AWARD NUMBER: W81XWH-13-2-0043

TITLE: Lumbar Spine Musculoskeletal Physiology and Biomechanics During Simulated Military Operations

PRINCIPAL INVESTIGATOR: Dr. Samuel R. Ward

CONTRACTING ORGANIZATION: University of California, San Diego La Jolla, CA 92093

REPORT DATE: June 2014

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Abstract

This study evaluated the relationship between 3D geometry of the lumbar spine, under different loading conditions and positions, and the pathophysiology of the intervertebral disc and lumbar trunk muscles. 30 Marines were scanned using upright MRI in a normal standing position, standing with body armor (11.3kg), sitting with body armor, and prone on elbows with body armor. Additionally, 28 of the Marines were scanned in a high-resolution 3T MRI scanner to quantify muscle quality and intervertebral disc degeneration. Significant decreases in lumbar lordosis were found through all levels except L1-L2 when sitting. When prone on elbows, the only increase in lumbar lordosis was found at L5-S1. An increase in fat fraction of the erector spinae from L4-S1 was found in subjects with a degenerated L5-S1 vertebra.

Subject Terms

Spine, Lumbar, Kinematics, Muscle Architecture, Low Back Pain, Position
Table of Contents

1. Introduction ... 4
2. Keywords ... 4
3. Accomplishments .. 4
4. Impact ... 8
5. Changes/Problems .. 9
6. Products .. 9
7. Participants & Other Collaborating Organizations 10
8. Special Reporting Requirements 16
9. Appendices .. 16
1. **INTRODUCTION:** The weights of loads carried into battle pose an injury and performance problem for the US Marines. Marine Corps assault loads range from 44kg for the rifleman to 61kg for the squad leader. These are well in excess of the recommended assault load of 22.7kg; 30% of body weight. Two things are clear: (1) Marines routinely carry more weight than the recommended limit, and (2) the Veterans Administration shows an increasing trend in disabilities related to lower back injury as a result of carrying excessive loads in operational environments. We have implemented new MRI technologies enabling quantification of lumbar spine kinematics under simulated march conditions. From these investigations, we have observed a large number (37.5%) of Marines with some evidence of disc pathology. However, it is unclear if these disc changes, or the expected concomitant muscle changes, are related to kinematic changes in the lumbar spine. Further, it is not known whether pre-existing disc pathology predicts future injury and service life in U.S. Marines. Our central hypothesis is that lumbar disc and muscle degeneration alters the kinematic response of the lumbar spine to functional positions and loads, predisposing individuals to injury.

2. **KEYWORDS:** Spine, Lumbar, Kinematics, Muscle Architecture, Low Back Pain, Position

3. **ACCOMPLISHMENTS:**

- **What were the major goals of the project?**
 - Major Goal 1: To compare lumbar spine kinematics in simulated operational conditions in Marines with measurable lumbar disc pathology
 - Task 1-Approved IRB Protocols
 - Local IRB Approvals
 - Due: 01 August 2013
 - Completed: 100%
 - HRPO Approvals
 - Due: 01 August 2013
 - Completed: 100%
 - Task 2-Subject battalions identified and coordinated
 - Subjects 1-33 recruited, consented and scheduled
 - Due: 01 February 2014
 - Completed: 91%
 - Subjects 34-66 recruited, consented and scheduled
 - Due: 01 August 2014
 - Completed: 0%
 - Subjects 67-100 recruited, consented and scheduled
 - Due: 01 Jan 2015
 - Completed: 0%
 - Task 3-Data Collection/Analysis
- Vertical data acquisition
 - Due: 01 December 2015
 - Completed: 30%
- Vertical data analysis
 - Due: 01 February 2016
 - Completed: 30%
- Major Goal 2: To quantify changes in lumbar spine muscle architecture in Marines with measurable lumbar disc pathology.
 - Task 1-Approved IRB Protocols
 - Local IRB Approvals
 - Due: 01 August 2013
 - Completed: 100%
 - HRPO Approvals
 - Due: 01 August 2013
 - Completed: 100%
 - Task 2-Subject battalions identified and coordinated
 - Subjects 1-33 recruited, consented and scheduled
 - Due: 01 February 2014
 - Completed: 91%
 - Subjects 34-66 recruited, consented and scheduled
 - Due: 01 August 2014
 - Completed: 0%
 - Subjects 67-100 recruited, consented and scheduled
 - Due: 01 Jan 2015
 - Completed: 0%
 - Task 3-Data Collection/Analysis
 - Supine data acquisition
 - Due: 01 December 2015
 - Completed: 30%
 - Supine data analysis
 - Due: 01 February 2016
 - Completed: 0%

