UNCLASSIFIED

AD NUMBER

| ADA801247 |

CLASSIFICATION CHANGES

TO:	unclassified
	FROM:
	confidential

LIMITATION CHANGES

TO:
Approved for public release; distribution is unlimited.

FROM:
Distribution authorized to DoD only; Administrative/Operational Use; 08 OCT 1947. Other requests shall be referred to National Aeronautics and Space Administration, Washington, DC. Pre-dates formal DoD distribution statements. Treat as DoD only.

AUTHORITY

NACA tech pubs index dtd 31 Dec 1947; NASA TR Server website

THIS PAGE IS UNCLASSIFIED
RESEARCH MEMORANDUM

ESTIMATION OF RANGE OF STABILITY DERIVATIVES FOR CURRENT AND FUTURE PILOTLESS AIRCRAFT

By

Marvin Pitkin and Herman O. Ankenbruck

Langley Memorial Aeronautical Laboratory
Langley Field, Va.

CLASSIFICATION CHANGED TO UNCLASSIFIED

AUTHORITY CHANLSE CHANCE 7218

DATE 12-14-53

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON
October 8, 1947
ESTIMATION OF RANGE OF STABILITY DERIVATIVES FOR CURRENT AND FUTURE PILOTLESS AIRCRAFT

By Marvin Pitkin and Herman O. Ankenbruck

SUMMARY

Because of the interest in the use of mechanical-electrical devices for computing the stability characteristics of pilotless aircraft and guided missiles, an analysis was made of the probable range of the stability parameters of present and future missiles.

Included is a short review of the dynamic theory and some of the factors and assumptions influencing the stability derivatives and equations of motion.

In perusing this paper, one must remember that the derivatives are referred to the wing dimensions for conversion from forces and moments. Because some missiles may have very small wings compared to their bodies, the relative magnitudes of the derivatives (for a specific aircraft) with respect to each other are of more significance than their absolute magnitudes.

INTRODUCTION

The mathematical solution of the stability of an automatically guided and stabilized missile involves a number of assumptions concerning the automatic pilot and is tedious and complex and requires mathematical skill not ordinarily available. Interest has, therefore, centered upon the use of "analogue" devices which duplicate the stability of the missile under investigation by mechanical, electrical, electronic, or other physical means. These devices are usually so arranged as to obtain knowledge of a missile's motions following a disturbance by direct measurement.

One such device is called a "flight table" and is a mechanical and electrical arrangement which includes the automatic pilot of the missile under investigation as part of its mechanism. In order to duplicate properly the stability characteristics of the missile with
such a device, it is also necessary to provide for duplication of
the aerodynamic and mass characteristics of the missile. The
remainder of the text presents the results of a survey made to
estimate the probable range of the stability parameters of existing
and future missiles in a form suitable for the design of a flight
table.

SYMBOLS

\[
\begin{align*}
 m & \quad \text{mass, slugs (W/g)} \\
 W & \quad \text{weight, pounds} \\
 g & \quad \text{acceleration of gravity, feet per second per second (32.2)} \\
 v & \quad \text{sidewise velocity, feet per second (positive to the left)} \\
 V & \quad \text{forward velocity, feet per second} \\
 S & \quad \text{wing area, square feet} \\
 b & \quad \text{wing span, feet} \\
 t & \quad \text{time, seconds} \\
 l & \quad \text{tail length, feet (distance from center of gravity to center of pressure of tail)} \\
 c & \quad \text{mean aerodynamic chord; feet} \\
 u & \quad \text{incremental velocity, feet per second (AV)} \\
 u' & = \frac{u}{V} \\
 q_0 & \quad \text{dynamic pressure, pounds per square foot (} \frac{1}{2} \rho v^2 \text{)} \\
 L & \quad \text{lift force, pounds} \\
 D & \quad \text{drag force, pounds} \\
 M & \quad \text{pitching moment, foot-pounds (positive nose up)} \\
 C_L & \quad \text{lift coefficient } (L/q_0S) \text{ and } (W \cos \gamma \cos \phi/q_0S)
\end{align*}
\]
\(C_D \)
drag coefficient \((D/qoS) \)

\(T_c' \)
effective thrust coefficient \(\left(\frac{\text{Effective thrust}}{qoS} \right) \)

\(C_m \)
pitching-moment coefficient \((M/qoS) \)

\(Z \)
normal force, pounds (positive downward)

\(X \)
longitudinal force, pounds (positive forward)

