EFFECT OF IN-SITU CURE ON MEASUREMENT OF GLASS TRANSITION TEMPERATURES IN HIGH-TEMPERATURE THERMOSETTING POLYMERS

Andrew J. Guenthner, Josiah T. Reams, Michael D. Ford, Kevin R. Lamison, and Joseph M. Mabry

Air Force Research Laboratory (AFMC)
AFRL/RQRP
10 E. Saturn Blvd.
Edwards AFB CA 93524-7160

Air Force Research Laboratory (AFMC)
AFRL/RQR
5 Pollux Drive
Edwards AFB CA 93524-7048

Distribution A: Approved for Public Release; Distribution Unlimited. PA#15279

Briefing charts presented at SAMPE Spring Meeting 2015 in Baltimore, MD; 20 May 2015.

Using the dicyanate ester of bisphenol E (also known as Primaset LECy), we have illustrated the difficulties inherent in measurement of the glass transition temperature of this high-temperature thermosetting polymer via dynamic mechanical analysis alone. These difficulties result from the residual cure of samples heated beyond their glass transition temperatures. Comparative DSC and oscillatory TMA studies carried out using a variety of cure conditions showed that simply increasing the heating rate did not suppress the residual cure, although in many cases it allowed the glass transition to become apparent before the onset of rapid residual cure. The results indicated that ensuring the reliability of dynamic mechanical measurements of the glass transition temperature is very difficult to accomplish without the knowledge of residual cure properties provided by methods such as DSC.

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using the dicyanate ester of bisphenol E (also known as Primaset LECy), we have illustrated the difficulties inherent in measurement of the glass transition temperature of this high-temperature thermosetting polymer via dynamic mechanical analysis alone. These difficulties result from the residual cure of samples heated beyond their glass transition temperatures. Comparative DSC and oscillatory TMA studies carried out using a variety of cure conditions showed that simply increasing the heating rate did not suppress the residual cure, although in many cases it allowed the glass transition to become apparent before the onset of rapid residual cure. The results indicated that ensuring the reliability of dynamic mechanical measurements of the glass transition temperature is very difficult to accomplish without the knowledge of residual cure properties provided by methods such as DSC.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT Unclassified</td>
</tr>
<tr>
<td>b. ABSTRACT Unclassified</td>
</tr>
<tr>
<td>c. THIS PAGE Unclassified</td>
</tr>
<tr>
<td>17. LIMITATION OF ABSTRACT SAR</td>
</tr>
<tr>
<td>18. NUMBER OF PAGES 22</td>
</tr>
<tr>
<td>19a. NAME OF RESPONSIBLE PERSON Joseph Mabry</td>
</tr>
<tr>
<td>19b. TELEPHONE NO (include area code) 661-275-5857</td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18
Effect of In-Situ Cure on Measurement of Glass Transition
Temperatures in High-Temperature Thermosetting Polymers
Andrew J. Guenthner,1 Josiah T. Reams,2 Michael D. Ford2,
Kevin R. Lamison,2 Joseph M. Mabry1

1 Air Force Research Laboratory, Aerospace Systems Directorate, Edwards AFB, CA
2 ERC Incorporated, Edwards AFB, CA

Presenter: Dr. Andrew Guenthner
Air Force Research Laboratory
andrew.guenthner@us.af.mil
(661) 275-5769

20 May 2015

DISTRIBUTION A: Approved for public release; distribution is unlimited.
Outline: The Effects of “Frozen” Chemistry

• Background: Importance of Conversion
• Progress in Conversion Measurement
• Difficulties in Glass Transition Temperature Measurement
• Solutions that Work (and Some that Do Not Work)

Acknowledgement: Air Force Office of Scientific Research; AMG Group Members

DISTRIBUTION A: Approved for public release; distribution is unlimited.
Model High-Temperature Thermosetting Polymers: Cyanate Esters

- A single, known reaction predominates.
- Methods for assessing the extent of side reactions, and for minimizing side reactions, are known.
- The structure of even fully cured networks is easily analyzed and described quantitatively.
- Samples are easy to prepare in the laboratory; cure conditions are readily manipulated over a very wide range of rates.

