AWARD NUMBER:
DAMD17-03-2-0017

TITLE:
Integrated Medical Information Technology System (IMITS):
Information and Clinical Technologies for the Advancement of Healthcare

PRINCIPAL INVESTIGATOR:
Megan Marks, PhD

CONTRACTING ORGANIZATION:
University of Pittsburgh
Pittsburgh, PA 15219

REPORT DATE:
August 2010

TYPE OF REPORT:
Addendum to final

PREPARED FOR:
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: (Check one)

☑ Approved for public release; distribution unlimited

The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Abstract (Maximum 200 Words) (abstract should contain no proprietary or confidential information)

UPMC and the United States Air Force Medical Service (AFMS) created a strategic partnership called the Integrated Medical Information Technology System Program (IMITS). IMITS focused on the implementation of advanced medical technology solutions that eliminate inefficiencies, increase utilization, and improve quality of care for active duty forces. Since the initiation of the program in late December 2002, UPMC and the AFMS successfully implemented several pilot telemedicine projects. Based on the success of the FY02 IMITS telemedicine programs, UPMC and the AFMS received additional congressional funding in FY04 and FY05 to continue advanced clinical and technology initiatives. These applications and processes were identified as areas of interest required to meet specific needs within the military and civilian health care delivery system. Each area was considered a sub-project of the overall proposal and was addressed individually from a research perspective.

Subject Terms (keywords previously assigned to proposal abstract or terms which apply to this award)

Telemedicine, information technology, evaluation, Teleradiology, Telepathology, Teleaudiology, Teleophthalmology, Simulation

Security Classification of Report

Unclassified
Table of Contents

Introduction .. 4
Body .. 4
History of Project Closures .. 4
IMITS Award Supported Outcomes ... 5
 Patents and Licenses ... 5

 Degrees Obtained .. 5

 Development of Repositories ... 5

 Informatics Databases ... 5

 Funding Applications .. 5

 Employment/Research Opportunities Based on Award Experience/Training......... 7

 Personnel with Salary Support ... 7

IMITS Award Conclusions ... 10

FY05 IMITS: Distributed Radiology Dynamic Workload Allocation Final Project Report 11
 DRDWA Introduction ... 12
 DRDWA Body .. 12
 DRDWA Barriers to Completion ... 19
 DRDWA Key Accomplishments ... 20
 DRDWA Reportable Outcomes ... 20
 DRDWA Conclusions ... 21
 DRDWA References .. 22
 DRDWA Appendices ... 24
 Appendix 1: DRDWA Statement of Work ... 24
 Appendix 2: DRDWA Diagram ... 30
 Appendix 3: 2008 ATA Abstract and Presentation: IMITS and DWA within the AFMS ... 31
 Appendix 5: 2008 ATA Abstract and Presentation: Evaluating Feasibility of DWA for AFMS ... 45
Introduction

The Integrated Medical Information Technology System (IMITS): Information and Clinical Technologies for the Advancement of Healthcare program focused on implementation of advanced technology solutions that eliminate inefficiencies, increase utilization, and improve quality of care for active duty forces. The work on this project covered the development and implementation of prototype telemedicine systems and advanced technology applications at United States Air Force (USAF) locations. Emphasis was placed on the development of sound evaluation methodologies for the sub-projects with special attention to areas of effectiveness and end-user satisfaction within the Air Force Medical Service (AFMS).

Body

Since the initiation of the IMITS program in December 2002, UPMC and the AFMS successfully implemented several pilot telemedicine initiatives. FY02 IMITS selected areas of interest were regarded as sub-projects of the overall program and were addressed individually from a research and development perspective. Based on the success of the FY02 IMITS program, UPMC and the AFMS received additional congressional funding in FY04 and FY05 to continue to advance and expand their initiatives.

All IMITS research has been completed and, with the exception of FY05 IMITS: Distributed Radiology Dynamic Workload Allocation (DRDWA) project, final project reports were submitted to and approved by AF/SGRM. Table 1 provides FY02, 04, and 05 projects with final report submission dates to AF/SGRM.

This document covers remaining award reporting requirements followed by a full final report for the FY05 IMITS DRDWA project.

History of Project Closures

Table 1: FY02, 04, and 05 IMITS final project report submissions to AF/SGRM

<table>
<thead>
<tr>
<th>IMITS Project*</th>
<th>Final Report to AF/SGRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY02 Emergency Medical Services</td>
<td>Mar 2005</td>
</tr>
<tr>
<td>FY02 Pediatric Tele-echocardiography</td>
<td>Jan 2006</td>
</tr>
<tr>
<td>FY02 and 04 Telepathology</td>
<td>Jul 2006</td>
</tr>
<tr>
<td>FY02 and 04 Teleradiology</td>
<td>Nov 2006</td>
</tr>
</tbody>
</table>
| FY04 Simulation and Training:
 - Simulation at Wilford Hall Medical Center
 - Patient Transfer Simulation Training | May 2006
 Apr 2007 |
<table>
<thead>
<tr>
<th>IMITS Project*</th>
<th>Final Report to AF/SGRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Medical Education</td>
<td>May 2007</td>
</tr>
<tr>
<td>FY04 Teleophthalmology</td>
<td>Jul 2007</td>
</tr>
<tr>
<td>FY04 Extra-Corporeal Membrane Oxygenation (ECMO)</td>
<td>Oct 2007</td>
</tr>
<tr>
<td>FY04 Teleaudiology</td>
<td>May 2008</td>
</tr>
<tr>
<td>FY04 Platelet Gel</td>
<td>May 2008</td>
</tr>
<tr>
<td>FY 05 Telepathology</td>
<td>May 2009</td>
</tr>
</tbody>
</table>

*Copies of final reports are available upon request.

IMITS Award Supported Outcomes

Patents and Licenses

No patents or licenses were applied for or issued as part of the IMITS award.

Degrees Obtained

Dr. Jonhan Ho received education/salary support while serving as a Pathology Informatics Fellow with the University of Pittsburgh. He became a board certified dermatopathologist with certifications in anatomic pathology, clinical pathology, and dermatopathology.

Development of Repositories

- PathEd online repository of digital whole slide pathology images (https://pathed.upmc.com)

Informatics Databases

- Distributed Radiology Dynamic Workload Association Application
- Static Image Application
- Ophthalmology Retinal Imaging Application
- PathEd Application

Funding Applications

- Teleradiology/Enterprise Imaging
 - FY06: Continued development of a multi-disciplinary image archive
 - FY07: Distributed Radiology Dynamic Workflow Allocation
 - FY08: USAF Enterprise Imaging Inter-operability
- FY08: Teleradiology/ Enterprise Imagining Prototype Implementation – Enterprise Bus Architecture (EBA) and Dynamic Workload Allocation (DWA)
 - FY09: Dynamic Workload Allocation (DWA) and Enterprise Imaging Exchange System
 - FY10: Production Distributed Workflow Allocation Implementation/Certification

Telediagnosis
- FY08: Enhanced Diagnosis and Workflow Process using Digital Pathology
- FY08: OpenDiamond: A Powerful Software Platform for Creating Content-Based Search Applications
- FY08: IMITS Telepathology
- FY09: Advancing the Practice of Digital Pathology within the AFMS: Regional Telepathology
- FY10: Continuation: Advancing the Practice of Digital Pathology within the AFMS: Regional Telepathology
- FY11: Continuation: Advancing the Practice of Digital Pathology within the AFMS: Regional Telepathology

Telemedicine
- FY05: Imaging in Telepathology
- FY05: Virtual TelePathology Distance Education and Monitoring Initiative (VTDEM))
 - FY05: Telepathology - Mississippi
- FY08: Enhanced Diagnosis and Workflow Process using Digital Pathology
- FY08: OpenDiamond: A Powerful Software Platform for Creating Content-Based Search Applications
- FY08: IMITS Telepathology
- FY09: Advancing the Practice of Digital Pathology within the AFMS: Regional Telepathology
- FY10: Continuation: Advancing the Practice of Digital Pathology within the AFMS: Regional Telepathology
- FY11: Continuation: Advancing the Practice of Digital Pathology within the AFMS: Regional Telepathology

- Telepathology
- FY05: Imaging in Telepathology
- FY05: Virtual TelePathology Distance Education and Monitoring Initiative (VTDEM))
 - FY05: Telepathology - Mississippi
- FY08: Enhanced Diagnosis and Workflow Process using Digital Pathology
- FY08: OpenDiamond: A Powerful Software Platform for Creating Content-Based Search Applications
- FY08: IMITS Telepathology
- FY09: Advancing the Practice of Digital Pathology within the AFMS: Regional Telepathology
- FY10: Continuation: Advancing the Practice of Digital Pathology within the AFMS: Regional Telepathology
- FY11: Continuation: Advancing the Practice of Digital Pathology within the AFMS: Regional Telepathology

- Teleaudiology
- FY08: Remote access of cochlear implants Teleaudiology DIACAP / FDA certification
- FY08: Teleaudiology DIACAP and FDA certification to conduct remote access, monitor, and adjust cochlear implants

ECMO
- FY05: Extra Corporeal Membrane Oxygenation (ECMO)
- FY07 Pacific Rim ECMO/VAD

Simulation and Training
- FY05 DURIP: University of Pittsburgh Medical Center Medical Simulation Learning Environment Tool
- FY05 DURIP: Virtual Reality Medical Training to support Head/Neck or Shock Trauma Educational Research
- FY05: Nursing Simulation Training Initiative (NSTI)
- FY06: Central Texas Medical Simulation Center of Excellence
- FY07: WHMC Simulation Center
- FY08: Gulf Coast Nursing Leadership and Simulation Training Center
- FY09: Casualty Care Simulation Training (CCST) Center

Platelet Gel
- FY10 DMRDP: Improved Healing of Abdominal Trauma/Acute Surgical Wounds with AGP/AT
• FY10 BAA: Improved Healing of Abdominal Trauma and Acute Surgical Wounds with Autologous Platelet Gel Therapy Activated by Autologous Thrombin

• Teleophthalmology
 o FY05 DURIP: Virtual Reality Medical Training to support Ophthalmic Surgery Training and Research
 o FY08: Sub-Acute Ophthalmic Emergency Care
 o FY08: Virtual Reality Ophthalmic Surgery Training
 o FY09: Sub-Acute Ophthalmic Emergency Care
 o FY09: Spectral Optical Coherence Tomography (SOCT) for Laser Eye Injury
 o FY10 DMRDP: Spectral Optical Coherence Tomography (SOCT) for Laser Eye Injury
 o FY10 DMRDP: Sub-Acute Ophthalmic Emergency Care

Employment/Research Opportunities Based on Award Experience/Training

• Telepathology and Teleradiology initiatives facilitated formation of Omnyx, a shared business initiative between UPMC and GE
• UPMC employment and consultation opportunities accepted by multiple Telepathology and Teleradiology staff
• Three new FTE positions created in UPMC Pathology Informatics for staff who began their work with UPMC through Telepathology
• UPMC pathology position accepted by pathology informatics student
• USAF intern for Telepathology offered position with Telehealth Branch of the AFMS/SGRM following her internship with IMITS and the Telepathology project
• Several administrative management staff promoted to lead positions within ISD at UPMC
• Teleradiology developer offered positions with other UPMC initiatives/departments following Stentor and DRDWA development

