The U.S. Government is absolved from any litigation which may ensue from the contractors infringing on the foreign patent rights which may be involved.
UNCLASSIFIED
MEASUREMENTS ON NOISE FROM
REFLEX OSCILLATORS

REPORT
872
D L

RADIATION LABORATORY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE MASSACHUSETTS
Abstract

A program of measurements of noise output of reflex local oscillators, particularly the 730A/B and 735G, was undertaken to try to determine the importance of this factor in receiver design. Considering the two noise sidebands each 3.5 kg/sec wide and separated 30 kg/sec away from the main output, we found noise powers ranging from 2.8 to 8.8×10^{-12} watts coming out of 730A/B's loaded for optimum output. Asymmetrical behavior of the noise with electronic tuning was investigated and found to require the new theory presented in the companion report number 873 by J. K. Knapp. Some measurements of the individual noise sidebands and of the noise output as a function of load were found to be in satisfactory agreement with theory.

J. K. Kuper
M. C. Watts

Approved by:

[Signature]
Leader, Group 83

[Signature]
Head, Division 6
Although it has been known for about three years that local oscillators can contribute appreciable noise in microwave receivers, the experimental data have been rather scant. In view of the fact that the trend to higher radio frequencies and the steady improvement in converters both tend to magnify the importance of this source of noise, it was decided to undertake a measurement program covering particularly the radio frequency variation tubes used at X and Z bands. The recent introduction of balanced mixers which eliminate this noise has greatly reduced the practical importance of this work but nevertheless it may be of interest for the light it affords on the behavior of reflex oscillators. It was intended to study the noise output of a group of tubes under reproducible conditions, to attempt to define the effects of different tube designs, as well as to obtain numerical information for the use of the set designer. With this in mind measurements with i-f's of 30, 60 and 90 mc were made first on a group of 723A/11 tubes and later on some assorted K-band oscillators.

While the measurements were in progress, a paper by Pierce appeared and we devoted considerable effort to attempt to verify his calculations. Our conclusion was that his theory appeared to predict correctly the effects of changes in the design or load conditions on noise at the center of the electrical tuning range, but that it was incapable of accounting for the large variations we found with electrical tuning. At this stage Dr. Knipp started on a more complete theory set forth in a companion paper which seems capable of accounting fully for the observations.

Pierce's theory considered three mechanisms by which noise could be introduced to the i-f: 1) the "high frequency noise", thought of as shot (and intersection) noise in the two coupled oscillators out through the cavity, 2) "low frequency noise" due to amplitude modulation of the oscillator by noise components in the base at 1-f, and 3) frequency modulation due to fluctuations (near 1-f) in phase of the returning electrons. Experimentally it seems that with adequate bypassing of the i-f bands to the oscillator tube mechanisms 2) and 3) are relatively unimportant.

Aside from differences in approach, Knipp's theory is an extension of Pierce's consideration of the high frequency noise, 1) in which he takes account a) of the coherence between the first and second passage of the electrons through the gap, and b) of noise due to mixing of various components in the base with harmonics of the oscillator current. The coherence nl introduces a strong variation with electrical tuning to accord with our results. In most of our experiments noise due to the two sidebands corresponding to "signal" and "image" in ordinary superheterodyne reception, was measured without any attempt of selection. In Knipp's theory, on the other hand, the two bands are calculated separately and then summed for comparison with experiment. The contributions are in general not equal.

2. Ray, Bell Telephone Labs Report 104-4-125-05
5. Pierce, Bell Telephone Labs Report 104-44-140-4
6. Fisk, Radiation Lab Report 873
7. The importance of good bypassing can scarcely be overestimated. Lack of it could introduce astonishing amounts of noise in some circumstances.
In most of the prior work on oscillator noise the measurements were made using a resonant cavity filter to remove the noise sidebands from the oscillator output. In the present work this scheme was avoided as we desired to present a non-reactive load to both the mixer and the oscillator under test. Instead the 'temperature' of the crystal was measured for various conditions using the setup shown in Fig. 1, in which the output due to crystal noise was compared with the noise from a resistor of equivalent 1-f impedance.

We have the familiar relation for noise figure (in times) of a receiver

\[F = \frac{N_0 + F_{IN}}{N_0} - 1 \]

where \(F \) is the overall noise figure, \(N_0 \) and \(G \) the 'temperature' and conversion gain of the crystal, and \(F_{IN} \) the noise figure of the 1-f amplifier. If additional noise power from the local oscillator \(P_{IN} \) (in watts for the bandwidth \(B \)) is fed to the input we have

\[F = \frac{P_{IN} + N_0 + F_{IN} - 1}{N_0} \]

\[= \frac{F_0 + P}{N_0} - 1 \]

where \(T = \frac{T_0 + G F_{IN}}{N_0} \) is an apparent crystal 'temperature' including the effects of oscillator noise.

