Maximizing the Investment from Your Software Product Portfolio

Linda Northrop

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213-2612
Maximizing the Investment from Your Software Product Portfolio

Carnegie Mellon University, Software Engineering Institute, Pittsburgh, PA, 15213

Approved for public release; distribution unlimited
Today’s Speaker

Linda Northrop is director of the Research, Technology, and System Solutions Program at the Software Engineering Institute where she leads the work in architecture-centric engineering, software product lines, systems of systems, and ultra-large-scale systems.

She is coauthor of *Software Product Lines: Practices and Patterns*. She recently led a year long study including leaders in the software community to define technical and social challenges to the creation of ultra-large-scale systems that will evolve in the next generation. The group published the study report, *Ultra-Large-Scale Systems: The Software Challenge of the Future* (ISBN 0-9786956-0-7).

Before joining the SEI, she was associated with both the United States Air Force Academy and the State University of New York as professor of computer science, and with both Eastman Kodak and IBM as a software engineer.
Polling Question 1

How did you hear about this webinar?

Email invitation from the SEI
SEI Website
Website with webinar calendar (ie www.webinar-directory.com)
Social Media site (LinkedIn, Twitter)
SEI Member Bulletin
Few Systems Are Unique

Most organizations produce families of similar systems, differentiated by features.
A reuse strategy makes sense.
Traditional reuse strategies have had little economic benefit.
Polling Question 2

Does your organization have a portfolio that contains multiple distinct systems having similar features and capabilities?

1) Yes
2) No
Reuse History

Focus was small-grained, opportunistic, and technology-driven. Results did not meet business goals.
Strategic Reuse is Needed for Business Benefits
What Is A Software Product Line?

A *software product line* is a set of software-intensive systems sharing a common, managed set of features that satisfy the specific needs of a particular market segment or mission and that are developed from a common set of core assets in a prescribed way.

- a new application of a proven concept
- an innovative, growing concept in software engineering
The Key Concepts

Use of a core asset base in production of a related set of products
The Key Concepts

- Use of a core asset base in production of a related set of products

Diagram:
- Architecture
- Production Plan
- Scope Definition Business Case
Polling Question 3

Are you familiar with the concept of software product lines?

1) Have never heard of it.
2) Have heard about it but never tried it.
3) Have tried it but have not been too successful.
4) Have tried it and was successful.
Widespread Use of Software Product Lines

Successful software product lines have been built for families of among other things

- mobile phones
- command and control ship systems
- satellite ground station systems
- avionics systems
- command and control/situation awareness systems
- pagers
- engine control systems
- mass storage devices
- billing systems
- web-based retail systems
- printers
- consumer electronic products
- acquisition management enterprise systems
- financial and tax systems
- medical devices
- farm fish management software
Specific Examples - 1

akvasmart
Feed control and farm management software

ABB
Gas turbines, train control, semantic graphics framework

Asea Brown Boveri

BOEING
Bold Stroke Avionics

Axis Communications
Computer printer servers, storage servers, network camera and scanner servers

Dialect
Internet payment gateway infrastructure products

ERICSSON
AXE family of telecommunications switches

E-Com Technology Ltd.
Medical imaging workstations

Elevator control systems

Elevator control systems

Firmware for computer peripherals

Firmware for computer peripherals

5ESS telecommunications switch

GM
Software for engines, transmissions and controllers

HP

Interferometer product line

IBM

LRG

Lsi Logic
RAID controller firmware for disk storage units

Lucent Technologies

Mobile phones, mobile browsers, telecom products for public, private and cellular networks

Nokia

NASA

Software Engineering Institute

Software Engineering Institute
Specific Examples - 2

<table>
<thead>
<tr>
<th>Company</th>
<th>Product/Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHILIPS</td>
<td>High-end televisions, PKI telecommunications switching system, diagnostic imaging equipment</td>
</tr>
<tr>
<td>RICOH</td>
<td>Office appliances</td>
</tr>
<tr>
<td>S A L i O N</td>
<td>Revenue acquisition management systems</td>
</tr>
<tr>
<td>TELVENT</td>
<td>Industrial supervisory control and business process management systems</td>
</tr>
<tr>
<td>BOSCH</td>
<td>Automotive gasoline systems</td>
</tr>
<tr>
<td>SIEMENS</td>
<td>Software for viewing and quantifying radiological images</td>
</tr>
<tr>
<td>symbian</td>
<td>EPOC operating system</td>
</tr>
<tr>
<td>NAVSEA</td>
<td>Test range facilities</td>
</tr>
<tr>
<td>Rockwell Collins</td>
<td>Commercial flight control system avionics, Common Army Avionics System (CAAS), U.S. Army helicopters</td>
</tr>
<tr>
<td>U.S. Army</td>
<td>Command and control simulator for Army fire support</td>
</tr>
<tr>
<td>Motorola</td>
<td>Pagers product line</td>
</tr>
<tr>
<td>testo</td>
<td>Climate and flue gas measurement devices</td>
</tr>
<tr>
<td>alltel</td>
<td>Support software</td>
</tr>
</tbody>
</table>

