A New Cell-Free System to Study BRCA1 Function

Dr. Johannes Walter

Harvard Medical School
Boston, MA 02115

May 2015

Annual

U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

Approved for Public Release; Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
A New Cell-Free System to Study BRCA1 Function

This proposal is based on our finding that in a cell-free system based on Xenopus egg extracts, the tumor suppressor BRCA1 is required for a novel step in the repair of DNA interstrand cross-links (ICL). Specifically, prior to our application of funding, we had found that in the absence of BRCA1, when replication forks collide with an ICL, leading strands stall 20 nucleotides from the ICL and fail to be extended towards the ICL lesion. So far, we have shown that leading strand extension is critical for ICL repair. In addition, we found that in BRCA1-depleted egg extracts, the CMG helicase that unwinds DNA ahead of DNA polymerases, fails to be unloaded from the stalled fork. This explains the leading strand arrest at the -20 position and identifies a potentially new function for BRCA1 in ICL repair and tumor suppression. We have also developed new ways of inhibiting BRCA1 function in egg extracts and examined the role of potential BRCA1 effectors (FANCJ, FANCM, CTIP) in promoting the extension step. We conclude that BRCA1 does not perform its function by acting through FANCJ, FANCM, or CTIP. In addition, we have shown that BRCA1 is not regulated by whether one or two forks collide with the ICL. We also implicated the ATPase p97 in BRCA1-dependent CMG removal, we have identified ubiquitylated species of MCM7 that are likely involved in CMG unloading, and we have succeeded in expressing recombinant MCM2-7 complex in insect cells.
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>4</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>8</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>8</td>
</tr>
<tr>
<td>Conclusions</td>
<td>8</td>
</tr>
<tr>
<td>References</td>
<td>9</td>
</tr>
</tbody>
</table>
Introduction
Mutations in BRCA1 account for a significant fraction of familial breast and ovarian cancers. BRCA1 is thought to suppress genome instability by promoting homologous recombination, which it does in part by helping to recruit BRCA2 and the RAD51 recombinase to sites of DNA damage. However, more recently, it has been proposed that BRCA1 performs functions in DNA interstrand cross-link (ICL) repair that are not related to HR [1]. For example, BRCA1 appears to help recruit the ICL repair factor FANCD2 to sites of damage. To further explore the role of BRCA1 in ICL repair, we employed Xenopus egg extracts, which we previously showed support ICL repair [2]. In the grant proposal, we presented preliminary data that BRCA1 depletion from egg extracts inhibits ICL repair (see Figure 2B of the proposal) and that RAD51, BRCA2, and FANCD2 binding to the damage are inhibited, as expected from previous reports (see Figure 2E-G of the proposal). However, we also found that ICL repair was inhibited at an early step called “Approach” (see Figure 2C of the proposal). Thus, in the absence of BRCA1, the leading strands of replication forks that have stalled at an ICL are not efficiently extended from the -20 position to the -1 position. The grant proposes to understand how BRCA1 promotes the Approach step.

Body
The original Statement of Work is reproduced below in grey. Our progress on each Task is described in black. Unless stated otherwise, all experiments were performed at least twice, usually three times or more. Representative examples are shown.

Task 1: Determine whether blocking Approach inhibits FANCI-FANCD2 loading.

1a. Replicate pICL in egg extract and add aphidicolin 12 minutes after NPE addition; then perform ChIP with antibodies to FANCI, FANCD2, DNA polymerase, FANCA, FANCM.
We first wanted to test whether Approach, which is inhibited in BRCA1-depleted egg extracts, is required for ICL repair. To this end, we inhibited this step by an orthogonal means. pICL was replicated for 12 minutes to allow the majority of forks to arrive at the -20 position (Figure 7A, lane 7 in [3]; PDF file of paper is attached). Reactions were then split and supplemented with buffer or the DNA polymerase inhibitor aphidicolin. Aphidicolin-treated samples exhibited little or no Approach (Figure 7A in [3], compare lanes 15-19 with 9-13), as well as a ~25% decrease in total nucleotide incorporation due to degradation of some forks that had not yet stalled at the crosslink (Figure 7B). Chromatin immunoprecipitation (ChIP) showed that BRCA1, RAD51, and FANCD2 were still recruited to the ICL in aphidicolin-treated samples (Figure 7C-E), although total recovery was also decreased by ~25%. In contrast, DNA incisions were inhibited, as measured by persistence of the converged fork structure (Figure 7F and data not shown). In addition, ICL repair was completely absent (Figure 7G). Together, these results indicate that Approach is required for incisions and downstream repair events, but not for the recruitment of BRCA1, RAD51, or FANCD2. We infer that the defect in Approach seen in BRCA1-depleted egg extracts readily explains the inhibition of ICL repair in the absence of BRCA1. However, the defect in FANCD2, BRCA2, and RAD51 loading in BRCA1-depleted extracts is not explained by defective Approach. In other words, the intermediate generated during Approach is not necessary for loading of FANCI-FANCD2, BRCA2, or RAD51.

1b. Clone, express, and purify ubiquitylated FANCI, FANCD21-561, and Ub-FANCD2562-1443 in insect cells. If this approach does not work, reconstitute FANCI-FANCD2 ubiquitylation with UBE2T and FANCL.
This Task was proposed primarily as a follow up if Task 1a had shown that Approach is required for loading of FANCD2. This was not the case. Nevertheless, since we were interested in generating ubiquitylated FANCI-FANCD2 for other reasons, we proceeded with this task. We expressed and purified FANCI, FANCD21-561 and Ub-FANCD2563-1443 in insect cells, but the two halves of FANCD2 did not interact efficiently, even in the presence of FANCI (data not shown). We have temporarily abandoned this approach.

1c. Perform gel shift experiments with the protein complex prepared under 1b and different DNA substrates to determine the complexes DNA binding specificity.
Given the outcome of Task 1a, this task is not applicable.

Task 2. Determine whether BRCA1 is required for MCM2-7 dissociation from ICLs.

2a. Replicate pICL in mock-depleted and BRCA1-depleted egg extracts and perform ChIP with antibodies to Mmc5, Mmc7, Cdc45, GINS, DNA polymerase, Rad51, BRCA2, and RPA.
We had previously shown that Approach correlates with the dissociation of the CMG helicase from replication forks that have stalled at an ICL [4]. We therefore postulated that the defect in Approach in BRCA1-depleted extracts is due to a defect in CMG dissociation. To test this, we performed ChIP in mock-depleted and BRCA1-depleted egg extracts. BRCA1-depletion not only inhibited Approach (Figure 5A in [3]) as we reported in the proposal, but also greatly slowed the dissociation of three CMG subunits, Cdc45, Mcm7, and Sld5, from the ICL (Figure 5B-D in [3]). Binding to a distal site on the plasmid was not affected (Figure S3K in [3]). This result shows that BRCA1 is required for CMG dissociation.

To determine whether BRCA1 functions directly in the unloading of the CMG complex, we examined the binding of BRCA1 to the plasmid using ChIP. Importantly, BRCA1 binding occurred shortly after leading strands arrived at the -20 position and shortly before they were extended to the -1 position (Figure S3A in [3]). Thus, BRCA1 is present at the site of the ICL during the Approach step. We also showed that BRCA1’s interaction partner BARD1 binds to the ICL with exactly the same kinetics as BRCA1 (Figure S3G and H in [3]). We conclude that BRCA1-BARD1 is present at ICLs during CMG dissociation, consistent with it promoting this process directly.

