TO:
Approved for public release; distribution is unlimited.

FROM:
Distribution authorized to U.S. Gov't. agencies only; Proprietary Information; 29 SEP 1975. Other requests shall be referred to Army Command and General Staff College, Fort Leavenworth, KS.

AUTHORITY
ODDR&E ltr 20 Jan 1976
THIS REPORT HAS BEEN DELIMITED
AND CLEARED FOR PUBLIC RELEASE
UNDER DOD DIRECTIVE 5200.20 AND
NO RESTRICTIONS ARE IMPOSED UPON
ITS USE AND DISCLOSURE,

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.
An Analysis of Cost Implications of Accomplishing Direct Support Maintenance Tasks for the Truck, 1/4-Ton, M151 Series at the Organizational Maintenance Level

Donald C. Fischer, MAJ, USA
U.S. Army Command and General Staff College
Fort Leavenworth, Kansas 66027

Final report 6 June 1975

Distribution limited to U.S. Government agencies only; proprietary information. Other requests for this document must be referred to U.S. Army Command and General Staff College, ATTN: ATSW-DD, Fort Leavenworth, Kansas 66027.

A thesis presented to the faculty of the U.S. Army Command and General Staff College, Fort Leavenworth, Kansas 66027
REPORT DOCUMENTATION PAGE

- **REPORT NUMBER**:
- **TITLES (and Subtitle)**: An Analysis of Cost Implications of Accomplishing Direct Support Maintenance Tasks for the Truck, 1/4-Ton, M151 Series at the Organizational Maintenance Level
- **AUTHOR(S)**: Fischer, Donald C., MAJ, USA
- **PERFORMING ORGANIZATION NAME AND ADDRESS**: Student at the U.S. Army Command and General Staff College, Fort Leavenworth, Kansas 66027
- **CONTROLLING OFFICE NAME AND ADDRESS**: US Army Command and General Staff College, ATTN: ATSW-DD, Fort Leavenworth, Kansas 66027
- **TYPE OF REPORT & PERIOD COVERED**: Final report 6 Jun 75
- **PERFORMING ORG. REPORT NUMBER**:
- **CONTRACT OR GRANT NUMBER(S)**:
- **REPORT DATE**: 6 Jun 75
- **NUMBER OF PAGES**: 119
- **SECURITY CLASSIFICATION (of this report)**: Unclassified
- **DECLASSIFICATION/ DOWNGRADING SCHEDULE**: 29 SEP 1975
- **DISTRIBUTION STATEMENT (of this Report)**: Distribution limited to U.S. Government agencies only: Proprietary Information. Other requests for this document must be referred to U.S. Army Command and General Staff College, Fort Leavenworth, Kansas 66027.
- **DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)**:
- **SUPPLEMENTARY NOTES**: Master of Military Art and Science (MMAS) Thesis prepared at CGSC in partial fulfillment of the Masters Program requirements, U.S. Army Command and General Staff College, Fort Leavenworth, Kansas 66027
- **KEY WORDS**:
- **ABSTRACT**: See reverse.
The general problem studied was the feasibility of moving direct support maintenance responsibilities forward to the organizational maintenance level. The current concept relies on centralization of skills and capital equipment such as tools and test equipment.

This study proposes that allocation of maintenance responsibilities should be based on the particular equipment being supported as opposed to applying one concept to all commodities. This study develops a methodology for analysis of individual items of automotive materiel. The vehicle for analysis is the M151A1 1/2-ton truck. The intent of the model and methodology is to permit analysis of more complex automotive items in order to obtain a more optimum allocation of maintenance responsibility.
AN ANALYSIS OF COST IMPLICATIONS OF
ACCOMPLISHING DIRECT SUPPORT MAINTENANCE
TASKS FOR THE TRUCK, ¼-TON, M151 SERIES
AT THE ORGANIZATIONAL MAINTENANCE LEVEL

A thesis presented to the faculty of the U.S. Army
Command and General Staff College in partial
fulfillment of the requirements of the

MASTER OF MILITARY ART AND SCIENCE

by

DONALD C. FISCHER, JR., MAJ, USA
M.S., United States Air Force Institute of Technology, 1972

Fort Leavenworth, Kansas
1975
ABSTRACT

An Analysis of Cost Implications of Accomplishing Direct Support Maintenance Tasks for the Truck, ½-Ton, M151 Series at the Organizational Maintenance Level

MAJ Donald C. Fischer, Jr.
27 May 1975
119 pages

The study tests the hypothesis that if responsibility for replacement of engines, transmissions, clutches, and steering gear assemblies for the M151 ½-ton truck series was moved to organizational level, there would be significant cost savings. The history of automotive maintenance management is examined. Tool and training cost implications are investigated. A computer simulation generates direct support maintenance requirements, costs, and tests results for statistical significance.
Title: An Analysis of Cost Implications of Accomplishing Direct Support Maintenance Tasks for the Truck, 4-Ton, M151 Series at the Organizational Maintenance Level

Researcher: MAJ Donald C. Fischer, Jr., OD

ABSTRACT

Problem

The general problem studied was the feasibility of moving direct support maintenance responsibilities forward to the organizational maintenance level. The current concept relies on centralization of skills and capital equipment such as tools and test equipment. This is a viable concept when the price of facilities is high relative to labor. In recent years, however, labor has become an extremely high priced commodity and using people in such tasks as driving to maintenance units frequently to deliver and pick up equipment is inefficient. Thus, when equipment is high priced, complex, cumbersome, and requires highly specialized skills such as certain missile system support equipment, a central maintenance facility is economical. If, however, tools are cheap versus the cost of people, then perhaps the tools should be proliferated to increase the productivity of people.

Flexibility, then, is required in the study of the problem of providing direct support. This study proposes that allocation of maintenance responsibilities should be
based on the particular equipment being supported as opposed to applying one concept to all commodities. This study develops a methodology for analysis of individual items of automotive materiel. The vehicle for analysis is the M151A1 ½-ton truck. The intent of the model and methodology is to permit analysis of more complex automotive items in order to obtain a more optimum allocation of maintenance responsibility.

Two research questions were examined:

1. What are tool and equipment costs incurred by moving responsibility for replacement of engines, transmissions/transfer assemblies, clutches, and steering gear assemblies forward to the using organization for the M151A1 ½-ton truck?

2. What are the costs associated with providing additional skills at the organizational level to permit replacement of engines, transmission/transfer assemblies, clutches, and steering gear assemblies?

The research hypothesis examined was:

If responsibility for replacement of engines, transmission/transfer assemblies, clutches, and steering gear assemblies was shifted from direct support to organizational maintenance level, there would be a significant reduction in direct support maintenance costs.

Methodology

The maintenance allocation chart for the M151 series of trucks was reviewed to determine what component replacement was a direct support responsibility. The engine, transmission/transfer assembly, clutch, steering gear, and oil pump must be replaced by the direct support unit. Oil pump replacement was not examined since the data base for the study showed that for 108 vehicles operated over 5,000,000 miles, no oil pump replacements were recorded.
Tool Costs. Tool costs were estimated by reviewing the direct and general support maintenance manual to determine what tools are required to replace the above components. The organizational maintenance shop set (No. 2 Common) was used to determine if those tools are on hand at organizational level. The Army Master Data File was used to determine the price of tools that would have to be provided if major component replacement responsibility for the M151 was given to the organizational level.

Training Costs. The programs of instruction for MOS 63H20, Automotive Repairman (direct and general support) and MOS 63C20, Tracked Vehicle Mechanic (organizational) were compared to determine what field maintenance training would have to be given organizational mechanics to permit them to replace M151 series major components.

Variable Costs. A computer simulation was used to simulate direct support maintenance requirements generated by 7-ton trucks organic to a mechanized infantry battalion. Models for direct and indirect costs were developed to describe the current maintenance concept where vehicles are taken to the direct support unit for repair and the proposed concept where component replacement would be done at and by the organizational level.

Current concept model:

\[\text{ATOTCST} = (\text{OGPRPTM} + \text{TRANSTM} + \text{DSMNTM}) \times 6.48 + \text{APOLCST} \]

where

\[\text{ATOTCST} = \text{Total maintenance costs generated by the current concept (Concept A)} \]
OGFRSTM = Time required to prepare a vehicle for acceptance by the direct support unit

TRANSTM = Time required to transport the disabled vehicle to and from the direct support unit

DSMNTM = Time required to replace the component

6.48 = Hourly labor rate (USAREUR, 1974)

Proposed concept model:

\[BTOTCST = DSMNTM \times 6.48 \]

where OGFRSTM and TRANSTM are assumed to be zero due to repairs being accomplished by the owning unit.

Results

Tools. Tools required by the organization consisted of the engine/transmission removal sling. An optional item would be the automotive hoist. Estimated costs are $150-$300 per battalion.

Training. Additional training would be 35 hours at a cost of approximately $191 per student (MOS 63C20). For a mechanized infantry battalion currently authorized 7 such mechanics, the cost would be approximately $1,337.

Variable Costs. The computer simulation and the statistical test showed that cost savings under the proposed concept were statistically significant. Comparison of these savings to tool and training costs showed that the additional investment would have a high payoff, especially in situations where there was a large distance between the user and the support unit or where conditions increased normal maintenance requirements.
ACKNOWLEDGEMENTS

The author extends his sincere appreciation to Dr. George Rice, Lieutenant Colonel Eugene Small, and Major Edward Kelley for the time and knowledge provided in their capacity as the advisory committee; to Major William Allard, USAR, for his invaluable assistance in developing the computer simulation program; and to Mrs. Beverly Cleaver, the typist, for her indispensable contribution to the study.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>THESIS APPROVAL PAGE</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
</tbody>
</table>

Chapter

1. THE PROBLEM
 - INTRODUCTION | 1 |
 - BACKGROUND | 1 |
 - PROBLEM | 5 |
 - PURPOSE OF THE STUDY | 6 |
 - Research Question 1 | 7 |
 - Research Question 2 | 7 |
 - Research Hypothesis | 7 |

2. REVIEW OF THE LITERATURE
 - OVERVIEW | 9 |
 - DEVELOPMENT OF THE AUTOMOTIVE MAINTENANCE | 9 |
 CONCEPT | 9 |
 Early Organization for Maintenance | 9 |
 Echelons and Categories of Maintenance | 12 |
 Post World War II to Present | 16 |
 - REPRESENTATIVE STUDIES | 17 |
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPARENT ASSUMPTIONS AND BASIS FOR EXAMINATION</td>
<td>19</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>21</td>
</tr>
<tr>
<td>3. METHODOLOGY</td>
<td>25</td>
</tr>
<tr>
<td>OVERVIEW</td>
<td>25</td>
</tr>
<tr>
<td>RESEARCH METHODOLOGY</td>
<td>25</td>
</tr>
<tr>
<td>Data Base</td>
<td>26</td>
</tr>
<tr>
<td>Training Costs</td>
<td>27</td>
</tr>
<tr>
<td>Tool Costs</td>
<td>28</td>
</tr>
<tr>
<td>COMPARISON OF VARIABLE COSTS</td>
<td>30</td>
</tr>
<tr>
<td>Discussion</td>
<td>30</td>
</tr>
<tr>
<td>General</td>
<td>33</td>
</tr>
<tr>
<td>Current Concept</td>
<td>33</td>
</tr>
<tr>
<td>Proposed Concept</td>
<td>34</td>
</tr>
<tr>
<td>Labor Costs</td>
<td>34</td>
</tr>
<tr>
<td>Elements of Maintenance Time</td>
<td>35</td>
</tr>
<tr>
<td>Fuel and Oil (POL) Costs</td>
<td>39</td>
</tr>
<tr>
<td>Additional Comments</td>
<td>42</td>
</tr>
<tr>
<td>HYPOTHESIS TESTING</td>
<td>42</td>
</tr>
<tr>
<td>Statistical Testing</td>
<td>43</td>
</tr>
<tr>
<td>Experimental Design</td>
<td>46</td>
</tr>
<tr>
<td>4. FINDINGS (ANALYSIS AND EVALUATION)</td>
<td>52</td>
</tr>
<tr>
<td>RESEARCH QUESTIONS DATA AND FINDINGS</td>
<td>52</td>
</tr>
<tr>
<td>Research Question 1</td>
<td>52</td>
</tr>
<tr>
<td>Research Question 2</td>
<td>52</td>
</tr>
<tr>
<td>Findings for Research Question 1</td>
<td>53</td>
</tr>
<tr>
<td>Findings for Research Question 2</td>
<td>61</td>
</tr>
<tr>
<td>Chapter</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Research Hypothesis Data and Findings</td>
<td>63</td>
</tr>
<tr>
<td>Research Hypothesis</td>
<td>63</td>
</tr>
<tr>
<td>Findings for the Research Hypothesis</td>
<td>69</td>
</tr>
<tr>
<td>EVALUATION</td>
<td>69</td>
</tr>
<tr>
<td>Payoff Estimation</td>
<td>69</td>
</tr>
<tr>
<td>Limitations</td>
<td>71</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>72</td>
</tr>
<tr>
<td>5. SUMMARY, CONCLUSIONS, RECOMMENDATIONS</td>
<td>74</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>74</td>
</tr>
<tr>
<td>Problem</td>
<td>74</td>
</tr>
<tr>
<td>Methodology</td>
<td>75</td>
</tr>
<tr>
<td>Results</td>
<td>77</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>78</td>
</tr>
<tr>
<td>RECOMMENDATIONS</td>
<td>78</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>79</td>
</tr>
<tr>
<td>APPENDIX A</td>
<td>87</td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>93</td>
</tr>
<tr>
<td>APPENDIX C</td>
<td>111</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Comparison of Maintenance Echelons</td>
<td>14</td>
</tr>
<tr>
<td>2.</td>
<td>Exponential Distribution Parameters</td>
<td>37</td>
</tr>
<tr>
<td>3.</td>
<td>FOL Prices</td>
<td>41</td>
</tr>
<tr>
<td>4.</td>
<td>FOL Usage Factors and Costs Per Mile</td>
<td>41</td>
</tr>
<tr>
<td>5.</td>
<td>M151A1 Tool Requirements Major Component Replacement</td>
<td>54</td>
</tr>
<tr>
<td>6.</td>
<td>Extract Program of Instruction Track Vehicle Mechanic MOS 63C20</td>
<td>55</td>
</tr>
<tr>
<td>7.</td>
<td>Extract Program of Instruction Automotive Repairman MOS 63H20</td>
<td>58</td>
</tr>
<tr>
<td>8.</td>
<td>Simulation No. 1</td>
<td>65</td>
</tr>
<tr>
<td>9.</td>
<td>Simulation No. 2</td>
<td>66</td>
</tr>
<tr>
<td>10.</td>
<td>Simulation No. 3</td>
<td>67</td>
</tr>
<tr>
<td>11.</td>
<td>Simulation No. 4</td>
<td>68</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Table Format</td>
<td>46</td>
</tr>
<tr>
<td>2. Estimated Cost Savings</td>
<td>70</td>
</tr>
</tbody>
</table>
CHAPTER 1

THE PROBLEM

INTRODUCTION

There is a need to reduce the number of people involved in logistic support. The personnel situation today consists of fixed personnel ceilings coupled with pressure to increase combat power. The result is a need to increase the ratio of combat spaces to support spaces. For example, the Defense Appropriations Bill for fiscal year 1975 calls for a reduction of 12,500 spaces in overseas strength by 31 May 1975. This is half of the 25,000 overseas reductions required by the Senate. Congress restored a Senate deletion of $61,000,000 intended to give taxpayers the benefit of savings in support and headquarters personnel provided these funds would be used to increase combat strength.¹ Thus, personnel reductions must occur in the logistics structure.

More importantly, combat effectiveness requires the leanest possible support structure for economy, simplicity, and to reduce targets created by large support complexes. Large distances between maintenance support and using units were typical in Vietnam and currently exist in Europe, particularly for non-divisional units. The existence of several logistics echelons increases system complexity,
capital equipment requirements, personnel overhead, and, above all, vulnerability. LTG Walter Woolwine, Commandant of the Industrial College of the Armed Forces and former Director for Logistics (J4), Organization of the Joint Chiefs of Staff, has pointed out increased costs of logistics support caused by the destructive power of modern weapons. He calls for increasing the capability to absorb damage "by reducing the vulnerability of the system through reduction or elimination of the traditional support structure at every echelon."\(^2\)

Finally, personnel costs require elimination of people wherever possible. Logistic support units have administrative overhead not directly related to particular functions, but necessary because of the personnel management structure and requirements to provide for the security and welfare of people. Thus, we should eliminate separate units where possible. It is also reasonable to expect greater productivity per individual with the higher salaries, better working and living conditions, and longer personnel retention associated with the volunteer army.

This study will examine the feasibility of increasing maintenance responsibilities at the battalion level by allowing battalion maintenance organizations to replace major components of the 1-ton truck, M151 series. These tasks are now performed by divisional and non-divisional direct support maintenance units. The structure has performed well, but the author's experience indicates that new approaches should at least be tested. We must relate our support structure to
constant principles and functions and not as RADM Henry Eccles has said, to "administrative decisions, operational procedures and terminology . . . which . . . can be changed by a simple executive order." This study will consider one aspect of the job of maintenance, the feasibility of an alternative approach and a model for further examination of our organization for automotive maintenance support.

BACKGROUND

The current army maintenance concept is based on categories of maintenance. Organizational maintenance is maintenance authorized to be performed by personnel at unit level on organic equipment.

The direct support maintenance category involves repairing assemblies and end items for return to user organizations. As far as possible repair is accomplished on site. With some exceptions, direct support units provide services for all material commodities in the hands of the user. The direct support unit maintains the operational readiness float and receives unserviceable assemblies for evacuation when necessary.

The general support and depot maintenance categories involve operations to support theater and overall inventories respectively.

Tasks to be performed at the organizational maintenance level are determined by the organization mission, equipment complexity or bulk, and the unit location and
readiness requirements. Maintenance allocation charts for items of equipment show maintenance tasks to be performed in each maintenance category. In the division, direct support maintenance service is provided by the division maintenance battalion. Forward support companies from the maintenance battalion support division brigades. Non-divisional units are supported by corps or theater army support command maintenance battalions on an area basis.

There is a need to examine this concept. Combat situations may require that skills and components be located forward. This can be accomplished by temporarily attaching direct support personnel to the user organization. However, attachment may not be feasible if there are unexpected requirements. In the case of non-divisional direct support units supporting large areas, attachment of organic personnel to supported units may make it impossible to provide support to other unit customers. For example, the Vietnam environment, involving long, insecure lines of communication, made resupply and on-site maintenance support very difficult.