Let \(P_0 \) be the local oscillator power fed to the crystal and \(P/P_0 \) the 'noise/signal' ratio (noise output power in a band \(B \) over oscillator output) for the oscillator. We have \(F = (P/P_0) F_{IN} \). If we remain \(T \) under standard conditions, say 0.5 mA crystal current, \(P \) will vary roughly as \(1/P_0 \), and to a first approximation \(F = T \) is proportional to the local oscillator noise ratio \(P/P_0 \) and not dependent on the properties of the crystal used.

Throughout the X-band measurements we used one crystal which had \(G = 7 \) db and \(T = 1 \), and a coupling was always adjusted to give a rectified current of 0.5 mA. The crystal parameters were frequently checked and remained quite constant.

As indicated in Fig. 1, the measuring set consisted of three preamplifiers tuned to 30, 60 and 90 MHz, and a main amplifier about 2.5 MHz wide tuned to 30 MHz which incorporated an 1-f attenuator and power output meter. In the case of the 60 and 90 MHz preamplifiers a second conversion to 30 MHz was employed.

Coupling between the mixer and preamplifier was by a coaxial line transformer so arranged that shifting 1-f involved only changing the cables, and did not affect the crystal properties. A noise diode was mounted on the mixer so that \(F_{IN} \) could be measured in the three cases.

The tube was mounted on a section 5/8 x 1 1/8 (outside) waveguide with the antenna located centrally in the guide. A choke plunger in the end of the guide was
Fig. 1

Tube Under Test

Attenuator

Plunger to Load Tube for Maximum Output

Crystal Current

Diode Current

Line is Part of Input Transformer

60 and 90 Ma. Are Converted to 30 Ma. in Pre-amps

30 Mc. Amplifier

Out
adjusted for each tube to obtain maximum output. A taper was employed to reduce to 10° a 1/2 guide and a standard step attenuator served to adjust crystal current. The crystal holder was of conventional design.

This plumbing was used for most of the measurements reported here and similar arrangements were employed at K-band. To permit separation of the noise side bands in one experiment it was modified by the introduction of a filter cavity on a 2 connection between the pad and the crystal to reject one component at will. In this case it would have been preferable to avoid changes in crystal gain and I-f impedance by additional pairing between the crystal and the Y but the local oscillator power was not sufficient to permit this.

Results

The first measurements were a series of controls to establish the validity of the scheme. In these the output power of the 723A/B was varied in some manner not likely to affect the noise output materially, say by changing the resonator voltage; the attenuation was readjusted to give the same crystal current, and I-f and % were observed at the three I-f centers. Then % for the center of the electrical tuning range in a given mode (which we have called the "closed on" condition) is plotted against 1/f, the result is a straight line for each I-f. This line if produced would intersect the ordinate axis at a constant value for %, in agreement with the value 1.3 previously determined. A typical plot of this sort is shown as Fig. 2.

It was noticed at once that if the power output of the oscillator was varied by electrical tuning that the plate could no longer be produced back to the common intercept, as indicated by the dotted lines in Fig. 2. Also there was a strong dependence on the direction of electrical tuning, increasing frequency giving increased noise.

Definite asymmetry in noise output as a function of electrical tuning had been observed before (cf. curves in Zane's report) but was apparently attributed to a peculiarity of the 2-f properties of the mixer and were or less ignored. In our experiments no high 2-f effects were present and the asymmetry was so pronounced it could not be passed over, partly because we had the tube tightly coupled to the wave guide.

For convenience we made our measurements generally in three conditions, tuned "closed on" and detuned by variation of reflector voltage to the two half-power points (designated as "high" and "low"). It was soon found that the ratio of the noise output at the two half-power points, the "high/low ratio", varied from tube to tube and also depended on mode used and I-f for a given tube. In Table I we illustrate the data obtained on one 723A/B at three I-f's and for five reflector modes, together with the power output and electrical tuning range between half power points.