Linda Northrop
© 2010 Carnegie Mellon University
Real World Motivation

Organizations use product line practices to:

- achieve large scale productivity gains
- improve time to market
- maintain market presence
- sustain unprecedented growth
- achieve greater market agility
- compensate for an inability to hire
- enable mass customization
- get control of diverse product configurations
- improve product quality
- increase customer satisfaction
- increase predictability of cost, schedule, and quality
Cummins Inc.: Diesel Control Systems

Over 20 product groups with over 1,000 separate engine applications

- Product cycle time was slashed from 250 person-months to a few person-months.
- Build and integration time was reduced from one year to one week.
- Quality goals are exceeded.
- Customer satisfaction is high.
- Product schedules are met.
Second Generation Product Lines

Cummins launched a Core II product line
- not from emergency business needs, as was Core I
- from a mature realization that the organization could do better

Core II includes
- a new core asset base
- newly derived products
- a new product line process
- a new production method, strategy, and plan
- a new organizational structure
- a new operational concept
- a powerful, new toolset

Core II is meeting its goals.

It is a much fuller and more mature product line capability.
Software Product Lines Today at Cummins

The overall impact of a software product line approach on Cummins as measured by Core II results includes:

- freed up resources (time, money, and people) to invest in new technologies and state-of-the-art tools and simulation capabilities
- an all-time high in product quality
- continuously shrinking time to market
- an ability to handle increased breadth and complexity of products
- an ability to outpace its market rivals

Product lines have now become institutionalized at Cummins.
Software Product Lines Value Proposition

The systematic use of software product line practices results in significant organizational benefits including

- increased quality
 - by as much as 10x

- decreased cost
 - by as much as 60%

- decreased labor needs
 - by as much as 87%

- decreased time to market (to field, to launch...)
 - by as much as 98%

- ability to move into new markets
 - in months, not years
The Value of Options

A software product line approach provides options to future market opportunities.

• The exact opportunities and their certainty are impossible to predict.
• Organizations need a way to conduct product experiments in low-cost, low-risk ways.
• Software product lines permit those kind of experiments through predefined variation points that can be exercised to meet new needs.
Reuse History: From Ad Hoc To Systematic

1960s SUBROUTINES
1970s MODULES
1980s OBJECTS
1990s COMPONENTS
2000s SERVICES
SOFTWARE PRODUCT LINES
Software Product Lines Are Not

Clone and own: single-system development with reuse
• modifying code as necessary for the single system only

Fortuitous small-grained reuse
• reuse libraries containing algorithms, modules, objects, or components

Just component-based or service-based development
• selecting components or services from an in-house library, the marketplace, or the Web with no architecture focus

Just versions of a single product
• rather, simultaneous release and support of multiple products

Just a configurable architecture
• a good start, but only part of the reuse potential

Just a set of technical standards
• constraining choices without an architecture-based reuse strategy
Software Product Lines Are

Software product lines involve strategic, planned reuse that yields predictable results.
Polling Question 4

Do you use a form of software reuse at your organization?

1) clone and own
2) reuse library or repository
3) component-based or service-based approaches
4) application frameworks or standard architectures
5) some combination of the above
The product line architecture is central to success.
The SEI Framework for Software Product Line Practice is a conceptual framework that describes the essential activities and twenty-nine practice areas necessary for successful software product lines.

The Framework, originally conceived in 1998, is evolving based on the experience and information provided by the community.

Version 4.0 – in *Software Product Lines: Practices and Patterns*

Three Essential Activities

All three activities are interrelated and highly iterative.

There is no “first” activity.

• In some contexts, existing products are mined for core assets.
• In others, core assets may be developed or procured for future use.

There is a strong feedback loop between the core assets and the products.