Precedents exist for deviating from the conventional maintenance structure. Air defense battalions, engineer construction battalions and engineer special companies are provided with organic direct support capability for low density or unique equipment necessary to accomplish their missions. Support for other commodities is provided by non-divisional direct support units. For example, a NIKE-HERCULES missile battalion has a direct support platoon that
performs direct support maintenance on missile system launcher and radar components and on tactical power generating equipment. A non-divisional unit provides direct support services for the NIKE battalion automotive equipment. It is likely that direct support maintenance for organic trucks and other automotive items could be performed within the battalion.

Similarly, the organic skills and equipment available to an engineer construction battalion to enable it to repair items such as cranes, scoop loaders, and bulldozers are comparable to skills required to maintain automotive equipment.

Studies of aviation direct support maintenance concepts have shown that operational readiness of aviation units is improved by providing an "integrated direct support maintenance" capability. A study by the American Power Jet Company suggests that there is potential for reduction of personnel and administrative overhead by incorporating direct support personnel into the using organization and eliminating aviation direct support units.

PROBLEM

The existing direct support maintenance concept makes maximum use of capital facilities and specially trained personnel by having single divisional and non-divisional direct support units support several organizations. Use of much capital equipment must be centralized because of
complexity, the need for specialized training, size, and investment cost. The Land Combat Support System used to maintain various missile systems is an example. The direct support concept also reduces component stockage at the organization which preserves using unit mobility and reduces inventory costs. On the other hand, it could be possible to offset transportation and associated personnel costs by proliferating capital equipment that has become relatively inexpensive when compared to the cost of people engaged in tasks such as driving extended distance to deliver a vehicle for repair.

Therefore, although location of direct support maintenance skills and responsibility outside the using organization is generally justified, there is a potential for selective decentralization of maintenance responsibility for individual line items.

PURPOSE OF THE STUDY

This study examines the history and underlying assumptions of automotive maintenance. A methodology is developed to analyze cost implications of moving direct support maintenance responsibilities for automotive equipment forward to the using organization. Emphasis is placed on individual items. The vehicle for analysis in this study is the 1-ton truck, M151 series.

A computer simulation is used to compare variable costs associated with direct support maintenance under the
current concept of having major component repair performed by a divisional or non-divisional direct support unit versus having such repair performed at the organizational maintenance level. Fixed costs such as tool and test equipment costs and costs associated with additional personnel and training are also examined.

Research questions to be investigated in connection with tool and test equipment and training costs are as follows:

Research Question 1

What are tool and equipment costs that would be incurred by moving responsibility for replacement of engines, transmissions/transfer assemblies, clutches, and steering gear assemblies for the M151A1 ½-ton truck forward to the using organization?

Research Question 2

What are the costs associated with providing additional skills at the organizational level to permit replacement of engines, transmission/transfer assemblies, clutches, and steering gear assemblies for the M151A1 ½-ton truck?

Research Hypothesis

The research hypothesis to be tested using a computer simulation is:

If responsibility for replacement of engines, transmission/transfer assemblies, clutches, and steering gear assemblies for the M151A1 ½-ton truck was shifted from direct support to organizational maintenance level, there would be a significant reduction in direct support maintenance costs.
FOOTNOTES

5. FM 100-10, p. 10-5.

CHAPTER 2

REVIEW OF THE LITERATURE

OVERVIEW

This chapter will review the development of the army's organization for automotive maintenance to provide a basis for examining the alternative of moving tasks to the using organization level that are presently performed by direct support units. The following will be addressed:

1. Development of the automotive maintenance concept.
2. Representative studies.
3. Apparent assumptions and basis for examination.

DEVELOPMENT OF THE AUTOMOTIVE MAINTENANCE CONCEPT

Early Organization for Maintenance

Mechanization is a recent development in warfare. In 1914, there was no provision for maintenance at division level.¹ Truck transport, a responsibility of the Quartermaster Corps, was first used by the United States in 1916 in the Mexican Punitive Expedition.² During this period the Ordnance Department developed mobile artillery repair shops which allowed repairs to be made away from base shops.³ The Mexican conflict gave both agencies experiences that would
serve them well in World War I.

In July 1917, the tables of organization and equipment for the American Expeditionary Force required 50,000 vehicles for an army of 1,000,000 men. There still was no provision for automotive maintenance. The maintenance organization was developed in France after our entry into the war.

Motor transport repair facilities consisted of three classes that became the precursors of today's categories of maintenance. These classes were service, overhaul, and repair parks. Service parks were located near the front and performed light repairs. They were mobile or immobile depending on the conditions and organizations they were supporting. Overhaul parks, with more extensive facilities, did general overhaul and repairs beyond the capacity of a service park. Reconstruction parks performed major repairs and reconstruction of vehicles and components. Reconstruction parks could act as production parks undertaking emergency production and manufacture in emergencies. Salvage operations were also conducted. Facilities were permanent and locations were fixed.

The Ordnance Department was responsible for weapons maintenance including towed and motorized artillery, tractors, tanks, and small arms. Mobile ordnance repair shops supported the division and army parks. Heavy artillery mobile maintenance repair shops supported the army and corps heavy artillery regiments, tank corps companies, antiaircraft units, and heavy trench mortar battalions. Heavy mobile ordnance repair shops
supported the army zone on the basis of one per four combat divisions.\(^6\),\(^7\) The mobile ordnance repair shops evolved into the maintenance battalions we have today.

These repair shops were completely mobile. They were small, self-contained machine shops designed to repair and maintain every class of ordnance property. Heavy shops had more capability than the shops assigned to division and army parks.

This maintenance organization, like the maintenance organization for automotive equipment, also contributed to development of maintenance categories. There was a base ordnance shop (one per theater of operations) with extensive facilities. The advance base ordnance repair shop, closer to the front (one per each group of armies), provided increased capabilities and support for the corps heavy mobile ordnance repair shops in the army areas and the division mobile and heavy artillery repair shops in the forward areas.\(^8\),\(^9\)

The army reorganized in 1920. The Motor Transport Corps, after several transfers and designations during the war, became the Motor Transport Division of the Quartermaster Corps.\(^10\) The Ordnance Department redesignated its repair shops as light and heavy maintenance companies. Each staff department such as Ordnance and Quartermaster was responsible for the equipment it issued, as had been the case during the war. However, Ordnance also maintained automotive equipment in the artillery brigades to include equipment provided by the Quartermaster Corps. Automotive repair parts supply
remained totally a Quartermaster responsibility.

The organization for maintenance that evolved from World War I was a source of procedures that would become issues for many years. For example, the current concept of supplying conventional repair parts through direct support maintenance activities has long been a controversial issue and is a deviation from supply procedures covering other classes of supply. One author commented on the inefficiency of having several systems of maintenance in the combat zone. This was caused by the Ordnance Department, Signal Corps, Engineer Corps and Quartermaster Corps, each having responsibility for related maintenance and supply of the commodities managed by these technical services. The technical service orientation toward materiel management was to continue until the 1960's and the implementation of the ROAD (Reorganized Army Division), COSTAR (Combat Service to the Army) and TASTA-70 (The Administrative Support, Theater Army, 1965-1970). Even the issue of consolidating motor maintenance under a single service would not be resolved until 1942.

Echelons and Categories of Maintenance

Table 1 shows a series of definitions of echelons of maintenance in the 1930's, 1942, and the present. The term "echelons" first appears in the 1930's. For example, column (1) of the table shows the five echelons of maintenance relating to automotive equipment that are contained in the 1930 Handbook for Quartermasters. Ordnance also had
developed in the 1930's a loose structure of three echelons shown in column (2) of the table.15 Basically, first echelon was what the line organization did; second echelon was what ordnance companies did and third echelon was rear maintenance.16 In 1942, the John D. Hertz report recommended that the Motor Transport Service be given independent status as a service to assume responsibility for all motor maintenance. This issue was eventually resolved by transferring automotive materiel management responsibility to the Ordnance Department which adopted the five echelon concept shown in column (3), Table 1.17,18 The term has been redesignated as categories with some change in definitions as shown in column (4).19 With the exception of some expansion of organizational maintenance responsibilities, there is little real change from the early quartermaster concept.

The introduction of the echelon concept met with some criticism. Emphasis was on each level doing its job with deviations permitted only in emergencies. The concept required extensive supervision. Then, as now, commanders did not like constraints and often failed to remember the impediment to mobility caused by too many tools and repair parts. The inflexibility of the echelon concept also inhibited higher echelons from taking overflow work from lower echelons.20 The rigidity of the concept was counter to trends in World War II for the lower echelon units to do higher level repairs in order to keep critical equipment operational.21
<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUARTERMASTER, 1930</td>
<td>ORDNANCE, 1930's</td>
<td>ECHELONS, 1942</td>
<td>CATEGORIES, 1972</td>
</tr>
<tr>
<td>First Echelon</td>
<td>First Echelon</td>
<td>First Echelon</td>
<td>Organizational</td>
</tr>
<tr>
<td>Responsibility of vehicle driver. Includes cleaning, lubricating, servicing, tightening bolts and screws, performing emergency roadside repairs.</td>
<td>Proper care of weapons and minor repairs done by the individual soldier. Company mechanics made slightly more difficult repairs.</td>
<td>Maintenance performed by the regiment, battalion and company.</td>
<td>Performed by units or activities on own materiel, crew/operator preventive maintenance services. Diagnosis and isolation of readily traceable malfunctions of modules. Replacement of modules and easily accessible parts. Evacuation of malfunctioning equipment beyond capability to repair or replace.</td>
</tr>
<tr>
<td>Second Echelon</td>
<td>Second Echelon</td>
<td>Second Echelon</td>
<td>Direct Support (DS)</td>
</tr>
<tr>
<td>Inspection, enforcement and correction of first echelon work. First and second echelon is preventive maintenance.</td>
<td>First echelon is preventive maintenance.</td>
<td>Maintenance performed by the regiment, battalion and company.</td>
<td>Diagnosis and isolation of equipment or module problems. Repair by replacing modules, e.g. engines, transmissions and piece parts. Establish direct exchange facility user and repair of unserviceables. Light body repairs. Provides technical assistance to user. Evacuates unserviceable materiel beyond capability to repair.</td>
</tr>
<tr>
<td>Third Echelon</td>
<td>Third Echelon</td>
<td>Third Echelon</td>
<td>Direct Support (DS)</td>
</tr>
<tr>
<td>Unit repair of assemblies, unserviceables. Unserviceables exchanged for serviceables from fourth echelon. No repairs of assemblies except minor ones requiring no disassembly. Parts must be available and authorized to be installed at this echelon.</td>
<td>Involved in more difficult repair requiring special tools and skills. Ordnance units assigned to line organizations to perform this maintenance.</td>
<td>Medium maintenance, done in mobile shops, closely supporting using troops. Overflow from lower echelons. Replacement of assemblies, e.g. recoil mechanisms, engines and transmissions. Supplied parts to using organizations.</td>
<td>Diagnosis and isolation of equipment or module problems. Repair by replacing modules, e.g. engines, transmissions and piece parts. Establish direct exchange facility user and repair of unserviceables. Light body repairs. Provides technical assistance to user. Evacuates unserviceable materiel beyond capability to repair.</td>
</tr>
</tbody>
</table>
Table 1 (Continued)
Comparison of Maintenance Echelons

<table>
<thead>
<tr>
<th>QUARTERMASTER, 1930</th>
<th>ORDNANCE, 1930's</th>
<th>MAINTENANCE ECHELONS, 1942</th>
<th>MAINTENANCE CATEGORIES, 1972</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourth Echelon</td>
<td>Third Echelon</td>
<td>Fourth Echelon</td>
<td>General Support (GS)</td>
</tr>
<tr>
<td>Tear down and repair of</td>
<td>Everything beyond capa-</td>
<td>Heavy maintenance mean-</td>
<td>Diagnosis and evaluation</td>
</tr>
<tr>
<td>unit assemblies used in</td>
<td>bility of line and asso-</td>
<td>ing armament work. Done</td>
<td>of malfunction to piece</td>
</tr>
<tr>
<td>the command to which the</td>
<td>ciated Ordnance organi-</td>
<td>in fixed and semi-fixed</td>
<td>part level. Replacement of</td>
</tr>
<tr>
<td>repair facility was</td>
<td>zations. Included over-</td>
<td>shops serving a geograph-</td>
<td>modules. Heavy body and</td>
</tr>
<tr>
<td>assigned. Multittrade</td>
<td>haul and rebuild which</td>
<td>ical area. Rebuild of</td>
<td>turret repair. DS support</td>
</tr>
<tr>
<td>shops. Semimobile.</td>
<td>went to base shops, manu-</td>
<td>major items using assem-</td>
<td>on exception basis. Col-</td>
</tr>
<tr>
<td></td>
<td>facturing arsenals or</td>
<td>blies in stock or obtained</td>
<td>lection and classification</td>
</tr>
<tr>
<td></td>
<td>Ordnance depots. Combi-</td>
<td>through cannibalization.</td>
<td>of unserviceable major</td>
</tr>
<tr>
<td></td>
<td>nation of characteristics</td>
<td></td>
<td>items. Operation of canni-</td>
</tr>
<tr>
<td></td>
<td>of Quartermaster third,</td>
<td></td>
<td>balization point. Evacua-</td>
</tr>
<tr>
<td></td>
<td>fourth and fifth echelons.</td>
<td></td>
<td>tion of disposable or</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>unserviceables beyond</td>
</tr>
<tr>
<td>Fifth Echelon</td>
<td>Fifth Echelon</td>
<td>Fifth Echelon</td>
<td>Depot Maintenance</td>
</tr>
<tr>
<td>Vehicle and subassembly</td>
<td>Highest level. Complete</td>
<td>Highest level. Complete</td>
<td>Overhaul of end items/</td>
</tr>
<tr>
<td>reconstruction. Immobi-</td>
<td>reconditioning or rebuild.</td>
<td>reconditioning or rebuild.</td>
<td>modules. Repairs involving</td>
</tr>
<tr>
<td>ble shops similar to</td>
<td>Limited manufacture of</td>
<td>Limited manufacture of</td>
<td>special facilities. Non-</td>
</tr>
<tr>
<td>manufacturing facilities.</td>
<td>parts and assemblies.</td>
<td>parts and assemblies.</td>
<td>destructive testing to</td>
</tr>
<tr>
<td>Included procurement and</td>
<td>Third, fourth and fifth</td>
<td>Third, fourth and fifth</td>
<td>determine usability of</td>
</tr>
<tr>
<td>development of major</td>
<td>echelons referred to as</td>
<td>echelons referred to as</td>
<td>used parts. Special in-</td>
</tr>
<tr>
<td>items.</td>
<td>service maintenance.</td>
<td>service maintenance.</td>
<td>spectations and modifica-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>tion. Manufacture of non-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>stocked repair parts when</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>required. Wholesale level</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>direct support for selecte-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>items.</td>
</tr>
</tbody>
</table>
The transfer of automotive maintenance responsibility and the echeloning concept also affected the army's organization for maintenance. Ordnance companies had been withdrawn from the triangular division (three regiments). Administrative and logistical overhead were to be pooled at higher headquarters. Line units were expected to serve themselves. With the exception of medical, there were no attached personnel from branches other than infantry and artillery.

In 1942, the Ordnance Company was returned to the division, but General Leslie McNair, Commander, Army Ground Forces, and responsible for organization of these forces, expected the bulk of "so-called third echelon" repairs to be done by the line units to avoid losing control of their equipment in combat. The division ordnance company was therefore designed to perform about 60 percent of the third-echelon maintenance occurring under quiet conditions and only about 30 percent when the division was engaged. Overflow was to be evacuated. General McNair's ideas did not take effect. Later evidence in 1945 showed that ordnance units were severely strained. This was probably due to inability to train and equip line units to do the work in the short period from 1942-1945. This particular episode is significant to this study because of the alternative it presents to the current maintenance concept.

Post World War II to Present

The organization for maintenance in Korea remained essentially the same as during World War II. After Korea the
ROCID and ROCAD (Reorganization of the Current Infantry and Armored Divisions) divisions were developed. The ordnance company became the ordnance battalion. The emphasis on pooling of assets continued except that pooling occurred at division level. Organizationally, support was technical service oriented.

The technical service orientation toward maintenance ended in 1962 with the reorganization of the army and the abolishment of the technical services. Maintenance was functionalized in the ROAD division. The ordnance battalion was the nucleus of the ROAD maintenance battalion which provides direct support services for nearly all commodities. The functional concept was broadened to include non-divisional units with implementation of the COSTAR (Combat Service to the Army) concept in 1965 and finally to the theater of operations with TASTA-70 (The Administrative Support, Theater Army, 1965-1970) in 1968.

REPRESENTATIVE STUDIES

In reviewing related literature, it was found that most studies were oriented toward improving service under the current concept of categories of maintenance. An example would be "Maintenance-75," a study completed in 1969 by the US Army Combat Developments Command Maintenance Agency, or "Maintenance Organizational Structures for Support of the Army in the Field" by the same agency. Both look at the concept of organizational and direct support maintenance as a
whole. \(^{30,31}\) "Maintenance-75" describes direct support in terms of functions performed by direct support units on organizational equipment. It offers no suggestions as to changes in assignment of tasks.

Deviations from the standard structure exist and are acknowledged. \(^{32,33}\) As cited in Chapter 1, aviation, engineer construction, and guided missile materiel maintenance concepts are based on the concept of organic direct support within the using organization. Generally, however, these deviations are treated as special cases. Categories and adherence thereto are considered necessary because moving responsibility for more complex tasks to forward areas adversely affects organizational mobility and is likely to result in materiel damage due to lack of training and proper tools. \(^{34}\)

This doctrinal reluctance has been challenged. General McNair's comments, the opposition by field commanders to limitations on their maintenance capability and combat experience indicate that the concept of maintenance categories may not be the best solution. At any rate, alternatives such as giving using organizations direct support capabilities have been successful. The American Power Jet Company study for the Deputy Chief of Staff for Logistics of aviation maintenance in Vietnam stated that attaching aviation direct support maintenance detachments directly to using organizations resulted in improved readiness and recommended the complete integration of direct support personnel into
using aviation organizations.35 The "Army Aircraft Maintenance Structure Study" completed in 1973 by the U. S. Army Logistics Evaluation Agency proposed that amalgamation of direct and general support maintenance would result in a 50 percent reduction in overhead personnel spaces.36 The conventional direct support level in aviation maintenance has since been integrated with the using organization in consonance with the recommendations of the above studies.