In our cell-free system, two DNA replication forks converge on the ICL [5]. This raised the question of whether a single fork suffices to trigger repair. To address this question, we generated a plasmid in which the ICL is flanked on one side by an array of lac operator sites. Binding the Lac repressor (LacI) to these sites inhibits replication fork progression and allows only one fork to reach the ICL. Strikingly, in this setting, CMG unloading from the ICL was blocked and repair was inhibited, demonstrating that ICL repair requires fork convergence to allow release of CMG [6]. Given that we have implicated BRCA1-BARD1 in ICL repair, we asked whether BRCA1 fails to bind the ICL when only one fork arrives at the lesion. As shown in Figure 1, BRCA1 still bound efficiently to the ICL in the presence of LacI, demonstrating that a single fork is sufficient to recruit BRCA1. We conclude that fork convergence is required for CMG unloading, but not for BRCA1 recruitment. One interpretation of this result is that fork convergence triggers a conformational change in CMG that makes it responsive to the action of BRCA1-BARD1, which is recruited independently of fork convergence.

Figure 1: BRCA1 binds to ICLs independently of fork convergence. A pICL plasmid containing a lacO array was replicated in egg extract in the presence and absence of LacI, as indicated, and at different times, samples were withdrawn for BRAC1 ChIP analysis.

Task 3. Determine the functional interplay between BRCA1 and FANCJ/FANCM

3a. Replicate pICL in mock-depleted and BRCA1-depleted egg extracts and perform ChIP with antibodies to FANCJ and FANCM. BRCA1-BARD1 might itself promote CMG unloading or act through an effector. We considered four possible effectors of BRCA1-BARD1. Two of these, FANCM and FANCJ, are DNA helicases. We speculated that their helicase activities might be required to displace CMG. FANCJ was particularly attractive since it binds to BRCA1. We considered two other potential effectors, ABRAXAS and CTIP, both of which also bind to BRCA1. We have now raised antibodies to FANCM, FANCJ, CTIP, and ABRAXAS and depleted the corresponding proteins. In no case was there evidence of a defect in CMG unloading (data not shown). Consistent with the above results, ChIP showed that FANCJ recruitment to ICLs is not reduced by BRCA1 depletion (data not shown).

3b. Perform co-immunoprecipitations between FANCJ and BRCA1. Given that FANCJ is not involved in CMG unloading, we did not perform this task.

Task 4. Identification and characterization of new BRCA1 effectors using mass spectrometry

4a. Prepare chromatin from mock-depleted and BRCA1-depleted egg extracts in preparation for mass spectrometry analysis. We have not initiated this task.

4b. Send chromatin samples to our collaborators in Germany for mass spectrometry analysis. We have not initiated this task.
4c. For novel proteins whose binding to chromatin depends on BRCA1: clone the gene, express the protein, raise antibodies, immunodeplete the protein from egg extracts, and measure the effect on ICL repair, Approach, MCM2-7 dissociation, and FANCJ/FANCM loading.

We have not initiated this task.

Task 5. Identification of BRCA1 domains that are required for ICL repair

5a. Clone and express BRCA1-BARD1, BRCA1\(^{S1379F}\)-BARD1, BRCA1\(^{I26A}\)-BARD1, BRCA1\(^{ΔCC}\)-BARD1, or other mutants in insect cells.

We expressed wild type BRCA1-BARD1 in insect cells and purified the protein. We have not expressed the mutant proteins.

5b. Supplement BRCA1-depleted egg extracts with recombinant BRCA1-BARD1, BRCA1\(^{S1379F}\)-BARD1, BRCA1\(^{I26A}\)-BARD1, or BRCA1\(^{ΔCC}\)-BARD1 and measure the effects on ICL repair.

Re-addition of recombinant wild type BRCA1-BARD1 to BRCA1-depleted egg extract did not restore ICL repair (data not shown). To rule out that our BRCA1 antibody non-specifically depleted a protein required for CMG dissociation, we depleted BRCA1 with other antibodies. We found that depletion of egg extract with these antibodies also led to the stabilization of CMG on DNA (data not shown). We believe that most likely, BRCA1 depletion co-depletes an essential BRCA1 co-factor, but our data argue against a role for CTIP, FANCJ, FANCM, or ABRAXAS in CMG unloading.

To gain further evidence that the BRCA1-BARD1 complex participates in CMG unloading, we sought to disrupt the BRCA1-BARD1 complex, which forms through interactions between the RING domains of BRCA1 and BARD1. Cell-based experiments had shown that expression of a BARD1 fragment corresponding to the BARD1 RING domain disrupts the BRCA1-BARD1 complex and phenocopies BRCA1 deficiency [7]. We purified this RING peptide and added it at high concentrations to Xenopus egg extracts. Importantly, this disrupted the endogenous BRCA1-BARD1 complex, and it caused a similar defect in CMG unloading as BRCA1 depletion (Figure 6B-D, green traces in [3]). In contrast, a mutant RING peptide that binds poorly to BRCA1 did not cause CMG stabilization (Figure 6B-D in [3], yellow traces). These data support our model that the BRCA1-BARD1 complex is involved in CMG unloading.

To further investigate the role of BRCA1 in ICL repair and CMG unloading, we sought to inhibit BRCA1-BARD1 binding to ICLs. The BRCA1-BARD1 complex is recruited to sites of DNA damage by ubiquitin signaling [8]. To disrupt ubiquitin signaling, we employed ubiquitin vinyl-sulfone (UbVS), a specific, irreversible inhibitor of deubiquitylating enzymes. Incubation of Xenopus egg extract with UbVS blocks ubiquitin turnover, leading to the depletion of free ubiquitin [9]. Extracts were incubated with buffer, UbVS, or UbVS and excess free ubiquitin prior to addition of pICL. Although DNA synthesis was not significantly inhibited by the addition of UbVS (Figure 2A in [3]), ICL repair was abolished (Figure 2B in [3]). Repair was only partially rescued by the addition of free ubiquitin, suggesting that ubiquitin turnover is essential for efficient repair.

To examine the effect of UbVS on BRCA1 loading at ICLs, we used chromatin immunoprecipitation (ChIP). As shown in Figures 2C-E [3], Rap80, BRCA1, and FANCD2 were not recruited to ICLs when UbVS was present. Recruitment was rescued by the addition of free ubiquitin, indicating that recruitment defects were due to ubiquitin depletion.

To investigate how UbVS affects ICL repair, nascent strand products (Figure 2F in [3]) were analyzed by denaturing polyacrylamide gel electrophoresis. UbVS treatment had no effect on the arrival of leading strands at the ICL (Figure 2G in [3], compare lanes 7, 13, and 19), consistent with replication proceeding normally (Figure 2A in [3]). In contrast, UbVS completely blocked the Approach of leading strands to the -1 position, as well as formation of all downstream nascent strand products (Figure 2G in [3], compare lanes 7-11 with 13-17). Addition of free ubiquitin with UbVS restored Approach, Insertion, and Extension, albeit with delayed kinetics (Figure 2G in [3], lanes 19-23). Importantly, unloading of Cdc45, MCM7, and Sld5 was severely delayed in UbVS-treated reactions (Figure 2H-J in [3]). As for Approach, CMG unloading was partially restored by the addition of free ubiquitin. Together, these results demonstrate that ubiquitin signaling is required to both recruit BRCA1 and remove the CMG helicase from stalled replication forks, further supporting the idea that BRCA1 promotes CMG dissociation. Notably, addition of free ubiquitin did not efficiently restore ICL repair (Fig. 2B in [3]). This suggests that ubiquitin turn-over is required for efficient ICL repair.
Two recent papers showed that at the end of S phase, the MCM7 subunit of CMG is ubiquitylated [10, 11]. Furthermore, they showed that CMG removal from chromatin requires the p97 ATPase (or “segregase”), which extracts ubiquitylated proteins from membranes or multi-protein complexes. These results suggest that during replication termination, the MCM7 subunit of CMG is ubiquitylated and that CMG is subsequently removed from the chromatin.

We asked whether p97 is required for CMG unloading during ICL repair. To this end, we replicated plasmids containing cisplatin or psoralen ICLs in egg extracts containing DMSO or the specific p97 inhibitor NMS-873 [12]. At different times, we performed ChIP against CDC45, a component of CMG. In the presence of NMS-873, there was a large delay in the dissociation of CDC45 from chromatin on both DNA templates (Figure 2). This experiment has been performed once and will be repeated. The data indicate that, as seen during replication termination, the removal of CMG complexes from DNA during ICL repair requires p97.

