Report of Research at Technische Universität Darmstadt on Ultrahard Materials in the B-C-N-Si System

edited by Ralf Riedel
Technische Universität Darmstadt
Fachbereich Material- und Geowissenschaften
Fachgebiet Disperse Feststoffe
Petersenstr. 32
D-64287 Darmstadt
Germany

and

James W McCauley (Emeritus)
US Army Research Laboratory
Weapons and Materials Research Directorate, ARL
Aberdeen Proving Ground, MD 21005-5066

under contract W911NF-09-1-0576

Approved for public release; distribution is unlimited.
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
Report of Research at Technische Universität Darmstadt on Ultrahard Materials in the B-C-N-Si System

edited by Ralf Riedel
Technische Universität Darmstadt
Fachbereich Material- und Geowissenschaften
Fachgebiet Disperse Feststoffe
Petersenstr. 32
D-64287 Darmstadt
Germany

and

James W McCauley (Emeritus)
US Army Research Laboratory
Weapons and Materials Research Directorate, ARL
Aberdeen Proving Ground, MD 21005-5066

under contract W911NF-09-1-0576

Approved for public release; distribution is unlimited.
There are 3 phases of this research program:

1) The synthesis of a boron carbide (B₄C) ceramic powder by means of a polymer pyrolysis route. The synthesis involves the polycondensation of single molecules and subsequent thermal decomposition of the resulting boron-containing polymer at 1,100 °C. The product is annealed in a second step at 2,000 °C to form polycrystalline B₄C. The work is divided into 3 parts: i) synthesis of the educts—namely, bis(trimethylsilyl)carbodiimide and 2,4,6-trichloroborazine; ii) synthesis of the preceramic polymer by reaction of the aforementioned educts; and iii) thermolysis of the polymer up to 2,000 °C in a helium atmosphere.

2) A comprehensive literature review on superhard materials and their method of fabrication, projected properties, and possible scale-up, with a focus on the B-C-N system.

3) Attempting to fabricate, using the multianvil press, larger samples of c-Si₃N₄ (transparent if possible)—a spinel structure material.

15. SUBJECT TERMS
boron, carbon, nitrogen, silicon, cubic-Si₃N₄, boron carbide, ultrahard materials, high pressure
Contents

List of Figures v
List of Tables viii

1. Nonaqueous Sol-Gel Synthesis of Boron Carbide–Based Materials 1
 1.1 Interim Report (Project Start Date: December 1, 2009) 1
 1.1.1 Summary 1
 1.1.2 Experimental Work 1
 1.2 Final Report (Project Start Date: December 15, 2009) 3
 1.2.1 Summary 3
 1.2.2 Experimental Work 3
 1.2.3 References 10

2. Review: Synthesis Routes to Ultrahard B-C-N Phases 11
 2.1 Ternary B-C-N Compounds 12
 2.1.1 Theoretical Predictions 13
 2.1.2 Synthesis of B-C-N Precursors 22
 2.1.3 HP-HT Experiments and Results 28
 2.2 C-N Compounds 34
 2.2.1 Postulated Carbon Nitrides 34
 2.2.2 CN_x Thin Films via Vapor Deposition 39
 2.2.3 Ambient- and Low-Pressure Bulk Synthesis Approaches 40
 2.2.4 HP-HT Synthesis of Dense C-N Phases 48
 2.3 B-C Compounds 55
 2.3.1 HP-HT Synthesis of Diamond-like B-C Phases 56
 2.3.2 Potential Superhard B-C Phases 58
 2.4 Summary 61

3. Experimental: Synthesis of Transparent Spinel-Type γ-Si_3N_4 63
 3.1 High-Pressure, High-Temperature (HP-HT) Synthesis 63
 3.2 Sample Characterization 64
 3.2.1 Optical Observation 64
 3.2.2 Raman Spectroscopy 65
3.2.3 Powder X-ray Diffraction (XRD) 66
3.2.4 Energy-Dispersive X-ray Spectroscopy (EDX) 67
3.3 Conclusion 69

4. References for Sections 2 and 3 70

List of Symbols, Abbreviations, and Acronyms 85

Distribution List 87
List of Figures

Fig. 1.1 X-ray diffraction (XRD) of the synthesized B_xC_yN_z ceramic 7 at 1,100 °C ... 5
Fig. 1.2 X-ray diffraction (XRD) analysis of the sample 7 at 2,000 °C 6
Fig. 1.3 Raman spectroscopy of 8 (at 2,000 °C): a) regions containing B_4C and amorphous carbon and b) regions containing β-SiC and amorphous carbon ... 6
Fig. 1.4 Raman spectrum of 8' (at 2,000 °C) ... 7
Fig. 1.5 X-ray diffraction (XRD) analysis of 8' (at 2,000 °C) 8
Fig. 1.6 Scanning electron micrograph of product 8': a) overall microstructure of the sample; b) porous part of the microstructure; and c) dense part of the microstructure .. 9
Fig. 2.1 A representative atomic arrangement in the unit cell of cubic β-BC_2N structure .. 14
Fig. 2.2 All the possible topologically different c-BC_2N structures (after structural relaxation) starting from an 8-atom zinc-blende structured unit cell. The dotted bonds indicate the broken covalent bonds between N atoms ... 16
Fig. 2.3 Proposed tetragonal crystal structures of diamond-like BC_2N: a) z*-BC_2N with P-42m symmetry and b) t-BC_2N with P-421m symmetry .. 17
Fig. 2.4 a) Distribution of formation energy (eV/atom) on the upper rhombus of ternary B–C–N phase diagram using full spectrum. Less formation energy means that the corresponding composition is easier to form. b) B_xC_yN_z compositions synthesized in previous experiments. Most compositions are located in the area with negative formation energy, in agreement with the theoretical prediction .. 18
Fig. 2.5 High-temperature reaction of amorphous carbon spheres. a) SEM and b) TEM image, with boric acid and urea yields spheres with graphitic structure and composition of BC_4N, c) SEM, and d) TEM image 26
Fig. 2.6 Plot of all observed unit-cell volumes in the B–C–N system of cubic zinc-blende structure. The relationship of unit-cell volume vs. chemical composition shows a clear trend closely obeying Vegard’s law for ideal solid solutions, except for data of Solozhenko et al. 30
Fig. 2.7 Optical images of diamond crystals obtained at HP-HT using Fe-Ni alloy as a catalyst starting from graphite a) or mixtures of graphite and h-BN with stoichiometries of b) C0.98(BN)0.02; c) C0.9(BN)0.1; d) C0.9(BN)0.1 with 1 wt% Al additive; and e) C0.5(BN)0.5 34
Fig. 2.8 Theoretically predicted dense carbon(IV) nitride polymorphs that have been proposed in literature and which were examined theoretically:
a) β-C$_3$N$_4$ ($P6_3/m$), b) α-C$_3$N$_4$ ($P3_1c$); c) “pseudo-cubic” or “defect zinc blende” C$_3$N$_4$ ($P-43m$); d) “cubic” or “willemite-II” C$_3$N$_4$ ($I-43d$);
e) spinel-type γ-C$_3$N$_4$ ($Fd-3m$). The carbon and nitrogen atoms are represented as gray and blue spheres, respectively.

Fig. 2.9 Unit cells of the simple cubic gauche cg-N (a) and cg-CN (b).

Fig. 2.10 Examples for graphitic C$_3$N$_4$ networks with relative high symmetry based on the s-triazin unit (A) and the s-heptazine (tri-s-triazine) unit (B). Structure A was initially predicted to be the thermodynamically most stable C$_3$N$_4$ modification. However, recent DFT calculations have shown that B is significantly more stable than A.

Fig. 2.11 g-C$_3$N$_4$: s-triazine-based chemical structure and TEM image of nanosized hollow spheres.

Fig. 2.12 The 3-D resin-like structural model for C$_3$N$_4$.

Fig. 2.13 The diagram presents an overview of the reported experimental routes to produce C$_3$N$_4$ phases. The bold route indicates the most promising synthesis pathways to dense C$_3$N$_4$.

Fig. 2.14 a) Bright field TEM image of the C$_2$N$_2$(NH) crystal synthesized at P = 41 GPa and T > 1700 °C and b) crystal structure of the defect wurtzite-type carbon nitride imide, dwur-C$_2$N$_2$(NH).

Fig. 2.15 Computed phase boundary between carbon + nitrogen and the dense phases of C$_3$N$_4$: willemite-type phase w-C$_3$N$_4$ (blue line) and β-C$_3$N$_4$ (red line). For comparison, the phase diagram of carbon is shown by dashed lines.

Fig. 2.16 Low-magnification TEM images of β-C$_3$N$_4$ single-crystal nanorods obtained via reaction of graphite nanopowder with ammonia in a high-energy ball mill followed by the thermal treatment under NH$_3$ flow.

Fig. 2.17 A representative atomic arrangement in the hexagonal supercell of c-BC$_5$ with carbon and boron atoms represented by gray and red spheres, respectively. The hexagonal supercell is compatible with a cubic symmetry (dashed blue line) for c/a = $\sqrt{6} \approx 2.45$.

Fig. 3.1 Cross section of an octahedral pressure assembly used for HP-HT synthesis of γ-Si$_3$N$_4$.

Fig. 3.2 The microscopic photographs of “slice 1” of the HP product in a platinum capsule ring taken under combined transmitted and reflected light (a) and in transmitted light only (b).

Fig. 3.3 The microscopic photographs of “slice 2” of the HP product in a platinum capsule ring taken under combined transmitted and reflected light (a) and in transmitted light only (b).
Fig. 3.4 Typical Raman spectra measured from the translucent a) and dark b) areas of the HP product. The characteristic Raman shifts of the γ-Si$_3$N$_4$ with corresponding Raman-active phonon modes (according to Fang et al.) are indicated. 66

Fig. 3.5 Powder XRD pattern (red circles) of the HP product (slice 2) measured in transmission “STOE” geometry. The results of the full profile Rietveld refinement for the cubic spinel γ-Si$_3$N$_4$ and the corresponding difference curve are presented by black and blue lines, respectively. The calculated peak positions of the cubic spinel-type structure (space group $Fd-3m$) are denoted by green tick marks. The refinement agreement factors are $R_{\text{Bragg}} = 7.2\%$, $RF = 6.1\%$, and $\chi^2 = 1.2$. 67

Fig. 3.6 Typical EDX spectrum measured from translucent part of the HP product. C-K peak is due to the adherent carbon tape. 67

Fig. 3.7 a) Optical and b) SEM micrographs of the sample surface together with EDX elemental maps for c) nitrogen, d) oxygen, e) silicon, and f) platinum 68
List of Tables

Table 2.1 Calculated lattice parameters, bulk moduli, shear moduli, and estimated hardness (if available) of the predicted superhard B-C-N phases. The experimental values for dense carbon and BN modifications are given for comparison. ...20

Table 2.2 Predicted C3N4 phases and their calculated structural parameters, bulk moduli, and hardness ..35

Table 2.3 Experimental details and main results related to the HP-HT synthesis of carbon nitrides ..49

Table 2.4 Structural parameters, bulk moduli, shear moduli, and estimated hardness (if available) of the predicted superhard diamond-like BCx phases calculated employing GGA (LDA). The experimental values for diamond, c-BN, and recently discovered c-BC3 are given for comparison. ..59
1. Nonaqueous Sol-Gel Synthesis of Boron Carbide–Based Materials

Gabriela Mera and Ralf Riedel

1.1 Interim Report (Project Start Date: December 1, 2009)

1.1.1 Summary

The aim of the present project is the synthesis of a boron carbide (B₄C) ceramic powder by means of a polymer pyrolysis route. The synthesis involves polycondensation of single molecules and subsequent thermal decomposition of the resulting boron-containing polymer at 1,100 °C. The product is annealed in a second step at 2,000 °C to form polycrystalline B₄C. The work is divided into 3 parts: i) synthesis of the educts—namely, bis(trimethylsilyl)carbodiimide and 2,4,6-trichloroborazine; ii) synthesis of the preceramic polymer by reaction of the aforementioned educts; and iii) thermolysis of the polymer up to 2,000 °C in a helium atmosphere.

1.1.2 Experimental Work

The synthesis of bis(trimethylsilyl)carbodiimide was performed as reported in the literature, starting from hexamethyldisilazane ¹ (purum, ≥98.0% [gas chromatograph], Fluka, Germany), dicyandiamide ² (99%, Aldrich, Germany; 19.70 Euros for 1 kg), and ammonium sulfate as the catalyst (SigmaUltra, ≥99.0%, Sigma-Aldrich, Germany; 32.90 Euros for 100 g) as shown in Scheme 1.

![Scheme 1](image)

The reaction mixture was heated at 164 °C for 8 h, followed by a fractional distillation over a Viguex column. The yield of the product, bis(trimethylsilyl) carbodiimide ³, was 65 wt%.

The maximum amount of product per batch that can be produced in our lab is 250 mL. Until now, we have produced 0.5 L of pure bis(trimethylsilyl) carbodiimide.
The synthesis of 2,4,6-trichloroborazine was achieved by an improved synthetic route, which has not been reported in the literature yet. The novel synthesis approach allows us to use BCl$_3$·SMe$_2$ instead of BCl$_3$ gas, which is highly reactive and toxic. Accordingly, hexamethyltrisilazane 1 (purum, ≥98.0% (GC), Fluka, Germany) was reacted with BCl$_3$·SMe$_2$ in dichloromethane as the solvent (2.0 M in methylene chloride, Aldrich, Germany) (Scheme 2).

Several reaction conditions were tested to produce a pure product 5 with an improved yield. The progress of the reactions were followed by means of liquid-state 1H, 13C{1H}, 13C DEPT (distortionless enhancement by polarization transfer), 29Si DEPT, and 11B NMR (nuclear magnetic resonance) in C$_6$D$_6$.

Independently of the starting temperature or the ratio of the educts, 2,4,6-trichloroborazine 5 was obtained as the major product, together with some traces of residual BCl$_3$·SMe$_2$. The reactions were performed at starting temperatures –25, 0, and 25 °C, followed by refluxing at 66 °C and drying of the solid product 5 in vacuum.

In the next step, the product 2,4,6-trichloroborazine 5 has to be purified by sublimation in vacuum at 60 °C. Subsequently, 2,4,6-trichloroborazine 5 will be reacted with bis(trimethylsilyl)carbodiimide 3 to form the preceramic polymer 6 (Scheme 3).

The synthesis of the educts and of the polymer will be done in several batches to produce the required amount of B$_4$C.
1.2 Final Report (Project Start Date: December 15, 2009)

1.2.1 Summary

The aim of the present project is the synthesis of a boron carbide (B_4C) ceramic powder by means of a polymer pyrolysis route. The synthesis involves polycondensation of single molecules and subsequent thermal decomposition of the resulting boron-containing polymer at 1,100 °C. The product is annealed in a second step at 2,000 °C to form polycrystalline B_4C. The work is divided into 3 parts: i) synthesis of the educts—namely, bis(trimethylsilyl)carbodiimide and 2,4,6-trichloroborazine; ii) synthesis of the preceramic polymer by reaction of the aforementioned educts; and iii) thermolysis of the polymer up to 2,000 °C in a helium atmosphere.

1.2.2 Experimental Work

The synthesis and purification of bis(trimethylsilyl)carbodiimide 2 was done as described in the interim report above.

For the synthesis of 2,4,6-trichloroborazine 5, several routes were proved. As described in the interim report, the product was firstly produced by the reaction of hexamethyldisilazane with $BCl_3·SMes_2$ 4 in dichloromethane as solvent (2.0 M in methylene chloride, Aldrich, Germany) as shown in Scheme 1.
Several reaction conditions were tested to produce a pure product 5 with improved yield. The progress of the reactions were followed by means of liquid-state 1H, 13C (1H), 13C DEPT, 29Si DEPT, and 11B NMR in C$_6$D$_6$. Independently of the starting temperature or the ratio of the educts, 2,4,6-trichloroborazine 5 was obtained as the major product, together with some traces of residual BCl$_3$·SMe$_2$ 4. The reactions were performed at starting temperatures −25, 0, and 25 °C, followed by refluxing at 66 °C and drying of the solid product 5 in vacuum. In the next step, the product 2,4,6-trichloroborazine 5 has to be purified by sublimation in vacuo at 60 °C. Subsequently, 2,4,6-trichloroborazine 5 is reacted with bis(trimethylsilyl) carbodiimide 3 to form the preceramic polymer 6 (Scheme 2).
The synthesis of the educts and of the polymer will be done in several batches to produce the required amount of boron carbide (B₄C).

The polymer 6 was pyrolyzed at 1100 °C to produce an amorphous BₓCᵧNₜ ceramic 7. The pyrolysis program was as follows: 100 °C/h heating rate to 200 °C, holding time 2 h, heating to 1,100 °C with 100 °C/h, and dwelling time 2 h. After holding at the final temperature, the sample was allowed to cool to room temperature. The ceramic yield was ≈25 wt%. This process is summarized in Scheme 3.

\[\begin{array}{c}
6 \quad 1100 \degree C \quad \text{Ar} \quad 7 \quad 2000 \degree C \quad \text{He} \quad 8 \\
\end{array} \]

Scheme 3

The amorphous BₓCᵧNₜ ceramic 7 (Fig. 1.1) was further pyrolyzed to 2000 °C in an Astro furnace. The yield after thermolysis of BₓCᵧNₜ was ≈50 wt%. The product 8 obtained at 2,000 °C is not pure B₄C—it still contains β-SiC and graphite as crystalline phases (Fig. 1.2) together with an amorphous phase. Moreover, contamination of sulfur was analysed (specific smell of the samples and coloration of the crucible).

![X-ray diffraction (XRD) of the synthesized BₓCᵧNₜ ceramic 7 at 1,100 °C](image)
Fig. 1.2 X-ray diffraction (XRD) analysis of the sample 7 at 2,000 °C

The results are also in agreement with micro-Raman spectroscopy studies (514.5-nm laser). Figure 1.3 shows the results obtained for the regions containing B₄C and amorphous carbon (Fig. 1.3a) and for the regions containing β-SiC and amorphous carbon (Fig. 1.3b). The presence of graphite phase was not identified by Raman spectroscopy.

Fig. 1.3 Raman spectroscopy of 8 (at 2,000 °C): a) regions containing B₄C and amorphous carbon and b) regions containing β-SiC and amorphous carbon

To improve the purity of the products, 2,4,6-trichloroborazine was also synthesized from hexamethyldisilazane and trichloroborane 1M in hexane (Scheme 4).
The trichloroborane solution violently reacts with moisture; therefore, the synthesis can be made only in small amounts, high dilution, and at low temperature (−65 °C). The highest amount of product 5' that can be produced in one batch in our laboratory is 5 g. The yield of the reaction is ≈45 wt%, and the product was further used without purification. The quantitative polymerization of 5' with bis(trimethylsilyl)carbodiimide yields polymer 6' having the same structure as 6 but containing no sulfur impurities.

Similar to the pyrolysis of 6, the amorphous product 7' obtained at 1100 °C and crystalline 8' synthesized at 2000 °C can be produced according to Scheme 5.

Product 8' is a B₄C-containing ceramic as proved by Raman spectroscopy (514.5 nm) (Fig. 1.4) and by X-ray diffraction (XRD) analysis (Fig. 1.5).

Fig. 1.4 Raman spectrum of 8' (at 2,000 °C)
Fig. 1.5 X-ray diffraction (XRD) analysis of 8' (at 2,000 °C)

The evidence for the formation of B₄C is also clearly shown by Raman spectroscopy. Figure 1.4 shows the micro-Raman spectra of sample 8'. Three wide bands at 721.06, 823.79, and 1,089.41 cm⁻¹ and a double narrow band at 480.17/533.04 cm⁻¹ can be clearly distinguished, which are characteristic for the presence of rhombohedral B₄C. Two other broad lines at 1,361.83 and 1,561.79 cm⁻¹ can also be found, corresponding to the D and G absorption bands of residual amorphous carbon, nevertheless of low intensity. From the Raman studies it is obvious that sample 8' exhibits the band pattern of that of B₄C with low excess carbon impurities.

The XRD diffractogram shows weak reflections in part related to rhombohedral B₄C according to the PDF database (Powder Diffraction Files [PDF], International Center for Diffraction Data: Swarthmore, PA). The sample is not completely crystallized, and it looks similar to B₄CN₄ synthesized at 1,800 °C as reported in Kroke et al.¹ and Völger et al.²

The broad and weak (100) reflex of turbostratically disordered graphite-like BₓCᵧNₙ around 2θ = 43° is also found. To completely crystallize the sample, higher temperatures and/or longer annealing times are required. The experiments are currently under investigation.

The microstructure of 8' was analyzed also by means of scanning electron microscope (SEM) analysis. Figure 1.6 presents the micrograph of the ceramic sample composed of 2 phases, one with a high porosity and a second one with dense regions.
Fig. 1.6 Scanning electron micrograph of product 8°: a) overall microstructure of the sample; b) porous part of the microstructure; and c) dense part of the microstructure
The elemental analysis of the product \(8' \) has shown that the sample still contains nitrogen and some oxygen impurities. The calculated molecular formula is \(\text{B}_{4.9}\text{C}_{1.2}\text{N}_{2.3}\text{O}_{0.1} \) corresponding to 11.67 wt% C, 2.60 wt% O, 33.84 wt% N, and 51.89 wt% B. The decomposition of \(\text{BC}_{x}\text{N}_{y} \) to \(\text{B}_4\text{C} \) with elimination of nitrogen gas (reported to take place at 1,850 °C) is obviously occurring at higher temperatures than the one used in the present study.

Therefore, product \(7' \) (\(\text{BC}_{x}\text{N}_{y}, 1,100 \) °C) is presently synthesized in several batches and pyrolyzed up to 2,100 and 2,200 °C with annealing times of 4 to 10 h to achieve the requested amount of pure \(\text{B}_4\text{C} \) ceramic.

At this point in the project it became clear that the original goal of making large quantities of pure \(\text{B}_4\text{C} \) powder in a time- and cost-effective manner was probably not possible with the available funding. The main problem was that the cost of the starting material, trichloroborazine, was just too high (500 g for 55,000.00 Euros) from the standpoint of this project or for future commercialization. It was therefore decided to refocus the project on the following tasks:

- Compose a short review paper on superhard materials and their method of fabrication, projected properties, and possible scale up, with a focus on the B-C-N system.
- Try to fabricate, using the multianvil press (MAP), larger samples of c-\(\text{Si}_3\text{N}_4 \) (transparent if possible).

The reports of these 2 tasks follow in Parts 2 and 3.

1.2.3 References

Finding substances harder than diamond appears to be a real challenge. Rather than harder, it might be more productive to consider the possibility of novel superhard substances and/or materials that are more useful than diamond for certain applications. While diamond exhibits extreme hardness, its actual performance as a superabrasive or electronic material is somewhat limited. It easily oxidizes in air at even moderate temperatures and cannot be used as an abrasive for machining of ferrous alloys. Cubic BN (c-BN) exhibits greater thermal stability and is the superabrasive of choice for machining of steels but has only half of the hardness of diamond. A possible solution to improve useful properties is to synthesize dense binary or ternary phases containing second-row main group elements (B, C, N) with the goal that these materials might be more thermally and chemically stable than diamond, and harder than c-BN, and thus should be excellent materials for high-speed cutting and polishing of different materials including ferrous alloys. There is also potential that new dense binary and ternary compounds in the B-C-N system will demonstrate important optoelectronic and/or superconducting properties in combination with exceptional hardness.

