01)-4/AF Rpt No. SAMS0-TR-68-406

54. Erlandsen, P. O.
Sailwing Trajectory Analysis, Phase II
X66-11990# TR-65-3 AD 366 550

55. Everett, W. J.
The Design and Development of the Parasail Parachute

56. Ewing, E. G.
Deployable Aerodynamic Deceleration Systems
NASA SP-8066

57. Ewing, E. G.
Ringsail Parachute Characteristics
N64-84336

58. Falarski, Michael D.; Mort, Kenneth W.
Wind Tunnel Investigation of Several Large Scale All-Flexible Parawings
NASA TN D-4708

Aerodynamic Requirements for Flare and Landing of Low-L/D Glide Vehicles
A68-37886 AIAA Paper 67-575

60. Feldman, Lewis; Lane, Frank
A Two-Dimensional Theory of Sails
AFFDL-TR-75-129

61. Ferris, Alice T.; Kelly, H. N.
Free-Flight and Wind Tunnel Studies of Deployment of a Dynamically and Elastically Scaled Inflatable Parawing Model
NASA TN D-4724 N68-33879

62. Fibrous Materials Branch, AFML
Evaluation Techniques for Fibers and Yarns Used by the Fibrous Materials Branch, Non-Metallic Materials Div, Air Force Materials Laboratory
AFML-TR-67-159

63. Fisher, C. W.
Performance Evaluation of Pioneer 23 ft. Diameter Steerable Personnel Parachute
Technical Report No. 69-28

64. Forehand, Everett J.; Bair, Herbert Q.
Parawing Precision Aerial Delivery System
AIAA Paper No. 68-958

65. Forehand, J. E.
The Precision Drop Glider
X65-10842

66. Foteyev, A. M.; Glushkov, I. L.; et al
A Controlled Gliding Parachute
FTD-TT-62-349

67. Fournier, Paul G.
Low-Speed Wind-Tunnel Investigation of All-Flexible Twin-Keel Tension Structure Parawings
NASA TN D-5965 N70-40688

68. Fournier, Paul G.; Sleeman, W. C.
Wind Tunnel Studies of Effects of Construction Methods, Wing Planform, and Canopy Slots on the Aerodynamic Characteristics of All-Flexible Parawings
Langley Working Paper LWP-349

69. Franklin, Billy R.
Service Test of Maneuverable Troop Rack Personnel Parachute, Modified AD 868 721L Rpt No. USAAESW BD-AB-9569

70. Gainer, Thomas G.
Investigation of Opening Characteristics of an All-Flexible Parawing
NASA TN D-5031

71. Gainer, Thomas G.
Wind Tunnel Investigation of the Opening Characteristics of an All-Flexible Parawing
Langley Working Paper LWP-344
72. Gardner, Clarence L.
Telemetering Facilities - 6511 Test Group (P)

73. Garrison, Dave; Holze, Dick; Logie, L. C.
Aerodynamic Properties and Applications of the Parafoil
Boeing Co. Rpt No. D162-10306-2

74. Garrison, Dave
Aerodynamic Properties of the Para-Foil
Boeing Co. Rpt No. D162-10306-1

75. General Design, Inc.
Flight Path Recording of Aerodynamic Deceleration Systems by Means
Of Cinetheodolite Range Space Positioning Methods

76. General Dynamics
Guided Parachute Aerial Delivery System

77. Gersten, K.; Hucho, W. H.
Theoretical and Experimental Investigations on Flexible Wings
X67-16155* NASA-TT-F-10853

78. Gionfriddo, Maurice P.
Two Body Trajectory Analysis of a Parachute-Cargo Airdrop System

79. Glauert, H.
Heavy Flexible Cable for Towing a Heavy Body below an Aircraft
R&M No. 1592

80. Gloss, Blair B.
The Determination of the Shape and Inertial Properties of an All-
Flexible Parawing
NASA-TN-D-5900 N70-23359

81. Goodrick, Thomas F.
Wind Effect on Gliding Parachute Systems with Non-Proportional
Automatic Homing Control
Tech Rpt 70-28

82. Goodyear Aerospace Corporation
Proposal for 500 to 2000 lb Precision Aerial Delivery System
GAP-67-4397S1

83. Gorin, Barney F.
A Wind Tunnel Testing Technique for the Para-Foil Including a Summary
of the Wind Tunnel Tests of the Para-Foil Conducted at Wright Field

84. Graham, Carl R.
Steerable Parachute Informal Technical Data Folders 1, 2, 3, 4
Large Cloverleaf Controllable Parachute Aerial Drop Test Plan
NVR-3964