We are also examining whether MCM7 is ubiquitylated during ICL repair. We first addressed whether we could detect the ubiquitylation of MCM7 during replication of undamaged DNA, as reported [10, 11]. To this end, we replicated a plasmid in egg extract. At the peak of replication, plasmid was recovered and the isolated chromatin was blotted for MCM7. As shown in Figure 3, lane 1, a ladder of MCM7 species was readily detected, which resembled the ubiquitylated species previously reported [10]. When the extract was supplemented with ubiquitin vinyl sulfone, an inhibitor of de-ubiquitylating enzymes that reduces free ubiquitin levels in the extract [13], the extent of MCM7 modification was diminished (Figure 2, lane 3), consistent with the slow-migrating bands representing ubiquitylated forms of MCM7.

To confirm that the modified MCM7 species detected are ubiquitylated, we replicated plasmid in egg extracts supplemented with 6xhis-tagged ubiquitin. At the peak of replication, we stopped the reaction and passed the extract over nickel beads to recover the 6xhis ubiquitin, and we blotted for MCM7. As shown in Figure 4, the MCM7 blot contained a similar series of species as shown in Figure 3. In the absence of DNA, most of the slow migrating forms of MCM7 in the precipitate disappeared (except for one band, that represents a replication-independent ubiquitylation form of MCM7). The data show that the slow mobility forms of MCM7 are ubiquitylated and that the modification is DNA-dependent.

We will now test whether MCM7 ubiquitylation occurs during ICL repair and whether this event depends on BRCA1-BARD1. If so, it will support our model that when two replication forks converge on an ICL, BRCA1-BARD1 promotes the ubiquitylation of MCM7, which in turn leads to the removal of the CMG complex from chromatin via the p97 ATPase.

5c. Deplete CTIP or FANCJ to determine whether this mimics any defects in ICL repair observed for the BRCA1S1379F-BARD1 mutant. Depletion of neither CTIP nor FANCJ mimicked the CMG unloading defect seen in BRCA1-depleted extracts (see task 3a).
Task 6. Identification of BRCA1 ubiquitylation targets via mass spectrometry analysis

6a. Prepare chromatin from BRCA1-depleted egg extracts supplemented with rBRCA1-BARD1 or rBRCA1I26A-BARD1 in preparation for mass spectrometry analysis.
We have not initiated this task.

6b. Send chromatin samples to our collaborators in Germany for mass spectrometry analysis.
We have not initiated this task.

6c. Ubiquitylation events that are BRCA1-dependent will be functionally characterized. For example, MCM2-7 with the ubiquitylation site(s) mutated to arginine will be expressed in insect cells and then added to MCM2-7-depleted egg extracts to determine the effects on ICL repair.
In preparation for mutational analysis of MCM2-7, we cloned and made viruses for all six subunits of the MCM2-7 complex. The MCM7 cDNA encodes a flag tag on its C-terminus. We then co-infected insect cells with all six viruses. After 48 hours, cells were lysed and the MCM2-7 complex was purified on Flag affinity resin. This yielded a substantial amount of pure MCM2-7 complex (Figure 4). We are now testing whether this complex can restore DNA replication in egg extracts immunodepleted of MCM2-7.

Key Research Accomplishments
• Approach is required for ICL repair
• BRCA1-BARD1 binds to ICLs at the time of CMG unloading and Approach
• BRCA1 depletion with various different antibodies inhibits CMG unloading and Approach
• A BARD1 RING peptide that disrupts the BRCA1-BARD1 complex inhibits CMG unloading and Approach
• Ubiquitin depletion inhibits BRCA1 binding to sites of damage, CMG unloading, and Approach
• For convergence on an ICL is not required for BRCA1 recruitment.
• The AAA+ ATPase p97 is required for CMG unloading during ICL repair.
• Purification of the MCM2-7 complex in insect cells.

Reportable Outcomes
1. The work implicating BRCA1 in the unloading of the CMG complex has been published (Long et al., 2014, Molecular Cell 56, 174-185).

2. Dr. David Long, a post-doctoral fellow, who showed that BRCA1 depletion prevents the unloading of the CMG helicase, has started an Assistant Professor position at the Medical University of South Carolina.

Conclusions
To date, it has been assumed that BRCA1’s primary role in ICL repair is to support homologous recombination. However, our data strongly support the novel concept that BRCA1 also promotes the first step in ICL repair, the removal of the replicative DNA helicase from forks that have stalled at the lesion. This insight sheds new light on the mechanism by which BRCA1 might suppress genome instability and cancer. We are now trying to understand how BRCA1 performs this function. An obstacle has been our inability so far to rescue the BRCA1 depletion with purified BRCA1-BARD1 complex. Co-depletion of FANCM, FANCJ, ABRAXAS, and CTIP does not appear to be the underlying cause of this failure. In an important new insight, we have found that the p97 ATPase is required for CMG unloading. We will test whether BRCA1-BRAD1 is required for MCM7 ubiquitylation. If so, it will support a model in which BRCA1-BARD1 ubiquitylates CMG on the MCM7 subunit, followed by CMG extraction from chromatin by the p97 ATPase.
References

BRCA1 Promotes Unloading of the CMG Helicase from a Stalled DNA Replication Fork

David T. Long,1,3 Vladimir Joukov,1 Magda Budzowska,1 and Johannes C. Walter1,2,*

1Department of Biological Chemistry and Molecular Pharmacology
2Howard Hughes Medical Institute
Harvard Medical School, Boston, MA 02115, USA
3Present address: Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
*Correspondence: johannes.walter@hms.harvard.edu
http://dx.doi.org/10.1016/j.molcel.2014.08.012

SUMMARY

The tumor suppressor protein BRCA1 promotes homologous recombination (HR), a high-fidelity mechanism to repair DNA double-strand breaks (DSBs) that arise during normal replication and in response to DNA-damaging agents. Recent genetic experiments indicate that BRCA1 also performs an HR-independent function during the repair of DNA interstrand crosslinks (ICLs). Here we show that BRCA1 is required to unload the CMG helicase complex from chromatin after replication forks collide with an ICL. Eviction of the stalled helicase allows leading strands to be extended toward the ICL, followed by endonucleolytic processing of the crosslink, lesion bypass, and DSB repair. Our results identify BRCA1-dependent helicase unloading as a critical, early event in ICL repair.

INTRODUCTION

Mutations in BRCA1 predispose individuals to hereditary breast and ovarian cancers (Narod and Foulkes, 2004). Growing evidence also indicates that BRCA1 loss plays an important role in the development of sporadic cancers (Chalasani and Livingston, 2013; De Leeneer et al., 2012). In the absence of BRCA1, cells develop multiple chromosomal abnormalities, implicating genome maintenance in tumor suppression (Zhang, 2013). Consistent with this, BRCA1 has been linked to various aspects of the DNA damage response (Wu et al., 2010) including error-free repair of DNA double-strand breaks (DSBs) (Bekker-Jensen and Maitland, 2010).

BRCA1 forms a heterodimeric complex with BARD1 (BRCA1-associated RING domain protein 1), which is required for BRCA1 stability and function (Choudhury et al., 2004; Westermark et al., 2003). BRCA1 activity is also modulated by numerous protein interactions that form distinct BRCA1-containing complexes (Silver and Livingston, 2012; Wang, 2012). In response to DSBs, BRCA1 regulates repair pathway choice, promoting template-directed repair by homologous recombination (HR) over nonhomologous end joining (NHEJ), an error-prone pathway (Kass and Jasin, 2010). BRCA1 is thought to support resection of DSB ends, leading to the generation of a 3’ single-stranded DNA (ssDNA) tail that is bound by the RAD51 recombinase. BRCA1 also associates with BRCA2 (via PALB2/FANCN) (Zhang et al., 2009), which stimulates RAD51 loading onto ssDNA (Jensen et al., 2010; Liu et al., 2010).