Thus, the search for a superhard substance that might surpass (or at least combine) advanced properties of diamond and c-BN goes on, supported by continuous improvement of experimental techniques and growth of computational capacities; this search is important both for understanding the fundamental correlations between microscopic characteristics of interatomic interactions and macroscopic properties, and for pure technological applications. Taking into account the existence of correlations between hardness and unambiguously determined physical characteristics of substances (such as elastic properties, density, etc.), the scientific community was able to sort out “islands” of existent and hypothetical (super)hard substances. They can be tentatively divided into 3 classes: i) covalent and ionic-covalent compounds formed by light elements from the middles of the second and third rows of the periodic table (low-Z compounds); ii) covalently bonded crystalline and disordered carbon modifications; and iii) partially covalent compounds of transition metals with light elements, such as borides, carbides, nitrides, and oxides. To synthesize such compounds and substances, characterized by short bonds with high cohesive energy and rigid structures, the extreme conditions, such as high pressures (HPs) and high temperatures (HTs), or chemical vapor deposition (CVD) techniques are generally required. CVD techniques, however, do not provide bulk products and are, therefore, beyond the scope of the present report.
An alternative way to the superstrength and superhardness lies in the development of new materials, based on the existent (super)hard substances, via manipulation of their structure at the micro- and nanoscale. In other words, development of nanocomposites, multilayers, and superlattices via appropriate design and control of the material’s morphology would allow bringing its hardness and other mechanical characteristics closer to or even surpass the “ideal” values. This approach has been successfully applied, for example, to fabricate c-BN, Si₃N₄, TiN-based nanocomposites, multilayers, and heterostructures with hardness approaching and even surpassing that of diamond.³

The present review is focused on the most promising class of potential superhard compounds—namely, covalent binary and ternary phases in the B-C-N system: diamond-like BₓCᵧNₓ and BCₓ and dense CₓN₄ phases. It includes an overview of the theoretical works on the prediction of possible structures in the B-C-N system, investigation of their stability, and potentially interesting (in particular, elasto-mechanical) properties. It also describes the most prominent experimental approaches to obtain bulk superhard B-C-N compounds, including preparation of starting materials (precursors), experimental high-pressure high-temperature synthesis conditions, and results of characterization of the high-pressure products.

2.1 Ternary B-C-N Compounds

Ternary B-C-N compounds have drawn considerable attention during the last 2 decades because of the similarity in atom sizes and structures of carbon and boron nitride (i.e., diamond and cubic boron nitride, or graphite and hexagonal graphite-like boron nitride), which suggested that it should be possible to synthesize phases containing all 3 elements. Indeed, the existence of many low-density BₓCᵧNₓ phases with hexagonal or turbostratic structure has been reported. They can be synthesized via i) nitriding of solid-phase precursors at high temperatures, ii) using CVD technique, or iii) pyrolysis of inorganic polymers containing boron, carbon, and nitrogen. These compounds are of broad interest because graphitic BₓCᵧNₓ can be considered for applications as high-temperature semiconductors, especially if they can be altered by doping or structural changes.⁴ Moreover, it is expected that the dense forms of ternary B-C-N compounds or diamond-like solid solution with the general formula (BN)ₓCᵧ can exhibit extreme hardness approaching that of diamond,⁴⁻⁹ in combination with excellent thermal and chemical stability (superior to those of diamond)¹⁰, and would therefore be indispensable abrasive materials for high-speed machining of ferrous alloys. Even though interesting properties like photoluminescence¹¹, hydrogen absorption and storage¹², and exhaust gas absorption¹³ have been claimed for various B-C-N compounds (e.g., graphitic- or turbostratic-BCN, hexagonal-BCN, cubic-BCN, BCN-nanotubes)¹⁴, the
The present review will be generally focused on preparing dense ultrahard phases of B-C-N. This implies consideration of synthesis routes employing extreme pressures and temperatures or, to a lesser extent, CVD technique, which does not provide bulk superhard materials. The synthetic approaches resulting in low-density B-C-N ceramics or films (polymer routes, CVD, sputtering, etc.) will be also briefly considered in a sense of preparation of starting materials for subsequent high-pressure high-temperature (HP-HT) treatment, leading to the formation of hard phases.

2.1.1 Theoretical Predictions

Theoreticians have taken the first step in the late 1980s to investigate the electronic structure, bonding, and properties of this interesting class of materials prior to thorough experimental characterization. All the theoretical predictions can be roughly classified in investigation of structural stability, mechanical properties, and electronic properties.

2.1.1.1 Structural Stability

Liu et al.15 was one of the first to calculate the electronic structure of graphitic BC\textsubscript{2}N compounds using the local density functional formalism. The structural stability of BC\textsubscript{2}N has also been studied by Nozaki et al.16 using an empirical molecular mechanics simulation. Both studies had 8 constituent atoms in a unit cell even though different structural models with different atomic arrangements were considered. These initial studies were focused on structural stability using monolayer-model and nearest neighbor environments. It has been predicted that BC\textsubscript{2}N is formed by maximizing C-C and B-N bonds. It has also been found that a structure with alternate -C-C- and -B-N- chains or rings is the most stable one. These predicted structures can be assigned to graphitic-BC\textsubscript{2}N type; some of the earlier experiments reported similar structures17,18. Quite recently the structural and electronic properties of boron ternary graphite-like monolayers (BCN) were investigated using a pseudopotential method within density functional theory with an emphasis on the effect of composition and atomic arrangement on the structural stability and electronic properties in a 32-atom unit cell.19 The calculations confirm that the stable structure of boron ternary monolayers (BCN) is formed by increasing the number of both C-C and B-N bonds and, independent of the unit cell size, in agreement with earlier results,15,16 obtained applying another approach. The structure, stability, and nature of the bonding of BC\textsubscript{2}N have been compared with the tetra-atomic carbon and BN molecules by Tapas Kar et al.20 They predicted that the most stable structure of BC\textsubscript{2}N is linear, whereas C\textsubscript{4} and (BN)\textsubscript{2} are cyclic. However, as per our knowledge, experiments have not come up with linear-type BC\textsubscript{2}N.

Regarding the cubic B-C-N materials, some early studies of diamond/c-BN superlattices and alloys indicated very limited miscibility with respect to c-BN.
and diamond in the solid state around atmospheric pressure.21,22 In order to explore possible synthetic routes to the single-phase “heterodiamond” BC\textsubscript{2}N phase, Tateyama et al.23 investigated the effect of compression on graphitic BC\textsubscript{2}N (g-BC\textsubscript{2}N) using the monolayer structure proposed by Liu et al.15 and Nozaki et al.16 Structure optimization was done using monoclinic unit cells with 8 atoms. The results showed that a more stable structure corresponds to that with no B-B or N-N bonds and more C-C and B-N bonds, so-called β-BC\textsubscript{2}N (Fig. 2.1). It seems that earlier predictions of the structural stability based on the number of B-N and C-C bonds (bond counting rule) in a monolayer structure hold here also. Among the 4 possible transformation structures, g-BC\textsubscript{2}N to β-BC\textsubscript{2}N was the most energetically favorable. Calculations predicted that β-BC\textsubscript{2}N can be synthesized from g-BC\textsubscript{2}N at nearly ambient pressure while the superlattice BN/C\textsubscript{2} by compression of g-BC\textsubscript{2}N to about 16 GPa23. The bulk modulus of dense β-BC\textsubscript{2}N is calculated to be between 374 and 409 GPa.23–26 Mattesini et al.24 predicted the metastable orthorhombic Λ-BC\textsubscript{2}N and trigonal Φ-BC\textsubscript{2}N, “the most stable forms of the three-dimensional BC\textsubscript{2}N system”, by replacing the carbon atoms with boron and nitrogen in the crystalline phase of fcc diamond. In new ternary B-C-N phases, the substitution was performed by taking the consideration of bond counting rule used by Tateyama et al.23 and density functional theory (DFT) and local density approximation (LDA) were used for the calculation. Later, Sun et al.27 confirmed that the above described β-BC\textsubscript{2}N has the lowest total energy among other possible atomic arrangements, although all the structures seem to be metastable and tend to separate into diamond and c-BN.

![A representative atomic arrangement in the unit cell of cubic β-BC\textsubscript{2}N structure](image)

Yuge et al.28 examined the phase stability of c-BCN (diamond-like) with a composition range of (BN)\textsubscript{(1−x)}(C\textsubscript{2})\textsubscript{x} (0 ≤ x ≤ 1) around atmospheric pressure by the combination of the cluster expansion technique and Monte Carlo simulation–based on first-principles calculations. In their work the authors doubted the results of a few earlier calculations that addressed the phase stability of c-BNC with respect to the c-BN and diamond, showing a significant discrepancy in the predicted phase diagrams due to the differences in the used...
model: One achieves complete miscibility around \(T = 3,546 \) K, which is slightly below the melting line between c-BN and diamond.\(^{29}\) Another reaches complete miscibility at \(T = 8,500 \) K, which is much higher than the melting line.\(^{22}\) In their work, Yuge et al.\(^{28}\) carefully considered the dependence of enthalpy on atomic arrangements, the effect of atomic orderings on configuration entropy, and the effect of lattice vibration, which were neglected in earlier theoretical predictions. The final result predicts strong preference of B-N and C-C bonding and disfavors B-C, C-N, B-B, and N-N bonds, which suggests phase separation to c-BN and diamond. Complete miscibility is achieved over \(T = 4,500 \) K, which is higher than the melting points of both diamond and c-BN.\(^{28}\) Similar trends are found for the miscibility in the wurtzitic \(\text{w-BCN} \) between hexagonal diamond (lonsdaleite) and \(\text{w-BN} \), although a significant anisotropy in solubility for the wurtzite-like structure is observed, which leads to a 2-dimensional (2-D)-like solid solution in dilute composition despite its 3-dimensional (3-D) \(\text{sp}^3 \) bonding.\(^{30}\) Furthermore, examination of pressure effects on the phase stability of \(\text{c-BNC} \)\(^{31}\) has shown that at a pressure of 10 GPa, the solution energies of neighboring B–N and C–C atoms into diamond and cubic BN are both higher than those at 0 GPa, indicating a decrease of solubility in c-BNC under applied pressure. This decrease can mainly be attributed to the increase of volume with the formation of a c-BNC solid solution. The authors note that the success in synthesis of c-BNC compounds under high pressure should relate to the kinetic reason but not to a reason of the energetic in thermodynamic equilibrium.\(^{31}\)

The structural stability and mechanical and electronic properties of cubic \(\text{BC}_x\text{N} \) (0.21 < \(x \) < 19.28) crystals within a random solid solution model were investigated by Zhuang et al.\(^{32}\) from the first principles. The authors have shown that, compared to c-\(\text{BC}_2\text{N} \), the \(\text{BC}_x\text{N} \) solids with higher carbon content (\(x > 2 \)) exhibit better structural stability and higher elastic moduli. Moreover, significant deviations of the elastic moduli and lattice parameters from the predictions of Vegard’s law have indicated that the \(\text{BC}_x\text{N} \) solid solutions are not a simple mixing of diamond and cubic-BN. The computed band gaps are substantially lower than those of diamond and c-BN approaching the lowest value of 2 eV for \(x = 4.4 \).

Sun et al.\(^{33}\) studied \(\text{BC}_2\text{N} \) in cubic structure forms using ab initio pseudo-potential LDA calculations. The authors compared the recent experimental claim of cubic-\(\text{BC}_2\text{N} \) of that time\(^{5,7}\) with 8 atom zinc-blende structured cubic unit cells (the experimental results will be discussed in the next section). Fortunately, out of 420 different configurations, only 7 are topologically different because of the high symmetry of the zinc-blende-structured lattice, which makes their study possible. Even though predicted structures (1) and (2) (Fig. 2.2) are more stable and have the lowest energies, all 7 possible structures are metastable and tend to separate into diamond and cubic BN. Structures (1)
and (2) do not have B-B and N-N bonds, which is also consistent with earlier predictions. However, the full bond counting rule is not satisfied because they do have the same number of C-B and C-N bonds as C-C and B-N bonds. Later, the same research group, based on first-principles total-energy, and dynamic phonon calculations, investigated the structural transformation to and stability of cubic BC$_2$N phases under pressure. The authors showed that different starting material forms (graphitic BC$_2$N with different atomic arrangement) lead to distinct synthesis routes, yielding end products with drastically different physical properties. Among all the considered structures, a high-density phase with no B-B or N-N bonding (phases 1 or 2 in Fig. 2.2) showed the highest structural stability and lowest compressibility at high pressure.

Fig. 2.2 All the possible topologically different c-BC$_2$N structures (after structural relaxation) starting from an 8-atom zinc-blende structured unit cell. The dotted bonds indicate the broken covalent bonds between N atoms.

There were many other structures proposed for BC$_2$N ternary phases, like pseudocubic superlattice BC$_2$N$_{1x1}$, "low-density" cubic LD-BC$_2$N, tetragonal z-BC$_2$N, z*-BC$_2$N and t-BC$_2$N (Fig. 2.3), wurtzite-type w-BC$_2$N, chalcopyrite-type cp-BC$_2$N, body-centered bc6-BC$_2$N, etc. (see Table 2.1). By comparing the simulated and experimental X-ray diffraction (XRD) patterns of BC$_2$N, Zhou et al. have shown that for nanocrystalline powder z-BC$_2$N, z*-BC$_2$N and t-BC$_2$N reveal no significant difference and are in excellent agreement with the experimental results of Solozhenko et al. However, only tetragonal t-BC$_2$N seems to address most of the difficulties in explaining Raman splitting of LO and TO modes and higher experimental Vickers hardness values. Another research group employed an ab initio evolutionary algorithm to resolve the crystal structure of the observed superhard BC$_2$N from 2 independent experiments. Among 12 considered structures, the authors uncovered 2 polymorphs with rhombohedral and orthorhombic symmetries, with which the experimental XRD pattern is well reproduced. Analysis of the total energy results and the simulated energy-loss near-edge spectroscopy suggested that the rhombohedral structure (R3m with 2
BC$_2$N units in primitive cell) is the best candidate for the superhard BC$_2$N. The calculated electronic structures show that rh-BC$_2$N is a wide-gap semiconductor with an indirect DFT band gap of 3.8 eV.

Fig. 2.3 Proposed tetragonal crystal structures of diamond-like BC$_2$N: a) z^*-BC$_2$N with $P-42m$ symmetry and b) t-BC$_2$N with $P-42m$ symmetry38,39

Luo et al.43 studied the BC$_4$N crystal structure using DFT with LDA. They tried to correlate the experimentally derived BC$_4$N structure and properties reported by Zhao et al.9 (see Section 2.1.3). The authors proposed 3C-BC$_4$N configurations constructed with Ramsdell notation and ruled out the modeling BC$_4$N (unit cell consists of 6 or 12 atoms) with a zinc blende structure, which has 8 atoms in its unit cell. A simulated XRD pattern of the 3C-BC$_4$N model matches the experimental XRD pattern of c-BC$_4$N.

The same research group has also considered the B-C-N phases with other stoichiometries—structural, electronic, and mechanical properties as well as phase transitions under hydrostatic pressures have been investigated for 6 possible B$_2$C$_2$N$_2$ structures deduced from the 3C-SiC unit cell.44 The calculations have shown that B$_2$C$_2$N$_2$ with the maximum numbers of C–C and B–N bonds has the lowest total energy and is a large-gap semiconductor with an indirect band gap of 4.10 eV. The calculated bulk-, shear moduli, and Vickers hardness of 398.4, 440.7, and 84.3 GPa of the B$_2$C$_2$N$_2$ indicate that it is one potential superhard material with a hardness larger than that of cubic boron nitride. The pressure-induced structural transition from its low-pressure graphitic counterpart is estimated to occur above 11.4 GPa.44 Tang et al.45 investigated 5 nonequivalent atomic configurations of the suggested 3C-BC$_4$N structure using first-principle calculations. All the configurations were found to be metastable. The band gap was calculated to be highly dependent on the atomic arrangement, thus a different 3C-BC$_4$N configuration revealed insulating, semiconductor, semimetallic, or even metallic behavior.45 Two possible metastable high-density BC$_6$N phases originating from the diamond structure were suggested by Luo et al.46 The calculations have shown that both BC$_6$N phases are semiconductors with a direct generalized gradient
approximation (GGA) energy gap of about 2.1 eV and have Vickers hardness about 79–80 GPa, higher than the values for c-BC$_2$N and c-BN.

Weihrich et al.47 investigated a selective substitution of nitrogen with boron in the C$_3$N$_4$ for the 2- and 3-D structures using pseudo-potential and full-potential computations in the framework of the local DFT. This substitution led to the structures with the experimentally observed BC$_3$N$_3$ stoichiometry. The authors proposed a 2-D structure for the B-C-N precursor and a new ultrahard rhombohedral ($R3m$) compound, rh-BC$_3$N$_3$, with a bulk modulus of approximately 405 GPa reaching the range of the other studied BC$_2$N structures.

Very recently, the formation ability of B-C-N ternary phases was studied by Jiang et al.48 using DFT based on the model of the previously synthesized tetrahedral amorphous carbon (ta-C).49 The “ta-C” modification was reported to possess not only high mass density (3.2 g/cm3) and large amounts of sp3 hybridized carbon (84%–88%) but also superior hardness (45 GPa) and Young’s modulus (340 GPa). Possible B-C-N ternary phases were studied and plotted in a full-spectrum triangular phase diagram (Fig. 2.4). Formation energies are plotted accordingly and compared with experiential compositions reported to date. It is interesting that the formation energy distributes symmetrically along the C–BN isoelectronic line, in which the compositions in the range of B: 15–35 at%; C: 30–55 at%; N: 15–35 at% are relatively easier to form owing to their negative formation energy. Notably, most of the B$_x$C$_y$N$_z$ compositions synthesized in experiments are located in this area.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig2_4.png}
\caption{a) Distribution of formation energy (eV/atom) on the upper rhombus of ternary B–C–N phase diagram using full spectrum. Less formation energy means that the corresponding composition is easier to form. b) B$_x$C$_y$N$_z$ compositions synthesized in previous experiments. Most compositions are located in the area with negative formation energy, in agreement with the theoretical prediction.48}
\end{figure}
2.1.1.2 Mechanical and Electronic Properties