86. Graham, C. R.; Riley, V. F.; Linhart, E. M.
Investigation of Various Textile Parachutes and Control Systems to
Achieve Steerability, Phase II
Tech Documentary Rpt FDL-TDR-64-81 Part II

87. Graham, C.; Riley, V.; Linhart, E.; Coe, D.
Large Controllable Parachute, Cloverleaf Structural Analysis Report
NVR-3961 - NAS 9-5088

88. Greenberg, Harry
A Survey of Methods for Determining Stability Parameters of an
Airplane from Dynamic Flight Measurements
NACA TN 2340

89. Greco, James R.
An Analysis of the Static Wind Tunnel Testing of Full Scale Para-
Foil Models

90. Gruber, J. R.
Strength Analysis Project 6036 Cloverleaf Parachute, Steerable
Model 502-56
NVR-4071 - NAS 9-5088

91. Haak, E. L.; Niccum, R. J.; Buchanan, K. B.
Development of the Para-Sail Parachute for Applications an Earth
Landing System for Second Generation Space Craft Final Tech Rpt:
The Pressure Distribution on Idealized Shapes of an Inflating Para-Sail.
Tech Docu No. 65-25

92. Haak, E. L.; Niccum, R. J.; Buchanan, K. B.
Final Tech Rpt - The Mass Follow Through Idealized Shapes of an
Inflating Para-Sail Parachute
Tech Document No. 65-26

93. Harms, G.
On Aerodynamic and Flight Mechanics Evaluation of Recoverable High
Altitude Research Rockets (Project 621)
N68-13983

94. Hassell, J. L.; Johnson, J. L.
Full-Scale Wind Tunnel Investigation of a Flexible-Wing Manned
Test Vehicle
N63-19736* NASA-TN-D-1946

95. Hatch, Howard G.; McGowan, William A.
An Analytical Investigation of the Loads, Temperatures and Ranges
Obtained During the Recovery of Rocket Boosters by Means of a
Parawing
NASA TN-D-1003
96. Heinrich, H. G.; Nietz, Thomas; Lippa, Harvey
 Aerodynamic Characteristics of the Parafoil Glider and Other
 Gliding Parachutes
 Tech Documentary Rpt No: RTD-TDR-63-4022

97. Hicks, D. A.
 Design and Development of a Precision Steerable Parachute Aerial
 Delivery System
 NVP-3673

98. Highley, Frank M.; Long, Robert T.
 Recovery, Sea and Air
 MI181

 Laboratory and Full-Size Studies with Steerable Parachutes
 A65-20613*#

100. Hinson, J. K.; Kiker, J. W.
 Laboratory and Full-Size Studies with Steerable Parachutes
 A66-13529*

101. Huckins, Earle K.
 Techniques for Selection and Analysis of Parachute Deployment Systems
 NASA TM-D-5619

102. Irvine, J. F.
 Inspections, Repairs, Modifications, and Flight Test of the Flexible-
 Wing Manned Test Vehicle, XV-8A
 USAVLABS TR-68-30 AD 680 316

103. Jailer, Robert W.; Greilich, Gerald; Norden, M. L.
 Analysis of Heavy-Duty Parachute Reliability

104. Jamison, L. R.; Heinrich, H. G.; Rose, R. E.
 Stress Analysis of the 70 ft Para-Sail During Inflation and Steady
 State Descent
 Tech Document Number 65-22

105. Jaquet, B. M.; Miller, G. K.; Price, D. B.
 Fixed-Base Visual Simulation of Pilot Controlled Descents of an
 Advanced Apollo Spacecraft with an All-Flexible Parawing

106. Jehn, Lawrence A.
 Maximum Likelihood Solution to Theodolite Data

107. Johnson, J. L.; Sleeman, W. C.
 Lift and Drag, Stability and Control Characteristics of Parawings
 X63-12578*#

108. Johnson, J. L.
 Low-Speed Force and Flight Investigation of Various Methods for
 Controlling Parawings
 N66-12158*# NASA-TN-D-2998
109. Johnson, J. L.
Low-Speed Force and Flight Investigation of Various Methods for
Controlling Parawings
N66-12151*# NASA-TN-D-2998

110. Johnson, J. L.; Libbey, C. E.
Stalling and Tumbling of a Radio-Controlled Parawing Airplane Model
N64-25807*# NASA-TN-D-2291

111. Jolly, A. G.
A Method of Investigating the Deployment Characteristics of Man-
Carrying Parachutes
Tech Rpt No. 66280