\(C_Z \)
normal-force coefficient \((Z/qoS) \)

\(C_X \)
longitudinal-force coefficient \((X/qoS) \)

\(C_Y \)
lateral-force coefficient \((\frac{\text{Lateral force}}{qoS}) \)

\(C_z \)
rolling-moment coefficient \((\frac{\text{Rolling moment}}{qoSb}) \)

\(C_n \)
yawing-moment coefficient \((\frac{\text{Yawing moment}}{qoSb}) \)

\(\rho \)
mass density of air, slugs per cubic foot

\(\alpha \)
angle of attack of aircraft reference line to flight path

\(\theta \)
inclination of aircraft reference axis from horizontal plane (fig. 1)

\(\beta \)
angle of sideslip \(\left(\frac{\nu}{V} \right) \)

\(\psi \)
angle of yaw

\(\phi \)
angle of bank

\(q \)
pitching angular velocity \(\left(\frac{d\theta}{dt} \right) \)

\(r \)
yawing angular velocity \(\left(\frac{d\psi}{dt} \right) \)
rolling angular velocity \(\left(\frac{\alpha d}{dt} \right) \)

inclination of longitudinal principal axis from aircraft reference line (fig. 1)

inclination of flight path from horizontal

inclination of longitudinal principal axis from longitudinal stability axis \((\eta = \theta - \gamma - \epsilon) \)

control surface deflection, positive when trailing edge moves downward or to left

radius of gyration about principal longitudinal axis, feet

radius of gyration about principal normal axis, feet

radius of gyration about Y-axis, feet

\[K_x = \frac{k_x}{b}, \quad K_z = \frac{k_z}{b}, \quad K_y = \frac{k_y}{c} \]

relative density of airplane \((m/p)_{SB}\)

relative density of airplane \((m/p)_{Sc}\)

nondimensional time parameter \((\frac{tV}{b}) \)

nondimensional time parameter \((\frac{tV}{c}) \)

differential operator \(\left(\frac{d}{ds} \right) \)

differential operator \(\left(\frac{d}{ds_c} \right) \)

\[C_{m_u} = \frac{\partial c_m}{\partial u}, \quad C_{Z_u} = \frac{\partial c_Z}{\partial u}, \quad C_{X_u} = \frac{\partial c_X}{\partial u} \]

\[C_{m_\alpha} = \frac{\partial c_m}{\partial \alpha}, \quad C_{Z_\alpha} = \frac{\partial c_Z}{\partial \alpha}, \quad C_{X_\alpha} = \frac{\partial c_X}{\partial \alpha} \]
$c_{m_6} = \frac{\partial c_m}{\partial \delta}$, $c_{z_6} = \frac{\partial c_z}{\partial \delta}$, $c_{x_6} = \frac{\partial c_x}{\partial \delta}$

$c_{m_\theta} = \frac{\partial c_m}{\partial \theta}$, $c_{z_\theta} = \frac{\partial c_z}{\partial \theta}$, $c_{x_\theta} = \frac{\partial c_x}{\partial \theta}$

$c_{m_D\alpha} = \frac{\partial c_m}{\partial \alpha}$, $c_{z_D\alpha} = \frac{\partial c_z}{\partial \alpha}$, $c_{x_D\alpha} = \frac{\partial c_x}{\partial \alpha}$, $\dot{\alpha} = \frac{d\alpha}{dt}$

$c_{m_D\delta} = \frac{\partial c_m}{\partial \delta}$, $c_{z_D\delta} = \frac{\partial c_z}{\partial \delta}$, $c_{x_D\delta} = \frac{\partial c_x}{\partial \delta}$, $\dot{\delta} = \frac{d\delta}{dt}$

$c_{m_q} = \frac{\partial c_m}{\partial q}$, $c_{z_q} = \frac{\partial c_z}{\partial q}$, $c_{x_q} = \frac{\partial c_x}{\partial q}$, $q = \frac{dq}{dt}$

$c_{Y_\beta} = \frac{\partial c_Y}{\partial \beta}$, $c_{n_\beta} = \frac{\partial c_n}{\partial \beta}$, $c_{l_\beta} = \frac{\partial c_l}{\partial \beta}$

$c_{Y_\theta} = \frac{\partial c_Y}{\partial \theta}$, $c_{n_\theta} = \frac{\partial c_n}{\partial \theta}$, $c_{l_\theta} = \frac{\partial c_l}{\partial \theta}$