In this report, the considered mechanical properties of the B-C-N ternary phase are mainly restricted to bulk modulus (B), shear modulus (G), and hardness (Vickers microhardness, Hv). The great interest in a superdard phase has been aroused because solid solutions (prepared by Knittle et al.5) of carbon and boron nitride showed a bulk modulus value of 355 GPa. Tateyama et al.23 was the first to calculate a bulk modulus of 438±14 GPa for his predicted \(\beta\)-BC\(_2\)N structure, which is slightly less than that of diamond. Thereafter, many theoretical predictions came with different bulk moduli and hardness depending on the considered structure predicted and the model used for calculations. The available theoretical values of lattice parameters, bulk and shear moduli, and estimated hardness of the predicted superhard BC\(_2\)N structures, as well as of dense BCN phases with compositions different from BC\(_2\)N, are summarized in Table 2.1. The predicted bulk moduli for all the different structures generally exceed the experimental ones of c-BN (369–401 GPa) with most of them approaching those of diamond (433–442 GPa).1,50
<table>
<thead>
<tr>
<th>Structure</th>
<th>a (nm)</th>
<th>b (nm)</th>
<th>c (nm)</th>
<th>α (°)</th>
<th>β (°)</th>
<th>γ (°)</th>
<th>B (GPa)</th>
<th>G (GPa)</th>
<th>Hv (GPa)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamond<sup>1</sup></td>
<td>0.3567</td>
<td>0.3567</td>
<td>0.3567</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>442-433</td>
<td>534-544</td>
<td>60-150</td>
<td>[1, 50]</td>
</tr>
<tr>
<td>C-ondsdaleite<sup>1</sup></td>
<td>0.252</td>
<td>0.252</td>
<td>0.412</td>
<td>90</td>
<td>90</td>
<td>120</td>
<td>...</td>
<td>382</td>
<td>60-70</td>
<td>[1, 50]</td>
</tr>
<tr>
<td>c-BN<sup>1</sup></td>
<td>0.3616</td>
<td>0.3616</td>
<td>0.3616</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>369-401</td>
<td>409</td>
<td>46-80</td>
<td>[1, 50]</td>
</tr>
<tr>
<td>w-BN<sup>1</sup></td>
<td>0.254</td>
<td>0.254</td>
<td>0.420</td>
<td>90</td>
<td>90</td>
<td>120</td>
<td>390</td>
<td>330</td>
<td>34-60</td>
<td>[1, 50]</td>
</tr>
<tr>
<td>c-BC<sub>2</sub>N<sup>1</sup></td>
<td>0.3642</td>
<td>0.3642</td>
<td>0.3642</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>282</td>
<td>447</td>
<td>76</td>
<td>[7, 51]</td>
</tr>
<tr>
<td></td>
<td>0.3595</td>
<td>0.3595</td>
<td>0.3595</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>...</td>
<td>...</td>
<td>62</td>
<td>[9]</td>
</tr>
<tr>
<td>c-BC<sub>2</sub>N<sup>1</sup></td>
<td>0.3586</td>
<td>0.3586</td>
<td>0.3586</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>...</td>
<td>...</td>
<td>68</td>
<td>[9]</td>
</tr>
<tr>
<td>β-BC<sub>2</sub>N</td>
<td>0.3577</td>
<td>0.3577</td>
<td>0.3577</td>
<td>89.38</td>
<td>90.62</td>
<td>90.62</td>
<td>438±14</td>
<td>...</td>
<td>...</td>
<td>[23]</td>
</tr>
<tr>
<td></td>
<td>0.3579</td>
<td>0.3579</td>
<td>0.3612</td>
<td>90</td>
<td>90</td>
<td>89.32</td>
<td>383.3</td>
<td>...</td>
<td>...</td>
<td>[52]</td>
</tr>
<tr>
<td></td>
<td>0.361</td>
<td>0.361</td>
<td>0.361</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>342.4</td>
<td>453.6</td>
<td>37</td>
<td>[37]</td>
</tr>
<tr>
<td>o-BC<sub>2</sub>N</td>
<td>0.2528</td>
<td>0.2502</td>
<td>0.3587</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>408.9</td>
<td>...</td>
<td>...</td>
<td>[24]</td>
</tr>
<tr>
<td></td>
<td>0.2529</td>
<td>0.2502</td>
<td>0.3591</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>403.1</td>
<td>446</td>
<td>...</td>
<td>[26]</td>
</tr>
<tr>
<td>Φ-BC<sub>2</sub>N</td>
<td>0.2496</td>
<td>0.2496</td>
<td>0.4192</td>
<td>90</td>
<td>90</td>
<td>120</td>
<td>420.1</td>
<td>...</td>
<td>...</td>
<td>[53]</td>
</tr>
<tr>
<td>A-BC<sub>2</sub>N</td>
<td>0.3554</td>
<td>0.3599</td>
<td>0.3553</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>459.4</td>
<td>481.96</td>
<td>...</td>
<td>[24, 53]</td>
</tr>
<tr>
<td>c-BC<sub>2</sub>N-1</td>
<td>0.3570</td>
<td>0.3609</td>
<td>0.3570</td>
<td>89.5</td>
<td>90</td>
<td>90</td>
<td>399.7</td>
<td>...</td>
<td>...</td>
<td>[33]</td>
</tr>
<tr>
<td>c-BC<sub>2</sub>N-2</td>
<td>0.3568</td>
<td>0.3564</td>
<td>0.3613</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>400.1</td>
<td>...</td>
<td>...</td>
<td>[33]</td>
</tr>
<tr>
<td>BC<sub>2</sub>N<sub>111</sub></td>
<td>0.4355</td>
<td>0.2514</td>
<td>1.2483</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>419.5</td>
<td>75.8(21)</td>
<td>...</td>
<td>[36]</td>
</tr>
<tr>
<td></td>
<td>0.3579</td>
<td>0.3579</td>
<td>1.074</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>420</td>
<td>446</td>
<td>...</td>
<td>[54]</td>
</tr>
<tr>
<td>z-BC<sub>2</sub>N</td>
<td>0.3565</td>
<td>0.3565</td>
<td>0.7168</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>402.7</td>
<td>447.4</td>
<td>75.9</td>
<td>[38]</td>
</tr>
<tr>
<td></td>
<td>0.3604</td>
<td>0.3604</td>
<td>0.7247</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>385</td>
<td>...</td>
<td>65.0</td>
<td>[42]</td>
</tr>
<tr>
<td>z*<sup>-</sup>BC<sub>2</sub>N</td>
<td>0.3577</td>
<td>0.3577</td>
<td>0.7122</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>423.3</td>
<td>471.7</td>
<td>75.6</td>
<td>[39]</td>
</tr>
<tr>
<td>t-BC<sub>2</sub>N</td>
<td>0.3579</td>
<td>0.3579</td>
<td>0.7116</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>422.1</td>
<td>466.9</td>
<td>75.3</td>
<td>[39]</td>
</tr>
<tr>
<td>r-BC<sub>2</sub>N</td>
<td>0.3602</td>
<td>0.3602</td>
<td>0.3602</td>
<td>n.d.</td>
<td>...</td>
<td>382</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>[54]</td>
</tr>
<tr>
<td>rh-BC<sub>2</sub>N</td>
<td>0.2545</td>
<td>0.2545</td>
<td>2.5068</td>
<td>90</td>
<td>90</td>
<td>120</td>
<td>395</td>
<td>62.1</td>
<td>...</td>
<td>[42]</td>
</tr>
<tr>
<td>w-BC<sub>2</sub>N</td>
<td>0.2501</td>
<td>0.2501</td>
<td>0.4205</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>407.5</td>
<td>466.5</td>
<td>76.8</td>
<td>[40]</td>
</tr>
<tr>
<td>cp-BC<sub>2</sub>N</td>
<td>0.3613</td>
<td>0.3613</td>
<td>0.7146</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>367.4</td>
<td>432.0</td>
<td>72</td>
<td>[25]</td>
</tr>
<tr>
<td></td>
<td>0.3653</td>
<td>0.3653</td>
<td>0.7228</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>349</td>
<td>...</td>
<td>67.5</td>
<td>[42]</td>
</tr>
<tr>
<td>bc6-BC<sub>2</sub>N</td>
<td>0.4361</td>
<td>0.4382</td>
<td>0.4405</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>305</td>
<td>...</td>
<td>60</td>
<td>[41]</td>
</tr>
<tr>
<td>3C-BC<sub>2</sub>N</td>
<td>0.2507</td>
<td>0.2507</td>
<td>0.6196</td>
<td>90</td>
<td>90</td>
<td>120</td>
<td>418.8</td>
<td>521.3</td>
<td>84.3</td>
<td>[43]</td>
</tr>
<tr>
<td>BC<sub>111</sub><sub>2</sub></td>
<td>0.3567</td>
<td>0.3567</td>
<td>n.d.</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>428</td>
<td>...</td>
<td>...</td>
<td>[54]</td>
</tr>
<tr>
<td>t-BC<sub>3</sub>N</td>
<td>0.3574</td>
<td>0.3574</td>
<td>0.3564</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>410.4</td>
<td>...</td>
<td>79.9</td>
<td>[46]</td>
</tr>
<tr>
<td>r-BC<sub>3</sub>N</td>
<td>0.3565</td>
<td>0.3565</td>
<td>0.3565</td>
<td>90.15</td>
<td>90.15</td>
<td>90.15</td>
<td>399.9</td>
<td>...</td>
<td>79.1</td>
<td>[46]</td>
</tr>
<tr>
<td>B<sub>11</sub>C<sub>2</sub>N<sub>2</sub></td>
<td>0.2521</td>
<td>0.2521</td>
<td>0.6235</td>
<td>90</td>
<td>90</td>
<td>120</td>
<td>398.4</td>
<td>...</td>
<td>84.3</td>
<td>[44]</td>
</tr>
</tbody>
</table>

¹ Experimental values

² Values for the Young’s modulus are given.
The claimed successful synthesis of cubic boron–carbonitride compounds BC_2N with an experimentally determined extreme hardness second only to diamond and comparably low bulk modulus7,9 initiated a systematic theoretical exploration of the nature of such a phenomenon. In particular, Zhang et al.55 have examined the ideal strength of cubic BC_2N using first-principles calculations. In contrast to the experiment, the authors revealed that, despite the large elastic parameters, compositional anisotropy and strain-dependent bonding character impose limitations on their strength. Consequently, the hardness of the optimal BC_2N structure should be even lower than that of c-BN. The measured extreme hardness of BC_2N nanocomposites is referred to the nanocrystalline size effect and the bonding to the surrounding amorphous carbon matrix. Zhuang et al.56 have shown that the atomic arrangements (B, C, N) within the c-BC_2N crystal lattice—namely, the different degrees of mixture of diamond and c-BN, may lead to distinctly different values of Vickers hardness and tensile strength. Similarly, Zhang et al.57 have investigated elastic constants for several diamond-like BC_2N structures from the first principles. The authors have shown that, although the deviations of the lattice constants from those of cubic lattices are small (about 1%), the differences among the elastic constant components, which should be the same for cubic lattices, can reach 75% because of the chemical anisotropy of the BC_2N structures. For BC_2N in which exact cubic symmetry is constrained, large residual stresses of 4–5 GPa in the structures were observed. Thus, the authors have concluded that any results derived by assuming exact cubic symmetry for BC_2N structures may not be reliable.

Interest in electronic properties of B-C-N ternary phases started as early as their stability and structure prediction arose. Most of the theoretical calculations on structure and mechanical properties also predicted band gap values. However, predicted properties vary from semiconductor to insulator depending on the structure. For a layered structure, Liu et al.15 predicted a band gap (E_g) of 1.6 eV, and for tubular and chiral structure, Miyamoto et al.58 predicted 1.25–1.75 eV. Experimental results from Watanabe et al.59 also confirmed semiconductor behavior of layered BC_2N. For BC_2N heterodiamond, Tateyama et al.23 predicted an indirect band gap of 3.97 eV. For orthorhombic BC_2N^{24}, a band gap of around 1.7–2.01 eV is predicted, whereas for c-BC_2N^{33} derived from a zinc-blende structure, a bang gap of approximately 2.0 eV is calculated. Zhou et al.38 have shown that despite the only difference between $z^*\text{-BC}_2\text{N}$ and $z\text{-BC}_2\text{N}$ is that B and N atoms are interchanged with each other, the calculated band structures exhibit a significant difference: $z^*\text{-BC}_2\text{N}$ is an indirect semiconductor with a band gap of 3.6 eV, while $z\text{-BC}_2\text{N}$ is a direct one with a band gap of 2.7 eV. The calculated electronic structures for chalcopyrite-type cp-BC_2N showed that this compound is a wide gap semiconductor with a direct band gap about 3.3 eV, displaying some potential application ultraviolet luminescence.25 Rhombohedral rh-BC_2N^{42} and wurtzite-type w-BC_2N^{40} are
predicted to have an indirect wide band gap of 3.6 and 3.99 eV, respectively. An even wider band gap is calculated for BC$_2$N, to be 4.06 eV.43 In contrast, bc6-BC$_2$N is an indirect semiconductor with band gap of 0.60 eV.41 Several reports23,24,33 also pointed out that the employment of LDA in calculation leads to significant underestimation of the band gap (65%–75%), thus the values calculated using this model cannot be considered as completely reliable.

2.1.2 Synthesis of B-C-N Precursors

A few recent first-principles studies of structural transformation and stability of B-C-N phases have indicated that different starting materials may lead to distinct synthesis routes, yielding various dense B-C-N end products with drastically different physical properties.23,34 Therefore, different precursor materials used for HP-HT experiments on the synthesis of ultrahard dense B-C-N compounds will be considered below.

The oldest, simplest, and still widely used method is to synthesize boron carbonitrides from the elements at high temperatures. A typical reaction was used by Kosolapova et al.60 in which boron and carbon powders were heated at 1,800–2,000 °C in N$_2$/NH$_3$ for prolonged periods promoting the reactions below:

\[
\text{B(s) + 2C(s) + } \frac{1}{2} \text{N}_2(\text{g}) \xrightarrow{1800-2000 \degree \text{C}} \text{BC}_2\text{N (s)},
\]

\[
\text{B(s) + 2C(s) + NH}_3(\text{g}) \xrightarrow{\Delta} \text{BC}_2\text{N (s)} + \frac{3}{2}\text{H}_2(\text{g}).
\]

The formation of BC$_2$N in such reactions is diffusion controlled, occurring at the solid interfaces (B/C or B/C$_3$N$_4$) by a process of nucleation and growth. At elevated temperatures, the reactant atoms have enough energy to diffuse toward the interface forming the product. However, the process slows down as the interface thickens, and effectively, the reactants are no longer in contact.60 Because of a complex process of diffusion of ions toward the thick interface, there is always some degree of inhomogeneity on the atomic level, which renders this method ineffective for the formation of complete solid solutions. Recently a stoichiometric ternary compound B$_4$CN$_4$ was obtained by direct nitridation of commercial B$_4$C powder via heating in a stream of nitrogen at temperatures in the range of 1,600–1,900 °C.61 The reaction was diffusion-controlled. The resulting powder with elemental composition B$_{3.96-4.03}$C$_{1.00}$N$_{3.96-4.07}$O$_{0.01-0.08}$ (~B$_4$CN$_4$) determined by electron probe microanalysis (EPMA) had the turbostratic layered structure, where carbon atoms form linear C sp2–C sp2 chains bonded to B and N within h-BN layers with a molar ratio C/BN = 1/4.

One of the first attempts of c-BN and diamond-mixed crystals by Badzian et al.4 used graphitic g-BCN prepared by a CVD route. They used gaseous mixtures of BCl$_3$/CCl$_4$/N$_2$/H$_2$ at 1,900 °C to deposit polycrystalline BCN deposited on a graphite rod:
The reaction at 1900 °C:

$$\text{BCl}_3 + \text{CCl}_4 + \text{N}_2 + \text{H}_2 \rightarrow (\text{BN})_x \text{C}_{1-x} \ldots$$

As the CVD method employed 4 different gases, controlling the reaction and end product stoichiometry was very crucial. In further works, Bartlett and coworkers 62,63 conducted the reaction of boron trichloride with acetylene and ammonia at relatively low temperatures, which resulted in better ordering and more accurate compositions (e.g., B$_2$CN$_2$, B$_{0.485}$C$_{0.013}$N$_{0.485}$, B$_{0.35}$C$_{0.3}$N$_{0.35}$):

$$\text{BCl}_3 + y \text{C}_2\text{H}_2 + z \text{NH}_3 \rightarrow B_xN_yC_z.$$

Instead of acetylene, other hydrocarbons, such as CH$_4$ and C$_3$H$_8$, have been used for the CVD preparation of other ternary B-C-N phases.64 For example, Besmann65 obtained single-phase BC$_{0.43}$N$_{0.29}$ with a graphite-like structure from BCl$_3$-NH$_3$-CH$_4$-H$_2$ mixtures at 1,650 K and 3.3 kPa. If boron trichloride and acetonitrile (CH$_3$CN) are used as the reactants, almost stoichiometric material with composition BC$_2$N is obtained62,63:

$$\text{BCl}_3 + \text{CH}_3\text{CN} \rightarrow \text{BC}_2\text{N} + 3 \text{HCl}.$$

The films produced by those methods consist of a turbostratic layered structure that contains sp2-hybridized B, C, and N atoms according to XRD and transmission electron microscopy (TEM) studies. X-ray photoelectron spectroscopy (XPS) investigations reveal the presence of C-C, B-N, C-N, and B-C bonds. The same approach was successfully applied by Watanabe et al.66 in order to produce amorphous BC$_2$N films on polycrystalline Ni and quartz substrates. While using the same reactants in a hydrogen and nitrogen atmosphere, Kawaguchi et al.67 deposited new graphite-like films of composition BC$_{0.9-1.3}$N$_{0.8-0.9}$H$_{0.4-0.7}$ and BC$_{3.0-3.2}$N$_{0.8-1.0}$H$_{0.2-2.2}$, which can be described as BCN(H) and BC$_3$N(H). X-ray and electron diffraction analyses indicate that these materials have hexagonal structures similar to that of graphite.

Hegermann et al.68 investigated the influence of the carrier gases N$_2$, argon (Ar), and helium (He) and the applied power on the chemical composition of boron carbonitride films deposited by a PA-CVD process. Si(100) wafers were used as substrates and pyridine-borane and triazaborabicyclopentane as B-C-N-forming single-source precursors. Films that were either deposited in He using a low power density or in N$_2$ using a high power density revealed similar chemical composition of approximately BC$_4$N as well as comparable properties (in particular, outstanding hardness ~60 GPa). XRD and TEM analysis of these films showed their amorphous nature. It should be noted that amorphous B–C–N films have been intensively studied during the last 2 decades since practically any composition within the B-C-N triangle can be synthesized by various conventional chemical and physical deposition methods, such as the previously
mentioned (PA)-CVD66,67–69 as well as ion beam–assisted deposition,70 pulsed laser deposition,71 and magnetron sputtering.72 Tuning different deposition parameters and choosing an appropriate atmosphere allows us to control not only the composition but also the bond contents in the resulting B-C-N films. This can play a key role when choosing precursors for the high-pressure synthesis of ultrahard diamond-like B-C-N phases, since the nature of the starting material is found to have a significant influence on the structural features and properties of the end product.

In contrast to the deposition routes to B-C-N materials resulting in ternary B\textsubscript{x}C\textsubscript{y}N\textsubscript{z} films, large amounts of similar phases can be synthesized via pyrolysis of polymeric B-C-N-based precursors at relatively low temperatures around 1,000 °C. In this way, thermal treatment of B-triphenylborazine and N-triphenylborazine in an autoclave at 1,000 °C results in boron carbonitrides with compositions of BC\textsubscript{3.9}N and BC\textsubscript{3.6}N, respectively73. Ceramic B\textsubscript{x}C\textsubscript{y}N\textsubscript{z} powders with various nonstoichiometric compositions can be also obtained via pyrolysis of decaborane(12)-adducts of diamines [-B\textsubscript{10}H\textsubscript{12}∙diamine–]\textsubscript{n},74 pyrazabole polymer,75 or polyethylene-iminoborane [-CH\textsubscript{2}−CH\textsubscript{2}−N=BH\textsubscript{2}–]\textsubscript{n}.76 Riedel and coworkers17,77,78 reported the synthesis of turbostratic graphite-like BC\textsubscript{2}N and BC\textsubscript{4}N from piperazine borane and pyridine borane, respectively (the reactions A and B given below). This method can be ascribed to the so-called polymer-derived ceramic route, where a highly cross-linked insoluble, infusible polymeric intermediate is formed followed with pyrolysis under argon atmosphere at 1,050 °C. It is important to mention that in the latter reaction, utilization of nitrogen-containing atmosphere can lead to completely different results—namely, formation of almost pure boron nitride. In a subsequent work of the same research group, a crystalline ternary h-BC\textsubscript{2}N with a graphite-like structure was synthesized from these precursors at elevated pressures and temperatures.79
Amorphous B-C-N ceramics were produced by thermolysis of poly(borosesquicarbodiimide) of idealized formula \([B_2(NCN)_3]_n\) at 1,100 °C in an argon atmosphere.\(^8\) Wide-angle diffraction showed that the ceramics consist of an amorphous structure with hexagonal planar near-range ordered atomic arrangements similar to graphite. Nuclear magnetic resonance (NMR) investigation of the products showed the presence of BN structures with mainly trigonally coordinated boron and nitrogen nuclei and the presence of amorphous (graphite-like) carbon within the B-C-N ceramics at the same time. The authors concluded that the BCN phase tends to short-range phase separation into BN and C regions.

Another amorphous B-C-N ceramic with composition B\(_4\)CN\(_4\) was prepared via a nonoxide sol-gel process.\(^8\) In this approach \(B\)-trichloroborazene, \(B_3N_3H_3Cl_3\), reacts with bis-(trimethylsilyl)-carbodiimide \(Me_3Si-NCN-SiMe_3\) in tetrahydrofuran (THF) or toluene, or without any solvent, to form nonoxide gels. The BCN\(_2\)H\(_2\)-xerogels, obtained after aging and drying, are practically free of any chlorine or oxygen and contain only small amounts of silicon. At 1,200 °C a novel amorphous B\(_4\)CN\(_4\) phase is formed, which is stable up to 1,600 °C where it starts to crystallize. This novel nitrogen-rich B\(_4\)CN\(_4\) phase may be a promising amorphous precursor for high-pressure synthesis of crystalline BCN phases.

A series of graphitic B-C-N compounds (\(g\)-BC\(_x\)N) were prepared in good yield by pyrolysis of the polymers between BCl\(_3\) and commercially available nitriles at 1,773 K.\(^8\) Acrylonitrile, malononitrile, acetonitrile, tetracyanoethylene (TCNE), and polyacrylonitrile were used as the C-N sources while BCl\(_3\) was used as the B-source. The \(g\)-BC\(_x\)N samples were prepared in 3 steps: 1) adduct formation at ambient temperature, followed by dehydrochlorination/polymerization at temperatures up to 773 K; 2) carbonization of the polymeric materials at 1273 K; and 3) graphitization at 1,773 K. The products were characterized by combustion elemental analysis, XPS, Fourier-transform infrared (FTIR) spectroscopy, and XRD. The obtained powders of \(g\)-BC\(_x\)N (2 ≤ \(x\) ≤ 5) were subsequently used for the shock synthesis of B-C-N heterodiamonds, c-BC\(_x\)N.\(^8\) Tian et al.\(^8\) synthesized the B-C-N precursor by mixing boric acid H\(_3\)BO\(_3\) with melamine \(C_3N_6H_6\) (1:2 ratios) in an agate mortar. The mixture was heated to
200 °C for 1 h and then at 300 °C for an additional 2 h. After cooling, the pulverized powder was exposed to 1,600 °C in nitrogen atmosphere for 15 min. Li et al., in a similar approach, tried the mixture of boron oxide and melamine, subjecting it to 770 °C in vacuum for 2 h leading to B-C-N precursor. However, by knowing boric acid converts into boron oxide at 300 °C, both reactions look the same, even though the starting material is different. Amorphous BCN was prepared by a solid-state reaction between boric acid and melamine via heat treatment at 1,273 K under 10⁻³ Pa. For the H₃BO₃ to C₃N₆H₆ mass ratio of 1:3, the obtained B-C-N material revealed the chemical composition of B₀.₄₈C₀.₂₉N₀.₂₃. Annealed for 40 min at 1,473 K under 4.0 GPa, the amorphous BCN crystallized into a single-phase hexagonal (h-BCN) compound with lattice constants of a₀ = 0.2506 nm and c₀ = 0.6652 nm.

Hubacek and Sato et al. prepared a B-C-N precursor by simultaneous nitridation of boric acid and carbonization of saccharose in molten urea followed by annealing in nitrogen at 1,500 °C. The results showed graphite-like BC₂N and BC₄N, depending on the saccharose content, having broad XRD lines like turbostratic layered structures. This precursor preparation method was later used by Solozhenko et al. in the synthesis of the superhard c-BC₂N phase. The reaction of low-surface-area amorphous carbon spheres with a mixture of urea and boric acid at 930 °C yields a composition close to BC₄N with a graphitic structure. The obtained product was characterized by electron energy loss spectroscopy (EELS), XPS, TEM, Raman spectroscopy, and XRD, revealing a porous ceramic material composed of BCN spheres (Fig. 2.5) with a layered structure involving random distribution of boron, carbon, and nitrogen atoms. In turn, the reaction of amorphous carbon nanotubes with boric acid and urea was shown to yield nanotubes with the approximate composition of BC₄N.

Fig. 2.5 High-temperature reaction of amorphous carbon spheres. a) SEM and b) TEM image, with boric acid and urea yields spheres with graphitic structure and composition of BC₄N, c) SEM and d) TEM image.
A solvothermal reaction of CH$_3$CN·BCl$_3$ and lithium nitride (Li$_3$N) using benzene as the solvent has been successfully applied to prepare boron carbonitride at 300 °C and less than about 7 MPa. XRD and TEM investigation of the obtained powder revealed hexagonal ordering. The product predominately consisted of B, C, and N elements (B: 14.4%, C: 36.6%, N: 20.8%) with some amount of O and H (O: 8.0%, H: 4.2%) determined by combustion elemental analysis. XPS and FTIR spectroscopy confirmed the chemical composition and atomic-level hybrid. A hexagonal graphite-like BCN compound was also prepared by a reaction between carbon tetrachloride (CCl$_4$), boron tribromide (BBr$_3$), Li$_3$N, and sodium at 400 °C. Measurements of FTIR, XRD, TEM, and EELS show that 2 kinds of compounds have been formed: hexagonal polycrystalline BC$_2$N phase was found to coexist with hollow sphere-like amorphous C–N phase with composition close to C$_3$N.