- **What was accomplished under these goals?**
 - 30 Marines were scanned in an upright MRI machine in their normal standing position (StU; no load), standing with body armor (11.3 kg) (StL), sitting with body armor (SiL), and prone on elbows with body
armor (PL) positions. Digital seed points were manually placed on the corners and the posterior elements of each vertebra using OsiriX. The location of the seed points were imported into Matlab and used to define an endplate-based joint coordinate system applied to the superior and inferior endplate of each vertebra.

Figure 1. Angle with respect to horizontal and Sagittal Cobb angle measured for Standing Unloaded (St.U.), Standing Loaded (St.L.), Sitting Loaded (Si.L.) and Prone on Elbows Loaded (P.L.) Positions. There is significant straightening of the lumbar spine when sitting. There was no difference in posture in subjects with or without lumbar disc degeneration.
Figure 2. Sagittal intervertebral angle for each level of the lumbar spine in Standing Unloaded (St.U.), Standing Loaded (St.L.), Sitting Loaded (Si.L.) and Prone on Elbows Loaded (P.L.) Positions. There is significant straightening of the lumbar spine when sitting. The L5-S1 level has
the biggest contribution to extension. There was no difference in posture in subjects with or without lumbar disc degeneration.

- Supine 3T MRI images were acquired from 28 Marines. Psoas, Quadratus Laborum and Erector Spinae muscles, and the Intervertebral disc were manually segmented using OsiriX. Physiologic measurements were made based on segmented tissues and structural anatomic scans. Average T2 value of the intervertebral disc was proportional to Pfirrmann grade as expected. There was a significant increase in the fat fraction of the Erector Spinae and Quadratus Lumborum Muscles in the lower lumbar spine in subjects with disc degeneration.

![Figure 3. Muscle volume (top row) and fat fraction (bottom row) for the Erector Spinae (Left) Psoas (Center) and Quadratus Lumborum (Right) muscles at each level for patients with healthy (black) and degenerated (grey) L5-S1 intervertebral discs.](image)

- What opportunities for training and professional development has the project provided?
 - Nothing to report

- How were the results disseminated to communities of interest?
 - Nothing to report

- What do you plan to do during the next reporting period to accomplish the goals?
 - During the next reporting period, we intend on completing supine data analysis from the first 30 subjects that we collected. Additionally, we intend on recruiting an additional 12 subjects to more closely investigate the effect of load magnitude and distribution on lumbar spine kinematics. By the end of the next reporting period, we intend on having at least one manuscript submitted for review from this project.

4. IMPACT:

- What was the impact on the development of the principal discipline(s) of the project?
 - The results of this study may inform a set of load carriage guidelines to be put in place, through changes in training practices, gear design and/or implementation of exercises to strengthen the
musculature of the spine. Additionally, the results of this study will allow researchers to better relate
the complex 3D geometry of the lumbar spine in subjects with different levels of lumbar disc and
degeneration and muscle health. The role of idiopathic lumbar back pain on lumbar spine kinematics
will also allow us to investigate differences in the shape of the lumbar spine between a wide range of
positions.