APPARENT ASSUMPTIONS AND BASIS FOR EXAMINATION

Use of innovations such as motorized artillery, tanks, trucks, airplanes and wire communication required the integration of modern technology with the conduct of war. There was no existing logistical infrastructure to support the use of these weapons. It had to be created during the war and largely in the theater of operations. Automotive equipment, for example, required an elaborate support structure to keep the equipment operational. There were, however, no National Maintenance Points, extensive component test programs, or automated supply systems. Use of the internal combustion engine was not widespread at the time. Maintenance procedures were developed by Service Departments for the equipment each developed, procured, and supported.

The Quartermaster Corps provided trucks and drivers to support front-line units. Commercial trucks were used. The service parks for these vehicles were not organic to line
units but were operated by the Motor Transport Service. Maintenance of a large fleet of vehicles is supported by a formalized maintenance echelon concept to achieve economies of scale. Division of labor among mechanics and drivers and the existence of stable, secure facilities to store and service the vehicles is not unlike operations conducted by modern firms in the transportation industry. The Ordnance Department, in being responsible for motorized artillery and later tanks, was supporting materiel unique to the military. Parts could not be procured "off-the-shelf" as was the case with trucks. An extensive supply system for military-peculiar items did not exist. Therefore, mobile machine shops were placed close to using units and fabrication was emphasized. Since maintenance had to take place in the field, both user and maintenance support people had to work at keeping the weapons operational. Thus, the early Ordnance concept of maintenance echelons concentrated on decisions as to evacuation and the ability to handle the workload as opposed to rigid definition of responsibilities.

The technical service orientation was eventually replaced with the functionalized maintenance battalion servicing nearly all commodities. However, the concept of separating maintenance responsibilities and the units to accomplish the tasks still exists with only a few exceptions. This author asserts that the lethality of the battlefield precludes reliance on exchanging equipment in combat. In peacetime, driving extended distances to support units
creates unnecessary personnel and petroleum costs. Finally, intermediate levels such as the maintenance battalion generate overhead (people, facilities, support) not directly related to the maintenance task. Therefore, to the extent possible, modular replacement of components should be made forward and detailed repair of these components should take place in areas where adequate facilities for maintenance as well as ground and air defense can be provided.

SUMMARY

This review of literature has served to describe a historical basis for examining research questions arising from the author's experience and a search for means to accomplish the maintenance mission associated with high technology war in an environment of fixed personnel ceilings. The above interpretations of the literature review should be the subject of historical research, which is beyond the scope of this study. The past experience with these issues and the drive to reduce support costs should, however, encourage new looks at maintenance policies.
CHAPTER 2
FOOTNOTES

5. Pope, p. 77.

26. Munnelly, p. 79.

29. U. S. Army Command and General Staff College, Reference Book 101-2, Combat Service Service Support (Fort Leavenworth, 1 April 1974).

32. Army Regulation 750-1, p. 4-2.
34. FM 38-1, pp. 11-25.
CHAPTER 3

METHODOLOGY

OVERVIEW

This chapter discusses the methodology used to compare the current maintenance concept and the proposed maintenance concept. Analytical methods and computer simulation will be used. Tool costs, training, and variable costs associated with direct support maintenance of the M151 series of trucks will be examined.

RESEARCH METHODOLOGY

As previously stated, the basis for moving maintenance responsibility forward should be developed from analysis of specific materiel systems rather than commodities in the hands of combat units. This study will develop a methodology to apply to various items of materiel. The methodology will be applied to the 1-ton truck, M151A1, which is simple enough to provide a starting point. Given the development of a sound methodology, the analysis may be applied to more complex items such as heavier trucks, armored personnel carriers and tanks.

Maintenance responsibilities are assigned through the Maintenance Allocation Chart (MAC). The MAC for the 1-ton
truck is contained in technical manual (TM) 9-2320-218-20, the organizational maintenance manual for the vehicle. Components replaced by direct support maintenance units are the engine, oil pump, clutch, transmission/transfer assembly (replaced as a unit), and steering gear assembly. Therefore, this study will examine tool and skill requirements to replace the above items and simulate scenarios where these items are replaced under the current and proposed concepts of maintenance.

Data Base

The data used is taken from the Sample Data Collection Plan Analysis Report for the M151 series of trucks developed under the provisions of Army Regulation 750-37, Sample Data Collection - The Army Maintenance System (TAMMS). The report includes data recorded from the operation of 208 vehicles during a two-year period for a total of 5,224,908 miles. During this period there were 6,995 Maintenance actions of which 408 received support maintenance. Direct Support maintenance requirements for the above-mentioned components were as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine</td>
<td>79</td>
</tr>
<tr>
<td>Transmission/transfer assembly</td>
<td>125</td>
</tr>
<tr>
<td>Clutch assembly</td>
<td>134(^2)</td>
</tr>
<tr>
<td>Steering gear assembly</td>
<td>2(^3)</td>
</tr>
<tr>
<td>Oil pump</td>
<td>0(^4)</td>
</tr>
</tbody>
</table>

Based on the above, the oil pump will not be discussed in the study since no failure occurred in the sample.
Training Costs

Training costs are dependent upon the length of training courses and the facilities required to conduct the courses. One of the arguments for providing varying degrees of competence to mechanics based on the tasks to be performed has been that the short retention time of soldiers makes extended training very costly in terms of return received. Therefore, two automotive military occupational specialties (MOS) will be examined for content relating to the components shown above to determine the additional skills necessary to permit organizational mechanics to replace components on the M151 series of trucks that are now replaced by direct support units.

Specialties to be evaluated are:

MOS 63H20, Automotive Repairman. Performs direct and general support maintenance on wheel and track vehicles and materials handling equipment less propulsion motors on electric materials handling equipment. Diagnoses malfunctions and isolates causes. Tests, repairs, overhauls, adjusts, and replaces assemblies, subassemblies, and components such as engines (gasoline, diesel, and multifuel), clutches, transmissions, differentials, steering assemblies, transfer cases and hydraulic cylinders and components by replacing valves, shafts, gears, bearings, rings and seals, using jacks, pullers, gages, and rigs.5

MOS 63C20, Track Vehicle Mechanic. Performs organizational maintenance on wheel and track vehicles in
operational units and direct and general support activities.

The training programs will be compared by listing subjects and hours contained in the program of instruction (POI) for MOS 63C20, Track Vehicle Mechanic, and comparing the POI to that of the POI for MOS 63H20, Automotive Repairman. The first listing will display the entire program of instruction for MOS 63C20 to provide an idea of the total training the organizational mechanic receives. The next listing will display the subjects in the program of instruction for MOS 63H20 that related to wheeled vehicles in general. Subjects relating to the M151 series of trucks will be shown by an asterisk to indicate the minimum training an organizational mechanic, MOS 63C20, would have to receive to enable him to replace 1-ton truck engines, transmissions, clutches, and steering gear assemblies.

Programs of instruction to be used are:

POI for 610-63H20 Automotive Repair Course
MOS 63H20, January 1973,
U. S. Army Ordnance Center and School

POI for 611-63C20 Track Vehicle Mechanic Course
MOS 63C20, December 1974,
U. S. Army Armor School.

Tool Costs

Tool costs that would be incurred if responsibility for replacing the above components was moved forward will be evaluated by examining replacement procedures contained in TM 9-2320-218-34, Direct and General Support Maintenance
Manual. Direct support maintenance units, both divisional\(^7\) and non-divisional\(^8\) use the same tool sets to perform automotive maintenance. The sets are Shop Equipment Automotive Maintenance and Repair: Field Maintenance Basic and Field Maintenance Supplemental No. 1. Special tools required for specific vehicles are shown in the Direct and General Support Maintenance Manual.\(^9\) Tools required for replacement of the above components that are not contained in organizational tool sets would have to be added. The price of these tools will be obtained from the Army Master Data File, December, 1974. Data will be displayed as follows:

SPECIAL TOOL REQUIREMENTS

<table>
<thead>
<tr>
<th>Replacement Task</th>
<th>Tool Nomenclature</th>
<th>FSN</th>
<th>Cost</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmission/Transfer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clutch</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steering Gear</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assembly</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COMPARISON OF VARIABLE COSTS

Discussion

One objective of this study is to compare variable costs generated under two different concepts of providing direct support maintenance services for the M151A1 half-ton truck. Consistent with the current description of the direct support category of maintenance, replacement of the engine, transmission, clutch and steering gear assembly is performed by a direct support unit. The alternative concept proposed in this study would have replacement of these components become organizational maintenance responsibilities and redefined in the Maintenance Allocation Chart for the M151 series of trucks.

Variable costs will be collected for maintenance actions performed under each policy. A computer simulation will be used to generate maintenance actions and compare costs. The purpose of developing a system model is to determine the performance of the system without having to actually assemble that system. Constructing the model of a logistic system is difficult because of inherent complexity. Therefore, the goal of a model should not be to attempt to portray all the variables or attempt complete duplication of reality, but to "abstract the essence of problems." Thus, certain factors must be omitted and assumptions must be made to achieve the objective of the simulation within constraints such as programming capability and time.

Department of the Army Pamphlet 750-21, Logistics
Support Modeling, lists the following questions that simulation may answer.12

1. When will units fail?
2. How long will it take to fix it?
3. When will replacement parts arrive?
4. How many man-hours are necessary?
5. What is the cost per man-hour?
6. What skills are necessary to repair the units?

Component Failure. Unscheduled maintenance requirements of all kinds occur in the simulation based on an inherent reliability of \(.98 \) for the M151A1 derived from the Sample Data Collection effort.13 During the period of data collection, there were 6,995 unscheduled requirements of which 408 were for direct support maintenance services giving a probability of \(.0583 \) that an unscheduled maintenance requirement requires direct support services.14 The selection of the component that fails is based on the following probabilities.

\[
P(\text{Component}) = \frac{\text{number of component failures}}{\text{number of direct support requirements}}
\]

\[
P(\text{Engine}) = \frac{79}{408} = .1936
\]

\[
P(\text{Trans/Tnsfr}) = \frac{125}{408} = .3064
\]

\[
P(\text{Clutch}) = \frac{134}{408} = .3284
\]

\[
P(\text{Steering Gear}) = \frac{2}{408} = .0049
\]

\[
P(\text{Other DS Task}) = \frac{66}{408} = .1667
\]

Repair Time. Man-hours directly related to repair of the above components are developed using exponentially distributed random variables. Mean service times used to
compute the mean of the exponential distribution are taken from the Sample Data Collection Plan Analysis Report for the M151A1 series of trucks. Component replacement times are discussed in greater detail later in this chapter.

Repair Parts Availability. In this study it is assumed that repair parts are on hand whether the maintenance is accomplished at the support unit or at the organization. It can be argued that the organization would not be likely to carry spare components due to their low demand, cost, and size. However, routine supply runs to division or brigade logistic areas must occur daily. Turn in and issue could be accomplished in this manner. It is also highly probable under current concepts that the direct support unit would be out of stock. Time limitations did not permit development of routines to simulate resupply operations.

Man-hour Requirements. In evaluating the current concept, man-hours, generated using the models already shown, are totaled based on the sum of the time to prepare the vehicle for receipt by the direct support unit, the transportation time to deliver and pick up the vehicle in terms of the people involved, and the direct man-hours required to replace the faulty component.

Labor Costs. The cost per man-hour used is $6.48 based on the Sample Data Collection Plan Analysis Report.

Skill Requirements. It is assumed that individuals
performing the task have the requisite skills. No assumptions are made as to the number of individuals performing the maintenance task, since man-hour figures are used. Numbers of people are relevant to transportation time computations.

Additional Costs. Costs of fuel and lubricants are computed in connection with transportation to direct support units. Computations are discussed in detail later in the chapter.

General

This portion of the study develops models for each of the concepts that will portray man-hours necessary to perform the corrective actions in question. These man-hours are multiplied by hourly wage figures to obtain labor costs. Additionally, costs of petroleum, oil, and lubricants to transport disabled vehicles are computed. Monthly costs are summed for each concept, monthly cost differences are computed, and a statistical test is used to test the statistical significance of the cost differences, i.e., that there is a statistical basis for stating that the concepts result in different costs.

Current Concept

The model used for evaluating the current concept proposes that there are three elements contributing to time required to perform a given direct support maintenance task. These are the time required to perform the direct support maintenance task (DSMNTM), the time required to transport the
vehicle to the direct support unit (TRANSTM) and the time
required to prepare the vehicle for acceptance by the DSU
(OGPRPTM) by assuring that all organizational maintenance has
been performed before action is taken by the direct support
unit to correct a problem. This concept will be designated
Concept A. The maintenance time generated under the Concept
A model will be represented by the symbol AMNTTIM. Symboli-
cally displayed: AMNTTIM = OGPRPTM + TRANSTM + DSMNTM.

Proposed Concept

Under the proposed concept (Concept B) that major
component replacement be performed at battalion organizational
maintenance level, organizational preparation time and
transportation time are dropped from the equation. The time
required to correct organizational deficiencies becomes a
part of routine maintenance work as does technical inspection
to verify that organizational maintenance has been performed.
Transportation time is not necessary since the work is
performed in the battalion. Therefore, for Concept B, the
equation is: BMNTTIM = DSMNTM.

Labor Costs

Labor costs for time accumulated under each concept
are the product of the time and the hourly labor rate of
$6.48.

*It is acknowledged that some transport is required
to obtain the major components since items such as engines
would not be stocked in the using units in order to avoid
costs of proliferating such items. However, components may
be placed on transportation engaged in resupply of several
classes of items.
Elements of Maintenance Time

Direct support maintenance time (DSMNTM) and organizational preparation time (OGPRPTM). Times to replace the engine, transmission, clutch, steering gear assembly, the accomplishment of all other direct support maintenance requirements and organizational preparation time are generated through use of mean replacement times obtained from the Sample Data Collection Plan Analysis and exponential distribution functions based on those mean values. Arbitrary minimum and maximum values determined by the author are also placed in these functions to avoid unrealistically low or high time values.

The exponential distribution is often used to represent service times. The shape of the distribution is shown below. The vertical lines designated "min" and "max" represent the constraints introduced to limit maintenance times.

![Exponential Distribution Diagram](https://via.placeholder.com/150)
Exponentially distributed service times to replace components are generated using a FORTRAN computer language function based on the equation

\[x_s = -\frac{\ln y_s}{\mu} \]

where

\[x_s = \text{exponentially distributed service time} \]
\[x_{\mu} = \frac{1}{\text{mean service time}} = \text{distribution mean} \]
\[y_s = \text{a uniformly distributed random number}. \]

Thus, the natural logarithm of a uniformly distributed random number divided by the mean of the exponential distribution provides the random service time. The above equation is used to generate service times for the engine, transmission, clutch, steering gear assembly, other direct support tasks, and organizational preparation time previously mentioned. An example FORTRAN function used in the simulation to generate engine replacement times is shown below. Conditional ("IF") statements prevent the time to replace from being less than 7 or more than 19 man-hours.

```
FUNCTION ENGINE (DUMMY)
C ENGINE REPLACEMENT TIME, DEFINES MIN AND MAX TIMES, EXPONENTIAL DISTRIBUTION.
XMU = 1./9.5
EXPTIM = (-1./XMU)*ALOG(RANF(A))
ENGINE = EXPTIM
IF (ENGINE.LT.7.) ENGINE = 7.
IF (ENGINE.GT.9.) ENGINE = 19.
END
```

\(XMU = \text{mean of distribution, } 1/\text{mean service time} \)
\(EXPTIM = \text{exponentially distributed value of the engine replacement time} \)
\(ENGINE = \text{engine replacement time transmitted to the main program and which varies each time an engine is repaired} \)
Similar functions are used to generate time values for the transmission, clutch and steering gear assembly replacements, all other direct support maintenance requirements, and organizational preparation time. Table 2 lists input parameters.

Table 2

<table>
<thead>
<tr>
<th>Function/Component</th>
<th>Federal Stock Number</th>
<th>Mean Service Time (MST)</th>
<th>Mean of Exponential Distribution (XMU=1/MST)</th>
<th>Min/Max Values</th>
<th>Sample Data Collection Report Reference For MST</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGINE</td>
<td>2805-886-8083</td>
<td>9.5</td>
<td>.105</td>
<td>7./19.</td>
<td>p. 125</td>
</tr>
<tr>
<td>TRANSMISSION</td>
<td>2520-678-1808</td>
<td>6.7</td>
<td>.149</td>
<td>5.5/13.4</td>
<td>p. 139</td>
</tr>
<tr>
<td>CLUTCH</td>
<td>2520-887-1353</td>
<td>4.2</td>
<td>.238</td>
<td>3.5/8.4</td>
<td>p. 1122</td>
</tr>
<tr>
<td>STEERING GEAR</td>
<td>2530-769-7263</td>
<td>5.5</td>
<td>.182</td>
<td>4.75/11.</td>
<td>p. 126</td>
</tr>
<tr>
<td>OTHER</td>
<td>10.0</td>
<td>1.00</td>
<td>.238</td>
<td>1./30.</td>
<td>p. 7</td>
</tr>
<tr>
<td>OGPRPTM</td>
<td>8.0</td>
<td>1.25</td>
<td>.182</td>
<td>0./30.</td>
<td>Author Estimate</td>
</tr>
</tbody>
</table>

Transportation Time (TRANSTM). Transportation time to effect corrective action depends on the distance to the direct support unit and the average speed of the vehicle. The process generator for this variable must provide for the time (man-hours) to take the vehicle to the direct support unit, drop off the vehicle and return to the parent unit. This factor is represented by the variable TOTIME. The process generator must also provide for returning to the direct support unit, picking up the vehicle and returning to
the parent unit. This variable is represented by the symbol FRMTIME. Since the trip to the direct support unit is likely to involve a wrecker which generally requires an assistant driver and the trip to pick up the vehicle will require at least another 1-ton truck as a taxi vehicle it is assumed that two men are involved on each of the trips.

The process generator is constructed to permit variable times transporting the vehicle to and from the direct support unit. The following equations apply.

\[
\text{Time} = \frac{\text{Distance to DSU (Support Miles)}}{\text{Rate}} = \frac{\text{SPTMIS}}{25 \text{ mph}}
\]

Assume that the fastest a driver could go one way is \(0.75 \times \frac{\text{SPTMIS}}{25}\). Assume also that the time could be greater than the fastest possible time by a variable factor up to \(1.0 \times \frac{\text{SPTMIS}}{25}\).

