Sonobuoy-Based Acoustic Characterization
of Shallow-Water Environments

George V. Frisk
Department of Ocean and Mechanical Engineering
Florida Atlantic University
SeaTech Campus
101 North Beach Road
Dania Beach, FL 33004
Phone: (954) 924-7245 Fax: (954) 924-7270 email: gfrisk@fau.edu

Award Number: N000141210083

LONG-TERM GOALS

The long-term goal of this research is to increase our understanding of shallow water acoustic propagation and its relationship to the three-dimensionally varying seabed and water column environments.

OBJECTIVES

The scientific objectives of this research are: (1) to develop high-resolution methods for characterizing the spatial and temporal behavior of the normal mode field in shallow water; (2) to use this characterization as input data to inversion techniques for inferring the acoustic properties of the shallow-water waveguide (both the seabed and the water column); and (3) to use this characterization to improve our ability to localize and track sources.

APPROACH

An experimental technique has been developed for mapping the wavenumber spectrum of the normal mode field as a function of position in a complex, shallow-water waveguide environment whose acoustic properties vary in three spatial dimensions [1]. By describing the spatially varying spectral content of the modal field, the method provides a direct measure of the propagation characteristics of the waveguide. The resulting modal maps can also be used as input data to inverse techniques for obtaining the laterally varying, acoustic properties of the waveguide [2-7]. The experimental configuration consists of a moored, drifting, or towed source, with GPS navigation, transmitting signals to a field of several freely drifting buoys, each containing a hydrophone, GPS navigation, and radio telemetry, as shown in Fig. 1. A key component of this method is the establishment of a local differential GPS system between the ship and each buoy, thereby enabling the determination of the positions of the buoys relative to the ship with submeter accuracy [8,9]. In this manner, the drifting buoys create 2-D synthetic aperture, horizontal arrays along which the modal evolution of the waveguide can be observed in the spatial domain, or after Hankel transforming, in the horizontal wavenumber domain. In this context, two-dimensional modal maps in range and azimuth, as well as three-dimensional bottom inversion in range, depth, and azimuth, become achievable goals. In
Sonobuoy-Based Acoustic Characterization of Shallow-Water Environments

1. **REPORT DATE**
 - **30 SEP 2014**
2. **REPORT TYPE**
 - 00-00-2014 to 00-00-2014
3. **DATE COVERED**
4. **TITLE AND SUBTITLE**
 - Sonobuoy-Based Acoustic Characterization of Shallow-Water Environments
5a. **CONTRACT NUMBER**
5b. **GRANT NUMBER**
5c. **PROGRAM ELEMENT NUMBER**
5d. **PROJECT NUMBER**
5e. **TASK NUMBER**
5f. **WORK UNIT NUMBER**
6. **AUTHOR(S)**
7. **PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**
 - Florida Atlantic University, Department of Ocean and Mechanical Engineering, 101 North Beach Road, Dania Beach, FL, 33004
8. **PERFORMING ORGANIZATION REPORT NUMBER**
9. **SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)**
10. **SPONSOR/MONITOR’S ACRONYM(S)**
11. **SPONSOR/MONITOR’S REPORT NUMBER(S)**
12. **DISTRIBUTION/AVAILABILITY STATEMENT**
 - Approved for public release; distribution unlimited
13. **SUPPLEMENTARY NOTES**
14. **ABSTRACT**
15. **SUBJECT TERMS**
16. **SECURITY CLASSIFICATION OF:**
 - a. **REPORT** unclassified
 - b. **ABSTRACT** unclassified
 - c. **THIS PAGE** unclassified
17. **LIMITATION OF ABSTRACT**
 - Same as Report (SAR)
18. **NUMBER OF PAGES**
 - 8
19a. **NAME OF RESPONSIBLE PERSON**

Form Approved
OMB No. 0704-0188

Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
addition, a broadband variant of this method, in which impulsive signals are transmitted between a fixed source and receiver, has also been developed [10]. While focusing on inversion for the geoacoustic properties of the seabed, this method has also been applied to the problem of inverting for water column properties [11]. Finally, these high-resolution measurements provide new insights into source localization and tracking techniques [12-17].