BRCA1-deficient cells are sensitive to various DNA-damaging agents, including DNA interstrand crosslinks (ICLs) (Bhattacharyya et al., 2000). ICLs covalently link the two strands of the double helix, thereby blocking cellular processes that require strand separation, such as DNA replication and transcription. Cellular resistance to ICLs is dependent on both the BRCA and Fanconi anemia (FANC) proteins, which act together in a common DNA repair pathway (Kim and D’Andrea, 2012). ICL repair involves a DSB intermediate, which is formed after replication forks collide with an ICL (Räsčle et al., 2008; McHugh et al., 2001). As such, ICL sensitivity in BRCA1-deficient cells has been attributed primarily to BRCA1’s HR functions.

Recent genetic data indicate that BRCA1 has an additional function during ICL repair that is distinct from its established role in HR. In 2010, Nussenzweig’s group showed that the HR defect in BRCA1-deficient cells is almost completely reversed by mutation of 53BP1 (Bunting et al., 2010), an NHEJ protein that modulates chromatin structure at DNA breaks. These results argued that the primary function of BRCA1 in DSB repair is to promote resection by antagonizing 53BP1. More recently, they discovered that loss of 53BP1 does not rescue the ICL sensitivity observed in BRCA1-deficient cells, even though RAD51 foci formation was largely restored (Bunting et al., 2012). These results argue that BRCA1 performs an additional function in ICL repair that is independent of DSB resection, RAD51 loading, and 53BP1. Notably, FANC2 foci formation was impaired in BRCA1-deficient cells after exposure to DNA crosslinking agents (Bunting et al., 2012), suggesting that BRCA1’s HR-independent function might involve recruitment of FANC2 to ICLs.

Using Xenopus egg extracts, we previously established a cell-free system that recapitulates replication-coupled repair of a single, site-specific cisplatin ICL on a plasmid (pICL; Figure 1A) (Räsčle et al., 2008). Error-free removal of the crosslink generates a Sapi restriction site, which is used to assay repair. Upon addition of pICL to egg extracts, replication initiates at a random location, and two replication forks rapidly converge on the ICL and stall (Figure 1B). The 3’ ends of the two stalled leading strands are initially located ~20–40 nucleotides from the...
crosslink ("-20 position"). After an ~15 min delay, the leading strands are extended to within one nucleotide of the crosslink ("-1 position"). Extension of leading strands from -20 to -1 ("Approach;" Figure 1Bii) occurs concurrently with unloading of the CMG replicative DNA helicase (Fu et al., 2011), which is comprised of Cdc45, Mcm2-7, and GINS (Ives et al., 2010). Based on this correlation, we proposed that leading strand stalling at -20 is due to steric hindrance by CMG, and that Approach requires CMG unloading (Fu et al., 2011). Concurrent with Approach, the FANC pathway is activated, leading to monoubiquitylation of the FANCI-FANCD2 complex. Ubiquitylated FANCI-FANCD2 promotes incisions by XPF-ERCC1 and possibly other endonucleases, creating a DSB in one sister chromatid (Figure 1Bii) (Klein Douwel et al., 2014; Knipscheer et al., 2009). The leading strand is then extended past the unhooked ICL by translesion DNA polymerases (Figure 1Biv), creating an intact template for recombination-mediated repair of the DSB (Figure 1Bv) (Long et al., 2011). Finally, the unhooked adduct is probably removed by excision repair (Muniandy et al., 2010), although this event does not occur in egg extracts.

Here we show that ubiquitin signaling targets BRCA1 to ICL-stalled forks where BRCA1 promotes unloading of the CMG helicase, allowing Approach and subsequent ICL repair. Our results identify CMG unloading as a critical, early event in ICL repair and identify a new function for BRCA1 in the DNA damage response.

RESULTS

Ubiquitin Signaling Is Required for Chromatin Unloading of the Replicative Helicase

Ubiquitin signaling plays an integral role in targeting repair factors to sites of damaged chromatin (Pinder et al., 2013). To investigate the role of ubiquitin signaling in ICL repair, we employed ubiquitin vinyl sulfone (UbVS), a highly specific, irreversible inhibitor of deubiquitylating enzymes (Borodovsky et al., 2001). Incubation of Xenopus egg extract with UbVS blocks ubiquitin turnover, leading to the depletion of free ubiquitin (Dimova et al., 2012). Extracts were incubated with buffer, UbVS, or UbVS and excess free ubiquitin prior to addition of pICL. Although DNA synthesis was not significantly inhibited by the addition of UbVS (Figure 2A), ICL repair was abolished (Figure 2B). Only a limited amount of repair was rescued by the addition of free ubiquitin, suggesting that turnover of ubiquitylated substrates is important for repair, even in the presence of excess ubiquitin (Nijman et al., 2005; Oestergaard et al., 2007). Consistent with this idea, addition of free ubiquitin reversed the FANCD2 ubiquitylation defect caused by UbVS, but did not restore the FANCD2 deubiquitylation that is normally observed late in the reaction (Figures S1A and S1B available online).

DSBs trigger a histone modification cascade that includes histone ubiquitylation and subsequent recruitment of various repair factors to the site of damage, including Rap80, BRCA1, and FANCD2 (Wang et al., 2004; Yan and Jetten, 2008). To determine whether a similar response is activated during ICL repair in egg extracts, we used chromatin immunoprecipitation (ChIP) to analyze protein recruitment to pICL. As shown in Figures 2C–2E,
Rap80, BRCA1, and FANCD2 were each recruited to ICLs, but not when UbVS was present. Recruitment was rescued by the addition of free ubiquitin, indicating that recruitment defects were due to ubiquitin depletion.

To investigate how UbVS affects ICL repair, nascent strand products (Figure 2F) were analyzed by denaturing PAGE. UbVS treatment had no effect on the arrival of leading strands at the ICL (Figure 2G; compare lanes 7, 13, and 19; Figures S1K–S1Q for experimental replicates), consistent with replication proceeding normally (Figure 2A). In contrast, UbVS completely blocked the Approach of leading strands to the -1 position, as well as formation of all downstream nascent strand products (Figure 2G; compare lanes 7–11 with lanes 13–17). Addition of free ubiquitin with UbVS restored Approach, Insertion, and Extension, albeit with delayed kinetics (Figure 2G; lanes 19–23).

We showed previously that Approach correlates with dissociation of the CMG helicase (Fu et al., 2011). These results suggested that failure of the Approach step after ubiquitin depletion might be caused by persistence of CMG at the ICL. To test this idea, several helicase components were analyzed by ChIP. Strikingly, unloading of Cdc45, MCM7, and Sld5 was severely delayed in UbVS-treated reactions (Figures 2H–2J). As for Approach, CMG unloading was partially restored by the addition of free ubiquitin. Together, these results demonstrate that ubiquitin signaling is required to remove the CMG helicase from replication forks after collision with an ICL, and they support our previous hypothesis (Fu et al., 2011) that helicase removal is an essential, early, and active process associated with ICL repair.
BRCA1 Functions at Stalled Forks Prior to DSB Formation

We wanted to know which ubiquitin-dependent pathway promotes CMG unloading. We showed previously that failure to ubiquitylate FANCD2 blocks incisions, which occur downstream of Approach and CMG unloading (Fu et al., 2011; Knipscheer et al., 2009). Defective FANCD2 ubiquitylation therefore cannot account for the effect of UbVS. Notably, recent evidence indicates that BRCA1 has an HR-independent role in ICL repair (Bunting et al., 2012), and that it contributes to fork stability (Silver and Livingston, 2012). Given that ubiquitin signaling is required for BRCA1 recruitment (Figure 2D), we postulated that BRCA1 might function as an effector of ubiquitin signaling in ICL repair.