Personnel with Salary Support

Table 2: List of Personnel with Salary Support from the award

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>PMO</th>
<th>TRAD</th>
<th>TPATH</th>
<th>CARD</th>
<th>EMS</th>
<th>AUD</th>
<th>ECMO</th>
<th>SIM</th>
<th>PG</th>
<th>OPH</th>
<th>EVAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bees, Jeffrey</td>
<td>Financial Advisor/Consultant</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Begg, Bryann</td>
<td>Administrative Coordinator</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bell, Timothy</td>
<td>Staff Associate</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Campbell, Matt</td>
<td>Associate Director</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Carroll, Paige</td>
<td>Business Development</td>
<td></td>
</tr>
<tr>
<td>Carter, Tera Y</td>
<td>Intern</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Celender, Patience</td>
<td>Administrative</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------------</td>
<td></td>
</tr>
<tr>
<td>Gilstrap, Scott</td>
<td>Principal Investigator/VP</td>
<td></td>
</tr>
<tr>
<td>Good, Janet</td>
<td>Project Mgmt Spec I</td>
<td></td>
</tr>
<tr>
<td>Hardie, Bob</td>
<td>VP-Bu</td>
<td></td>
</tr>
<tr>
<td>Houser, Jessica L</td>
<td>Intern</td>
<td></td>
</tr>
<tr>
<td>Kamenar, Joseph M</td>
<td>Financial Analyst</td>
<td></td>
</tr>
<tr>
<td>Krugh, Deanne</td>
<td>VP Operations</td>
<td></td>
</tr>
<tr>
<td>Love, Kim</td>
<td>Business Development</td>
<td></td>
</tr>
<tr>
<td>McClelland, Sandra</td>
<td>Program Director</td>
<td></td>
</tr>
<tr>
<td>Nicholls, Jeananne</td>
<td>Associate Director</td>
<td></td>
</tr>
<tr>
<td>Panza, Rebecca</td>
<td>Administrative Coordinator</td>
<td></td>
</tr>
<tr>
<td>Poole, Cathy</td>
<td>Clinical Systems Analyst</td>
<td></td>
</tr>
<tr>
<td>Turner, Tiffany</td>
<td>Financial Analyst</td>
<td></td>
</tr>
<tr>
<td>Vollero, Jason</td>
<td>Business Development</td>
<td></td>
</tr>
<tr>
<td>Yanuzo, Aaron</td>
<td>Program Director</td>
<td></td>
</tr>
<tr>
<td>Yates, Anthony</td>
<td>Clinical Advisor</td>
<td></td>
</tr>
<tr>
<td>Amesur, Nikil M.D.</td>
<td>Domain Expert</td>
<td></td>
</tr>
<tr>
<td>Avril, Norbert M.D.</td>
<td>Domain Expert</td>
<td></td>
</tr>
<tr>
<td>Betancourt, Carlos</td>
<td>Software Architect</td>
<td></td>
</tr>
<tr>
<td>Bowen, A'Delbert M.D.</td>
<td>Domain Expert</td>
<td></td>
</tr>
<tr>
<td>Branstetter, Barton</td>
<td>Domain Expert</td>
<td></td>
</tr>
<tr>
<td>Britton, Cynthia M.D.</td>
<td>Domain Expert</td>
<td></td>
</tr>
<tr>
<td>Chang, Paul</td>
<td>Principal Investigator</td>
<td></td>
</tr>
<tr>
<td>Coast, Tom</td>
<td>Project Manager</td>
<td></td>
</tr>
<tr>
<td>Crane, Ken</td>
<td>Programmer IV</td>
<td></td>
</tr>
<tr>
<td>Dexter, Douglas</td>
<td>Programmer</td>
<td></td>
</tr>
<tr>
<td>Ferris, James, M.D.</td>
<td>Domain Expert</td>
<td></td>
</tr>
<tr>
<td>Grube, Audrey</td>
<td>Programmer IV</td>
<td></td>
</tr>
<tr>
<td>Lionetti, Dave</td>
<td>Software Architect</td>
<td></td>
</tr>
<tr>
<td>Momironski, Goran</td>
<td>Software Architect</td>
<td></td>
</tr>
<tr>
<td>Moroney, Shawn</td>
<td>Programmer</td>
<td></td>
</tr>
<tr>
<td>Oh, Kook Sang M.D.</td>
<td>Domain Expert</td>
<td></td>
</tr>
<tr>
<td>Roberts, Jeffrey</td>
<td>Project Manager</td>
<td></td>
</tr>
<tr>
<td>Rothfus, William M.D.</td>
<td>Domain Expert</td>
<td></td>
</tr>
<tr>
<td>Sammon, John K. M.D.</td>
<td>Domain Expert</td>
<td></td>
</tr>
<tr>
<td>Shah, Victor M.D.</td>
<td>Domain Expert</td>
<td></td>
</tr>
<tr>
<td>Shrestha, Rasu</td>
<td>Principal Investigator</td>
<td></td>
</tr>
<tr>
<td>Solomon, Edward M.D.</td>
<td>Domain Expert</td>
<td></td>
</tr>
<tr>
<td>Thaele, F. Leland M.D.</td>
<td>Domain Expert</td>
<td></td>
</tr>
<tr>
<td>Tublin, Mitchell</td>
<td>Domain Expert</td>
<td></td>
</tr>
<tr>
<td>Wallace, Luisa M.D.</td>
<td>Domain Expert</td>
<td></td>
</tr>
<tr>
<td>Warfel, Tom</td>
<td>Investigator</td>
<td></td>
</tr>
<tr>
<td>Wilkins, Will</td>
<td>Programmer</td>
<td></td>
</tr>
<tr>
<td>Anthony, Leslie</td>
<td>Project Manager</td>
<td></td>
</tr>
<tr>
<td>Henderson, Christine</td>
<td>IT consultation</td>
<td></td>
</tr>
<tr>
<td>Kistler, Michael</td>
<td>Project Manager</td>
<td></td>
</tr>
<tr>
<td>Yagi, Yukako</td>
<td>PI/Domain Expert</td>
<td></td>
</tr>
<tr>
<td>Krills, Sandra</td>
<td>Researcher</td>
<td></td>
</tr>
</tbody>
</table>

Final Report: FY05 IMITS: Information and Clinical Technologies for the Advancement of Healthcare Page 8
<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>Department</th>
<th>Specialization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdul-Kareem, Othman</td>
<td>Programmer IV</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Cecil, Roberta Ann</td>
<td>Programmer</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Danowski, Roni</td>
<td>Prjt Mngmnt Spec</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Drogozewski, Laura</td>
<td>Researcher</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Duboy, John</td>
<td>PC Consultant I</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Gilbertson, John, M.D.</td>
<td>Principal Investigator</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Ho, Jonhan</td>
<td>Investigator</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Hoffman, Matthew</td>
<td>Web Developer</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Hrzic, Mark</td>
<td>Java Programmer</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Hudson, William</td>
<td>Senior Web Developer</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Jobe, Joyce</td>
<td>Sr. Help Desk Specialist</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Jukic, Drazen</td>
<td>Principal Investigator</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Kelly, Michael</td>
<td>Java Programmer</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Kepner, Joyce</td>
<td>Sr. QA Specialist</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Lawson, Alan</td>
<td>Chief Technical Officer</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Marraccini, Kevin</td>
<td>Application Support</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Nalesnik, Michael, M.D.</td>
<td>Domain Expert</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Petronik, Everett</td>
<td>Application Support</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Polatas, Holly</td>
<td>Training Specialist</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Roll, Marion</td>
<td>Project Manager</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Salava, Debra</td>
<td>Operations Manager</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Sharma, Anurag</td>
<td>Systems Analyst I</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Simko, Patricia</td>
<td>Certification Specialist</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Smith, Jeffrey</td>
<td>Data Security Specialist</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Teacher, Stephen</td>
<td>Sr. Database Developer</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Vaia, Patricia</td>
<td>Project Manager</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Wright, JoAnn</td>
<td>Sr. QA Specialist</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Yarzab, Richard</td>
<td>Senior Developer</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Handrahan, Jerry</td>
<td>Systems Analyst II</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Neches, William</td>
<td>Principal Investigator</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Delbridge, Ted</td>
<td>Principal Investigator</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Jarret, Patricia</td>
<td>Principal Investigator</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Roth, Claudia</td>
<td>Principal Investigator</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Palmer, Catherine MD</td>
<td>Principal Investigator</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Burgess, Lawrence MD</td>
<td>Principal Investigator</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Caputo, Ralph</td>
<td>Domain Expert</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Berg, Benjamin</td>
<td>Domain Expert</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Bradie, Judy</td>
<td>Domain Expert</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Briggs-Foster, Cathy</td>
<td>Project Manager</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Dongilli, Tom</td>
<td>Domain Expert</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Garshnek, Victoria</td>
<td>Program Development</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Hara, Kris</td>
<td>Researcher</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Hudson, Don</td>
<td>Programmer</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>John Schaefer</td>
<td>Principal Investigator</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Mechtel John</td>
<td>Project Manager</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Palumbo, Stephen</td>
<td>Project Manager</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Wolf, Gail</td>
<td>Principal Investigator</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Dave Steed MD</td>
<td>Principal Investigator</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Dyga, Robert</td>
<td>Domain Expert</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Thomas Serena MD</td>
<td>Principal Investigator</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Role</td>
<td>Signatures</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Adams, Brian</td>
<td>IT consultation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caywood, LouAnn</td>
<td>Project Manager</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eller, Andrew</td>
<td>Principal Investigator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small, John</td>
<td>Programmer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uttecht, Steve</td>
<td>Programmer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waller, Stephen MD</td>
<td>Principal Investigator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ward, Jane</td>
<td>Project Manager</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warnicki, Joseph</td>
<td>Domain Expert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barnes, Barbara</td>
<td>Principal Investigator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silowash, Russ</td>
<td>Programmer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chang, Joyce</td>
<td>Statistician</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friedman, Chuck</td>
<td>Principal Investigator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gadd, Cynthia</td>
<td>Principal Investigator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gatti, Guido</td>
<td>Statistician</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grzybicki, Dana</td>
<td>Principal Investigator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porterfield, Toni</td>
<td>Researcher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roberts, Mark</td>
<td>Principal Investigator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilson, Robb</td>
<td>Project Manager</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IMITS Award Conclusions

IMITS activities focused on the implementation of medical technology solutions that increase efficiency and improve quality of care for active duty forces. Since the initiation of the program in late December 2002, UPMC and the AFMS successfully implemented several pilot telemedicine projects that serve to advanced AFMS clinical and technology resourcefulness. Project applications and processes were targeted by AFMS as essential to meeting specific needs within their military healthcare delivery system. Both the AFMS and UPMC benefited from the joint development and implementation of the multi-disciplinary IMITS initiatives and will continue to build upon the accomplishments.

For applications to serve their purpose, they must be available when needed. By and large, availability of IMITS applications has required rigorous, justified DoD security certifications followed by a complex and ever changing amalgamation of Air Force Communications Agency, Major Command and base-level approvals. The challenges innate to obtaining Air Force approvals have been further complicated by transient staffing, including leadership reassignments with subsequent shifts in awareness of and support for ongoing initiatives.

To realize the benefit of advanced technology applications, future initiatives must engage and maintain the support of military leadership, providing them with the knowledge needed to help all team members understand how their jobs relate to the goals of the project and to compel a shared commitment to its success.
FY05 IMITS: Distributed Radiology Dynamic Workload Allocation Final Project Report

AWARD NUMBER: DAMD17-03-2-0017

TITLE: IMITS: Distributed Radiology Dynamic Workload Allocation (DRDWA)

CONTRACTING ORGANIZATION: UPMC
600 Grant Street, 58th Floor
Pittsburgh, PA 15219

PERIOD OF PERFORMANCE: 09/06/2006 – 08/31/2010

REPORT DATE: 08/31/2010

PREPARED BY: Thomas Coast
Goran Momiroski
Shawn Moroney
William Wilkins

TYPE OF REPORT: Final IMITS DRDWA Project Report
DRDWA Introduction

A symmetrical workload-balanced distributed radiology workflow prototype will support present and future radiology workload and workflow requirements across the AFMS as well as provide increased performance and scalability. Synchronous and asynchronous collaboration tools, as part of the developed symmetrical workflow model, will significantly improve radiologist productivity irrespective of geographical location.