Another approach to the low-density ternary B-C-N compounds implies mechanical mixing and alloying. In this method boron-, carbon-, and nitrogen-containing materials are mixed together to form a B-C-N complex in the easiest possible way—for example, boron nitride powder with carbon/graphite powder or boron powder with carbon nitride powder. Homogenous samples with well-distributed B, C, and N are obtained via prolonged (high-energy) ball milling. Knittle et al. were the first to try mechanical mixtures of graphitic-boron nitride (h-BN) and graphite (g-C) in different compositions. The mixtures were ground together under acetone to get uniformity. The authors compared the results with that of chemically prepared BCN microcrystalline powders, and the performed high-pressure high-temperature experiments provided solid solutions of c-BN and diamond. Zhao et al. tried a very similar approach to get BC$_2$N and BC$_4$N mixtures. Precursor materials were prepared by stoichiometric 2:1 and 4:1 molar ratio mixture of graphite and hexagonal boron nitride (h-BN) to get BC$_2$N and BC$_4$N, respectively. The mixture was ball-milled for 34 h in a tungsten carbide vial to get good homogeneity. The idea was to break sp2 bonding among hexagonal rings of graphite and h-BN crystal structure and to get amorphous BCN fine powder. Huang et al. applied a similar approach to synthesize the amorphous B-C-N (a-BC$_2$N) phase. EELS and TEM studies indicated the sp2-hybridized bonding of the a-BC$_2$N; the mixing between the BN and the C species was achieved at a nanometer scale, thus a mechanical mixture rather than a chemical mixture is obtained. Filonenko et al. used a starting material as mixtures of boron (B) (35%–50%) and carbon nitride powders. Commercially available boron ranging from 1 to 10 µm mainly consisting of β-phase was mechanically mixed with graphitic carbon nitride (C$_3$N$_4$) nanospheres. The authors reported that boron content in the mixture was varied from 20% to 80%, low B (<35%) leading to the decomposition of C$_3$N$_4$ and higher B (>50%) content leading to the synthesis of boron carbides at HP-HT conditions; however, the reaction mechanism is still unclear.
The techniques employed to synthesize low-density B-C-N phases—such as high-temperature nitriding, solid phase pyrolysis, chemical and physical vapor deposition, and ball milling—generally result in the poorly crystallized, turbostratic, or amorphous products. Well-crystallized B-C-N compounds having hexagonal structure (h-BCN) were successfully obtained by applying high pressures and high temperatures. Thus, amorphous B-C-N precursors were transformed into h-BCN using a belt-type apparatus and Bridgman anvils at pressures of 3–5 GPa and temperatures of 1,000–1,500 °C. Yamada produced a graphite-like phase by shock synthesis of a mechanical mixture of graphite and h-BN. The hexagonal lattice parameters of \(a_0 = 0.2475 \) nm and \(c_0 = 0.676 \) nm were determined by TEM from a cluster of sheet-like particles, which composition corresponded to BC\(_2\)N. EELS confirmed the presence of boron, carbon, and nitrogen—all sp\(^2\)-hybridized—in a single graphite-like crystal. A highly crystalline hexagonal BC\(_2\)N compound was prepared by the compression of a turbostratic B-C-N precursor (synthesized via high-temperature reaction of melamine and boric acid) with iron catalyst at the high temperature of 1,500 °C and the high pressure of 5.5 GPa. Yang et al. obtained h-BCN from a mixture of boron powder and a CNH compound prepared by pyrolysis of melamine (\(\text{C}_3\text{H}_6\text{N}_6 \)) under high temperature (1,400–1,500 °C) and high pressure (5.0–5.5 GPa). XPS, FTIR, and Raman spectroscopy showed the presence of B-N, C-B-N, C-N, and B-C bonds in the product with the overall composition of B\(_{0.18}\)C\(_{0.64}\)N\(_{0.16}\) (near BC\(_4\)N). X-ray diffraction analysis confirmed a hexagonal structure. Scanning and transmission electron microscopy revealed the flaky h-BC\(_4\)N particles of about 1 µm with a thickness of 200 nm.

2.1.3 HP-HT Experiments and Results

The conditions normally employed to synthesize superhard materials require extreme pressures and temperatures or a chemical vapor deposition technique (the latter, however, does not provide bulk superhard materials). Badzian prepared cubic BN-C mixed crystals by the HP-HT technique (14 GPa, 3,600 °C, Bridgman apparatus), using as the starting material hexagonal BN-C prepared from CVD. He believed that the material had a diamond-like structure and found that the material exhibited weak (200) and (420) reflections in the XRD pattern, suggesting the possibility of B-N pairs in the sublattices. Sasaki et al. attempted the transformation of graphitic BC\(_2\)N into a cubic phase under relatively mild HP-HT conditions (5.5 GPa, 1,400–1,600 °C, Belt Press) using a Co catalyst, but they obtained the phase-separated mixture of cubic phases (i.e., the well-crystallized diamond and c-BN crystals up to 3 µm in size). Expecting the catalytic promotion of the phase separation in the B-C-N system, Nakano et al. attempted the direct transformation of g-BC\(_2\)N into the cubic phase, without additives under higher HP-HT conditions (7.7 GPa, 2,000–2,400 °C, Belt Press). Several cubic phases with a diamond-like structure—namely, c-BN, diamond containing minor amount of B and N, and a cubic B-C-N...
substance—were confirmed in the products above 2,150 °C by the powder XRD patterns. At 2,400 °C, however, the cubic B-C-N product tended to segregate into c-BN and diamond. Authors concluded that not a c-BC2N but a mixture of c-BN and diamond is thermodynamically stable in the B-C-N system under the conditions employed. A similar result was reported recently by Huang et al., where the HP-HT treatment at 7.7 GPa and 2,300 °C of the amorphous a-BC2N phase resulted in the complete segregation of the carbon and BN species—namely, c-BN, amorphous carbon, and turbostratic graphite. No mutual solubilities between c-BN and carbon were found at these P-T conditions.

Knittle et al. prepared a cubic Cx(BN)1-x (x = 0.3–0.6) solid solution under high pressures (30–50 GPa) and high temperatures (2,000–2,500 K) from mechanical mixtures of graphitic-boron nitride and graphite using a laser-heated diamond anvil cell (LH-DAC). Measurements of the lattice parameters of samples quenched to ambient pressure showed that the solid solution series was nonideal, with molar volumes up to 1% larger than expected (Vegard’s law) based on ideal mixing between C (diamond) and cubic-BN. The bulk modulus of C0.3(BN)0.7 was found to be 355±19 GPa, which was lower than the ideal solid solution of diamond and cubic BN but consistent with the expanded unit-cell volumes. The ionic bonding nature in these solid solutions was confirmed by Raman spectra of C0.3(BN)0.7, which exhibited LO-TO splitting of the phonon modes.

Komatsu et al. converted the graphitic BC2.5N (g-BC2.5N) obtained by CVD technique to heterodiamond c-BC2.5N using a cylindrical shock compression technique. The shock pressure and temperature on the sample were estimated to be 35–50 GPa and 3,000–10,000 °C, respectively. They also studied bulk synthesis from different starting materials, g-BC2N (2 ≤ x ≤ 5) obtained by both CVD or solid phase pyrolysis, using the shock compression method and explored properties like thermal oxidation resistance, thermal expansion coefficient, and bulk modulus of the high-pressure products. Heterodiamond c-BC2.5N crystals (5–20 nm in size) showed polycrystalline behavior. The lattice constant was measured to be 3.605 Å—a value that was between those of diamond (3.5667 Å) and cubic BN (3.6158 Å). The material revealed a thermal oxidation resistance (stable up to 700 °C) higher than that of diamond, a low thermal expansion coefficient (~10^-6 K^-1), and a bulk modulus (401 GPa) higher than that of cubic BN.

Solozhenko et al. prepared cubic BC2N from graphitic BC2N synthesized according to the method of Hubacek and Sato using the HP-HT conditions (18–25 GPa /2,000–2,200 °C in a LH-DAC and multianvil press [MAP]). The lattice parameter of the c-BC2N determined at ambient conditions was 3.642±0.002 Å, much larger than those of diamond and c-BN (Fig. 2.6). For the large volume sample, the hardness (Hv) was measured to be 76 GPa, which is higher than that of c-BN. Surprisingly, the determined bulk modulus of the c-
BC$_2$N was 282 GPa, which is significantly lower than the values for c-BN or c-BC$_2$N reported by other authors.$^5,^{10}$ Zhao et al.9 pointed out a possible reaction of the sample with MgO capsule material in that work as well as a large deviation of the lattice constant of c-BC$_2$N from Vegard’s law. Solozhenko and coworkers came up with a detailed characterization of the synthesized c-BC$_2$N sample.51,98,99 Raman spectroscopy studies showed the Raman band 1326 cm$^{-1}$ attributed to the LO mode of c-BC$_2$N, whereas the TO mode was missing.98 Atomic force microscopy images revealed the c-BC$_2$N grains of 200 nm in size in contrast to initially reported 10–30 nm from TEM images.99 The authors also reported a Knoop hardness (H$_K$) of 55 GPa, Young’s modulus (E) of 980 GPa, sheer modulus (G) of 447 GPa, and fracture toughness (K$_Ic$) of 4.5 MPa m$^{1/2}$ for their c-BC$_2$N and proclaim it the hardest-known solid after diamond.51 Subsequent Brillouin scattering measurements on the same cubic BC$_2$N phase provided even lower bulk modulus and shear modulus values of 259 and 238 GPa, respectively.100 The authors relate these results to the dependence of elastic properties of diamond-like B-C-N phases on the structure of the phase and on the synthesis condition for that specific sample. Nevertheless, the B, E, and G values of c-BC$_2$N reported by Solozhenko and coworkers significantly deviate from the elastic moduli relationship for homogeneous isotropic materials. Theoretical attempts to explain lower bulk modulus, large lattice constant, and missing TO modes in Raman spectra of the synthesized c-BC$_2$N and to correlate these issues with possible B-C-N structure33,38,39 could not give an unambiguous answer so far.

Vegard’s Law for the cubic B-C-N system

![Plot of all observed unit-cell volumes in the B–C–N system of cubic zinc-blende structure. The relationship of unit-cell volume vs. chemical composition shows a clear trend closely obeying Vegard’s law for ideal solid solutions, except for data of Solozhenko et al.](image)

Fig. 2.6 Plot of all observed unit-cell volumes in the B–C–N system of cubic zinc-blende structure.9 The relationship of unit-cell volume vs. chemical composition shows a clear trend closely obeying Vegard’s law for ideal solid solutions, except for data of Solozhenko et al.7
Zhao et al.9 synthesized a superhard phase of BC$_2$N and BC$_4$N in nanostructured bulks under HP-HT conditions (20 GPa, 2000 °C, MAP) from a mixture of the graphite and h-BN powders in 2:1 and 4:1 molar ratio, respectively. The mixture was ball-milled in a tungsten carbide vial for 34 h, which allowed them to obtain homogeneous starting materials with randomly bonded B, C, and N atoms. The authors expected to break the sp2 bonding among the hexagonal rings of the graphite and h-BN crystal structures and to introduce some initial amount of hybrid sp3 bonding. XRD, SEM, and Raman spectroscopy studies of the ball-milled mixture showed that the BC$_2$N and BC$_4$N starting material was completely amorphized with a median particle size of about 2–3 nm. Comparative studies of synchrotron XRD, HR-TEM, EELS, and Vegard’s law of the unit-cell volume versus chemical compositions all indicated that the high-pressure BC$_2$N and BC$_4$N products were single B-C-N ternary phases with crystallites of about 5 nm in size. Assuming a face-centered cubic zinc-blende structure, the authors derived a unit-cell parameter of $a_0 = 3.595(7)$ Å and $a_0 = 3.586(9)$ Å for the synthesized BC$_2$N and BC$_4$N material, respectively. The hardness measurements showed the nominal hardness of 62 GPa for c-BC$_2$N and 68 GPa for c-BC$_4$N, which is between the hardness values of diamond and cubic boron nitride. A plot of unit-cell parameters as a function of chemical composition showed good agreement with Vegard’s law (Fig. 2.6), with the exception of Solozhenko et al.’s data,7 which deviate significantly from the line. The authors suggested that the composition of Solozhenko et al.’s sample was not the solid solution of BC$_2$N and clearly had a different chemistry.9 Taking into account the XRD and Raman spectroscopy measurements of Solozhenko et al.7 and Zhao et al.,9 theoreticians suggested 2 tetragonal (z*-BC$_2$N and t-BC$_2$N)39 and one rhombohedral (rh-BC$_2$N)42 as the most likely structures describing experimentally obtained c-BC$_2$N. In turn, the 3C-BC$_4$N structure with trigonal symmetry43 was found to give the best agreement with the experimental XRD pattern of c-BC$_4$N.9

Quite unusual boron-rich B-C-N stoichiometry, \textit{“B(C$_x$N$_{1-x}$)”}, was chosen by Guo et al.101 for their HP-HT experiments. A B$_2$CN precursor was prepared by mechanical vibration-milling process from amorphous boron, graphite, and h-BN powders with a mole ratio of 1:1:1 and mixed with Ca$_3$B$_2$N$_4$ catalyst. The authors claimed that a boron-rich cubic phase is formed at 5.5 GPa and 1500 °C. The carbon content (detected by energy-dispersive X-ray [EDX] spectroscopy) was found to vary from 0 to 16 at% depending on the investigated crystal. The average composition is reported to be B$_{0.58}$C$_{0.16}$N$_{0.26}$. Despite the evident oxygen peak in the EDX spectra, the authors gave no comment on the oxygen presence in the product.101 Moreover, the cubic lattice parameter of $a_0 = 3.618$ Å of the claimed BCN phase is similar to that of c-BN.

Nicolich et al.102 attempted to form cubic ternary crystals from turbostratic BCN starting materials77 at HP-HT conditions (3–5 GPa, 1,200–1,500 °C, belt-type
apparatus) obtained ternary graphitic crystals. In earlier attempts, Solozhenko et al.103 tried to compress g-BC\textsubscript{4}N up to 7 GPa at 1900 °C in a multianvil press (MAP); they succeeded only to densify the starting material. Tian et al.83, Li et al.84, and Da-Peng et al.94 studied the HP-HT behavior (5–6 GPa, 1,400–1,700 °C, MAP) of BCN precursor prepared by reaction of melamine and boric acid derivatives (method is explained in Section 2.1.2). This reaction lead to the formation of hexagonal-BCN (h-BCN). The lattice constants \(a_0 = 2.506 \) Å and \(c_0 = 6.657 \) Å, 83 and \(a_0 = 2.510 \) Å and \(c_0 = 6.690 \) Å,84 were reported. A completely new BC\textsubscript{3.3}N crystalline compound with a low-density orthorhombic structure has been synthesized using an amorphous B-C-N precursor at 6 GPa and 1,773 K.104 Results of energy-dispersive spectroscopy and EELS showed that the compound has a 1.04:3.27:1 B:C:N chemical stoichiometry. The lattice parameters of BC\textsubscript{3.3}N crystal were obtained to be \(a_0 = 6.610 \) Å, \(b_0 = 4.977 \) Å, and \(c_0 = 8.509 \) Å by XRD and select area electron diffraction (SAED). On the basis of XRD refinement and EELS results, one possible BC\textsubscript{3.3}N (B\textsubscript{3}C\textsubscript{10}N\textsubscript{3}) model with a space group \textit{Pmma} (No. 51) is proposed.

Li et al.105 studied high-pressure phase transition of h-BCN83 having the composition of B\textsubscript{0.47}C\textsubscript{0.23}N\textsubscript{0.30} up to 30 GPa in a DAC. Transformation from h-BCN to the wurtzite BCN (w-BCN) structure was observed for pressures above 15 GPa, and a bulk modulus of 275 GPa was derived from the equation of state of the w-BCN. The bulk modulus value is very close to that earlier reported by Solozhenko et al. for c-BC\textsubscript{2}N and is significantly smaller than those of c-BN and w-BN. The authors, however, neither verify the composition of the new high-pressure phase nor provide the data about its stability at ambient pressure.

Filonenko et al.91 reported high-pressure synthesis of the heterodiamond phase using the powder mixtures of graphite-like carbon nitride g-C\textsubscript{3}N\textsubscript{4} and crystalline boron (35–50 wt\%) as the starting material. A “toroid”-type apparatus was employed to apply high pressure (6–15 GPa) and high temperature (1,000–1,600 °C). Treatment at pressures above 8 GPa and temperatures in the range of 1,450–1,600 °C resulted in the formation of a cubic phase with the unit cell parameter \(a_0 = 3.6551 \) Å. It is noteworthy that the employed HP-HT conditions are very mild when compared to the other reports of the diamond-like B-C-N syntheses. The highest yield of the cubic BCN phase has been obtained from mixtures with approximately 50 wt\% of boron. EDX analysis of the synthesized c-BCN crystals revealed an average atomic composition of 45.3% B, 36.5% N, 11.6% C (roughly ~B\textsubscript{4}CN\textsubscript{4}), and a considerable amount of oxygen (6.6 at%). On the basis of the Rietveld structure refinement of the c-BCN, the authors propose that carbon atoms partially replace boron and nitrogen in their positions in the structure of c-BN, while oxygen takes only nitrogen positions.91 This statement, however, requires further experimental verification. Moreover, the reported unit cell parameter of 3.6551 Å exceeds that of c-BN, thus ruling out the possibility of matching with Vegard’s law for diamond/c-BN alloys. A
detailed characterization of the synthesized c-BCN phase with respect to the chemical bonding and properties, as well as an unambiguous conclusion on the oxygen presence, are awaited.

Recently, a single-phase cubic BC₄N was claimed to be formed at high pressure and temperature (18–20 GPa, 2,000–2,200 K, MAP) starting with either a mixture of diamond and c-BN or graphite and h-BN. The authors reported extreme Vickers hardness (85 ± 4 GPa) of the HP products, reaching the hardness of single crystal diamond. Based on the measured and calculated XRD patterns, the authors concluded that the synthesized products are solid solutions of diamond and c-BN with a zinc-blende structure (F-43m) when starting from a mixture of C and BN but could be solid solutions based on the diamond-like structure (Fd-3m) if the starting materials are graphitic B-C-N compounds. It should be, however, emphasized that presented XRD data alone do not provide unambiguous evidence of the presence of a single B-C-N phase. In particular, the formation of c-BN/diamond nanocomposites cannot be excluded.

Very intriguing results were reported lately by Liu et al., who succeeded in preparing diamond crystals doped with B and N atoms, starting from graphitic mixtures of C and BN with compositions of C₁₋ₓBNₓ, where x = 0.02, 0.1, or 0.5. The BN-doped diamond crystals were grown in a large volume cubic MAP using iron-nickel alloy as catalysts at pressures of 5.0–7.2 GPa and temperatures of 1,500–2,300 K. Variation in morphology and color of the obtained crystals (Fig. 2.7) were attributed to the different amounts of B and N atoms incorporated into the crystal structure. XRD, XPS, Raman-, and FT-IR spectroscopy were used to verify the structure, chemical composition, and bonding of the crystals—in particular, the presence of all 3 elements as well as of the C-C, B-N, B-C, and C-N bonds. The authors have noted that the C₀.₉(BN)₀.₁ tends to separate into several cubic phases having different B/N ratios, while in the C₀.₅(BN)₀.₅ system, no phase separation was found and the obtained single-phase “BCN”-diamond exhibited cuboctahedral shape, light yellow in color, and nearly transparent. The derived cubic lattice parameter of the “BCN”-diamond of 3.575 Å is in a good agreement with Vegard’s law for a diamond/c-BN alloy. The exact chemical composition of the BN-doped diamond crystal phases was not, however, determined.
2.2 C-N Compounds

For nearly 20 years, intense interest in the synthesis of new C-N materials has been generated by the prediction of unusual properties of saturated, i.e., carbon sp^3-hybridized, crystalline C$_3$N$_4$-phases. The basis of this prediction was provided by a semi-empirical model developed by Cohen. The effective correlation between bulk modulus (B_V) and bond length (d) was found to be $B_V = 1.972/d^{3.5}$. A typical bond length of 1.47 Å for a C–N single bond was derived from organic nitrogen-containing molecules, while the C–C distance in diamond is 1.54 Å. This means that the bulk moduli of dense C$_3$N$_4$ phases could probably be higher than those of diamond. Moreover, based on the controversial opinion that hardness of material is primarily determined by its bulk modulus, the authors suggested that this hypothetical carbon nitride can surpass diamond in hardness. Such a daring statement excited the scientific community and, as a result, many theoretical investigations and experimental efforts to synthesize postulated carbon nitrides were made during the last 2 decades and continues up till now.

2.2.1 Postulated Carbon Nitrides

Several hypothetical carbon nitrides have been proposed and analyzed in literature: α-C$_3$N$_4$, β-C$_3$N$_4$, “defect zincblende” $d zb$-C$_3$N$_4$, “pseudocubic” pc-C$_3$N$_4$ and “willemite-II” $wm II$-C$_3$N$_4$, spinel γ-C$_3$N$_4$, and λ-C$_3$N$_4$. Their structural data together with calculated bulk moduli and hardness from different theoretical works are summarized in Table 2.2.
The β-\(\text{C}_3\text{N}_4\) polymorph is based on the \(\beta\)-\(\text{Si}_3\text{N}_4\) structure, with C substituted for Si. This structure consists of 4-fold coordinated (sp\(^3\)-hybridized) carbons linked by 3-fold coordinated N-atoms into a network of corner-linked \(\text{CN}_4\) tetrahedra (Fig. 2.8a). The hexagonal unit cell contains 14 atoms (2 \(\text{C}_3\text{N}_4\) formula units) and has \(P63/m\) or closely related \(P3\) symmetry. In the former symmetry, all \(\text{NC}_3\) polyhedra are considered to be planar in geometry, thus implying formal sp\(^2\)-hybridization of N-atoms similar to that observed for \(\beta\)-\(\text{Si}_3\text{N}_4\).\(^{108,112}\) Other authors considered only the half \(\text{NC}_3\) units to be planar while the other half to have pyramidal geometry (sp\(^3\) hybridized nitrogen), which resulted in the change of the symmetry to \(P3\).\(^{111,113}\)

Table 2.2 Predicted \(\text{C}_3\text{N}_4\) phases and their calculated structural parameters, bulk moduli, and hardness

<table>
<thead>
<tr>
<th>Modification</th>
<th>Space Group</th>
<th>(a) (Å)</th>
<th>(c) (Å)</th>
<th>(\alpha) (°)</th>
<th>Density ((\text{g/cm}^3))</th>
<th>(B_0) (GPa)</th>
<th>Hardness (GPa)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)-(\text{C}_3\text{N}_4)</td>
<td>(P3_1c) (159)</td>
<td>6.35</td>
<td>4.46</td>
<td>...</td>
<td>3.78</td>
<td>189</td>
<td>[111]</td>
<td></td>
</tr>
<tr>
<td>(\beta)-(\text{C}_3\text{N}_4)</td>
<td>(P3) (143)</td>
<td>6.35</td>
<td>2.46</td>
<td>...</td>
<td>3.56</td>
<td>250</td>
<td>[111]</td>
<td></td>
</tr>
<tr>
<td>(\text{dzb-}(\text{C}_3\text{N}_4)</td>
<td>(P-43m) (215)</td>
<td>3.43</td>
<td>...</td>
<td>...</td>
<td>3.79</td>
<td>425</td>
<td>[112]</td>
<td></td>
</tr>
<tr>
<td>(\text{pc-}(\text{C}_3\text{N}_4)</td>
<td>(P42m) (111)</td>
<td>3.42</td>
<td>3.42</td>
<td>...</td>
<td>3.81</td>
<td>448</td>
<td>[113]</td>
<td></td>
</tr>
<tr>
<td>(\text{wmII-}(\text{C}_3\text{N}_4)</td>
<td>(I-43d) (220)</td>
<td>5.40</td>
<td>...</td>
<td>...</td>
<td>3.89</td>
<td>496</td>
<td>[113]</td>
<td></td>
</tr>
<tr>
<td>(\gamma)-(\text{C}_3\text{N}_4)</td>
<td>(Fd-3m) (227)</td>
<td>6.87</td>
<td>...</td>
<td>...</td>
<td>3.77</td>
<td>369</td>
<td>[114]</td>
<td></td>
</tr>
<tr>
<td>(\lambda)-(\text{C}_3\text{N}_4)</td>
<td>(P4_22) (95)</td>
<td>n.d.</td>
<td>...</td>
<td>...</td>
<td>3.0</td>
<td>n.d.</td>
<td>[115]</td>
<td></td>
</tr>
<tr>
<td>(\text{g-}(\text{C}_3\text{N}_4)</td>
<td>(P6m2) (187)</td>
<td>4.74</td>
<td>6.72</td>
<td>...</td>
<td>2.33</td>
<td>n.d.</td>
<td>[113]</td>
<td></td>
</tr>
<tr>
<td>(\text{rh-}(\text{C}_3\text{N}_4)</td>
<td>(R3m) (160)</td>
<td>4.11</td>
<td>...</td>
<td>70.5</td>
<td>2.56</td>
<td>51</td>
<td>[112]</td>
<td></td>
</tr>
</tbody>
</table>
Theoretically predicted dense carbon(IV) nitride polymorphs that have been proposed in literature and which were examined theoretically: a) β-C₃N₄ (P6₃/m), b) α-C₃N₄ (P3₁c); c) “pseudo-cubic” or “defect zinc blende” C₃N₄ (P-43m); d) “cubic” or “willemite-II” C₃N₄ (I-43d); e) spinel-type γ-C₃N₄ (Fd-3m). The carbon and nitrogen atoms are represented as gray and blue spheres, respectively.