112. Kane, Milton T.; Dicken, H. K.; Buehler, R. C.
A Homing Parachute System
SC-4537(RR)

113. Kehlet, A. B.
Parachute Glider - Patent
N70-36804* NASA-CASE-XLA-00898

114. Kenner, Paul M.
Structural Analysis of a Parawing During Deployment
AIAA Paper No. 70-1196

Geometric, Aerodynamic, and Kinematic Characteristics of Two Twin-
Keel Parawings During Deployment
NASA CR-1788

116. Kinzy, R. F.
Final Rpt - Research and Development of Gliding Parachutes (Aerosail)
NVR 2818

117. Knacke, T. W.
Controlled Landing With Steerable Parachutes
X65-10837

118. Knacke, T. W.
Steerable Parachutes

119. Knapp, Charles F.; Barton, W. R.
Controlled Recovery of Payloads at Large Glide Distances, Using
the Para-Foil.

120. Kriebel, A. R.; Nielsen, J. N.
Theoretical Aerodynamics of Flexible Wings at Low Speeds Part III -
Approximate Results for Wngs of Large Aspect Ratio
N65-14052# VIDYA-146 AD 606 059 NONR-3728(00)
121. Kurz, B. E.
Flexible Wings, a Nonstop, Multiple Address, Aerial Delivery System
A65-12975 SAE Paper 9150

122. Landweber, L; Prother, M.
The Shape and Tension of a Light Flexible Cable in a Uniform Current
Journal of Applied Mechanics, Jun 1947, PP A-121 to A-126

123. Lashbrook, R. V.
Materials Investigation for the All-Flexible Parawing Proj-Part III
NVR-6211

124. Lashbrook, R. V.; Mabry, C. M.
An Investigation of Low Permeability Fabrics and of Suspension and
Control Lines for the All-Flexible Parawing
AIAA Paper No. 69-953

125. Lau, Richard A.
Preliminary Investigation of Concepts for Low-Altitude Airdrop of
Personnel-Exploratory Development (Final Rpt)
Rpt No. GER-12888

126. Law, E. H.
The Longitudinal Equations of Motion of an Airborne Towed Vehicle
Incorporating an Approximation of Cable Drag and Inertia Effects
Rpt No. 687

127. Layton, G. P.; Thompson, M. O.
Flare and Landing Performance and Control Characteristics of Low-
Speed Paragliders
X63-14592*

128. Lee, J. B.
Earth-Landing Systems-Systems Applications
A65-12562*

129. Libbey, C. E.
Deployment of Parawings for Use as Recovery System
A65-20976* AIAA Paper No. 64-472

130. Libbey, C. E.
The Deployment of Parawings for Use as Recovery Systems
A64-19963# AIAA Paper 64-472

131. Libbey, C. E.
Flexible Wing Deployment Device - Patent
N70-41863* NASA-CASE-XLA-01220

132. Libbey, C. E.
Free Flight Investigation of the Deployment of a Parawing Recovery
Device for a Radio-Controlled 1/5 Scale Dynamic Model Spacecraft
N64-11236* NASA-TN-D-2044
AFFDL-TR-75-129

132. Libbey, Charles E.
Reefing Tests of a 5-Foot All Flexible Parawing Langley Working Paper LWP 417

133. Libbey, Charles E.; Johnson, Joseph L.
Stalling and Tumbling of a Radio-Controlled Parawing Airplane Model NASA-TN-D-2291

134. Libbey, C. E.; Ware, G. M.; Naeseth, R. L.
Wind Tunnel Investigation of the Static Aerodynamic Characteristics of an 18-foot All-Flexible Parawing NASA TN D-3856 N67-27271

135. Linhart, E. M.; Buhtler, W. C.
Wind Tunnel and Free Flight Investigation of All-Flexible Parawings at Small Scale NASA CR66879 N70-19796

136. Linhart, E.; Coe, D.
Large Controllable Parachute Wind-Tunnel Test Program - Final Report NVR-3989

137. Linhart, E. M.; Riley, V. F.
Wind Tunnel Test Program for Tests of 12 ft Do Models of ASD Steerable Parachute N64-32423# PTM-754 AD 442 743

138. Linhart, E. M.; Riley, V. F.; Graham, C. R.
Investigation of Various Textile Parachutes and Control Systems to Achieve Steerability, Parts III and IV Technical Documentary Report FDL-TDR-64-81, Part III

139. Lovel, Calvin J.; Lipson, Stanley
An Analysis of the Effect of Lift-Drag Ratio and Stalling Speed on Landing-Flare Characteristics Technical Note 1930