DRDWA Body

The FY05 IMITS DRDWA project was commissioned to develop a prototype solution for current Air Force Medical Services (AFMS) radiology workflow processing deficiencies. The Statement of Work (SOW) for the project is included here as Appendix 1. Phases I and II of the project were completed with summary reports submitted to AF/SGRM (Table 1 repeated below for reference). During Phases III – V of this project, it became apparent that the DRDWA prototype solution would have to be incorporated into a future enterprising imaging initiative, rather than continue as a stand-alone imaging solution.

Table 1: FY02, 04, and 05 IMITS final project report submissions to AF/SGRM

<table>
<thead>
<tr>
<th>IMITS Project*</th>
<th>Final Report to AF/SGRM</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY02 Emergency Medical Services</td>
<td>Mar 2005</td>
</tr>
<tr>
<td>FY02 Pediatric Tele-echocardiography</td>
<td>Jan 2006</td>
</tr>
<tr>
<td>FY02 and 04 Telepathology</td>
<td>Jul 2006</td>
</tr>
<tr>
<td>FY02 and 04 Teleradiology</td>
<td>Nov 2006</td>
</tr>
<tr>
<td>FY04 Simulation and Training:</td>
<td></td>
</tr>
<tr>
<td>Simulation at Wilford Hall Medical Center</td>
<td>May 2006</td>
</tr>
<tr>
<td>Patient Transfer Simulation Training</td>
<td>Apr 2007</td>
</tr>
<tr>
<td>Advanced Medical Education</td>
<td>May 2007</td>
</tr>
<tr>
<td>FY04 Teleophthalmology</td>
<td>Jul 2007</td>
</tr>
<tr>
<td>FY04 Extra-Corporeal Membrane Oxygenation (ECMO)</td>
<td>Oct 2007</td>
</tr>
<tr>
<td>FY04 Teleaudiology</td>
<td>May 2008</td>
</tr>
<tr>
<td>FY04 Platelet Gel</td>
<td>May 2008</td>
</tr>
<tr>
<td>FY 05 Telepathology</td>
<td>May 2009</td>
</tr>
</tbody>
</table>

*Copies of final reports are available upon request.

Current AFMS staffing constraints, limited system capabilities, and a mobile physician and patient population require a sophisticated load-balanced distributed radiology/imaging workflow model and supporting infrastructure. These continually changing circumstances within the military healthcare community identified the need for a
sophisticated workflow model that supports an enterprise view. The DRDWA prototype solution aims to provide increased productivity and enhanced patient care across the AFMS regardless of physician staffing constraints, systems capabilities, and patient location. The infrastructure is capable of supporting a load-balanced distributed workflow model across multiple Major Commands (MAJCOMS) and within a multiple AFMS Picture Archiving Communication Systems (PACS) environment. The prototype solution allows for dynamic bi-directional transmission of clinical studies and optimal workflow load-balancing to effectively leverage resources irrespective of location, PACS vendor, or particular local workload demands. With a mobile patient population, this prototype provides relevant patient history to the radiologist/physician in order to render an accurate diagnosis. With regard to workload distribution, the prototype capabilities allow maximum workload flexibility during AFMS radiologist deployments, temporary duty (TDY), on-call support, and the development and availability of subspecialty expertise.

An AFMS-wide, sophisticated, load-balanced, and distributed radiology workflow model and supporting infrastructure will result in increased productivity, cost savings, and, above all, enhanced patient care across the AFMS regardless of medical staffing constraints or patient location. In addition, the prototype infrastructure could be the baseline architecture for enterprise imaging exchange throughout the AFMS regardless of medical discipline, and the intra/inter-base communication infrastructure for efficient clinical data exchange for all future AFMS healthcare information technology providers.

DRDWA Phase I (Complete)

The DRDWA project team conducted a six-month evaluation to identify the requirements and concerns of the AFMS radiology community. Findings and recommendations are contained within the DRDWA Phase I Report submitted to AF/SGRM on (available upon request).

During the evaluation phase, UPMC/UPMC IMITs Center project team ensured that a requirement for DRDWA/Enterprise Radiology existed. By engaging the appropriate AFMS partners, the IMITS project team was able to confirm the need for a distributed workflow solution and began to accurately define an acceptable DRDWA prototype. In order to accurately define a prototype solution, it was necessary for the project team to define business rule requirements in order to effectively determine how to traffic radiology images throughout the AFMS.

DRDWA Phase II (Complete)

The primary objective of Phase II was to develop and demonstrate the core supporting infrastructure (DRDWA). The development included the core concept design for the DRDWA system between two Air Force bases. Findings and recommendations are contained within the DRDWA Phase II Report (available upon request).
DRDWA Phase III

The primary objective of Phase III was to finalize DRDWA development and demonstrate the final iteration of dynamic transfer of images between multiple Air Force bases. Development included the completion of the master command dashboard and local command interfaces. In addition, the DRDWA was designed to meet all clinical requirements set forth in Phase I of the project. Phase III objectives also involved developing referential interfacing requirements with existing military systems without performance degradation. The DRDWA development staff also created a combat trauma imaging simulator system to serve as a training repository for radiologists within the AFMS. In order to install and test on site with participating Air Force bases, the DRDWA had to initiate the Department of Defense Information Assurance Certification and Accreditation Process (DIACAP) process to obtain an Interim Authority to Test (IATT) certification. Phase III concluded with the hardware/software installation, testing, and final demonstration of the DRDWA between multiple Air Force bases.

The DRDWA Phase III objectives and outcomes are defined as follows:

- The UPMC IMITS project team created a master command dashboard and local command interface to control the functionality of the DRDWA. These dashboards were developed for use by appointed AFMS radiologists to monitor the flow and statistics of teleradiology. The dashboards are web based to provide ease of access from multiple Air Force locations. The dashboards are capable of compiling aggregate and historical statistics to assist radiology representatives in making strategic, enterprise wide decisions. The dashboard preferences include the ability to assess local reads, desired types of reads for each Air Force base, and rules for the export of radiological data. These dashboards represent the graphical user interface used in the ultimate control of the DRDWA.

- The IMITS project team established the clinical requirements for the operation of the DRDWA system. The DRDWA is able to dynamically allocated workflow among Air Force radiologists to maximize available manpower. The system is able to send images configured by radiology experts through the local command panel, while crediting interpreting radiologist for their work. This process remains transparent to the radiologists at all times, so that no priority is given to images according to the originating location. All DoD security guidelines and Health Insurance Portability and Accountability Act (HIPAA) standards have been maintained in the development of the DWDWA (DIACAP and security documentation is available for the DRDWA system). Patient care remains at the forefront of the DRDWA with the accurate and immediate transfer of diagnostic information.

- The IMITS project development team established the interfacing requirements of the DRDWA system with other AFMS initiatives. The Digital Imaging and Communications in Medicine (DICOM) standard interfaces allow communication between the DRDWA and various PACS vendors throughout the Air Force. This
DICOM standardization ensures interoperability with all existing DICOM capable imaging repositories and future additions to the Air Force medical imaging initiative. The Air Force maintains a high level standard in adhering to DICOM accepted practices and interfacing. The development team had no issues in communicating with the established PACS vendors utilized by the Air Force.

- The DRDWA software delivery includes a Combat Trauma Imaging Simulator. Primary functionality centered on the use of digital images, regardless of the source used to scan, and the organization of the images into easily searchable, useful categories. Secondary functionality was concerned with testing the physician’s diagnostic ability; the tool was designed to support both administered and self-tests. As developed, the application boasts a constantly growing, customizable, digital image repository of history-enriched, common, interesting, and unique pathology cases that can be viewed and annotated by users who range in experience and level of training. User and case parameters can be channeled for targeted users and applications.

To meet the needs of the radiology community, the application can be used to create a repository of HIPAA-compliant combat trauma images for both reference and training purposes. AFMS radiologists lacking recent experience with trauma cases would have an accessible method to refresh and expand their education. This would provide a significant opportunity for those being deployed with little or no time available for specialized training. A robust repository of de-identified radiology images and patient data can further aid in the dissemination of knowledge across a variety of special interest areas. Radiologists can query cases or diagnoses of interest, conduct self-tests, and increase their knowledge of medicine based on their circumstances. Course instructors can use the application to supplement their training by choosing materials from the repository or by appending their own materials to the repository. Radiologists may be invited to join a group in which they are assigned specific cases and tests. Tests and user statistics can be made available to instructors for user and course analysis.

- The IMITS project team established a strategic partnership with the Integrated Clinical Database (ICDB) iDIS project. This project allowed the DRDWA to operate on security accredited servers and transport images on an established Enterprise Server Bus, iDIS. However, changes in ICDB command dissolved this collaborative effort in July 2009. The project team had to drastically modify its development plans to recreate the functionality that ICDB previously provided. The first and most challenging effect of this decision required the team to build independent servers to host the DRDWA services. The second issue required that the team create a network image transmission protocol to facilitate image sharing between existing PACS vendors. To complete testing and the subsequent demonstration, these independently developed solutions required DIACAP and IATT certification. The project team began the DIACAP certification process necessary to obtain an IATT certification. Once the IATT certification
was approved, the team installed local servers at the participating Air Force bases. The IATT for the DRDWA was granted on June 8, 2010 and remained effective until August 31, 2010.

- The implementation portion of the DRDWA project involved the installation of four servers on three Air Force bases, and the installation of all software services. A global server and a satellite server were installed at Wright-Patterson Air Force Base, Fairborn, OH. Satellite servers were installed at Dover Air Force Base, Dover, DE and MacDill Air Force Base, Tampa, FL. Each server was configured to communicate with the respective PACS on each Air Force base. Basic software and service installation was completed prior to shipping the servers to the Air Force bases. All the DRDWA servers were given IATT approval prior to base installation.

- After the servers were delivered to the assigned Air Force bases, the project team began an evaluation and testing period. All testing had to be completed in the assigned timeframe (June 8, 2010 to August 31, 2010). The IATT certification only allows for 2 hours of DRDWA testing on any weekday. During this evaluation period, several configuration and benchmarking stages needed to occur to enable a complete demonstration. Remote connectivity to each server had to be established though the DoD approved software, DCO Connect. Once remote connectivity was established, the IMITs development team could control each server from the UPMC offices and begin the configuration process. Local configuration from each DRDWA server to its corresponding PACS server was completed with no significant issues.

 Connectivity between the DRDWA satellite servers on separate bases was problematic at times. The connection between Dover AFB and Wright-Patterson AFB was established without issues. However, the connection between MacDill AFB and Wright-Patterson AFB showed dropped information packets and other general delays. Subsequent testing revealed that the MacDill AFB network had increased latency when compared with the other bases: information was slow to traverse the network, and often packets of image data were lost during transmission to the final destination. Regardless of these testing issues, IMITs and the Air Force decided to proceed with the demonstration scheduled August 27, 2010.

- A live demonstration with the three participating Air Force bases was performed on August 27, 2010 at Wright-Patterson AFB. This demonstration was used as a prototype benchmark; highlighting the developmental efforts undertaken by the IMITs team throughout the DRDWA project. The three sites, Wright-Patterson AFB (Fuji), Dover AFB (Agfa), and MacDill AFB (AGFA), allowed three separate PACS to be represented. Remote viewing was available for participants who were unable to attend the presentation at Wright-Patterson AFB. The DRDWA project team and participants from the Air Force were aware that network issues at MacDill AFB could prevent successful image transfer to the Wright-Patterson
DRDWA servers. However, these network issues were nonexistent during the final demonstration, and images were transferred between all participating bases.

- The final deliverable for the DRDWA project included system and user documentation for the DRDWA infrastructure. This documentation will assist with future efforts to implement the DRDWA if needed. This documentation will also include training manuals for the basic operation of the DRDWA services and policies. At the conclusion of the project, all DRDWA software code and purchased hardware were delivered to the Office of the Air Force Surgeon General in a format deemed appropriate for future consideration.