Based on these assumptions and the use of the uniformly distributed random number generator to provide a factor from 0 to 1 to vary transportation time, the following model to develop transportation times for disabled vehicles is used.

\[
\begin{align*}
\text{T0TIM1} &= (0.75 \times \frac{\text{SPTMIS}}{25}) + (\text{RANF}(A) \times \frac{\text{SPTMIS}}{25}) \\
\text{T0TIM2} &= (0.75 \times \frac{\text{SPTMIS}}{25}) + (\text{RANF}(A) \times \frac{\text{SPTMIS}}{25}) \\
\text{FRMTIM1} &= (0.75 \times \frac{\text{SPTMIS}}{25}) + (\text{RANF}(A) \times \frac{\text{SPTMIS}}{25}) \\
\text{FRMTIM2} &= (0.75 \times \frac{\text{SPTMIS}}{25}) + (\text{RANF}(A) \times \frac{\text{SPTMIS}}{25}) \\
\text{TRANSTM} &= 2.0 \times (\text{T0TIM1} + \text{T0TIM2} + \text{FRMTIM1} + \text{FRMTIM2})
\end{align*}
\]

\text{T0TIM1} and \text{T0TIM2} are trips to and from the direct support unit towing the disabled vehicle. \text{FRMTIM1} and \text{FRMTIM2} are trips to and from the direct support unit to pick up and return the repaired vehicle. \text{TRANSTM} is the total...
man-hours involved in delivery and return of the vehicle where the factor "2" is the number of drivers and assistant drivers involved.

Fuel and Oil (POL) Costs

Fuel and lubricant costs are computed based on two sets of factors. The first set is from FM 101-10-1, Staff Officer's Field Manual; Organizational, Technical, and Logistical Data; Unclassified Data dated 26 July 1971. The second set is from the Research Analysis Corporation (RAC) study, "Fuel and Oil Costs for Army Equipment," published in 1968. The RAC study states that actual consumption calls for much higher factors to be used than are called for by the 1966 FM 101-10-1. The RAC statement still applies. It is noted that the Army factor for the 1-ton truck (.03 gallons per kilometer which is approximately .05 gallons per mile) implies that the 1-ton truck achieves 20 miles per gallon of gasoline. The RAC measured factor of .094 gallons per mile taken from observations of trucks operated at Fort Carson, Colorado, implies that the 1-ton truck achieves 11.1 miles per gallon. The simulation is conducted using both sets of factors.

Fuel and lubricant (POL) prices were obtained from the Installation Supply and Services Division, US Army Combined Arms Center at Ft. Leavenworth and represent latest contract prices.

The simulation assumes that a disabled vehicle would be towed to the direct support unit by a 5-ton wrecker.
Therefore POL costs per mile for the 5-ton wrecker (POLCPM1) must be computed and used to collect costs for the trip to and from the DSU. On pickup of the repaired vehicle it is assumed that one ½-ton truck with a driver and a driver for the repaired vehicle goes to the DSU. Both vehicles make the return trip home. POL cost per mile for the ½-ton truck must be computed and used to collect costs associated with returning the repaired vehicle to the owning unit.

The process generator for the cost of the trip to the DSU (TOCOST) is:

\[\text{TOCOST} = \text{SPTMIS} \times \text{POLCPM1} \times 2. \]

where SPTMIS is the distance between the owning unit and the DSU. The factor "2" accounts for the trips to and from the DSU with a wrecker to deliver the disabled vehicle.

The process generator for the cost of trips to pick up the repaired vehicle (FRMCOST) is:

\[\text{FRMCOST} = 3. \times \text{SPTMIS} \times \text{POLCPM2} \]

where the factor "3" is the number of ½-ton truck trips involved in return of the repaired vehicle.

The total cost of POL (POLCST) for each direct support maintenance requirement is:

\[\text{POLCST} = \text{TOCOST} + \text{FRMCOST}. \]

The model for computing POL costs per mile is as follows:

\[\text{POLCPM1} = \frac{\text{gal (gas)}}{\text{mile}} \times \text{price ($)} + \frac{\text{gal (oil)}}{\text{mile}} \times \text{price ($)} + \frac{\text{lbs (gear lube)}}{\text{mile}} \times \text{price ($)} + \frac{\text{lbs (grease)}}{\text{mile}} \times \text{price ($)}. \]
The following tables show unit prices of various POL products and the units per mile factors for the 5-ton wrecker and the 1-ton truck.

Table 3

<table>
<thead>
<tr>
<th>Product</th>
<th>FSN</th>
<th>$/Unit (gallons or pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOGAS</td>
<td>9150-264-6218</td>
<td>$.36 per gallon</td>
</tr>
<tr>
<td>Oil (OE30)</td>
<td>9150-189-6729</td>
<td>$.78 per gallon</td>
</tr>
<tr>
<td>Oil (GO 90-gear oil)</td>
<td>9150-577-5844</td>
<td>$1.09 per pound</td>
</tr>
<tr>
<td>Grease GAA</td>
<td>9150-190-0907</td>
<td>$1.42 per pound</td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>Item</th>
<th>Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrecker</td>
<td></td>
</tr>
<tr>
<td>FM 101-10-1</td>
<td>.367 gal/mi .005 OIL (OE-90) .005 OIL (OE-90) .005 OIL (OE-90) .008 Grease (GAA) .005 POL Cost Per Mile $/mi</td>
</tr>
<tr>
<td>RAC Study*</td>
<td>.909 gal/mi .038 OIL (OE-90) .005 OIL (OE-90) .005 OIL (OE-90) .002 Grease (GAA) .002 POL Cost Per Mile $/mi</td>
</tr>
<tr>
<td>1-Ton M151A1</td>
<td></td>
</tr>
<tr>
<td>FM 101-10-1</td>
<td>.05 gal/mi .002 OIL (OE-90) .002 OIL (OE-90) .002 OIL (OE-90) .002 Grease (GAA) .002 POL Cost Per Mile $/mi</td>
</tr>
<tr>
<td>RAC Study*</td>
<td>.094 gal/mi .005 OIL (OE-90) .002 OIL (OE-90) .002 OIL (OE-90) .002 Grease (GAA) .002 POL Cost Per Mile $/mi</td>
</tr>
</tbody>
</table>

*The RAC Study has no factors for Oil (OE-90) and Grease (GAA). Therefore the FM 101-10-1 factors were used.

Costs for POL under the current concept, Concept A, are collected for each vehicle. Costs for POL under Concept B are assumed to be zero, since maintenance is performed in
the battalion area. As previously noted (footnote page 34), there would be transportation costs incurred in the delivery of components. It is assumed here that components could be delivered as part of regular resupply which would include several classes of items.

Additional Comments

Organizational Maintenance Time (OGMNTM). This is the time required to perform tasks currently shown in the Maintenance Allocation Chart as the responsibility of the using organization. Although not directly germane to the study, the capability to generate and record organizational maintenance time has been incorporated into the simulation.

The Sample Data Collection Plan Analysis Report assumed the normal distribution in connection with organizational maintenance statistics.\(^25\) To generate normally distributed organizational maintenance times the method developed by G. E. P. Box and M. E. Muller is used.\(^26\)

\[
X = (-2.* \ln U1)^{1/2} \cos(2\pi*U2)
\]

where

\(X\) = a normally distributed random variable

\(U1\) and \(U2\) = uniformly distributed random numbers.

The Computer Program. Variables used in the computer program are defined in Appendix A. The computer program flow chart with detailed explanation is in Appendix B. A listing of the computer program is in Appendix C.

HYPOTHESIS TESTING

The hypothesis to be tested is that shifting major
component replacement responsibility for the M151A1 ½-ton truck from direct support unit to the organizational maintenance level will result in a decrease in total variable maintenance costs.

Statistical Testing

The structure of the models for the current direct support maintenance concept and the proposed concept is such that the current concept will always lead to higher total maintenance costs than the proposed concept. The difference between mean monthly costs generated under the two concepts will be tested for statistical significance. The Student's "t" test will be used.

One of the necessary assumptions in using the Student's "t" test is that the random sample is taken from a normal distribution. With small samples, however, such as twelve month simulation periods, this cannot be assumed. On the other hand empirical studies of the "t" distribution indicate that moderate departures from normality do not greatly affect the probability distribution of the statistic. Therefore, the distribution will be used for hypothesis testing in this study.27

Computation of the Sample Test Statistic (T). Monthly costs for each vehicle are totaled for each concept. The cost totals under Concept B are subtracted from costs incurred under Concept A. The cost differences are summed and divided by the number of trucks in the organization to give the mean
cost difference between the concepts per truck for a given month. Mathematically, the equation is

$$\bar{D} = \frac{\Sigma X_A - \Sigma X_B}{N}$$

where

- $\bar{D} = \text{mean difference per truck for a month (DBAR)}$
- $\Sigma X_A = \text{total maintenance costs for a truck for the month under the current concept (ATOTCST)}$
- $\Sigma X_B = \text{total maintenance costs for a truck for a month under the proposed concept (BTOTCST)}$
- $N = \text{number of trucks (XTRUCKS)}$

The monthly mean cost differences per truck are summed for the period and divided by the number of months in the simulation run to give the mean of the monthly mean cost differences. This figure is also called the grand mean.

$$\Sigma \bar{D} = \frac{M}{M}$$

where

- $\bar{D} = \text{grand mean (GRDDBAR)}$
- $M = \text{number of months in the simulation (XMOUTS)}$
- $J = \text{variable from 1 to } M.$

Null Hypothesis. The null hypothesis is that there is not a significant difference in monthly maintenance costs per truck generated by the two concepts. The expected value of the mean of the difference in monthly mean costs per truck would be zero. Thus,

$$H_0: E(\bar{D}) = 0.$$
Alternative Hypothesis. The alternative hypothesis is that there is a significant difference in monthly maintenance costs per truck generated by the two concepts.

\[H_A: E(\bar{D}) > 0. \]

The standard deviation of the grand mean (\bar{D}) is computed. The statistic measures the dispersion of the sampling distribution and is called the standard error of the mean. The equation is:

\[\hat{S}_D = \frac{\hat{S}_D}{\sqrt{M}} \]

where

- \hat{S}_D = standard error of the grand mean
- \hat{S}_D = standard error of the monthly mean cost differences per truck.

The equation for \hat{S}_D is:

\[\hat{S}_D = \sqrt{\frac{\sum_{j=1}^{M} (\bar{D}_j - \bar{D})^2}{M-1}} \]

where

\[\sum_{j=1}^{M} (\bar{D}_j - \bar{D})^2 = \text{summed squares of deviations between the monthly mean cost differences per truck and the mean of the monthly mean cost differences} \]

\[M-1 = \text{number of months in simulation less one, which is the number of degrees of freedom.} \]

The computed test statistic is developed from the equation:

\[T = \frac{\bar{D} - E(\bar{D})}{\hat{S}_D/\sqrt{M}} \]

Since $E(\bar{D}) = 0$

\[T = \frac{\bar{D}}{S_D/\sqrt{M}} \]
where

\[S_D = \text{sample standard deviation.} \]

\[M = \text{months in the simulated period.} \]

Rejection Region. The confidence level of the test will be .95. The probability of rejecting the null hypothesis when it is true will be .05. The test statistic is selected based on this confidence level and the number of degrees of freedom \((M-1)\) determined by the sample size. For a simulation of twelve months the number of degrees of freedom is 11. The appropriate test statistic is \(t_{.05} = 1.012 \).

If the computed "\(T\)" value from the simulation is greater than 1.012, the mean difference in costs generated by the two concepts is sufficiently large to conclude that the proposed concept results in a statistically significant decrease in maintenance costs.

Experimental Design

Collection of costs and the statistical test for significance of the differences in costs generated by the models of the current and proposed concepts will be made by simulating the occurrence of direct support maintenance requirements on a fleet of ½-ton trucks. The base unit will be a mechanized infantry battalion which has 28 organic ½-ton trucks.

Various distances from the battalion to the direct support unit will be used. A distance of 1 mile simulates co-location of the battalion with a divisional forward support
maintenance company. Distances of 10, 25, 50, and 100 miles simulates separation from the direct support unit which could occur on training exercises or fast moving offensive operations. It is not uncommon for non-divisional units to be separated by such distances from direct support units during normal operations in overseas commands. It is further recognized that divisional maintenance units would attach "contact" teams to provide on-site support. Use of contact teams, however, is actually a means of implementing the alternative concept proposed in this study with the exception that for personnel management purposes, the team members would still be assigned to the direct support unit.

The simulation will be performed using the Sample Data Collection Plan Analysis Report inherent reliability of .98. An additional simulation with a reduced inherent reliability of .90 will also be made to evaluate the effect of an increased number of breakdowns that could occur during field exercises or combat operations.

Finally, the fuel and oil costs will be varied according to the Research Analysis Corporation Study and FM 101-10-1 to obtain an indication of the effect of petroleum, oil, and lubricant costs on the cost differences generated by the two concepts.

All simulations will include a series of runs in which organizational preparation time is zero to assess the effect of transportation costs alone. Figure 1 shows how data will be displayed for each simulation.
Figure 1

Table Format

<table>
<thead>
<tr>
<th>Run No</th>
<th>SPTMIS</th>
<th>GRDDBAR</th>
<th>S</th>
<th>T</th>
<th>Accept/Reject H_0</th>
<th>DSKDNS</th>
<th>OGPRPTM</th>
</tr>
</thead>
</table>

Key

1. Self-explanatory
2. Distance to direct support unit
3. Mean of monthly mean cost differences (grand mean)
4. Standard error of the grand mean
5. Computed test statistic
6. Statement of acceptance or rejection of the null hypothesis
7. Number of direct support maintenance requirements for all trucks
8. Indication that organizational preparation time is used
Chapter 3

FOOTNOTES

6. Army Regulation 611-201, p. 3-63-29.

12. DA Pam 750-21, p. 2-1.

22. Fuel and oil prices obtained telephonically from Installation Supply and Services Division, U. S. Army Combined Arms Center and Fort Leavenworth, 1 May 1975.

23. FM 101-10-1, p. 5-8.

29. Chao, pp. 262-265.

31. Mendenhall and Scheaffer, p. 344.

CHAPTER 4
FINDINGS (ANALYSIS AND EVALUATION)

RESEARCH QUESTIONS
DATA AND FINDINGS

Research Question 1

What are tool and equipment costs incurred by moving responsibility for replacement of engines, transmission/transfer assemblies, clutches, and steering assemblies forward to the using organization for the M151A1 4-ton truck?

Table 5 lists tools required to perform the task, cost, and whether required at organizational level or already on hand.

Research Question 2

What are the costs associated with providing additional skills at the organizational level to permit replacement of engines, transmission/transfer assemblies, clutches, and steering gear assemblies?

Table 6 shows the current program of instruction (POI) for MOS 63C20, Track Vehicle Mechanic. The emphasis in the POI is on performance of organizational maintenance tasks as described in the "-20" series of technical manuals for tracked and wheeled automotive equipment. A small number of hours is devoted to maintenance management (e.g. maintenance records, use of publications). ¹

Table 7 is a list of courses drawn from the program.
of instruction for MOS 63H20, Automotive Vehicle Repairman that relate to wheeled vehicles and, in particular, the M151A1 1-ton truck.

Findings for Research Question 1

Based on analysis of tools required to perform replacement of engine, transmission/transfer, clutch, and steering gear assemblies, only the engine lift sling is required since 5-ton wreckers organic to using battalions can lift the assemblies. This sling was apparently produced for a one-time issue to support units. It is no longer carried in the Army Master Data File except to indicate that it is no longer stocked. Estimated cost to manufacture is $150.00.

If it is desired to issue the hoist currently issued to automotive direct support units, the Army Master Data File price is $156.00. The spanner wrench for engine removal is used to remove the generator cable and is on hand. The inch-pound torque wrench and the spring scale necessary to replace the steering gear assembly are already contained in the Organizational Maintenance Number 2 Common tool set.

Therefore, it is estimated that the cost of equipping a battalion to replace components now serviced by direct support units would be approximately $150 to $300.
<table>
<thead>
<tr>
<th>Task</th>
<th>Tool</th>
<th>FSN</th>
<th>Cost*</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine, Transmission/Transfer</td>
<td>SLING, Engine and Transmission (7345279)</td>
<td>3940-692-9112</td>
<td>Estimated $150.00</td>
<td>TM 9-2320-218-34, pp. 4-16</td>
</tr>
<tr>
<td>Removal</td>
<td>HOISTING UNIT, Automotive Maintenance</td>
<td>4910-448-0254</td>
<td>$156.00</td>
<td>SC 4910-95-CL-A3, p. 12</td>
</tr>
<tr>
<td>Clutch</td>
<td>No special tools cited</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCALE, FULL Dial Indicating</td>
<td>6670-254-4634</td>
<td>Currently in organizational tool set</td>
<td>TM 9-2320-218-34, pp. 16-7, 8, SC 4910-95-CL-A72, p. 13</td>
</tr>
</tbody>
</table>

*Costs obtained from Army Master Data File, December 1974.
<table>
<thead>
<tr>
<th>Annex Title and Subjects</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance Management</td>
<td></td>
</tr>
<tr>
<td>Maintenance Publications 30202</td>
<td>2</td>
</tr>
<tr>
<td>The Army Maintenance Management System 30305</td>
<td>5</td>
</tr>
<tr>
<td>Repair Parts Supply</td>
<td>2</td>
</tr>
<tr>
<td>Annex Total</td>
<td>9</td>
</tr>
<tr>
<td>Engines</td>
<td></td>
</tr>
<tr>
<td>Carbureted Gas Engine</td>
<td></td>
</tr>
<tr>
<td>Track Vehicle Mechanic</td>
<td>1</td>
</tr>
<tr>
<td>Engines</td>
<td>4</td>
</tr>
<tr>
<td>Cylinder Head Replacement</td>
<td>3</td>
</tr>
<tr>
<td>Automotive Electricity</td>
<td>4</td>
</tr>
<tr>
<td>Low Voltage Circuit Tester and Multimeter</td>
<td>6</td>
</tr>
<tr>
<td>Wiring Diagrams</td>
<td>2</td>
</tr>
<tr>
<td>Storage Batteries</td>
<td>2</td>
</tr>
<tr>
<td>Cooling and Lubricating Systems</td>
<td>1</td>
</tr>
<tr>
<td>Cranking System</td>
<td>2</td>
</tr>
<tr>
<td>Battery Ignition System</td>
<td>8</td>
</tr>
<tr>
<td>Carbureted Fuel System</td>
<td>7</td>
</tr>
<tr>
<td>AC Charging System</td>
<td>4</td>
</tr>
<tr>
<td>DC Charging System</td>
<td>4</td>
</tr>
<tr>
<td>Performance Examination, Carbureted Gas Engine</td>
<td>5</td>
</tr>
<tr>
<td>Subannex Total</td>
<td>53</td>
</tr>
<tr>
<td>Gas Injected Engine</td>
<td></td>
</tr>
<tr>
<td>Cooling and Lubricating Systems</td>
<td>3</td>
</tr>
<tr>
<td>Hull Electrical Systems</td>
<td>5</td>
</tr>
<tr>
<td>Cranking System</td>
<td>3</td>
</tr>
<tr>
<td>Magneto Ignition System</td>
<td>12</td>
</tr>
<tr>
<td>Intake and Exhaust Systems</td>
<td>3</td>
</tr>
<tr>
<td>Gasoline Injected Fuel System</td>
<td>10</td>
</tr>
<tr>
<td>DC Charging System</td>
<td>2</td>
</tr>
<tr>
<td>Hull Mechanical Components</td>
<td>4</td>
</tr>
<tr>
<td>Performance Examination, Gas Injected Engine</td>
<td>8</td>
</tr>
<tr>
<td>Subannex Total</td>
<td>50</td>
</tr>
</tbody>
</table>
Table 6 (continued)