To investigate how BRCA1 contributes to ICL repair, we first used ChIP to address when BRCA1 is recruited to ICLs relative to other events of repair. Fifteen minutes after replication of pICL was initiated, MCM7 and Cdc45 accumulated at the crosslink, coincident with fork convergence (Figure 3A) (Fu et al., 2011). The ssDNA-binding protein RPA initially accumulated at the ICL with converging forks, but after a short delay, its abundance increased further (Figure 3A; red trace), likely due to lagging strand resection (Räschle et al., 2008). BRCA1 and its binding partner BARD1 were recruited to the crosslink ~7–10 min after fork convergence and well before the disappearance of converged fork structures, which are lost as a result of dual incisions (Figure 3B). Notably, BRCA2, RAD51, FANCJ, and FANC2 were all recruited ~5 min after BRCA1 (Figure 3C), consistent with BRCA1’s established role in the recruitment of these proteins to sites of DNA damage (Bhattacharyya et al., 2000; Garcia-Higuera et al., 2001; Greenberg et al., 2006; Smogorzewska et al., 2007). Collectively, the data are consistent with BRCA1 having an early role at stalled forks prior to DSB formation (Bunting et al., 2012).

To determine whether BRCA1 is required for cell-free ICL repair, pICL was replicated in mock-depleted or BRCA1-depleted egg extract (Figure 3D). Although replication of pICL occurred with similar kinetics in both reactions (Figure 3E), ICL repair was delayed by at least 1 hr in BRCA1-depleted extracts (Figure 3F). A small amount of BRCA1 was still recruited to the crosslink at late times in BRCA1-depleted reactions (Figure 3G; green trace). As such, the delayed appearance of repair products (Figure 3F; green trace) may be due to residual BRCA1 not removed by depletion.

Consistent with immunofluorescence localization studies in mammalian cells (Bhattacharyya et al., 2000; Garcia-Higuera et al., 2001; Greenberg et al., 2006), recruitment of BRCA2, RAD51, and FANC2 to ICLs was reduced in the absence of BRCA1 (Figures 3H–3J). These defects were not due to codepletion of BRCA2, RAD51, or FANC2 from egg extract (Figure S2A). Although FANC2 recruitment was impaired by BRCA1 depletion, FANC2 ubiquitylation occurred normally (Figure 3D), consistent with previous reports (Bunting et al., 2012; Vandenberg et al., 2003). Loss of BRCA1 led to a severe incision defect (Figures 3K and 3L), indicating that FANC2 ubiquitylation is not sufficient for DNA incisions without its localization to ICLs. High-level Chk1 phosphorylation was also delayed (Figure 3D; compare 60 min time points), consistent with a defect in DSB formation. Together, these results indicate that BRCA1 functions at ICL-stalled replication forks, where it recruits BRCA2, RAD51, and FANC2.

BRCA1 Is Not Required for Resection at ICL-Stalled Forks

Given that BRCA1 has been implicated in resection of DSBs (Bouwman et al., 2010; Bunting et al., 2010; Schlegel et al., 2006; Yun and Hiom, 2009), we examined the BRCA1 dependence of this process in our cell-free system. Depletion of BRCA1 from extract led to a slight increase in the recruitment of RPA to ICLs (Figure 4A). However, when the amount of ssDNA on pICL was analyzed directly by quantitative PCR, similar levels of ssDNA were detected in mock-depleted and BRCA1-depleted reactions (Figures 4B–4D). These results argue that loss of BRCA1 does not compromise resection of ICL-stalled forks. Instead, defective RAD51 binding in the absence of BRCA1 (see Figure 3G) may elevate the amount of RPA present on chromatin.

BRCA1 Promotes CMG Unloading

We then analyzed the formation of nascent strand products in mock- and BRCA1-depleted reactions. As seen for UbVS-treated reactions, depletion of BRCA1 severely compromised the Approach of leading strands to the -1 position (Figure 5A; Figures S3G–S3J for experimental replicates). BRCA1 depletion also inhibited CMG unloading (Figures 5B–5D; Figures S3N–S3P for experimental replicates), as seen in UbVS-treated reactions. Notably, CMG unloading and Approach are not dependent on RAD51 (Long et al., 2011) or FANC2 (Knipscheer et al., 2009), indicating that defective helicase removal in the absence of BRCA1 is not an indirect consequence of defective RAD51 or FANC2 recruitment. Moreover, recruitment of BRCA1 to the ICL occurred shortly after the arrival of forks at -20 and just before the Approach to -1 (Figure S3A), consistent with BRCA1 playing a direct role in promoting Approach. Importantly, BRCA1 depletion had no significant effect on helicase unloading during replication of undamaged plasmids (Figures S3B–S3D). Together, these results indicate that BRCA1 is required to unload the replicative helicase from ICL-stalled forks, but not from forks undergoing termination.

When BRCA1-depleted extracts were supplemented with re-combinant BRCA1-BARD1 heterodimer (Joukov et al., 2006), helicase eviction was not restored (data not shown), suggesting that the activity of the complex is dependent on additional binding factors or specific modifications (Silver and Livingston, 2012; Wang, 2012). Therefore, to further investigate whether BRCA1 is required for CMG unloading, BRCA1 activity was inhibited with a fragment of BARD1 (Westermark et al., 2003). BRCA1 and BARD1 interact through their respective RING domains, with two x helices from each domain combining to form a four-helix bundle (Bzovic et al., 2001). In cells, expression of a RING peptide was shown to inhibit BRCA1 function, leading to defects in HR and hypersensitivity to DNA crosslinking agents (Westermark et al., 2003). As reported previously (Joukov et al., 2001), BRCA1 antibodies quantitatively immunodepleted BARD1 from egg extract and vice versa (Figure S3E; lanes 4 and 6), demonstrating that BRCA1 and BARD1 are present as a stable 1:1 complex.
Importantly, BARD1 RING peptide (RINGWT) recovered BRCA1, but not BARD1 (Figure S3F; lane 5), arguing that the peptide disrupted the BRCA1-BARD1 complex. Insertion of a single-alanine residue into each α helix of the RING domain disrupted its binding to BRCA1 (Figure S3F; lane 7), and this mutant peptide (RINGAA) served as a negative control for BRCA1 inhibition.

When the RINGWT peptide was added to egg extracts, it only slightly delayed Approach and CMG unloading (data not shown).

Figure 3. BRCA1 Has an Early Role at ICL-Stalled Forks
(A–C) pICL was replicated in egg extract, and ICL recruitment of various proteins was analyzed by ChIP. Samples were also analyzed for accumulation of ICL-stalled forks (Converged Forks) by agarose gel electrophoresis. Relative recovery shown with data normalized to peak accumulation. All data shown were analyzed from a single experiment with Converged Forks duplicated in (A) and (B), and BRCA1-ChIP duplicated in (B) and (C). pICL was replicated in mock-depleted (Mock) or BRCA1-depleted (∆BRCA1) extract. Samples from the same reaction were analyzed by the following: western blot with the indicated antibodies (D), agarose gel electrophoresis to determine the efficiency of replication (E) and ICL repair (F), ChIP with the indicated antibodies (G–J), and 2D agarose gel electrophoresis (2DGE) (K) to analyze accumulation of converged forks (open arrowhead, see schematic and Figure 1Bi), which is quantified in (L). See Figure S2 for primary gel data, replicates of ICL repair data, and ChIP recovery at the FAR locus.

Importantly, BARD1 RING peptide (RINGWT) recovered BRCA1, but not BARD1 (Figure S3F; lane 5), arguing that the peptide disrupted the BRCA1-BARD1 complex. Insertion of a single-alanine residue into each α helix of the RING domain disrupted its binding to BRCA1 (Figure S3F; lane 7), and this mutant peptide (RINGAA) served as a negative control for BRCA1 inhibition.
To improve the efficacy of peptide inhibition, we partially depleted BRCA1 prior to peptide addition. Depletion of BRCA1 to \(\leq 25\% \) of endogenous levels (Figure S4A) by itself had little or no effect on any aspect of ICL repair measured (Figures 6A–6D and S4B–S4K; data not shown). However, when the partially depleted extract was supplemented with RING WT peptide, Approach and helicase unloading were both impaired (Figures 6A–6D; Figures S4B–S4K for experimental replicates). Importantly, the RINGAA peptide caused no inhibition. Together, these results argue that BRCA1’s helicase-unloading activity is dependent on BRCT-mediated recruitment to chromatin.

