<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 JUN 2015</td>
<td></td>
<td>00-00-2015 to 00-00-2015</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update on GPS Modernization Efforts</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5d. PROJECT NUMBER</th>
<th>5e. TASK NUMBER</th>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Force Space Command, Space and Missile Systems Center, GPS User Equipment Division, Los Angeles AFB, El Segundo, CA, 90245</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
<td>Presented at the Fifteenth Meeting, 11-12 June 2015, Annapolis, MD.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a REPORT</td>
<td>Same as Report (SAR)</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>b ABSTRACT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c THIS PAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unclassified</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unclassified</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unclassified</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a REPORT</th>
<th>b ABSTRACT</th>
<th>c THIS PAGE</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
<td>Same as Report (SAR)</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Global Positioning Systems Directorate

Mission:
Acquire, deliver and sustain reliable GPS capabilities to America’s warfighters, our allies, and civil users

From left to right, a GPS II satellite

BGen Bill Cooley
Director

Master Control Station
(located at Schriever AFB, CO)
GPS Overview

Space and Missile Systems Center

Civil Cooperation
- 1+ Billion civil & commercial users worldwide
- Search and Rescue
- Civil Signals
 - L1 C/A (Original Signal)
 - L2C (2nd Civil Signal)
 - L5 (Aviation Safety of Life)
 - L1C (International)

Civil signals
- L1C/A (Original Signal)
- L2C (2nd Civil Signal)
- L5 (Aviation Safety of Life)
- L1C (International)

38 Satellites / 31 Set Healthy Baseline Constellation: 24 Satellites

<table>
<thead>
<tr>
<th>Satellite Block</th>
<th>Quantity</th>
<th>Average Age</th>
<th>Oldest</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS IIA</td>
<td>3</td>
<td>21.5</td>
<td>24.4</td>
</tr>
<tr>
<td>GPS IIR</td>
<td>12</td>
<td>13.3</td>
<td>17.7</td>
</tr>
<tr>
<td>GPS IIR-M</td>
<td>7</td>
<td>7.7</td>
<td>9.6</td>
</tr>
<tr>
<td>GPS IIF</td>
<td>9</td>
<td>1.8</td>
<td>4.9</td>
</tr>
<tr>
<td>Constellation</td>
<td>31</td>
<td>9.5</td>
<td>24.4</td>
</tr>
</tbody>
</table>

Department of Defense
- Services (Army, Navy, AF, USMC)
- Agencies (NGA & DISA)
- US Naval Observatory
- PNT EXCOMS
- GPS Partnership Council

Maintenance/Security
- All Level I and Level II
 - Worldwide Infrastructure
 - NATO Repair Facility
- Develop & Publish ICDs Semi-Annually
- ICWG: Worldwide Involvement
- Update GPS.gov Webpage
- Load Operational Software on over 970,000 SAASM Receivers
- Distribute PRNs for the World
 - 120 for US and 90 for GNSS

International Cooperation
- 57 Authorized Allied Users
 - 25+ Years of Cooperation
- GNSS
 - Europe - Galileo
 - China - COMPASS
 - Russia - GLONASS
 - Japan - QZSS
 - India - IRNSS

Department of Transportation
- Federal Aviation Administration

Department of Homeland Security
- U.S. Coast Guard

Publicly Releasable
GPS Modernization Program

Legacy GPS IIA/IIR
- Single Civil Frequency (L1 C/A)
- P(Y)-Code (L1 & L2)

GPS IIR-M
- 2nd Civil Signal (L2C)
- M-Code (L1M & L2M)

GPS IIF
- 3rd Civil Signal (L5)
- 2 Rb + 1 Cs Clocks
- 12 year design life

GPS III
- 4th Civil Signal (L1C)
- 4x better User Range Error than GPS IIF
- Increased availability
- Increased integrity
- 15 year design life

Legacy Operational Control Segment (AEP / LADO)
- Mainframe system
- Command & Control
- Signal monitoring
- Launch and disposal

Next Generation Operational Control System (OCX)

OCX Block 0
- Launch & On-Orbit Checkout of GPS III

OCX Block 1
- Replaces AEP for constellation C2
- M-Code
- Robust cyber security
- New civil signals & monitoring
- Improved accuracy

Modernized GPS User Equipment (MGUE)
- Provides M-code access for military users
- Increased anti-jam/anti-spoof capabilities

PUBLICALLY RELEASABLE
Accuracy: Civil Commitments

Standard Positioning Service (SPS) Performance Standard

Standard Positioning Service (SPS) Signal-in-Space Performance

2001 SPS PS 6 m RMS

User Range Error (URE) in Meters

2008 SPS Performance Standard (PS)
Worst of Any Healthy Satellite, 7.8 m @ 95%

Equivalent RMS Value from 2008 SPS PS (4 m)

Across All Healthy Satellites (RMS, 68%)

Worst of Any Healthy Satellite (95%)

Compare to (example):
≈ 4.9 m RMS User residual iono delay error (L1 only)
≈ 0.5 m RMS User residual tropo delay error