Strong management at multiple levels is needed throughout. Management oversees core asset and product development. Management orchestrates all activities and processes needed to make the three essential activities work together.
Driving the Essential Activities

Supporting the essential activities are essential practices that fall into practice areas. A **practice area** is a body of work or a collection of activities that an organization must master to successfully carry out the essential work of a product line.

The practice areas represent common activities in software development that are adapted to the needs of a product line approach.
Framework

Version 5.0

Essential Activities

Practice Areas

<table>
<thead>
<tr>
<th>Software Engineering</th>
<th>Technical Management</th>
<th>Organizational Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture Definition</td>
<td>Configuration Management</td>
<td>Building a Business Case</td>
</tr>
<tr>
<td>Architecture Evaluation</td>
<td>Make/Buy/Mine/Commission Analysis</td>
<td>Customer Interface Management</td>
</tr>
<tr>
<td>Component Development</td>
<td>Measurement and Tracking</td>
<td>Developing an Acquisition Strategy</td>
</tr>
<tr>
<td>Mining Existing Assets</td>
<td>Process Discipline</td>
<td>Funding</td>
</tr>
<tr>
<td>Requirements Engineering</td>
<td>Scoping</td>
<td>Launching and Institutionalizing</td>
</tr>
<tr>
<td>Software System Integration Testing</td>
<td>Technical Planning</td>
<td>Market Analysis</td>
</tr>
<tr>
<td>Understanding Relevant Domains</td>
<td>Technical Risk Management</td>
<td>Operations</td>
</tr>
<tr>
<td>Using Externally Available Software</td>
<td>Tool Support</td>
<td>Organizational Planning</td>
</tr>
</tbody>
</table>

Key:

- New Name and Substantial Change
- Substantial Change

Linda Northrop

© 2010 Carnegie Mellon University
Dilemma: How Do You Apply The 29 Practice Areas?

PRACTICE AREAS

<table>
<thead>
<tr>
<th>Software Engineering</th>
<th>Technical Management</th>
<th>Organizational Management</th>
</tr>
</thead>
</table>

GUIDANCE

- Case Studies
- Patterns
- Probe
- Curriculum
Case Studies

CelsiusTech – CMU/SEI-96-TR-016
http://www.sei.cmu.edu/publications/documents/01.reports/96.tr.016.html

Cummins, Inc. *Software Product Lines: Practices and Patterns*

Market Maker *Software Product Lines: Practices and Patterns*

NRO/Raytheon – CMU/SEI-2001-TR-030
http://www.sei.cmu.edu/publications/documents/01.reports/02tr030.html

NUWC – CMU/SEI-2002-TN-018
http://www.sei.cmu.edu/publications/documents/02.reports/02tn018.html

Salion, Inc. – CMU/SEI-2002-TR-038
http://www.sei.cmu.edu/publications/documents/02.reports/02tr038.html

U.S. Army – CMU/SEI-2005-TR-019
http://www.sei.cmu.edu/publications/documents/05.reports/05tr019.html
Software Product Line Practice Patterns

PATTERN

Context
Organizational Situation

Problem
What part of a product line effort needs to be accomplished

Solution
Grouping of practice areas
Relations among these practice areas (and/or groups if there is more than one)
Current Set Of Patterns

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Variants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assembly Line</td>
<td></td>
</tr>
<tr>
<td>Cold Start</td>
<td>Warm Start</td>
</tr>
<tr>
<td>Curriculum</td>
<td></td>
</tr>
<tr>
<td>Each Asset</td>
<td>Each Asset Apprentice Evolve Each Asset</td>
</tr>
<tr>
<td>Essentials Coverage</td>
<td></td>
</tr>
<tr>
<td>Factory</td>
<td>Adoption Factory</td>
</tr>
<tr>
<td>In Motion</td>
<td></td>
</tr>
<tr>
<td>Monitor</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>Process Improvement</td>
</tr>
<tr>
<td>Product Builder</td>
<td>Product Gen</td>
</tr>
<tr>
<td>Product Parts</td>
<td>Green Field Barren Field Plowed Field</td>
</tr>
<tr>
<td>What to Build</td>
<td>Analysis Forced March</td>
</tr>
</tbody>
</table>
Help To Make It Happen

PRACTICE AREAS

| Software Engineering | Technical Management | Organizational Management |

GUIDANCE

- Case Studies
- Patterns
- Probe
- Curriculum
What Is An SEI Product Line Technical Probe (PLTP)?

The SEI PLTP is a method for examining an organization’s readiness to adopt or ability to succeed with a software product line approach.