CMG Unloading and Leading Strand Approach Support DNA Incisions

To determine the role that Approach plays in ICL repair, we sought to block this event by a direct and independent means that does not involve perturbation of BRCA1 or the ubiquitin system. To this end, pICL was replicated for 12 min to allow the majority of forks to arrive at the -20 position. Reactions were then split and supplemented with buffer or the DNA polymerase inhibitor aphidicolin (Errico et al., 2007). Aphidicolin-treated samples exhibited little or no Approach (Figure 7A), as well as an \(\sim 25\% \) decrease in total nucleotide incorporation due to degradation of some forks that had not yet stalled at the crosslink (Figure 7B). ChIP showed that BRCA1, RAD51, and FANCD2 were still recruited to the ICL in aphidicolin-treated samples (Figures 7C–7E), although total recovery was also decreased by \(\sim 25\% \). In contrast, DNA incisions were inhibited, as measured by persistence of the converged fork structure (Figures 7F and S5I), and this mirrored what we observed in BRCA1-depleted reactions (Figure 3L). Together, these results indicate that Approach, and by extension, CMG unloading, are required for incisions and downstream repair events (Figure 7G). In addition, they show that BRCA1 helps recruit RAD51 and FANCD2 independently of Approach.

Both BRCA1 and Polymerase Extension Contribute to Helicase Unloading

Interestingly, blocking the Approach step with aphidicolin delayed CMG unloading (Figures S5J–S5L). These results suggested that the DNA polymerase also contributes to helicase removal. To investigate the relationship between BRCA1-dependent and polymerase-dependent helicase unloading, pICL was replicated in mock- or BRCA1-depleted extract until forks had stalled at the ICL. Each reaction was then split and supplemented with buffer or aphidicolin, as in Figure 7A. Analysis of the helicase complex by ChIP showed that BRCA1 depletion and aphidicolin treatment caused additive inhibition of CMG unloading (Figures 7H–7J). These results indicate that BRCA1 and DNA polymerase can promote CMG unloading through independent mechanisms.

DISCUSSION

The CMG helicase is a highly processive molecular motor that binds tightly to DNA. Little is known about how CMG is
dismantled from chromatin, both when replication forks meet during termination and in response to certain forms of replication stress. We previously found that when forks encounter an ICL, the Approach of leading strands from the -20 to the -1 position correlates with dissociation of CMG from the site of damage (Fu et al., 2011). Here we show that inhibiting CMG dissociation in various ways also blocks Approach and ICL repair. These data establish CMG unloading as a critical, early step in ICL repair.

We further present multiple lines of evidence that CMG unloading requires the BRCA1-BARD1 complex. BRCA1 immunodepletion and disruption of the BRCA1-BARD1 complex with a dominant-negative peptide both inhibit CMG unloading. In addition, preventing BRCA1 localization to ICLs by disrupting ubiquitin signaling or BRCT-phosphopeptide interactions inhibits CMG unloading. Finally, the timing of BRCA1 binding to ICLs and CMG unloading are highly correlated. Together, our results show that the BRCA pathway functions to evict the helicase from stalled replication forks. Importantly, BRCA1 is not required for helicase unloading during replication termination (Figures S3B–S3D). Perhaps there is a difference in the arrangement of CMG helicases during ICL repair and termination that allows BRCA1-BARD1 to discriminate between the two situations.

A future challenge is to determine how the various genome maintenance functions of BRCA1 contribute to tumor suppression. Interestingly, the crosslink sensitivity of BRCA1-deficient cells is less severe than for those carrying mutations in other ICL repair factors (Bridge et al., 2005; Niedzwiedz et al., 2004; Ohashi et al., 2005; Qing et al., 2011). This could be explained by the fact that a polymerase-linked mechanism can promote helicase unloading in the absence of BRCA1. Moreover, the FANC pathway is still activated in the absence of BRCA1, as evidenced by normal FANCD2 ubiquitylation in response to ICLs (Bunting et al., 2012). As such, repair might still proceed, albeit with reduced efficiency and higher propensity for error.

In conclusion, our results show that the BRCA and FANC pathways execute an ordered series of fork-processing events (helicase eviction, DNA incisions, and HR) that promote error-free removal of ICLs from DNA (Figure S7).

EXPERIMENTAL PROCEDURES

Xenopus Egg Extracts and DNA Replication
Preparation of Xenopus egg extracts was performed as described previously (Lebofsky et al., 2009). For DNA replication, plasmids were first incubated in a high-speed supernatant (HSS) of egg cytoplasm (final concentration 7.5 ng
DNA/μL extract) for 20 min at 21°C, leading to the formation of prereplication complexes (pre-RCs). Next, two volumes of nucleoplasmic egg extract (NPE) were added to one volume of HSS, initiating Cdk2-dependent replication at pre-RCs. For all figures, the 0 min time point corresponds to NPE addition. For DNA labeling, reactions were supplemented with [α-32P]dATP, which is incorporated into nascent strands during replication. For UbVS reactions, NPE was supplemented with 14 μM UbVS alone, or with 50 μM ubiquitin (both from Boston Biochem, Cambridge) prior to mixing with HSS. Reactions were stopped with ten volumes stop solution A (0.5% SDS, 25 mM EDTA, 50 mM Tris-HCl [pH 7.5]), and replication intermediates were purified as described (Räschle et al., 2008). Replication and repair intermediates were separated by 0.8% native agarose gels and visualized using a phosphorimager to determine replication efficiency (Lebofsky et al., 2009). All experiments were performed at least twice, and a representative result is shown. Veterinary care is provided by the Center for Animal Resources and Comparative Medicine at Harvard Medical School (AAALAC accredited).

ICL Repair Assay

Repair efficiency was calculated essentially as described (Räschle et al., 2008). pICL contains a single, site-specific cisplatin ICL that interrupts a pre-RC. Next, two volumes of nucleoplasmic egg extract (NPE) for 20 min at 21°C/0.75 V/cm for 26 hr at 21°C. Crosslinking was stopped by adding glycerol to a final concentration of 125 mM followed by passage through a Micro Bio-Spin 6 Chromatography column (Bio-Rad, Hercules) to remove excess formaldehyde. The flowthrough was diluted to 500 μL with sonication buffer (20 mM Tris-HCl [pH 7.5], 150 mM NaCl, 2 mM EDTA, 0.5% NP-40, 5 μg/mL aprotinin plus leupeptin, and 2 mM PMSF) and subjected to sonication, yielding DNA fragments ∼300–500 bp in size. Following immunoprecipitation with the indicated antibodies, formaldehyde crosslinks were reversed, and DNA was purified for analysis by quantitative real-time PCR with the following primer pairs: “ICL” (5′-GGCGATTTCTCTCTCTTC-3′ and 5′-CATGCAATGTTGTTGCAGCTT-3′) and “FAR” (5′-AACGCCAA TAGGGACCTTC-3′ and 5′-GCGGTACTTGGCATATGAT-3′). Antibodies for ChIP were purified using protein A Sepharose beads (GE Healthcare, Piscataway).

ssDNA Analysis

ssDNA was detected by quantitative PCR as described (Holstein and Lydall, 2012). Native DNA samples were first incubated at low temperature, allowing ssDNA to anneal with a “Test” primer that contains a unique sequence at its 5′ end. A single round of primer extension then creates a novel DNA product whose amount is proportional to the original amount of ssDNA. The novel product is then amplified using “Left” and “Right” primers at high temperatures to prevent annealing of the Test primer. ssDNA quantity is calculated using a ssDNA standard curve. Primer locations denote the distance from the 3′ end of the Test primer to the ICL. The “118,” “400,” “1454,” and “2925” Test primers anneal to the lagging strand template, while the “Anti-204” Test primer anneals to the leading strand template, serving as a control for dsDNA. See Figure 4D for schematic.
Figure 7. BRCA1 and DNA Polymerase Independently Promote Helicase Unloading

(A–G) pICL was replicated in egg extract for 12 min. The reaction was then split and supplemented with buffer (+Buffer) or 50 μM aphidicolin (+Aphidicolin) to block polymerase activity. Samples from the same reaction were analyzed by the following: (A) denaturing PAGE, (B) agarose gel electrophoresis to determine the efficiency of replication, (C)–(E) ChIP with the indicated antibodies, (F) 2DGE to visualize the accumulation of converged forks, and (G) agarose gel electrophoresis to determine the efficiency of ICL repair. See Figure S5 for primary gel data, quantification of nascent strand products, and ChIP recovery at the FAR locus.

