Fundamental Mechanisms,
Predictive Modeling,
and Novel Aerospace Applications
of Plasma Assisted Combustion

AFOSR
MURI Review Meeting

Andrey Starikovskiy
Princeton University

October 22, 2013
Main Tasks

• High Temperature
• High Pressure
• High Speed
• High Voltage
• High Power
Rapid Compression Machine:
P = 10-70 atm, T = 650-1200 K
Scheme of the RCM

- Driving chamber
- Speed control chamber
- Combustion chamber
- Oil reservoir
- Piston
- Lock chamber
- Fast active valve
- Oil
- N\textsubscript{2}

Solenoid:
- P=30 bar of N\textsubscript{2}
- P=1 bar
Gas Dynamic Limitations

![Graph showing pressure over time for different conditions.]

- Green line: 13mm, 958 K, 19.77 bar
- Pink line: 9mm, 967 K, 20.87 bar
Gas Discharge Limitations

ICCD images of the discharge at 1 atm dry air. Negative polarity of the high-voltage electrode, 22 kV, 25 ns duration, $f = 40$ Hz [Kosarev et al, 2009].

Mixture $\text{C}_2\text{H}_6:\text{O}_2=2:7$ at 1 bar and ambient initial temperature was successfully ignited in ~ 100 ms in relatively large volume [Sagulenko et al, 2009].
SDBD Development at High Pressures

1 atm, 10 kV

3 atm, 30 kV
DBD Discharges: 20 kV, 10 kHz
ICCD gate 50 ns

Side view: \(T_0 = 300 \text{ K}, \phi = 0.0 \), pulse\#10

Front view: \(T_0 = 300 \text{ K}, \phi = 0.0 \)

Side view: \(T_0 = 500 \text{ K}, \phi = 0.3 \)

Front view: \(T_0 = 500 \text{ K}, \phi = 0.3 \)

<table>
<thead>
<tr>
<th>Pressure (torr)</th>
<th>(\text{H}_2)-air</th>
<th>(\text{C}_2\text{H}_4)-air</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pulse

<table>
<thead>
<tr>
<th>P = 10</th>
<th>50</th>
<th>200 Torr</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DBD Discharges: 20 kV, 10kHz
ICCD gate 50 ns. P = 20 Torr

Air

Contraction stage
Gasdynamic expansion stage

\[\tau_{\text{inst}} \sim \frac{\tau_T}{\gamma_i} \sim 0.1 \quad \gamma_i = \frac{d \ln(n_i)}{d \ln(E/N)} \]
\[\tau_T \sim \frac{\gamma}{(\gamma - 1)} \frac{p}{\langle W \rangle} \text{ - typical heating time} \]
\[\tau_{\text{inst}} \sim 10^{-4} - 10^{-2} \text{ s} \]

Energy distribution profiles. Dynamic discharge contraction and gasdynamic expansion stages are clearly seen.

Nitrogen

Contraction stage
Gasdynamic expansion stage
Kinetic Analysis.
Konnov’s Chemical Mechanism, $T_0 = 500$K, $P = 50$ Torr C_2H_6-Air. $E/n = 300$ Td, Different discharge energy.

Even 25% inhomogeneity will lead to order of magnitude difference in ignition delay – and completely compromise the kinetic analysis.
Kinetic Error Analysis

Air

- Median = 43250
- Maximum = 54500
- Energy Error = 26%
- Ignition Error ~ 5 times

C₂H₄-Air

- Median = 24250
- Maximum = 51250
- Energy Error = 111%
- Ignition Error ~ 20 times

H₂-Air

- Median = 41250
- Maximum = 61000
- Energy Error = 48%
- Ignition Error ~ 10 times

Inhomogeneous

Homogeneous?

Ignition of a stoichiometric hydrogen-air mixture modeling. OSU, 2009
Plasma-Assisted Ignition at High Pressures

CH\textsubscript{4} + O \Rightarrow CH\textsubscript{3} + OH

CH\textsubscript{3} + OH \Rightarrow CH\textsubscript{2}O + H\textsubscript{2}

CH\textsubscript{3} + O\textsubscript{2} \Rightarrow CH\textsubscript{2}O + OH

CH\textsubscript{3} + O\textsubscript{2} + M \Rightarrow CH\textsubscript{3}O\textsubscript{2} + M

Ignition delay time for modified mixtures, f=1.0, EGR=30%. Discharge 20ms before compression stroke

T\textsubscript{2} = 794 K, P\textsubscript{2} = 32 bar

T\textsubscript{2} = 672 K, P\textsubscript{2} = 20 bar.
Kinetics of Ignition Development

Stage 1. Discharge in Methane-Air mixture at temperature ~ 330 K, 1 atm. Production of metastable components.