DRDWA Phase IV

The IMITS project team identified several areas within the DRDWA for enhancement/improvement. The following key functionality additions were recognized through the course of the project: Resource Scheduling Module, Graphical User Interface (GUI) enhancements, 3D/4D Image Post-Processing, Dictation and Transcription Integration, and Image Compression (Hardware/Software). Several companies have been identified for potential partnerships within these improvement areas. The Phase IV objectives were interrupted due to the removal of ICDB/iDIS, however, a brief investigation was still conducted into several areas of improvement.

The FY05 – DRDWA Phase IV objectives and outcomes are defined as follows:

- The research and evaluation of a Resource Scheduling module was the first initiative in Phase IV. Resource scheduling for available AFMS radiologists and staff would greatly improve the capabilities of the master and local command panels. DRDWA routing algorithms would benefit immensely by having each radiologists schedule programmed into the system. This availability, matched with modality and sub-specialty information, would allow the DRDWA system to automatically route exams more accurately. Numerous Radiology Information Systems (RIS) currently utilize this scheduling capacity to enhance patient care and maximize exam resources. The DRDWA development team completed a scheduling module that is included in the final code delivery.

- The IMITS project team worked to identify potential technology partnerships for module and GUI enhancements. By adding partnerships with imaging specialty companies the DRDWA would provide a more comprehensive imaging management system. UPMC Radiology Informatics developed Single View to connect the RIS and PACS across multiple UPMC hospitals in the greater Pittsburgh, PA area. By utilizing a single work list, an efficient web-based client can access patient data in one consistent format. Sub-specialization focus delivers information to appropriate physician, in real time regardless of location, which allows full leveraging of physician subspecialty and expertise. Connecting multiple RIS and PACS solutions through one information bus optimizes existing systems by connecting all sources that store and display imaging studies and
associated patient information. Immediate access to patient data across multiple systems provides the ability to read studies faster, thereby increasing radiology process throughput.

- The investigation for 3D/4D Image Post-Processing was initiated after viewing several presentations at the Radiological Society of North America (RSNA) conference 2008. Healthcare equipment vendors have been seeking to provide an integrated diagnostic model facilitating patient-centric, evidence-based healthcare. The major features of post-processing include workflow tasks such as image processing, image reconstruction, computer-aided detection, three-dimensional (3D) view generation, and quality control. Innovations in radiological diagnostic imaging step into the next generation of technology, offering 3D/4D imaging views of the diagnostic images taken from standard equipment.

- The DRDWA should be integrated with current dictation and transcription solutions to provide a more robust platform for radiologists. Dictation and transcription are core modules within radiology overall workflow. Integration with these modules would provide a higher level of data management within the DRDWA. However, the USAF iterations of dictation and transcription have a wider range than current PACS implementations. This widespread array of applications creates a project on a much larger scale than even the DRDWA. Under the current and foreseeable scope of the DRDWA, dictation and transcription integration was just not a feasible option.

- Hardware and Software Image compression is a constant concern for enterprise imaging solutions where network bandwidth is limited. The development of PACS and the increasing use of large digital sets from various imaging modalities present challenges in image management, distribution, storage and interpretation. Teleradiology enables remote interpretation but is encumbered by bandwidth restrictions. Image compression is a means by which Teleradiology access may be improved, and storage costs reduced. Currently, all digital image interpretation, transmission and storage practiced within the DoD facilities are done without irreversible data loss. This limits transmission and storage to lossless compression technology with 2:1 being the most typical compression ratio in any given PACS environment. The result is long transmission times for large data sets and high image storage costs. This will only get worse with increasingly large data sets and additional demand for image resources.

DRDWA Phase V

The IMITS project team intended to use Phase V of the project for additional development based on the Phase IV enhancements/improvement. This phase, however, was contingent on having remaining funds in the DRDWA project. When the ICDB iDIS solution was removed from the project, remaining funds had to be diverted to create a core DRDWA infrastructure. This new infrastructure included the purchase of four server class computers, and the development of an image transmission protocol for use on the AFMS network. The IMITS project team was successful in replacing the
basic functionality initially provided by ICDB iDIS, but the time and funding required for this endeavor effectively eliminated the possibility of Phase V development.

DRDWA Barriers to Completion

During the development and testing of the DRDWA prototype solution, numerous barriers to completion were noted by members of the project team in order to increase efficiency in future solutions for the AFMS. The continuing evaluation of existing AFMS protocols will allow for more effective project planning, should future projects be considered for AFMS integration. The IMITS project team identified three areas illustrating the barriers to completion for the DRDWA.

- The IMITS project team established a strategic partnership with ICDB iDIS project within the Air Force infrastructure. This partnership allowed IMITS project team to drastically reduce costs and developmental efforts. This collaborative effort with ICDB provided the DRDWA project with a proven network backbone for data transmission within the Air Force for image acquisition, transfer, and data sharing. ICDB iDIS effectively eliminated the need for remote point-to-point services in the DRDWA between individual Air Force bases. Not only did this reduce costs in the network structure schema, but it also diminishes the need for independent certification for each additional base.

 In July 2009, the ICDB Program Management Office (PMO) decided to no longer support any DRDWA initiatives. This vast change to the project scope was due changing leadership within the PMO and staff changes. The IMITS project team engaged the new ICDB management in an attempt to resolve project sustainability issues; however, ICDB no longer had the manpower or interest to support the DRDWA project. This single decision caused a series of events that delayed the project at least eighteen months.

- DIACAP and IATT certification processes were required complete the DRDWA Phase III deliverables. Standard DIACAP procedures can take up to 18 months for complete system certification, hardware and software. The documentation and compulsory specifications for the DRDWA DIACAP took approximately 6 months to complete. After the initial artifacts were complete, the IMITS project team could then begin actual testing with the Information Assurance (IA) department. The IA live testing requirements used another 6 months to complete. Once all the documentation and test results were reviewed by IA, another month was required to award the IATT for an effective 90 days. The IA process is an laborious effort that future projects must be aware of when assigning project timeframes and deliverables.

- The Composite Health Care System (CHCS) is a medical informatics system designed by Science Applications International Corporation (SAIC) and used by all United States military health care centers. A core component to successful
production operation of the DRDWA is CHCS interfacing. The IMITS project team was never able to locate a champion for bi-directional interfacing with CHCS. The DRDWA was never able to properly integrate these bi-directional interfaces in the core functionality. Orders placed in the CHCS system serve as triggers for the initiation of DRDWA servers, eliminating the need for manual interaction with the system. SAIC provides neither testing facilities nor adequate interface specifications to simplify a prototype or development initiative. Future projects requiring CHCS integration must properly engage SAIC to encourage expanded interfacing capabilities.

DRDWA Key Accomplishments

- Analyzed and documented the MTFs existing Information Systems and infrastructure to determine the feasibility of a DRDWA solution.
- Defined business rules requirements to determine the traffic of images.
- Provided an Initial Concept Design Document to SGR, outlining network traffic requirements, security requirements, and limitations of a new load balancing system.
- Provided DRDWA Phase I report/initial concept documents to AF/SGRM.
- Completed development of the core DRDWA components for select AFMS MTFs:
 - DICOM Concentrator
 - PACS Web Services
 - RAD Web Services
- Established a strategic partnership with the ICDB PMO and the iDIS initiative.
- Completed a functional demonstration (June 12, 2008) of core components between Wright-Patterson and Dover Air Force Bases.
- Provided DRDWA Phase II report documents to AF/SGRM.
- Completed a local DRDWA demonstration (March 11, 2009) for AF/SGRM.
- Identified five additional areas for improvement within the DRDWA solution.
- Developed the DRDWA image transport mechanism to replace the ICDB/iDIS solution.
- Began the DoD DIACAP process, and received an IATT certification for 90 days of testing prior to a final demonstration.
- Installed 4 DRDWA servers on Wright-Patterson, Dover, and MacDill Air Force Bases.
- Established remote connectivity to the DRDWA servers located at Wright-Patterson, Dover, and MacDill Air Force Bases.
- Completed a full demonstration (August 27, 2010) of the final DRDWA solution between Wright-Patterson, Dover, and MacDill Air Force Bases.
- Provided DRDWA Phase III-V report documents to AF/SGRM.
- Delivered Final DRDWA solution code and instruction documentation to AF/SGRM.

DRDWA Reportable Outcomes
Abstracts and Presentations

- Rasu B. Shrestha, MD, MBA; Aaron C. Yanuzo, BS, MBA; Carlos Betancourt, BS; Goran Momiroski, BS, MS; Thomas H. Coast, BS; Shawn Moroney, BS; James Mason, BS; Steve Livingston (4/2009). IMITS Program Overview with Implementation of Dynamic Workload Allocation within the Air Force Medical Service. 2008 American Telemedicine Association Annual Conference, Seattle, WA

- Rasu B. Shrestha, MD, MBA; Aaron C. Yanuzo, BS, MBA; Carlos Betancourt, BS; Goran Momiroski, BS, MS; Thomas H. Coast, BS; Shawn Moroney, BS; James Mason, BS; Steve Livingston (4/2008). Programming - Dynamic Workload Allocation Routing Engine and Intelligent Algorithms. 2008 American Telemedicine Association Annual Conference, Seattle, WA

DRDWA Conclusions

The FY05 congressional research project: IMITS DRDWA evaluated the utility of a load-balanced distributed radiology/imaging dynamic workload allocation infrastructure. The DRDWA project was divided into five phases. Phase I and II focused on investigation of requirements and design. Phase III completion demonstrated success in connecting and transmitting images and data between different PACS within the AFMS. The entire IMITS project team – consisting of several members of UPMC, UPMC IMITs Center (DoD Program Management Office), the SGR Congressional project manager, and with input from the AF Radiology Consultant, completed the prototype demonstration, and provided recommendations for future integration with enterprise imaging solutions with the AFMS. After the Phase III demonstration, the AFMS PACS office expressed direct interest in implementing the DRDWA to production as soon as possible.

The DRDWA prototype promises to increase productivity, cost savings, and above all enhanced patient care regardless of physician staffing constraints or patient location. The proposed solution and infrastructure support a symmetrical load-balanced distributed workflow model across MAJCOMS and in multiple PACS environments. The prototype solution allows dynamic bi-directional transmission of clinical studies and optimal workflow load-balancing to effectively leverage resources irrespective of location, PACS vendor or particular local workload demands. This prototype solution also provides to the physician relevant patient history required for an accurate diagnosis in a continually moving patient population throughout the AFMS. The proposed infrastructure can be incorporated with the baseline architecture for enterprise imaging
exchange through the AFMS. This will allow for more flexibility with regards to workload distribution during AFMS radiologist deployments, TDY, on-call support and the development and availability of subspecialty expertise.

In conducting the FY05 IMITS DRDWA project, the IMITS project team became aware of a strong level of interest by the AFMS PACS office. The PACS administration team expressed a strong need for immediate investigation into a multiple site DRDWA implementation. This type of implementation would require several steps to complete. Full bi-directional interfacing with CHCS must be achieved to realize the intended automation of the DRDWA services. The DRDWA would also have to complete the entire DIACAP process to become a production enabled system. At the conclusion of the project, the DRDWA services and hardware had only been granted an IATT approval. Additional IA processes would have to be finalized to certify the DRDWA as an Air Force approved application. A certification and implementation, even on a small scale, would require an approximate minimum of 18 months to accomplish.

In contrast to installing the DRDWA as a stand-alone solution in the AFMS, the DRDWA code can be used to assist development of alternate enterprise imaging initiatives. The DRDWA infrastructure can serve as the baseline framework for inter-operability architecture for future Military Health Service (MHS) Telehealth initiatives as well as the baseline for all enterprise imaging exchange throughout the MHS regardless of medical discipline. The expansion of this project could be the initial integration of the DRDWA with additional digital imaging formats as well as other multimedia medical record files. This will initiate the expansion of the prototype solution throughout the MHS. Production acceptance integration could effectively cover several MHS Medical Centers, and potentially the Veteran’s Health Services. UPMC provided the foundation for digital imaging inter-operability to the AFMS by creating an integration platform that would allow communication and transportation of data from site to site. Continual enhancements to the DRDWA prototype solution will provide the mechanism for other digital images such as: pathology, cardiology, and ophthalmology to be transported from one Medical Treatment Facility (MTF) within the AFMS or MHS to another for either or both diagnostic or referential usage by a physician.