Following the prediction of the β-phase, the α-C₃N₄ structure was similarly deduced from α-Si₃N₄. It can be described as an ABAB stacking sequence of layers of β-C₃N₄ (a) and its mirror image (b) (Fig. 2.8b). The hexagonal unit cell has P3₁c symmetry and contains 4 C₃N₄ formula units. According to theoretical calculation, NC₃ polyhedra are exclusively pyramidal in geometry, thus indicating sp³-hybridization of nitrogen. The issues of nitrogen hybridization and structural uncertainties in the predicted α- and β-C₃N₄ are critically reviewed by Malkow.

Pseudocubic C₃N₄ polymorph represents a defect zinc blende structure (isotectural to α-CdIn₂Se₄). It can be constructed from a c-BN structure by substituting 4 B-atoms of the unit cell by 3 C-atoms and one vacancy. The structure exhibits either P-43m or P-42m symmetry with 7 atoms (one formula unit) in the unit cell. The network consists of corners-linked CN₄ tetrahedra (Fig. 2.8c) in such a way that the C-N-C angle is close to 109°, which suggests sp³ hybridization for nitrogen.
The cubic “wmII”-type structure is derived from a high-pressure phase of a zinc silicate (Zn$_2$SiO$_4$) willemite-II, via replacing the cations (Zn and Si) by C and the anions (O) by N (Fig. 2.8d). The initially tetragonal structure was found to relax toward the more symmetrical cubic one having $I-43d$ symmetry. For this structure the extremely high bulk moduli (~450–500 GPa), exceeding the experimental one of diamond (442 GPa), and high density 3.8–3.9 g/cm3 were reported. However, both pseudocubic and cubic C$_3$N$_4$ phases were found to be less thermodynamically stable than the previously described α and β polymorphs.

Finally, the discovery of the high-pressure cubic spinel silicon nitride (γ-Si$_3$N$_4$) suggested the existence of isostructural γ-C$_3$N$_4$. The structure (space group Fd-3m) comprises C-atoms in 2 different environments: 8 tetrahedrally and 16 octahedrally coordinated carbons per unit cell (Fig. 2.8e). Despite the evident existence of 6 coordinated carbons in transition metal complex cations, octahedral carbon sites in γ-C$_3$N$_4$ are considered to be very unlikely in terms of hybridization. Nevertheless, this structural form is expected to be attainable under ultra-high-pressure conditions.

By simulating the compression of polymeric carbon nitride precursors—in particular, carbon dicarbodiimide C(NCN)$_2$—Kroll and Hoffmann have found transformation to a completely novel and unusual solid structure having C$_3$N$_4$ stoichiometry. The hypothetical λ-C$_3$N$_4$ consists of tetrahedrally coordinated carbon with nitrogen polyhedra both in planar (sp2) and pyramidal (sp3) geometry. However, the λ-phase also contains C-C and N-N bonds, which, in the sense of oxidation state formalism, does not allow to refer λ-C$_3$N$_4$ to carbon(IV) nitrides.

Despite most predicted carbon nitrides that exhibit the C$_3$N$_4$-stoichiometry, first synthesis attempts, mainly devoted to deposition of thin films, have indicated the difficulty to obtain a C:N ratio of 3:4. With this in view, Cote and Cohen have examined 8 new structural models for carbon nitrides with 1:1 stoichiometry by means of ab initio calculations. They have considered cubic rock salt and zinc-blende types, rhombohedral (buckled carbon nitride sheets with interplanar covalent bonds), orthorhombic β-InS type, tetragonal GeP-type, and 3 hexagonal structures being 3-D networks of pure sp2-bonded solids “bet-4”, “H-6”, and GaSe-type. The authors reported that for this stoichiometry, sp2 bonding of nitrogen is energetically preferable to sp3. The cubic phases were found to be mechanically unstable and relaxed to a rhombohedral phase with a bulk modulus of 253 GPa. The bulk moduli of 345 and 375 GPa were calculated for hexagonal H-6 and bct-4 phases, respectively. Finally, the GaSe structure, made of layers where the C-C bond is perpendicular to the plane of the layers, was found to be the most energetically favorable of all phases considered, and it has a bulk modulus of 199 GPa. Kim et al. investigated cubic CN phases (rocksalt, BCC, and zinc-blende) using DFT and found that they relax to their
tetragonal counterparts (e.g., zinc-blende to β-tin type). A body-centered
tetragonal CN phase with 1:1 stoichiometry is predicted to be highly stable; it
has a bulk modulus of 243 GPa and an interesting atomic structure, with
complicated C-C and N-N dimerization along the c axis. Another wave in the
theoretical exploration C:N = 1:1 was initiated by the discovery of “polymeric”
nitrogen having a cubic gauche-type structure, cg-N (Fig. 2.9a).124 Replacing
half of the nitrogen atoms in the cg-N by carbon, Wang et al.125 suggested that
a novel carbon nitride phase consisted of sp3 hybridized bonds and possessed a
cubic P213 symmetry with 8 atoms/cell, cg-CN (Fig. 2.9b). The bulk modulus
and hardness of the cubic gauche CN were calculated to be 335–348 GPa and
54 GPa, respectively. A further search of hypothetical CN phases by means of
ab initio total-energy calculations has indicated the potential existence of 7 other
low-energy polymorphic structures of sp3-hybridized CN.126 Among them, the
Pnnm structure with 8 atoms per unit cell was found to be energetically more
favorable than all previously reported crystalline structures with 1:1
stoichiometry. Furthermore, it has the theoretical hardness of 62 GPa.126

![Fig. 2.9](https://example.com/fig29.png)

Fig. 2.9 Unit cells of the simple cubic gauche cg-N (a) and cg-CN (b)125

Aiming to explain nitrogen evolution during the CVD of carbon nitride thin
films, Betranhandy et al.127 have suggested 2 hypothetical models based on a
pyrite-type structure with different C:N stoichiometries: CN2 and C2N. In the
considered AX2 compounds with the pyrite-type structure, X2 diatomic units are
arranged in the octahedral holes of the A-atoms fcc-sublattice. The authors
indicated structural instability of both carbon nitrides and a tendency to release
N2 and C2N2 for CN2 and C2N, respectively. As many reports explained the
nitrogen substoichiometry of carbon nitrides by an extraordinary stability of N2
molecule, Sandre et al.128 have proposed many structural models for the
composition C3N, making the substitution of one-quarter of carbon atom by
nitrogen in the carbon graphite structure. Ab initio calculations have led to 2
graphitic 2-D structures and 2 3-D ones (poly-C3N-a and -b) with orthorhombic
symmetry. Authors mainly insist that the dynamic structural transformations
from one polymorph to another are favored, which makes very difficult
structural characterizations.
In addition to such dense, saturated or sp3-hybridized carbon(IV) nitride structures, many soft unsaturated structural variants have been suggested in the literature. Different graphitic C$_3$N$_4$ structures112,113,129,130; numerous polymeric triazine-, heptazine-, carbodiimide-, and cyanamide-based networks115,131; and amorphous C$_3$N$_4$-phases132 are considered as suitable precursors for the synthesis of a hard C$_3$N$_4$ phase and will be referred in the following subsection.

2.2.2 CNx Thin Films via Vapor Deposition

Up-to-date descriptions of the proposed C$_3$N$_4$ phases and reviews of the experimental results can be found elsewhere120,133,134. Numerous attempts to obtain hypothetical phases have been undertaken since the Liu and Cohen publication. Two main preparative approaches can be clearly distinguished: thin films deposition and bulk synthesis. First attempts to obtain CNx coatings were undertaken already in the 1970s. But after the above-described prediction of metastable β-C$_3$N$_4$ phase possessing diamond-like properties, an exponential increase of attempts to synthesize the postulated material via gas phase deposition techniques was documented. Currently, scientific databases consist of more than 2,000 papers related to carbon nitride films. The numerous papers have been summarized and critically analyzed in several review articles$^{120,133–135}$ allowing to conclude that the existence of crystalline stoichiometric C$_3$N$_4$ has not been clearly evidenced yet.

Practically all known variants of chemical vapor deposition techniques were applied to produce CNx-coatings. These include thermal low-pressure CVD, microwave- and RF-plasma-enhanced CVD, and laser- or hot filament CVD. The applied physical vapor deposition techniques include ion implantation or ion beam deposition; magnetron, electron cyclotron resonance, and other sputtering methods; laser ablation; vacuum arc deposition; and laser-induced gas phase reaction. The CVD-approaches are dominated by plasma-enhanced techniques, while in the physical vapor deposition (PVD) area, predominantly various kinds of sputtering methods were used. Important deposition parameters like temperature, pressure, precursors, target materials, and substrates were varied in wide range. Some of the obtained films showed an extremely high hardness (e.g., ~65 GPa for coatings with C:N-ratio of 0.6–0.7 obtained by ion beam PVD136), which, however, is still significantly below the corresponding values for diamond (~100 GPa). Independent of applied methods and apparatus, several reports on the successful synthesis of partially or fully crystalline coatings were published. Many authors claim unambiguous formation of β-C$_3$N$_4$, α-C$_3$N$_4$, cubic, graphitic, unknown crystalline C$_3$N$_4$ phases, or their mixtures in the obtained coatings.

However, in most cases there are only very small crystallites formed, sometimes with various compositions or mixed with other (amorphous) phases. Their diffraction intensities from XRD and TEM studies and derived lattice constants
match usually relatively poorly with the calculated values for the theoretically proposed modifications. Moreover, a detailed systematic analysis of the published diffraction data have shown that the reported X-ray and/or electron diffraction patterns may also be assigned to different crystalline carbon phases. The elemental composition of the coatings is usually insufficient: such techniques as EDX, XPS, Rutherford backscattering spectrometry, or EELS are, in general, not suitable to provide an exact and reliable quantification of the light elements C, H, N, and O, and even the C:N ratio is usually very difficult to determine for a small single crystal. In many cases, the obvious contamination of the obtained material with hydrogen is ignored. Interpretation of such results on the basis of the C:N ratio is unacceptable, since molecular or polymeric crystalline C/N/H-phases may also be formed. So, it is not unlikely that many of the crystalline phases described in experimental reports contain significant amounts of oxygen, hydrogen, or other elements.

Critical analysis of the existent literature devoted to the preparation of carbon nitride films leads to the conclusion that it is relatively unlikely that the vapor deposition techniques can provide dense crystalline stoichiometric \(C_3N_4\)—in particular, its existence has not been clearly evidenced yet. To date, the so-obtained deposits are generally mainly amorphous and can eventually contain nanometric CNx crystallites. Nevertheless, amorphous nonstoichiometric CNx-materials are interesting from a fundamental, as well as from a practical, point of view because of their interesting mechanical, tribological, and optical properties. Much of the recent work in the field of carbon nitride coatings is focused on the synthesis and characterization of amorphous, homogeneous materials.

2.2.3 Ambient- and Low-Pressure Bulk Synthesis Approaches

Another route to C-N compounds suggested by many authors devotes bulk synthesis approaches, which will provide hard ceramic carbon nitride materials in macroscopic amount. The present section briefly overviews the most significant results on carbon nitrides synthesis under ambient- or “low-” pressure conditions, implying the pressures below 1 GPa. It should be mentioned that the application of such moderate conditions in most cases does not provide dense C-N compounds. Thermal decomposition of organic precursors, moderate temperature synthesis, or solvothermal synthesis in most cases was resulting in amorphous/turbostratic and low-density crystalline (graphitic) carbon nitrides. Nevertheless, the obtained CNx materials are nitrogen rich and predominantly single phase, so they (in particular, graphitic \(C_3N_4\) networks A and B on Fig. 2.10) can be considered as perfect precursors for the production of dense \(C_3N_4\).
Fig. 2.10 Examples for graphitic C$_3$N$_4$ networks with relative high symmetry based on the s-triazin unit (A) and the s-heptazine (tri-s-triazine) unit (B). Structure A was initially predicted to be the thermodynamically most stable C$_3$N$_4$ modification. However, recent DFT calculations have shown that B is significantly more stable than A.138

2.2.3.1 Solid Phase Pyrolysis and Synthesis

Pyrolysis of N,N-diethyl-1,4-phenylen-diammonium-sulfate (C$_{10}$H$_{18}$N$_2$O$_4$S) in a nitrogen atmosphere at 800 °C and in the presence of SeO$_2$ as catalyst results in a heterogeneous product containing crystalline carbon nitride with a zinc blende structure, according to TEM examinations.139 The authors propose the following reaction:

\[
\text{C}_{10}\text{H}_{18}\text{N}_2\text{O}_4\text{S} + 8\text{N}_2 \rightarrow 3\text{C}_3\text{N}_4^* + \text{CO}_2 + 6\text{NH}_3 + \text{SO}_2
\]

The composition of the crystalline product could only be estimated with EELS because of the small crystallite size of 5–50 nm. The crystallites are surrounded by an amorphous matrix with varying nitrogen content.

Thermal treatment of melamine (C$_3$H$_3$N$_6$), cyanoguanidine (C$_2$H$_4$N$_4$), 1,2,4-triazol (C$_2$H$_2$N$_3$), dianinomaleonitrile (C$_4$H$_4$N$_4$), polymerised HCN, dicyanoimidazol (C$_5$H$_2$N$_4$), TCNE (C$_6$N$_4$), TCNE with ammonia, and hexaazatriphenylene hexacarbonitrile (C$_{18}$N$_{12}$) at 700 °C / 225 MPa results in the products with composition deviating from the ideal C$_3$N$_4$. The observed ammonia release during thermal treatment allowed the authors to conclude that an ideal precursor should contain no or at least the lowest possible hydrogen content.140

An alternative method to synthesize the graphitic C$_3$N$_4$ precursor A (Fig. 2.10) is based on reactions of cyanuric chloride (2,4,6-trichloro-1,3,5-triazine, C$_3$N$_3$Cl$_3$) with metal nitrides and/or amides. The major challenge of this approach is the separation of the side product, i.e., the metal chloride, from the polymer. Kawaguchi et al.141 used lithium nitride and removed LiCl by dissolving in water:

\[
\text{C}_3\text{N}_3\text{Cl}_3 + \text{Li}_3\text{N} \rightarrow \text{“C}_3\text{N}_4^* + 3\text{LiCl}
\]
Two different products were obtained, with the composition $C_3N_{4.5}O_{1.2}H_{4.1}$ and $C_3N_{3.6}O_{1.1}H_{4.2}$. The oxygen content indicates a hydrolysis reaction during the treatment with water. Amorphous carbon nitrides as well as graphitic C_3N_4 hollow spheres have been reported to be formed upon reacting cyanuric chloride or fluoride with lithium nitride in a steel or Monel reactor at temperatures between 300 and $500 \degree C$.142,143 Interestingly, the addition of materials such as glass wool to the educts seems to have a catalytic effect resulting in the formation of hollow spheres with diameters from 30 nm to 1 µm (Fig. 2.11).142,143 SEM, TEM, FTIR, XRD, and solid-state NMR examinations indicated the presence of spherical CN_x particles with graphitic structure. The authors supported their interpretation with force-field calculations, which indicate that triazine-based C_3N_4 structures cross-linked with nitrogen atoms (structure A in Fig. 2.10, Fig. 2.11) tend to form curved layers. Guo et al.144 have mixed cyanuric chloride with either potassium or nitriding agents, such as NaN_3 and $NaNH_2$, and submitted to temperatures of 300, 380 and 220 °C, respectively, in a solvent-free autoclave. While at higher temperatures nitrogen-poor materials were obtained, the lower-temperature treatment (when the organic reagent was mixed with $NaNH_2$) resulted in graphitic carbon nitride with a nitrogen-to-carbon (N/C) ratio of 1.20 and interplanar distance of 3.28 Å. The authors proposed that a single layer of the graphitic carbon nitride is composed of triazine rings interconnected by nitrogen bridges (structure A in Fig. 2.10).

![Fig. 2.11](image)

Fig. 2.11 g-C_3N_4: s-triazine-based chemical structure and TEM image of nanosized hollow spheres142,143

Komatsu et al.145,146 reported preparation of graphitic C_3N_4 materials based on the tri-s-triazine nucleus (C_6N_7) (e.g., structure B in Fig. 2.10) by ambient pressure chemical synthesis. Pyrolysis of tricyanomelamine or of mixtures of melamine with metal halides like $ZnCl_2$ at temperatures up to 800 °C results in the C/N/H-polymer melon, as supported by IR and mass spectrometry (MS) and
C/H/N elemental analyses.146 Much more promising appeared to be the reactions of potassium melonate \(\text{K}_3[(\text{C}_6\text{N}_7)(\text{NCN})_3] \), with heptazinetrichloride, \(\text{C}_6\text{N}_7\text{Cl}_3 \).145 Taking into account the IR and MS examinations, as well as XRD and the C:N-ratio determined by combustion chemical analysis, the author suggested for the synthesized product a network structure like that shown in Fig. 2.10B. Zhao et al.147 have focused on the de-ammonation polycondensation of melamine at moderate temperatures (300 °C then 600 °C in atmosphere). The resulting carbon nitride nanowires adopted a turbostratic stacking with an interplanar distance of 3.21 Å. High nitrogen content (C\(_3\)N\(_4.63\)H\(_{1.61}\)) and high thermal stability (up to 700 °C) suggested this material as a good precursor for the high-temperature and high-pressure synthesis of dense carbon nitride crystals.

Careful thermal treatment of C–N–H compounds, such as melamine \(\text{C}_3\text{N}_3(\text{NH}_2)_3 \), dicyandiamide \(\text{H}_4\text{C}_2\text{N}_4 \), ammonium dicyanamide \(\text{NH}_4[\text{N(CN)}_2] \), or cyanamide \(\text{H}_2\text{CN}_2 \) to about 450 °C was found to lead to the formation of a nitrogen-rich condensed molecular structure so-called “melem” (2,5,8-triamino-tri-s-triazine).148 Melem consists of nearly planar \(\text{C}_6\text{N}_7(\text{NH}_2)_3 \) molecules that are organized into parallel layers with an interplanar distance of 3.27 Å. Being also highly nitrogen rich (the C:N ratio 1:1.67), melem is of significant interest as an intermediate phase on the way to the graphitic \(\text{C}_3\text{N}_4 \). Indeed, when heated up to 580 °C, it transforms into a graphitic carbon nitride with an interplanar distance of 3.40 Å. Same behavior was observed for guanylurea dicyanamide \([(\text{NH}_2)\text{C}(=\text{O})\text{NHC(NH}_2)_2][\text{N(C≡N)}_2] \), which forms melamine at about 130 °C and leads to a melem by heating at about 380 °C and, upon further heating to 490 °C, transforms into graphitic carbon nitride.149 An investigation of the thermal behavior of nonmetal tricyanomelaminates in the temperature range of 380–500 °C revealed the formation of a graphitic hydrogenated carbon nitride through the intermediate melem phase.150 The authors relate the structure of the obtained g-\(\text{C}_3\text{N}_4 \) to the “A” structure shown in Fig. 2.10.

Amorphous bulk nitrogen-rich carbon nitrides are produced via slow thermal decomposition of 2,4,6-triazido-1,3,5-triazine \([(\text{C}_3\text{N}_3)(\text{N}_3)_3] \) at 185 °C in a high-pressure reactor.151 Under autogenous nitrogen pressure (~1 atm), the product with \(\text{C}_3\text{N}_3.9\text{H}_{1.4}\text{O}_{0.2} \) composition (~\(\text{C}_3\text{N}_4 \)) is obtained, while the application of initial nitrogen pressure of 6 atm yields a solid with one of the highest reported nitrogen-to-carbon ratios corresponding to \(\text{C}_3\text{N}_5 \), \(\text{C}_3\text{N}_4.7\text{H}_{1.3}\text{O}_{0.4} \). Both products were found to have significant sp\(^2\) carbon bonding in a conjugated doubly bonded network. Electron microscopy reveals that these powders have a glassy microstructure with large irregular pores and voids. Similar amorphous nitrogen-rich carbon nitride material, \(\text{C}_3\text{N}_{4+x} \) where \(0.5 < x < 0.8 \), is obtained through the rapid decomposition of the trichloromelamine \([(\text{C}_3\text{N}_3)(\text{NHCl})_3] \)
upon heating above 185 °C. The ideal decomposition should occur according to the following equation:

\[
[(C_3N_3)(NHCl)_3] \rightarrow C_3N_4 + 3HCl + (2-x)/2*N_2
\]

IR, NMR, optical, and X-ray photoelectron spectroscopy revealed in the product primarily sp² hybridized carbon centers and triazine (C₃N₃) rings bridged by nitrogen species. The authors have shown that pressure is not essential for high nitrogen content in resulting layered carbon nitrides.

