PHOTOGRAPH THIS SHEET

AD A951548

DTIC ACCESSION NUMBER

LEVEL

Waterford Arsenal Labs, MI

INVENTORY

Rept. No. 344/45

DOCUMENT IDENTIFICATION

9 Oct 36

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

DISTRIBUTION STATEMENT

ACCESSION FOR

NTIS GRAI

DTIC TAB

UNANNOUNCED

JUSTIFICATION

(9 Oct 1981)

BY

DISTRIBUTION / AVAILABILITY CODES

DIST

AVAIL AND/OR SPECIAL

DISTRIBUTION STAMP

DTIC SELECTED

OCT 26 1981

DATE ACCESSIONED

UNANNOUNCED

DATE RECEIVED IN DTIC

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2

DTIC FORM OCT 79 70A

DOCUMENT PROCESSING SHEET
HIGH SI MONEL CASTINGS FOR RACES

By

INDEXED

P. R. Kosting
Chemical Engineer

October 9, 1936
WATERTOWN ARSENAL
WATERTOWN, MASS.
DISTRIBUTION OF REPORTS

<table>
<thead>
<tr>
<th>REPORT NO.</th>
<th>344/45</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE DISTRIBUTED</td>
<td>1/23/36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Local</th>
<th>Other Ord.</th>
<th>Army</th>
<th>Navy</th>
<th>Private</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>✓ 1</td>
</tr>
<tr>
<td>Lab. File</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>✓ 1</td>
</tr>
<tr>
<td>Main Office File</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Chief of Ordnance</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Staff</td>
<td>-</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Springfield Armory</td>
<td>-</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watervliet Arsenal</td>
<td>-</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock Island Arsenal</td>
<td>-</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frankford Arsenal</td>
<td>-</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picatinny Arsenal</td>
<td>-</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aberdeen Proving Ground</td>
<td>-</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chief, Bureau Ordnance</td>
<td>-</td>
<td></td>
<td>1</td>
<td></td>
<td>✓ 2</td>
</tr>
<tr>
<td>Naval Gun Factory</td>
<td>-</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chief, Bureau C & R</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Int. Nickel Co.</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Local Circulation: 1 1 1 1 as directed

Available for special circulation: 2 2 3 3 1

Other establishments requesting work: 2

Private Parties paying for work: 2
HIGH SI MONEL CASTINGS FOR RACES

Object
To determine suitability of S Monel Metal for Races

References
X0 749A4

Conclusions
Provided that roller bearings and not ball bearings are used and provided that no bending of the races occur during both normal and abnormal service and provided the metal is radiographed to determine uniformity of density (and therefore, absence of soft spots due to porosity) and freedom from other harmful defects, S Monel Metal Castings will be suitable for use as races with K Monel rollers for the intended service.

S Monel Metal Castings may be considered galvanically neutral to Monel and to K Monel.

A minimum average hardness of 365 may be expected from special S Monel Metal Castings.

Bend specimens from special S Monel Castings break when bent 1 1/2 degrees but do not break when bent 1 degree.
Test Metal

Four annular rings 20 1/8 in. o.d.; 14 3/8 in. i.d.; 1 1/8 in. thick, were submitted by the International Nickel Company on invoice numbers C 7426 (order C 2757 M) and C 7668.

They were numbered as follows:

<table>
<thead>
<tr>
<th>Ring</th>
<th>Areas</th>
<th>Invoice</th>
<th>Heat</th>
<th>Fig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SM1 to SM6</td>
<td>C7668</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SM1 to SM6</td>
<td>C7668</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM3</td>
<td>1 to 6</td>
<td>C7426</td>
<td>SM367A</td>
<td>2772</td>
</tr>
<tr>
<td>SM360A</td>
<td>SM</td>
<td>C7426</td>
<td>SM360A</td>
<td>2772</td>
</tr>
</tbody>
</table>

Results

Hardness Ring 1

<table>
<thead>
<tr>
<th>Area</th>
<th>BHN</th>
<th>150° Rc</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>387</td>
<td>39½</td>
</tr>
<tr>
<td>SM 3 - 367A</td>
<td>387</td>
<td></td>
</tr>
<tr>
<td>SM - 360A</td>
<td>369 Ave.</td>
<td>39½</td>
</tr>
</tbody>
</table>

Soft areas were never observed greater than 1/4" dia.

Macro

Porosity at midpoint of 8 out of 10 cross sections was observed. The structure was dendritic. Ring SM 360A was the only one thusly examined.

Bending

A bend specimen 6 in. x 1 in. x 1/2 in. from rings SM-360A
did not break when bent 1° but broke when bent 1 1/2°.

Load Carrying Capacity

The load carrying capacity of ring SM-360A is 4700 lbs. per in. length.

Radiographs

Ring 1 showed porosity due to piping in 3 areas, more pronounced porosity in localized spots in another area and a surface tear in another area, 6 areas being examined.

Ring 2 showed 4 clear areas and extensive piping in 2 other areas, 6 areas being examined.

Ring SM3 - SM 367A showed porosity in middle section of 4 areas, pipes or tears in another area and extensive tears in another area.

Rings 1 to 3 were examined 100%.

Ring SM-360A was examined only at 1 length of 10 in. and small regions of porosity were found.

Analysis

Analysis of ring 4 - heat 360A is given in Table I

Corrosion

When coupled with K Monel and with Monel negligible currents if immersed in synthetic sea water were observed.

Discussion

As expected porosity was observed in these castings. However, this defect is limited to the mid-section and is not detectable on
the surface. There are certain small areas of slight porosity that can be detected on the surface of some casings, but these are few and do not extend over 1/4" in area.

The castings are not as uniform in hardness as engineers are accustomed to using for hard metals. However, if only rollers are used and not ball bearings, and the races are properly supported so that no bending can occur, the metal will be suitable for the service intended. Rings can be obtained free from tears so that casting technique must be carefully checked to insure freedom from tears and freedom from extensive porosity and/or piping. Due to the low ductility of the alloy care must be exercised against unexpected bending in service.

P. R. Kosting,
Chemical Engineer
Figure I

Figure I (M48) is representative of tears found in ring 1, area SM4. The tear by the letter S extended to the surface and upon etching was readily detected.
Figure II

Figure II (M49) is representative of piping which existed in ring 2. No softness could be detected on the surface.
Figure III

Figure III (M50) is representative of large tears found in ring SM3 area of heat 367A. One tear extended to the surface where it was discernible with difficulty after etching.
Figure IV

Figure IV (M45) is representative of the general appearance of the castings and is from ring 4, SM 360A.
Table I
Report No. 344/50

September 25, 1936

MONEL

Sample from Dr. Kosting, Si Monel Casting SM360A, Test Ring for Race:

<table>
<thead>
<tr>
<th>Element</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon</td>
<td>5.00</td>
</tr>
<tr>
<td>Copper</td>
<td>32.20</td>
</tr>
<tr>
<td>Iron</td>
<td>2.80</td>
</tr>
<tr>
<td>Manganese</td>
<td>.40</td>
</tr>
<tr>
<td>Aluminum</td>
<td>.16</td>
</tr>
<tr>
<td>Carbon</td>
<td>.11</td>
</tr>
<tr>
<td>Nickel</td>
<td>59.33</td>
</tr>
</tbody>
</table>

A. Sloan
Chemist