Update on GPS Modernization Efforts

2 June 2015

Brig Gen William T. “Bill” Cooley
Director, GPS Directorate
1. REPORT DATE
02 JUN 2015

2. REPORT TYPE

3. DATES COVERED
00-00-2015 to 00-00-2015

4. TITLE AND SUBTITLE
Update on GPS Modernization Efforts

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Space Command, Space and Missile Systems Center, Los Angeles AFB, El Segundo, CA, 90245

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at a Capitol Hill Event on GPS Modernization held 2 June 2015 at Rayburn House Office Building, Washington, DC.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a REPORT
 unclassified

b ABSTRACT
 unclassified
c THIS PAGE
 unclassified

17. LIMITATION OF ABSTRACT
 Same as Report (SAR)

18. NUMBER OF PAGES
 16

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Mission: Acquire, deliver and sustain reliable GPS capabilities to America’s warfighters, our allies, and civil users.
How GPS Works

GPS constellation consists of 24+ satellites orbiting the earth at ~10,900 nautical miles (Medium Earth Orbit, MEO) in 6 Orbital planes at 55° inclination.

GPS Users: 2 Billion +

A user requires a minimum of four satellites to determine time and position (t, X, Y, Z)

Tracking, Telemetry & Control (TT&C)

Process data from Monitoring Stations and ground antennas. Generate commands to be sent to SVs through the ground antennas

S-Band

L-Band

Ground Antennas
(4 dedicated and 7 shared)

Master Control Station (MCS)
(Schriever AFB, CO)

Kalman Filter: heart of PNT Mission. Performs measurement updates every 15 minutes; estimates instantaneous state of GPS constellation

Monitor Stations
(6 Air Force, 10 NGA)

Navigation Data: ephemeris (orbit) & clock data; signals include:
• Civil: L1 C/A, L2C, L5, L1C (future)
• Military: L1/L2 P(Y), L1/L2 M

Navigation Message uploads containing precise time and satellite position (ephemeris)

Provide information to MCS to allow orbit & clock estimation, ensure proper signal behavior and enable satellite message creation

Track Navigation Payload Health and Performance on L-Band Signals

PNT Mission

GPS constellation consists of 24+ satellites orbiting the earth at ~10,900 nautical miles (Medium Earth Orbit, MEO) in 6 Orbital planes at 55° inclination.

How GPS Works

Keys to Performance

Time: Atomic Clocks
Position: Ephemeris (Kalman Filter)
Integrity: Worldwide monitoring
Availability: Number of satellites

GPS Users: 2 Billion +

A user requires a minimum of four satellites to determine time and position (t, X, Y, Z)

Tracking, Telemetry & Control (TT&C)

Process data from Monitoring Stations and ground antennas. Generate commands to be sent to SVs through the ground antennas

S-Band

L-Band

Ground Antennas
(4 dedicated and 7 shared)

Master Control Station (MCS)
(Schriever AFB, CO)

Kalman Filter: heart of PNT Mission. Performs measurement updates every 15 minutes; estimates instantaneous state of GPS constellation

Monitor Stations
(6 Air Force, 10 NGA)

Navigation Data: ephemeris (orbit) & clock data; signals include:
• Civil: L1 C/A, L2C, L5, L1C (future)
• Military: L1/L2 P(Y), L1/L2 M

Navigation Message uploads containing precise time and satellite position (ephemeris)
Civil Cooperation
- 1+ Billion civil & commercial users worldwide
- Search and Rescue
- Civil Signals
 - L1 C/A (Original Signal)
 - L2C (2nd Civil Signal)
 - L5 (Aviation Safety of Life)
 - L1C (International)

38 Satellites / 31 Set Healthy
Baseline Constellation: 24 Satellites

Satellite Block	Quantity	Average Age	Oldest
GPS IIA | 3 | 21.5 | 24.4
GPS IIR | 12 | 13.3 | 17.7
GPS IIR-M | 7 | 7.7 | 9.6
GPS IIF | 9 | 1.8 | 4.9
Constellation | 31 | 9.5 | 24.4

Spectrum
- World Radio Conference
- International Telecommunication Union
- Bilateral Agreements
- Adjacent Band Interference
- International Committee On Global Navigation Satellite Systems (GNSS)

Department of Defense
- Services (Army, Navy, AF, USMC)
- Agencies (NGA & DISA)
- US Naval Observatory
- PNT EXCOMS
- GPS Partnership Council

Maintenance/Security
- All Level I and Level II
 - Worldwide Infrastructure
 - NATO Repair Facility
- Develop & Publish ICDs Semi-Annually
- ICWG: Worldwide Involvement
- Update GPS.gov Webpage
- Load Operational Software on over 970,000 SAASM Receivers
- Distribute PRNs for the World
 - 120 for US and 90 for GNSS

International Cooperation
- 57 Authorized Allied Users
- 25+ Years of Cooperation
- GNSS
 - Europe - Galileo
 - China - COMPASS
 - Russia - GLONASS
 - Japan - QZSS
 - India - IRNSS

PUBLICALLY RELEASABLE

AS OF 20 APR 15
GPS Modernization Program

Legacy GPS IIA/IIR
- Single Civil Frequency (L1 C/A)
- P(Y)-Code (L1 & L2)

GPS IIR-M
- 2nd Civil Signal (L2C)
- M-Code (L1M & L2M)

GPS IIF
- 3rd civil signal (L5)
- 2 Rb + 1 Cs Clocks
- 12 year design life

GPS III
- 4th civil signal (L1C)
- 4x better User Range Error than GPS IIF
- Increased availability
- Increased integrity
- 15 year design life