This report is the final project report/deliverable for the FY05 Congressional project: IMITS DRDWA (Cooperative Agreement DAMD1703-2-0017).

DRDWA References

Acronyms

- 3D Three Dimensional
- 4D Four Dimensional
- AFB Air Force Base
- AFMS Air Force Medical Services
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHCS</td>
<td>Composite Health Care System</td>
</tr>
<tr>
<td>DIACAP</td>
<td>Department of Defense Information Assurance Certification and Accreditation Process</td>
</tr>
<tr>
<td>DICOM</td>
<td>Digital Imaging and Communications in Medicine</td>
</tr>
<tr>
<td>DoD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>DRDWA</td>
<td>Distributed Radiology Dynamic Workload Allocation</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>HIPAA</td>
<td>Health Insurance Portability and Accountability Act</td>
</tr>
<tr>
<td>IATT</td>
<td>Interim Authority To Test</td>
</tr>
<tr>
<td>ICDB</td>
<td>Integrated Clinical Database</td>
</tr>
<tr>
<td>iDIS</td>
<td>Intelligent Data Integration Service</td>
</tr>
<tr>
<td>IMITs</td>
<td>Innovative Medical Information Technology Systems</td>
</tr>
<tr>
<td>MAJCOMS</td>
<td>Major Commands</td>
</tr>
<tr>
<td>MTF</td>
<td>Medical Treatment Facility</td>
</tr>
<tr>
<td>MHS</td>
<td>Military Health Services</td>
</tr>
<tr>
<td>PACS</td>
<td>Picture Archiving Communication System</td>
</tr>
<tr>
<td>RIS</td>
<td>Radiology Information System</td>
</tr>
<tr>
<td>RSNA</td>
<td>Radiology Society of North America</td>
</tr>
<tr>
<td>SOW</td>
<td>Statement of Work</td>
</tr>
<tr>
<td>TDY</td>
<td>Temporary Duty</td>
</tr>
</tbody>
</table>
DRDWA Appendices

Appendix 1: DRDWA Statement of Work

Develop and implement a Distributed Radiology Dynamic Workload Allocation Infrastructure Prototype at select Air Force Medical Treatment Facilities (MTF).

Phase 1 - Analyze and document select MTFs existing Information Systems and Infrastructure to determine Distributed Radiology Dynamic Workload Allocation Systems Feasibility: (7 Months)

USAF Principal Investigator: Col. Grant Tibbets
UPMC Principal Investigator: Dr. Rasu B. Shrestha
Timeframe: October 2006 – May 2007
Completed: May 2007

<table>
<thead>
<tr>
<th>Timeframe</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weeks 1-12</td>
<td>Assess Base, MAJCOM and Headquarters level staff for participation and support of proposed project.</td>
</tr>
<tr>
<td>Weeks 1-12</td>
<td>Establish a baseline of information systems, technology and infrastructure at participating MTFs. Document current systems’ distribution and capture capabilities</td>
</tr>
<tr>
<td>Weeks 1-16</td>
<td>Assess information assurance and workload crediting policy and procedures. Discuss and coordinate with Information Assurance departments at Base, MAJCOM and Headquarters level to obtain information and input. Assessment of DoD system security policies and procedures (i.e. IATO, ICTO, CoN, DIACAP). Document and obtain policy and approval for bidirectional interface to participating MTFs local systems (i.e. Composite Health Care Systems/II (CHCS/CHCSII/AHLTA). Coordinate and discuss project at each level.</td>
</tr>
<tr>
<td>Weeks 12-24</td>
<td>Define business rules requirements to determine traffic of images. Ensure that documented business rules incorporate radiologist, availability, desired study type, historical site performance and professional currency requirements to determine traffic of images. Investigate and document healthcare workload policies and procedures between sites within a distributed environment. E.g Relative Value Unit (RVUs) allocation between sites/providers performing the work. Capture existing practice processes and rules relating to radiology.</td>
</tr>
<tr>
<td>Weeks 12-24</td>
<td>Assess, document and measure existing diagnostic imaging system performance (e.g image transmission requirements, repository/central cache requirements…)</td>
</tr>
<tr>
<td>Timeframe</td>
<td>Task</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Weeks 20-24</td>
<td>Provide SGR with a report which will serve as an Initial Concept Document (ICD). The ICD will include network requirements (bandwidth availability, saturation point/base), business rules (expected turnaround time), and MAJCOM Security Requirements. ICD will support a concept decision regarding USAF and/or DoD limitations that may alter the outcome/deliverables of the research project.</td>
</tr>
</tbody>
</table>

Phase 2 - Develop Distributed Radiology Dynamic Workload Allocation System prototype for select USAF MTFs (12 Months) (Phase 2 to begin upon completion, by SGR, of NDAA Certification):

Timeframe: May 2007 – May 2008
Completed: May 2008

<table>
<thead>
<tr>
<th>Timeframe</th>
<th>Task</th>
</tr>
</thead>
</table>
| Weeks 24-72 | Establish system administrator privileges.
1) Create a web-based system command panel to monitor system maintenance events.
2) Incorporate common issues found during testing into the maintenance panel. |
| Weeks 24-72 | Establish a workload accounting process in system:
Workload crediting available by site of acquisition (technical component).
Workload crediting available by site of interpretation (professional component).
System accurately credits the correct number of relative value units.
Coordinate with Composite Health Care System (CHCS) and radiology personnel at each base to determine acceptable methods for adding shared work credit Relative Value Unit (RVU)/Current Procedure Terminology (CPT) codes to the Composite Health Care System (CHCS).
System will auto register patients into the remote Composite Health Care System (CHCS) system. |
| Weeks 24-72 | Create a central repository storage and system infrastructure |
| Weeks 24-72 | Create a central image routing engine that includes the following features:
The image routing engine will contain the necessary algorithms to efficiently route images.
Algorithms may be adjusted from the Master Control Panel.
The image routing engine will use radiologist availability, desired study type, and historical site performance to determine quantity and type of images to forward.
The image routing engine will follow a ‘round robin’ pattern in distribution. |
<table>
<thead>
<tr>
<th>Timeframe</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The image routing engine will have safeguards so that it does not overwhelm a site. The image routing engine will have logic to retransmit images to an alternate location if a remote site is unexpectedly not conducting reads. Final read location for failed reads will be Wilford Hall Medical Center radiology department.</td>
</tr>
<tr>
<td>Weeks 24-72</td>
<td>Establish imaging and image transmission technical processes: Ensure ability to utilize network compression for transmission purposes without data loss (lossless or clinical compression). Ensure ability to present current images along with all relevant prior images and reports from acquisition site is provided. Ensure exams are identified by site of original acquisition for command and control purposes. Create notification of study availability via local Picture Archive and Communication System (PACS) work list, independent of site of image acquisition. Image delivery will be transparent to the radiologist. 6) System will meet Air Force firewall requirements. 7) Establish bidirectional communication through Virtual Private Network to sites.</td>
</tr>
<tr>
<td>Weeks 24-72</td>
<td>Ensure system meets all integration requirements: Product shall have a Digital Imaging and Communications in Medicine (DICOM) transmitter available for local integration with other applications. Compose and submit to SGR a thorough document detailing the minimum Input/Output (I/O) & processing capabilities of any local stores to prevent queuing when the pilot is scaled up to the enterprise.</td>
</tr>
<tr>
<td>Weeks 24-72</td>
<td>Build a DICOM transmitter to relay images to secondary source: The transmitter will have the option to be turned off and will be deployed in the ‘off’ setting. 3) Before deploying the product, the transmitter will be tested in a developmental environment to gauge theoretical throughput. This will assist personnel interfacing with the system in knowing what throughput could be expected. Complete and review all Phase 2 development. Complete the Functional Demonstration between Wright-Patterson and Dover. 6) Submit the Phase 2 Report to SGR.</td>
</tr>
</tbody>
</table>

Phase 3 - Complete GUI Development and Implement a USAF and DoD accredited Distributed Radiology Dynamic Workload Allocation System prototype at select MTFs: (6 Months)
Timeframe: June 2008 – August 2010
Completed: August 2010
<table>
<thead>
<tr>
<th>Timeframe</th>
<th>Task</th>
</tr>
</thead>
</table>
| Weeks 72-96 | **Create a master command dashboard and local command interface**
The dashboard will be available for the appointed Air Force Radiologist to monitor the flow and statistics of teleradiology.
This command window will produce aggregate statistics of image reads and transfers.
Master Command Dashboard will be web-based.
Dashboard will compile aggregate and historical statistics to aid the SG Radiology representative in making strategic, enterprise radiology decisions.
The local command interface will be available to the local system administration designee to indicate site preferences.
These preferences will include, but are not limited to, availability to perform reads, desired type of reads and rules for export of data.
Local Command Interface will be web-based. |
| | **Ensure system meets all prescribed clinical requirements:**
The system must dynamically allocate workflow among Air Force Radiologists such that a balance workload exists that maximizes available manpower.
The system must be able to send differentiated types of images configured by Radiology representative through the local command panel.
The system must reliably credit Radiologists for their work.
The system must seamlessly display local and remote images in the same manner so that no prejudice or priority is given to different locations.
The system shall conform to all AF & DoD Security guidelines, HIPAA standards. Best practices for disaster recovery will be documented for an enterprise deployment.
The system must be able to deliver images in an expeditious manner such that patient care standards and read times are maintained.
Structure of system must allow for it to be the technical substrate for other DICOM format Telehealth initiatives (ophthalmology, pathology, etc.). |
| | **Determine referential system interfacing requirements:**
Create a document that outlines the ideal requirements of a referential imaging system that could interface with the Diagnostic Imaging System without performance degradation.
Indicate the robustness of hardware required on the Diagnostic Imaging side to support a secondary Referential Imaging system.
Create and submit to SGR a detailed disclaimer outlining the negative effects on the primary Diagnostic Imaging System if proper interfacing guidelines are not followed. |
<table>
<thead>
<tr>
<th>Timeframe</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weeks 72-96</td>
<td>Create a Combat Trauma Imaging Simulator: System will store HIPAA-compliant, combat radiology images for training purposes. Images will be available to read for training purposes. Practice interpretations will be contrasted against actual archived reads.</td>
</tr>
<tr>
<td>Weeks 96-136</td>
<td>Obtain necessary MAJCOM interim approvals to operate for length of Distributed Radiology Dynamic Workload Allocation research project. Originally placed in Phase VI</td>
</tr>
<tr>
<td>Weeks 96-136</td>
<td>Implementation: Install Distributed Radiology Dynamic Workload Allocation infrastructure at central location and select MTFs.</td>
</tr>
<tr>
<td>Weeks 96-136</td>
<td>Evaluation: Test installed Distributed Radiology Dynamic Workload Allocation at central location and select MTFs.</td>
</tr>
<tr>
<td>Weeks 96-136</td>
<td>Training: Train all users at select MTFs and central location. Provide training documentation and summary report to SGR.</td>
</tr>
<tr>
<td>Weeks 96-136</td>
<td>Go-Live and provide Distributed Radiology Dynamic Workload Allocation demonstration to USAF, including SGR.</td>
</tr>
<tr>
<td></td>
<td>Turn over Distributed Radiology Dynamic Workload Allocation hardware and UPMC/UPMC IMITs Center project team developed Distributed Radiology Dynamic Workload Allocation software to USAF for support. Submit Phase III-V report to SGR. NOTE: If Air Force approves Distributed Radiology Dynamic Workload Allocation project, full DIACAP certification will be required to replace timed approval to operate from participating MAJCOMs.</td>
</tr>
</tbody>
</table>

Phase 4 - Investigation for additional functionality in the Distributed Radiology Dynamic Workload Allocation System prototype: (4 Months)