WORK COMPLETED

To date, five successful Modal Mapping Experiments have demonstrated the effectiveness of the modal mapping technique in acoustically characterizing shallow-water waveguide environments and in tracking low-frequency sources. Furthermore, MOMAX V, conducted on 5-18 March 2011 aboard the R/V Sharp, demonstrated that the method could be successfully executed using COTS, GPS-capable AN/SSQ-53F sonobuoys, instead of the MOMAX research buoys. Specifically, narrowband and broadband signals were transmitted in the band 50-1000 Hz using a drifting and towed NUWC J15 source at 56 m depth and a drifting and towed NUWC G34 source at 8 m depth. Data were received on 4 drifting MOMAX buoys, each having hydrophones at 61 m and 64 m depths as well as several 53F sonobuoys with a hydrophone at 61 m depth. In order to assess the practicality of using sonobuoy data for geoacoustic inversion applications, the two types of buoys were deployed in a co-located configuration on several occasions by connecting the upper portions of the buoys with a 4.6 m cable. This arrangement ensured that the two types of buoys were acquiring data under the same environmental (specifically, seabed) conditions. The bathymetry for the experimental area, as well as the ship and buoy tracks for the co-located buoy deployments are shown in Fig. 2.

RESULTS

The algorithm for extracting sediment properties from narrowband data acquired on a synthetic aperture horizontal array created by a drifting source-receiver geometry is summarized in Fig. 3. The raw data acquired by the receiver are acoustic pressure as function of time. When multiple tones are transmitted, the received signal has all the frequency components. The processing of these data involves converting the time series data into acoustic pressure as a function of range at the specified tonal frequency. This involves the following steps (cf. Fig. 3):

1. Quadrature demodulation or Fast Fourier Transform (FFT) of the pressure signal $P(t)$ to obtain $P_\omega(t')$ representing the pressure at each of the tonal frequencies ω.
2. Merging the acoustic data $P_\omega(t')$ with the measured range data $r(t'')$ as obtained from GPS data to determine the spatially varying complex pressure field $P_\omega(r)$.

Having obtained the spatially varying pressure field, this quantity is Hankel transformed to obtain the corresponding wavenumber spectrum (depth-dependent Green’s function), and from it the k_n eigenvalues of the propagating modes. The eigenvalues, or modal wavenumbers, are the input data to the inversion scheme for extracting the sediment properties as described below. The spectral resolution needed to separate modal peaks depends upon the size of the synthetic aperture R through the expression π/R. High-resolution techniques such as autoregressive spectral estimation [6] can be applied to improve resolution when using short sub-apertures. A related issue involves the identification of true modal information as well as their mode numbers n. A poor choice of source/receiver depths at the nulls of one or more modes, as well as spurious sidelobe peaks generated
by the finite processing aperture, can mask true modal information [10]. For the MOMAX V data, sidelobe levels were reduced by applying a Hann window to the data. The modal eigenvalues are then used as input data to a perturbative inversion scheme to estimate the geoaoustic parameters of the seabed [10]. The results of this inversion process for the Shemp/SB810 co-located buoys are shown in Fig. 4 [G.V. Frisk et al, to be published in IEEE J. Oceanic Engineering (2014)]. For each type of buoy, the eigenvalues at 50, 75, 125, and 175 Hz were used as input data to a multi-frequency, perturbative inversion algorithm to obtain the bottom models shown in Fig. 4. The two seabed profiles are in excellent agreement with one another and are consistent with the results of previous experiments conducted in the same general area. Note that, based on other measurements, the density was assumed to be 1.6 g/cc, and attenuation and shear effects were not included in these inversions.