- It is a diagnostic tool based on the SEI Framework for Software Product Line Practice.
- The 29 practice areas are the basis of data collection and analysis.
Help To Make It Happen

PRACTICE AREAS

| Software Engineering | Technical Management | Organizational Management |

GUIDANCE

- Case Studies
- Patterns
- Probe

Curriculum
The SEI Software Product Line Curriculum

Three Certificate Programs

<table>
<thead>
<tr>
<th>Five Courses</th>
<th>Software Product Line Professional</th>
<th>PLTP Team Member</th>
<th>PLTP Leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Product Lines</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Adopting Software Product Lines</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Developing Software Product Lines</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>PLTP Team Training</td>
<td></td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>PLTP Leader Training</td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>PLTP Lead Observation</td>
<td></td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>

✓: course required to receive certificate
Adding An Adoption Roadmap

Core Asset Development

Product Development

ESSENTIAL ACTIVITIES

Management

PRACTICE AREAS

<table>
<thead>
<tr>
<th>Software Engineering</th>
<th>Technical Management</th>
<th>Organizational Management</th>
</tr>
</thead>
</table>

GUIDANCE

Case Studies
Patterns
Probe
Curriculum

ADOPTION FACTORY
The Product Line Adoption Endgame

To have an **operational software product line.**

To do that, an organization must

- have
 - a core asset base
 - supportive processes and organizational structures
- develop products from that asset base in a way that achieves business goals
- prepare itself to institutionalize product line practices
The SEI Adoption Factory Pattern

Phases

<table>
<thead>
<tr>
<th>Establish Context</th>
<th>Establish Production Capability</th>
<th>Operate Product Line</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Each Asset</td>
<td></td>
</tr>
<tr>
<td>What to Build</td>
<td>Product Parts</td>
<td>Product Builder</td>
</tr>
<tr>
<td>Process Discipline</td>
<td>Assembly Line</td>
<td></td>
</tr>
</tbody>
</table>

Focus Areas

- **Product**
- **Process**
- **Organization**

Informs and information flow

Supports
Associated Practice Areas

<table>
<thead>
<tr>
<th></th>
<th>Establish Context</th>
<th>Establish Production Capability</th>
<th>Operate Product Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>• Marketing Analysis</td>
<td>• Requirements Engineering</td>
<td>• Requirements Engineering</td>
</tr>
<tr>
<td></td>
<td>• Understanding Relevant Domains</td>
<td>• Architecture Definition</td>
<td>• Architecture Definition</td>
</tr>
<tr>
<td></td>
<td>• Technology Forecasting</td>
<td>• Architecture Evaluation</td>
<td>• Architecture Evaluation</td>
</tr>
<tr>
<td></td>
<td>• Building a Business Case</td>
<td>• Mining Existing Assets</td>
<td>• Mining Existing Assets</td>
</tr>
<tr>
<td></td>
<td>• Scoping</td>
<td>• Component Development</td>
<td>• Component Development</td>
</tr>
<tr>
<td></td>
<td>• Using Externally Available Software</td>
<td>• Using Externally Available Software</td>
<td>• Using Externally Available Software</td>
</tr>
<tr>
<td></td>
<td>• Software System Integration</td>
<td>• Software System Integration</td>
<td>• Software System Integration</td>
</tr>
<tr>
<td></td>
<td>• Testing</td>
<td>• Testing</td>
<td>• Testing</td>
</tr>
<tr>
<td>Process</td>
<td>• Process Discipline</td>
<td>• Make/Buy/Mine/Commission</td>
<td>• Measurement and Tracking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Configuration Management</td>
<td>• Technical Planning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Tool Support</td>
<td>• Technical Risk Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Measurement and Tracking</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Technical Planning</td>
<td></td>
</tr>
<tr>
<td>Organization</td>
<td>• Launching and Institutionalizing</td>
<td>• Launching and Institutionalizing</td>
<td>• Measurement and Tracking</td>
</tr>
<tr>
<td></td>
<td>• Funding</td>
<td>• Funding</td>
<td>• Technical Risk Management</td>
</tr>
<tr>
<td></td>
<td>• Structuring the Organization</td>
<td>• Structuring the Organization</td>
<td>• Customer Interface Management</td>
</tr>
<tr>
<td></td>
<td>• Operations</td>
<td>• Operations</td>
<td>• Organizational Risk Management</td>
</tr>
<tr>
<td></td>
<td>• Organizational Planning</td>
<td>• Organizational Planning</td>
<td>• Organizational Planning</td>
</tr>
<tr>
<td></td>
<td>• Customer Interface Management</td>
<td>• Customer Interface Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Organizational Risk Management</td>
<td>• Organizational Risk Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Developing an Acquisition Strategy</td>
<td>• Developing an Acquisition Strategy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Training</td>
<td>• Training</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table outlines the associated practice areas for establishing context, producing capabilities, and operating product lines. Each area is further divided into specific tasks or activities. The content is from the Software Engineering Institute and Carnegie Mellon University. © 2010 Carnegie Mellon University.
What’s Different About Reuse With Software Product Lines?