$c_{Y_D\delta} = \frac{\partial c_Y}{\partial \delta}$, $c_{n_D\delta} = \frac{\partial c_n}{\partial \delta}$, $c_{l_D\delta} = \frac{\partial c_l}{\partial \delta}$, $\dot{\delta} = \frac{d\delta}{dt}$

$c_{Y_r} = \frac{\partial c_Y}{\partial r}$, $c_{n_r} = \frac{\partial c_n}{\partial r}$, $c_{l_r} = \frac{\partial c_l}{\partial r}$, $r = \frac{dr}{dt}$

$c_{Y_p} = \frac{\partial c_Y}{\partial p}$, $c_{n_p} = \frac{\partial c_n}{\partial p}$, $c_{l_p} = \frac{\partial c_l}{\partial p}$, $p = \frac{dp}{dt}$
Subscripts:

a aileron
r rudder
w wing

THEORY

The dynamics of mechanical flight are assumed amenable to analysis on the basis of the theory of small oscillations. On this assumption then, one equation is written for each degree of freedom of the motion. Simultaneous solution of the equations permits calculation of the motion of the airplane after a disturbance. The terms defining the changes in aerodynamic forces and moments due to a deviation are referred to as "stability derivatives" and are partial derivatives.

Assumptions.—In the application of the theory the following assumptions are made:

(1) The combined aerodynamic effect of two or more components of motion is assumed equal to the algebraic sum of the separate effects of the individual components.

(2) The changes in aerodynamic forces and moments due to a deviation are assumed directly proportional to the deviation (that is, the stability derivatives are constants).

(3) Secondary effects such as those involving the products of two or more second-order quantities are neglected.

(4) The values of the aerodynamic factors are assumed to be unaffected by the linear and angular accelerations.

(5) The lateral motion is assumed to be independent from the longitudinal motion.

Equations of Lateral Motion

The nondimensional equations for lateral motion can be written for the azimuth oriented flight-path axes (stability axes) shown in figure 2.
These take the form of

(a) \[\sum C_l \]

\[C_l \delta r + \left(C_l \delta \alpha + C_l \delta x \delta \alpha \right) \delta \alpha + C_l \beta + \frac{1}{2} C_{l p} D\phi + \frac{1}{2} C_{lr} D\psi \]

\[= 2\mu \left[\left(K_x^2 \cos^2 \eta + K_x^2 \sin^2 \eta \right) D^2 \phi + \left(K_z^2 - K_x^2 \right) \cos \eta \sin \eta D^2 \psi \right] \] \hspace{1cm} (1)

(b) \[\sum C_n \]

\[\left(C_n \delta r + \frac{1}{2} C_n \delta x \delta r \right) \delta r + C_n \delta \alpha \delta \alpha + C_n \beta + \frac{1}{2} C_{np} D\phi + \frac{1}{2} C_{nr} D\psi \]

\[= 2\mu \left[\left(K_z^2 \cos^2 \eta + K_z^2 \sin^2 \eta \right) D^2 \psi + \left(K_z^2 - K_x^2 \right) \cos \eta \sin \eta D^2 \phi \right] \] \hspace{1cm} (2)

(c) \[\sum C_Y \]

\[\left(C_Y \delta r + \frac{1}{2} C_Y \delta x \delta r \right) \delta r + C_Y \delta \alpha \delta \alpha + C_Y \beta + \frac{1}{2} C_{yp} D\phi + \frac{1}{2} C_{yr} D\psi + C_D \phi \]

\[+ C_D \psi \tan \gamma = 2\mu (D\beta + D\psi) \] \hspace{1cm} (3)

where \(\delta \), the control movement caused by the gyro, is usually a function of \(\phi \) and \(\psi \). Simultaneous solution of the differential equations (1), (2), and (3), will define the lateral motion of an airplane after disturbances in terms of the variables \(\phi \), \(\psi \), and \(\beta \) provided that the stability derivatives \(C_{n\phi}, C_{l\phi}, \) and so forth and the mass and dimensional characteristics of the missile under investigation are known.
Equations of Longitudinal Motion