<table>
<thead>
<tr>
<th>Annex Title and Subjects</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression Ignition Engine</td>
<td></td>
</tr>
<tr>
<td>Cooling and Lubricating Systems</td>
<td>3</td>
</tr>
<tr>
<td>Hull Electrical Systems</td>
<td>4</td>
</tr>
<tr>
<td>Cranking Systems</td>
<td>4</td>
</tr>
<tr>
<td>Intake and Exhaust Systems</td>
<td>3</td>
</tr>
<tr>
<td>Compression Ignition Fuel System, 2-Stroke-Cycle</td>
<td>10</td>
</tr>
<tr>
<td>Compression Ignition Fuel System, 4-Stroke-Cycle</td>
<td>11</td>
</tr>
<tr>
<td>AC Charging Systems</td>
<td>5</td>
</tr>
<tr>
<td>DC Charging System</td>
<td>3</td>
</tr>
<tr>
<td>Performance Examination, Compression Ignition Engines</td>
<td>8</td>
</tr>
<tr>
<td>Subannex Total</td>
<td></td>
</tr>
<tr>
<td>Annex Total</td>
<td>51</td>
</tr>
</tbody>
</table>

Periodic Services

Wheel Vehicle

<table>
<thead>
<tr>
<th>Subannex Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
</tr>
</tbody>
</table>

Chassis and Associated Materiel

<table>
<thead>
<tr>
<th>Subannex Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
</tr>
</tbody>
</table>
Table 6 (continued)

<table>
<thead>
<tr>
<th>Annex Title and Subjects</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armored Personnel Carrier</td>
<td></td>
</tr>
<tr>
<td>Transmission and Transfer</td>
<td>12</td>
</tr>
<tr>
<td>Controlled Differential and Final Drive</td>
<td>5</td>
</tr>
<tr>
<td>Drive</td>
<td></td>
</tr>
<tr>
<td>Hull Mechanical Components</td>
<td>3</td>
</tr>
<tr>
<td>Hydraulic Ramp</td>
<td>4</td>
</tr>
<tr>
<td>Quarterly PM Services and Proficiency Examination</td>
<td>20</td>
</tr>
<tr>
<td>Shop Safety</td>
<td>1</td>
</tr>
<tr>
<td>Tools</td>
<td>2</td>
</tr>
<tr>
<td>Subannex Total</td>
<td>47</td>
</tr>
<tr>
<td>Tank</td>
<td></td>
</tr>
<tr>
<td>Quarterly PM Services and Proficiency Examination</td>
<td>44</td>
</tr>
<tr>
<td>Subannex Total</td>
<td>44</td>
</tr>
<tr>
<td>Annex Total</td>
<td>195</td>
</tr>
</tbody>
</table>

Ground Mobility

Recovery Vehicles

Hydraulic Principles	1
Hydraulic Spade	4
Suspension Lockout	4
Hydraulic Boom Components	6
Hydraulic Winch and Hoist	12
Performance Examination, Hydraulic Systems	6
Subannex Total	33

Vehicle Operations

<p>| Wheel Vehicle Driving | 8 |
| Track Vehicle Driving | 5 |
| Subannex Total | 13 |
| Annex Total | 46 |</p>
<table>
<thead>
<tr>
<th>Course Title and Scope</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engines</td>
<td></td>
</tr>
<tr>
<td>Introduction to Military Vehicle Components</td>
<td>1</td>
</tr>
<tr>
<td>Purpose, model number and identification of wheel vehicle power train and chassis components. Practical exercise on identifying wheel vehicle power train components. p. A-3</td>
<td></td>
</tr>
<tr>
<td>Issue, Care, and Use of Handtools</td>
<td>2</td>
</tr>
<tr>
<td>Engine Construction</td>
<td>4</td>
</tr>
<tr>
<td>Engine Principles</td>
<td>1</td>
</tr>
<tr>
<td>Principles of operation of spark ignition and compression ignition of stroke cycle engines. p. B-1</td>
<td></td>
</tr>
<tr>
<td>Engine Disassembly</td>
<td>4</td>
</tr>
<tr>
<td>Disassembly of engine. Removal of one valve and one piston with rod assembly to include practical exercise. p. B-1</td>
<td></td>
</tr>
<tr>
<td>Engine Cooling System</td>
<td>1</td>
</tr>
<tr>
<td>Coolant, additives, identification of components. p. B-1</td>
<td></td>
</tr>
<tr>
<td>Engine Lubricating System</td>
<td>1</td>
</tr>
<tr>
<td>Oils function, identification of components and operation of engine lubricating systems. p. B-2</td>
<td></td>
</tr>
<tr>
<td>Micrometers, p. B-2</td>
<td>2</td>
</tr>
<tr>
<td>Valve and Valve Seat Reconditioning, p. B-2</td>
<td>4</td>
</tr>
<tr>
<td>Engine Inspection and Measurements, p. B-3</td>
<td>3</td>
</tr>
<tr>
<td>Engine Assembly, p. B-3</td>
<td>5</td>
</tr>
<tr>
<td>Fuel Systems</td>
<td>9</td>
</tr>
<tr>
<td>Systems, pumps, carburetors. pp. B-3, B-4</td>
<td></td>
</tr>
<tr>
<td>Course Title and Scope</td>
<td>Hours</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>Electrical Systems</td>
<td>28</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>2*</td>
</tr>
<tr>
<td>Wheel vehicle engine malfunctions, p. B-8</td>
<td></td>
</tr>
<tr>
<td>Wheel Vehicle Engine Tune-up, p. B-9</td>
<td>5</td>
</tr>
<tr>
<td>Transfer Assembly</td>
<td>6</td>
</tr>
<tr>
<td>Construction, power flow, and adjustment of a transfer and parking brake. A practical exercise on disassembling, inspecting, assembling, and adjusting a transfer assembly and parking brake. p. D-1</td>
<td></td>
</tr>
<tr>
<td>Steering Systems</td>
<td>2*</td>
</tr>
<tr>
<td>Types, construction, operation, and adjustments of conventional steering gears</td>
<td></td>
</tr>
<tr>
<td>Dry Disc Clutch</td>
<td>1*</td>
</tr>
<tr>
<td>Types, construction, and operation of the dry disc clutch. p. C-1</td>
<td></td>
</tr>
<tr>
<td>Torque and Gears</td>
<td>2*</td>
</tr>
<tr>
<td>Type, application, and arrangement of gears for transmitting torque. p. C-1</td>
<td></td>
</tr>
<tr>
<td>Selective Gear Transmission</td>
<td>6*</td>
</tr>
<tr>
<td>Types, construction, power flows, and adjustments of a selective gear transmission. Practical exercise on disassembly, inspection, assembly and checking gear and shaft end play, shifting rails, balls, detents, and interlocks of a selective gear transmission. Remove, inspect, replace, and adjust a clutch.</td>
<td></td>
</tr>
<tr>
<td>Malfunctions, Selective Gear Transmission, and Clutch</td>
<td>1*</td>
</tr>
<tr>
<td>Procedures for systematically diagnosing clutch and transmission malfunctions.</td>
<td></td>
</tr>
<tr>
<td>Maintenance Problem 1</td>
<td>7*</td>
</tr>
<tr>
<td>A practical exercise performing the task listed in maintenance problems 1A through 1E. pp. E-1, E-2</td>
<td></td>
</tr>
<tr>
<td>1A. Remove the power pack and separate the transmission (M151, M715, and M809 vehicles). References: TM 9-2320-218-20, TM 9-2320-244-34, TM 9-2320-260-20, TM 9-2320-260-34, TM 9-2320-218-34. (Note</td>
<td></td>
</tr>
</tbody>
</table>
Course Title and Scope

| References are organizational technical manuals for the respective vehicles. |
| Hours |
| 1B. Remove, replace, and adjust the clutch assembly (M151, M715, and M809 vehicles). References: TM 9-2320-218-20, TM 9-2320-244-34, TM 9-2320-260-20, TM 9-2320-260-34, TM 9-2320-218-34. (Note: References include -20 and -34 manuals which indicates a mix of organizational and direct support tasks.) |
| 1C. Disassembly and assembly of the transmission on the M151 and M715 vehicles. References: TM 9-2320-218-34, TM 9-2320-244-34. (Note: Here tasks go beyond major component removal.) |
| 1D. Adjust the differential (M151 and M715 vehicles). References: TM 9-2320-218-34, TM 9-2320-244-34. (Note: Tasks are beyond those necessary at organization. Replacement of differential assembly is an organizational task.) |
| 1E. Disassembly and assembly of the transfer assembly (M151 and M715 vehicles). TM 9-2320-218-20, TM 9-2320-244-34. (Note: The organizational manual for the M151 is again referenced.) |

Maintenance Problem 2
A practical exercise performing the task listed in maintenance problems 2A through 2E.
pp. E-2, E-3

2A. Join and replace power pack (engine, transmission/transfer assemblies) and perform adjustments (M151, M715, and M809). References: TM 9-2320-218-20, TM 9-2320-244-34, TM 9-2320-260-20. (Note: Use of TM 9-2320-218-20 indicates this to be an organizational task for the M151.)

2B. Remove and replace steering gear assembly (M151, M715, and M809). References: TM 9-2320-218-34, TM 9-2320-244-34, TM 9-2320-260-34. (Note: Use of -34 indicates that this is a direct support unit task for the M151.)

2C and 2D. Problems do not relate to M151.
Course Title and Scope

<table>
<thead>
<tr>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>2E. Perform engine timing and adjustment (M151, M715, and M809). References: TM 9-2320-218-20, TM 9-2320-260-34. (Note: Use of -20 manual indicates that this is an organizational task for the M151.)</td>
</tr>
<tr>
<td>3A. Test the electrical system using the multimeter and Low Voltage Circuit Tester (M151 and M809). References: TM 9-2320-218-20, TM 9-2320-244-20, TM 9-2320-260-20. (Note: Use of -20 manuals indicates that this is an organizational task.)</td>
</tr>
<tr>
<td>3B. Clean and service air cleaners (M151, M715, M809, and M561). References: TM 9-2320-218-20, TM 9-2320-244-20, TM 9-2320-242-10, TM 9-2320-260-20. (Note: Manuals indicate operator (-10) and organizational (-20) tasks.)</td>
</tr>
<tr>
<td>3C. Does not relate directly to M151.</td>
</tr>
<tr>
<td>3D. Adjust and bleed brakes (M151, M715, and M809). References: TM 9-2320-218-20, TM 9-2320-244-34, TM 9-2320-260-20, TM 9-2320-260-34. (Note: Use of -20 indicates that this is an organizational task for the M151.)</td>
</tr>
</tbody>
</table>

Findings for Research Question 2

If all the subjects listed from the MOS 63H20, Automotive Repairman Course were added to the MOS 63C20, Track Vehicle Repairman Course without any consolidation, the Track Vehicle Repairman Course would be lengthened by 111 hours plus examinations, or approximately three weeks. There is, however, a degree of duplication among the two programs. Consolidation could reduce the number of hours necessary to
train organizational mechanics to perform major component replacement on the M151A1 ½-ton truck.

By adding only that instruction that relates directly to the components of the M151A1 (see Table 7 courses marked by *), the MOS 63C20, Track Vehicle Repairman Course would be lengthened by 35 hours or approximately one week.

To obtain an indication of the cost implications of lengthening the track vehicle mechanic course to permit additional training, offices of comptrollers for the U. S. Army Ordnance Center and School and the U. S. Army Armor School were contacted. The following figures were provided from FY 75 course budgetary analyses for both schools.

MOS 63H20, Automotive Repair Course
US Army Ordnance Center and School

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Military Personnel, Army (MPA)</td>
<td>$1,961,000</td>
</tr>
<tr>
<td>(Instructors, military support personnel)</td>
<td></td>
</tr>
<tr>
<td>Operation and Maintenance, Army Civilian instructors, supplies and equipment, contract costs</td>
<td>$380,900</td>
</tr>
<tr>
<td>Total</td>
<td>$2,341,900</td>
</tr>
<tr>
<td>Students (FY 75)</td>
<td>1641</td>
</tr>
<tr>
<td>Cost per student</td>
<td>$1,427</td>
</tr>
<tr>
<td>Course length</td>
<td>17 weeks, 4 days (17.6 weeks)</td>
</tr>
<tr>
<td>Cost per student per week of training</td>
<td>$81 (approx)</td>
</tr>
</tbody>
</table>

MOS 63C20, Track Vehicle Mechanic
US Army Armor School

Military Personnel, Army (MPA) $1,249,000
(Instructors, military
support personnel)
Operation and Maintenance, Army
Civilian instructors,
supplies and equipment, other 821,000
Total $2,070,900
Students (FY 75) 2724
Cost per student $760
Course length 7 weeks
Cost per student per week $109 (approx)

The cost estimate of providing the assumed additional
week of training for replacement of 1/ton truck major compo-
nents would be the sum of the student's pay plus the school's
costs. Assume that the cost of the additional week would be
an average of the current weekly costs for both schools
($95), and that the average student is a Private (E-2)
earning $383.40 per month or about $96 per week. Additional
costs for one week of training would be $191 ($95 + $96) or
$520,284 ($191 x 2724).

RESEARCH HYPOTHESIS

DATA AND FINDINGS

Research Hypothesis

If responsibility for replacement of engines, transmis-
sion/transfer assemblies, clutches, and steering gear assem-
blies for the M151A1 1/ton truck was shifted from direct
support to organizational maintenance level, there would be a significant reduction in direct support maintenance costs.

Tables 8 through 11 display data collected from four simulations of ten runs each varying conditions as shown on each table and previously discussed in Chapter 3. Each run represents one year of operations with a fleet of 28 vehicles. Simulations 1 and 2 are performed assuming an inherent reliability of .98. Fuel and lubricant costs are varied in each simulation. Simulations 3 and 4 assume an inherent reliability of .90 to simulate reliability degradation that could occur during field exercises, combat operations, or periods of severe usage. Again, fuel and lubricant costs are varied for each simulation.
Table 8

<table>
<thead>
<tr>
<th>Run No.</th>
<th>SPTMIS</th>
<th>GRDDBAR</th>
<th>S</th>
<th>T</th>
<th>Accept/Reject H₀</th>
<th>DSPKDNS</th>
<th>OGRFRPTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.1526</td>
<td>.7360</td>
<td>1.5661</td>
<td>Accept</td>
<td>8</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>1.8794</td>
<td>1.0070</td>
<td>1.3664</td>
<td>Reject</td>
<td>8</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>3.0908</td>
<td>1.4906</td>
<td>2.0736</td>
<td>Reject</td>
<td>8</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>5.1098</td>
<td>2.3243</td>
<td>2.1984</td>
<td>Reject</td>
<td>8</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>9.1477</td>
<td>4.0178</td>
<td>2.2768</td>
<td>Reject</td>
<td>8</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>.0808</td>
<td>.0342</td>
<td>2.3633</td>
<td>Reject</td>
<td>8</td>
<td>0.0</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>.0876</td>
<td>.3417</td>
<td>2.3633</td>
<td>Reject</td>
<td>8</td>
<td>0.0</td>
</tr>
<tr>
<td>8</td>
<td>25</td>
<td>2.0190</td>
<td>.8543</td>
<td>2.3633</td>
<td>Reject</td>
<td>8</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>50</td>
<td>4.0379</td>
<td>1.7086</td>
<td>2.3633</td>
<td>Reject</td>
<td>8</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>8.0579</td>
<td>3.4173</td>
<td>2.3633</td>
<td>Reject</td>
<td>8</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Table 9

<table>
<thead>
<tr>
<th>Simulation No.</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inherent Reliability</td>
<td>.96</td>
</tr>
<tr>
<td>Number of Trucks</td>
<td>28</td>
</tr>
<tr>
<td>Number of Periods</td>
<td>12</td>
</tr>
<tr>
<td>POL Cost/Mile - Wrecker</td>
<td>.15</td>
</tr>
<tr>
<td>POL Cost/Mile - M151A1</td>
<td>.03</td>
</tr>
<tr>
<td>Test Statistic t.05/11df</td>
<td>1.812</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Run No.</th>
<th>SPTMIS</th>
<th>GRDDBAR</th>
<th>S</th>
<th>T</th>
<th>Accept/Reject H0</th>
<th>DSEMINS</th>
<th>OGPRMTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.1410</td>
<td>.7317</td>
<td>1.5594</td>
<td>Accept</td>
<td>8</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>1.7640</td>
<td>.9611</td>
<td>1.8353</td>
<td>Reject</td>
<td>8</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>2.8021</td>
<td>1.3710</td>
<td>2.0439</td>
<td>Reject</td>
<td>8</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>4.5324</td>
<td>2.0807</td>
<td>2.1783</td>
<td>Reject</td>
<td>8</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>7.9930</td>
<td>3.5272</td>
<td>2.2661</td>
<td>Reject</td>
<td>8</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>.0692</td>
<td>.0293</td>
<td>2.3645</td>
<td>Reject</td>
<td>8</td>
<td>0.</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>.6921</td>
<td>.2927</td>
<td>2.3645</td>
<td>Reject</td>
<td>8</td>
<td>0.</td>
</tr>
<tr>
<td>8</td>
<td>25</td>
<td>1.7303</td>
<td>.7310</td>
<td>2.3645</td>
<td>Reject</td>
<td>8</td>
<td>0.</td>
</tr>
<tr>
<td>9</td>
<td>50</td>
<td>3.4606</td>
<td>1.4635</td>
<td>2.3645</td>
<td>Reject</td>
<td>8</td>
<td>0.</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>6.9211</td>
<td>2.9271</td>
<td>2.3645</td>
<td>Reject</td>
<td>8</td>
<td>0.</td>
</tr>
</tbody>
</table>
Table 10