140. Mabry, C. M.; Lashbrook, R. V.
Materials Investigation for the Flexible Parawing Project - Part I NVR 6211

141. Mabry, C. M.; Lashbrook, R. V.
Materials Investigation for the All-Flexible Parawing Project - Part II NVR 6211

142. McCarty, B.
Parachutes A66-43197
143. McClow, J. H.
Development of a 57 Foot Parachute for Aerial Retrieval
Report No. TOR-0066 (6110-01)-21

144. McClow, John H.
Preliminary Development Testing of 53 ft Parachute with Conical
Extension for Aerial Retrieval
Aerospace Report No. TR-669 (6110-01)-1
Air Force Report No. SSD-TR-66-204

145. McIntyre
Development of Recovery Systems for AN/USD-501 Drone

146. Menard, George L.
Performance Evaluation Tests Para-Foil Maneuverable Personnel Gliding
Parachute Assembly Aspect Ratio 2 Area 360 ft²
Technical Report No. 2-69 AD 864 272L

147. Menard, G. L.C.
Performance Evaluation Tests of Sailwing, Maneuverable, Personnel,
Gliding Parachute Assembly Aspect Ratio: 4 Area 400 ft²
Technical Note 1005-70

148. Menard, G. L.C.
Performance Evaluation Tests of 16 Ft Keel Length Twin Catenary
Keel Parawing Maneuverable, Personnel, Gliding Parachute Assembly
Technical Note 1009-70

149. Menard, G. L.C.
Performance Evaluation 35 ft Diameter Extended Skirt Maneuverable
Personnel Parachute Canopy Assembly with "TU" Orifice
AD 815 808 Technical Report No. 8-66

150. Menard, G. L.C.
Performance Evaluation Tests of 22.5 Ft. Single Keel, Slotted
Parawing Maneuverable, Personnel Gliding Parachute Assembly
Technical Note 1007-70

151. Menard, G. L.C.
Performance Evaluation Tests of Volplane Maneuverable Personnel
Gliding Parachute Assembly; Aspect Ratio: 2.2 Area: 312 ft²
Technical Note 1006-70

152. Menard, G.L.C.; Ternes, M.N.
Performance and Evaluation Tests of 20 and 24 Feet Parawings
AD 848 979L Technical Report No. 8-67

153. Mendenhall, M. R.; Spangler, S. G.; Nielsen, J. N.
Review of Methods for Predicting the Aerodynamic Characteristics
of Parawings
AIAA Paper No. 68-10
154. Miller, G. K.
Fixed-Base Visual Simulation of Obstacle Avoidance During Terminal Descent of Advanced Apollo Spacecraft with an All-Flexible Parawing
NASA-TN-D-5940 N70-35927

155. Misc. Parawing Data and Slides

156. Moeller, J. H.; Linhart, E. M.; Gran, W. M.; Parson, L. T.
Free Flight Investigation of Large All-Flexible Parawings and Performance Comparison with Small Parawings
Final Report NASA CR-66918

157. Moore, Robert H.; Eichblatt, David L.; Hughes, T. F.
Experimental Verification of Scale Factors for Parawing Opening Characteristics with Dimensional Ratios from 1:1.3 to 1:3
NASA TN D-5071

158. Morgan, Harry L.
Performance and Deployment Characteristics of a Twin-Keel Parawing with Various amounts and Permeabilities
NASA TN-D-5793

159. Morgan, Harry L.; Bradshaw, Charles F.
Aerodynamic and Deployment Characteristics of Single-Keel Solid and Single-Keel Slotted Personnel Parawings
NASA TN D-5911

160. Morgan, Harry L.; McHatton, Austin D.
Aerodynamic and Deployment Characteristics of Multistage Canopy and Suspension-Line Reefing Systems for a Twin-Keel All-Flexible Parawing
NASA-TN-D-6306

161. Morgan, Harry L.; Naeseth, Rodger L.
Low Speed Wind Tunnel Investigation of the Effects of Canopy and Rigging Modifications on the Aerodynamic Characteristics of 40 and 45 Swept All-Flexible Parawings

162. Moss, B.
Lifting and Non-Lifting Decelerators for Boosters and Satellite Recovery
A64-27828

163. Mueller, Wolfgang R.; Everett, William J.
Materials Test Report on a 90 ft Sailwing for Barish Associates

164. Musil, Jay
Gliding Canopy Analyses
RSE-10222-36

165. Myers, Earl C.
AD 452 430
166. Myers, Earl C.
Symposium on Parachute Technology & Evaluation Proceedings - Vol. II
AD 452 431