Timeframe: December 2008 – August 2010
Completed: August 2010

<table>
<thead>
<tr>
<th>Timeframe</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weeks 96-112</td>
<td>Identify potential areas within the DRDWA prototype model for enhancement. Research an additional Resource Scheduling module. Identify potential vendor partnerships for module enhancements. 3D/4D Image Post-Processing Investigate program integration for Dictation and Transcription functionality. Image compression (Hardware / Software)</td>
</tr>
<tr>
<td>Weeks 96-112</td>
<td>Conduct thorough investigation on all identified improvement modules. Conduct research to identify best suited vendors for additional modules. Develop feasibility categories for each vendor and module.</td>
</tr>
<tr>
<td>Timeframe</td>
<td>Task</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>Weeks 96-112</td>
<td>Develop a feasibility study report based on Phase 4 finding for SGR. Document a plan for modification additions to be developed in Phase 5.</td>
</tr>
</tbody>
</table>

Phase 5 - Development on accepted functional additions to the Distributed Radiology Dynamic Workload Allocation System: (6 Months)

Timeframe: April 2009 – August 2010

Completed: August 2010

<table>
<thead>
<tr>
<th>Timeframe</th>
<th>Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weeks 112-136</td>
<td>Begin new development cycle based on 3 to 5 areas of additional functionality for the DRDWA. Test new development modules in the original DRDWA code base. Install new functional modules at prototype MTFs for testing.</td>
</tr>
<tr>
<td>Weeks 112-136</td>
<td>Demonstrate all new modules at prototype MTFs for SGR. Provide summary report to SGR on additional functionality demonstration.</td>
</tr>
</tbody>
</table>
Appendix 2: DRDWA Diagram

IMITS/AFMS Partner Collaboration
Appendix 3: 2008 ATA Abstract and Presentation: IMITS and DWA within the AFMS

1 Rasu B. Shrestha, MD, MBA, 2 Aaron C. Yanuzo, BS, MBA,1 Carlos Betancourt, BS, 2 Goran Momiroski, BS, MS,1 Thomas H. Coast, BS,1 Shawn Moroney, BS,1 James Mason, BS,3 Steve Livingston, BS4

1UPMC - Innovative Medical and Information Technologies Center (IMITS), Pittsburgh, PA; 2UPMC, Pittsburgh, PA;; 3USAF - Wilford Hall Medical Center, San Antonio, TX; 4SAIC - ICDB, San Antonio, TX

Air Force Medical Service (AFMS) and Military Health Service (MHS) have initiated several programs to address improvements in health care through information technology. One of these initiatives commissioned UPMC Innovative Medical and Information Technology (IMITS) Center to develop a prototype solution for Radiology Dynamic Workload Allocation (DWA) addressing radiology workflow deficiencies. It has become evident that the DWA prototype solution should also include enterprise clinical imaging workflow efficiency capabilities beyond radiology. Current AFMS staffing constraints, limited system capabilities, and a mobile patient population requires a sophisticated load-balanced distributed imaging workflow model and supporting infrastructure. These continually changing circumstances within the military healthcare community have identify the need for a sophisticated workflow model that supports an enterprise view. The prototype solution will result in increased productivity and enhanced patient care across the AFMS regardless of physician staffing constraints, systems capabilities and patient location. The infrastructure will support a load-balanced distributed workflow model across multiple Major Commands (MAJCOMS) and within a multiple Picture Archiving Communication Systems (PACS) environment. The prototype solution will allow dynamic bi-directional transmission of clinical studies and optimal workflow load-balancing to effectively leverage resources irrespective of location, PACS, or particular local workload demands. The DWA algorithmically distributes radiology cases throughout AFMS equally depending on radiologist availability, modality type, and location. Within a mobile patient population, this prototype solution will provide relevant patient history, to the radiologist, enabling an accurate diagnosis. With regard to workload distribution; these capabilities will allow maximum workload flexibility during radiologist deployments, TDY, on-call support, and the development and availability of subspecialty expertise. When the DWA proves to be an effective workload allocation tool, not only will patient care improve throughout the AFMS, but radiologists will be able to strengthen their practice by increasing their knowledge in subspecialty experiences.
IMITS Program Review

ATA 2008

IMITS Center Overview

- UPMC Innovative Medical and Information Technologies (IMITS) Center
 - FY01—IMITS Program U.S.A. Telehealth Initiative
 - FY02—DoD Program Management Office (PMO)
 - Continued funding for IMITS Program
 - FY03—IMITS Center
 - Incorporated as Wholly-Owned Non-Profit Subsidiary
 - Added Flexibility to Develop Robust Government Sector/Services Division
 - FY04—Continued growth and funding, established new research programs
 - Research and Physical Laboratory
 - Program and Process Management (PMP/IPM)
 - Acronyms and Pervasive Experience
 - Experience in Government Contracts, Government Contractors, Software Development, Systems and Specialization, Scale Engineering, Public, Academic, and Non-Profit sectors, Healthcare, medical products, and military (military and offsite)

UPMC Overview

- Integrated Healthcare System consisting of 20 hospitals
- Invested in development of leading healthcare technology
- Strategic Business Unit / Initiative
 - Dedicated to the commercialization of healthcare technology and telehealth initiatives
- Interoperability
 - Creates an infrastructure for vendor-neutral environment
 - Allows for centralized data/image acquisition

UPMC IMITS Program Overview

- Telehealth
- Telemedicine
- Evaluation

FY02 IMITS—All Projects Are Complete

- Telehealth
- Telemedicine
- Evaluation

FY04 IMITS

- Telehealth
- Telemedicine
- Evaluation

FY05 IMITS

- Telemedicine
- Evaluation
IMTS FY02 / FY04
FY02 Accomplishments (PASFR):
- Customized, Deployed, and Supported UPMC patented Dynamic Transfer of
 Syntex (DTS) technology

IMTS FY03 - Teleradiology
FY04 Accomplishments (PASFR):
- AFIRS Enterprise contribution not MIT/AFIRS solution
 - Build on ISRA/PACS positive relationship
 - Build on "DTS" success at Wright Patterson
 - Enhance patient care
 - Cost Effective
 - Efficient
- AFIRS/UPMC (DWA) Enterprise Radiology research
 - Development strategy (Statement of Work)
 - Confirm need
 - Identify and build business case
 - Identify and build AFIRS relationships

DWA - AFIRS Radiology Primary Requirements
- DWA Must Address...
 - Workload balance
 - Sub-specialty development/consultation
 - Workflow deficiencies
 - Patient care for mobile patient population
 - On-call rotation
 - Contract services
 - Business continuity plan / disaster recovery requirements
 - Clinical image and information exchange
- DWA Will Integrate With...
 - AFIRS Enterprise Radiology Business Model
 - AFIRS Radiology Requirements defined in the Radiant Capability
 Development Document (CCD)
 - Provides an infrastructure to address developing AFIRS Imaging Initiatives
 - MHS Wounded/Warrior Initiative

Final Report: FY05 IMITS: Information and Clinical Technologies for the Advancement of Healthcare
UPMC IMITS Teleradiology History
DTS to DWA

2003 - 2004
IMITS-D2 - Customized, Deployed and Supported UPMC patented Dynamic Transfer of Syntel (DTS) technology at Wright Patterson AFB

2005 - 2006
AFMS Enterprise contribution to MTF-to-MTF solution
- Build on BDA/UPMC positive relationship
- Build on DTS success at Wright Patterson
- Enhance patient care
- Cost Effective
- Efficient
AFMS/UPMC DWA Enterprise Radiology research
- Development strategy (Statement of Work)
- Confirm need
- Identify and build business rules
- Identify and build AFMS relationships

2006 - Current
IMITS-D2 - DWA - Enterprise contribution plan

UPMC DWA - AFMS Radiology Primary Requirements

- DWA must address the following
 - Workload balance
 - Sub-specialty development/consultation
 - Workflow deficiencies
 - Patient care for mobile patient population
 - On-call rotation
 - Contract services

UPMC DWA Project

- AFMS Enterprise Radiology Business Model
 - Addresses AFMS Radiology Requirements addressed in the Congressional Proposal and the RadiNet Capability Development Document
 - Provides an Infrastructure to address additional AFMS Imaging initiatives

- IMITS - DWA
 - Funded Nov 12/06
 - Four Phase Project
 - Currently in Phase II
 - Four Base Prototype

UPMC DWA Project Findings

- Requirement for DWA (Enterprise Radiology)
- Radiology business rules
- AFMS Support
 - UBAF/BGRI Chief of Teleheath collaboration (LICOL, LACI)
 - AFMS partner relationship required
- Multiple AFMS imaging initiatives
 - IMITS DWA: RadiNet / Wounded Warrior / Etc...
 - Clinical image and information exchange (SOA/CIIE) value
 - Business continuity plan / disaster recovery requirements
 - Network infrastructure investigation
 - Phase II prototype testing
 - AFMS PACS vendor review
DWA Project Status

- Phase I – Completed
 - Report submitted and approved by DOR

- Phase II – Initiated
 - Collaboration with AFMS partner, ICDB Program Office
 - Accreditation
 - CHG Interface management
 - IDBS (SOCIE)
 - Prototype Development
 - DWA software
 - Enterprise radiology business model
 - AFMS SOCIE infrastructure integration

DWA Next Steps

- Phase II
 - Software/Program Development
 - Radiologist collaboration
 - Prototype
 - Phase II Report

- Phase III
 - Phase II Demonstration
 - Security Accreditations
 - Second iteration development

- Phase IV
 - Verify and validate prototype at 4 MTFs

DWA Benefits / Summary

- Enterprise Radiology business model development
- AFMS Clinical Image and Information Exchange Foundation
- Financial
 - Reduction in long-term patient care costs
 - Minimizes contract services
 - Increases reimbursement – accurate RVU reporting
 - Leveraging internal AFMS system partners
- Foundation for Wounded Warrior
- Infrastructure for business continuity plan
- PACS strategic management model
- Approval for AFMS Enterprise Radiology Implementation
 - Mechanism for sustenance (Funds/PMO)
- Strategic partnership with SAIC/ICDB and the UPMC
 - IMITS Center

FY02/FY04 Telepathology Project

Collaborations
- UPMC IMITS Center
- UPMC Department of Pathology
- University of Pittsburgh
- USAF (Keesler, Eglin, Travis, Lackland, Offutt, and Nellis AFBs)

FY02 Accomplishments
- DoD approved static image equipment and software installed
 - Keesler
 - Eglin
 - Travis AFBs
- Whole slide imaging (WSI) equipment installed at Keesler AFB
- Static image case reviews initiated between USAF sites and UPMC
FY04 Accomplishments
UPMC conducted a series of validation studies for whole slide imaging (WSI)
• Quality Assurance – published
• Primary Diagnosis – published
UPMC challenged market leaders in WSI systems and assessed their capabilities.
Case studies continue between USAF sites and UPMC.

IMITs FY05 - Telepathology

Dates: 10/5/06 – 7/5/07
Project Manager – Leslie Anthony

Principal Investigator – Dr. Drexion Julius
• UPMC Derm-pathologist and University of Pittsburgh Professor of Pathology
• Experience in Telemedicine, Digital Pathology, and WSI

UPMC / AFMS - Purpose / Focus:
• Continue implementation / evaluation of Telepathology clinical systems / applications.
• Address the need to improve the level of USAF Telepathology experience, expertise, and adoption

Objectives:
• Evaluate the utility of advanced Telepathology technology / applications as an alternative means of health care delivery.
• Provide AFHS with strong rationale for the adoption of Telepathology methodologies, protocols, and processes.

