<table>
<thead>
<tr>
<th>AD NUMBER</th>
<th>ADA800064</th>
</tr>
</thead>
</table>

CLASSIFICATION CHANGES

<table>
<thead>
<tr>
<th>TO:</th>
<th>unclassified</th>
</tr>
</thead>
<tbody>
<tr>
<td>FROM:</td>
<td>confidential</td>
</tr>
</tbody>
</table>

LIMITATION CHANGES

<table>
<thead>
<tr>
<th>TO:</th>
<th>Approved for public release; distribution is unlimited.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FROM:</td>
<td>Distribution authorized to DoD only; Administrative/Operational Use; 07 JAN 1952. Other requests shall be referred to Naval Proving Ground, Dahlgren, VA. Pre-dates formal DoD distribution statements. Treat as DoD only.</td>
</tr>
</tbody>
</table>

AUTHORITY

NSWC notice dtd 5 Jun 1975; NSWC notice dtd 5 Jun 1975

THIS PAGE IS UNCLASSIFIED
THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
Reproduced by

REPRODUCED BY

ENT SERVICE CENTER

TECHNICAL INFORMATION AGENCY

ILDING, DAYTON, 2, OHIO

nment or other drawings, specifications or any purpose other than in connection with governement procurement operation, the U.S. incur no responsibility, nor any obligation that the Government may have formulated, supplied the said drawings, specifications are regarded by implication or otherwise as the holder or any other person or corpora-
ights or permission to manufacture, use or other that may in any way be related thereto.
U. S. NAVAL PROVING GROUND
DAHLGREN, VIRGINIA
REPORT NO. 910
WARHEADS FOR GUIDED MISSILES
34th Partial Report

SUPERSOONIC FLIGHT TESTS OF
NAVAL ORDNANCE LABORATORY MODEL 114

Task
Assignment

Copy No.

Classification

NOTICE: THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE
NATIONAL DEFENSE OF THE UNITED STATES WITHIN THE MEANING
THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN
ANY MANNER TO AN UNAUTHORIZED PERSON IS PROHIBITED BY LAW.
The Naval Ordnance Laboratory is engaged in developing a guided missile warhead which will expel a number of individually fuzed explosive pellets as the warhead approaches its target. In addition to static tests, certain data, such as flight stability and pellet dispersion, must be obtained during the development stages from test vehicles traveling at supersonic speeds. It was decided that the most satisfactory method of obtaining this data would be from a 5 inch diameter model fired from the Naval Proving Ground's 1050 ft. rocket launcher.

a. The object of this test was to determine the flight stability and dispersion of sub-missiles ejected from a 5 inch model warhead traveling at a velocity approaching 2000 f.s.

b. It is concluded that:

1. Sub-missiles can be satisfactorily ejected from a 5 inch diameter model warhead traveling at 1800 f.s., with an ejection velocity of approximately 130 f.s., provided by an internal charge of 30 grams of PFP-G black powder.

2. The sub-missiles provided for this test, BUORD SK-315181, assumed a stable flight-trajectory approximately 8 ft. from the line of fire, after their ejection from the Trial Warhead #114.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYNOPSIS</td>
<td>1</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>2</td>
</tr>
<tr>
<td>AUTHORITY</td>
<td>3</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>3</td>
</tr>
<tr>
<td>BACKGROUND</td>
<td>3</td>
</tr>
<tr>
<td>OBJECT OF TEST</td>
<td>3</td>
</tr>
<tr>
<td>PERIOD OF TEST</td>
<td>3</td>
</tr>
<tr>
<td>REPRESENTATIVE PRESENT</td>
<td>3</td>
</tr>
<tr>
<td>DESCRIPTION OF ITEM UNDER TEST</td>
<td>4</td>
</tr>
<tr>
<td>DESCRIPTION OF TEST EQUIPMENT</td>
<td>4</td>
</tr>
<tr>
<td>PROCEDURE</td>
<td>4</td>
</tr>
<tr>
<td>RESULTS AND DISCUSSION</td>
<td>5</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>6</td>
</tr>
<tr>
<td>APPENDIX A - DRAWINGS OF WARHEAD</td>
<td>FIGURES 1-2 (Incl)</td>
</tr>
<tr>
<td>APPENDIX B - PHOTOGRAPHS</td>
<td>FIGURES 3-7 (Incl)</td>
</tr>
<tr>
<td>APPENDIX C - DISTRIBUTION</td>
<td>1 (Only)</td>
</tr>
</tbody>
</table>
Supersonic Flight Tests of Naval Ordnance Laboratory Model 114

PART B

INTRODUCTION

1. AUTHORITY:

This test was conducted in accordance with reference (a).