167. Myers, Phillip F.; Voracheck, Jerome J.
Definition of Tethered Balloon Systems
AFCRL-71-0213

168. Naeseth, Rodger L.
Low-Speed Wing-Tunnel Investigation of a Series of Twin-Keel
All-Flexible Parawings
Langley Working Paper LWP-347

169. Naeseth, Rodger L.
Recent Flexible-Wing Research

170. Naeseth, Rodger L.; Fournier, Paul G.
Low-Speed Wind Tunnel Investigation of Tension Structure Parawings
NASA-TN-D-3940

171. Naeseth, Rodger L.
Model Wind Tunnel and Flight Investigation of a Parawing-Lifting
Body Landing System
NASA TN-D-5893

172. NASA
Compilation of Papers Presented to Meeting on Space Vehicle
Landing and Recovery Research and Technology
X65-84330* NASA-TM-X-51728

173. Nathe, Gerald A.
Analysis of the Para-Foil
AIAA Student Journal, Vol. 5, No. 1, P. 4

174. Nichols, Charles W.
Performance Evaluation of Para-Commander Mark I Personnel Parachute
Technical Report No. 66-16

175. Nicolaides, John D.
Improved Aeronautical Efficiency through Packable Weightless Wings
AIAA Paper No. 70-880

176. Nicolaides, John D.
On the Discovery and Research of the Para-Foil

177. Nicolaides, John D.
Para-Foil Performance in Tethered, Gliding, and Towed Flight

178. Nicolaides, J. D.
Parafoil Wind Tunnel Tests
AFFDL-TR-70-146

Para-Foil Design
A Preliminary Study of the Aerodynamics and Flight Performance of the Parafoil

A Summary of the Tests Conducted on the Para-Foil

182. Nicolaides, John D.; Speelman, R. J.; Menard, George L.
A Review of Para-Foil Programs

183. Nicolaides, J. D.; Tragarz, M. A.
Parafoil Flight Performance
A70-41826#

184. Nicolaides, J. D.; Tragarz, Michael A.
Parafoil Flight Performance
AFFDL-TR-71-38

185. Nielsen, Jack N.; Kriebel, Anthony R.; Goodwin, Frederick K.
Theoretical Aerodynamics of Flexible Wings at Low Speeds - I - One Lobed Parawings

186. Nielsen, Jack N.; Barakat, Richard; Goodwin, Frederick K., Rudin, Morton
Theoretical Aerodynamics of Flexible Wings at Low Speeds - II - Two Lobed Parawings

187. Nielsen, Jack N.; Burnell, Jack A.; Sacks, Alvin H.
Investigation of Flexible Rotor Systems-Results of Phases I and II
ASD Technical Rpt 61-660

188. Nielsen, J. N.; Spangler, S. B.; Stahara, S.S.; Lee, A. L.
An Exploratory Aerodynamic and Structural Investigation of All-Flexible Parawings
NASA CR-1674

190. Nielsen, N.
Theory of Flexible Aerodynamic Surfaces
A63-26086

191. Nielsen, J. N.
Theory of Flexible Aerodynamic Surfaces
A63-22111

Slot Wing Reference Data

193. Packing and Rigging Procedure for 500 lb. and 2000 lb "Jalbert" Multi-Cell Airfoil

194. Pepper, William B.; Holt, Ira T.
Development of a Gliding Guided Ribbon Parachute for Transonic Speed Deployment
AFFDL-TR-75-129

195. Perkins, Courtland D.
Development of Airplane Stability and Control Technology
Journal of Aircraft, Vol. 7, No. 4, P. 290

196. Phillips, N. S.
Measurement of Wind Shear
X64-16459#

197. Phillips, W. H.
Theoretical Analysis of the Oscillations of a Towed Cable
NACA TN 1796

198. Pilipets, S.
IKAR-67 Flexible Glider
AD 684 703

199. Pioneer Parachute Co.
Technical Proposal for an All Flexible, Gliding Surface-to-Air Pickup Station

200. Pioneer Parachute Co.
Towed Para-Foil Performance

201. Polhamus, Edward C.; Naeseth, Rodger L.
Experimental and Theoretical Studies of the Effects of Camber and Twist on the Aerodynamic Characteristics of Parawings having Nominal Aspect Ratios of 3 and 6
NASA TN-D-972

202. Popper, Peter
Criteria for Rupture of Certain Textile Structures under Biaxial Stress
Technical Documentary Report No. ASD-TDR-62-613

203. Reynolds, J. F.
Pitching Moment Corrections from Axial Forces on Isolated Ring Wings at Angle of Attack
N66-11624# NAVWEPS-8667

