Emerging Technologies for Software-Reliant Systems

Grace A. Lewis
glewis@sei.cmu.edu

SEI Webinar
February 24, 2011
<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 FEB 2011</td>
<td></td>
<td>00-00-2011 to 00-00-2011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emerging Technologies for Software-Reliant Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5d. PROJECT NUMBER</th>
<th>5e. TASK NUMBER</th>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carnegie Mellon University , Software Engineering Institute, Pittsburgh, PA, 15213</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>b. ABSTRACT</td>
<td>c. THIS PAGE</td>
<td>Same as Report (SAR)</td>
</tr>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98) Preprinted by ANSI Std Z39-18
The SEI Architecture Technology User Network (SATURN) Conference brings together experts to exchange best architecture-centric practices in developing, acquiring, and maintaining software-reliant systems.

www.sei.cmu.edu/saturn/2011
SEI Launches New Technology Blog

With posts written by staff members, the blog will provide the SEI audience with insights into the broad spectrum of work at the SEI via a two-way, read-write medium.

http://blog.sei.cmu.edu/
How to Participate Today

- Open and close your Panel
- View, Select, and Test your audio
- Submit text questions
- Q&A addressed at the end of today’s session
Today’s Speaker

Grace Lewis is a Senior Member of the Technical Staff at the Software Engineering Institute (SEI) within the Systems of Systems Practice (SoSP) initiative in the Research, Technology and Systems Solutions (RTSS) program. Her current interests and projects are in service-oriented architecture (SOA), cloud computing, context-aware applications and technologies for systems interoperability. Her latest publications include multiples reports and articles on these subjects and a book in the SEI Software Engineering Series. She is also a member of the technical faculty for the Master in Software Engineering program at Carnegie Mellon University (CMU). Grace holds a B.Sc. in Systems Engineering and an Executive MBA from Icesi University in Cali, Colombia; and a Master in Software Engineering from CMU.
Polling Question

What emerging technology do you think will have the most impact on your organization?

1. Cloud Computing
2. Mobile Computing
3. Social Computing
4. Data Intelligence
5. Not Sure
General Computing Trends

Several trends are shaping the way that organizations are building systems to support their business and operational needs:

- Loose coupling
- Global distribution of hardware, software and people
- Horizontal integration and convergence
- Virtualization
- Commodityization of technology
- End-user empowerment
- Large-scale data mining
- Low energy consumption
- Multi-core and parallelization
Loose Coupling

Coupling is the degree to which a system element relies on other system elements to perform its tasks.

Push for two types of loose coupling

- between capabilities and consumers of those capabilities to ease integration
- between system elements that contain capabilities and the interfaces exposed to consumers of those capabilities such that implementation details are hidden from consumers

Standardization of capability interfaces as well as ways to describe those capabilities
Global Distribution of Hardware, Software and People

Globalization is an essential part of software systems in many ways

- Software systems are often built by multinational teams
- Many organizations use offshoring as a way to reduce costs of software development
- Large web-based systems often use distributed caching services for better response times

Greater coordination of distributed hardware, software, and people—as well as better technologies for fault detection and recovery in distributed systems

Implication
Horizontal Integration and Convergence

Move from vertical to horizontal integration

• Vertical integration —
 single manufacturer controls platform, middleware, and applications, bundling them into solutions for delivery to customers

• Horizontal integration —
 applications are expected to run on any middleware and middleware is expected to run on any platform

In addition, applications are expected to exchange data seamlessly

Exposure of APIs at the middleware and platform levels in ways that permit developers to enable horizontal integration and convergence

Address data is used to invoke a map application that then invokes a “restaurant finder” application.

Implication
Virtualization

Virtualization in general is the abstraction of computing resources

- Network virtualization
- Storage virtualization
- Server virtualization

Server and storage virtualization are mostly adopted as an IT cost-savings strategy

Network virtualization is used mostly for easier network management but also IT savings

Implication

Use of efficient virtualization strategies as well as improved resource hiding and interfaces to virtualized resources
Commoditization of Technology

The price of technology is decreasing to a point that technology is ubiquitous

Because of commoditization, it is becoming difficult for technology vendors to differentiate their products or to hold large market shares for a long period of time

Technology vendors have to add value through customizing their products or create new products to continually differentiate themselves from their competitors

Implication

Systems have to be built in a way that minimizes the impact of changing technologies while making them accessible from a wide variety of devices
End-User Empowerment

Because of technology commoditization, end users are more competent with technology.