<table>
<thead>
<tr>
<th>Simulation No.</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inherent Reliability</td>
<td>.90</td>
</tr>
<tr>
<td>Number of Trucks</td>
<td>28</td>
</tr>
<tr>
<td>Number of Periods</td>
<td>12</td>
</tr>
<tr>
<td>FOL Cost/Mile - Wrecker</td>
<td>.376</td>
</tr>
<tr>
<td>FOL Cost/Mile - M151A1</td>
<td>.041</td>
</tr>
<tr>
<td>Test Statistic $t_{0.05/11df}$</td>
<td>1.612</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Run No.</th>
<th>SFTMIS</th>
<th>GRDDBAR</th>
<th>S</th>
<th>T</th>
<th>Accept/Reject H$_0$</th>
<th>DSPKDNS</th>
<th>OGPRI-TM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>5.7401</td>
<td>.6826</td>
<td>8.4087</td>
<td>Reject</td>
<td>38</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>9.3407</td>
<td>1.0267</td>
<td>9.0626</td>
<td>Reject</td>
<td>38</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>15.2457</td>
<td>1.6888</td>
<td>9.0275</td>
<td>Reject</td>
<td>38</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>25.1473</td>
<td>2.8495</td>
<td>8.8250</td>
<td>Reject</td>
<td>38</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>44.9506</td>
<td>5.2128</td>
<td>8.6232</td>
<td>Reject</td>
<td>38</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>.3961</td>
<td>.0477</td>
<td>8.3106</td>
<td>Reject</td>
<td>38</td>
<td>0.</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>3.9607</td>
<td>.4766</td>
<td>8.3106</td>
<td>Reject</td>
<td>38</td>
<td>0.</td>
</tr>
<tr>
<td>8</td>
<td>25</td>
<td>9.9016</td>
<td>1.1915</td>
<td>8.3106</td>
<td>Reject</td>
<td>38</td>
<td>0.</td>
</tr>
<tr>
<td>9</td>
<td>50</td>
<td>19.8033</td>
<td>2.3829</td>
<td>8.3106</td>
<td>Reject</td>
<td>38</td>
<td>0.</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>39.6065</td>
<td>4.7618</td>
<td>8.3106</td>
<td>Reject</td>
<td>38</td>
<td>0.</td>
</tr>
<tr>
<td>Run No.</td>
<td>SPTMIS</td>
<td>GRBBAR</td>
<td>S</td>
<td>T</td>
<td>Accept/Reject H_0</td>
<td>DSBKDNS</td>
<td>OGFTRTM</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>-----</td>
<td>------</td>
<td>-------------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>5.6852</td>
<td>.6783</td>
<td>8.3817</td>
<td>Reject</td>
<td>38</td>
<td>Yes</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>8.7562</td>
<td>.9721</td>
<td>9.0077</td>
<td>Reject</td>
<td>38</td>
<td>Yes</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>13.8744</td>
<td>1.5596</td>
<td>9.0120</td>
<td>Reject</td>
<td>38</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>22.4047</td>
<td>2.5417</td>
<td>8.8149</td>
<td>Reject</td>
<td>38</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>39.4654</td>
<td>4.5901</td>
<td>8.5979</td>
<td>Reject</td>
<td>38</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>.3412</td>
<td>.0414</td>
<td>8.2407</td>
<td>Reject</td>
<td>38</td>
<td>0.</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>3.4121</td>
<td>.4141</td>
<td>8.2407</td>
<td>Reject</td>
<td>38</td>
<td>0.</td>
</tr>
<tr>
<td>8</td>
<td>25</td>
<td>8.5304</td>
<td>1.0352</td>
<td>8.2407</td>
<td>Reject</td>
<td>38</td>
<td>0.</td>
</tr>
<tr>
<td>9</td>
<td>50</td>
<td>17.0607</td>
<td>2.0703</td>
<td>8.2407</td>
<td>Reject</td>
<td>38</td>
<td>0.</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>34.1214</td>
<td>4.1406</td>
<td>8.2407</td>
<td>Reject</td>
<td>38</td>
<td>0.</td>
</tr>
</tbody>
</table>
Findings for the Research Hypothesis

The null hypothesis (H_0) proposes that there is no statistically significant difference in costs generated by the current and proposed direct support maintenance policies for the M151A1 ¼-ton truck. Based on the results of the simulation, with the exception of the condition where the distance to the support unit is one mile, the test statistic for the 95% confidence level is exceeded and the null hypothesis is rejected.

Therefore, it is concluded, based on the results of the simulation, that shifting responsibility for major component replacement for the M151A1 ¼-ton truck from the direct support to the organizational maintenance level would result in statistically significant reductions in direct support maintenance costs.

EVALUATION

Payoff Estimation

An indicator needs to be developed as to the potential worth of adopting the proposed concept. The reader is reminded that the grand means (GRDDBAR) for each run represent mean savings per vehicle per month of operations. Therefore, an estimate of possible savings for the fleet of trucks for that year can be obtained by multiplying the number of trucks by the grand mean and then by the number of months per year. The projected year savings could then be multiplied by twenty-six months, the estimated productive time a mechanic would have in an organization. This figure, compared to training and tool
costs, would be an estimate of the payoff possible from performing major component replacement at the organization.

Figure 2 shows these computations based on Simulation 1, Table 8. Additional training costs per student were computed to be $191 per week (page 63). According to Table of Organization and Equipment (TOE) 07-45H for the Mechanized Infantry Battalion, there are seven tracked vehicle mechanics (MOS 63C20). This would require $1337 (7 x $191) to provide training. Based on Figure 2, savings would have paid for training in twenty-six months if the organization had been 10 miles from the direct support unit. Excluding the factor of organizational preparation time (Runs 6-10), training costs would have been recovered at a 25 mile distance. It is pointed out that if the number of direct support requirements had been higher as in Simulation 3, Table 10, both training and tool costs would have been quickly repaid.

Figure 2

<table>
<thead>
<tr>
<th>Simulation No.</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inherent Reliability</td>
<td>98</td>
</tr>
<tr>
<td>Number of Trucks</td>
<td>28</td>
</tr>
<tr>
<td>Number of Periods</td>
<td>12</td>
</tr>
<tr>
<td>Direct Support Requirements</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Run</th>
<th>SFTMIS</th>
<th>GRDDBAR</th>
<th>Estimated 1 Year Savings ($)</th>
<th>Estimated 26 Months Savings ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.1526</td>
<td>387</td>
<td>839</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>1.8794</td>
<td>631</td>
<td>1368</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>3.0908</td>
<td>1038</td>
<td>2250</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>5.1098</td>
<td>1717</td>
<td>3720</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>9.1477</td>
<td>3074</td>
<td>6660</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0.0600</td>
<td>27</td>
<td>59</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>0.8076</td>
<td>271</td>
<td>588</td>
</tr>
<tr>
<td>8</td>
<td>25</td>
<td>2.0190</td>
<td>678</td>
<td>1470</td>
</tr>
<tr>
<td>9</td>
<td>50</td>
<td>4.0379</td>
<td>1357</td>
<td>2940</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>8.0579</td>
<td>2713</td>
<td>5879</td>
</tr>
</tbody>
</table>

Limitations

This simulation is useful as a vehicle to define factors influencing direct support maintenance costs. If people can agree on the elements that make up the model, then problem areas for examination can be isolated. If a model element is controversial, this situation provides a basis for redefinition and further test.

The elements of this model are controversial. Statistical distributions are used to generate maintenance actions because the actual data leading to the Sample Data Collection Analysis Report was not available.

There is no simulation of resupply operations. Probabilities that a breakdown will occur should be based on vehicle age to obtain a more accurate representation of reality. Estimates were used for such items as the minimum and maximum component replacement times.

Finally, the use of the concept of organizational preparation time (OGPFRPTM) can be questioned. This is time required to prepare a vehicle for acceptance by the direct support unit. Direct support unit personnel perform a technical inspection to verify that all organizational maintenance has been performed, to assure that the vehicle and equipment stored on the vehicle are completed, and to serve as a starting point for troubleshooting. These are necessary functions that would have to be performed regardless of who was responsible for maintenance. It is the author's belief, however, that transfer of a vehicle from one unit to another
creates a problem in accountability that requires that the vehicle be thoroughly inspected. Additionally, the owning unit should know the vehicle thoroughly and detailed inspection need not be a prerequisite to correcting a problem.

SUMMARY

This chapter has displayed findings in regard to the research questions and hypotheses. Tool requirements to enable organizations to perform major component replacement on the M151A1 1-ton truck were identified and a cost per battalion for those tools was estimated. Training programs for the direct support unit and organizational mechanics were compared and an estimate of additional training costs was provided. Finally, based on simulation results, it was concluded that moving direct support major component replacement responsibilities forward to organizational level resulted in significant decreases in direct support maintenance costs.
CHAPTER 4

FOOTNOTES

7. TOE 07-45H, p. II-17.
CHAPTER 5

SUMMARY, CONCLUSIONS, RECOMMENDATIONS

SUMMARY

Problem

The general problem studied was the feasibility of moving direct support maintenance responsibilities forward to the organizational maintenance level. The current concept relies on centralization of skills and capital equipment such as tools and test equipment. This is a viable concept when the price of facilities is high relative to labor. In recent years, however, labor has become an extremely high priced commodity and using people in such tasks as driving to maintenance units frequently to deliver and pick up equipment is inefficient. Thus, when equipment is high priced, complex, cumbersome and requires highly specialized skills such as certain missile system support equipment, a central maintenance facility is economical. If, however, tools are cheap versus the cost of people, then perhaps the tools should be proliferated to increase the productivity of people.

Flexibility, then, is required in the study of the problem of providing direct support. This study proposes that allocation of maintenance responsibilities should be based on the particular equipment being supported as opposed to applying one concept to all commodities. This study develops a
methodology for analysis of individual items of automotive material. The vehicle for analysis is the M151A1 ½-ton truck. The intent of the model and methodology is to permit analysis of more complex automotive items in order to obtain a more optimum allocation of maintenance responsibility.

Two research questions were examined:

1. What are tool and equipment costs incurred by moving responsibility for replacement of engines, transmissions/transfer assemblies, clutches, and steering gear assemblies forward to the using organization for the M151A1 ½-ton truck?

2. What are the costs associated with providing additional skills at the organizational level to permit replacement of engines, transmission/transfer assemblies, clutches, and steering gear assemblies?

The research hypothesis examined was:

If responsibility for replacement of engines, transmission/transfer assemblies, clutches, and steering gear assemblies was shifted from direct support to organizational maintenance level, there would be a significant reduction in direct support maintenance costs.

Methodology

The maintenance allocation chart for the M151 series of trucks was reviewed to determine what component replacement was a direct support responsibility. The engine, transmission/transfer assembly, clutch, steering gear, and oil pump must be replaced by the direct support unit. Oil pump replacement was not examined since the data base for the study showed that for 200 vehicles operated over 5,000,000 miles, no oil pump replacements were recorded.

Tool Costs. Tool costs were estimated by reviewing the direct and general support maintenance manual to determine
what tools are required to replace the above components. The organizational maintenance shop set (no. 2 Common) was used to determine if those tools are on hand at organizational level. The Army Master Data File was used to determine the price of tools that would have to be provided if major component replacement responsibility for the M151 was given to the organizational level.

Training Costs. The programs of instruction for MOS 63H20, Automotive Repairman (direct and general support) and MOS 63C20, Tracked Vehicle Mechanic (organizational) were compared to determine what field maintenance training would have to be given organizational mechanics to permit them to replace M151 series major components.

Variable Costs. A computer simulation was used to simulate direct support maintenance requirements generated by 1-ton trucks organic to a mechanized infantry battalion. Models for direct and indirect costs were developed to describe the current maintenance concept where vehicles are taken to the direct support unit for repair and the proposed concept where component replacement would be done at and by the organizational level.

Current concept model:

\[ATOTCST = (OGPRPTM + TRANSTM + DSMNTM) \times 6.48 + APOLCST \]

where

\[ATOTCST = \text{Total maintenance costs generated by the current concept (Concept A)} \]

\[OGPRPTM = \text{Time required to prepare a vehicle for acceptance by the direct support unit} \]
TRANSTM = Time required to transport the disabled vehicle to and from the direct support unit

DSMNTM = Time required to replace the component

6.48 = Hourly labor rate (USAREUR, 1974)

Proposed concept model:

\[BTOTCST = DSMNTM \times 6.48 \]

where OGPRPTM and TRANSTM are assumed to be zero due to repairs being accomplished by the owning unit.

Results

Tools. Tools required by the organization consisted of the engine/transmission removal sling. An optional item would be the automotive hoist. Estimated costs are $150-$300 per battalion.

Training. Additional training would be 35 hours at a cost of approximately $191 per student (MOS 63C20). For a mechanized infantry battalion currently authorized 7 such mechanics, the cost would be approximately $1,337.

Variable Costs. The computer simulation and the statistical test showed that cost savings under the proposed concept were statistically significant. Comparison of these savings to tool and training costs showed that the additional investment would have a high payoff, especially in situations where there was a large distance between the user and the support unit or where conditions increased normal maintenance requirements.
CONCLUSIONS

The significance of the study findings is that they provide a basis for a systematic examination of an aspect of maintenance doctrine from a different viewpoint. The concept of increased maintenance responsibility forward is not new; but fixed personnel ceilings and increased battlefield lethality give new impetus to the examination.

Potential benefits are many. Emphasis on increased automotive maintenance forward could lead to a reduction in the size of the maintenance battalion. It could serve to reduce the vulnerability of extended support complexes in brigade, division, and corps rear areas. The need to move major items around the battlefield would be reduced, which is particularly desirable if there is air purity. Finally, there is a potential for faster response to user requirements, incentives to upgrade maintenance management capability in forward units, and more efficient use of people.

RECOMMENDATIONS

The methodology should be applied to other tactical vehicles such as the 1½-ton, 2½-ton, and 5-ton trucks to ascertain the feasibility of increased maintenance forward for the class of tactical vehicles. It is recommended that, if possible, the study should include an actual troop test to assess the concept in an operational environment.
BIBLIOGRAPHY

BOOKS

GOVERNMENT DOCUMENTS

1. Department of the Army (DA) Regulations (AR), Circulars (Cir), Pamphlets (Pam), Field Manuals (FM), Supply Bulletins (SB), Supply Catalogs (SC), Tables of Organization and Equipment (TOE), Technical Manuals (TM).

AR 611-201 with changes 1, 2, and 3, Enlisted Career Management Fields and Military Occupational Specialties, 1 October 1973.

DA Cir 750-37-16, Sample Data Collection, Truck, Utility, ½ Ton, 4x4, M151A2 and M151A1, 25 April 1973.

FM 9-59, Missile Support Unit Operations, 15 September 1972.

FM 29-2 with change 1, Organizational Maintenance Management, 26 August 1971.

FM 29-20 with changes 1 and 2, Maintenance Management in Theaters of Operations, 26 July 1968.

FM 29-30-1, Division Maintenance Battalion, 2 September 1971.

FM 101-10-1, Staff Officers' Field Manual Organizational, Technical and Logistical Data Unclassified Data, 26 July 1971.

SB 700-20, Army Adopted/Other Items Selected for Authorization/List of Reportable Items, 20 December 1974.

Technical Manuals for Truck, utility: 1-ton, 4x4, M151 (2320-542-4785), M151A1 (2320-763-1092), M151A2 (2320-177-9258); truck, utility: 1-ton, 4x4, M151AC (2320-763-1091), M625 (2320-177-9257), 106-mm recoilless rifle; truck ambulance: frontline, 1-ton, 4x4 M718 (2310-782-6056), M718A1 (2310-177-9256).

TM 9-2320-218-20F with change 2, Organizational Parts and Tool List, 12 January 1972.

TOE 5-35G, Engineer Combat, Army or Corps, 31 October 1966.

TOE 5-36G with changes 8, 12, 16, and 20, Headquarters and Headquarters Company, Engineer Combat Battalion, Army or Corps, 31 October 1966.

TOE 5-37G with changes 8, 11, and 18, Engineer Combat Company, Army or Corps, 31 October 1966.

TOE 29-26H with changes 4, 5, 6, and 8, Headquarters and Light Maintenance Company, Maintenance Battalion, Infantry Division (Mechanized), 30 November 1970.

TOE 29-27H with changes 4, 6, and 7, Forward Maintenance Company, Maintenance Battalion, Infantry Division (Mechanized), 30 November 1970.

TOE 29-28H with changes 4, 5, and 6, Heavy Maintenance Company, Maintenance Battalion, Infantry Division (Mechanized), 30 March 1970.

TOE 29-208H with change 1, Maintenance Company, Rear, Direct Support, 30 January 1974.