Current Status:
• Digital Pathology Validation / Evaluation Studies
• USAF Approval Processes
• Development of Educational and Referral Library for Pathology – In Progress
• Equipment has been purchased – pending USAF Delivery
• Establishment of USAF Center for Pathology
• National Presentations
• Preparation for Conference
• Approval for Conference
• AHI

Next Steps:
• Examine Digital Microscopy / USAF
• Conduct Final Evaluation Studies
• Complete documentation and American College of Pathology
• Approval USAF Center
• Continue Digital Pathology Development

Additional Development Opportunities:
• Digital Development
• Whole Slide Imaging (WSI) Development
• Open Source Integration (OSI)
IMITS FY04 - Teleaudiology

Date: 10/05/04 - 12/31/04

Project Manager: Aaron Yamaz

Principal Investigator - Catharine Palmer, Ph.D. / Ben Sierra M.D., Col Retired
- Dr. Palmer is currently the Director of UPMC Audiology and Hearing Aids
- Dr. Sierra is the former USAF/VA/UPMC Audiology and serves as a VA/UPMC Audiology

Objectives:
- Conduct a feasibility study to evaluate methods to provide safe and accurate remote access to V/UPMC cochlear implant patients

UPMC / IMITS FY04 - Teleaudiology

Teleaudiology Primary Requirements

Cochlear implant remote access process must address:
- Process
 - Provide remote access cochlear implants from one location
 - Provide user friendly process and training for hearing impaired professionals
- Financial
 - Reduced civilian and USAF patient costs (PTO, Travel, etc.)
 - Reduced USAF provider costs
 - Increased civilian provider costs
 - Quality of patient care vs. increased costs to provide service
- Logistics
 - Providing patient care vs. availability of hearing impaired professionals
 - Providing patient care for mobile patient population
 - Providing active duty personnel the ability to return to current active duty assignments regardless of cochlear implant mapping requirement

IMITS FY04 - Teleaudiology Project

Risks / Complications:
- Manufacturer Participation
- Cochlear Implants / Advanced Electronic/Med-El
- Priority - High Touch Two (Financial Investment)
- FDA Approval Requirements
- DT/CMO/HHC/UPMC Requirements

Current Status:
- Conduct Feasibility Study - Preliminary for SIR Submission
- Quoted Remote Access Process (Define - cost criteria)
- Purchased Installed Required Equipment
- VTC Design
- Prototype Mobile Reception (Pending Delivery)
- UPMC - Prototype Mobile Unit (PENDING)
- Remote Control Software
- USAF - Developers
- UPMC - Wireless Remote Desktop

Next Steps:
- Submit Final Report / Feasibility Study
- FDA Approval - Remote Process
- Option 1 - Manufacturing Only
- Option 2 - Secure Communication Routing
- Support Investigator Research
- Support Manufacturer LCE
- Pending responses - SIR SAA - white paper submission May '07

IMITS FY04 - Teleaudiology Project

- Cochlear Implant Remote Access Model
- Remote Mapping Option Client/Server solution
IMITS FY04 - Teleaudiology

Project Other Usages

- **Medical / Surgical Procedures**
 - Capture an image (picture) of the tympanic membrane and middle ear
 - Diagnose blast injury exposures
 - Evaluate the post-auricular ear surgical site
 - Conduct pre-op assessments of the physical status of the ear

- **Audiology Procedures**
 - Usage on other devices that might be remotely programmed
 - Other implantable hearing devices, traditional programmable hearing aids
 - Usage in other populations / facilities that might be served
 - Native Americans and rural populations
 - VA and nursing homes

- **Speech Pathology**

IMITS FY04 - Teleophthalmology

Accomplishments

- **Process**
 - Digital images of the retina are captured with a non-mydriatic fundus camera –
 - No drop is required
 - Medical information and retinal images are packaged and transferred
 - Specialist uses customized software to grade the images
 - Results and recommendations for care are sent to the patient
 - Over 700 people with diabetes were screened for diabetic retinopathy
 - 89% had type 2 diabetes
 - 2% had severe eye disease
 - 51% had their last eye examination over a year ago

- **Next Steps**
 - Continuation of retinal screening software to integrate with PACS/MIS systems
 - Training diabetic educators on how to image
 - Link educational sessions with retinal screenings
 - Recruit health plans - target people with diabetes not receiving proper eye care
 - Promote retinal screenings in the consumer market place to maximize outreach
 - Such as: West Valley, Wild-West

UPMC

IMITS FY04 - Teleophthalmology

- **Purpose / Focus**
 - Help detect and treat diabetic retinopathy
 - Develop a modular, mobile image capture and transfer system
 - Develop an efficient workflow process for screening for diabetic retinopathy

- **Collaborators**
 - UPMC AFIS Center
 - University of Pittsburgh Diabetes Institute
 - University of Pittsburgh Department of Biomedical Informatics
 - Wofford Hall Medical Center

UPMC

IMITS FY04 - Teleophthalmology

- **Installed stationary equipment located in healthcare clinics will promote retinal screenings for people at highest risk for diabetic retinopathy**
- **Provided portable equipment transported to community events will enable retinal screenings for people in areas with poor access to eye care**

UPMC

IMITS FY04 - Teleophthalmology

- **Reading Software**
 - **OBSIDIAN**
 - **OBSIDIAN**

IMITS FY04 – Platelet Gel

UPMC/APMS – Purpose & Focus:
- Conduct multi-center, randomized, controlled study.
 - Provides evidence of benefits to demonstrate the safety and efficacy of Autologous Platelet Therapy in non-healing diabetic foot wounds.
 - Randomized 1:1 ratio.
 - Standard (control arm): Weekly visits, debridement of wound to necrotic tissue, using sharp instrument.
 - Application of Hydrogel.
 - Coverage of wound with Alimyn.
 - Autologous Platelet Therapy.
- Standard treatment as described above—except Hydrogel will be replaced by Autologous Platelet Therapy.

UPMC/APMS – Research Process:
- Protocol Development
- IRB Approval
- Start Study
- Data Collection
- Data Analysis
- Manuscript Preparation
- Peer Review
- Publication

FDA (IND/IDE) and IRB Process Overview:

- FDA/IND/IDE and IRB Process Overview
 - IND/IDE Protocol
 - FDA/IND/IDE Approval
 - IRB Approval
 - Study Start
 - Data Collection
 - Data Analysis
 - Manuscript Preparation
 - Peer Review
 - Publication

IMITS FY04 – Nursing Simulation

UPMC/APMS – Purpose & Focus:
- Provide an innovative simulation training program that simulates patient care scenarios.

Objectives:
- Nursing staff efficiency for transferring a patient
- Patient care and assessment will be assigned.
- Patient injury as a result of transfer-related events will be reduced.
- Patient satisfaction will improve.
- Incorporate simulation training techniques to address the following:
 - Transferring patient weighing 75 – 300 lbs to and from a stretcher or bed to or from wheelchair.
 - Lifting a "non-use of leg" patient weighing 75 – 175 lbs by two staff members.
 - Making a bed with the patient in place.

Current Status:
- Completed Project

Accomplishments:
- Completed 10 patient protocol for patient injury.
- Conducted a pilot study at UPMC/Fisher with positive results for UPMC.
- Publicized results of the study.
- Patient satisfaction.
- ASA.
- Potential to offer to IRB for review.
- UPMC will incorporate into the standard UPMC training requirements.

Next Steps:
- Transition curriculum into an UPMC institution training program.
- Offered at UPMC locations after patient injury is reduced.
- Offered as an external medical training course to non-UPMC medical professionals.
- Investigate other potential deployment of the curriculum to other medical organizations.
- Investigate other potential funding sources.
- Collaboration/alignment with the nursing curriculum collaboration between UPMC and University of Pittsburgh (UPMC), and the U.S.

UPMC/APMS – Nursing Simulation

UPMC/APMS – Purpose & Focus:
- Provide innovative simulation training program that simulates patient care scenarios.

Objectives:
- Nursing staff efficiency for transferring a patient.
- Patient care and assessment will be assigned.
- Patient injury as a result of transfer-related events will be reduced.
- Patient satisfaction will improve.
- Incorporate simulation training techniques to address the following:
 - Transferring patient weighing 75 – 300 lbs to and from a stretcher or bed to or from wheelchair.
 - Lifting a "non-use of leg" patient weighing 75 – 175 lbs by two staff members.
 - Making a bed with the patient in place.
UPMC MILS Center

IMITS FY04 - WHMC Simulation

 Dates FY04: 10/01/04 - 12/31/07

Project Manager: John Mechtel

Principle Investigator: Dr. Paul Phramspa

- UPMC Emergency Medicine Physician and University of Pittsburgh Professor
- Director of the WISER Institute of Simulation – University of Pittsburgh

UPMC / AFMS – Purpose / Focus:
- Determine if incorporating a simulation training program into WHMC existing conventional training program would provide the readiness skills required to prepare military staff for deployment.

Objectives:
- Conduct a WHMC simulation training (readiness skills) ‘Needs Analysis’
- Increase the competencies of military staffing
- Reduce the time and expense of training military staffing
- Evaluate the effectiveness of exporting the technology to off-site locations
- Evaluate providing distance educational training

Completed Project

Accomplishments:
- Developed an ‘Operational’ and submitted to DOD
- Established a WISER Simulation Center
- Developed web-based simulation and non-simulation based education for the DOD
- Established a Simulation Center at the University of Pittsburgh
- Created a digital learning management system (ILMS) for the WHMC
- Created several opportunities for potential collaborative efforts in the Asia / Pacific Rim
- Established a report to DOD for review

Next Steps:
- Continue to develop simulation education in conjunction with WHMC and the University of Pittsburgh
- Continue to develop simulation education in conjunction with the WHMC
- Investigate potential funding sources for the University of Pittsburgh simulation collaborative
- Investigate other potential funding sources for WISER

UPMC MILS Center

IMITS FY04 – University of Hawaii

 Dates FY04: 10/01/04 - 12/31/07

Project Manager: Aaron Yanato

Principle Investigator: Dr. Paul Phramspa

- UPMC Emergency Medicine Physician and University of Pittsburgh Professor
- Director of the WISER Institute of Simulation – University of Pittsburgh

UPMC / AFMS – Purpose / Focus:
- Establish a partnership between UPMC / WISER and the University of Hawaii
- Provide advanced medical education using simulation to Hawaii
- Establish a Simulation Center at the University of Hawaii
- Benefit to both institutions and the DOD
- UPMC / WISER's expertise and existing curriculum
- WISER expansion in the Asia / Pacific Rim (governmental and international organizations)
- Develop a course to utilize broadband connectivity to leverage existing faculty at both sites to deliver education, which can reduce the need and cost to have standing faculty at each site

Completed Project

Accomplishments:
- Developed WISER/3DWS - Immersive Website
- Developed the currently installed website at the University of Pittsburgh
- Created a ‘University of Hawaii’ subfolder on the Web-based delivery platform
- Established the University of Hawaii Immersive Medical Simulation Center
- Developed web-based delivery of training and non-simulation based education via the Internet
- Created the ability to share educational resources (syllabi, simulations, etc.)
- Developed WHMC/University of Hawaii (WISER) in the Asia / Pacific Rim
- Created several opportunities for potential collaborative efforts in the Asia / Pacific Rim
- Established a report to DOD for review

Next Steps:
- Continue to develop simulation education in conjunction with UPMC, WISER and the University of Hawaii
- Continue to develop simulation education in conjunction with the WHMC
- Investigate other potential funding sources for the University of Hawaii simulation collaborative
- Investigate other potential funding sources for WISER

UPMC MILS Center

IMITS FY04 – University of Hawaii

 Dates FY04: 10/01/04 - 12/31/07

Project Manager: Aaron Yanato

Principle Investigator: Dr. Paul Phramspa

- UPMC Emergency Medicine Physician and University of Pittsburgh Professor
- Director of the WISER Institute of Simulation – University of Pittsburgh

UPMC / AFMS – Purpose / Focus:
- Establish a partnership between UPMC / WISER and the University of Hawaii
- Provide advanced medical education using simulation to Hawaii
- Establish a Simulation Center at the University of Hawaii
- Benefit to both institutions and the DOD
- UPMC / WISER's expertise and existing curriculum
- WISER expansion in the Asia / Pacific Rim (governmental and international organizations)
- Develop a course to utilize broadband connectivity to leverage existing faculty at both sites to deliver education, which can reduce the need and cost to have standing faculty at each site