The equations of motion of a flying body about its longitudinal flight axes may be written in the form

\[(a) \quad \sum c_X\]

\[\left(C_{X\delta} + \frac{1}{2} C_{X\delta} \, D_c \right) \delta + C_{Xu} \, u' + \left(C_{X\alpha} + \frac{1}{2} C_{Xd\alpha} \, D_c \right) \alpha + \left(C_{X\theta} + \frac{1}{2} C_{Xq} \, D_c \right) \theta = 2\mu_c \, D_c \, u' \]

\[(4)\]

\[(b) \quad \sum c_Z\]

\[\left(C_{Z\delta} + \frac{1}{2} C_{Z\delta} \, D_c \right) \delta + C_{Zu} \, u' + \left(C_{Z\alpha} + \frac{1}{2} C_{Zd\alpha} \, D_c \right) \alpha + \left(C_{Z\theta} + \frac{1}{2} C_{Zq} \, D_c \right) \theta = 2\mu_c \, D_c \, (\alpha - \theta) \]

\[(5)\]

\[(c) \quad \sum c_m\]

\[\left(C_{m\delta} + \frac{1}{2} C_{m\delta} \, D_c \right) \delta + C_{mu} \, u' + \left(C_{m\alpha} + \frac{1}{2} C_{md\alpha} \, D_c \right) \alpha + \left(C_{m\theta} + \frac{1}{2} C_{m2q} \, D_c \right) \theta = 2\mu_c KY^2 \, D_c \, 2\theta \]

\[(6)\]

As in the case of the lateral motions \(\delta \), the control deflection induced by the automatic system, is some function of the missile variables \(u' \), \(\alpha \), and \(\theta \). Note that \(u' = \frac{\Delta V}{V} \).
ESTIMATION OF RANGE OF STABILITY DERIVATIVES

Lateral-Stability Derivatives

A summary of the lateral-stability derivatives for several specific subsonic missile designs is given as table I. All angles herein discussed are based on radian measure.

Side-force derivatives (equation (3)).—(a) $C_{Y\beta}$: Values of $C_{Y\beta}$, measure of the lateral force created by sideslip, for typical missile designs are given in table I. These data show that missiles designed along proportions of pursuit-type airplanes have $C_{Y\beta}$ values of the order of -0.4. In general, however, missiles have relatively large fuselages with respect to their wings and hence have greater side area to resist sideslipping and also a smaller wing area on which to base the coefficient. Missile no. 7 of table I ($C_{Y\beta} = -5.15$) and missile no. 3 of table I ($C_{Y\beta} = -4.58$) illustrate modern trends in this direction. In order to allow for future designs, therefore, it is recommended that provision be made to allow for a $C_{Y\beta}$ range of

$-10.0 < C_{Y\beta} < 0$

(b) $C_{Y\phi}$, $C_{Y\psi}$, and C_{Yr}: These derivatives are usually very small relative to the other lateral derivatives and are generally disregarded.

Side force due to automatic control.—(c) $C_{Y\delta}$: The side forces created by automatic control can be represented by $\delta \frac{\partial C_Y}{\partial \delta}$ or $\delta C_{Y\delta}$, where δ can be a function of ϕ or ψ or both. No provision need be made to simulate δ since this is automatically taken care of by mounting the autocommand on the flight table in the proper manner. However, it is necessary to duplicate $C_{Y\delta}$. This parameter depends on the type and size of control surface or unit used on the missile. Generally speaking, aileron deflection causes no side-force change. Application of rudder control will, however, introduce side forces. At least two guided missiles have utilized an autocommand providing side-force changes with control deflection. The values for these two missiles are
The larger value represents the side force created by deflection of an all-movable tail surface, the other the side force created by a typical trailing-edge control. In gauging the range that this derivative can cover, it appears that the maximum will be reached by an all-movable wing. The side-force derivative will therefore be equal to the lift-curve slope of the wing. The maximum value of lift-curve slope is obtained on wings of infinite aspect ratio and is theoretically equal to 2π per radian. Near Mach number = 1.0, the lift-curve slopes of lower aspect ratio wings increase considerably, but probably none would have a lift-curve slope greater than 6.0. Consequently, the range of $C_{Y\delta}$ covered by the flight table should be

$$-6.0 < C_{Y\delta} < 6.0$$

It appears that this range will also cover the side forces created by a swiveling jet nozzle, or deflected jet. The side force developed by a nozzle delivering a thrust T and deflected 1 radian is approximately equal to the thrust which is the same order as the drag at top speed. In coefficient form then $C_{Y\delta} = T_0' = C_D$, approximately.

On missiles designed for high speed the drag coefficient should not exceed 0.1 and hence the range of $C_{Y\delta}$ previously noted should readily encompass the swiveling-nozzle-type control.