Principal reaction:
\[3 \text{OCN} \rightarrow \]
Selectivity: 80% - > 98%
\[\Delta H_f = -110 \text{kJ} / \text{eq.} \]
Conversion kinetics: Auto-catalytic (may be catalyzed)
Typical conversion rate: \(~50\% / \text{hr} \)
\(\text{(max) at } 250 \, ^\circ C \) (uncatalyzed)
Extend of conversion: Limited to \(T_G = T_{\text{cure}} + 30-60 \, ^\circ C \)

DISTRIBUTION A: Approved for public release; distribution is unlimited.
Cyanate Esters: Next-Generation High-Performance Composite Resin

Photo credits: (clockwise from "chip housings" Antonio Pedreira, Omegatron [Wikimedia Commons], FAA, US Navy (Marvin E. Thompson), US Coast Guard, Gerritte (Wikimedia Commons). Background image: NASA. All images are public domain or freely distributed.

DISTRIBUTION A: Approved for public release; distribution is unlimited.
Cyanate Ester Networks: Defined by Composition and Conversion

The diBenedetto fit parameter for “fully cured T_G” is 558 °C, but the highest T_G actually measured is 419 °C.

- In addition to glass transition temperature, many properties, such as density and water uptake, are mainly functions of conversion and monomer type.

“ESR255”

“LECy”

DISTRIBUTION A: Approved for public release; distribution is unlimited.
Conversion and T_G Are Intrinsically Linked in Cyanate Esters

- Under non-degrading conditions ($T < 300 \, ^\circ C$), if conversion changes, then the T_G must also change with it. If the T_G changes, then cure has occurred. The only observed changes should be increases over time!

- A measurement of conversion is a measurement of T_G. Measurements of conversion and T_G may be combined to yield a more precise estimate of both parameters.

- Any measurement that indicates a change in conversion, such as non-reversible heat flow in a DSC experiment, also measures the rate of change of T_G.

- The preceding statements are true for any thermosetting network that forms by a single reaction method and is not subject to degradation during measurement.

DISTRIBUTION A: Approved for public release; distribution is unlimited.
Conversion by DSC: The Usual Way

Typical Residual Cure

What about this case?

Looks like it melts, except that it cannot and does not melt!

Even in samples with well-defined exotherms, there is ambiguity...

At high conversions, the typical approaches become impossible

- Current solution: live with absolute error of up to 0.05 in conversion by DSC, corresponding to predicted T_G uncertainty of 25 – 50 °C.

DISTRIBUTION A: Approved for public release; distribution is unlimited.
Re-scanning shows us where the baseline is above T_G, how T_G shifts, how T_G is partly hidden, and where instability starts

- Better solution: use the re-scan as a baseline (Kessler group).

Enthalpy due to relaxation at the transition, followed by a little residual cure!

... and it works at high conversions

DISTRIBUTION A: Approved for public release; distribution is unlimited.
Building a Baseline from Re-Scanning

Typical Residual Cure

What about this case?

Magnitudes of step change should match (roughly), shift in step change should fit diBenedetto equation

... and the exact same algorithm works well with samples at high conversion

- Even better solution: use the re-scan + account for shift in T_G & instability (our idea).

DISTRIBUTION A: Approved for public release; distribution is unlimited.
Estimating Uncertainties

- Uses – range of possible offset values (light red); range of possible instability corrections (orange); estimated error in slope of extrapolation in re-scan using 0.05 W/g expected size of step change (purple). These errors are assumed to be uncorrelated.
Assessment of New Baseline Method

Old Way: Re-scan with range of possible offsets = baseline

\[y = 659.81x - 378.78 \]
\[R^2 = 0.9045 \]

New Way

\[y = 713.61x - 401.89 \]
\[R^2 = 0.9793 \]

- Uncatalyzed LECy with cure at 170 °C / 24 hr + post-cure from none to 240 °C for 1 hr.
- Old way predicts glass transition temp at full cure = 282 °C; new method predicts 312 °C, experiments show it is at least 304 °C.
“Direct” Measurement of T_G?

LECy, catalyzed with 2 phr nonylphenol + 160 ppm Cu as Cu(II)Acac

Cured at 150 °C for 12 hours

- Oscillatory TMA done in accordance with typical procedure shows three peaks for this single-component system, one peak corresponds to an increase of stiffness.