- **What was the impact on other disciplines?**
 - Nothing to report
- **What was the impact on technology transfer?**
 - Nothing to report
- **What was the impact on society beyond science and technology?**
 - The broad impact is that the load recommendations determined from this study can be applied to
 anyone who works with their spine under awkward or loaded positions.

5. **CHANGES/PROBLEMS:**

- **Changes in approach and reasons for change**
 - Nothing to report
- **Actual or anticipated problems or delays and actions or plans to resolve them**
 - One adverse event has occurred: one subject experiences peripheral nerve stimulation and
 claustrophobia in the supine scanner (19/02/2014). He was immediately removed from the scanner
 and calmed down. For this subject, kinematic but not anatomical supine data was acquired.
- **Changes that had a significant impact on expenditures**
 - Nothing to report
- **Significant changes in use or care of human subjects, vertebrate animals, biohazards, and/or
 select agents**
 - Nothing to report
- **Significant changes in use or care of human subjects**
 - Nothing to report
- **Significant changes in use or care of vertebrate animals.**
 - Nothing to report
- **Significant changes in use of biohazards and/or select agents**
 - Nothing to report

6. **PRODUCTS:**

- **Publications, conference papers, and presentations**
 - Nothing to report
- **Books or other non-periodical, one-time publications.**
 - Nothing to report
- **Other publications, conference papers, and presentations.**
- Nothing to report
- **Website(s) or other Internet site(s)**
 - Nothing to report
- **Technologies or techniques**
 - Nothing to report
- **Inventions, patent applications, and/or licenses**
 - Nothing to report
- **Other Products**
 - Nothing to report.