Spherical carbon nitride nanoparticles with a graphitic structure were also synthesized using a template process. A nanoporous silica matrix was soaked with liquid cyanamide (CH₂N₂) and dried. The carbon nitride material was obtained via heating the monolith under N₂ flow at 550 °C followed by treatment with hydrofluoric acid to remove the matrix. The authors have reported high nitrogen content (N/C = 1.56) and suggested the s-heptazine-based structure (B-type in Fig. 2.10) for the single layer of g-C₃N₄. The oxygen and hydrogen content of the synthesized material was not, however, specified.

Semencha et al. reported simple methods for preparing crystalline carbon nitrides—namely, g-C₃N₄ and β-C₃N₄. The submicrometer-sized graphitic crystallites were obtained via thermal decomposition of a mixture of sodium and potassium thiocyanates at 450 °C. Reaction of carbon tetrachloride (CCl₄) with ammonia (NH₃) at an elevated temperature was claimed to lead to β-C₃N₄. The CNₓ phases were investigated using TEM, XRD, IR spectroscopy, and MS. Because of a poor agreement of experimental XRD patterns with that of the theoretically predicted ones, the presence of nonindexed XRD peaks, and the absence of any data on elemental composition, further characterization of the synthesized materials is indispensable.

Very recently Goglio et al. suggested another simple method to synthesize carbon nitrides, including a low-compressibility CNₓ-polymorph. The carbon nitride material was obtained through the decomposition of commercial thiosemicarbazide (H₂NC(S)N₂H₃) powder at ambient pressure and 600 °C under nitrogen flow. Besides the presence of a graphitic CN₁ phase, a nanocrystalline material is obtained and is identified as a cubic carbon nitride with a cell parameter of 3.163 Å. The authors report a high bulk modulus of 355 GPa for the cubic phase, which is still below those from numerous theoretical predictions. Finally, a bulk elemental combustion analysis of C, H, N, O, and S indicated no sulfur and high nitrogen content, but also showed the presence of significant H and O amounts. The composition of the cubic phase was not determined.

Another ambient-pressure approach toward C₃N₄ is presented by Schmidt and Jansen. Using C₂N₂O, a hydrogen-free inorganic polyisocyanate obtained by the polymerization of molecular cyanogen isocyanate (NC–NCO), they
prepared a phase-pure 3-D structured C–N network by a carefully controlled polycondensation reaction. Only gaseous CO$_2$ was released, providing amorphous and porous C$_3$N$_4$ at 400 °C. Further densification of this inorganic cross-linked polymer up to 2.3 g/cm3 was achieved by annealing in the presence of elemental mercury as a catalyst. The densified C$_3$N$_4$ network was analyzed using elemental analysis; IR, Raman, and electron paramagnetic resonance spectroscopy; thermal analysis, and MS studies. The authors have concluded that the obtained material with the composition C$_3$N$_4$ is best described as an inorganic resin-like thermosetting network (Fig. 2.12), structurally related to the well-known melamine-based resins (polytriazines).

![Fig. 2.12 The 3-D resin-like structural model for C$_3$N$_4$](image)

2.2.3.2 Solvothermal Route

Of all the synthesis methods for the carbon nitrides, the solvothermal process is considered to be of significant interest because the moderate temperature conditions are able to prevent the loss of nitrogen, and the chemical reactivity of the precursors at the interface between solid and liquid phases or between solvated species can be strongly improved. Montigaud et al.157 tried to prepare the triazine-based structure A (Fig. 2.10) via solvothermal techniques at 250 °C / 130 MPa starting from cyanuric chloride and melamine in the presence of ethyl-diisopropylamine. The product was characterized by XRD, reflection electron microscopy, EDX, Raman, and XPS. The resulting poorly crystallized graphitic phase had an N/C ratio of 1.28 and contained hydrogen. It is very likely that the C/N/H-polymer melon was formed. Melon, [C$_6$N$_9$H$_3$]$_n$, contains only 1.5 wt% hydrogen; therefore, its composition is very close to the carbon(IV) nitride stoichiometry. Treatment of the same reagents in the presence of nickel with supercritical benzene as a solvent at 400 °C and autogenously pressure (or even without solvent) results in the formation of nitrogen-rich graphitic carbon nitride hollow spheres (10–40 nm in size) with an N/C equal to 1.6.158 In this case, nickel is claimed to be necessary to induce a polycondensation reaction. FTIR, UV–vis, XPS, and photoluminescence
spectroscopic studies of the carbon nitride materials show that the products reserve the s-triazine-based structure (A, Fig. 2.10). The solvothermal condensation of melamine without a secondary reagent with pure hydrazine (NH$_2$NH$_2$) as a dehydrogenating agent was also studied at higher pressure and temperature conditions ($P = 3$ GPa, $T = 800$–850 °C) in a belt apparatus. The product was characterized with XRD, SEM, XPS, EMPA, elemental analysis, and IR spectroscopy. A hydrogen content of 2 wt% was reported, indicating the presence of a C/N/H phase. The resulting material was a carbon nitride with a new unpredicted graphitic structure having an orthorhombic cell and a composition close to C$_3$N$_3$O$_{0.14}$H$_{1.24}$. Similar solvothermal conditions were applied to test further triazine derivatives for their suitability to prepare a C$_3$N$_4$-material: 2-amino-4,6-dichloro-1,3,5-triazine and 5-azacytosin. The products also showed relatively high hydrogen contents and/or significant oxygen impurities.

Solvothermal reaction of CCl$_4$ with NH$_4$Cl at 400 °C in a stainless steel autoclave was reported to provide graphite-like C$_3$N$_4$ nanocrystals without any catalyst. The obtained material exhibited very good crystallinity and its XRD pattern is consistent with graphite-like C$_3$N$_4$. IR spectroscopy indicated the presence of C=N, C–N, and N–H bonds. The overall elemental composition was not reported.

Further attempts to synthesize carbon nitride material via a solvothermal route involved cyanuric chloride C$_3$N$_3$Cl$_3$ as a source of both carbon and nitrogen. The reactant was usually mixed with different additives able to trap chloride anions or/and to supply additional nitrogen (e.g., alkali metals or their nitrides, NaNH$_2$ or NaN$_3$) in a nonpolar solvent (C$_6$H$_6$ or C$_6$H$_{12}$). In these experiments, moderate pressure and temperature conditions have been developed in a solvothermal environment. Lu et al. tried to reproduce the solvothermal carbon nitride synthesis using cyanuric chloride with lithium nitride as reactants in benzene solution at 300–400 °C / 5–7 MPa. They claimed the formation of α- and β-C$_3$N$_4$. Nevertheless, the reported N/C ratio was very low compared with the theoretical value (0.66–0.76 vs. 1.33), and a number of nonindexed XRD peaks implied the presence of unknown crystalline phase(s). Here further characterization is necessary to unambiguously identify the structure and chemical nature of the phases observed. In order to investigate the nitridation mechanism, Guo et al. have performed nitridation of C$_3$N$_3$Cl$_3$ using NaN$_3$ as the nitriding agent according to the following chemical equation:

$$C_3N_3Cl_3 + 3NaN_3 \rightarrow C_3N_4 + 3NaCl + 4N_2$$

The reaction has been carried out in the presence of benzene as the solvent at 220 °C for 15 h. The obtained material is composed of high-quality carbon nitride nanotubes having a graphite-like sp2 bonded structure confirmed by XPS. Elemental analysis has shown the atomic N/C ratio of 1.25, which is very
close to the theoretical value for C\textsubscript{3}N\textsubscript{4} (1.33). However, the presence of hydrogen bonded to nitrogen was detected. An equivalent benzene-thermal synthesis with NaNH\textsubscript{2} instead of NaN\textsubscript{3} at moderate temperatures (180–220 °C)165 has led to the material mainly consisting of graphitic carbon nitride nanosized crystallites with N/C ratio 1.39, in agreement with chemical reaction:

\[\text{C}_3\text{N}_3\text{Cl}_3 + 3\text{NaNH}_2 \rightarrow \text{C}_3\text{N}_4 + 3\text{NaCl} + 2\text{NH}_3 \]

The N–H bonds, however, were still present in the product. The reaction of cyanuric chloride with sodium metal at 250 °C without a catalyst in the presence of cyclohexane as solvent, in contrast to the above 2 experiments, resulted in carbon nitride with an atomic N/C ratio of 1.166 Analysis of the XRD, FTIR, and XPS data suggested a graphite-like sp2-bonded structure composed of blocks of s-triazine rings bridged by carbon-carbon atoms in the bulk carbon nitride. The TEM revealed spherical particles with an average diameter of 50 nm. Carbon nitrides having CN stoichiometry were prepared from the same reagents by Li et al.167 between 230 and 290 °C and 1.8 and 4.5 MPa in a stainless steel autoclave. CN nanotube bundles were formed at 230 °C and 1.8 MPa using NiCl\textsubscript{2} as a catalyst. Without any catalyst, aligned nanoribbons were formed at 290 °C and 3 MPa, while microspheres consisting of hundreds of nanoribbons were formed at 260 °C and 3.5–4.5 MPa.

Recently, well-crystallized graphitic carbon nitride was prepared from C\textsubscript{3}N\textsubscript{3}Cl\textsubscript{3} and NaN\textsubscript{3} in CCl\textsubscript{4} at 180 °C without any catalyst.168 The elemental analysis of the prepared sample indicated that the average composition was C\textsubscript{3}N\textsubscript{4.88}H\textsubscript{3.87}O\textsubscript{1.58}, with the N/C ratio to be 1.63, which is higher than the expected one (1.33) of the C\textsubscript{3}N\textsubscript{4} empirical stoichiometry. The presence of hydrogen and oxygen in the sample was explained by hydrolysis during the washing procedure and/or by the presence of –NH\textsubscript{x} end groups. XPS and FTIR studies confirmed a graphite-like sp2 bonded structure of the A-type (Fig. 2.10). TEM investigation revealed the presence of nanometer-size spherical particles and crinkly lamellas.

When comparing the results obtained by solvothermal methods, one can notice that the obtained morphologies of carbon nitrides are very different (microspheres of nanoribbons, nanotube bundles, nanospheres, lamellas, etc.) even when the only difference deals with the concentration of reagents and a slight modification in their ratios. Then the mechanisms responsible for all these morphologies are very sensitive to all experimental parameters (concentration, temperature, reducing agent amount, catalyst presence, and pressure), which underlines the great complexity of the phenomena involved in the solvothermal route.
2.2.4 HP-HT Synthesis of Dense C-N Phases

Despite many claims of making new CNₓ films and C₃N₄ crystallites, the scientific community still doubts the existence of dense C₃N₄ phases other than the graphite-like ones.₁¹⁰,₁⁶₉,₁⁷₀,₁⁷¹ After years of unsuccessful attempts to synthesize the new C₃N₄ phases, Badzian et al. argued that based on chemical considerations, the “extensive network with C-N single bonding has never been documented and only very local C-N bonds are known as in amino acids”.₁⁷₀ The difficulties faced in the synthesis of carbon nitrides with a C₃N₄ stoichiometry are most probably related to their low thermodynamic stability with respect to carbon and nitrogen, as indicated by the positive values of their enthalpies of formation.₁⁷² Taking this issue into account, together with theoretical studies mentioned in the previous section, as well as keeping in view the reported successes in the high-pressure synthesis of other nitrides, it becomes clear that HP-HT techniques similar to the synthesis of diamond and c-BN should be applied to prepare hard C₃N₄ materials (Fig. 2.13). Using suitable precursors with high nitrogen content may allow obtaining carbon nitride materials of good crystallinity in macroscopic amounts, which will also facilitate their characterization.

Fig. 2.13 The diagram presents an overview of the reported experimental routes to produce C₃N₄ phases. The bold route indicates the most promising synthesis pathways to dense C₃N₄.

An overview of the reported attempts to synthesize dense carbon nitride polymorphs under pressures exceeding ~1 GPa is listed in Table 2.3 and includes the utilized precursors, synthesis conditions, characterization methods, and main results. Even though most of the products obtained from the high-pressure experiments are amorphous materials with nitrogen contents much lower than the expected value of 57 at% for C₃N₄ (x < 1.33 for CNₓ), several groups have reported the synthesis of polycrystalline materials consisting of small α-, β-, and c-C₃N₄ crystallites embedded in an amorphous carbon nitride matrix. Moreover, a recently conducted synthesis of several new C-N-based crystalline phases demonstrates how little is known about the behavior of the C-N compounds under high pressure.
Table 2.3 Experimental details and main results related to the HP-HT synthesis of carbon nitrides

<table>
<thead>
<tr>
<th>Starting Materials</th>
<th>Synthesis Conditions</th>
<th>Analyses Methods</th>
<th>x in CNx</th>
<th>Claimed Phases, Contaminations, Comments</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static High-Pressure Synthesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[C₆N₃(NH₂)₃]+ NH₂NH₃</td>
<td>2.5–3 GPa, 800–850 °C</td>
<td>FTIR, XPS, XRD, TEM, ESCA</td>
<td>1.14–1.34</td>
<td>Cryst. graphitic C₃N₃.₃₆O₁₄H₂.₂₄</td>
<td>[129, 160]</td>
</tr>
<tr>
<td>[C₆N₃(NH₂)₃]+ C₃N(Cl)</td>
<td>1.0–1.5 GPa, 500–550 °C</td>
<td>XRD, TEM, EELS, FTIR, NMR</td>
<td>1.50</td>
<td>Crystalline C₆N₃H₃: HCl with hexagonal graphitic structure</td>
<td>[173]</td>
</tr>
<tr>
<td>C₆N₃(NH₂)OH</td>
<td>3.0 GPa, 450–1100 °C</td>
<td>XRD, FTIR, EA</td>
<td>0.80–1.46</td>
<td>Cryst. C₆N₃:O₃: H₂,C₃N₃: H₄: 4, unknown structure</td>
<td>[181]</td>
</tr>
<tr>
<td>C₆N₃(NH₂)H</td>
<td>5.0 GPa, 400–900 °C</td>
<td>EA, FTIR, XPS, XRD</td>
<td>0.17–1.91</td>
<td>T = 650 °C: partially crystall. CNx + melamine + unknown; H T > 900 °C: amorphous carbon, low N content</td>
<td>[174]</td>
</tr>
<tr>
<td>C₆N₃(NH₂)H</td>
<td>6–7 GPa, 300–400 °C</td>
<td>FTIR, XRD, Raman</td>
<td>0.25</td>
<td>Cryst. β-C₃N₄ + graphite + disordered carbon; O</td>
<td>[175]</td>
</tr>
<tr>
<td>[C₆Cl₆ + 3NaN₃]</td>
<td>7.7 GPa, 400–500 °C</td>
<td>HR-TEM, EELS, XRD, FTIR, Raman</td>
<td>0.70–1.94</td>
<td>Nanosized hexagonal graphitic crystallites in amorphous matrix; O, H</td>
<td>[176]</td>
</tr>
<tr>
<td>C₆N₃(NH₂)H</td>
<td>7 GPa, 1400 °C</td>
<td>EDX, XRD, REM</td>
<td>1.09–1.44</td>
<td>Partially cryst. α-C₃N₄ + β-C₃N₄ + catal. + unknown phase</td>
<td>[177]</td>
</tr>
<tr>
<td>Co₃N</td>
<td>18–42 GPa, 2000 °C</td>
<td>TEM, EELS, EDX, FTIR, Raman</td>
<td>0.56–0.88</td>
<td>Amorphous sp²-bonded CNx + carbon</td>
<td>[172, 178]</td>
</tr>
<tr>
<td>C₆N₃H₂.₅</td>
<td>4.8 GPa, 950 °C</td>
<td>EELS, SIMS, XRD</td>
<td>1.1</td>
<td>Turbostratic-CN</td>
<td>[181]</td>
</tr>
<tr>
<td>a-C₃N₄</td>
<td>8.5 GPa, 500 °C</td>
<td>XRD, TEM</td>
<td>n.d.</td>
<td>Cryst. cubic CN₃, nitrogen content?</td>
<td>[182]</td>
</tr>
<tr>
<td>g-C₃N₄</td>
<td>23–38 GPa, <2700 °C</td>
<td>XRD, SEM, EDX</td>
<td>1.29–1.47</td>
<td>Unsolved cubic C₃N₄ + diamond</td>
<td>[183]</td>
</tr>
<tr>
<td>C₆N₂H₄</td>
<td>27–41 GPa, 1700–2300 °C</td>
<td>TEM, EELS, EDX, SIMS, Raman</td>
<td>1.61</td>
<td>Well crystalline (~1 µm) orthorhombic “defect-wurtzite” C₃N₂(NH)</td>
<td>[171]</td>
</tr>
<tr>
<td>a-C₃N₄ + cr-CN x film</td>
<td>3–7.7 GPa, 300–1200 °C</td>
<td>XRD, XPS, TEM</td>
<td>n.d.</td>
<td>Cryst. α-C₃N₄ + β-C₃N₄ + unknown phase nitrogen content?</td>
<td>[183]</td>
</tr>
</tbody>
</table>

Shock-Wave Compression Synthesis

<table>
<thead>
<tr>
<th>Starting Materials</th>
<th>Synthesis Conditions</th>
<th>Analyses Methods</th>
<th>x in CNx</th>
<th>Claimed Phases, Contaminations, Comments</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₆N₃Cl, C₆N₃H₃, C₆N₃(OH)₃</td>
<td>15–50 GPa, 1000–3000 °C</td>
<td>EA, XRD</td>
<td>1.0</td>
<td>Nanocrystalline cubic CNx (H, O, Cl)</td>
<td>[184]</td>
</tr>
<tr>
<td>NaN(CN)₂+Cl⁺/Na⁺</td>
<td>20–25 GPa, 1000 °C</td>
<td>TEM, EELS, IR</td>
<td>0.09–0.15</td>
<td>Cubic sp²-bonded CNₓ nanocrystallites embedded in amorphous matrix (low N content)</td>
<td>[185]</td>
</tr>
<tr>
<td>NaN(CN)₂+Cl⁺/C Br₄</td>
<td>13–45 GPa, 2700 °C (1); 42–44 GPa, 2200–2400 °C (2); 28 GPa, 280 °C</td>
<td>XRD, EA</td>
<td>0.38–1.3</td>
<td>Amorphous or poorly crystallized graphitic CNₓ</td>
<td>[186]</td>
</tr>
<tr>
<td>Graphitic C₃N₂</td>
<td>30 GPa, 2700 °C</td>
<td>TEM, EELS, EDX, XRD, EA</td>
<td>0.55</td>
<td>Cubic heterodiamond C₃N</td>
<td>[187]</td>
</tr>
</tbody>
</table>
One of the first noteworthy HP-HT syntheses of carbon nitrides has been attempted in an LH-DAC, where the molecular precursor TCNE (C$_6$N$_4$) was subjected to up to 2500 °C and 42 GPa. TEM, SAED, EELS, and EDX analysis revealed the formation of amorphous sp2-bonded carbon nitrides. The amount of nitrogen incorporated into the network increases with pressure, ranging from 24% (~C$_3$N) at 18 GPa to 38% at 42 GPa (~C$_3$N$_2$), which was the most nitrogen-rich carbon nitride prepared under pressure by that time. The authors argued that, in agreement with their thermodynamic analysis, pressures of 40 GPa are insufficient for the synthesis of sp3-bonded carbon nitrides. Interestingly, that heating of a mixture of buckminster-fullerene C$_{60}$ with nitrogen in LH-DAC to 2,500 °C at pressures up to 30 GPa resulted in a 3-D carbon nitride in which the XRD pattern was consistent with a dense crystalline cubic system. The proposed crystal structures were not compatible with any theoretical C$_3$N$_4$, thus suggesting the formation of an unpredicted carbon nitride. However, further characterization of the high-pressure product in order to prove the presence of nitrogen and to determine the structure was not performed.

Dymont et al. have heat-treated the amorphous C-N-H precursor at 7 GPa by means of a toroid-type apparatus. Among various carbon phases, the authors also detected a crystalline carbon nitride with a hexagonal structure ($a = 6.65$ Å, $c = 4.82$ Å). After comprehensive XRD, IR, and Auger electron spectroscopy analysis, the model of the hexagonal β-C$_3$N$_4$ structure was

<table>
<thead>
<tr>
<th>Starting Materials</th>
<th>Synthesis Conditions</th>
<th>Analyses Methods</th>
<th>x in CN,</th>
<th>Claimed Phases, Contaminations, Comments</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphite + N$_2$</td>
<td>High energy ball milling</td>
<td>XPS, IR</td>
<td><0.12</td>
<td>Amorphization of graphite, weak nitridation</td>
<td>[190]</td>
</tr>
<tr>
<td>Nanosized graphite + NH$_3$</td>
<td>High energy ball milling</td>
<td>XRD, FTIR, EELS, TEM, Raman, EDX, XPS</td>
<td>~1.33</td>
<td>Nanosized β-C$_3$N$_4$ embedded in amorphous carbon</td>
<td>[191]</td>
</tr>
<tr>
<td>Ball milled graphite + NH$_3$</td>
<td>High energy ball milling 350–450 °C + NH$_3$</td>
<td>XRD, TEM, XPS, EELS, FTIR</td>
<td>~1.33</td>
<td>β-C$_3$N$_4$ nanorods</td>
<td>[192]</td>
</tr>
<tr>
<td>Ball milled graphite + NH$_3$ flow</td>
<td>1100 °C NH$_3$ flow</td>
<td>+ XRD, TEM, Raman, EELS, FTIR, EDX</td>
<td>~1.33</td>
<td>Graphitic C$_3$N$_4$, excellent crystallinity</td>
<td>[193]</td>
</tr>
<tr>
<td>Ball milled graphite + NH$_3$ flow (1): 1050 °C + NH$_3$ flow; (2): 1350 °C + NH$_3$ flow of g-C$_3$N$_4$ from (1)</td>
<td>XRD, TEM, EELS, EDX</td>
<td>~1.33</td>
<td>(1) Graphitic g-C$_3$N$_4$, excellent crystallinity (2) sp3-bonded pseudocubic C$_3$N$_4$</td>
<td>[194]</td>
<td></td>
</tr>
<tr>
<td>C$_3$N$_3$Cl$_3$ + Li$_3$N</td>
<td>High energy ball milling</td>
<td>XRD, SEM, XPS, TEM, FTIR</td>
<td>1.23–1.3</td>
<td>Graphitic carbon nitride</td>
<td>[195]</td>
</tr>
</tbody>
</table>
proposed, which is derived from the theoretical C$_3$N$_4$ structure by replacing some of the nitrogen atoms with carbon and forming C–C bonded pairs. Crystalline carbon nitride has been also synthesized from 3-amino-1,2,4-triazine, C$_3$N$_3$H$_4$, having (C$_3$N$_3$) a molecular skeleton in the presence of a nickel-based alloy or cobalt as a catalyst at similar pressures of 7 GPa and temperature of about 1,400 °C. SEM showed rod-like C–N crystals of several micrometers in size having 47–62 at% of nitrogen. Based on XRD, the authors claimed the presence of α-C$_3$N$_4$ and β-C$_3$N$_4$ crystals with lattice constants of a$_0$ = 6.425, c$_0$ = 4.715, and a$_0$ = 6.419, c$_0$ = 2.425, respectively, in reasonable agreement with earlier ab initio calculations. Recently, Kim and Zorov reported preparation of a mixture of crystalline α-, β-C$_3$N$_4$, and an unknown phase at 7 GPa and 550 °C from amorphous carbon nitride (a-C$_3$N$_4$) in a toroid-type apparatus. To promote crystallization of the dense phase, the author used crystalline carbon nitride films, obtained by laser-electric discharge method, as crystallization seeds. The exact composition of the HP products was not determined.