DISTRIBUTION A: Approved for public release; distribution is unlimited.
LEC\textsubscript{y}, catalyzed with 2 phr nonylphenol + 160 ppm Cu as Cu(II)Acac and cured at 150 °C for 12 hours.

Excess heat release above 175 °C indicates that the sample is undergoing cure.

DISTRIBUTION A: Approved for public release; distribution is unlimited.
"Direct" Measurement of T_G?

LECy, catalyzed with 2 phr nonylphenol + 160 ppm Cu as Cu(II)Acac
Cured at 150 °C for 12 hours

- In the shaded region, the sample is undergoing cure, which means that the T_G is changing while an attempt is being made to measure it!

DISTRIBUTION A: Approved for public release; distribution is unlimited.
Inferred OTMA T_G from Conversion Measurements

LECy, catalyzed with 2 phr nonylphenol + 160 ppm Cu as Cu(II)Acac
Cured at 150 $^\circ$C for 12 hours

- The darker green lines indicate the uncertainty limits for T_G. Main sources of uncertainty are DSC to OTMA correspondence, and effect of degradation. Note that T_G increases faster than the scan temperature.

Heating Rate: 2$^\circ$C / min.

DISTRIBUTION A: Approved for public release; distribution is unlimited.
Why Not “Outrun” T_G?

T_G instability # =

Sensitivity x Cure Rate

Heating Rate

Turns out the cure rate tends to be proportional to the heating rate!

- Residual cure tends to show the universality associated with activated rate processes, which means that a change in scan rate and a shift in temperature are functionally equivalent.
- As a result, the T_G instability number tends to be insensitive to heating rate. A faster heating rate only provides a head start in the race against cure.

DISTRIBUTION A: Approved for public release; distribution is unlimited.
Even Very Rapid Scans Do Not Always Prevent *In-Situ* Cure (1)

Uncatalyzed LECy (ageing study), cured at 210 °C for 24 hrs

- In the 2010 sample, 10 °C / min. was a little too slow to prevent in-situ cure (the true T_G at about 240 °C) is visible as the "shoulder".
- In the 2012 sample, the true T_G is no longer discernible.

DISTRIBUTION A: Approved for public release; distribution is unlimited.
Even Very Rapid Scans Do Not Always Prevent *In-Situ* Cure (2)

Uncatalyzed LECy (unaged), cured at 210 °C for 24 hrs
2014 – < 1 yr stored at 5 °C

OTMA

- The DSC scan shows clearly that *in-situ* cure begins immediately after passing the true T_G at about 240 °C.
- Although the loss peak in the OTMA captures the true T_G, both the storage modulus and tan delta measurements are affected by *in-situ* cure. Thus, even 50 °C/min. is only just fast enough for the OTMA scan.

DSC

DISTRIBUTION A: Approved for public release; distribution is unlimited.
A Fast DSC Scan Will Always Indicate the “As Cured” T_G

Uncatalyzed Samples; After Heating 210 °C for 24 hrs

![Heat Flow vs Temperature Graphs](graph.png)

50 °C / min. PT-30 50 °C / min. PT-30 / LECy50 °C / min. FlexCy/LECy (50/50) (50/50)

- No cure means the T_G does not change, so the cannot have ever been in the “flat” part of the curve.
- Only a change as drastic as passing through T_G would cause such a rapid initiation of cure.
- T_G values inferred in this manner are reproducible to within 5 °C; slower heating rates work well for samples with lower values of T_G at full cure.

DISTRIBUTION A: Approved for public release; distribution is unlimited.
Summary

• In polycyanurate networks (and any other thermoset polymer network for which a single, path-independent cure mechanism exists), conversion and the glass transition temperature are intrinsically linked.

• With careful consideration of the physical properties of these networks, DSC methods can be utilized to measure conversions to within 1-2% at >80% conversion.

• Dynamic mechanical methods (especially at slow heating rates) will not measure the glass transition temperature of undercured networks correctly, due to in-situ cure.

• In many cases, in-situ cure and the resulting measurement issues cannot be avoided simply by choosing a more rapid heating rate.

• DSC methods (especially at rapid heating rates) appear to be best-suited for assessing “as cured” glass transition temperatures.