As might be expected the noise decreases rapidly when the I-f is raised. Indeed the decrease in noise is so marked that not much importance need be attached to the 200 ne data, as the experimental error must be considerable. It should be mentioned that at the half power points the coupling was doubled (to keep the crystal current constant) and therefore, if noise output alone is of interest $%_{\text{high}} - %_{\text{low}}$ for the half power points should be divided by 2.
ELECTRICAL TUNING TOWARDS HIGH FREQUENCIES

$\frac{1}{f}$ (ARBITRARY UNITS)

FIGURE 2
The results for the 45 volt mode were less startling when one takes into account the variations in power output. In the lower half of the table we show the noise power in units of 20-15 qubits computed from the relation $P_n = \frac{P}{N} \cdot \frac{F}{\sqrt{2}}$, where $F = 200 \sqrt{2}$, and a bandwidth of 2.8 mc.

Thus the figures for P_n represent the actual noise power coming out of the tube in the two 2.8 mc wide bands located symmetrically about the frequency of oscillation at a distance equal to the $f/2$ for the various conditions listed. Such figures in the case of the power in the two sidebands, which we shall see later, are in general not equal. It must be remembered that at the f power points the noise/signal ratio P_n/f will be poorer since the useful power f will be decreased by a factor of f.

Apart from the 45 volt mode there seems to be a regular trend downward in noise power as the transit angle is increased. Because of the very low power obtained in the 45 volt mode it was not possible to use adequate padding between the oscillator and crystal so results for this mode may be in error due to resonance effects. Also in the 45 volt mode the electrons penetrate close to the reflector and the focusing may be badly upset.

Normally we find that the "high/low ratio" is greater than unity but in the case of the 45 volt mode at 50 no. 1-6 we find a ratio of only .90. This anomalous behavior was occasionally found in other tubes at both X and Z bands and has been reported by H. E. Miller of R.T.L. Knipp's theory predicts these ratios in case of extremely light loading such as would be found here at the 45 volt mode when the loading was correctly adjusted for the 160 volt mode.

In Table III we summarize results obtained for a representative group of 723/8 tubes, all in the "106 volt" reflector mode and with a 50 mc 1-6. Values of P_1, P_6 are given for the "head on" condition and at the two half power points, in column three to 5. Column six gives the high/low ratio and even the power output in milliwatts. Next we have I_0, the useful current, which makes a second trip through the gap after reflection which was estimated from the observed cathode current by I_0 (column 9). In the tenth column we give the electrical tuning range between half power points, and in the last the noise power P_n for the head on condition computed as before.

The tubes reported here were selected to represent the widest variations in overall performance that we could find in our stock, excluding those which were obviously rejects. The estimate of I_0 was formed from observations of the cathode and reflector current when the reflector was positive and collecting all electrons which made one trip through the cavity and I_1 of the cathode current with negative reflector. Ignoring effects of secondaries (which is surely a questionable procedure) we could compute transparencies of the three grids (G_0 and G_6 are similar). These turned out to be in quite good agreement with the optical transparencies, which is our only justification for neglecting the secondaries. With these data the current which was reflected and made a second trip through G_0 could be estimated. Obviously only this current counts for power production, although noise and beam loading can, of course, be contributed by the current which gets past G_0 on its first trip. In many cases operation at positive reflector liberated considerable gas, so all tubes were put through a suitable aging before measurements were made.

We find that although power output varied over a range of almost 30 and electrical tuning varied over a range of about 2.5:1, the noise at head on varied about 4:1.

So far we have not found any direct correlation between noise output and any of the other quantities recorded.
<table>
<thead>
<tr>
<th>Table 11a</th>
<th>20% mean value</th>
<th>25% mean value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Trough</td>
<td>20% Trough</td>
<td>25% Trough</td>
</tr>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>7.0</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>8.0</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>9.0</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Average</td>
<td>5.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>
In Table IIb we give similar data (omitting the current measurements) for
some K-band tubes, mostly K-33A1, with a couple of K-203A shown for comparison.
Although they are somewhat similar. These were measured with 30 no 1-f and in a reflector
voltage mode occurring near 200 volts. It is not at all certain that we were using
the same drift angle in all cases. In this case the crystal had a conversion loss of
9.3 dB and a noise temperature of 2.

As is only to be expected, the noise is increased since the ratio of 1-f to
ref is smaller and a large increase in Q of the oscillator is very unlikely. If we
compute the noise to signal ratio, \(\frac{N/S}{F,} \) for the case of 2.6 no bandwidth at 20 no
1-f (two sidebands) we find an average of 5.1 \(\times 10^{-10} \) at K band contrasted with 3.7
\(\times 10^{-10} \) at X. Considering only the ratio of 1-f to r-f in the two cases one would ex-
pect a larger difference. The implication is that the loaded Q of the K-33A tube is
somewhat higher than that of the K-203A, and this is borne out to some extent by the
fact that the electrical tuning range is only slightly greater at K-band. In any
event there is no real basis for the general impression that K-band tubes are "noisy".