7. **PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS**

- **What individuals have worked on the project?**

<table>
<thead>
<tr>
<th>Name:</th>
<th>David Berry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Role:</td>
<td>Graduate Student</td>
</tr>
<tr>
<td>Researcher Identifier (e.g. ORCID ID):</td>
<td>0000-0001-8275-8322</td>
</tr>
<tr>
<td>Nearest person month worked:</td>
<td>12</td>
</tr>
<tr>
<td>Contribution to Project:</td>
<td>Mr. Berry has participated in upright MRI data collection, data analysis and interpretation of results</td>
</tr>
<tr>
<td>Funding Support:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name:</th>
<th>Ana Rodriguez-Soto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Role:</td>
<td>Graduate Student</td>
</tr>
<tr>
<td>Researcher Identifier (e.g. ORCID ID):</td>
<td>0000-0002-9544-547X</td>
</tr>
<tr>
<td>Nearest person month worked:</td>
<td>12</td>
</tr>
<tr>
<td>Contribution to Project:</td>
<td>Ms. Rodriguez-Soto has participated in supine data collection, data analysis and interpretation of results</td>
</tr>
<tr>
<td>Funding Support:</td>
<td>UC MEXUS-CONACYTDoctoral Fellowship Cohort 2010</td>
</tr>
<tr>
<td>Name:</td>
<td>Dr. Sara Gombatto PT, PhD</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Project Role:</td>
<td>Project Advisor</td>
</tr>
<tr>
<td>Researcher Identifier</td>
<td>0000-0002-8284-4789</td>
</tr>
<tr>
<td>(e.g. ORCID ID):</td>
<td></td>
</tr>
<tr>
<td>Nearest person month</td>
<td>3</td>
</tr>
<tr>
<td>worked:</td>
<td></td>
</tr>
<tr>
<td>Contribution to</td>
<td>Dr. Gombatto has assisted with upright MRI data collection and</td>
</tr>
<tr>
<td>Project:</td>
<td>interpretation of results</td>
</tr>
<tr>
<td>Funding Support:</td>
<td>University Grants Program, San Diego State</td>
</tr>
<tr>
<td>Name:</td>
<td>Dr. Karen Kelly PT, PhD</td>
</tr>
<tr>
<td>Project Role:</td>
<td>Primary Investigator</td>
</tr>
<tr>
<td>Researcher Identifier</td>
<td>0000-0001-8003-6123</td>
</tr>
<tr>
<td>(e.g. ORCID ID):</td>
<td></td>
</tr>
<tr>
<td>Nearest person month</td>
<td>6</td>
</tr>
<tr>
<td>worked:</td>
<td></td>
</tr>
<tr>
<td>Contribution to</td>
<td>Dr. Kelly has assisted with subject recruitment, subject</td>
</tr>
<tr>
<td>Project:</td>
<td>scheduling, subject consent, and interpretation of results</td>
</tr>
<tr>
<td>Funding Support:</td>
<td>Award #new award 03/01/2015-09/30/2016 2.4 calendar Office of</td>
</tr>
<tr>
<td></td>
<td>Navy Research Program Evaluation of SEAL Delivery Vehicles Unit</td>
</tr>
<tr>
<td></td>
<td>Level Training The primary aim of this project is to describe</td>
</tr>
<tr>
<td></td>
<td>the physiological, physical, cognitive and sleep changes that</td>
</tr>
<tr>
<td></td>
<td>occur during unit level training in a specialized military</td>
</tr>
<tr>
<td></td>
<td>operational specialty.</td>
</tr>
<tr>
<td></td>
<td>Award #N1421 10/01/2014-09/30/2015 2.4 calendar Army Special</td>
</tr>
<tr>
<td></td>
<td>Operation Command Validating Gender-Neutral Standards for</td>
</tr>
<tr>
<td></td>
<td>Army Special Forces (SFAS) and Ranger (RASP) Selection</td>
</tr>
<tr>
<td></td>
<td>The primary aims of this project are (1) To determine whether</td>
</tr>
<tr>
<td></td>
<td>the selection criteria for entry into SFAS/RASP training are</td>
</tr>
<tr>
<td></td>
<td>accurate predictors of success during SFAS/RASP training;</td>
</tr>
<tr>
<td></td>
<td>and (2) To establish task-dependent selection and training</td>
</tr>
<tr>
<td></td>
<td>criteria, which could then be viewed as "gender neutral," thus</td>
</tr>
<tr>
<td></td>
<td>meeting the directive of the Secretary of Defense.</td>
</tr>
</tbody>
</table>
Award #N1336 09/01/2013-06/30/2015 9.0 calendar
Naval Special Warfare-WARCOM
265,000.00
Validating Gender-Neutral Standards for SEAL and SWCC Selection
The primary aims of this project are (1) To determine whether the selection criteria for entry into SEAL/SWCC training are accurate predictors of success during SEAL/SWCC training; and (2) To establish task-dependent selection and training criteria, which could then be viewed as "gender neutral," thus meeting the directive of the Secretary of Defense.

Award #N1324 03/01/2013-09/30/2016 0.6 calendar
Office of Navy Research
Independent Evaluation of the ETOWL software program
The Office of Navy Research funded Iowa University to develop a virtual Marine that will predict the effect of load on physiological and biomechanical parameters. This project aims to independently test the developed software using “live” active duty military personnel to determine the accuracy of the software program.

Award #N1310 03/01/2013-09/30/2016 2.4 calendar
Program Manager-Infantry Combat Equipment
Personal Protection Equipment Development
The purpose of this project is to test a prototype of a novel plate carrier system against the existing plate carrier system in a variety of different load conditions as well as in various environments.

Award #N1305 02/01/2012-09/30/2015 1.0 calendar
Congressionally Directed Medical Research Programs
Lumbar Spine Musculoskeletal Physiology and Biomechanics During Simulated Military Operations
The purpose of this project is to determine if lumbar disc and muscle degeneration alters the kinematics response of the lumbar spine to functional positions and loads, predisposing individuals to injury.

Award # N1301 10/01/2012-09/30/2015 0.6 calendar
Naval Special Warfare-Center
Evaluation of VASPER
The purpose of this project is to evaluate whether the VASPER system can be used as an adjunctive mode of training in U.S. Navy SEALS.