Stage 2. Fast adiabatic compression to a temperature of 800-950 K. Metastable components decomposition and ignition development.

<table>
<thead>
<tr>
<th></th>
<th>CH$_2$O</th>
<th>CO</th>
<th>CH$_3$OH</th>
<th>CH$_3$O$_2$H</th>
<th>H$_2$O$_2$</th>
<th>Delay Time</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>540 ppm</td>
<td>170 ppm</td>
<td>260 ppm</td>
<td>21 ppm</td>
<td>49 ppm</td>
<td>0.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>540 ppm</td>
<td>170 ppm</td>
<td>260 ppm</td>
<td>21 ppm</td>
<td>49 ppm</td>
<td>0.51</td>
<td>910</td>
<td></td>
</tr>
<tr>
<td>170 ppm</td>
<td>260 ppm</td>
<td>21 ppm</td>
<td>49 ppm</td>
<td>0.89</td>
<td>0.60</td>
<td>19,050</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.47</td>
<td>10,820</td>
<td></td>
</tr>
</tbody>
</table>
Non-diffusive hybrid scheme for simulation of filamentary discharges

FLUID MODEL

The balance equation within hydrodynamic (drift-diffusion) approximation for required species and Poisson’s equation for electric potential:

\[
\frac{\partial n_s}{\partial t} + \text{div} \vec{j}_s = Q_s \\
\vec{j}_s = \vec{W}_s n_s - D_s \nabla n_s \\
\vec{W}_s = \mu_s \vec{E} \\
\Delta \varphi = -\frac{1}{\varepsilon \varepsilon_0} \sum q_s n_s \\
\vec{E} = -\nabla \varphi
\]

Secondary processes of electron production: photoionization in N₂-O₂, ion-electron emission, photoemission.

HYBRID MODEL

Non-fluid regions:

\[N_s = n_s \times \Delta V \leq 1\]

1. DISCRETE FLUXES

Original flux \(j_x \) and number \(\Delta N \) of transported over interface \(A_x \) species:

\[j_x = W_x n_s - D \frac{\partial n_s}{\partial x} \Rightarrow \Delta N = |j_x| A_x \Delta t\]

\[\Delta N = \Delta N^{int} + \Delta N^{rem},\]

where \(\Delta N^{int} \in \mathbb{Z} \) and \(\Delta N^{rem} < 1 \)
AVALANCHE TO STREAMER TRANSITION IN UNIFORM ELECTRIC FIELD
(air, 1 bar, 300 K, 1 cm, various voltages)
AVALANCHE TO STREAMER TRANSITION IN UNIFORM ELECTRIC FIELD
(air, 1 bar, 300 K, 1 cm, various E/n)
PS High-Pressure Discharge

Air, 1 atm

$E/n = 200 \text{ Td}: \quad \tau_{\text{max}}(\rho_0) \sim 10 \text{ ns}$

$E/n = 300 \text{ Td}: \quad \tau_{\text{max}}(\rho_0) \sim 2 \text{ ns}$

$\rho_1 \sim 21 \rho_0 (P_1 = 70 \text{ atm})$

$\tau_{\text{max}}(200 \text{ Td}) \sim 500 \text{ ps}$

$\tau_{\text{max}}(300 \text{ Td}) \sim 100 \text{ ps}$

FPG 200-01PB pulse generator
Voltage up to 200 kV
Pulse duration 350 ps
Rise time 120-140 ps
Voltage rise rate $2 \times 10^{15} \text{ V/s}$

Water, 1 g/cm3

Voltage on electrodes, kV

Time, ns
MURI Deliverables: Diffusion, Mixing, Transport and High-Speed Combustion

- **Flames** (Ju, Sutton)
- **Cavity Flow Ignition** (Adamovich)
- **Shock Tunnel** (Starikovskiy)

![Graph showing MURI Deliverables: Diffusion, Mixing, Transport and High-Speed Combustion](image)
Discharge Formation and Flame Stabilization in High Speed Flow – Plasma Shock Tunnel

Combustion-Driven Shock Tube

Vacuum Chamber 1x0.5x0.5 m³
Discharge Formation and Flame Stabilization in High Speed Flow – Plasma Shock Tunnel