2. Other

PERIODICALS

APPENDIX A

COMPUTER SIMULATION

VARIABLE NAMES
<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Dummy argument for internal random number generator function (RANF(A))</td>
</tr>
<tr>
<td>AMNTTIM(N)</td>
<td>Collective time associated with direct support maintenance for the Nth truck</td>
</tr>
<tr>
<td>APOLCST(N)</td>
<td>Total POL cost for the Nth truck under the current maintenance concept</td>
</tr>
<tr>
<td>ASSY</td>
<td>Used in routine to select component that causes an unscheduled direct support maintenance requirement</td>
</tr>
<tr>
<td>ATIMCST(M)</td>
<td>Sum of total monthly costs for vehicle (M) for the entire period simulated for the current maintenance concept</td>
</tr>
<tr>
<td>ATOTCST(N)</td>
<td>Total direct support maintenance time x hourly labor cost ($6.48) + total POL cost for the Nth truck</td>
</tr>
<tr>
<td>ATOTIME(M)</td>
<td>Total maintenance time under the current concept for vehicle (M) for the period simulated</td>
</tr>
<tr>
<td>ATOTPOL(M)</td>
<td>Total fuel and lubricant costs (M) under the current concept for vehicle (M) for the period simulated</td>
</tr>
<tr>
<td>BMNTTIM(N)</td>
<td>Total direct support maintenance time under the proposed concept</td>
</tr>
<tr>
<td>BPOLCST(N)</td>
<td>Total POL cost for the Nth truck under the proposed concept. In this simulation, BPOLCST(N) is always zero because maintenance is performed in the battalion area.</td>
</tr>
<tr>
<td>BTIMCST(M)</td>
<td>Sum of total monthly costs for vehicle (M) for the entire period simulated for the proposed maintenance concept</td>
</tr>
<tr>
<td>BTOTCST(N)</td>
<td>Total direct support maintenance time x hourly labor cost ($6.48) + BPOLCST (=0) for the Nth vehicle</td>
</tr>
<tr>
<td>BTOTIME(M)</td>
<td>Total maintenance time under the proposed concept for vehicle (M) for the period simulated</td>
</tr>
<tr>
<td>BTOTPOL(M)</td>
<td>Total fuel and lubricant costs under the current concept for vehicle (M) for the period simulated</td>
</tr>
<tr>
<td>CLUTCH</td>
<td>Exponentially distributed clutch replacement time generated by FUNCTION CLUTCH (Dummy)</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>DEBAR</td>
<td>SUMDIFF/XDAYS. Monthly mean cost difference between the two concepts. Used to compute the mean of the monthly mean differences (grand mean)</td>
</tr>
<tr>
<td>DEVSQR(J)</td>
<td>Squared deviations between the monthly mean cost differences and the grand mean for the Jth month</td>
</tr>
<tr>
<td>DIFF(N)</td>
<td>ATOTCST(N) - BTOTCST(N) for each vehicle. Difference in total monthly maintenance costs generated by the current (Concept A) and proposed (Concept B) concepts</td>
</tr>
<tr>
<td>DSEKDNS</td>
<td>The number of unscheduled direct support maintenance requirements for all trucks for the period simulated</td>
</tr>
<tr>
<td>DSMNTM</td>
<td>Exponentially distributed time to replace engine, transmission, clutch, steering gear, or other component at direct support unit level</td>
</tr>
<tr>
<td>ENGINE</td>
<td>Exponentially distributed engine replacement time generated by FUNCTION ENGINE (Dummy)</td>
</tr>
<tr>
<td>EXPTIM</td>
<td>Exponentially distributed time value to perform maintenance task on selected components</td>
</tr>
<tr>
<td>FRMCOST</td>
<td>Petroleum, oil, and lubricant cost to go to the direct support unit, pick up a repaired truck, and return</td>
</tr>
<tr>
<td>FRMTIM1, FRMTIM2</td>
<td>Time to go to a direct support unit, pick up a repaired vehicle, and return home. Assumed to require two people</td>
</tr>
<tr>
<td>GRDDBAR</td>
<td>SUM DEBAR/XMONTH. Mean of monthly means (grand mean)</td>
</tr>
<tr>
<td>ISEED</td>
<td>Seed for random number generator</td>
</tr>
<tr>
<td>N</td>
<td>Used in routine to select a truck; a test for occurrence of unscheduled maintenance requirements</td>
</tr>
<tr>
<td>NMONTHS</td>
<td>Number of a given month. Each month contains 21 working days.</td>
</tr>
<tr>
<td>NPERIOD</td>
<td>Total number of months to be simulated</td>
</tr>
<tr>
<td>NTRUCKS</td>
<td>Number of trucks in organization</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>OGMNTM(N)</td>
<td>Sum of hours of unscheduled organizational maintenance (OTSKTM)</td>
</tr>
<tr>
<td>OGRPRTM</td>
<td>Exponentially distributed organizational preparation time required to pass direct support unit inspection requirements (assume 8.0 hours average per vehicle)</td>
</tr>
<tr>
<td>OTHER</td>
<td>Exponentially distributed time value to perform direct support maintenance task other than engine, transmission/transfer, clutch, and steering gear assembly replacement</td>
</tr>
<tr>
<td>OTSKTM</td>
<td>Normally distributed time to perform an unscheduled organizational maintenance task</td>
</tr>
<tr>
<td>POLCPM1</td>
<td>Petroleum, oil, and lubricant costs per mile for the 5-ton wrecker. Based on FM 101-10-1, POLCPM1 = $.15. Based on the Research Analysis Corporation Study, POLCPM1 = $.376</td>
</tr>
<tr>
<td>POLCPM2</td>
<td>Petroleum, oil, and lubricant costs per mile for the 4-ton truck. Based on FM 101-10-1, POLCPM2 = $.03. Based on the Research Analysis Corporation study, POLCPM2 = $.041</td>
</tr>
<tr>
<td>POLCST</td>
<td>Cost of gasoline to transport disabled vehicle and drivers to the direct support unit</td>
</tr>
<tr>
<td>RANF(A)</td>
<td>Internal function used to generate pseudo-random numbers</td>
</tr>
<tr>
<td>RANSET</td>
<td>Name of computer library routine to provide a recurring sequence of random numbers to assure that each variable change in the simulation is tested under the same conditions</td>
</tr>
<tr>
<td>RNORM</td>
<td>Value of the normally distributed random variable used to compute organizational task time (OTSKTM)</td>
</tr>
<tr>
<td>S</td>
<td>Standard deviation of monthly mean differences</td>
</tr>
<tr>
<td>SPTMIS</td>
<td>Distance to direct support unit</td>
</tr>
<tr>
<td>STEERG</td>
<td>Exponentially distributed steering gear assembly replacement time generated by FUNCTION STEERG (Dummy)</td>
</tr>
<tr>
<td>Subroutine</td>
<td>Subroutine testing current maintenance concept and developing associated time and costs</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Subroutine PROPOSD</td>
<td>Subroutine testing proposed maintenance concept and developing associated time and costs</td>
</tr>
<tr>
<td>Subroutine STATSUM</td>
<td>Computes and prints summary statistics</td>
</tr>
<tr>
<td>SUMDBAR</td>
<td>Sum of monthly mean cost differences between costs generated under each concept for each truck</td>
</tr>
<tr>
<td>SUMDIFF</td>
<td>Sum of monthly cost differences between costs generated under each concept for each truck</td>
</tr>
<tr>
<td>SUMDVSQ</td>
<td>Sum of monthly squared deviations DEVSQR(J) between the monthly mean cost differences and the simulation grand mean. Used to compute the standard deviation, S</td>
</tr>
<tr>
<td>T</td>
<td>"t" statistic computed to test the statistical significance of the mean difference in maintenance costs of the two maintenance concepts</td>
</tr>
<tr>
<td>TOCOST</td>
<td>Petroleum, oil, and lubricant costs to transport a disabled vehicle to the direct support unit, leave the vehicle, and return using a 5-ton wrecker</td>
</tr>
<tr>
<td>TOTDAYS</td>
<td>Total days in simulation</td>
</tr>
<tr>
<td>TOTIM1, TOTIM2</td>
<td>Time required to transport a disabled vehicle to the direct support unit and return. Assumed to require two people</td>
</tr>
<tr>
<td>TOTTIM</td>
<td>Subroutine CURRENT - sum of organizational preparation time for direct support maintenance; transportation time to the direct support unit and time to perform the direct support maintenance task</td>
</tr>
<tr>
<td></td>
<td>Subroutine PROPOSD - total time to perform the direct support maintenance task. Organizational preparation time and transportation time are not included because maintenance is performed in the battalion area</td>
</tr>
<tr>
<td>TRANSM</td>
<td>Exponentially distributed transmission replacement time generated by FUNCTION TRANSM (Dummy)</td>
</tr>
<tr>
<td>TRANSTM</td>
<td>Total transportation time required to complete repairs for a particular direct support requirement. Vehicle transportation time is multiplied by the number of people making the trips (4)</td>
</tr>
<tr>
<td>Variable</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>U1, U2</td>
<td>Uniformly distributed random variables used to</td>
</tr>
<tr>
<td>XDAYS</td>
<td>Number of days in month (21 working days)</td>
</tr>
<tr>
<td>XMONTHS</td>
<td>Floating point number of months to permit grand mean, standard deviation, and "t" statistic computation</td>
</tr>
<tr>
<td>XMU</td>
<td>Mean of exponential distribution</td>
</tr>
<tr>
<td>XTRUCKS</td>
<td>Floating point number of trucks to permit computation of monthly mean cost differences (DBAR)</td>
</tr>
</tbody>
</table>
APPENDIX B

COMPUTER SIMULATION
FLOWCHART
PROGRAM TRUKSIM
Main Program

Housekeeping
Enter - Number of trucks
Random number seed
Distance to support unit
Number of periods
POL costs per mile

Select truck.
Check for end of day.

N.EQ.NTRUCKS + 1. Yes

No

Generate breakdown.
Use inherent reliability of .98 for M151A1. If random no. is less than or equal to .02, an unscheduled maintenance requirement exists. If greater than .02, return and select new vehicle

R = RANF(A)

R.LE..02 No

Yes

A
Determine if the unscheduled maintenance requirement is direct support or organizational maintenance. If the random number is greater than .0583, the requirement is organizational. Generate an organizational maintenance time and return to select a new truck.

\[R = \text{RANF}(A) \]

\[R \leq 0.0583 \]

Yes

\[\text{OGMNTM}(N) = \text{OGMNTM}(N) + \text{OTSKTM}(\text{DUMMY}) \]

No

Add one to no. of direct support requirements.

\[\text{ASSY} = \text{RANF}(A) \]

\[\text{DSBKDNS} = \text{DSBKDNS} + 1. \]

DS breakdown has occurred. Determine which component failed by use of a uniformly distributed random number corresponding to probabilities of component failure.

- \[P(\text{Engine}) = 0.1936 \]
- \[P(\text{Transmission/Transfer}) = 0.3064 \]
- \[P(\text{Clutch}) = 0.3284 \]
- \[P(\text{Steering Gear Assembly}) = 0.0049 \]
- \[P(\text{Other}) = 0.1667 \]

Compute direct support maintenance time using the appropriate FORTRAN function.
If all trucks have been selected, add 1 to the number of days in the month and 1 to the total days in the simulation:

\[XDAYS = XDAYS + 1. \]
\[TOTDAYS = TOTDAYS + 1. \]

If \(N \) GT \(NTRUCKS \) AND \(XDAYS \) LT 21

Yes

\(N = 0 \)

Call subroutine STATSUM

No

Check for completion of month (21 working days). If no. of days equal to 21, summarize monthly statistics.

Check for end of simulation run. If no. of months is not equal to the desired number of periods, return to beginning to start new day and month.

Yes

\(XDAYS \) LT 21

No

\(XDAYS \) GT 21

Yes

Print "ERROR"

No

\(NMONTHS \) NE \(NPERIODS \)

No

End

Yes

Go to 01.

Start new day.

No

No
Compare cost of direct support repair under the current concept and the proposed alternative. Values of direct support maintenance time and distance to the direct support unit and transmitted to subroutines comparing the concepts. Return to select the next truck for the day.

Call Subroutine CURRENT (DSMNTM, SPTMIS)
Call Subroutine PROPOSD (DSMNTM)
FUNCTION OTSKTM (DUMMY)

Generate a task time for organizational maintenance.
Define minimum and maximum possible times of
1.6 to 12.2 hours.
Time is generated is a normally distributed random variable.

\[U1 = \text{RANF}(A) \]
\[U2 = \text{RANF}(A) \]
\[RNORM = (-2.0 \times \text{ALOG}(U1))^{0.5} \times \text{COS}(2 \times 3.1416 \times U2) \]
\[OTSKTM = RNORM + 1.6 \]

\(OTSKTM \text{ GT } 12.2 \)

Yes \(OTSKTM = 12.2 \)

No

Return

End
FUNCTION OTHER (DUMMY)

Generate a task time for all other direct support tasks other than engine, transmission, clutch, and steering gear replacement. Minimum and maximum times of 1 to 30 hours are defined. Time is an exponentially distributed random variable.

\[X_{MU} = 1.0 \]

\[EXPTM = (-1.0/XMU) \cdot \text{ALOG(RANF(A))} \]

\[OTHER = EXPTM \]

- If \(OTHER \lt 1.0 \), then \(OTHER = 1.0 \)
- If \(OTHER \gt 30.0 \), then \(OTHER = 30.0 \)
- Otherwise, return.

End
FUNCTION ENGINE (DUMMY)

Generate a task time for engine replacement. Minimum and maximum times of 7 to 19 hours are defined. Time is an exponentially distributed random variable.

\[X_{MU} = 1.9.5 \]

\[EXPTM = (-1./XMU)*ALOG(RANF(A)) \]

- If \(ENGINE \lt 7 \)
 - Yes: \(ENGINE = 7 \)
 - No: \(ENGINE, GT.19 \)

- If \(ENGINE, GT.19 \)
 - Yes: \(ENGINE = 19 \)
 - No: Return

End
FUNCTION TRANSM (DUMMY)

Generate a task time for transmission replacement. Minimum and maximum times of 5.5 to 13.4 hours are defined. Time is an exponentially distributed random variable.

\[\text{XMU} = \frac{1}{6.7} \]

\[\text{EXPTM} = (-1/\text{XMU}) \times \text{ALOG(RANF(A))} \]

\[\text{TRANSM} = \text{EXPTM} \]

- Yes: if \(\text{TRANSM} \leq 5.5 \)
 - Yes: \(\text{TRANSM} = 5.5 \)
 - No: \(\text{TRANSM} = 13.4 \)
- No: \(\text{TRANSM} \gt 13.4 \)

Return

End
FUNCTION CLUTCH (DUMMY)

Generate a task time for transmission replacement. Minimum and maximum times of 3.5 to 8.4 hours are defined. Time is an exponentially distributed random variable.

\[
XMU = 1.4 \times 2 \\
EXPTM = (-1/XMN)*ALOG(RANF(A)) \\
CLUTCH = EXPTM
\]

- CLUTCH, LT, 3.5
 - Yes: CLUTCH = 3.5
 - No

- CLUTCH, GT, 8.4
 - Yes: CLUTCH = 8.4
 - No

Return
End
FUNCTION STEERG (DUMMY)

Generate a task time for steering gear assembly replacement. Minimum and maximum times of 4.75 to 11 hours are defined. Time is an exponentially distributed random variable.

\[XMU = 1.5 \]

\[EXPTM = (-1/XMU) \times \text{ ALOG(RANF(A))} \]

\[STEERG = EXPTM \]

- If \(STEERG < 4.75 \)
 - Yes: \(STEERG = 4.75 \)
 - No
- If \(STEERG > 11 \)
 - Yes: \(STEERG = 11 \)
 - No

Return
End
Subroutine computes monthly direct support maintenance costs for each truck under the current concept.

Generate a task time to accomplish all organizational maintenance per FM 38-5, Logistics Maintenance Management, prior to acceptance by the direct support unit.

\[XMU = 1.80 \]

\[OGPRPTM = (-1./XMU)*ALOG(RAF(A)) \]

Generate a transportation time to and return from the direct support unit assuming use of a wrecker. Generate a transportation time to pick up the repaired vehicle from the direct support unit using one 1-ton truck to go to the DSU and return using both vehicles. Two operators are assumed for both trips (total of four people).

\[TOTIM1 = (.75*SPTMIS/25.) + (RANF(A)*SPTMIS/25.) \]
\[TOTIM2 = (.75*SPTMIS/25.) + (RANF(A)*SPTMIS/25.) \]
\[FRMTIM1 = (.75*SPTMIS/25.) + (RANF(A)*SPTMIS/25.) \]
\[FRMTIM2 = (.75*SPTMIS/25.) + (RANF(A)*SPTMIS/25.) \]

\[TRANSTM = 4.0*(TOTIME + FRMTIME) \]
Compute total time by summing organizational preparation time, transport time, and direct support maintenance time. For some simulation runs, organizational time is set to zero.

\[\text{TOTTIM} = \text{OGPRPTM} + \text{TRANSTM} + \text{DSMNTM} \]

Compute total direct and indirect maintenance time for each truck.

\[\text{AMNTTIM}(N) = \text{AMNTTIM}(N) + \text{TOTTIM} \]

Compute petroleum, oil, lubrication (POL) costs for each truck as a function of the distance to the direct support unit, POL cost per mile based on tables in FM 101-10-1 or in the Research Analysis Corporation study on Army fuel costs, and the number of trips to or from the direct support unit.

\[\text{TOCOST} = SPTMIS \times \text{POLCPM1} \times 2 \]
\[\text{FRMCOST} = 3 \times SPTMIS \times \text{POLCPM2} \]
\[\text{POLCST} = \text{TOCOST} + \text{FRMCOST} \]
\[\text{APOLCST}(N) = \text{APOLCST}(N) + \text{POLCST} \]

Compute total costs per vehicle by summing the product of maintenance time for the task and the hourly labor rate plus the POL cost generated by the task and adding to the total costs existing on the Nth truck.

\[\text{ATOTCST}(N) = \text{AMNTTIM}(N) \times 6.48 + \text{APOLCST}(N) \]

Return

End
Subroutine PROPOSD

Computes monthly direct support maintenance costs for each truck under the proposed concept.

Total maintenance time for component replacement is that time related directly to the maintenance task. No organizational preparation time or transportation time is computed since the component replacement takes place in the organizational maintenance area. The time is added to the existing monthly total for the Nth truck.

\[\text{TOTTIM} = \text{DSMNTM} \]
\[\text{BMNTTIM}(N) = \text{BMNTTIM}(N) + \text{TOTTIM} \]

POL costs to transport the disabled vehicle to the direct support unit are zero. Provision is made in the program for POL costs if required.

\[\text{BPOLCST}(N) = 0. \]

Total monthly costs for the vehicles are computed by adding the product of the maintenance time and the hourly labor rate and the POL cost (0) to the existing monthly cost for the vehicle.

\[\text{BTOTCST} = \text{BMNTTIM}(N) \times 6.48 + \text{BPOLCST}(N) \]

Return

End
Subroutine STATSUM

Computes monthly and simulation totals. Variables are re-initialized. Computes monthly mean costs, mean of monthly mean costs differences for each concept, the standard deviation of the monthly mean costs, and the "t-statistic" to test for statistical significance of the differences in monthly mean costs.

For the end-of-month computation, add 1 to the number of months.

\[\text{NMONTHS} = \text{NMONTHS} + 1 \]

Begin preparations of the test for significance of the difference in the means of two populations by computing the difference in maintenance costs per truck per month under each concept.

\[\text{DO 400 } K = 1,\text{NTRUCKS} \]
\[400 \text{ DIFF}(K) = \text{ATOTCST}(K) - \text{BTOTCST}(K) \]

Sum differences for each truck. Convert \(\text{NTRUCKS} \) to floating point variable.

\[\text{DO 500 } L = 1,\text{NTRUCKS} \]
\[500 \text{ SUMDIFF} = \text{SUMDIFF} + \text{DIFF}(L) \]
\[\text{XTRUCKS} = \text{NTRUCKS} \]
Compute the mean differences in monthly costs per truck per month and store so that the average difference for each month is maintained. The sum of the differences is then set to zero to permit computations for the next month.

\[
\text{DBAR(NMONTHS)} = \frac{\text{SUMDIFF}}{\text{XTRUCKS}} \\
\text{SUMDIFF} = 0.
\]

Monthly cost, time, and POL computations are added to previous totals to collect statistics for the entire time of the simulation. "M" is the number of the truck.

