Towards Rapid Re-Certification Using Formal Analysis

Daniel Smullen
Travis Breaux
Carnegie Mellon University
1. REPORT DATE
MAY 2015

2. REPORT TYPE

3. DATES COVERED
00-00-2015 to 00-00-2015

4. TITLE AND SUBTITLE
Towards Rapid Re-Certification Using Formal Analysis

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University, Institute of Software Research, Pittsburgh, PA, 15213

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the 12th Annual Acquisition Research Symposium held May 13-14, 2015 in Monterey, CA.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT unclassified
 b. ABSTRACT unclassified
 c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT
 Same as Report (SAR)

18. NUMBER OF PAGES 35

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Outline

1. Problem Overview
 • Why is software (re)certification hard?
 • What’s the risk?
2. What kind of solution is needed?
3. Technical Background
4. Approach, Running Example
 • Conflict Detection, Reconciliation
5. Recertification Triggers
6. Does it scale?
7. Future Work
Why is software (re)certification hard?

• Systems change, requirements evolve.
• As changes occur, how do we determine how the changes affect security?
 • Review, review, then review some more.

• DIACAP, -RMF for IS and PIT systems mandates continuous review process…
• Reviews require **time, expertise, manpower, money.**
Step 6: MONITOR Security Controls

- Determine impact of changes to the system and environment
- Assess selected controls annually
- Conduct needed remediation
- Update security plan, SAR, and POA&M
- Report security status to AO
- AO reviews reported status
- Implement system decommission strategy

Step 5: AUTHORIZE System

- Prepare the POA&M
- Submit Security Authorization Package (security plan, SAR, and POA&M) to AO
- AO conducts final risk determination
- AO makes authorization decision

Step 4: ASSESS Security Controls

- Develop and approve Security Assessment Plan
- Assess security controls
 - Prepare Security Assessment Report (SAR)
 - Conduct post-remediation actions

Step 3: IMPLEMENT Security Controls

- Implement control solutions consistent with DoD Component Cybersecurity architectures
- Document security control implementation in the security plan

Step 2: SELECT Security Controls

- Common Control Identification
- Select security controls
- Develop system-level continuous monitoring strategy
- Review and approve the security plan and continuous monitoring strategy
- Apply overlays and tailor

Step 1: CATEGORIZE System

- Categorize the system in accordance with the CNSSI 1253
- Initiate the Security Plan
- Register system with DoD Component Cybersecurity Program
- Assign qualified personnel to RMF roles

Initiate the Security Plan, Register system with DoD Component Cybersecurity Program

- Assign qualified personnel to RMF roles
Step 2
SELECT
Security Controls

- Common Control Identification
- Develop system-level continuous monitoring strategy
- Review and approve the security plan and continuous monitoring strategy
- Apply overlays and tailor

Step 4
ASSESS
Security Controls

- Develop and approve Security Assessment Plan
- Assess security controls
- SCA prepares Security Assessment Report (SAR)
- Conduct initial remediation actions
Assess, review, remediate… rinse, repeat…

- Good in theory, but in practice? Everything is done manually; i.e. slowly.
- Cannot scale as complexity increases.
- Mobile? Cloud-based platforms?
- Constant change.
- Constantly increasing complexity.
What’s the risk?

• Fast and loose: data spills.
 • Quick and dirty, miss critical faults.

• Slow and steady: lose agility.
 • Must avoid review “backlog mission impossible”.
 • Adversaries will roll out new systems faster than us.

• Can’t just throw more experts at the problem…
 • Brooks’ Law.
 • Too many cooks! Increases accidental complexity.
 • “9 women can’t make a baby in 1 month!”
What kind of solution is needed?

- Use automation.
- Scale with evolving architectural assumptions.
- Do analysis computationally.
- Focus on adding new features, let the analysis determine the impact.

- **Result:** Rapid analysis at recertification (or design) time.

- Focus on the parts that commensurate with risk:
 - Data.
 - Secure enclave boundaries.
 - Changes.
What parts do we focus on?