2. REFERENCES:

a. NOL 1tr NP/NOL/X11(94) LG:LEH Ser 0649 of 17 April 1951
b. NOL 1tr NP/NOL/X11(68) LG:LEH Ser 0422 of 16 March 1951

3. BACKGROUND:

The Naval Ordnance Laboratory is engaged in developing a guided missile warhead which will expel a number of individually fuzed explosive pellets as the warhead approaches its target. In addition to static tests, certain data, such as flight stability and pellet dispersion, must be obtained during the development stages from test vehicles traveling at supersonic speeds. It was decided that the most satisfactory method of obtaining this data would be from a 5 inch diameter model fired from the Naval Proving Ground's 1050 ft. Rocket launcher.

4. OBJECT OF TEST:

The object of this test was to determine the flight stability and dispersion of sub-missiles ejected from a 5 inch model warhead traveling at a velocity approaching 2000 f.s..

5. PERIOD OF TEST:

a. Date Project Letter 17 April 1951
b. Date Necessary Material Received 23 April 1951
c. Date Commenced Test 30 April 1951
d. Test Completed 3 May 1951

6. REPRESENTATIVE PRESENT:

Mr. L. E. Hightower Naval Ordnance Laboratory

CONFIDENTIAL
SECURITY INFORMATION 3
Supersonic Flight Tests of Naval Ordnance Laboratory Model 114

PART C

DETAILS OF TEST

7. DESCRIPTION OF ITEM UNDER TEST:

a. Figures 1 through 4 illustrate the method of construction of the model warhead #114, the design of the sub-missiles, attachment and method of ejection. An empty 5 inch rocket head Mk 6 was machined to permit partial insertion of the sub-missiles in its sides, 180° apart. A special primer tube fitted in the base plug was equipped with a Mk 113 detonator (ND-214) and then filled with 30 grams of FFF-G black powder as an expulsion charge. Leads from the detonator were run through holes drilled in the side of the rocket head to electrical contact "ears" secured to the rocket nose plug. The sub-missiles, weighing 1.4 pounds each, were kept in place by notched metal bands attached to the rocket head by a single screw at each end.

8. DESCRIPTION OF TEST EQUIPMENT:

Launcher: NPG 1050 ft.
Propulsion: Two 5×40 rocket motors Mk 2 Mod 3.
Cameras: Bowen Acceleration (on side) 35mm Fastax (rear - line of fire).
Velocity Measurement: Potter Chronograph and Oscillograph.
Ignition of Primer in Ejection System: Knife blades connected to primer cutting through copper screens, charged with 300 Volts D.C. by means of Power Pack - 65 M.F. condenser across screens.

9. PROCEDURE:

a. The 5 inch rocket head with its sub-missiles, Figure 3, was threaded into a 5×40 motor Mk 2 and placed in the 1050 ft. rocket launcher. A second 5×40 motor Mk 2 was placed behind it to boost the velocity. The forward motor was ignited 200 ft. down the launcher while being propelled by the booster motor at a velocity of approximately 600 f.s.
Supersonic Flight Tests of Naval Ordnance Laboratory Model 114

b. A second set of copper screens was placed at the muzzle end of the launcher and a 300 volt D.C. power source connected to them. When the brass ears on the nose of the rocket cut through the screens the voltage was applied to the Mk 113 detonator which ignited the black powder ejection charge.

c. Both rounds were photographed from the side, as they left the launcher, with a Bowen acceleration camera operated at 90 frames per second, Figures 5 and 6. A 35mm Fastax camera placed directly below the muzzle of the launcher covered the rocket as it left the launcher and continued down range, thereby recording the spread of the sub-missiles, Figure 7.