It should be pointed out that in cases where marked electrical tuning
hysteresis was present the noise was greatly increased. This may well be due to a combination of
effects such as heavy reactive loads and multiple transits. Because of the great
difficulties due to instability no quantitative work in the hysteresis region was
attempted.

Measurements made on a 7234/B with a rejection filter to eliminate one side-
band are presented in Figs. 3 and 4 for 30 and 60 no 1-f respectively. The filter
used was of course not perfect and an empirical correction was used to allow for the
"leakage" that got past it. The validity of this procedure is shown by the fact that
the measured curve for both sidebands agrees quite well with the sum of the two separated
sidebands. Points were taken with the electrical tuning "head on" and detuned to the
3/4, 1/2 and 1/4 power points on each side. Note that at head on, the two sidebands
are by no means symmetrical. This at first made us think we had chosen the center of
the wave incorrectly, until we learned that Knipr predicted just this effect.

The vertical broken lines represent the limits of oscillation. We were unable
to make good measurements much below the 1/4 power points, so we have sketched in
the rest of the curves as predicted by Knipp's theory. We see now that the high-low
ratio is principally due to the behavior of the low frequency sideband.

The effect of load variations on the noise output of a 7234/B is shown in Fig. 5,
which is an admittance plot with the plane of reference at the grid of the tube.
This was taken at 30 no 1-f, and the sidebands were not separated. The reflector
voltage was set at the center of the rods at matched loads. The numbers give noise
power in arbitrary units. As might be expected the noise is least for light loads and
increases to very high values near the sink.

Note that the noise contours do not follow the admittance lines exactly, but
that the tube is more noisy for inductive loads. This is a consequence of the long
line effect since the fact that the two sidebands contain different amounts of noise
power. For each point on the diagram representing a particular load admittance we
observed the power due to two sidebands. Because the load was not really at the grid
but was actually several wavelengths away, the loads seen by the two sidebands 30 no
above and below the color frequency were appreciably different. Taking this effect
into account and using Knipp's curves for the power in the two sidebands as a function
of frequency.

S. For a discussion of the method of representation see El. L. Report No. 717. Notes on
Lead Effects on K-band Oscillators
<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>$T_{a}^* - T_{a}$</th>
<th>$T_{a}^* - T_{a}$</th>
<th>$T_{a}^* - T_{a}$</th>
<th>MA/la</th>
<th>Power Output</th>
<th>Electrical Tuning Range</th>
<th>F_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/26</td>
<td>2833</td>
<td>2.9</td>
<td>9.0</td>
<td>13.1</td>
<td>2.6</td>
<td>35.4 mm</td>
<td>29 mm</td>
<td>155</td>
</tr>
<tr>
<td>2/27</td>
<td></td>
<td>2.4</td>
<td>7.7</td>
<td>12.7</td>
<td>2.7</td>
<td>38.6 mm</td>
<td>30 mm</td>
<td>155</td>
</tr>
<tr>
<td>2/28</td>
<td></td>
<td>4.7</td>
<td>5.6</td>
<td>10.3</td>
<td>2.9</td>
<td>40.8 mm</td>
<td>31 mm</td>
<td>155</td>
</tr>
<tr>
<td>3/2</td>
<td></td>
<td>3.3</td>
<td>6.2</td>
<td>10.5</td>
<td>3.8</td>
<td>36.0 mm</td>
<td>32 mm</td>
<td>155</td>
</tr>
<tr>
<td>3/3</td>
<td></td>
<td>2.2</td>
<td>6.2</td>
<td>10.4</td>
<td>3.8</td>
<td>36.0 mm</td>
<td>32 mm</td>
<td>155</td>
</tr>
<tr>
<td>3/4</td>
<td></td>
<td>5.0</td>
<td>6.2</td>
<td>11.2</td>
<td>3.8</td>
<td>36.0 mm</td>
<td>32 mm</td>
<td>155</td>
</tr>
<tr>
<td>3/5</td>
<td></td>
<td>6.0</td>
<td>6.2</td>
<td>12.2</td>
<td>3.8</td>
<td>36.0 mm</td>
<td>32 mm</td>
<td>155</td>
</tr>
<tr>
<td>3/6</td>
<td></td>
<td>4.1</td>
<td>5.3</td>
<td>9.4</td>
<td>3.8</td>
<td>36.0 mm</td>
<td>32 mm</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>4.41</td>
<td>9.7</td>
<td>23.6</td>
<td>2.78</td>
<td>27.6 mm</td>
<td>56.7 mm</td>
<td>155</td>
</tr>
<tr>
<td>3/11</td>
<td>30221</td>
<td>2.7</td>
<td>5.9</td>
<td>10.6</td>
<td>1.7</td>
<td>46.4 mm</td>
<td>46.4 mm</td>
<td></td>
</tr>
<tr>
<td>3/13</td>
<td></td>
<td>2.0</td>
<td>8.1</td>
<td>40.0</td>
<td>1.7</td>
<td>46.4 mm</td>
<td>46.4 mm</td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 5 NOISE OUTPUT OF A 723 A/B AS A FUNCTION OF LOAD ADMITTANCE. I.F. 30MC, BOTH SIDEBANDS.
NUMBERS ARE % MAX POWER \(X(T_c' - T_c) \) WHERE \((T_c' - T_c) \) ARE IN TEMP UNITS. THE CROSS INDICATES THE MAXIMUM POWER POINT.
of load conductance we could compute the theoretical diagram above in Fig. 6. This is drawn for a hypothetical tube. The scale again is in arbitrary units. Note the strong resemblance in the shape of the contours to those found experimentally.