In 2007 the LH-DAC synthesis of a new well-crystallized compound with an N/C ratio of 3/2—namely, carbon nitride imide, C$_2$N$_2$(NH)—in which all of the carbon atoms are tetrahedrally coordinated was reported. The crystals of C$_2$N$_2$(NH) were formed at HP-HT conditions from a single source precursor 1-cyanoguanidine (dicyandiamide, C$_2$N$_4$H$_4$):

\[
\begin{align*}
\text{NH}_2 &\quad \text{C} &\quad \text{NH} \\
\text{HN} &\quad \text{C} &\quad \text{N} \\
\end{align*}
\]

After the laser heating, the products were examined in-situ in a DAC by Raman spectroscopy. The recovered samples were investigated by means of TEM, EELS, and nano-SIMS (secondary ion mass spectrometry). Treatments of dicyandiamide at P < 27 GPa and T < 2,000 K yielded black amorphous CN$_x$ products. At higher P-T conditions the formation of a new optically transparent phase having a characteristic Raman spectrum was observed. The TEM investigation of the recovered products revealed the presence of a well-crystallized material (Fig. 2.14a). The N/C ratio of the crystals was determined by EELS to be 1.61 ± 0.06. The electron-energy loss near-edge fine structure of the EELS spectra proofed the formation of tetrahedrally coordinated C and N atoms with sp3-hybridization in the synthesized material. Additionally, quantitative nano-SIMS measurements revealed the presence of hydrogen in the recovered crystals with an H/C ratio of 0.5 ± 0.15. Thus, the resulting composition of the synthesized material could be expressed as C$_2$N$_3$H, corresponding to C$_2$N$_2$(NH). The crystal structure of the new compound was determined by combining SAED data, experimentally measured composition, and first-principles calculations. Only a defect-wurtzite (dwur) structure type gave good agreement with the electron diffraction and EELS data, especially
regarding the \(\text{sp}^3 \)-hybridized N sites. The SAED patterns for different zone orientations suggested an orthorhombic cell with the space group \(\text{Cmc}_2 \) and lattice parameters \(a = 7.546(2) \, \text{Å}, b = 4.434(8) \, \text{Å}, \) and \(c = 4.029(8) \, \text{Å} \) for the new \(\text{dwur-C}_2\text{N}_2\text{(NH)} \) compound (Fig. 2.14b). The density of the carbon nitride imide (3.21 \(\text{g/cm}^3 \)) was found to be close to that of diamond (3.52 \(\text{g/cm}^3 \)), while the calculated bulk modulus of \(\text{C}_2\text{N}_2\text{(NH)} \) of 277 GPa is significantly lower than those for diamond or predicted dense \(\text{C}_3\text{N}_4 \) polymorphs.

![Figure 2.14](image)

(a) Bright field TEM image of the \(\text{C}_2\text{N}_2\text{(NH)} \) crystal synthesized at \(P = 41 \, \text{GPa} \) and \(T > 1700 \, ^\circ\text{C} \) and (b) crystal structure of the defect wurtzite-type carbon nitride imide, \(\text{dwur-C}_2\text{N}_2\text{(NH)} \)\(^{171}\)

The above finding was confirmed by Salamat et al.\(^{196}\) The authors have obtained XRD patterns in the DAC at high pressure and during decompression, confirming that no phase transitions occur upon release of pressure and recovery to ambient conditions. Analysis of the XRD patterns from different zones resulted in an orthorhombic \(C \)-centered cell with \(a_0 = 7.618 \, \text{Å}, b_0 = 4.483 \, \text{Å}, \) and \(c_0 = 4.038 \, \text{Å} \), which supported the defect-wurtzite structure type (Fig. 1.14b) for the synthesized \(\text{C}_2\text{N}_2\text{(NH)} \) (space group \(\text{Cmc}_2 \)) analogous to those of \(\text{Si}_2\text{N}_2\text{(NH)} \) and \(\text{Si}_2\text{N}_2\text{O} \) (sinoite). The \(\text{C}_2\text{N}_2\text{(NH)} \) is suggested to be a promising precursor for dense \(\text{C}_3\text{N}_4 \), which could form above 40 GPa via further polycondensation reaction accompanied by complete elimination of \(\text{NH}_3 \): \(3 \text{C}_2\text{N}_2\text{(NH)} \rightarrow 2 \text{C}_3\text{N}_4 + \text{NH}_3 \)

The 2 hardest materials studied (diamond and cubic BN (c-BN)) were successfully synthesized under HP-HT conditions by direct conversion of a graphite-like phase with \(\text{sp}^2 \) bonding to a cubic phase with \(\text{sp}^3 \) bonding.\(^{197}\) Naturally, one can assume that the experiment with direct conversion of the graphite-like \(\text{C}_3\text{N}_4 \) to diamond-like phases should provide an answer to the question of the existence of dense \(\text{C}_3\text{N}_4 \) phases. Thermodynamic analysis conducted by Badding et al.\(^{172,198}\) showed that direct phase transition should occur at pressures above 50 GPa at 1300 K. Figure 2.15 shows the computed phase boundary between the cubic phase of \(\text{C}_3\text{N}_4 \) and diamond + nitrogen from Odintsov and Pepekin\(^{199}\) and Horvath-Bordon et al.\(^{200}\) If temperatures of 2,000--
2,500 K (typical for the direct synthesis of diamond from graphite) are applied, pressure of at least 50 GPa is required for \(g\text{-C}_3\text{N}_4 \to \text{dense C}_3\text{N}_4 \) phase transition. If temperatures of 1,200–1,500 K are required to overcome the activation barrier for the \(g\text{-C}_3\text{N}_4 \to \text{dense C}_3\text{N}_4 \) phase, then the optimal pressure for synthesis of the dense \(C_3N_4 \) phase should be between 20 and 40 GPa (Fig. 2.15).

Indeed, Khabashesku et al. synthesized nanocrystals of a dense \(C_3N_4 \) phase treating nanosized spherical powder of \(C_3N_4 \) at 8.5 GPa and 500 °C. TEM analysis of the product indicated the presence of well-faceted crystallites embedded in a graphitic carbon nitride phase. The diffraction patterns obtained from these crystallites were indexed by a cubic cell with the lattice parameter of 5.3–5.4 Å, which is in good agreement with the theoretical value of 5.397 Å. The authors also concluded that the temperature of the “nanosize-spherical-C\(\text{C}_3\text{N}_4 \) \to \text{dense-C}_3\text{N}_4 \)” transition should be lower than that of the crystalline \(g\text{-C}_3\text{N}_4 \to \text{dense-C}_3\text{N}_4 \) transformation. Using a well-characterized graphitic phase with the LH-DAC technique has led to the discovery of a new cubic \(C_3N_4 \) \((c\text{-C}_3\text{N}_4) \) and monoclinic \(m\text{-C}_3\text{N}_4 \) phases. A cubic phase was recovered at ambient conditions from the graphite-like \(C_3N_4 \) \((g\text{-C}_3\text{N}_4) \) phase subjected to pressures between 16 and 30 GPa and temperatures between 1600 and 3,000 K. The density of the cubic phase \((2.62 \text{ g/cm}^3) \) is less than that predicted for the high-pressure phases but is 12% denser than the low-pressure graphitic phase \((\rho = 2.336 \text{ g/cm}^3) \). The same research group took another approach to synthesize a dense \(C_3N_4 \) phase at HP-HT conditions: they used the above-mentioned \(c\text{-C}_3\text{N}_4 \) phase as a starting material. The \(c\text{-C}_3\text{N}_4 \) was converted into a new monoclinic \((m\text{-C}_3\text{N}_4) \) phase at a pressure of 50 GPa and high
temperature. The XRD pattern of the recovered sample contained more than 30 well-defined peaks, which were indexed with a monoclinic unit cell having the following parameters: \(a = 5.607\,\text{Å}; \, b = 7.628\,\text{Å}; \, c = 4.226\,\text{Å}, \) and \(\beta = 126.915.\)

The authors, however, noted that the observed XRD patterns are strongly dependent on the P-T synthesis conditions when starting with \(g\)-\(C_3N_4\) (\(g\)-\(C_3N_4\) nanospheres\(^{143}\) or turbostratic \(g\)-\(C_3N_4\) phases) materials.\(^{165}\) They explain this finding by the possible existence of several structures with similar energies but different equilibrium volumes, for which the formation will strongly depend on the preparation conditions.\(^{202}\)

With respect to dynamic high-pressure techniques, several shock-wave syntheses of dense (nano)crystalline \(C_3N_4\) phases were reported. In particular, the cubic heterodiamond \(C_2N\) phase was obtained by shock compression of graphitic \(C_3N_2\) around 30 GPa and 3,000 K.\(^{187}\) The recovered product was analyzed using authentic methods such as TEM, SAED, EELS EDX, powder XRD, IR spectroscopy, and CHN/S/O combustion elemental analysis. The \(C_2N\) heterodiamond was found to consist of \(sp^3\)-bonded carbon and nitrogen atoms settled within a cubic diamond-like cell with a lattice constant of 3.51 Å, 1.6%–1.9% smaller than that of diamond. A series of shock recovery experiments up to 50 GPa on 3 nitrogen-rich C-N-based materials\(^{188}\) have shown that an amorphous C–N–O material and dicyandiamide \(C_2N_4H_4\) transform to a new carbon nitride phase (“phase-X”) as well as to \(\beta\)-\(C_3N_4\) at peak shock pressures of 28–44 GPa. The powder XRD of recovered samples allowed to index the “phase-X” with a monoclinic cell having parameters of \(a = 0.981\,\text{nm}, \, b = 0.723\,\text{nm}, \, c = 0.561\,\text{nm}, \, \beta = 95.28^\circ, \) and \(V_{\text{cell}} = 0.3966\,\text{nm}^3.\) The composition of the sample—in particular, N/C ratio and O-content—was not determined.

High-energy ball mills may also be used to generate high pressures exceeding 5 GPa as well as high temperatures. The high \(P-T\) conditions occur at localized spots during impacts between the balls in the reaction mixture. Fahmy et al.\(^{189}\) were the first to try the reaction of pure graphite with liquid ammonia in a high-energy ball mill. Examination of the products with XRD, EELS, FTIR, XPS, high-resolution TEM, and elemental analyses revealed a nanocrystalline phase that could be attributed to \(\beta\)-\(C_3N_4.\)

Another research group published several reports on the mechanochemical synthesis of \(\beta\)-\(C_3N_4.\)\(^{191,192}\) Graphite nanopowder was reacted with ammonia in a high-energy ball mill to produce nanosized \(\beta\)-\(C_3N_4\) particles. Subsequent thermal annealing of the ball-milled powder at 300–450 °C under flow of \(NH_3\) gas resulted in the formation of nanorods (Fig. 2.16). Examination of the products by XRD, FTIR, high-resolution TEM, XPS, and EELS supported the formation \(\beta\)-\(C_3N_4\) phase. Surprisingly, the ammonolysis of the high-energy ball-milled amorphous nanostructured graphite powders at 1,050 and 1,350 °C was reported to result in crystallization of graphitic- and pseudocubic-\(C_3N_4\), respectively.\(^{194}\) The XRD, TEM, EELS, and EDX were used to analyze the
structure, bonding, and composition (N/C ~1.33) of the synthesized materials. The true elemental composition (namely, the hydrogen and oxygen content) of the products remains unclear.

Fig. 2.16 Low-magnification TEM images of β-C₃N₄ single-crystal nanorods obtained via reaction of graphite nanopowder with ammonia in a high-energy ball mill followed by the thermal treatment under NH₃ flow

2.3 B-C Compounds

Within B-C-N system binary compounds, which should be certainly mentioned, are boron carbides. The well-known "B₄C" itself combines a number of important properties like high hardness, high thermal and ionizing radiation stability, chemical inertness, and neutron absorption. (Strictly speaking, boron carbide, commonly referred to as B₄C (B₁₂C₃), may have compositions varying between B₁₃C₂ and B₁₂C₃.²⁰³,²⁰⁴) Discovered more than a century ago, this compound was extensively studied and now has a number of useful applications.²⁰³,²⁰⁵ For a long time boron carbide was considered the third hardest material after diamond and c-BN and still the hardest one above 1,300 °C.²⁰³,²⁰⁵ On the other hand, the interest in the high-pressure studies of the boron-carbon system originated from the fact that doping of diamond with other elements has a drastic effect on its properties—in particular, doping with boron turns it from an insulator into a semiconductor or even into a quasi-metallic electrical conductor with high chemical resistance.²⁰⁶ Moreover, boron-doped diamond was reported to be a type-II superconductor with a transition temperature of Tₓ = 5 K,²⁰⁷ while heavily boron-doped diamond (20 at% of B) is predicted to be a superconductor with Tₓ up to 55 K.²⁰⁸ However, employment of the common CVD and HP-HT synthesis methods allows one to incorporate a limited amount of boron (~2–3 at%) into the diamond lattice. The diamond-like B-C phases with high boron content (which can be increased by using extreme P-T conditions) are expected to combine the best properties of diamond and boron carbide, which could be further extended to advanced optoelectronic applications.
2.3.1 HP-HT Synthesis of Diamond-like B-C Phases

Most of the earlier HP-HT experiments in the B-C system were related to the synthesis of the boron-doped diamond. The main starting material for such experiments was a mixture of boron or boron carbide B₄C with graphite powders. Thus, Ekimov et al.207,209 investigated interaction in the B₄C(B)–C system in the toroid-type apparatus at pressures of 8–9 GPa and temperatures of 2,500–2,800 K. They reported the formation of a superhard polycrystalline diamond material containing less than 5 wt% B₄C. The increase in the lattice parameter of the synthesized diamond, observed via Raman spectroscopy and NMR studies, confirmed the formation of heavily boron-doped diamond with boron content estimated to reach ~2 at% (the overall boron content being 2.8 at%). The authors also tried HP-HT synthesis from homogeneous mixtures of naphthalene (C₁₀H₈) with o-carborane (C₂B₁₀H₁₂) or with amorphous boron, so that the B-content was varied from 0 to 10 at%. They observed that under employed P-T conditions, the level of boron doping of diamond reaches the limit already for 5 at% of boron in the starting material and is still lower than the B-doping level observed for the B₄C(B)–C system.210 Using the mixture of B₁₃C₂ and graphite with a C/B ratio of 13 (∼7 at% B) as a starting material, Dubrovinskaia et al.211 performed experiments in a MAP at pressures from 9 to 20 GPa and temperatures 2,500–2,700 K. The chemical composition and texture of the samples were studied using SEM, TEM/parallel EELS, and EPMA. The overall B content was determined to be 2.6 at% for the sample synthesized at 20 GPa and 2700 K and 1.8 at% for the sample synthesized at 9 GPa and 2600 K. XRD data revealed the presence in boron-doped diamond of a very small amount of a boron-rich phase (B₅₀C₂) together with traces of the starting B₁₃C₂. The Raman spectra and increased lattice constants of the synthesized diamond crystals are in agreement with earlier reported heavily B-doped diamond phases.

For a long time it has been known that boron atoms can substitute carbon atoms in the structure of graphite, thus forming a graphite-like solid solution. Lowell212 synthesized boron-doped graphite by thermal treatment of a mixture of graphite flakes and B₄C to 2,350 °C and reported the maximum boron solubility of 2.35 at%. Since that time a number of graphite-like B-C phases (boron-substituted graphites) with boron content up to 50 at% were successfully prepared by thermal chemical vapor deposition methods (e.g., Kouvetakis et al.62,213). Since the graphitic structures are the usual precursors for HP-HT synthesis of superhard diamond-like phases (graphite → diamond, h-BN → c-BN), the boron-substituted graphites are considered to be perfect precursors for diamond-like B-C phases. However, HP-HT treatment of turbostratic graphite-like g-BC₃ at 20 GPa and 2,300 K using a MAP resulted in a bulk composite material consisting of intergrown boron carbide B₄C and B-doped diamond with 1.8 at% B. The material was found to exhibit semiconducting behavior and extreme hardness of approximately 88 GPa comparable with that of single-
crystal diamond. Subjecting the same g-BC$_3$ to shock pressures ranging from 10 to 30 GPa resulted only in local segregation of g-BC$_3$ and its partial transformation into a mixture of amorphous boron carbide and carbon. No expected diamond-like phases were observed in the shock products, probably due to the low shock temperatures (~600 K) reached in the samples. In contrast to above experiments, a direct transformation of the g-BC$_{1.6}$ phase to a diamond-like c-BC$_{1.6}$ phase in an LH-DAC at 2,230 K and 45 GPa was reported. The recovered samples were examined using both synchrotron-based X-ray diffraction and confocal micro-Raman spectroscopy at ambient conditions. XRD examination revealed the presence of another orthorhombic or hexagonal phase in the less heated areas. The lattice parameter of the c-BC$_{1.6}$ phase was found to be slightly higher than that of diamond, thus supporting the theoretical prediction that incorporation of the B atoms into a diamond structure should lead to a negligible distortion of the cubic diamond cell. The same research group continued LH-DAC experiments using other g-BC$_x$ starting materials ($x = 4$ and 3) at pressures above 40 GPa and temperatures above 2,000 K and claimed the formation of corresponding diamond-like c-BC$_4$ and c-BC$_3$ phases. Their cubic lattice parameters were found to be 3.587 and 3.589 Å as well as the C/B ratio (determined by EPMA/EELS) to be 3.9 ± 0.3 and 2.8 ± 0.7, respectively.

Solozhenko et al. have performed a systematic investigation of phase transformations of turbostratic g-BC$_x$ phases at pressures up to 25 GPa and temperatures up to 2,500 K using both an LH-DAC and MAP technique. In situ HP-HT experiments with g-BC and g-BC$_3$ in the 3–7 GPa pressure range using MAP and energy-dispersive XRD revealed no phase transformation up to 2000 K in both compounds. At pressures above 20 GPa in the 2,000–2,500 K range, t-BC$_x$ phases ($1 \leq x \leq 4$) decompose into boron-doped diamond (1–2 at% B) and boron carbides (B$_x$C and B$_{50}$C$_2$) that are accompanied by the formation of cubic B-C phases (c-BC$_z$) with lattice parameters up to 2% higher than that of diamond. From these findings the authors concluded that the synthesis of a pure cubic B-C phase may be expected only for g-BC$_x$ with a lower B-content (i.e., $x \geq 5$). Indeed, g-BC$_5$ compressed to 24.0 GPa and heated above 2200 K transformed to a (pseudo)cubic BC$_z$ phase. Since no amorphous phase has been observed in the recovered products by TEM and Raman spectroscopy, the authors suggested the formation of a c-BC$_5$ phase, the composition of which was further confirmed by EELS and EPMA analysis. At higher temperatures the cubic phase was found to decompose to boron-doped diamond and B$_x$C. In contrast to the other reported c-BC$_x$ phases, the lattice parameter of c-BC$_5$ (3.635 Å) was reported to be higher than that of both diamond and c-BN. Significantly, the authors were able to produce the sintered polycrystalline bodies (~1 mm3) at similar P-T conditions using MAP. The Vickers hardness of these samples was found to be ~71 GPa, which is close to the hardness of
nanostructured bulk c-BC$_2$N. The authors also reported for c-BC$_5$ a remarkable indentation fracture toughness of 9.5 MPa·m$^{1/2}$ and thermal stability up to 1,890 K in a nonoxidizing environment. These findings make diamond-like c-BC$_5$ an exceptional superabrasive superior to diamond.

2.3.2 Potential Superhard B-C Phases

In contrast to carbon nitrides and boron-carbon nitrides, theoretical exploration of superhard diamond-like B-C phases and the calculation of their properties has begun quite recently. The interest in diamond-like BC$_x$ structures has originated from the knowledge that superhard diamond-like structures are usually derived from their graphitic counterparts. In turn, graphitic structures of boron–carbon phases, g-BC$_x$, are also well known to exist in various stoichiometries with x greater than or equal to 1. Potential diamond-like phases can be formed from a unit cell or a supercell of diamond by replacing C atoms with boron at the various lattice positions according to the nominal lattice stoichiometry. Thus, various stoichiometries like BC, BC$_2$, BC$_3$, BC$_5$, and BC$_7$ were investigated, and structures of different symmetries (cubic, tetragonal, orthorhombic, hexagonal, or trigonal) were derived depending on the composition and positions of B-atoms (Table 2.4).

Among all considered BC$_x$ compositions, diamond-like c-BC$_5$ attracted the interest of experimentalists and theoreticians. The recent synthesis of c-BC$_5$ in macroscopic amounts using MAP219 provided the community with the initial experimental data on its structure (XRD and Raman spectrum) and properties (extreme hardness and stiffness). This was followed by theoretical work using DFT calculations, where Calandra et al.220 have shown that superhard c-BC$_5$ is metallic, making it the hardest conductor studied to date, and superconducting with a $T_c = 45$ K, the largest T_c ever for a phonon-mediated superconductor. Because of the similar atomic numbers of boron and carbon, the position of B in the cell could not be determined using XRD. Consequently, the structure of the synthesized c-BC$_5$ was assigned to a pseudocubic cell with $a_0 = 3.635$ Å. However, Calandra et al. have shown that c-BC$_5$ should adopt a hexagonal structure, which is compatible with a cubic symmetry for $c/a = \sqrt{6} \approx 2.45$ (Fig. 2.17). Performing volume and force optimization of a 6-atom hexagonal diamond-like supercell with 2 C atoms replaced by boron, the authors have found that the obtained c/a ratio was only slightly larger than the ideal one for cubic symmetry. Thus, the BC$_5$ cell can be obtained via a small elongation of the cubic cell along the cubic (111) axis (Fig. 2.17).
Table 2.4 Structural parameters, bulk moduli, shear moduli, and estimated hardness (if available) of the predicted superhard diamond-like BC phases calculated employing GGA (LDA). The experimental values for diamond, c-BN, and recently discovered c-BCs are given for comparison.