DO 650 M = 1,NTRUCKS

\[
\begin{align*}
\text{ATIMCST}(M) &= \text{ATIMCST}(M) + \text{ATOTEST}(M) \\
\text{BTIMCST}(M) &= \text{BTIMCST}(M) + \text{BTOTCST}(M) \\
\text{ATOTIME}(M) &= \text{ATOTIME}(M) + \text{AMNTTIM}(M) \\
\text{BTOTIME}(M) &= \text{BTOTIME}(M) + \text{BMNTTIM}(M) \\
\text{ATOTPOL}(M) &= \text{ATOTPOL}(M) + \text{APOLCST}(M) \\
650 \quad \text{BTOTPOL}(M) &= \text{BTOTPOL}(M) + \text{BFOLCST}(M)
\end{align*}
\]

Reinitialize monthly totals, the number of days in the month, and N, the number used for truck selection.

DO 670 M = 1,NTRUCKS

\[
\begin{align*}
\text{ATOTCST}(M) &= 0. \\
\text{BTOTCST}(M) &= 0. \\
\text{AMNTTIM}(M) &= 0. \\
\text{BMNTTIM}(M) &= 0. \\
670 \quad \text{APOLCST}(M) &= 0. \\
\text{XDAYS} &= 0. \\
N &= 0
\end{align*}
\]
Check for end of simulation. If no. of months is not equal to the no. of periods to be simulated return and begin next month.

```fortran
NMONTHS.EQ.NPERIODS
```

Compute simulation statistics.
Compute mean of monthly means (grand mean).
DO 600 J = 1,NMONTHS
```
600 SUMDBAR = SUMDBAR + DBAR(J)
```
XMONTHS = NMONTHS
GRDDBAR = SUMDBAR/XMONTHS

Compute the standard deviation, S, of the grand mean.
Square deviations between the monthly mean differences and the grand mean. Sum the squared deviations.
DO 620 J = 1,NMONTHS
```
620 DEVSQR(J) = (DBAR(J)-GRDDBAR)**2
```
DO 630 J = 1,NMONTHS
```
630 SUMDVSQ = SUMDVSQ + DEVSQR(J)
```
$S = \sqrt{(SUMDVSQ/(XMONTHS-1.))/SQRT(XMONTHS)}$
```
Compute t-statistic to test for the statistical significance of the mean difference between costs generated by the two concepts.

\[ T = \frac{GRDDBAR}{S} \]

Print simulation results.
Grand Mean - GRDDBAR
No. of periods - NMONTHS
Standard Deviation - S
t-statistic - T

No. of direct support requirements for the trucks - D2EKDNS
Total days in the simulation - TOTDAYS

700
Return
End
APPENDIX C

COMPUTER PROGRAM LISTING
PROGRAM TRUKSIM INPUT,OUTPUT, TAPE2
COMMON/BLK5/OMNTM(40), DSBNNS
COMMON/BLK1/NTRUCKS, ISEED, SPTMIS, NPERIOD, XDAYS, NMONTHS
COMMON/BLK2/AMNTTIM(40), APOLCST(40), ATOCST(40)
COMMON/BLK3/AMNTTIM(40), BTOTCST(40)
COMMON/BLK4/IR
COMMON/BLK6/BPOLCST(40)
COMMON/BLK7/PLCPM1, PLCPM2
COMMON/BLK8/DDAYS
DATA NTRUCKS, ISEED, SPTMIS, NPERIOD/28, 37, 100, 12/ 
DATA P0LCPM1, P0LCPM2, .376, .041/
CALL RANSET(ISEED)

C SELECT TRUCK.

01 N=N+1
IF(N.EQ.NTRUCKS+1) G0 T0 25

C GENERATE BREAKDOWN. USE INHERENT RELIABILITY OF 0.98 FOR
C MISIATA. IF RANDOM NO. IS < 0.02, UNSHED MAINT REQ EXISTS.
C SEE P. 70, SAMPLE DATA COLLECTION REPORT.
03 R=RANF(A)
IF (R.LE.02) G0 T0 05
G0 T0 01

C DETERMINE IF DS OR ORG MAINT REQ. P(DS) = 408/6995, P. 21, SDC.
C IF NOT DS, GENERATE ORGANIZATIONAL MAINTENANCE TIME. RETURN TO
C SELECT NEXT TRUCK.
05 R=RANF(A)
IF(R.LE.0583) G0 T0 10
.omgNTM(N) = OMNTM(N) + 0ISKTM(DUMMY)
G0 T0 01

C SELECT COMPONENT FOR DS REPAIR.
C P(ENGINE) = .1936, P(TRANSM/TRANSFER) = .3064, P(CLUTCH) = .3284,
C P(STEERING GEAR ASSEMBLY) = .0049, P(OTHER) = .1667

10 ASSY = RANF(A)
DSBNNS = DSBNNS+1.
IF(ASSY.LE..1936) G0 T0 12
IF(ASSY.GT..1936.AND.ASSY.LE..5000) G0 T0 13
IF(ASSY.GT..5000.AND.ASSY.LE..8284) G0 T0 14
IF(ASSY.GT..8284.AND.ASSY.LE..8338) G0 T0 15
DSMNTM = OTHER(DUMMY)
G0 T0 16
12 DSMNTM = ENGINE(DUMMY)
G0 T0 16
13 DSMNTM = TRANSM(DUMMY)
G0 T0 16
14 DSMNTM = CLUTCH(DUMMY)
G0 T0 16
15 DSMNTM = STEERG(DUMMY)
G0 T0 16
C COMPARE COST OF DS REPAIR UNDER CURRENT CONCEPT AND PROPOSED C ALTERNATIVE.
C RETURN TO SELECT NEXT TRUCK FOR DAY.

16 CALL CURRENT(DSMNTM,SPMIS)
   CALL PROPOS(DSMNTM)
   IF(N.LE.NTRUCKS)GO TO 01

C ON COMPLETION OF ALL TRUCKS, ADD 1 TO NUMBER OF DAYS IN MONTH.
C ADD 1 TO TOTAL DAYS IN SIMULATION.

25 XDAYS=XDAYS+1.
   TOTDAYS=TOTDAYS + 1.

C CHECK FOR ANY REMAINING TRUCKS. IF N > NO. OF TRUCKS AND MONTH
C NOT OVER, SET N=0 AND RETURN TO START NEXT DAY.

   IF(N.GT.NTRUCKS.AND.XDAYS.LT.21)N=0

C CHECK FOR COMPLETION OF MONTH (21 WORKING DAYS).

   IF(XDAYS.LT.21)GO TO 01
   IF(XDAYS.GT.21)PRINT*,'"ERROR"
   CALL STATSUM
   IF(NMONTHS.NE.NPERIOD)GO TO 01
   CONTINUE
   END
   FUNCTION OTSKTM(DUMMY)

C TASK TIME FOR ORGANIZATIONAL MAINTENANCE. DEFINES MIN AND MAX TIME.
C NORMAL DISTN.

   100 U1 = RANF(A)
   U2 = RANF(A)
   RNORM = (-2.0 * ALOG(U1))**0.5 * COS(2*3.1416*U2)
   101 OTSKTM = RNORM + 1.6
   IF(OTSKTM.GT.12.2)OTSKTM = 12.2
   RETURN
   END
FUNCTION OTHER(DUMMY)

C TASK TIME FOR ALL OTHER DIRECT SUPPORT MAINTENANCE TASKS.
C DEFINES MIN AND MAX TIMES. EXPONENTIAL DISTN.

XMU = 1./10.0
EXPTIM = (-1./XMU)*ALOG(RANF(A))
OTHER = EXPTIM
IF(OTHER.LT.1.)OTHER = 1.
IF(OTHER.GT.30.)OTHER = 30.
RETURN
END
FUNCTION ENGINE(DUMMY)

C ENGINE REPLACEMENT TIME. DEFINES MIN AND MAX TIMES. EXPONENTIAL
C DISTRIBUTION.

XMU=1./9.5
EXPTIM = (-1./XMU)*ALOG(RANF(A))
ENGINE = EXPTIM
IF(ENGINE.LT.7.)ENGINE = 7.
IF(ENGINE.GT.19.)ENGINE = 19.
RETURN
END
FUNCTION TRANSM(DUMMY)

C TRANSMISSION REPLACEMENT TIME. DEFINES MIN AND MAX TIMES.
C EXPONENTIAL DISTN.

XMU=1./6.7
EXPTIM = (-1./XMU)*ALOG(RANF(A))
TRANSM = EXPTIM
IF(TRANSM.LT.5.5)TRANSM = 5.5
IF(TRANSM.GT.13.4)TRANSM = 13.4
RETURN
END
FUNCTION CLUTCH(DUMMY)

C CLUTCH REPLACEMENT TIME. DEFINES MIN AND MAX TIME. EXPONENTIAL DISTN.

XMU=1./4.2
EXPTIM = (-1./XMU)*ALOG(RANF(A))
CLUTCH = EXPTIM
IF(CLUTCH.LT.3.5)CLUTCH = 3.5
IF(CLUTCH.GT.8.4)CLUTCH = 8.4
RETURN
END
FUNCTION STEERING(DUMMY)

C STEERING GFA: ASSEMBLY REPLACEMENT TIME DEFINES MIN AND MAX TIMES.
C EXPONENTIAL DIST.

XMU=1./5.5
EXP Tim = (-1./XMU)*ALOG(RANF(A))
STEER = EXP TIM
IF(STEER.LT.4.75)STEER = 4.75
IF(STEER.GT.11.)STEER = 11.
RETURN
END

SUBROUTINE CURRENT(DSNMTIM,SPTMIS)

C MONTHLY DS MAINT COSTS UNDER CURRENT CONCEPT.

COMMON/FLK2/AMNTTIM(40),APOLCS(40),ATOTCS(40)
COMMON/FLK4/N
COMMON/FLKG/POLCPM1,POLCPM2
XMU=1./8.0

C GENERATE TIME TO ACCOMPLISH ALL ORGANIZATIONAL MAINTENANCE AS C FY IM 28-5, LOGISTICS MAINTENANCE MANAGEMENT PRIOR TO ACCEPTANCE C BY DIRECT SUPPORT UNIT (DSU).

DGFRPTM= (-1./XMU) * ALOG(RANF(A))
IF(DGFRPTM.GT.30.)DGFRPTM=30.

C GENERATE TRANSPORTATION TIME TO AND RETURN FROM DSU ASSUMING USE OF C WRECKER. GENERATE TRANSPORTATION TIME TO PICK UP VEHICLE FROM DSU C USING 1/4 TON TRUCK TO GO TO DSU AND RETURN USING BOTH WHICH C REQUIRE TWO OPERATORS.

TOTIM1=(.75 * SPTMIS/25.) + (RANF(A) * SPTMIS/25.)
TOTIM2=(.75 * SPTMIS/25.) + (RANF(A) * SPTMIS/25.)
FMTIM1=(.75 * SPTMIS/25.) + (RANF(A) * SPTMIS/25.)
FMTIM2=(.75 * SPTMIS/25.) + (RANF(A) * SPTMIS/25.)
TRANSIM=2.*((TOTIM1 + TOTIM2) + 2.* (FMTIM1 + FMTIM2))

C TOTAL TIME = ORGANIZATIONAL TIME + TRANSPORT TIME + DS MAINT TIME.

TOTTIM = DGFRPTM + TRANSIM + DSNMTIM

C ACCUMULATE TOTAL TIME FOR EACH TRUCK.

AMNTTIM(N) = AMNTTIM(N) + TOTTIM
C COMPUTE PETROLEUM, OIL, LUBE (POL) COSTS FOR EACH TRUCK.
C SPTMIS = DISTANCE TO DSU.
C POLCPM1 = POL COST PER MILE FOR WRECKER. SEE DATA, LINE 225.
C POLCPM2 = POL COST PER MILE FOR 1/4 TON. SEE DATA, LINE 225.
  T0COST = SPTMIS * POLCPM1 + 2.
  FMCOST = 3. * SPTMIS * POLCPM2
  POLCST = T0COST + FMCOST
  APOLCST(N) = APOLCST(N) + POLCST

C TOTAL COSTS PER VEHICLE(N) = MAINT TIME * HOURLY RATE FOR ONE MAN + POL COST.
  AT0TCS(N) = AMNTTIM(N) * 6.48 + APOLCST(N)
RETURN
END
SURROUNINE PR0P0SD(DSMNTM)

C MONTHLY DS COSTS UNDER PROPOSED CONCEPT.
C COMMON/PLK3/RMNTTIM(40),BT0TCS(40)
C COMMON/PLK4/N
C COMMON/PLK5/RPOLCST(40)

C NO ORG PREP TIME OR TRANSPORTATION TIME REQUIRED TO ACCEPT VEHICLE.
C THEREFORE, ONLY DIRECT DS MAINT TIME RECORDED.
  T0TTIM = DSMNTM
  RMNTTIM(N) = RMNTTIM(N) + T0TTIM

C NO POL COST TO TRANSPORT VEHICLE TO DS MAINT LOCATION.
  RPOLCST(N)=0.

C COMPUTE TOTAL MONTHLY COST PER VEHICLE.
  BT0TCS(N) = RMNTTIM(N) * 6.48 + RPOLCST(N)
RETURN
END
SUBROUTINE STATSUM

C MONTHLY AND SIMULATION STATISTICS TO COMPARE CONCEPTS.

DIMENSION DIFF(40), DBAR(120), DEVSQR(120)
DIMENSION ATIMCST(40), BTIMCST(40), AT0TIME(40), BT0TIME(40)
DIMENSION AT0TP0L(40), BT0TP0L(40)
COMMON/BLK1/NTRUCKS, ISEED, SPTMIS, NPERIOD, XDAYS, NM0NTHS
COMMON/BLK2/AMNTTIM(40), AP0LCST(40), AT0TCST(40)
COMMON/BLK3/BMNTTIM(40), BT0TCST(40)
COMMON/BLK4/N
COMMON/BLK5/0GMNTM(40), DSBKDNS
COMMON/BLK6/BP0LCST(40)
COMMON/BLK8/T0TDAYS

NM0NTHS = NM0NTHS + 1

C COMPUTE DIFFERENCES IN MAINTENANCE COST PER TRUCK FOR EACH CONCEPT.

DO 400 K=1, NTRUCKS
400 DIFF(K) = AT0TCST(K) - BT0TCST(K)

C SUM DIFFERENCES PER TRUCK.

DO 500 L=1, NTRUCKS
500 SUMDIFF = SUMDIFF + DIFF(L)

XTRUCKS = NTRUCKS

C COMPUTE AVERAGE COST PER TRUCK FOR EACH MONTH AND STORE.

DBAR(NM0NTHS) = SUMDIFF/XTRUCKS

SUMDIFF = 0.

C SUM MONTHLY TOTAL COSTS, TIME AND POL COSTS.

DO 650 M=1, NTRUCKS
650 ATIMCST(M) = ATIMCST(M) + AT0TCST(M)
BTIMCST(M) = BTIMCST(M) + BT0TCST(M)
AT0TIME(M) = AT0TIME(M) + AMNTTIM(M)
BT0TIME(M) = BT0TIME(M) + BMNTTIM(M)
AT0TP0L(M) = AT0TP0L(M) + AP0LCST(M)

BT0TP0L(M) = BT0TP0L(M) + BP0LCST(M)
C REINITIALIZE MONTHLY TOTALS.
  DO 670 M=1,NTRUCKS
  AT0TCST(M)=0.
  BT0TCST(M)=0.
  AMNTTIM(M)=0.
  BMNTTIM(M)=0.
  AP0LCST(M)=0.
  XDAYS = 0.
  N = 0

C CHECK FOR END OF SIMULATION. IF NOT END, BEGIN NEXT MONTH.
  IF(NMONTHS.NE.NPERIOD)GO TO 700
C COMPUTATION OF MEAN OF MONTHLY MEANS FOR THE SIMULATION PERIOD.
C SUM MONTHLY MEANS.
  DO 600 J=1,NMONTHS
      SUMDBAR = SUMDBAR + DBAR(J)
  C COMPUTE MEAN OF MEANS (GRAND MEAN).
      XM0NTHS = NMONTHS
      GRDDBAR = SUMDBAR/XM0NTHS
C SQUARE DEVIATIONS BETWEEN OBSERVED AND MEAN DIFFERENCES.
  DO 620 J=1,NMONTHS
      DEVSQ(J) = (DBAR(J) - GRDDBAR)**2
  DO 630 J=1,NMONTHS
      SUMDVSQ = SUMDVSQ + DEVSQ(J)
C PRINT SIMULATION TOTALS.
  2001 FORMAT(IX,7HVEHICLE,5X,7HAT0TIME,5X,7HBT0TIME,5X,7HAT0TP0L,5X,7HBT
         0TP0L,5X,7HATIMCST,5X,7HBTIMCST///)
      2004 FORMAT(3X,I2,6X,6(F11.2,1X)//)
      PRINT(2,2001)
  DO 660 I=1,NTRUCKS
      PRINT(2,2004)I,AT0TIME(I),BT0TIME(I),AT0TP0L(I),BT0TP0L(I),
         2ATIMCST(I),BTIMCST(I)
C COMPUTE STANDARD DEVIATION OF GRAND MEAN.

\[ S = \frac{\text{SORT(SUMDISC/(XMONTHS - 1.))/SORT(XMONTHS)}}{S\text{ORT}(XMONTHS)} \]

C COMPUTE "T" STATISTIC TO TEST FOR STATISTICAL SIGNIFICANCE OF MEAN DIFFERENCE.

\[ T = \text{GRDDPAK}/S \]

C PRINT GRAND MEAN, MONTHS, STD DEV, AND "T" STATISTIC.

```
690 PRINT 690, GRDDPAK, XMONTHS, S, T
690 FORMAT(1H1, 13HGRAND MEAN = , F16.4///
690 P, 1X, 9HMONTHS = , I6///, 1A, 10HSTD DEV = , F16.4///, 1X, 9H1 STAT = ,
690 3F16.4)
690 PRINT**, DS BREAKDOWNS = **DSBKDNS
690 PRINT**, TOTAL DAYS IN SIMULATION = **TDAYS
700 RETURN
END
```