Combustion-Driven Shock Tube

Nozzle

Pulser

100 kV, 1 MHz
12 ns, 1000 p/b

1 MHz, 50 kV, 1 ms

1 MHz, 100 kV, 1 ms

Graphs showing relationships between initial pressure and temperature.
MURI Deliverables: Kinetic Data Generation

- Shock Tube (Starikovskiy)
- RCM (Starikovskiy)
- Flames (Ju, Sutton)
- Flow Reactors (Yetter, Adamovich)
- Streamer (Adamovich)
- JSR (Ju)
- MW+laser (Miles)
Plasma Shock Tube

PAC Kinetics at High T, Low P
Plasma Shock Tube

FID 120/60

MDR12 + R6357

431 nm CH

306 nm OH

MDR12 + R6357

TDS-3054

TDS-2014

TDS-2014

BNC-575

Tek-370

HV PS

HV PS

SW 1

NSpulse

SW 2

SW 3

Ignition

Time, ms

Channels 1-4

Sh1

Sh2

Sh3

306 nm
Pulse Current Dynamics – Cable

$C_2H_6:O_2:N_2:Ar = 2:7:28:63$

$P_5 = 1.0 \text{ atm}$
$T_5 = 1610 \text{ K}$
$\rho_5 = 0.273 \text{ kg/m}^3$

$P_5 = 3.3 \text{ atm}$
$T_5 = 1360 \text{ K}$
$\rho_5 = 1.06 \text{ kg/m}^3$
Pulse Current Dynamics – Shock Tube

\[\text{C}_2\text{H}_6: \text{O}_2: \text{N}_2: \text{Ar} = 2:7:28:63 \]

Ethane. Hayashi 1987

Oxygen. Ionin 2007

Argon. Tachibana 1989

N\textsubscript{2}. Phelps 1994

\[\frac{\partial (nf)}{\partial t} + \textbf{v} \nabla (nf) + \frac{Ze}{m} \left\{ \textbf{E} + \frac{1}{c} [\textbf{v} \times \textbf{H}] \right\} \nabla_v (nf) = S(nf) \]

\[f(v, \theta) = \sum_{l=0}^{\infty} f_l(v) P_l(\cos \theta) \approx f_0(v) + f_1(v) \cos \theta \quad \frac{\nu_e}{\nu_m} \ll 1 \]
Discharge Energy Comparison

$C_2H_6:O_2:N_2:Ar = 2:7:28:63$
Discharge Dynamics
Ignition Delay Time

$C_2H_6:O_2:N_2:Ar = 2:7:28:63$

Combustion model: Konnov (2005)
Ignition Delay Time

$\text{C}_2\text{H}_6: \text{O}_2: \text{N}_2: \text{Ar} = 2:7:28:63$

Combustion model: Konnov (2005)
Measured Ignition Delay Time in Stoichiometric

$C_2H_6:O_2:Ar$ and $C_2H_2:O_2:Ar$ Mixtures

Kosarev et al. (2009)

$C_2H_6:O_2:Ar$

Current work
Peak Reduced Electric Field and Field at the Instant of Peak Current

$C_2H_2:O_2:Ar = 17:83:900$
($\phi = 0.5$)
Total Specific Deposited Discharge Energy and Energy Deposited in First Pulse

\[
\begin{align*}
\text{C}_2\text{H}_2 : \text{O}_2 : \text{Ar} &= 17 : 83 : 900 \\
(\varphi = 0.5)
\end{align*}
\]
Ignition delay time in $\text{C}_2\text{H}_2:\text{O}_2:\text{Ar}$ mixtures

solid symbols: measurements

hollow symbols: calculations with kinetic scheme by Wang et al. (2007)
Evolution in time of calculated mole fractions for main components

Stoichiometric $C_2H_2:O_2:Ar$ mixture

Autoignition

at 1115 K and 0.91 atm

Ignition after discharge at 1130 K and 0.91 atm
Sensitivity analysis for autoignition and ignition by discharge