End users want technologies that will help them get access to information without having to wait for developers to create the proper programs and reports.

Awareness of what end users can and want to do, even if they have not been trained as software developers
Large-Scale Data Mining

Data is everywhere.

There is more and more data to analyze, process, and transform into useful information in real time.

More efficient algorithms for pre-processing, processing, clustering, and analyzing large amounts of data, as well as the proper storage and computation power to do this in near real time.

Use of data structures more efficient than relational databases
Low Energy Consumption

Driven by environmental concerns as well as the increased computing power in handheld devices

More research in energy efficiency, extending into algorithms and software that demand fewer computational cycles or take better advantage of existing computational resources
Multi-Core and Parallelization

Multi-core processors have two or more independent cores in order to process multiple instructions in parallel. However, the performance gained by use of multi-core processors highly depends on software algorithms and implementation that can be parallelized.

Implication
Better software algorithms and implementation that can take advantage of having multiple cores.
Technologies Supporting General Trends

- Cloud Computing
- Complex Event Processing (CEP)
- Data Intelligence
- End-User Programming (EUP)
- Green Computing
- Mobile Computing
- Opportunistic Networks
- Self-* Computing
- Social Computing
Cloud Computing

Distributed computing paradigm that focuses on providing users with access to scalable, virtualized hardware or software infrastructure over the internet

- **Infrastructure-as-a-Service (IaaS):** Computational infrastructure available over the internet, such as compute cycles and storage, which can be utilized in the same way as internally owned resources
- **Platform-as-a-Services (PaaS):** application development platforms—hardware and software components—that enable developers to leverage the resources of established organizations to create and host applications of a larger scale than an individual or small organization would be able to handle
- **Software-as-a-Service (SaaS):** business-specific that are licensed to customers for use as a service on demand

Related terms and technologies: grid computing, utility computing, on-demand computing, containerized data centers
Complex Event Processing (CEP)

Special form of event processing which operates on complex events.

- A complex event is “an event that is an abstraction of other events called its members”*
- Complex events are composed or derived from a set of events related by time, causality, abstraction, or other relationships.

CEP systems find patterns in events to detect certain business opportunities or threats**

Related terms and technologies: Event-Driven Architecture (EDA) and Event Stream Processing (ESP)

*** Example extracted from progresssoftware.com
Data Intelligence

Mining, aggregation, fusion, selection, search, and exploitation of huge volumes of disparate data coming from diverse sources

- Databases, sensor networks, human observation, human judgment, RSS feeds, GPS data, …

Just as information is considered to be a “step ahead” of simply data, the end goal of data intelligence is knowledge—the next step.

Relies on large-scale data mining in which large amounts of heterogeneous, raw data goes thorough a pre-processing stage, a transformation stage and finally a pattern recognition stage that produces knowledge.

Related terms: Information Superiority and MapReduce*

* http://www.mapreduce.org/
End-User Programming

The practice where end users write computer programs to satisfy a specific need, where the end-user programmers have not necessarily been taught how to write code in conventional programming languages, e.g. Excel spreadsheets and high-level scripting.*

Related terms and technologies: Intentional Programming**, Edge Programming***, Gesture Programming****

* http://eusesconsortium.org/
** http://www.intentsoft.com/
Green Computing

Green computing refers to "the study and practice of designing, manufacturing, using, and disposing of computers, servers, and associated subsystems—such as monitors, printers, storage devices, and networking and communications systems—efficiently and effectively with minimal or no impact on the environment.”*

Software-related “green practices”

• Algorithmic efficiency
• Platform virtualization
• Terminal servers (thin clients)

Related terms: Energy-Efficient Computing, Smart Grid**

** Smart Grid. http://en.wikipedia.org/wiki/Smart_grid
Mobile Computing

Generic term that describes the possibility to use computing technology “on the go” through devices such as SmartPhones, PDAs (personal digital assistants), portable computers, and wearable computers.

Mobile users expect seamless access to information anytime, anywhere, and from any device.

Related terms and technologies: location-based services, physical computing.
Opportunistic Networks (Oppnets)

Initially, a relatively small seed oppnet is deployed, which grows into a bigger expanded oppnet.*

Oppnet growth starts with detecting diverse systems existing in its relative vicinity.

Systems with best evaluations are invited by an oppnet to become its helpers.