A benefit of this perturbative inversion scheme is that it can be implemented using the formalism of linear inverse theory, which also generates resolution and variance estimates for the estimated geoaoustic parameters. These results for the SB/810 combination are shown in Table I, which provides an encouraging, quantitative evaluation of the accuracy associated with the inferred geoaoustic models in Fig. 4.

Using broadband data acquired during MOMAX V, this inversion method has also been applied successfully to the problem of inversion for the acoustic properties of the water column. Specifically, this approach has provided estimates of the temporal and spatial variability of the ocean sound speed on the New Jersey Shelf [M.S. Ballard et al, J. Acoust. Soc. Am. (2014)].

IMPACT/APPLICATIONS

This work shows that an experimental configuration consisting of a drifting or towed source and freely drifting receivers, all with precision GPS navigation, can provide an effective way to characterize the modal characteristics and acoustic properties of a shallow-water waveguide (both the seabed and the water column). Furthermore, the results show that this technique can be implemented using COTS sonobuoy receivers and potentially can be applied during routine operations conducted by NAVAIR. In addition, the creation of synthetic aperture, horizontal receiving arrays, which constitute the cornerstone of this method, may offer an effective new technique for localizing and tracking sources of unknown, quasi-stable frequency in shallow water.

TRANSITIONS

This work represents a major step toward transitioning the experimental method to NAVAIR (POC: David Seevers) and the modal inversion technique to NAVOCEANO (POC: David Harvey), thereby providing the capability for NAVOCEANO to upgrade/populate shallow-water LFBL databases in existing/new operational areas. The implementation of the MOMAX methodology and geoaoustic inversion technique in a NAVAIR operational scenario could occur in conjunction with the following schedule [18]:

The Navy plans to incorporate GPS into the ADAR sonobuoy receiver in the fourth quarter of FY14, with Fleet availability in the third quarter of FY16, and to incorporate GPS into the coherent 950 Hz, MAC (SSQ-125) sonobuoy source in the fourth quarter of FY14, with Fleet availability after FY16.
RELATED PROJECTS

These efforts are being closely coordinated with the planning and design of the ONR 2016 Bottom Experiment in the New England mud patch, which has extensive spatial geoacoustic variability [19]. Specifically, the design of a future experiment, which uses a large number of sonobuoys (e.g., 25-30) to collect data on a 2-D synthetic aperture, planar array, has been initiated. The proposed experiment will incorporate recent developments in the use of Software Defined Radio (SDR) to receive and process radio signals from a large number of sonobuoys [20]. This approach utilizes laptop computers, rather than standard sonobuoy receivers, for its processing platforms and will enable the determination of the 3-D geoacoustic properties of the waveguide in an efficient and cost-effective way. Plans for the sonobuoy experiment are being coordinated with a project led by Altan Turgut at the Naval Research Laboratory.

Figure 1: MOMAX experimental configuration.
Figure 2: Bathymetry of the experimental area showing ship and buoy tracks for the co-located buoy deployments in MOMAX V.
Figure 3: The algorithm for processing recorded acoustic and position data to determine sediment geoacoustic properties.

![Algorithm Diagram]

Figure 4: Bottom models estimated from data collected by Shemp and SB810.

![Depth vs Compressional Wave Speed Graph]

TABLE I

<table>
<thead>
<tr>
<th>Layer Number</th>
<th>Shemp</th>
<th>SB810</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deviation (m/s)</td>
<td>Resolution (m)</td>
</tr>
<tr>
<td>Layer 1</td>
<td>1.33</td>
<td>5.59</td>
</tr>
<tr>
<td>Layer 2</td>
<td>2.12</td>
<td>9.48</td>
</tr>
<tr>
<td>Layer 3</td>
<td>3.01</td>
<td>7.22</td>
</tr>
</tbody>
</table>
REFERENCES

PUBLICATIONS

HONORS/AWARDS/PRIZES

G.V. Frisk, President, Acoustical Society of America, 2010-2011.

G.V. Frisk, Co-Chair, Research Initiative for an International Quiet Ocean Experiment.