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Auto</th>
<th>FIW</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{C}_4\text{H}_2 + \text{OH} = \text{H}_2\text{C}_4\text{O} + \text{H}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{C}_4\text{H}_2 + \text{H} = \text{iC}_4\text{H}_3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{C}_2\text{H}_3 + \text{O}_2 = \text{HCO} + \text{CH}_2\text{O}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{C}_2\text{H}_3 + \text{O}_2 = \text{CH}_2\text{CHO} + \text{O}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{C}_2\text{H}_2 + \text{O} = \text{HCCO} + \text{H}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{C}_2\text{H}_3 (+\text{M}) = \text{C}_2\text{H}_2 + \text{H} (+\text{M})$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{HCCO} + \text{H} = \text{CH}_2^* + \text{CO}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{C}_2\text{H} + \text{O}_2 = \text{HCO} + \text{CO}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{HCO} + \text{O}_2 = \text{CO} + \text{HO}_2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\text{H} + \text{O}_2 = \text{O} + \text{OH}$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Autoignition 1115 K and 0.91 atm
Ignition by discharge 1130 K and 0.91 atm

Stoichiometric $\text{C}_2\text{H}_2 : \text{O}_2 : \text{Ar}$ mixture
Ignition Delay Time, $\phi = 0.5$

$C_2H_5OH:O_2:Ar(90\%)$

Graph showing discharge current versus time with various data points and labels for experimental and calculated values.
Ignition Delay Time, $\phi = 1.0$

$C_2H_5OH:O_2:Ar(90\%)$

Ignition times, μs versus $1000/T_5$.
Plasma Shock Tube Experiments Summary

\[\text{C}_2\text{H}_2: \text{O}_2: \text{Ar}(90\%) \]
Combustion model: Wang et al. (2007)

\[\text{C}_2\text{H}_5\text{OH}: \text{O}_2: \text{Ar}(90\%) \]

\[\text{C}_2\text{H}_6: \text{Air}: \text{Ar}(63\%) \]
Combustion model: Konnov (2005)

\[\text{C}_2\text{H}_6: \text{Air}: \text{Ar}(63\%) \]
Combustion model: Konnov (2005)
Ignition Delay Time Decrease at 0.1 eV/mol

\[\tau_p = \tau_a \exp\left(-\frac{E_p}{E_0}\right) \]

\(C_2H_5OH:O_2:Ar(90\%) \)
Plasma Ignition Sensitivity

0.1 eV/mol

Plasma assisted ignition efficiency

$Q = 0.1 \text{ eV/mol}$

- H_2:Air
- CH_4:O$_2$:Ar
- CH_4:Air:Ar
- C_2H_2:O$_2$:Ar
- $\text{C}_2\text{H}_5\text{OH}$:O$_2$:Ar
- C_2H_6:O$_2$:Ar
- C_2H_6:Air:Ar
- C_3H_8:O$_2$:Ar
- C_4H_{10}:O$_2$:Ar
- C_5H_{12}:O$_2$:Ar

Sensitivity

$\tau_{\text{auto}} / \tau_{\text{plasma}}$

$1000/T, \text{ K}^{-1}$

$\tau_{\text{a}} / \tau_{\text{p}} \sim 8$

$\varepsilon \sim 0.0125 \text{ eV/mol}$

$\tau_{\text{a}} / \tau_{0.01} \sim 5$ (- 40%)

$\tau_{\text{a}} / \tau_{0.10} \sim 2 \times 10^7$
PAC Kinetics H_2 Model Development

Plasma model:
- Plasma assisted combustion models for hydrogen oxidation understood for conditions of low energy loading per molecule. It means low ionization degree – we can neglect e-e collisions and EEDF Maxwellization due to this process.
- We have complete set of cross-sections for rotational, vibrational and electronic excitation, dissociation, dissociative ionization, ionization. These cross-sections were verified both for two-term approximation of Boltzmann equation (local EEDF) and could be modified for non-local case of extremely strong electric fields (differential cross-sections are also available).

Afterglow Model:
- **Because of fast relaxation we assume** $T_{tr} = T_{rot}$ **for ground state.**
- We have recombination rates for ion-electron collisions, ion-ion recombination (in some cases the products are unknown). Rates of complex ions formation/decomposition are unknown for elevated temperatures – but these ions control the plasma recombination rate.
- Quenching rates of major states are available, in some cases products are unknown. Specifically we do not know the products of reactions $N_2^* + H_2 \rightarrow ...$

Chemical Model:
- We have complete state-to-state model of chemical reactions including vibrationally-nonequilibrium conditions for H_2-air system since 2001.
- We have verified this model for 300 K (low-P reactor), 300-800 K (1 atm streamer) and 800-1500 K (0.5 atm, reflected shock wave).