Completed Project

Accomplishments:
- Developed WISER/3DWS - Immersive Website
- Developed the currently installed website at the University of Pittsburgh
- Created a ‘University of Hawaii’ subfolder on the Web-based delivery platform
- Established the University of Hawaii Immersive Medical Simulation Center
- Developed web-based delivery of training and non-simulation based education via the Internet
- Created the ability to share educational resources (syllabi, simulations, etc.)
- Developed WHMC/University of Hawaii (WISER) in the Asia / Pacific Rim
- Created several opportunities for potential collaborative efforts in the Asia / Pacific Rim
- Established a report to DOD for review

Next Steps:
- Continue to develop simulation education in conjunction with UPMC, WISER and the University of Hawaii
- Continue to develop simulation education in conjunction with the WHMC
- Investigate other potential funding sources for the University of Hawaii simulation collaborative
- Investigate other potential funding sources for WISER

1 Rasu B. Shrestha, MD, MBA, 2 Aaron C. Yanuzo, BS, MBA, 1 Carlos Betancourt, BS, 2 Goran Momiroski, BS, MS, 1 Thomas H. Coast, BS, 1 Shawn Moroney, BS, 1 James Mason, BS, 3 Steve Livingston, BS 4

1UPMC - Innovative Medical and Information Technologies Center (IMITS), Pittsburgh, PA; 2UPMC, Pittsburgh, PA.; 3USAF - Wilford Hall Medical Center, San Antonio, TX; 4SAIC - ICDB, San Antonio, TX

The Distributed Radiology Dynamic Workload Allocation (DRDWA) system must effectively route radiological exams according to a multitude of criteria. An intelligent rules and routing engine is being developed by the UPMC Innovative Medical and Information Technology Center (IMITS) for dynamic routing of images throughout the Air Force Medical Service (AFMS). Each medical facility contained in the AFMS is ranked according to site availability, Radiologist staff, specialties, and throughput statistics. Each radiological exam contains a specific set of data, which can be interpreted by the rules and routing engine. Through a master command panel, administrators will be able to set preferences for each participating facility on a daily or weekly basis. Each preference will ultimately determine the optimal location for each exam to be diagnostically interpreted. This prototype solution routing algorithms will result in increased productivity and enhanced patient care across the AFMS regardless of AFMS physician staffing constraints, AFMS systems capabilities and patient location.
UPMC IMITs

Innovative Medical Information Technologies

Distributed Radiology Dynamic Workload Allocation (DRDWA)
A Collaborative Effort with the United States Air Force

April 7, 2008

2007-Pros IMITs Center

- Incorporated as Wholly Owned Non-Profit Subsidiary
- Continual growth and funding, establishing new research programs
- Researcher and Physician Leaders/Advisors
- Program and Process Management / PMP / Accounting and Finance Expertise

DoD Programs Overview

- UPMC Innovative Medical and Information Technologies (IMITs) Center
 - UPMC & DoD Congressional Research Projects
 - USAF, Army, Navy, and National Guard
 - Multiple UPMC Telemedicine Projects
 - Education
 - Evaluation
 - Extra Corporal Membrane Oxygenation
 - Pediatric Tele-Echo
 - Patient Diet Therapy
 - Simulation and Training
 - Tele-ICU
 - Telemental Health
 - Teleophthalmology
 - Telepsychology
 - Teledentistry

DRDWA - AFMS Radiology Primary Requirements

- DRDWA addresses the following
 - Workload balance
 - Sub-specialty development/consultation
 - Workflow deficiencies
 - Patient care for mobile patient population
 - On-call rotation
 - Contract services
 - Traditional Teleradiology
Principal Investigator

- Rasu B. Shrestha MD MBA
 - Medical Director, Radiology Informatics, University of Pittsburgh Medical Center (2007 – Present)
 - Informatics Director, Department of Radiology, University of Southern California (2001 - 2007)
 - Dr Shrestha has extensive knowledge of medical informatics and the business of healthcare.
 - Dr Shrestha was also Professor of Radiology Research at the Keck School of Medicine and has a unique blend of clinical as well as research skills in Medical Informatics.
 - Dr Shrestha has proven expertise in driving leading process improvement and major enterprise informatics implementations including PACS (Picture Archiving and Communication Systems), RIS (Radiology Informatics System), EMR (Electronic Medical Records), and Voice Recognition.

DRDWA Project

- AFMS Enterprise Radiology Business Model
 - RadNet
 - Infrastructure to address AFMS Imaging Initiatives
 - Pathology, Ophthalmology, Cardiology, etc.
 - Pending Congressional Proposal for Enterprise Imaging (CABMED)

- IMITS – DRDWA
 - Currently Funded thru 12/08
 - Possible extension to 12/09
 - Four Phase Project
 - Currently in Phase II
 - Four Medical Treatment Facilities (MTFs) Prototype

DRDWA Project Status

Phase I – Completed
- Radiology business rules
- AFMS Support
 - USAF/GOR Chief of TeleHealth collaboration LtCol. Lacy
 - RadNet – USAF
- AFMS partner relationship required
- Multiple AFMS imaging initiatives
 - IMITS DRDWA / RadNet / Wounded Warrior / Etc...
- Clinical Enterprise Imaging
 - Developed in Service Oriented Architecture (SOA)
- Business continuity plan / disaster recovery requirements
- AFMS PACS vendor review
 - Integration planning between Agfa, Fujii, Phillips, & GE

Phase II – In Process
- Collaboration with AFMS partner, ICDB Program Office
 - CHCS/SDP (Day 1) Interface management
 - EHR – (SOA/3CIE)
 - Network Infrastructure Investigation
- Core Software/Program Development
 - Radiologist collaboration (UPMC / USAF)
 - Interim Prototype Demonstration
 - Two Base Image Exchange – (TBD)
- Prototype Development
 - D/A software
 - Intelligent Image Routing / Engine
 - Enterprise radiology business model
 - AFMS 90/3CIE Infrastructure Integration
ORDWA Next Steps

• Phase III
 - Collect additional functionality requirements
 - Second iteration development

• Phase IV
 - Verify, validate, and test prototype at 4 MTFs
 • 4 MTF DRDWA Routing and Image Exchange
 • Wright-Patterson AFBS (Full)
 • Dover AFBS (Agfa)
 • MacDill AFBS (Agfa)
 • Scott AFBS (Agfa)
 - Investigate Information Assurance (IA) Accreditations
 • NASCOMAT/IAAT/ATMS certification for testing and production implementation
 • IV&AP certification

Prototype Development

• DRDWA software
• Intelligent Image Routing Engine
• Enterprise radiology business model
• AFMS SOA/CIIE infrastructure integration

• UPMC Interoperability
 - Strategic Business Model
 • Text
 • Imaging

UPMC Interoperability

IMITS/AFMS Partner Collaboration

DRDWA Benefits/Summary

• Enterprise Radiology business model development
• AFMS Clinical Image and Information Exchange Foundation
• Financial
 • Reduction in long-term patient care costs
 • Minimizes contract services
 • Increases reimbursement – accurate RVU reporting
 • Leveraging internal AFMS system partners
• Foundation for Wounded Warrior
 • Image exchange between active duty MTF and Veterans Affairs (VA)
• Infrastructure for business continuity plan
• Approval for AFMS Enterprise Radiology implementation
 • Mechanism for sustainment (Funds/POD)
• Strategic partnership with iCDB and the UPMC IMITS Center
Appendix 5: 2008 ATA Abstract and Presentation: Evaluating Feasibility of DWA for AFMS

Russell A. Silowash, BS, Robb Wilson, MA, Dana Grzybicki, MD, PhD

University of Pittsburgh, Department of Biomedical Informatics, Pittsburgh, PA

Because of the growing need of patient services and the desire to improve radiology practices within the Air Force Medical Service (AFMS), a Distributed Radiology Dynamic Workload Allocation (DRDWA) system has been developed by the UPMC Innovative Medical and Information Technology (IMITS) group. The DRDWA algorithmically distributes radiology cases throughout the AFMS equally – depending on radiologist availability, modality type, and location. In order to determine the feasibility, effectiveness, and utility of the DRDWA, IMITS has contracted the Evaluation Team from the University of Pittsburgh, Department of Biomedical Informatics to conduct rigorous assessments. There are three phases to the evaluation project. The first phase consists of qualitative questionnaires that record the perceptions, attitudes, and experiences of DRDWA programmers, radiologists, and support personnel. The second phase is based on the testing of the DRDWA. Baseline radiology statistics will be collected prior to and after the implementation of the DRDWA and consist of, but are not limited to the following: number of cases read per day per radiologist, preferred modality types, and workload limits and restrictions. Phase three of the project will consist of questionnaires that monitor final perceptions and attitudes of the AFMS users and support personnel. The Evaluation Team has begun to collect data. DRDWA programmers have completed questionnaires, and those results have been analyzed. One of the major goals is to improve workflow and communication between developers and AFMS key personnel. The Evaluation Team can use the feedback from completed questionnaires to obtain this goal. Current results will be reported. If the DRDWA proves to be an effective workload allocation tool, not only will patient care improve throughout the AFMS, but radiologists will be able to strengthen their practice by increasing their knowledge in subspecialty experiences. Results from completed phases will be discussed.
E-valuation Team
Evaluating the Feasibility of a Distributed Dynamic Workload Allocation System With the Air Force Medical Service

Authors
Russell Silowash, BS
Evaluating Team – Research Analyst

Robb Wilson, MA
Evaluating Team – Project Manager

Dana Gzybiicki, MD, PhD
Evaluating Team – Artificial Intelligence

Background
- Through appropriations in the 2004 and 2005 Defense Appropriations Acts, the Integrated Medical Information Technology System (IMITS) was created. The United States Air Force Medical Service (AFMS) and the United States Air Force Medical Center (UPMC) are the lead organizations for IMITS.
- The Dynamic Radiology Distributed Workload Allocation (DRA) is a radiology solution that will allocate workloads throughout the AFMS based on several variables.
- Radiologist Availability
- Modality
- Historical Site Performance
- Subspecialty

Introduction
- The Dynamic Radiology Distributed Workload Allocation (DRA) is a radiology solution that will allocate workloads throughout the AFMS based on several variables:
- Radiologist Availability
- Modality
- Historical Site Performance
- Subspecialty
Purpose of Evaluation Research

To examine questions related to:
- Technical validity
 - Do the components of the DRDWA do what is intended
 - Is it accurate and reliable
- Feasibility
 - Is it fast enough
 - Is it user friendly
- Effectiveness
 - Does it improve user's efficiency
 - Does it improve patient care

Evaluation Goals

- Determine the effectiveness and feasibility of a distributed workload system
 - Does it properly distribute radiology cases
 - Turn around time
 - Radiologist satisfaction
 - Workflow implementation factors

Methods

- Three phases to the Evaluation Team's plan
 1. Pre-DRDWA Implementation
 2. DRDWA Implementation
 3. Post-DRDWA Implementation

Pre-DRDWA Implementation

- Work flow analysis
 - Observations of radiology workflow patterns
 - Includes radiologists, clinicians, technicians, and other support personnel
 - Track radiology work-up through seven phases
Pre-DRDWA Implementation

- Interviews/Questionnaires
 - Radiologists
 - DRDWA Developers
 - Radiology Support Personnel

DRDWA Implementation

- DRDWA Performance Variables
 - Number of cases reallocated
 - Turn-around times
 - Length of queues at each base
 - Subspecialty exposure
- Required Training
- Workflow Changes

Pre-DRDWA Implementation

- Radiology Statistics
 - Cases examined per year per modality, teleradiology cases encountered, turn-around-time
 - Radiology Performance

Post-DRDWA Implementation

- Questionnaires/Interviews with all relevant personnel