Yawing-moment derivatives (equation (2)). (a) $C_n\beta$: This parameter determines the weathercock stability of the missile. The values presented in table I show that fighter-type missiles have a value of $C_n\beta$ of about 0.075. Missiles having larger fuselage lengths relative to their wings have larger values of $C_n\beta$ ranging up to 0.5. Present trends in missile design indicate that the wing aspect ratio of some missiles is likely to decrease in the future. The aspect ratio A is equal to $span^2$/wing area and can be reduced by a decrease in span or an increase in wing area. A decrease in span is more probable than an increase in area inasmuch as wing areas are likely to be decreased to permit higher speeds at low altitudes. Because $C_n\beta$ is dependent on wing dimensions for its magnitude $C_n\beta = \frac{\partial (N/qSB)}{\partial \beta}$, it is not unlikely
that $C_{n\theta}$ for designs of the future will be from two to four times as large as present-day values. The recommended range of $C_{n\theta}$ is therefore

$$-2.0 < C_{n\theta} < 2.0$$

(b) $C_{n\rho}$: Values of this derivative are shown in table I. These data show that the $C_{n\rho}$ of a fighter-type missile is about -0.2 but that the average is considerably larger. Values of $C_{n\rho}$ equal to -0.66 and -0.55 were obtained for the large fuselage designs (missile no. 3 and missile no. 5 of table I). It is possible to estimate the probable range of $C_{n\rho}$ from the previously estimated range of $C_{n\theta}$ as follows:

The contribution of the wings and fuselage to $C_{n\rho}$ is generally negligible and the tail contributions can be expressed as

$$C_{n\rho} = -\frac{L}{b} (\Delta C_{n\theta})_{\text{Tail}}$$

Because $(\Delta C_{n\theta})_{\text{Tail}}$ is generally about $\frac{3}{2} C_{n\theta}$ and assuming a tail length equal to two times the wing span,

$$C_{n\rho} = -6 C_{n\theta}$$

The range of $C_{n\rho}$ would therefore be of the order of 12.0. It is conceivable that some missiles will be equipped with fore as well as aft fins. In such cases $C_{n\theta}$ will not be so large. The recommended range is therefore

$$-12.0 < C_{n\rho} < 0$$

It should be pointed out that positive values of $C_{n\rho}$ cannot be obtained aerodynamically below the stall.

(c) $C_{n\phi}$: Values of $C_{n\phi}$ are presented in table I for present-day designs. These data show that $C_{n\phi}$ is quite small with respect
to the other derivatives previously discussed. Even when a missile is operating at high lift coefficient in a turn, it appears unlikely that values of C_{np} greater than -0.4 could be reached. It is possible that in some unusual cases positive values of C_{np} could be obtained. This could happen on highly sweptback wings or at high lift coefficients if asymmetric stalling takes place. Recommended range for C_{np}:

$$-0.4 < C_{np} < 0.4$$

(d) $C_{n\delta}$: Yawing moments can arise through use of either the aileron or rudder control. The aileron moments, however, are small compared to those created by rudder. Typical values of $C_{n\delta}$ for modern missiles are of the order of -0.1. The previously estimated range of $C_{n\delta}$ may be used to estimate the range $C_{n\delta}$ from the relationship $C_{n\delta} = \frac{-2}{b}C_{Y\delta}$. Assuming the maximum tail length to be equal to two times the wing span, $C_{n\delta}$ has a range of values twice as large as $C_{Y\delta}$. Hence, it is recommended that

$$-12.0 < C_{n\delta} < 12.0$$

Rolling-moment derivatives (equation 1). (a) $C_{l\beta}$: This derivative is the aerodynamic equivalent of wing dihedral. The values of $C_{l\beta}$ shown in table I show that $C_{l\beta}$ ranges up to -0.143 for modern designs. However, it is entirely probable that higher values than -0.14 may be obtained in the future, particularly with highly sweptback wings on high altitude, long range missiles operating at fairly high lift coefficients. Therefore, the recommended range of $C_{l\beta}$ is

$$-0.5 < C_{l\beta} < 0.5$$

(b) $C_{l\rho}$: Values of $C_{l\rho}$ are shown in table I. This information shows that $C_{l\rho}$ is of the order -0.4. $C_{l\rho}$ is almost always negative below the stall and is primarily determined by the aspect
ratio of the wing. Since the present trend is to decrease aspect ratio, C_{lp} should also decrease; hence, the following range should cover future designs:

$$-0.7 < C_{lp} < 0.2$$

(c) C_{lr}: Values of C_{lr} are shown in table I. These data show that C_{lr} ranges up to about 0.2. C_{lr} is always positive below the stall and is approximately equal to $C_L/3$. It appears that a satisfactory range of C_{lr} is

$$-0.1 < C_{lr} < 0.8$$

(d) C_{ls}: The aileron control is the chief source of rolling moments on conventional designs. Typical values for the rolling moments created by such controls on the aircraft in table I are of the order of -0.11. In general, automatically controlled missiles do not require a large amount of aileron control for stabilization or maneuverability. However, future designs may require large amounts of lateral control. In order to be conservative, therefore, provision should be made to cover a range of

$$-1.5 < C_{ls} < 1.5$$

This estimate includes the extreme case of two wings of infinite aspect ratio deflected differentially to produce lateral control.

Miscellaneous information:-(a) K_X: The radius of gyration (in span lengths) about the X-axis will never exceed 1.0. Therefore,

$$0 < K_X < 1.0$$

K_Z: This factor is moderately small for missiles compared to airplanes owing to the fact that most of the missile mass is concentrated near its center of gravity. However, this may not be true in the future as present trends are to install heavy power plants in the rear of the missile. The recommended range is therefore

$$0 < K_Z < 5.0$$
(b) μ, relative density parameter: A convenient nondimensional mass parameter sometimes employed in theoretical calculations is the relative density ratio $\mu = \frac{m}{\rho S_b}$. As missile weights and altitudes are increased, and wing areas and spans lessened, this parameter increases.

A normal value of μ for a conventional airplane is about 10.0. For missiles, the average is about 100 and has been as large as 200. It appears that μ values as large as 500 are not unlikely in the future. At high values of μ, above 500, large increases in this parameter cause negligible changes in the conditions for neutral stability in the oscillatory mode.

Longitudinal Derivatives

Longitudinal force derivatives (equation(4)).

(a) C_{X_u}: This derivative is a function of drag coefficient and thrust coefficient and will be of a magnitude of about twice these parameters. A typical value is about -0.056 for the JB-2 in level flight. In order to provide a safe margin for future designs the recommended range of C_{X_u} is

$$-1.0 < C_{X_u} < 1.0$$

(b) C_{X_α}: This derivative is approximately equal to $-C_{D_\alpha}$. Missiles may fly for short periods of time at fairly high values of C_L, and hence rather high values of C_{D_α} may be obtained. It therefore seems desirable to cover a range of C_{X_α} of

$$-2.0 < C_{X_\alpha} < 1.0$$

(c) C_{X_θ}: This derivative reaches a maximum in horizontal flight when it is equal to C_{D_α} but opposite in sign. It will always be smaller than C_{X_α}.

Recommended range for C_{X_θ} is

$$-1.0 < C_{X_\theta} < 0.5$$
(d) \(C_{X_0} \): In general, the longitudinal force change caused by a control deflection is negligible compared to the longitudinal forces created by airplane motion. However, if the wings themselves are used for control, this factor could be of the order of \(C_D \). Hence, recommended range for \(C_{X_0} \) is

\[-2.0 < C_{X_0} < 2.0\]

(e) \(C_{X_D}, C_{X_D^2}, C_{X_4} \): These derivatives are usually small in comparison to the others and are generally neglected. However, it is possible that they may become large enough to be considered and are included in the equations for completeness.

Normal-force derivatives (equation\(5)\). (a) \(C_{Z_u} \): This derivative is approximately equal to \(-2C_L\). Hence, the recommended range for \(C_{Z_u} \) is

\[-2.4 < C_{Z_u} < 2.4\]

(b) \(C_{Z_0} \): \(C_{Z_0} \) is approximately equal to \(-C_{L_0}\). \(C_{L_0} \) is a maximum at 2\(\pi \) for wings. However, as in the case of \(C_{Y_0} \), the fuselage lift should be considered. Hence, the recommended range for \(C_{Z_0} \) is

\[-10 < C_{Z_0} < 0\]

(c) \(C_{Z_0} \): This derivative is a maximum in level flight when it is approximately equal to \(C_{L_0} \) but opposite in sign, hence its range is

\[-10.0 < C_{Z_0} < 0\]

(d) \(C_{Z_0} \): \(C_{Z_0} \), like \(C_{X_0} \), is generally small with relation to the forces caused by airplane motions. However, certain missile designs have utilized their wings for longitudinal control and, under certain circumstances, this factor could become appreciable. The extreme value of \(C_{Z_0} \) would be reached in the case of an all-movable
wing, where \(C_{Z_{8}} \) would be of the order of the lift-curve slope of the wings. Hence the recommended range of \(C_{Z_{8}} \) is

\[-6.0 < C_{Z_{8}} < 0\]

(e) \(C_{Z_{D\alpha}}, C_{Z_{D\beta}}, C_{Z_{q}} \): These derivatives are usually small and are generally neglected.