The oppnet leverages vast collective capabilities and resources of its helpers, employing them to execute diverse tasks in support of its goals.

Self-* Computing

Systems that are aware of their environment and adaptable to changing characteristics of the environment

- Self-adaptation
- Self-awareness
- Self-configuration and reconfiguration
- Self-healing
- Self-knowledge of components
- Self-optimization
- Self-protection

Related terms and technologies: Autonomic Computing*, Biomimetics**, Sociomimetics***

*** http://www.trampolinesystems.com/
Social Computing

General term for an area of computer science that is concerned with the intersection of social behavior and computational systems*, **

Wide range of examples of social computing

• Social software: wikis, blogs, RSS, collaboration tools, social networking
• Socially-inspired computation: collaborative filtering, online auctions, prediction markets, reputation systems, computational social choice and social tagging

Related technologies: Enterprise 2.0***, social information processing****

Required Software Engineering Emphasis Due to Emerging Technologies (1)

Software Architecture

- Quality attribute characterization
- Model analyses

Mobile Applications

- Resource optimization
- Technology adaptation
- Integration with business systems and the cloud
- Security
Required Software Engineering Emphasis Due to Emerging Technologies (2)

Defensive Programming

- Security
- Auto-adaptation
- Globalization
- Exception handling due to lack of control over all system elements

Parallel Programming

- Multiple processors
- MapReduce (Hadoop)
- Resource optimization
Technologies Follow “Hype Cycles”

Technologies Follow “Hype Cycles”

- Wireless Power
- Media Tablet
- Augmented Reality
- Private Cloud Computing
- Internet TV
- Speech-to-Speech Translation
- 3D Printing
- Social Analytics
- Mobile Robots
- Video Search
- Autonomous Vehicles
- Extreme Transaction Processing
- Tangible User Interfaces
- Terahertz Waves
- Computer-Brain Interface
- Context Delivery Architecture
- Human Augmentation

3D Flat-Panel TVs and Displays
4G Standard
Activity Streams
Cloud Computing
Cloud/Web Platforms
Gesture Recognition
Mesh Networks: Sensor
Microblogging
E-Book Readers
Video Telepresence
Pen-Centric Tablet PCs
Electronic Paper
Speech Recognition
Location-Aware Applications
Predictive Analytics
Interactive TV
Internet Micropayment Systems
Biometric Authentication Methods
Mobile Application Stores
Idea Management
Consumer-Generated Media
Public Virtual Worlds

Technology Trigger
Peak of Inflated Expectations
Trough of Disillusionment
Slope of Enlightenment
Plateau of Productivity

Years to mainstream adoption:
○ less than 2 years
■ 2 to 5 years
● 5 to 10 years
▲ more than 10 years
✗ before plateau

Source: Gartner, Hype Cycle for Emerging Technologies, 2010
For More Information

Emerging Technologies for Software-Reliant Systems of Systems
Grace A. Lewis
September 2010

http://www.sei.cmu.edu/library/abstracts/reports/10tn019.cfm
Contact Information

Grace A. Lewis
Senior Member of the Technical Staff
Research, Technology and Systems Solutions (RTSS) Program
System of Systems Practice (SoSP) Initiative

Software Engineering Institute
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

Phone: +1 412-268-5851
Email: glewis@sei.cmu.edu
WWW: http://www.sei.cmu.edu/about/people/glewis.cfm
New SEI eLearning Portal Brings SEI Courses to You

The SEI is pleased to announce the new **SEI eLearning Portal**, a new platform for the development and delivery of SEI eLearning courses to conveniently meet your professional development needs.

The SEI eLearning Portal provides expert instruction as well as exercises, assessments, and other resources, creating a rich educational experience that is accessible by learners worldwide.

- learn at your own pace
- communicate easily with instructors
- access courses 24/7
- study at home, work, or on the road
- read materials online or download for later
- track your course progress

http://www.sei.cmu.edu/training/elearning/
CERT's Podcast Series: Security for Business Leaders

www.cert.org/podcast/
For more than 20 years, the SEI has been at the forefront of software engineering.

By becoming an SEI Partner, you join forces with a software engineering pioneer and an institute whose credibility provides a solid foundation during uncertain economic times.

SEI Partner Network

www.sei.cmu.edu/partners
Do you have the knowledge you need?

SEI Training

www.sei.cmu.edu/training