(H–J) pICL was replicated in mock-depleted (Mock) or BRCA1-depleted (ΔB1) extract for 30 min. Each reaction was then split and supplemented with buffer or aphidicolin (+Aph) to block polymerase extension. Protein recruitment to the ICL was analyzed by ChIP with the indicated antibodies. See Figure S6 for primary experimental data.
Molecular Cell
Helicase Unloading Enables DNA Crosslink Repair

The following primer sequences were used: (118) test 5'-TGACTGCAGCAC GAGGATAGAGTCAGGAGAGGA-3', left 5'-TTCTTCTAGATAGGGTAGCTCTGTGG AGGT-3', right 5'-TGACTGGCAGCAGGACGATGCTAGAGGAGAGGAC-3'; (400) test 5'-TGACTGGCAGCAGGACGATGCTAGAGGAGAGGAC-3', left 5'-CCCTGGGCTCCTAACAT ACCTGAG-3', right 5'-TGACTGGCAGCAGGACGATGCTAGAGGAGAGGAC-3'; (1,454) test 5'-TGA CGGCCGACAGCCGATTTGATGTAAGGAGA-3', left 5'-GCTCATGTGCCCAGGGCCA GGGT-3', right 5'-TGACTGGCAGCAGGACGATGCTAGAGGAGAGGAC-3'; (2,925) test 5'-TGA CGGCCGACAGCCGATTTGATGTAAGGAGA-3', left 5'-TGACTGGCAGCAGGACGATGCTAGAGGAGAGGAC-3', right 5'-TCAGGAGAAGGGAGAAAATCTGG-3'.

 Nascent Strand Analysis

Nascent strand analysis was performed as described (Räslie et al., 2008). Briefly, pICL intermediates were digested with AflIII, followed by addition of 0.5 volumes stop solution B (95% formamide, 20 mM EDTA, 0.05% bromophenol blue, and 0.05% xylene cyanol). Radiolabeled nascent strands were then separated by a 7% denaturing polyacrylamide gel, transferred to filter paper, dried, and visualized using a phosphorimager. Sequencing ladders were generated with primer S (5'-CATGGTTTTACTAGCCAGATTTTTCCTCCTCTG-3') using the Cycle Sequencing Kit (USB, Cleveland).

Antibodies and Immunodepletion

The following rabbit polyclonal antibodies were described previously: BRCA1 (raised against X.l.BRCA1 residues 1,001–1,192) (Joukov et al., 2001), BARD1 (Joukov et al., 2001), RAD51 (Long et al., 2011), FANCI (Knipscheer et al., 2004) (both provided by S. Waga, Osaka University). Chk1-P (S345) was purchased from Cell Signaling Technology, Danvers. BRCA2 antibodies were raised in rabbits against X.l.BRCA2 residues 1,842–2,080. Rap80 antibodies were raised in rabbits against a 223 residue peptide (see GenBank Accession CX130807). The cDNA encoding this fragment was generated from a Xenopus laevis mRNA library by PCR with the following primers: left, 5'-CCCGAATCCGTACAGAAGAATAGTATGCTAATC GCCA-3'; and right, 5'-CATAGTTTGAACGCCCGCTGGCTCAGATCCT GCCGA-3'. The PCR fragment was digested with EcoRI and NotI, then cloned into the corresponding sites of a pET29a vector. To deplete BRCA1, Xenopus egg extracts were incubated with antibodies prebound to protein A Sepharose beads (50 μg total IgGs from serum per 0.1 μL of beads) at a 4:1 ratio of extract to beads for 40 min at 4°C for three rounds. BRCA1 Inhibitory Peptides

X.l.BARD1 residues 2–195 corresponding to H.s.BARD1 residues 2–202 containing the RING domain were cloned into pGEX-6P-1 to create a N-terminal GST fusion construct. The RING Aff alanine insertions (after alanine 35 and 100) were introduced by Site-Directed Mutagenesis (Agilent Technologies, Santa Clara). Recombinant RING-GST fusions were expressed using BL21 (DE3). pICL intermediates were digested with AflIII, followed by addition of 0.5 volumes stop solution B (95% formamide, 20 mM EDTA, 0.05% bromophenol blue, and 0.05% xylene cyanol). Radiolabeled nascent strands were then separated by a 7% denaturing polyacrylamide gel, transferred to filter paper, dried, and visualized using a phosphorimager. Sequencing ladders were generated with primer S (5'-CATGGTTTTACTAGCCAGATTTTTCCTCCTCTG-3') using the Cycle Sequencing Kit (USB, Cleveland).

REFERENCES

Supplemental Information

BRCA1 Promotes Unloading of the CMG Helicase from a Stalled DNA Replication Fork

David T. Long, Vladimir Joukov, Magda Budzowska, and Johannes C. Walter
Figure S1

A)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+Buffer</td>
<td>0, 20, 40, 60, 120, 240</td>
</tr>
<tr>
<td>+UbVS</td>
<td>0, 20, 40, 60, 120, 240</td>
</tr>
<tr>
<td>+UbVS +Ub</td>
<td>0, 20, 40, 60, 120, 240</td>
</tr>
</tbody>
</table>

- aFANCD2
- aChk1-P

B)

- FANCD2 Ub
- Chk1-P

C)

- FANCD2 Ub
- Chk1-P

D)

- HincII
- HindIII

E)

- Rap80 (FAR)

F)

- BRCA1 (FAR)

G)

- FANCD2 (FAR)

H)

- Cdc45 (FAR)

I)

- MCM7 (FAR)

J)

- Sld5 (FAR)

K)

- Arrival (-20 to -40)

L)

- Approach (-1 to 19)

M)

- Insertion (+80)

N)

- Extension (+540)

O)

- Cdc45 (ICL)

P)

- MCM7 (ICL)

Q)

- Sld5 (ICL)
Figure S2

A. Mock vs. ΔBRCA1

B. Converged Forks

C. HindIII, HindIII/SapI

D. ICL Repair (#2)

E. ICL Repair (#3)

F. MCM7

G. BRCA1

H. RAD51

I. Cdc45

J. BARD1

K. FANCI

L. RPA

M. BRCA2

N. FANCD2

O. BRCA1

P. BRCA2

Q. RAD51

R. FANCD2

DNA Synthesis

Converged fork intermediates (~11.2 kb)
Y-shaped intermediates (~8.9 and ~7.9 kb)
Linearized pCL (~5.6 kb)
Linearized pQuant (~3.8 kb)
piCL SapI Fragments (2.3 and 3.3 kb)
Figure S3

A. Mock

B. Cdc45

C. MCM7

D. Sld5

E. Antibody Pull-downs

F. Peptide Pull-downs

G. Arrival (-20 to -40)

H. Approach (-11 to -19)

I. Insertion (0)

J. Extension (+540)

K. Cdc45 (FAR)

L. MCM7 (FAR)

M. Sld5 (FAR)

N. Cdc45 (ICL)

O. MCM7 (ICL)

P. Sld5 (ICL)
Figure S6

A) Gel electrophoresis showing various bands with size markers.