Legacy Operational Control Segment (AEP / LADO)
- Mainframe system
- Command & Control
- Signal monitoring
- Launch and disposal

Next Generation Operational Control System (OCX)

OCX Block 0
- Launch & On-Orbit Checkout of GPS III

OCX Block 1
- Replaces AEP for constellation C2
- M-Code
- Robust cyber security
- New civil signals & monitoring
- Improved accuracy

Modernized GPS User Equipment (MGUE)
- Provides M-code access for military users
- Increased anti-jam/anti-spoof capabilities
Accuracy: Civil Commitments
Standard Positioning Service (SPS) Performance Standard

Standard Positioning Service (SPS) Signal-in-Space Performance

User Range Error (URE) in Meters

- 2001 SPS PS 6 m RMS
- Equivalent RMS Value from 2008 SPS PS (4 m)
- Worst of Any Healthy Satellite (95%)

Across All Healthy Satellites (RMS, 68%)

System accuracy better than published standard

PUBLICLY RELEASABLE
Accuracy: Military Commitments
Precise Positioning Service (PPS) Performance Standard

Precise Positioning Service (PPS) Signal-in-Space Performance

2007 PPS Performance Standard (PS)
Worst of Any Healthy Satellite, 5.9 m @ 95%

User Range Error (URE) in Meters

Across All Healthy Satellites (RMS, 68%)

System accuracy better than published standard

PUBLICALLY RELEASABLE
Now on The Air: Modernized Civil Signals

- The U.S. initiated CNAV message broadcast (L2C & L5) on 28 Apr 14
 - Daily uploads (nominal procedure for satellite operations) began on 31 Dec 14
 - L2C message currently set “healthy”
 - L5 message set “unhealthy” until sufficient monitoring capability established
 - Position accuracy not guaranteed during pre-operational deployment

- User Range Error (URE) CNAV Performance Post
 - Daily uploads consistent with or exceed legacy navigation performance*
 - Inter-signal corrections enable single point positioning competitive with P(Y) receivers

- Full potential of signals require receiver manufactures’ adoption
 - Challenge: Industry taking advantage of these signals moves capabilities forward!

Modernized Space System: GPS IIF

- Nine total GPS IIFs on-orbit
- Four GPS IIF launches in 2014!
- Three additional GPS IIFs in the pipeline
 - SV-9 &12 are in storage; SV-11 at Cape
- Prime: The Boeing Company
- Upcoming launch dates:
 - GPS IIF-10 (SV-11): 15 Jul 15
 - GPS IIF-11 (SV-12): 30 Oct 15
 - GPS IIF-12 (SV-9): NET 3 Feb 16
Modernized Space System: GPS III

- GPS III is the newest block of GPS satellites
 - 4 civil signals: L1 C/A, L1C, L2C, L5
 - First satellites to broadcast common L1C signal
 - 4 military signals: L1/L2 P(Y), L1/L2M
- SV-1 – SV-8 on contract; SV-9 & 10 approved
- Navigation payload panel delivered 1 Nov 14
- Updated Mission Data Unit delivered 9 Mar 15
- SV-1 System Module Core Mate completed 9 Apr 15
- SV level thermal vacuum scheduled for Fall 2015
- SV-1 available for launch Aug 2016

Lockheed Martin (Waterton, CO) – Prime

PUBLICALLY RELEASABLE
Current Control Segment: OCS

- Current system Operational Control Segment (OCS)
 - Flying the GPS constellation with both the Architecture Evolution Plan (AEP) and the Launch & Early Orbit, Anomaly Resolution, and Disposal Operations (LADO) software systems
 - Cyber security / information assurance enhancements in progress
 - Prime: Lockheed Martin
Modernized Control Segment: OCX

- Next Generation Operational Control System
 - Modernized command & control system
 - GPS III command & control
 - M-Code
 - Robust cyber security infrastructure
 - Modern civil signals & monitoring
 - Improved PNT performance
 - Prime: Raytheon (Aurora, CO)
 - OCX Block 0: launch & checkout for GPS III
 - Currently in test; delivery expected May 2016
 - Successfully completed four launch exercises
 - OCX Block 1: replaces AEP, adds modern features
 - Currently in design, delivery expected 2019
 - OCX Block 2: adds advanced NAVWAR and Civil Signal Performance Monitoring capabilities
 - Delivery expected in 2020
Modernized User Equipment: MGUE

- Military GPS User Equipment (MGUE) is using a commercial market driven acquisition approach
- Accelerated from TD phase into testing and lead platform integration
- Increment 1 program's 2366b certification is pending
- Successful Preliminary Design Reviews (PDRs) for all 3 MGUE Inc 1 contractors
 - Rockwell Collins (Cedar Rapids IA): 06 Aug 14
 - L-3 Communications (Anaheim, CA): 04 Sep 14
 - Raytheon (El Segundo, CA): 17 Sep 14
- Security Certification Underway
- Integrating Service Lead Platforms
 - Air Force: B-2 Spirit (B-2)
 - Army: DAGR Distributed Device (D3) / Stryker
 - Marines: Joint Light Tactical Vehicle (JLTV)
 - Navy: Arleigh Burke Class Guided Missile Destroyer (DDG)
GPS Director’s Focus

- Delivering new signals to military and civilian users (M-Code, L2C, L5)
- Accelerating Military GPS User Equipment (MGUE)
- GPS III production, following 2-year delay, due to Navigation Panel issues
 - Thermal Vacuum test (Fall ‘15) final development hurdle
- Next Generation Ground (OCX) program challenges continue
 - Cybersecurity & systems engineering issues drove schedule and cost overruns
 - Contractor working closely with Gov’t to deliver, but challenges remain
Team GPS thanks you for your support!