Unsolved problems:
- Because of huge number of reactions some pathways are still questionable. We need to investigate in more details the products of electron-ion and ion-ion recombination, products of electronic states dissociative quenching (focus on electronically-excited products formation).
- Reaction rate coefficients of electronically and vibrationally excited species should be verified in some cases.
- We need additional analysis of the role of complex ions in recombination and chemistry at low-T conditions.
Plasma Assisted Combustion: Translational Nonequilibrium

\[\text{N}_2 : \text{O}_2 : \text{H}_2 = 4:1:2 \]
Mechanism of Fast Heating in Air Plasma

Aleksandrov & Starikovskiy, 2010

- B $n_e = 10^{14}$, $p=20$ Tor
- C $n_e = 10^{15}$, $p=20$ Tor
- D $n_e = 10^{14}$, $p=1$ atm
- E $n_e = 10^{15}$, $p=1$ atm

E/N, Td

Pancheshnyi (2009)

Popov (2011)

Popov (2001)
Potential Energy Curves of Molecular Hydrogen

\[H_2(b^3\Sigma_u), \ 8.9 \text{ eV} \]
\[\sigma_{\text{max}} = 0.33 \text{ Å}^2 (17 \text{ eV}) \]

\[H_2(a^3\Sigma_g), \ 11.8 \text{ eV} \]
\[\sigma_{\text{max}} = 0.12 \text{ Å}^2 (15 \text{ eV}) \]

\[H_2(B^1\Sigma_u), \ 11.3 \text{ eV} \]
\[\sigma_{\text{max}} = 0.48 \text{ Å}^2 (40 \text{ eV}) \]

\[H_2(C^1\Pi_u), \ 12.4 \text{ eV} \]
\[\sigma_{\text{max}} = 0.40 \text{ Å}^2 (40 \text{ eV}) \]
Potential Energy Curves of Molecular Oxygen

Potential Energy Curves: O₂(A³Σ_u⁺), 4.5 eV
- \(\sigma_{\text{max}} = 0.18 \text{ Å}^2 \) (6.6 eV)

Potential Energy Curves: O₂(³Π_g), 5.6 eV
- \(\sigma_{\text{max}} = 0.16 \text{ Å}^2 \) (12 eV)

Potential Energy Curves: O₂(B³Σ_u⁻), 8.4 eV
- \(\sigma_{\text{max}} = 1.0 \text{ Å}^2 \) (9.4 eV)
Potential Energy Curves of Molecular Nitrogen

\[
\begin{align*}
\text{N}_2(A^3\Sigma_u^+), & \quad 6.2 \text{ eV} \\
\sigma_{\text{max}} & = 0.08 \text{ Å}^2 (10 \text{ eV}) \\
\text{N}_2(B^3\Pi_g), & \quad 7.35 \text{ eV} \\
\sigma_{\text{max}} & = 0.20 \text{ Å}^2 (12 \text{ eV}) \\
\text{N}_2(C^3\Pi_u), & \quad 11.03 \text{ eV} \\
\sigma_{\text{max}} & = 0.98 \text{ Å}^2 (14 \text{ eV})
\end{align*}
\]
Major Channels of Hot Atoms Production

\[\text{N}_2 + e = \text{N}_2(C^3\Pi_u) + e; \quad k = f(E/n) \]

\[\text{N}_2(C^3\Pi_u) + \text{H}_2 = \text{N}_2 + 2\text{H}(^1\text{S}) + 6.55 \text{ eV}; \quad k = 3.2 \times 10^{-10} \text{ cm}^3/\text{s} \]

\[\text{N}_2(C^3\Pi_u) + \text{O}_2 = \text{N}_2 + 2\text{O}(^3\text{P},^1\text{D}) + 3.9 \text{ eV}; \quad k = 2.7 \times 10^{-10} \text{ cm}^3/\text{s} \]

\[\text{O}_2 + e = e + 2\text{O}(^3\text{P},^1\text{D}) + 1.3 \text{ eV}; \quad k = f(E/n) \]

\[\text{H}_2 + e = e + 2\text{H}(^1\text{S}) + 4.4 \text{ eV}; \quad k = f(E/n) \]
Chain Initiation/Branching Reactions

\[H + O_2 = O + OH \]
\[k = 1.6 \times 10^{-10} \times \exp(-7470/T) \text{ cm}^3/\text{s} \]
\[k(300) = 2.5 \times 10^{-21} \text{ cm}^3/\text{s} \]
\[k(\text{hot}) = 1.6 \times 10^{-10} \text{ cm}^3/\text{s} \]

