Surrogate Instrumented Mine:
An Engineering Tool to Optimize, Verify, and Characterize Counter Mine Equipment
Given by:

Andy Vogeli
Vogelia@tacom.army.mil
586-574-5327

Date
March 19, 2004
1. REPORT DATE 19 MAR 2004
2. REPORT TYPE Presentation
3. DATES COVERED 01-02-2004 to 01-03-2004

4. TITLE AND SUBTITLE Surrogate Instrumented Mine: An Engineering Tool to Optimize, Verify, and Characterize Counter Mine Equipment

6. AUTHOR(S) Andy Vogeli

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army TARDEC, 6501 East Eleven Mile Rd, Warren, Mi, 48397-5000

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army TARDEC, 6501 East Eleven Mile Rd, Warren, Mi, 48397-5000

12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES Ground Vehicle Survivability Symposium 2004

14. ABSTRACT The most common threat mines are pressure fused. In order to neutralize these mines, the army has developed many systems including: plows, flails, line charges, rollers, and various other innovations. These systems rely on placing large amounts of pressure in front of a vehicle to detonate the mine before the mine is under the vehicle. The pressure needed to detonate these AT or AP mines is variable to soil type, buried depth, age and mine type among other variables.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT unclassified
 b. ABSTRACT unclassified
 c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT Public Release

18. NUMBER OF PAGES 5

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18
The most common threat mines are pressure fused. In order to neutralize these mines, the army has developed many systems including: plows, flails, line charges, rollers, and various other innovations. These systems rely on placing large amounts of pressure in front of a vehicle to detonate the mine before the mine is under the vehicle. The pressure needed to detonate these AT or AP mines is variable to soil type, buried depth, age, and mine type among other variables.

Current Countermine Equipment Testing

Current Testing of Countermine Equipment is conducted on a test lane seeded with 25 M-20 Training mines fused with a M-604 smoke trigger. Problems with this include:

- Mines are single use.
- Mines were manufactured in the 1950’s.
- Mines give go/no-go data.
- Mines require EOD infrastructure and personnel.

This effort will develop a test lane to measure dynamic ground pressure based on vehicle dynamics, soil conditions, and mine placement. This will be done using geolocation sensors, cameras, soil analysis equipment, Surrogate Instrumented Mines (SIM), and Subsurface Ground Pressure Sensors (SGPS).

SURROGATE INSTRUMENTED MINE

Replicates the mechanical fusing and physical attributes of an M-15/M-20 MINE.

SUBSURFACE GROUND PRESSURE SENSOR

Measures subtle variations in ground pressure with little disturbance to the soil.
Surrogate Instrumented Mine

ATC Initial Testing

- **When:** June 23-27, 2003
- **Target:** Panther Light UGV
- **Purpose:** Confirm the operation and sensitivity of the sensors and to augment the traditional test lane.
- **Conclusions:** The data demonstrates sufficient pressure sensitivity to detect even near miss loads by the sensors. This proved the SIM is a tool that will provide us with unprecedented insight into roller performance and vehicle load distribution.

KRC Reliability Testing

- **When:** August 26-27, 2003
- **Target:** M113 Tracked APC
- **Purpose:** Verify the repeatability of the sensors by running over 40 test runs while varying the speed, depth of burial, and encounter location.
- **Conclusions:** The data demonstrated that runs very similar in test conditions were measured very similar by the sensors.

NSDL Validation Testing

- **When:** March 8-11, 2004
- **Target:** Controlled wheel carriage system
- **Purpose:** Verify sensors are recording accurate load data by comparing its readings to that of NSDL's 6-sensor stress-state transducer while varying the depth of burial and loading of the wheel.
- **Conclusions:** Data from this test is currently being analyzed.
Scheduled Usage

JOINT AREA CLEARANCE ACTD
MILITARY UTILITY ASSESSMENT

The JAC ACTD MUA will use the SIMs and SGPS to help evaluate the many submitted demining vehicles with the goal of providing the Army and USMC with a scoring system applied to this equipment. This system will help determine which systems are ready for the field, which need more development, and which should be left behind. This testing will be conducted May 3-7, 2004 at Camp Lejeune, NC and supported by the 27th Combat Engineer Platoon.

LIGHTWEIGHT MECHANICAL COUNTERMINE EQUIPMENT STO

This STO will produce a cost effective on and off route lightweight mechanical system to neutralize, clear, and proof impediments to battlefield mobility that cannot be bypassed. The Sensors will measure STO products to quantify the level of improvements in each engineering cycle. The data analysis from these tests provides a more cost effective solution versus the build and try-until fail techniques previously employed.

Future Enhancements

The primary focus of near term enhancements will be in retrofitting with an embedded commercial off-the-shelf wireless data acquisition system with specifications:

(a) Sampling rate (200 kHz with 16 bit resolution)
(b) Robustness (no degradation in performance after a minimum of 20 passes with a tracked 70T vehicle)
(c) Memory (record 20 minute period of data internally)
(d) Wireless Transmission (10 meters buried)
(e) Wired Transmission (previous functionality)
(f) Unit cost

Future Enhancements will allow the SIM to replicate other mine types beyond the M20, such as M14, TM 46, and Type 72 among others.

Future Applications

AT Overpass: The GSTAMIDS ORC requires the Mine Detection Vehicle to have a set pressure exerted on the ground in order not to exceed the pressure required to detonate an AT Mine.

Threat Analysis: The SIM could be used to help in predicting which mine types would be detonated by future and current force vehicles.

Countermine Equipment: The SIM could be adjusted to be used against other countermine equipment such as plows, sympathetic detonation, and flails.

Mine Research: The SIM could be used to create/validate equations and theories about the reaction of soil to a mine in order to equate a surface load and area to a pressure plate load.
THE PANTHER LIGHT UGV FOR OEF/OIF

Mechanical Wire Cutting Kit
PROVIDES A COUNTERMEASURE FOR MANY IED TYPES

Tele-Operation Control Kit
PROVIDES STANDOFF OPERATION TO 1000 M

DVE FLIR Kit
PROVIDES 360 DEGREE NIGHT VISION TO 500 M

Panther Light UGV:
CURRENT FORCE BASELINE CAPABILITY FOR STANDOFF ASSAULT BREACHER (SABRE)

LMR
PROVIDES TRACK WIDTH VEHICLE PROTECTION WHILE NEUTRALIZING MINES/IED/UXO

TV
Linkage Kit
ENABLES MOBILITY, TRACTIVE EFFORT

RMR
PROVIDES FULL WIDTH NEUTRALIZATION OF MINES/IED/UXO

LOW COST: Neutralization of Command Detonated, Pressure, Magnetic, Seismic, Tilt Rod and Trip Wire Fused MINE/IED/UXO