10. RESULTS AND DISCUSSION:

a. Following is a brief summarization of the results obtained with the two Model 114 warheads tested:

<table>
<thead>
<tr>
<th>Date</th>
<th>Velocity at Ejection (ft/s)</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-30-51</td>
<td>1800</td>
<td>Sub-missiles ejected approximately 5 ft. beyond ignition point - traveled in same plane as warhead - each sub-missile approximately 8 ft. from warhead when 150 ft. off launcher.</td>
</tr>
<tr>
<td>5-3-51</td>
<td>1734</td>
<td>Sub-missiles ejected approximately 5 ft. beyond ignition point - traveled in same plane as warhead - each sub-missile approximately 8 ft. from warhead when 150 ft. off launcher.</td>
</tr>
</tbody>
</table>

b. The Bowen film indicated that the sub-missiles assumed a stable trajectory when ejected and traveled in the same plane as the warhead. Yaw cards 12 ft. wide, erected 150 ft. from the muzzle, indicated that the warhead had a stable trajectory at that point and that the sub-missiles had spread out so that each was more than 6 ft. from the line of fire, since they did not penetrate the yaw cards, Figure 7.

c. The Fastax film confirmed the stable flight of the rounds and the spread indicated above. Static tests had previously indicated that the sub-missiles would be ejected with a lateral velocity of about 130 f.s.
Supersonic Flight Tests of Naval Ordnance Laboratory Model 114

CONCLUSIONS

11. It is concluded that:

a. Sub-missiles can be satisfactorily ejected from a 5 inch diameter model warhead traveling at 1800 f.s., with an ejection velocity of approximately 130 f.s. provided by an internal charge of 30 grains of FFP-2 black powder.

b. The sub-missiles provided for this test, BUORD SK-315181, assumed a stable flight trajectory approximately 8 ft. from the line of fire after their ejection from the Trial Warhead #114.
Supersonic Flight Tests of Naval Ordnance Laboratory Model 114

The tests upon which this report is based were conducted by:

F. W. KASDORF, Firing Director, Rocket Battery
Terminal Ballistics Department

This report was prepared by:

F. W. KASDORF, Firing Director, Rocket Battery
Terminal Ballistics Department

This report was reviewed by:

H. LYDDANE, Director of Research
Terminal Ballistics Department

W. B. ROBERTSON, Lieutenant Commander, USN,
Terminal Ballistics Batteries Officer
Terminal Ballistics Department

R. T. RUBLE, Lieutenant Commander, USN,
Terminal Ballistics Officer
Terminal Ballistics Department

C. C. BRAMBLE, Director of Research, Ordnance Group

APPROVED: IRVING T. DUNN

Rear Admiral, USN
Commander, US Naval Proving Ground

C. T.
Captain
Ordnance Officer
By direction
Thirty-fourth Partial Report
on
Warheads for Guided Missiles

Final Report
on
Supersonic Flight Tests of
Naval Ordnance Laboratory Model 114

Project No.: NPG-Res31-607-1-52
Copy No.: 5
No. of Pages: 7

JAN 7 1952
Warhead Model 114 — showing internal tube containing 30 gm black powder ejection charge and 2 sub-missiles housed in sides of warhead — contacts for ejection charge shown on nose cap in foreground. Date Fired: 5-3-51

Figure 4
Supersonic Flight Tests of Naval Ordnance Laboratory Model 114

DISTRIBUTION:

Bureau of Ordnance:
- Ad3
- Re3
- Re3f

Chief of Ordnance,
Department of the Army
Attn: ORDTX-AR

Commanding General,
 Aberdeen Proving Ground
Aberdeen, Maryland
Attn: Technical Information Section
Development and Proof Services

Navy Research Section,
Library of Congress
Washington 25, D. C.
(Via BUORD, Re3)

NOTS, Inyokern, California

NOTS, Inyokern, California
Attn: Explosives Department
Research Department
Controlled Missiles Department

Solid Propellant Information Agency
APL, Johns Hopkins University
Silver Spring, Maryland

Commander, Naval Ordnance Laboratory
White Oak, Maryland
Attn: Missiles Division

Local:
- OT
- File

CONFIDENTIAL
SECURITY INFORMATION

APPENDIX C
NOTICE: When Government or other drawings, specific other data are used for any purpose other than in connection with a directly related Government procurement operation, Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have furnished, or in any way supplied the said drawings, specific other data is not to be regarded by implication or otherwise, in any manner licensing the holder or any other person or person or persons or, or conveying any rights or permission to manufacture, use, or sell said invention that may in any way be related.