204. Riley, V. F.
Final Report - Glidesail Development Program
NVR PTM-524A

205. Riley, V. F.; Linhart, E. M.
Investigation of Various Textile Parachutes and Control Systems To Achieve Steerability
Technical Documentary Report No. FDL-TDR-68-81 Phase I

206. Rogallo, Francis
Flexible Wings
AFFDL-TR-75-129

207. Rogallo, F. M.
Flexible-Wing Research and Development

208. Rogallo, F.M.
NASA Research on Flexible Wings
N68-25293*# NASA-TM-X-59738

209. Rogallo, F. M.; Sleeman, William C.; Croom, Delwin R.
Resume of Recent Parawing Research

210. Rogallo, F. M.
Flexible Wings Red-Stability and Control of Paragliders as Decelerators for Spacecraft Recovery

211. Rogallo, F. M.
NASA Research on Flexible Wings
A69-15568*

212. Rogallo, F. M.
Paraglider Recovery Systems
N62-12819**

213. Rogallo, F. J.
Parawings for Astronautics
A64-27805*

214. Rogallo, F. M.
Parawings for Astronautics
N65-88967* NASA-TM-X-51047

215. Rogallo, F. M.; Sleeman, W. C.
Control for Flexible Parawing - Patent
N71-11038* NASA-CASDE-XLA-06958

216. Rosenberg, Isadore; Gold, David
Steerable Parachute
Technical Note FTL-55-1

217. Ryan Aeronautical Company
Flexible Wing Precision Drop Glider - Final Report
N64-14978#

218. Ryan Aeronautical Company
Flex Wing Precision Delivery Glider System
RAC Rpt No. 65B021

219. Ryan Aerospace
Flexible Cargo Gliders - Volume I
TREC Technical Report 62-3A

220. Ryan Aerospace
Flexible - Wing Cargo Gliders - Volume II
TREC Technical Report 62-3B
221. Shanks, Robert E.
 Experimental Investigation of the Dynamic Stability of a Towed Parawing Glider Model
 NASA TN-D-1614

222. Shanks, R. E.
 Experimental Investigation of Towed Paraglider Air Cargo Delivery System
 N64-26416*# NASA-TN-D-2292

223. Siviter, James H.
 Flight Investigation of a Capacitance - Type Meteroid Detector Using an Inflatable Paraglider
 NASA-TN-D-4530

224. Slayman, R. G.; Bair, H. Q.; Rathbum, T. W.
 500 Pound Controlled Airdrop Cargo System
 USAAVLABS Technical Report 70-31 AD 877 587

225. Sleeman, W. C.
 Glide Performance of Advanced Parawings
 AIAA Paper No. 70-1186

226. Sleeman, W. C.
 Low-Speed Investigation of Cable Tension and Aerodynamic Characteristics of a Parawing and Spacecraft Combination
 NASA TN-D-1937 N63-18667

227. Sleeman, William C.
 A Selected Bibliography of Parawing Publications

228. Sleeman, W.C.; Gainer, Thomas G.
 Status of Research on Parawing Lifting Decelerators
 Journal of Aircraft, Vol. 6, No. 5

229. Sleeman, William C.; Johnson, Joseph L.
 Aerodynamics of the Parawing

230. Smith, C. C.; Ware, G. M.
 Wind-Tunnel Investigation of the Flight Characteristics of a Model of an Aspect Ratio - 6 Conical Parawing Utility Vehicle
 NASA-TN-D-3673 N67-16684

231. Sobczak, John W.
 Investigation of Deployment and Landing Loads with a Limp Paraglider
 U.S.A. Aviation Material Laboratories Tech Report 66-82

232. Speelman, Ralph J.
 Steerable Parachutes - The Key to Overcoming Current Airdrop System Limitations

233. Speelman, R. J.; Bradshaw, C.; Sobczak, J.; Menard, G.L.C.
 Hi-Glide Personnel Canopies: Efforts toward Identification of Requirements
 AIAA Paper No. 70-1194
234. Speth, R. F.; Rust, J. L.; Coles, A. V.
Parawing AERCAB Feasibility Flight Demonstration
AFFDL-TR-71-4

235. Stencil Aero Engineering Corp.
Sixty-four Foot Ultra Precision Parachute - Final Report
X67-15432 AD 805 985

236. Stone, J. W.; Highley, F. M.
Air-To-Air Recovery of Re-entry Vehicles
AIAA Paper No. 68-1163

237. Stone, J. W.; Highley, F. M.
Mid-Air Retrieval: Optimizing Performance and Weight of the
Aircraft-Borne and Descent Systems
AIAA Paper No. 70-1201