Pitching-moment derivatives (equation (b)). (a) \(C_{m_{u}} \): This derivative is largely a function of the thrust and its moment arm. A value of \(C_{m_{u}} \) of -0.038 has been estimated for missile no. 2 of table I.

Recommended range of \(C_{m_{u}} \) is

\[-0.5 < C_{m_{u}} < 0.5\]

(b) \(C_{m_{\alpha}} \): \(C_{m_{\alpha}} \) is approximately equal to \(C_{L_{\alpha}} \frac{dC_{m}}{dC_{L}} = \frac{dC_{m}}{dC_{L}} \) on present-day designs can be as large as 0.25 and may become positive (unstable). Typical values of \(C_{m_{\alpha}} \) for several modern missiles range from -0.40 to -0.80.

Recommended range of \(C_{m_{\alpha}} \) is

\[-4.0 < C_{m_{\alpha}} < 2.0\]

(c) \(C_{m_{D\alpha}} \): The derivative \(C_{m_{D\alpha}} \) arises because of the lag between the change in angle of attack at the wing and the corresponding downwash at the tail. Following are values of \(C_{m_{D\alpha}} \):

<table>
<thead>
<tr>
<th>Missile no. (see table I)</th>
<th>(C_{m_{D\alpha}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-6.0</td>
</tr>
<tr>
<td>2</td>
<td>-6.25</td>
</tr>
<tr>
<td>5</td>
<td>-5.62</td>
</tr>
</tbody>
</table>
A satisfactory range for $C_{MP\alpha}$ would be

\[-20.0 < C_{MP\alpha} < 0\]

(d) C_{mq}: This derivative denotes the rotary damping in pitch. A summary of existing C_{mq} data indicates that this parameter is rarely greater than -15.0 for conventional aircraft. For missiles with large horizontal tails with respect to their wing area, larger values of C_{mq} could be expected. Hence, the recommended range of C_{mq} is:

\[-50.0 < C_{mq} < 0\]

(e) C_{mg}: This derivative is a function of the elevator effectiveness and its linkage to the automatic control. On normal type elevator controls a value of C_{mg} of the order of -1.0 is not uncommon. The extreme case would arise where an all-moving wing or tail is used for control. For this case,

$$C_{mg} = C_{mg_{e}} \frac{L}{c}$$

Assuming a tail length of 2-chord lengths the recommended range of C_{mg} is

\[-12.0 < C_{mg} < 0\]

(f) C_{MD8}: This derivative could become nearly as large as $C_{MP\alpha}$ on a tailless missile with all-movable wings. The recommended range is

\[-15.0 < C_{MD8} < 0\]

Miscellaneous information:

(a) $\frac{m}{\rho SV}$: This factor is a measure of the mass characteristics of the missile and is about $2.0 \rightarrow 4.0$
for the average missile. Provision should be made to allow a range of

\[0 < \frac{m}{\rho SV} < 50.0 \]

to provide a safe margin for future designs which may operate at very high altitudes.

(b) \(K_Y\): This factor should be of the same order of magnitude as \(K_Z\). The recommended range is therefore

\[0 < K_Y < 5.0 \]

(c) \(\mu_c\): \(\mu_c = \frac{m}{\rho Sc}\). Values of this parameter as high as 400 have been obtained. It is believed that values of \(\mu_c\) up to 1000 should be considered.

If it is considered necessary to include the cross derivatives, that is, those parameters normally associated with the longitudinal equations which are affected by lateral displacements and vice-versa \((C_{mp}, C_{lq}, C_{dp}, \text{ etc.}) \), these values can be easily determined and substituted into the equations in the appropriate places. In order to account properly for these cross derivatives, however, the right members of equations (1) to (6) must be generalized by including the terms depending upon combined longitudinal and lateral motion. Including these terms is equivalent to eliminating assumption 5, page 6. Two of the most important of the cross derivatives are \(C_{mp}\), which at a maximum would equal \(-C_{np}\), and \(C_{dp}\), which would equal \(C_{D\alpha}\) for a cruciform aircraft configuration. Other cross derivatives can be estimated from similar considerations.