- Business dimension
- Iteration
- Architecture focus
- Preplanning
- Process and product connection
Polling Question 5

If you have been involved in a product line effort, where was the biggest challenge?

1) architecture
2) variation management
3) funding
4) management support
5) other
Remaining Challenges

Variation mechanisms and variation management

Automating all or part of the production process

Lowering adoption cost

Distributed development and evolution

Scaling to systems of systems and ultra-large-scale systems
Challenges - Emerging Solutions

Variation mechanisms and variation management
- AOP/AOSD
- SOA
- End-User Programming

Automating all or part of the production process
- MDA
- DSL
- DDD
- Generative Programming

Lowering adoption cost
- Agile, Phased Approaches
- Tool Support

Distributed development and evolution
- Open Source Models
- Collaborative Environments
- Virtual Worlds

Scaling to systems of systems and ultra-large-scale systems
- Product lines reduce interoperability issues
Product Lines of the Future

Will harness new and emerging technologies
- metadata
- automated derivation
- SOA
- end-user programming
and new forms of collaboration
- cooperative models
- globalization
- virtual worlds
- collaborative environments
to make product lines more doable, pliable, and dynamic.

Tomorrow’s product lines will accrue even greater benefits than those already demonstrated.
Summary of SEI Contributions

Models and Guidance
- A Framework for Software Product Line Practice℠
- Software Product Line Acquisition: A Companion to A Framework for Software Product Line Practice
- Product line practice patterns
- Product line adoption roadmap
- Pedagogical product line

Methods and Technology
- Product line analysis
- Architecture definition, documentation, evaluation (ATAM®), and recovery
- Mining assets
- Production planning
- Structured Intuitive Model for Product Line Economics (SIMPLE)
- Product Line Technical Probe℠ (PLTP℠)
- Product Line Quick Look (PLQL)
- Interactive workshops in product line measurement, variability management, product line management
- Prediction-enabled component technology

Book
Software Product Lines: Practices and Patterns

Curriculum and Certificate Programs
- Five courses and three certificate programs
- Product Line Executive Seminar

Conferences and Workshops

Technical Reports, publications, and Web site
Ongoing SEI Product Line Research

Product derivation
- variation mechanisms
- production plan definition and implementation
- product line production including automated derivation

Product line adoption strategies
- economic models
- acquisition strategies

Adapting product line concepts to exploit new technologies and serve new contexts
- system of systems
- service-oriented architectures
- open source
- globalization
- ultra-large scale systems
In A Nutshell

Software product lines epitomize the concept of strategic, planned reuse.

The product line concept is about more than a new technology. It is a new way of doing one’s software business.

There are essential product line activities and practices areas as well as product line patterns to make the move to product lines more manageable.

PRACTICE AREAS

<table>
<thead>
<tr>
<th>Software Engineering</th>
<th>Technical Management</th>
<th>Organizational Management</th>
</tr>
</thead>
</table>

ESSENTIAL ACTIVITIES

- Core Asset Development
- Product Development
- Management
Final Notes

Research in software product lines was inspired by the proven benefits of product line approaches in manufacturing, and was buoyed by the advent of object and component technology.

The SEI has been a leader in developing a body of knowledge and a set of standard models for software product lines.

Early product line adopters, like Cummins, Inc., are now on second generation product lines that have resulted in even far greater benefits.

Service-oriented and model-driven approaches, as well as developments in collaborative philosophies and environments, are extending the power of product line practice in exciting new ways.

Future product lines will make much greater use of dynamic variation and enable mass customization in ways not achievable today.
NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the rights of the trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the copyright license under the clause at 252.227-7013.
Questions – Now Or Later

Linda Northrop
Director, Research, Technology, and System Solutions Program
Telephone: 412-268-7638
Email: lmn@sei.cmu.edu

U.S. Mail:
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-3890

World Wide Web:
http://www.sei.cmu.edu/productlines
SEI Fax: 412-268-5758