Legend

- AIS Application
- Outsourced IT-Based Process
- Platform IT Interconnection
- Low-Security Location
- Secure Enclave
- Mobility
Technical Background

• Application Profile Language, model-checking.
• Semantic parameterization (Breaux et al., 2008)
 • Actions on data; actors, objects, purposes, source, destination.
• Bell-LaPadula: high-, low-confidentiality.
• Characterize the purpose; security level.
• Express compositions; logical subsumption.
 • Containment
 • Disjointness

• This forms the basis for our application profile language.
Technical Background

Review Policy

Write/Modify Application Profile

Automated Analysis & Conflict Detection

Conflict Reconciliation
Running Example

- Public accounts of real-world ship.
- Zumwalt-class destroyer.
- TSCE Infrastructure
- 6 MLOC
- Focus on software requirements:
 - Sensory and information sharing capabilities.
Approach

• Application profiles
 • Actions on data:
 • Collection
 • Use
 • Transfer
 • Traces:
 • Collection-Use
 • Collection-Transfer
 • Vice-versa
Approach

• Conflict Detection
 • Policy may specify a prohibition and a right on the same data, for the same purpose.
 • Leads to conflict.
D collected_radar_data < friendly_data, enemy_data, terrain_data
USS Zumwalt

SPEC HEADER

D collected_radar_data < friendly_data, enemy_data, terrain_data

SPEC POLICY

1. P COLLECT collected_radar_data FROM radar_system FOR high_confidentiality
2. P TRANSFER enemy_data TO friendly_fleet FOR low_confidentiality
3. P TRANSFER collected_radar_data TO friendly_fleet FOR low_confidentiality
4. P TRANSFER friendly_data TO friendly_fleet FOR high_confidentiality
5. R TRANSFER friendly_data TO anyone FOR low_confidentiality
1. Permit collection of collected radar data from Zumwalt’s radar system, designating it as high-confidentiality data.

<table>
<thead>
<tr>
<th>Application Profile Language</th>
<th>Formalization in Description Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>P COLLECT collected_radar_data FROM radar_system FOR high_confidentiality</td>
<td>$\mathcal{T} \models p_0 \equiv \text{COLLECT} \land \exists \text{hasObject. collected_radar_data} \land \exists \text{hasSource. radar_system} \land \exists \text{hasPurpose. high_confidentiality} $</td>
</tr>
</tbody>
</table>

2. Permit transfer of data about enemy vessels to friendly fleet members for general, low-confidentiality purposes.

<table>
<thead>
<tr>
<th>Application Profile Language</th>
<th>Formalization in Description Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>P TRANSFER enemy_data TO friendly_fleet FOR low_confidentiality</td>
<td>$\mathcal{T} \models p_1 \equiv \text{TRANSFER} \land \exists \text{hasObject. enemy_data} \land \exists \text{hasTarget. radar_system} \land \exists \text{hasPurpose. low_confidentiality} $</td>
</tr>
</tbody>
</table>

3. Permit transfer of all collected radar data to friendly fleet members for general, low confidentiality purposes. This rule generates a conflict, which is explained below.

<table>
<thead>
<tr>
<th>Application Profile Language</th>
<th>Formalization in Description Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>P TRANSFER collected_radar_data TO friendly_fleet FOR low_confidentiality</td>
<td>$\mathcal{T} \models p_2 \equiv \text{TRANSFER} \land \exists \text{hasObject. collected_radar_data} \land \exists \text{hasTarget. friendly_fleet} \land \exists \text{hasPurpose. low_confidentiality} $</td>
</tr>
</tbody>
</table>

4. Permit transfer of data about friendly vessels to friendly fleet members for specific, high-confidentiality purposes.

<table>
<thead>
<tr>
<th>Application Profile Language</th>
<th>Formalization in Description Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>P TRANSFER friendly_data TO friendly_fleet FOR high_confidentiality</td>
<td>$\mathcal{T} \models p_3 \equiv \text{TRANSFER} \land \exists \text{hasObject. friendly_data} \land \exists \text{hasTarget. friendly_fleet} \land \exists \text{hasPurpose. high_confidentiality} $</td>
</tr>
</tbody>
</table>

5. Prohibit transfer of friendly fleet data to anyone for general, low confidentiality purposes. This rule conflicts with Rule 3, explained below.