Better Performance

Decreasing range error = Increasing accuracy
Accuracy: Military Commitments
Precise Positioning Service (PPS) Performance Standard

Precise Positioning Service (PPS) Signal-in-Space Performance

2007 PPS Performance Standard (PS)
Worst of Any Healthy Satellite, 5.9 m @ 95%

User Range Error (URE) in Meters

- Signal-in-Space User Range Error is the difference between a GPS satellite's navigation data (position and clock) and the truth, projected on the line-of-sight to the user.
- Compare to (example):
 - 0.4 m RMS user residual iono delay error (L1+L2)
 - 0.5 m RMS user residual tropo delay error
- Across All Healthy Satellites (RMS, 68%)

Better Performance

Worst of Any Healthy Satellite (95%)
Now on The Air: Modernized Civil Signals

• The U.S. initiated CNAV message broadcast (L2C & L5) on 28 Apr 14
 – Daily uploads (nominal procedure for satellite operations) began on 31 Dec 14
 – L2C message currently set “healthy”
 – L5 message set “unhealthy” until sufficient monitoring capability established
 – Position accuracy not guaranteed during pre-operational deployment

• User Range Error (URE) CNAV Performance Post
 – Daily uploads consistent with or exceed legacy navigation performance*
 – Inter-signal corrections enable single point positioning competitive with P(Y) receivers

• Full potential of signals require receiver manufacturers’ adoption
 – Challenge: Industry taking advantage of these signals moves capabilities forward!

Modernized Space System: GPS IIF

- Nine total GPS IIFs on-orbit
- Four GPS IIF launches in 2014!
- Three additional GPS IIFs in the pipeline
 - SV-9 & 12 are in storage; SV-11 at Cape
- Prime: The Boeing Company
- Upcoming launch dates:
 - GPS IIF-10 (SV-11): 15 Jul 15
 - GPS IIF-11 (SV-12): 30 Oct 15
 - GPS IIF-12 (SV-9): NET 3 Feb 16
Modernized Space System: GPS III

- GPS III is the newest block of GPS satellites
 - 4 civil signals: L1 C/A, L1C, L2C, L5
 - First satellites to broadcast common L1C signal
 - 4 military signals: L1/L2 P(Y), L1/L2M
- SV-1 – SV-8 on contract; SV-9 & 10 approved
- Navigation payload panel delivered 1 Nov 14
- Updated Mission Data Unit delivered 9 Mar 15
- SV-1 System Module Core Mate completed 9 Apr 15
- SV level thermal vacuum scheduled for Fall 2015
- SV-1 available for launch Aug 2016
Current Control Segment: OCS

• Current system Operational Control Segment (OCS)
 – Flying the GPS constellation with both the Architecture Evolution Plan (AEP) and the Launch & Early Orbit, Anomaly Resolution, and Disposal Operations (LADO) software systems
 – Cyber security / information assurance enhancements in progress
 – Prime: Lockheed Martin
Modernized Control Segment: OCX

- Next Generation Operational Control System
 - Modernized command & control system
 - GPS III command & control
 - M-Code
 - Robust cyber security infrastructure
 - Modern civil signals & monitoring
 - Improved PNT performance
 - Prime: Raytheon (Aurora, CO)
 - OCX Block 0: launch & checkout for GPS III
 - Currently in test; delivery expected May 2016
 - Successfully completed four launch exercises
 - OCX Block 1: replaces AEP, adds modern features
 - Currently in design, delivery expected 2019
 - OCX Block 2: adds advanced NAVWAR and Civil Signal Performance Monitoring capabilities
 - Delivery expected in 2020
Modernized User Equipment: MGUE

- Military GPS User Equipment (MGUE) is using a commercial market driven acquisition approach
- Accelerated from TD phase into testing and lead platform integration
- Increment 1 program's 2366b certification is pending
- Successful Preliminary Design Reviews (PDRs) for all 3 MGUE Inc 1 contractors
 - Rockwell Collins (Cedar Rapids IA): 06 Aug 14
 - L-3 Communications (Anaheim, CA): 04 Sep 14
 - Raytheon (El Segundo, CA): 17 Sep 14
- Security Certification Underway
- Integrating Service Lead Platforms
 - Air Force: B-2 Spirit (B-2)
 - Army: DAGR Distributed Device (D3) / Stryker
 - Marines: Joint Light Tactical Vehicle (JLTV)
 - Navy: Arleigh Burke Class Guided Missile Destroyer (DDG)
GPS Director’s Focus

• Delivering new signals to military and civilian users (M-Code, L2C, L5)
• Accelerating Military GPS User Equipment (MGUE)
• GPS III production, following 2-year delay, due to Navigation Panel issues
 – Thermal Vacuum test (Fall ‘15) final development hurdle
• Next Generation Ground (OCX) program challenges continue
 – Cybersecurity & systems engineering issues drove schedule and cost overruns
 – Contractor working closely with Gov’t to deliver, but challenges remain
Team GPS thanks you for your support!