Discussion.

The rather high values shown in Tables I and II under P_{1}, ranging upward of 10^{-11} watts, should not cause undue alarm since it must be remembered that in operating receivers there will be several factors reducing the amount of this noise reaching the receiver input. In the first place, the decoupling used to adjust the excitation for the mixer will operate on the noise sidebands also, and ordinarily to the same extent.

Second, many converters have a tuned circuit in the input (e.g. a tunable TR box) which profoundly affects results. If the Q is sufficiently high, and the box is tuned for signals, local oscillator frequency and image frequency will be reflected well. If the phase of the reflected local oscillator voltage is right to add to the direct wave at the crystal it will be possible to decouple by 8 or more than if local oscillator is fed in through a matched line as in these experiments. At the same time one noise sideband (that at image frequency) will be similarly reinforced. The sideband at signal frequency will be transmitted through the TR, leaving only the direct wave; so there will be a net reduction in noise power converted. The amount of this improvement can readily be computed for any specific case. The results depend strongly on the parameters chosen, but reductions of 25 to 80% are common. It is perhaps interesting to note that the common practice of putting the local oscillator on the high frequency side of the signal (so that the low frequency sideband is reduced) tends to minimize the increase in noise figure with electrical tuning. With this arrangement the noise figure would be slightly poorer at the center of the mode but would not decay nearly as fast when electrical tuning toward higher frequencies is required.

Third, the load seen by the oscillator itself may not be as heavy as we used. Oscillators are often overdesigned for the sake of securing more uniform output over a wide tuning range. From Fig. 5 we see that comparatively small changes in load which would not materially affect the power output may make considerable differences in the noise.

J. H. Kupar
R. C. Vale
October 20, 1945
Figure 6: Noise contours for 30Mc I.F. hypothetical tube. Line 3% long units are \(10 \times F \times g\), where \(F\) is from Knipp's report, and \(g\) is conductance at grids normalized to one at sink. The cross indicates maximum power point.
<table>
<thead>
<tr>
<th>CADO CONTROL NO:</th>
<th>US CLASSIFICATION:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unclass.</td>
</tr>
<tr>
<td>ATN NO:</td>
<td>ATI 13800</td>
</tr>
<tr>
<td>OA NO:</td>
<td>R=872</td>
</tr>
</tbody>
</table>

Title: Measurements on Noise from Reflex Oscillators

Author(s): Kupper, J.B.H

Originating Agency: Mass. Inst. of Technology, Radiation Lab., Cambridge

Previously Cataloged As:
A program of measurements on noise output of reflex local oscillators, particularly the 723A/B and 2K33, was undertaken to determine the importance of this factor in receiver design. Considering the two noise sidebands each 2.5 mcps wide and located 30 mcps away from the main output, noise powers ranging from 2.2 to 9.8 x 10^-12 watts coming out of 723A/B's were found when loaded for optimum output. Asymmetrical behavior of the noise with electronic tuning was investigated and found to require the new theory presented in the report to follow. Some measurements of the individual noise sidebands and of the noise output as a function of load were found to be in satisfactory agreement with theory.