Award # 21A839 03/01/2012-12/30/2015 1.0 calendar

Naval Special Warfare-Group 1
Androgen Deficiency in Navy SEALS
The purpose of this project is to identify risk factors associated with hormonal imbalance in our elite forces. The study address caloric intake, expenditure, sleep hygiene, alcohol consumption as well as lifestyle choices that may influence hormone production in Navy SEALS.

Award # 21A843 09/30/2012-9/30/2015 0.4 calendar

Naval Special Warfare-Group 1
Warrior Development
The purpose of this project is to identify risk factors associated with decrements in performance and to evaluate means by which to improve the Special Warfighter.

Award # N1263 09/30/2012-09/30/2016 0.6 calendar

Space and Naval Warfare Systems Command
Bureau of Medicine and Surgery
Prescriptive Exercise Therapy Program to Reduce Hyper-arousal in Residential Treatment for Active Duty Service Members Diagnosed with Post-Traumatic Stress Disorder
To improve the quality of exercise/physical training the service members are receiving while at OASIS, as well as to develop a new exercise program and assist in training the staff at OASIS to maintain the quality of physical training after the project is complete. It is hypothesized that with better exercise and physical training there will be improvements in symptoms of PTSD, better compliance with exercise, increased mood and thus functionality of the persons obtaining treatment at OASIS.
<table>
<thead>
<tr>
<th>Name:</th>
<th>Dr. Samuel Ward PT, PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Role:</td>
<td>Primary Investigator</td>
</tr>
<tr>
<td>Researcher Identifier (e.g. ORCID ID):</td>
<td>0000-0002-4470-155X</td>
</tr>
<tr>
<td>Nearest person month worked:</td>
<td>6</td>
</tr>
<tr>
<td>Contribution to Project:</td>
<td>Dr. Ward has assisted with project oversight and interpretation of results</td>
</tr>
<tr>
<td>Funding Support:</td>
<td>Ongoing Research Support</td>
</tr>
<tr>
<td>R01 HD073180-01A1 (PI: Ward)</td>
<td>04/01/2013 – 03/31/2018</td>
</tr>
<tr>
<td>NIH/NICHD</td>
<td>The Physiological Basis of Rotator Cuff Muscle Rehabilitation</td>
</tr>
<tr>
<td>The goal of this project is to elucidate the structural, mechanical, and physiological consequences of tendinopathy-related muscle atrophy and degeneration after rotator cuff tears in humans. Architectural, passive mechanical, and gene expression profiles will be measured and compared amongst patients with different rotator cuff tear severities.</td>
<td></td>
</tr>
<tr>
<td>DoD (PRMRP/CDMRP)</td>
<td>Lumbar Spine Musculoskeletal Physiology and Biomechanics During Simulated Military Operations</td>
</tr>
<tr>
<td>The goals of this project are to; 1) understand lumbar spine an lumbar disc kinematics during simulated operational conditions, 2) understand the effect of load and body position on spine and disc kinematics when pathology is present, and 3) understand the influence of muscle structure and physiology on lumbar spine kinematics.</td>
<td>2R01HD031476-11A1 (PI: Kaufman [Mayo], Sub CO-PI: Ward)</td>
</tr>
<tr>
<td>NIH/NICHD</td>
<td>Microsensor for Intramuscular Pressure Measurement</td>
</tr>
<tr>
<td>The purpose of this grant is to develop a miniature pressure transducer to measure tissue fluid pressure in skeletal muscle and then to determine the effects of muscle architecture, fascia, limb orientation and type of activation on pressure. The study employs the rabbit tibialis anterior muscle model and consists primarily of in situ muscle physiological experimentation combined</td>
<td></td>
</tr>
</tbody>
</table>
Mechanical Basis for Tensioning Tendon Transfers

The purpose of this proposal is to measure the in vivo properties of muscles commonly used in tendon transfer surgery. We propose to develop a new instrument for measuring sarcomere lengths intraoperatively and to assess post-operative function in these patients.