238. Summa, James Michael
Theoretical Dynamic Stability of a Tethered Parafoil
AIAA Student Journal, Vol. 6, No. 3

239. Summers, D. O.
Inertia Tests of a 22.7 foot Twin Keel Parawing (Model 1 Rpt No. 3)
X70-12398*# NASA-CR-66851

240. Systems Engineering Grp - Research and Tech Div/AFSC/WPAFB
Tests of a Standard Type C-9 Parachute Canopy with Four Suspension
Lines Severed
Tech Memorandum - SEM-TM-64-1

241. Tactical Air Command
Operational Test & Evaluation of Halo Parachute Techniques
TAC-TR-63-18

242. Terry, John E.
Aerodynamic Characteristics of Ring Wings - A Bibliography
RSIC-285 AD 452 725

243. Tischler, A. A.
Paraglider Development Program Emergency Parachute Recovery Test
Full Scale Test No. 2.

244. USMC
Marine Corps Tactical Parachuting
AD 808 498L

245. USMC
Plan of Test for Evaluation of Steerable Parachute
AD 878 006L

246. USMC
Steerable Parachute
AD 821 181L Rpt No. SOR-IT-3.4
247. Vaughn, H. R.; Reis, G. E.; Stark, J. A.
 Analog Simulation of a Guided Parachute-Payload System
 SC-DR-71 0097

248. Vehicle Equipment Division, AFFDL
 Performance of and Design Criteria for Deployable Aerodynamic Decelerators
 ASD-TR-61-579

249. Vickery, E. D.
 Aerodynamics of the Para-Sail

250. Vickery, E. D.
 Live Testing of Various Gliding Devices
 AIAA Paper No. 68-933

251. Vickery, E. D.
 Several Reefing Techniques for Various Gliding Devices
 AIAA Paper No. 70-1192

252. Walker, R. Harley
 Static and Dynamic Longitudinal Stability of a Semi-Rigid Parafoil
 AIAA Paper No. 70-1191

253. Ware, George M.
 Wind Tunnel Investigation of the Aerodynamic Characteristics of a Twin-Keel Parawing
 NASA TN D-5199

254. Ware, G. M.; Hassell, J. L.
 Wind Tunnel Investigation of Ram-Air-Inflated All-Flexible Wings of Aspect Ratios 1.0 to 3.0
 NASA TM SX-1923

255. Ware, G. M.; Libbey, C. E.
 Wind Tunnel Investigation of the Static Aerodynamic Characteristics of a Multilobe Gliding Parachute
 NASA TN-D-4672

256. Weiberg, J. A.; Mort, Kenneth W.
 Wind Tunnel Tests of a Series of Parachutes Designed for Controllable Gliding Flight
 NASA TN-D-3960

257. White, F. M.; Wolf, D. F.
 A Theory of Three-Dimensional Parachute Dynamic Stability
 A66-40593

258. White, F. M.; Wolf, D. F.
 A Theory of Three-Dimensional Parachute Dynamics Stability
 A68-16605
FLEXIBLE WINGS FOR TRANSPORTATION

Francis M. Rogallo, Delwin R. Croom, and William C. Sleeman, Jr.

NASA Langley Research Center
Hampton, Virginia

Presented at the International Congress of Transportation Conferences

Washington, D.C.
May 31-June 2, 1972
A SELECTED BIBLIOGRAPHY OF PARAWING PUBLICATIONS

Recent requests for a bibliography of parawing publications have prompted a computer search of literature on flexible wings available from 1962 to the present. This literature search and a working list of references previously compiled have provided the information from which the present bibliography was selected. A comprehensive listing of references on flexible wings has not been attempted because it was believed that a more concise bibliography of basic research information would be more useful. Inasmuch as a large part of the present technology for parawings was developed by the NASA or under its sponsorship, a complete listing of available NASA publications on parawings has been attempted. In like manner, a significant amount of work on applications of parawings and paragliders for military use has been conducted by the U.S. Army Transportation Research Command (TRECOM), Ft. Eustis, Virginia, and basic references reporting this work are included.

Many talks and papers on flexible wings have been sponsored by various technical societies. A few of these papers have been included in this bibliography; however, this type of reference has not been generally included because many of these papers were based on research that was later published in a more complete form in a formal report.

A definitive and complete bibliography can be assembled only when the technology has become static. In this respect, it is hoped that the present compilation represents a status report on information presently available and
that it will prove useful to those interested in flexible-wing technology.