<table>
<thead>
<tr>
<th>Application Profile Language</th>
<th>Formalization in Description Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>R TRANSFER friendly_data TO anyone FOR low_confidentiality</td>
<td>$\mathcal{T} \models r_0 \equiv \text{TRANSFER} \land \exists \text{hasObject. collected_radar_data} \land \exists \text{hasTarget. Actor} \land \exists \text{hasPurpose. low_confidentiality} $</td>
</tr>
</tbody>
</table>
P COLLECT collected_radar_data FROM radar_system FOR high_confidentiality
P TRANSFER enemy_data TO friendly_fleet FOR low_confidentiality
P TRANSFER collected_radar_data TO friendly_fleet FOR low_confidentiality
P TRANSFER friendly_data TO friendly_fleet FOR high_confidentiality
R TRANSFER friendly_data TO anyone FOR low_confidentiality
Reconciliation

- Two reconciliation approaches identified:
 - Redaction
 - Generalization
- One approach that defeats these measures:
 - Merging
Redaction

- Eliminate a subsumption relationship within a collection.
- Permits the new (redacted) collection to be used for low-confidentiality purposes.

\[D_{\text{redacted}_\text{radar_data}} \subset D_{\text{enemy_fleet_data}}, D_{\text{terrain_data}} \]
Redaction

SPEC POLICY
1 P COLLECT collected_radar_data FROM radar_system FOR high_confidentiality
2 P TRANSFER enemy_data TO friendly_fleet FOR low_confidentiality

REDACT(collected_radar_data -> redacted_radar_data, friendly_data, low_confidentiality)

3 P TRANSFER redacted_radar_data TO friendly_fleet FOR low_confidentiality
4 P TRANSFER friendly_data TO friendly_fleet FOR high_confidentiality
5 R TRANSFER friendly_data TO anyone FOR low_confidentiality
Generalization

- Some types of data can be **fuzzified**.
 - Add noise, decrease fidelity.

- Numerical data:
 - Coordinates, time…

- All collections’ members must be generalized.
Merging

- Combine redacted data with un-redacted to recreate original.
- Combine generalized data with de-noised data to recreate original.
Distinguishing the Merging Risk

Policy Violation
1. Collect data for **high-confidentiality** purpose.
2. Collect other data for **low-confidentiality** purpose.
3. Repurpose high-confidentiality data, violate policy.

Merging
1. Collect data for **low-confidentiality** purpose.
 - Data is subset of redacted superset.
2. Collect related data for **low-confidentiality** purpose.
 - Data is negation of superset and redacted superset.
3. Merge two disjoint collections.

Similarly purposed data flows may be merged.
Merging Risk Mitigation

• Can catch merging risks as a result of conflict analysis.
 • Check subsumed purposes.
 • Trace data flows, transfer only what data is needed.

• Mitigates human error due to missed interpretations.
Recertification Triggers

How do you know when to run the analysis?

• Reconcile a conflict? Rerun, recheck.
• Add a new feature? Rerun, recheck.
• Modify the policy? Rerun, recheck.

• Rapid analysis means recertification is rapid.
Does it scale?

• How fast can we do analysis? Is it fast enough to let us rerun whenever we want?

• Simulations; 27 repetitions, increasing number of rules [0-80], 1.13 conflicts per increasing rule.

No objective basis for comparison.
Does it scale?

- No statistically significant relationship between performance and number of conflicts.

 \[r(874) = .36, p > .05 \]
Conclusions

• Yes, it scales:
 • Analysis can scale in quasilinear time.
• Simulations show that even huge profiles can be analyzed in roughly 7 minutes.

• What do we mean by huge profiles?
 • Hundreds of data flows.
 • Hundreds of rule combinations.
 • Hundreds of conflicts.
Future Work

• Extend automation to provide “hints” to analysts.
 • Profile development environment.
 • Automate reconciliation strategies.

• Characterize performance gain against manual processes.
Questions?

- Daniel Smullen
 Graduate Research Assistant, Carnegie Mellon University
 dsmullen@cs.cmu.edu

- Travis Breaux
 Assistant Professor, Carnegie Mellon University
 breaux@cs.cmu.edu