\[H + O_2 + M = HO_2 + M \]
\[k(300, 1 \text{ atm}) = 1.6 \times 10^{-12} \text{ cm}^3/\text{s} \]
\[T_{\text{crit}} \sim T_{\text{autoignition}} \]

\[O + H_2 = H + OH \]
\[k = 8.5 \times 10^{-20} \times T^{2.67} \times \exp(-3160/T) \text{ cm}^3/\text{s} \]
\[k(300) = 9.3 \times 10^{-18} \text{ cm}^3/\text{s} \]
\[k(\text{hot}) = 1.5 \times 10^{-10} \text{ cm}^3/\text{s} \]
\[k^{(1D)} = 1.1 \times 10^{-10} \text{ cm}^3/\text{s} \]

\[O + O_2 + M = O_3 + M \]
\[k(300, 1 \text{ atm}) = 2.2 \times 10^{-14} \text{ cm}^3/\text{s} \]
\[T_{\text{crit}} \sim 650K \]

\[H(\text{hot}) + (N_2,H_2) = H + (N_2,H_2) \]
\[k \sim 2m/M k_{gk} \sim 1.6 \times 10^{-10} \text{ cm}^3/\text{s} \]

\[O(\text{hot}) + (N_2,O_2) = O + (N_2,O_2) \]
\[k \sim 2m/M k_{gk} \sim 1.3 \times 10^{-10} \text{ cm}^3/\text{s} \]

\[H(\text{hot}) + O_2 = H + O + O \]
\[\]

\[H(\text{hot}) + H_2 = H + H + H \]

\[O^{(1D)} + (M) = O + (M) \]
\[k = 2.6 \times 10^{-11} \text{ cm}^3/\text{s} \ (M = O_2) \]
\[k = 1.3 \times 10^{-11} \text{ cm}^3/\text{s} \ (M = N_2) \]
\[k = 5.2 \times 10^{-11} \text{ cm}^3/\text{s} \ (M = H_2) \]
Radicals Production Increase in Cold H_2-Air Mixture Due to Hot Atoms Formation
SUMMARY - 1

Experimental Facilities

 \(P = 10-70 \text{ atm}, \ U = 120 \text{ kV} \)
 1 GW in 60 ns

1. Plasma Shock Tunnel. \(M = 3-5, \ U = 100 \text{ kV} \)
 0.5 MW during 1 ms

1. Plasma Shock Tube. \(T = 800 - 2000 \text{ K}, \ U = 120 \text{ kV} \)
SUMMARY - 2

Major Results

Two new mechanisms of PAC proposed:

1) Influence of Vibrational Excitation on Low-Temperature Kinetics

\[
\begin{align*}
N_2 + e &= N_2(C^3) + e \\
N_2(C^3) + O_2 &= N_2 + O + O \\
O_2 + e &= O + O + e \\
N_2 + e &= N_2(v) + e \\
N_2(v) + HO_2 &= N_2 + HO_2(v) \\
HO_2(v) &= O_2 + H
\end{align*}
\]

Synergetic Effect of High and Low Electric Fields

2) Radicals Production Increase Due to Hot Atoms Formation

\[
\begin{align*}
N_2(C^3\Pi_u) + H_2 &= N_2 + 2H(^1S) + 6.55 \text{ eV} \\
N_2(C^3\Pi_u) + O_2 &= N_2 + 2O(^3P,^1D) + 3.9 \text{ eV} \\
O_2 + e &= e + 2O(^3P,^1D) + 1.3 \text{ eV} \\
H_2 + e &= e + 2H(^1S) + 4.4 \text{ eV}
\end{align*}
\]
Major Results
Plasma Ignition Efficiency for Different Fuels Analyzed
Future Plans

1) Role of Translational and Vibrational Nonequilibrium Analysis of non-Boltzmann, non-Maxwell regimes of reactions

2) Reference Experiments Database for PAC
 High-pressure regimes (RCM)
 Low-pressure regimes (STube)
 High-speed conditions (STunnel)

3) “Best Fuel for PAC”
Major International Collaborations and International Projects

Nickolay Aleksandrov (MIPT, Russia)
Ilya Kosarev (MIPT, Russia)
Sergey Pancheshnyi (ABB, Austria)
Svetlana Starikovskaya (LPP, France)

PROJECTS:
PARTNER UNIVERSITY FUND “Physics and Chemistry of Plasma-Assisted Combustion” (Princeton-LPP)