San Diego Skeletal Muscle Research Center

The purpose of this Center is to establish a consortium of skeletal muscle scientists between UC San Diego, Sanford-Burham, the Scripps Research Institute, and San Diego State University. The Center provides education, pilot funding, and direct scientific support.

Rotator Cuff Degeneration and Repair.

The purpose of this study is to measure the passive mechanical and related protein changes in rat skeletal muscle after rotator cuff tears.

“National Center for Muscle Rehabilitation Research.”

The purpose of this grant is to provide a resource to the rehabilitation professionals to perform state-of-the-art muscle experiments. Disciplines include physiology, microscopic imaging, MR imaging and clinical measurements. In addition, the Center provides sabbatical opportunities and pilot project support to rehabilitation professionals interested in skeletal muscle research.
NIH/NIAMS

“Muscle Biological and Biomechanical Response in Cerebral Palsy.”
The purpose of this proposal is to understand the changes that occur in muscles after contracture formation and to test conservative treatment options. This is due to the large number of children with CP seen in the rehabilitation setting and the number who undergo surgical correction for contracture (making their muscle tissue available)

R01 AR057013-01A1 (PI: Ward, Samuel) 07/01/2009 – 06/30/2014

NIH/NIMAS

Muscle Structure, Toxin Dose, and Exercise Affect Botulinum Toxin Efficiency.
The purpose of this grant is to understand the acute and chronic effects of botulinum toxin type A on skeletal muscle structure and function. Experiments include muscle physiology, histology, cellular biology, MRI and bioluminescence measurements.

- Has there been a change in the active other support of the PD/PI(s) or senior/key personnel since the last reporting period?
 - Nothing to report

- What other organizations were involved as partners?
 - Organization Name: San Diego State University
 - Location of Organization: San Diego, CA
 - Partner’s contribution to the project
 - Collaboration: Sara Gombatto PT, PhD. Provided assistance during data collection and data interpretation

8. SPECIAL REPORTING REQUIREMENTS

- COLLABORATIVE AWARDS: None
- QUAD CHARTS: See attached FY1314_QuadChart_W81XWH-13-2-0043

9. APPENDICES:

- Quad Chart: FY1314_QuadChart_W18XWH-13-2-0043.pptx
Study/Product Aim(s)
• To compare lumbar spine kinematics in simulated operational conditions in Marines with measureable disc pathology
• To quantify changes in lumbar spine muscle architecture in Marines with measureable lumbar disc pathology

Approach
Each Marine undergoes high-resolution structural and physiological imaging of the lumbar vertebrae and discs in a high strength (3T) supine MRI. Marines then undergo a 3D imaging protocol in an upright, low strength (0.6T) MRI in standing unloaded, standing loaded (25lb body armor), sitting loaded and prone on elbows positions. Back pain history is recorded for each subject at time of data collection.

Sample Sagittal T2-Weighted Scans in Standing Unloaded (A) Standing Loaded with 25 lbs. body armor (B) Sitting Loaded (C) Prone on Elbows Loaded (D). Points of interest were placed on the corner of each vertebrae for kinematic measurements.

Accomplishment: Scanning parameters for supine and upright MRI were optimized for best image quality. Data was collected from 30 subjects. Image quality is acceptable to preform all measurements.

Goals/Milestones
CY13 Goal – Initiate subject recruitment/scanning
☐ Begin acquiring data on minimum 8 subjects

CY14 Goals – Develop measurement tools
☐ Validate tool for measuring kinematics
☐ Diffusion Tensor Calculations
☐ Scan >40 subjects

CY15 Goal – Data Analysis
☐ Scan remaining subjects
☐ Analyze data from 80% of the subjects

CY16 Goal – Disseminate findings
☐ Correlate kinematic physiologic data

Comments/Challenges/Issues/Concerns
Nothing to Report

Budget Expenditure to Date
Projected Expenditure: $195,000.00
Actual Expenditure: $175,920.17

Updated: (20150311)