- **G** (Glycogen)
- **A** (Adenine)
- **T** (Thymine)
- **C** (Cytosine)

- **Size (nt)**
 - 700
 - 150
 - 140
 - 130
 - 120
 - 110

- **Time (min)**
 - 0
 - 60
 - 120
 - 180
 - 240

- **Mock**
- **+Aphidicolin**

- **ARF6CA1**
- **+Aphidicolin**

- **Extension (+540)**
- **Insertion (0)**
- **Approach (-1)**
- **Arrival (-40 to -20)**

B) Graph showing relative intensity vs. time for **Arrival (-40 to -20)**.

C) Graph showing relative intensity vs. time for **Approach (-1 to -19)**.

D) Graph showing relative intensity vs. time for **Insertion (0)**.

E) Graph showing relative intensity vs. time for **Extension (+540)**.

F) Graph showing recovery vs. time for **Cdc45 (FAR)**.

G) Graph showing recovery vs. time for **MCM7 (FAR)**.

H) Graph showing recovery vs. time for **Sld5 (FAR)**.

- **Mock**
- **Mock + Aphidicolin**
- **ΔB1**
- **ΔB1 + Aphidicolin**
Replication forks converge on the ICL with leading strands stalling ~20 nucleotides from the crosslink due to the presence of the CMG replicative helicase complex.

Ubiquitin signaling promotes recruitment of BRCA1 and BRCA2 to ICL-stalled forks, followed by loading of RAD51 onto regions of ssDNA present at lagging strand gaps.

BRCA1 and the action of the polymerase cooperate to promote efficient unloading of the replicative helicase.

Helicase eviction allows extension of leading strands to within 1 nucleotide of the ICL.

Leading strand extension creates a DNA structure that supports FANCI-FANCD2-dependent incisions by XPF-ERCC1 and other endonucleases.

Dual incisions unhook the ICL, creating a DSB in one sister chromatid and allowing lesion bypass to restore the other sister.

Recombination repairs the DSB using the intact sister chromatid as a template for repair. The unhooked adduct is removed by excision repair.
Supplemental Figure Legends

Figure S1, related to Figure 2. (A) Samples from the reaction presented in Figure 2 were analyzed by Western blot with the indicated antibodies and quantified for (B) FANCD2 ubiquitylation and (C) Chk1 phosphorylation. (D) Primary data from which DNA Synthesis and ICL Repair was calculated for Figures 2A and B, respectively (described in Methods). pICL was replicated in extract supplemented with buffer (+Buffer), UbVS (+UbVS), or UbVS and ubiquitin (+UbVS+Ub) and DNA intermediates were digested with HincII or HincII and SapI. Samples were then separated by native agarose gel electrophoresis and visualized by phosphorimager. Intermediates used for quantification are indicated at right. (E-J) ChIP data from Figures 2C-E and 2H-J are shown with percent recovery values at the FAR locus. (K-N) Quantification of nascent strand products from Figure 2G (solid lines) is shown with two experimental replicates (dashed and dotted lines). Arrival (-20 to -40 position), Approach (-1 to -19), Insertion (0), Extension (+540). The abundance of each product is normalized to peak values in +Buffer samples. (O-Q) ChIP data from Figure 2H-J (solid lines) is shown with experimental replicates (dashed and dotted lines). Three replicates are shown for Cdc45 and two for MCM7 and Sld5.

Figure S2, related to Figure 3. (A) Western blot analysis of mock-depleted (Mock) and BRCA1-depleted (ΔB1) extracts. Relative protein levels in BRCA1-depleted extracts were determined by comparison with a dilution series of mock-depleted extract and indicated as a percentage in the figure. (B) Primary data from which Converged Forks accumulation was calculated for Figures 3A and B. pICL was replicated in extract supplemented with radioactive nucleotide to label nascent strands. Uncut DNA intermediates were separated by native agarose gel electrophoresis and visualized by phosphorimager. The radioactivity in the bands
encompassed by the bracket, which represent intact forks that have undergone varying degrees of resection, was quantified and graphed in Figures 3A and B. (C) Primary data from which DNA Synthesis and ICL Repair was calculated for Figures 3E and F, as in Figure S1. (D and E) ICL Repair data from two additional BRCA1 depletion experiments (#2 and #3, respectively). (F-N) ChIP data from Figure 3A-C are shown with percent recovery values for both ICL and FAR loci. (O-R) ChIP data from Figure 3G-J are shown with percent recovery values at the FAR locus.

Figure S3, related to Figure 5. (A) For the mock-depleted reaction from Figure 3, Arrival and Approach products (from H and I) were graphed relative to BRCA1 recruitment at the ICL as measured by ChIP (from Figure 3G). Mock- and BRCA1-depleted samples from Figure 3 were also used to analyze recruitment (by ChIP) of (B) Cdc45, (C) MCM7, and (D) Sld5 to an undamaged plasmid included in the replication reaction (pQuant, see Methods). (E) Pre-immune (Mock), BRCA1, or BARD1 antibodies were immobilized on protein A sepharose beads, then incubated with extract (input; IN). Beads were then pulled down and the supernatant (S) and pellet (P) fractions were blotted with the indicated antibodies. (F) Buffer, or the indicated BARD1 RING peptides were immobilized on glutathione sepharose beads, then incubated with extract, pulled down, and blotted as in (E). Unlike the BRCA1 and BARD1 antibodies, which quantitatively precipitated both BRCA1 and BARD1, the RINGWT peptide recovered only BRCA1, indicating that BARD1 was displaced from the complex. (G-J) Quantification of nascent strand products from Figure 5A (solid lines) is shown with two experimental replicates (dashed and dotted lines). The abundance of products at each time point is normalized to peak values in mock-depleted samples. (K-M) ChIP data from Figure 5B-D are shown with percent recovery values at the FAR locus. (N-P) ChIP data from Figure 5B-D (solid lines) are shown with two experimental replicates (dashed and dotted lines).
Figure S4, related to Figure 6. (A) Western blot analysis of mock-depleted (Mock) and partially BRCA1-depleted (ΔB1) extracts. The relative protein level was determined by comparison with a dilution series of mock-depleted extract. (B-E) Quantification of nascent strand products from Figure 6A (solid lines) is shown with two experimental replicates (dashed and dotted lines). The abundance of each product is normalized to peak values in +Buffer samples. (F-H) ChIP data from Figure 6B-D are shown with percent recovery values at the FAR locus. (I-K) ChIP data from Figure 6B-D (solid lines) are shown with an experimental replicate (dashed lines). pICL was replicated in egg extract for 18 minutes, then supplemented with buffer (+Buffer), phosphorylated SXXF peptide (+pSPTF), or non-phosphorylated SXXF peptide (+SPTF). At the indicated times, samples were then analyzed by denaturing polyacrylamide gel electrophoresis (L; irrelevant lanes removed between lanes 15 and 16) with strand products quantified in (M-P), and by ChIP with the indicated antibodies (Q-S).

Figure S5, related to Figure 7. (A) Primary data from which DNA replication (Figure 7B) and ICL repair (Figure 7G) were calculated. (B-E) Quantification of nascent strand products from Figure 7A. The abundance of products at each time point is normalized to peak values in +Buffer samples. (F-H) ChIP data from Figure 7C-E are shown with percent recovery values at the FAR locus. (I) Primary data from which Converged Forks accumulation (open arrowhead) was calculated (Figure 7F). (J-L) Samples from Figure 7A-G were analyzed by ChIP with the indicated antibodies at the ICL and FAR loci.

Figure S6, related to Figure 7. Primary data related to Figure 7H-J. (A) Nascent strand product formation in mock-depleted (Mock) and BRCA1-depleted (ΔBRCA1) extract supplemented with Buffer or Aphidicolin after 30 minutes. (B-E) Quantification of nascent strand products from A.
The abundance of products at each time point is normalized to peak values in the Mock+Buffer samples. (F-H) ChIP data showing Cdc45, MCM7, and Sld5 recovery at the FAR locus.

Figure S7, related to Figure 1. Schematic model of ICL repair in *Xenopus laevis* egg extracts. Parental DNA (black lines), nascent strands (red lines). HR (homologous recombination), DSB (double-strand break).