CONCLUDING REMARKS

The values of the parameters given here are only approximate and cover a much wider range than most missiles and pilotless aircraft will obtain. However, some of the parameters may increase to a value of infinity under certain conditions. Under these conditions, particularly at very high altitudes in tenuous air, the concept of
dynamic airplane stability as it is seen today is altered somewhat, and the aerodynamic forces arising from the inherent stability of the aircraft become secondary to the mass forces and moments and to the moments and forces caused by control deflection.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., May 22, 1947
TABLE I

Summary of Lateral Stability Derivatives for Various Missiles

<table>
<thead>
<tr>
<th>Missile Number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (lb)</td>
<td>2400</td>
<td>2412</td>
<td>600</td>
<td>980</td>
<td>1500</td>
<td>1500</td>
<td>883</td>
<td></td>
</tr>
<tr>
<td>Wing Area (sq ft)</td>
<td>33.0</td>
<td>58.7</td>
<td>5.8</td>
<td>19.9</td>
<td>18.1</td>
<td>39.0</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>Wing Span (ft)</td>
<td>12.0</td>
<td>17.0</td>
<td>5.0</td>
<td>11.0</td>
<td>8.5</td>
<td>11.2</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>$C_{t \delta}$</td>
<td>-0.61</td>
<td>-0.35</td>
<td>-1.58</td>
<td>-0.63</td>
<td>-0.90</td>
<td>-0.10</td>
<td>-5.15</td>
<td>-1.36</td>
</tr>
<tr>
<td>$C_{n \delta}$</td>
<td>0.183</td>
<td>0.085</td>
<td>0.22</td>
<td>0.126</td>
<td>0.036</td>
<td>0.075</td>
<td>0.044</td>
<td>0.03</td>
</tr>
<tr>
<td>$C_{n r}$</td>
<td>-0.340</td>
<td>-0.204</td>
<td>-0.665</td>
<td>-0.337</td>
<td>-0.550</td>
<td>-0.215</td>
<td></td>
<td>-0.007</td>
</tr>
<tr>
<td>$C_{d \delta}$</td>
<td>-0.026</td>
<td>-0.010</td>
<td>-0.012</td>
<td>-0.0256</td>
<td>-0.0022</td>
<td></td>
<td>-0.0190</td>
<td></td>
</tr>
<tr>
<td>$C_{t \delta}$</td>
<td>-0.069</td>
<td>-0.031</td>
<td>-0.109</td>
<td>-0.113</td>
<td>-0.060</td>
<td></td>
<td>-0.022</td>
<td></td>
</tr>
<tr>
<td>$C_{t r}$</td>
<td>-0.13</td>
<td>-0.46</td>
<td>-0.12</td>
<td>-0.43</td>
<td>-0.37</td>
<td></td>
<td>-0.40</td>
<td></td>
</tr>
<tr>
<td>$C_{l r}$</td>
<td>0.147</td>
<td>0.058</td>
<td>0.017</td>
<td>0.185</td>
<td>0.019</td>
<td></td>
<td>0.076</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1: Longitudinal axes of aircraft

Note:
Longitudinal principal axis is axis of least inertia.
Figure 2.—System of stability axes. Arrows indicate positive directions of moments, forces, and control surface deflections.
ESTIMATION OF RANGE OF STABILITY DERIVATIVES FOR CURRENT AND FUTURE PILOTLESS AIRCRAFT (NACA-RM), by Marvin Pitkin, and Herman O. Ankerbruck.
22 pp.
UNCLASSIFIED

I. Pitkin, Marvin
II. Ankerbruck, Herman O.

DIVISION: Guided Missiles (1)
SECTION: Aerodynamics and Ballistics (4)
DISTRIBUTION: U.S. Military Organizations request copies from ASTIA-DSC. Others route requests to ASTIA-DSC thru AMC, Wright-Patterson Air Force Base, Dayton, O. Attn: NACA

ARMED SERVICES TECHNICAL INFORMATION AGENCY
DOCUMENT SERVICE CENTER
Classification Cancelled

BY AUTHORITY OF

INSTRUMENTS, NA ACA Tech. Publ. No. 31, Dec. 47

BY

William L. Kohn, U.S. A.

DATE 6 Oct 1952