TERMINOLOGY

There has always appeared to be some confusion in regard to the terminology used at different times to identify various flexible-wing configurations. It may be helpful, therefore, to provide some definitions of terminology that have evolved over the past decade.

PARAGLIDER - The originators of the flexible-wing concept in the late 1940's created a completely flexible lifting surface with a parachutelike tension structure in which the wing surface shape is maintained by the balance of forces between the airload on the surfaces and the tension in the suspension lines, and flexible wings that could have several types of localized stiffening. The early experimental work was conducted largely by flying the wings as kites; consequently, the first flexible wings tested in NASA wind-tunnel and flight investigations in the late 1950's were known as flexible kites.

Early applications under study by NASA for flexible kites, such as recovery of the Saturn booster and manned spacecraft, appeared to warrant a more suitable name for the recovery system. The term "paraglider" was used, therefore, to identify the gliding, deployable wing being investigated in studies of recovery of the Saturn booster and other space and aeronautics applications underway at about the same time. Inasmuch as the wing configurations being investigated in these studies had rigid-tube or inflated-tube leading edges and keel and a sweptback planform with a flexible fabric canopy, the term "paraglider" was generally accepted as descriptive of this type of wing.

PARAWING - Early potential applications for flexible wings involved their use as a gliding descent system for various space and aeronautical vehicles. Other applications that involved powered or towed vehicles, however, did not use gliding flight over the major portion of their operation, and the gliding connotation did not appear appropriate. It also appeared desirable to use a term that described the lifting surface without regard to the type of use for it, and the name "parawing" was derived to meet this need. The term "parawing"
was originally intended to refer to a broad class of aeroflexible lifting surfaces, with both stiffened and unstiffened leading edges and keels. In general practice, however, the names "parawing and paraglider" came to be used interchangeably to describe wings with stiffening members, and the broad-class connotation of parawing was not widely recognized.

ALL-FLEXIBLE PARAWING — A new term was needed to differentiate between parawings that had rigid or inflated stiffening members and parawings that were completely flexible with no structural or stiffening members. The name "all-flexible parawing" was selected to denote a class of flexible wings that had a flexible fabric lifting surface, a pure tension structure, and for which the shape of the surface is determined by the balance of forces between the airloads on the canopy and the tension in the suspension lines, that is, the original concept in its purest form.

GLIDING PARACHUTE — The advantages of being able to steer or change heading on a personnel parachute have long been recognized, and techniques and modifications to standard personnel parachutes to provide steering capability have been explored for many years. In the 1950's and 1960's, parachutes were modified to provide some forward velocity by venting air from the rear portion of the canopy. Many of these gliding parachutes could be steered with relative ease and were capable of providing about half as much lift as drag. Later design refinements increased ratios of lift to drag to near 1.0 for gliding parachutes of roughly hemispherical shape. The term "gliding parachute" can be considered to identify a class of descent devices that produce lift in gliding flight that is equal to, or less than, the drag.

FLEXIBLE WINGS — The term "flexible wings" identifies a broad class of fabric or membrane lifting surfaces that provide more lift than drag in gliding or powered flight. Included in this definition are paragliders, parawings, and several other gliding, fabric wings of various planforms and shapes that have been developed since the introduction of the flexible-wing concept.

AFFDL-TR-75-129

NASA TECHNICAL MEMORANDUMS (X)

NASA CONTRACTOR REPORTS

4. Kenner, Paul M.; Churchill, Frederic T.; and Holt, Ralph B.: Geometric Aerodynamic, and

U.S. ARMY TRANSPORTATION RESEARCH COMMAND (FT. EUSTIS, VA.)

10. Sakamoto, N.; and Cota, G.: Flexible Wing Air Cargo Glider Delivery System. USATRECOM TR-65-11, May 1965. (Also available from DDC as AD-615908.)

U.S. NAVY-OFFICE OF NAVAL RESEARCH

TECHNICAL PRESENTATIONS

5. Croom, Delwin R.; Rogallo, Francis M.; and Sleeman, William C., Jr.: Resume of Recent Parawing Research. Paper presented at Course on Aerodynamic Deceleration at the Univ. of Minnesota, July 8, 1965. (Also available as NASA TM X-56747.)

RECENT FLEXIBLE-WING RESEARCH

By Rodger L. Naeseth

NASA Langley Research Center
Langley Station, Hampton, Va.

Presented at the Course on Aerodynamic Deceleration
at the Center for Continuation Study, University of Minnesota

Minneapolis, Minnesota
July 17, 1969
BIBLIOGRAPHY OF FLEXIBLE-WING PUBLICATIONS

THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.