<table>
<thead>
<tr>
<th>Compd/Structure</th>
<th>V/atom (Å³)</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>B (GPa)</th>
<th>G (GPa)</th>
<th>H (GPa)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamond</td>
<td>…</td>
<td>0.3567</td>
<td>0.3567</td>
<td>0.3567</td>
<td>442-433</td>
<td>534-544</td>
<td>60-150</td>
<td>[1,50]</td>
</tr>
<tr>
<td>c-BN</td>
<td>…</td>
<td>0.3616</td>
<td>0.3616</td>
<td>0.3616</td>
<td>369-401</td>
<td>409</td>
<td>46-80</td>
<td>[1,50]</td>
</tr>
<tr>
<td>c-BCs</td>
<td>…</td>
<td>3.635</td>
<td>3.635</td>
<td>3.635</td>
<td>335</td>
<td>…</td>
<td>71</td>
<td>[219]</td>
</tr>
<tr>
<td>BC</td>
<td>cubic</td>
<td>3.790</td>
<td>3.790</td>
<td>3.790</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>[217]</td>
</tr>
<tr>
<td>BC₂</td>
<td>t-I4/amd</td>
<td>2.520</td>
<td>2.520</td>
<td>11.919</td>
<td>349</td>
<td>319</td>
<td>56</td>
<td>[221]</td>
</tr>
<tr>
<td>BC₃</td>
<td>tetragonal</td>
<td>3.553</td>
<td>3.553</td>
<td>3.913</td>
<td>352</td>
<td>379 (394)</td>
<td>…</td>
<td>[217,222]</td>
</tr>
<tr>
<td></td>
<td>tet-P-42m</td>
<td>5.975</td>
<td>3.513</td>
<td>3.513</td>
<td>3.871</td>
<td>361</td>
<td>337</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>tet-P-42m</td>
<td>2.510</td>
<td>2.510</td>
<td>3.915</td>
<td>359</td>
<td>…</td>
<td>66</td>
<td>[224]</td>
</tr>
<tr>
<td></td>
<td>o-Pnma-a</td>
<td>2.513</td>
<td>2.520</td>
<td>7.788</td>
<td>354</td>
<td>…</td>
<td>62</td>
<td>[224]</td>
</tr>
<tr>
<td></td>
<td>o-Pnma-b</td>
<td>2.484</td>
<td>2.531</td>
<td>7.891</td>
<td>352</td>
<td>…</td>
<td>65</td>
<td>[224]</td>
</tr>
<tr>
<td></td>
<td>trigonal</td>
<td>3.685</td>
<td>3.685</td>
<td>3.685</td>
<td>337</td>
<td>378 (394)</td>
<td>…</td>
<td>[217]</td>
</tr>
<tr>
<td>BC₅</td>
<td>tetragonal</td>
<td>5.993</td>
<td>3.633²</td>
<td>…</td>
<td>385</td>
<td>405</td>
<td>…</td>
<td>[225]</td>
</tr>
<tr>
<td></td>
<td>hex-P₃m1</td>
<td>5.871</td>
<td>3.608²</td>
<td>…</td>
<td>376</td>
<td>394</td>
<td>…</td>
<td>[226]</td>
</tr>
<tr>
<td></td>
<td>hex-P₃m1</td>
<td>6.02</td>
<td>2.55</td>
<td>2.55</td>
<td>6.39</td>
<td>337</td>
<td>…</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>hex-P₃m1</td>
<td>6.006</td>
<td>2.552</td>
<td>2.552</td>
<td>6.392</td>
<td>379 (407)</td>
<td>386 (410)</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>hex-P₃</td>
<td>6.067</td>
<td>2.539</td>
<td>2.539</td>
<td>6.303</td>
<td>(410)</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td></td>
<td>hex-P₃m1</td>
<td>6.02</td>
<td>2.210</td>
<td>2.210</td>
<td>6.694</td>
<td>(405)</td>
<td>(372)</td>
<td>…</td>
</tr>
<tr>
<td></td>
<td>o-Pnma-2</td>
<td>6.007</td>
<td>…</td>
<td>…</td>
<td>379</td>
<td>…</td>
<td>70</td>
<td>[230]</td>
</tr>
<tr>
<td></td>
<td>o-Pnma-I</td>
<td>2.488</td>
<td>2.498</td>
<td>11.214</td>
<td>382</td>
<td>…</td>
<td>…</td>
<td>[231]</td>
</tr>
<tr>
<td></td>
<td>o-Pnma-II</td>
<td>2.472</td>
<td>2.495</td>
<td>11.346</td>
<td>388</td>
<td>…</td>
<td>…</td>
<td>[231]</td>
</tr>
<tr>
<td></td>
<td>tetr-P-4m2</td>
<td>2.525</td>
<td>2.525</td>
<td>11.323</td>
<td>376</td>
<td>379</td>
<td>80</td>
<td>[232]</td>
</tr>
<tr>
<td></td>
<td>trig-P-1</td>
<td>4.455</td>
<td>4.459</td>
<td>4.462</td>
<td>370</td>
<td>374</td>
<td>79</td>
<td>[232]</td>
</tr>
<tr>
<td></td>
<td>h-P₃m1-II</td>
<td>6.02</td>
<td>2.532</td>
<td>2.532</td>
<td>13.017</td>
<td>401</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>BC₇</td>
<td>c-P-43m</td>
<td>…</td>
<td>3.621</td>
<td>3.621</td>
<td>3.621</td>
<td>387 (418)</td>
<td>(412)</td>
<td>…</td>
</tr>
<tr>
<td></td>
<td>o-Anm2</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>388</td>
<td>430</td>
<td>49.5</td>
<td>[234]</td>
</tr>
<tr>
<td></td>
<td>hex</td>
<td>5.933</td>
<td>(5.733)</td>
<td>…</td>
<td>387 (417)</td>
<td>399 (421)</td>
<td>63</td>
<td>[228]</td>
</tr>
<tr>
<td></td>
<td>P-4m2</td>
<td>…</td>
<td>2.516</td>
<td>2.516</td>
<td>7.450</td>
<td>377</td>
<td>421</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>P-4m2</td>
<td>…</td>
<td>2.514</td>
<td>2.514</td>
<td>7.466</td>
<td>388</td>
<td>419</td>
<td>78</td>
</tr>
<tr>
<td>B₃C₁</td>
<td>α-P₃1c</td>
<td>7.86</td>
<td>7.085</td>
<td>7.085</td>
<td>5.061</td>
<td>231</td>
<td>…</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>β-P₆₃/m</td>
<td>7.61</td>
<td>6.750</td>
<td>6.750</td>
<td>2.701</td>
<td>203</td>
<td>…</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>c-I-43d</td>
<td>7.19</td>
<td>5.860</td>
<td>5.860</td>
<td>5.860</td>
<td>260</td>
<td>…</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>pc-P-42m</td>
<td>7.89</td>
<td>3.809</td>
<td>3.809</td>
<td>3.809</td>
<td>220</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td></td>
<td>cs-Fd-3m</td>
<td>6.11</td>
<td>6.996</td>
<td>6.996</td>
<td>6.996</td>
<td>333</td>
<td>…</td>
<td>64</td>
</tr>
</tbody>
</table>

¹Experimental values
²Effective cubic lattice parameter derived from the volume of the unit cell
Based on Calandra and Mauri’s structural model220, Jiang et al.225 considered a 12-atom hexagonal supercell and, via replacing 2 of the carbon atoms with boron, constructed 9 nonequivalent structures. The authors found only a small total-energy difference between the considered ordered configurations and the fully disordered state of BC\textsubscript{5} (with boron randomly distributed in the diamond lattice). Moreover, the calculated volume per atom, bulk modulus, and XRD pattern of the disordered BC\textsubscript{5} structure were in good agreements with experimental data.219 The authors concluded that the c-BC\textsubscript{5} phase synthesized at HP and HT may be disordered in nature.

Yao et al.232 have shown that recently synthesized diamond-like BC\textsubscript{5} is metastable and suggested the existence of a thermodynamically stable tetragonal (I-4m2) polymorph of BC\textsubscript{5}. The predicted phase is expected to be harder than c-BC\textsubscript{5}, metallic, and superconducting with an estimated superconducting critical temperature T_c of 47 K. Another candidate structure with trigonal P-1 symmetry was found to fit very well with the experimental XRD pattern of c-BC\textsubscript{5}, being, however, energetically less favorable. Li et al.230 suggested another 2 energetically more preferable orthorhombic ($Pmma$) structures for c-BC\textsubscript{5}. Their simulated XRD patterns, Raman modes, and Vickers hardness revealed remarkable agreement with the experimental data. Both structures were also found to be hole-conducting and superconducting with a critical temperature of 11–23 K. The main result of the theoretical studies of potential c-BC\textsubscript{x} structures and other diamond-like B-C phases are summarized in Table 2.4. All of the considered c-BC\textsubscript{x} are expected to be ultra-incompressible and superhard. Moreover, they may exhibit conductivity and superconductivity with a remarkably high T_c of 11–48 K.221–224,226–228,233–235,238 The combination of such properties suggests that they are an extremely superabrasive and promising functional material for electronics extreme...
environments. Also, notice the trend in the mechanical properties: the larger the concentration of boron in the considered B-C phase, the lower the elastic moduli of c-BC\textsubscript{x} and the less hard the material would be. Last but not least, the incorporation of large amounts of boron also affects the conducting character of c-BC\textsubscript{x}.

2.4 Summary

During last 2 decades, many studies were dedicated to the exploration of the B-C-N phase system. Undoubtedly, the synthesis of diamond-like boron carbon nitrides, c-BC\textsubscript{2}N and c-BC\textsubscript{4}N, and boron carbide, c-BC\textsubscript{5}, is the most remarkable achievement in the search of novel superhard materials. These dense phases were obtained under high static pressures above 20 GPa and temperatures about 2,000 K, employing various precursors, either single-source graphitic phase or an amorphous mechanical mixture of the constituting compounds. Furthermore, c-BC\textsubscript{2.5}N heterodiamond was successfully obtained as a nanocrystalline powder via shock compression of its graphitic counterpart above 30 GPa and 2,700 K. As the authors emphasized, one of the most important factors in the successful synthesis of dense diamond-like B-C-N phases lies in the nature and quality of the starting materials employed. A serious achievement was that the preparation of macroscopic single-phase samples made possible a detailed examination of properties of the high-pressure products. Both c-BC\textsubscript{x}N and c-BC\textsubscript{5} were confirmed to be superhard, with a hardness of ~70–80 GPa, approaching that of diamond, and possess exceptional fracture toughness, high thermal stability, and oxidation resistance. Moreover, while c-BC\textsubscript{x}N reveals semiconducting behavior, c-BC\textsubscript{5} is a conductor and potential high-T\textsubscript{c} superconductor. Thus, these novel compounds not only represent exceptional superabrasives surpassing diamond, but also, thanks to their intriguing functional properties, can expand the boundaries of high-temperature electronics and electrochemistry at extreme conditions.

However, the solid-state structure of the synthesized diamond-like B-C-N phases and their structure-properties relationship still remain a matter of controversy. So far, there is no unambiguous proof of the existence of the experimentally obtained crystalline phases. Thus, there is more detailed research to be done to clarify the composition and structure of the published phases in the B-C-N system. Nevertheless, despite the successful realization of superhard diamond-like B-C-N and B-C phases in macroscopic amounts, commercialization of their production in the form of powders or sintered bodies is quite unlikely at the moment. The reason is that extremely high thermobaric conditions are required for the direct transformation of the suitable precursors—namely, pressures and temperatures above 20 GPa and 2,000 K, respectively. However, it would be of interest to investigate the feasibility of such a transformation using different solvent catalysts (similar to those employed for
the industrial synthesis of diamond and c-BN) to reduce the P-T conditions to commercially utilizable values. A different way to synthesize large amounts of high-pressure B-C-N phases is by the shock-wave technique (e.g., by utilizing explosives). The disadvantage here is that the desired P-T conditions can only be maintained for very short times, which usually result in the formation of ultradispersed powders with reduced crystallinity. Therefore, once the synthesis and purification of the powder product is accomplished, an appropriate sintering technique (including conditions and suitable sintering additives) to obtain dense superhard B-C-N bodies should be developed.

Concerning dense C₃N₄, the direct synthesis under extreme static or dynamic pressures and temperatures has unambiguously led to dense C-N phases, although the results are far from numerous. However, in most cases the identification of their structures and compositions (with respect to the amount of nitrogen and contaminations) remains problematic. Moreover, because of the severe pressure and temperature conditions required, such studies are mainly of fundamental character. Another significant point is that the properties predicted for dense C₃N₄, such as extreme incompressibility and superhardness, have never been experimentally confirmed. It is worth noting that despite the fact that extreme pressures and temperatures were claimed to be necessary for the C₃N₄ synthesis, dense carbon nitrides were also obtained under quite mild conditions—namely, via solvothermal reactions and a high-energy ball-milling process. These 2 routes appear to be very promising in the future, either for crystal growth or large-scale synthesis of dense C₃N₄. Significant efforts are being undertaken to investigate and understand the chemistry of dense carbon nitrides and the mechanisms involved during their synthesis. These mechanisms are strongly dependent on the nature of the precursors, catalysts, pressure, temperature, and duration.
3. Experimental: Synthesis of Transparent Spinel-Type γ-Si₃N₄

Dmytro Dzivenko and Ralf Riedel

3.1 High-Pressure, High-Temperature (HP-HT) Synthesis

Commercial silicon nitride powder (Goodfellow, α-Si₃N₄ > 85%, particle size < 10 µm, oxygen ~1 wt%, nitrogen > 37.5 wt%) was used as a starting material for high-pressure synthesis. In spite of the declared chemical composition, elemental combustion analysis of the powder employing LECO TC-436 analyser revealed the presence of 2.5 ± 0.1 wt% of oxygen. Nitrogen was found to amount 38.5 ± 0.9 wt%, which is in reasonable agreement with the theoretical value of 39.9 wt%.

The starting Si₃N₄ powder was packed into a 3.8-mm-long platinum capsule with an outer diameter of 2 mm, which was preliminary welded, closed at one end, and mechanically sealed after sample loading. The sample loading and capsule-sealing procedures were performed in a glove box under a controlled argon atmosphere to prevent further contamination of the sample powder with oxygen and/or moisture.

For the sample pressurization, a hydraulically driven 6/8 type multianvil (MA) apparatus was employed. The setup consisted of an 18-mm-edge-length Cr-doped MgO octahedron containing the sample in a set of coaxially arranged parts, including a resistance-heated LaCrO₃ furnace and a ZrO₂ thermal insulation tube that accommodated the cylindrical capsule (Fig. 3.1). The octahedron was placed inside the octahedral volume formed by 8 tungsten carbide cubes with truncated corners. The sample assembly was brought to a pressure of 17 ± 0.5 GPa at room temperature and then heated to 1,825 °C in about 30 min. After holding the maximum temperature (±5 °C) for 1 h, the sample was quenched to room temperature in about 15 s by turning off the heating power. The temperature during experiment was monitored using a W3%Re-W25%Re thermocouple coaxially inserted into the furnace assembly (Fig. 3.1). A detailed description of the MA-press assembly, pressure calibration, and temperature measurement can be found elsewhere.

239
3.2 Sample Characterization

After decompression, the sample capsule (optically intact) was recovered from the pressure medium and embedded in epoxy resin. The capsule cap was removed for further examination by polishing, and 2 slices about 0.3 and 0.25 mm thick were cut from the sample by a diamond wire saw. The sample slices were investigated by optical microscopy, Raman spectroscopy, and powder X-ray diffraction (XRD). Preliminary elemental analysis of the high-pressure product was performed using a scanning electron microscope equipped with an energy dispersive X-ray (EDX) detector. The residual HP product weighing 5.5 mg was completely recovered by cutting and unwrapping the capsule cylinder.

3.2.1 Optical Observation

Figures 2.2 and 2.3 show optical micrographs of the 2 slices of the HP product made in reflected and transmitted light. On slice 1, the areas of a light-yellowish “milky” material were observed under reflected light (Fig. 3.2a). These areas appeared to be translucent under transmitted illumination (Fig. 3.2b). Likewise, the translucent phase was observed in slice 2 (Fig. 3.3). The translucent phase is mainly concentrated on the sample surface in contact with the capsule. The rest of the sample (internal volume) is, in contrast, dark gray and opaque.
3.2.2 Raman Spectroscopy

Raman spectra were excited by a HeNe laser with the wavelength $\lambda = 632.8$ nm and measured using a LabRam HR800 spectrometer (Horiba Jobin Yvon). All Raman shifts detected from the translucent areas of slices 1 and 2 (Fig. 3.4a) can be attributed to the cubic spinel γ-Si_3N_4 and are in excellent agreement with the previously reported data. The dark areas also revealed the main features of γ-Si_3N_4 (bands at 523 and 846 cm$^{-1}$) as well as broad peaks at 123 and 360 cm$^{-1}$ (Fig. 3.4b), which have not been (yet) assigned to any of the known Si-N-O phases and can be probably related to an impurity or defects in γ-Si_3N_4.240
Fig. 3.4 Typical Raman spectra measured from the translucent (a) and dark (b) areas of the HP product. The characteristic Raman shifts of the γ-Si$_3$N$_4$ with corresponding Raman-active phonon modes (according to Fang et al.242) are indicated.

3.2.3 Powder X-ray Diffraction (XRD)

A powder XRD pattern (Fig. 3.5) was collected from slice 2 in the transmission geometry using a STOE Stadi P diffractometer (Stoe & Cie GmbH) equipped with a Molybdenum X-ray source, a flat Ge (111) monochromator (λ(Mo-K$_{\alpha 1}$) = 0.70932 Å) and a linear position-sensitive detector covering the 20 region of 6°. The XRD pattern shows only reflexes of a cubic phase, the structure of which could be attributed to that of spinel type γ-Si$_3$N$_4$. The refined lattice parameter $a_0 = 7.7467(6)$ Å is slightly higher than those reported earlier.240,241,243 The anion parameter (nitrogen coordinate) is calculated to be 0.2589(2).
Powder XRD pattern (red circles) of the HP product (slice 2) measured in transmission “STOE” geometry. The results of the full profile Rietveld refinement for the cubic spinel γ-Si$_3$N$_4$ and the corresponding difference curve are presented by black and blue lines, respectively. The calculated peak positions of the cubic spinel-type structure (space group $Fd-3m$) are denoted by green tick marks. The refinement agreement factors are $R_{\text{Bragg}} = 7.2\%$, $R_F = 6.1\%$, and $\chi^2 = 1.2$.

3.2.4 Energy-Dispersive X-ray Spectroscopy (EDX)

Preliminary elemental analysis of the HP product (slice 1, unpolished) was performed by means of EDX spectroscopy using a scanning electron microscope (HR-SEM Philips XL30 FEG) equipped with an EDX detector (EDAX Genesis). Semi-quantitative EDX analysis revealed the presence of Si, N, and a small amount of O (as well as C from adhesive carbon tape) throughout the sample (e.g., Fig. 3.6).

![Typical EDX spectrum measured from translucent part of the HP product. C-K peak is due to the adherent carbon tape.](image)
However, because of the unprepared sample surface and low resolution of the EDX detector at low energies, the scattering of measured values did not allow an unambiguous conclusion about the compositional difference between translucent and dark sample areas. The element mapping also showed no significant composition variation (Fig. 3.7).

Fig. 3.7 a) Optical and b) SEM micrographs of the sample surface together with EDX elemental maps for c) nitrogen, d) oxygen, e) silicon, and f) platinum
3.3 Conclusion

The investigation of the HP product allows us to conclude that the major constituent (and the only crystalline) phase of both the translucent and opaque sample parts is γ-Si$_3$N$_4$. The nature of the sample translucency is not, however, clarified. The resulting translucency and opaque sections of the final product, instead of the transparency that was desired, probably resulted from microstructure or the elemental composition variation (mainly oxygen content) of γ-Si$_3$N$_4$. The variation of γ-Si$_3$N$_4$ can result from the temperature/pressure gradients in the sample and oxygen diffusion from the oxodic environment through the platinum capsule into the sample during heating. Moreover, the presence of an insignificant amount of an amorphous oxodic phase241,243 cannot be excluded. Therefore, further detailed investigation of the HP product with respect to its (micro)structure and elemental and phase composition by means of transmission electron microscopy combined with electron energy loss spectroscopy and electron-probe microanalysis is required. These studies will provide more insight into the relationship between the experimental environment/conditions and the optical properties of the HP product. Thus, optimization of the synthetic approach for obtaining fully translucent γ-Si$_3$N$_4$ bulks can be possible.
4. References for Sections 2 and 3

13. Komatsu T, Tomokuni K. Active boron carbonitride material used for exhaust gas purification has predetermined oxygen content, specific surface area and mean pore diameter. (JP2009119423-A JP298778 19 Nov 2007), 16.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-D</td>
<td>2-dimensional</td>
</tr>
<tr>
<td>3-D</td>
<td>3-dimensional</td>
</tr>
<tr>
<td>Ar</td>
<td>argon</td>
</tr>
<tr>
<td>B₄C</td>
<td>boron carbide</td>
</tr>
<tr>
<td>BB₃₀₃</td>
<td>boron tribromide</td>
</tr>
<tr>
<td>BCN</td>
<td>boron-carbon-nitrogen</td>
</tr>
<tr>
<td>c-BCN</td>
<td>cubic boron-carbon-nitride</td>
</tr>
<tr>
<td>c-BN</td>
<td>cubic boron nitride</td>
</tr>
<tr>
<td>CCl₄</td>
<td>carbon tetrachloride</td>
</tr>
<tr>
<td>CHN/S/O</td>
<td>carbon, hydrogen, nitrogen, sulfur, oxygen</td>
</tr>
<tr>
<td>CVD</td>
<td>chemical vapor deposition</td>
</tr>
<tr>
<td>DAC</td>
<td>diamond anvil cell</td>
</tr>
<tr>
<td>DEPT</td>
<td>distortionless enhancement by polarization transfer</td>
</tr>
<tr>
<td>DFT</td>
<td>density functional theory</td>
</tr>
<tr>
<td>dwur</td>
<td>defect-wurtzite</td>
</tr>
<tr>
<td>EDX</td>
<td>energy-dispersive X-ray</td>
</tr>
<tr>
<td>EELS</td>
<td>electron energy loss spectroscopy</td>
</tr>
<tr>
<td>EPMA</td>
<td>electron probe microanalysis</td>
</tr>
<tr>
<td>EPR</td>
<td>electron paramagnetic resonance</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier-transform infrared</td>
</tr>
<tr>
<td>g-BC₂N</td>
<td>graphitic BC₂N</td>
</tr>
<tr>
<td>GGA</td>
<td>generalized gradient approximation</td>
</tr>
<tr>
<td>h-BCN</td>
<td>hexagonal boron–carbonitride</td>
</tr>
<tr>
<td>He</td>
<td>helium</td>
</tr>
<tr>
<td>HP</td>
<td>high pressure</td>
</tr>
</tbody>
</table>
HT high temperature
LDA local density approximation
LH-DAC laser-heated diamond anvil cell
Li$_3$N lithium nitride
MA multianvil
MAP multianvil press
MS mass spectrometry
N$_2$ nitrogen gas
N/C nitrogen carbon ratios
NMR nuclear magnetic resonance
Pt platinum
PVD physical vapor deposition
REM reflection electron microscopy
SAED select area electron diffraction
SEM scanning electron microscope
SIMS secondary ion mass spectrometry
TCNE tetracyanoethylene
TEM transmission electron microscopy
THF tetrahydrofuran
w-BCN wurtzite boron-carbonitride
XPS X-ray photoelectron spectroscopy
XRD X-ray diffraction
INTENTIONALLY LEFT BLANK.