Quantitative Analysis, Design, And Fabrication Of Biosensing and Bioprocessing Devices in Living Cells

Domitilla Del Vecchio
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

03/10/2015
Final Report

DISTRIBUTION A: Distribution approved for public release.
The objective of this research is to develop quantitative techniques for the de novo design and fabrication of biosensing devices in living cells. Such devices will be entirely composed of bio-molecular building blocks extracted from living organisms and re-engineered for enhanced functionality. These biosensing devices will be able to reproduce themselves, will be both far smaller and significantly cheaper than current nanoscale electronic devices, and will have the capacity for complex computations.
Figure 1: Natural Sensing System. In a cell, the signal transmission machinery is usually performed by networks of covalent modification cycles. The signal processing machinery (computation) is performed by genetic circuits.

Annual accomplishments

Summary of the Project: This project aims at designing sensing systems in bacteria *E. coli* by employing and re-engineering components from natural sensing/transduction systems. As shown in Figure 1, any such sensing system must have a detector, a transmission system, and a computation element, which produces a visible output. The transmission system usually involves covalent modification cycles such as phosphorylation (the MAPK cascades), while the computation element usually involves gene expression. The properties that we look for in a sensing system are (a) high sensitivity to the presence of molecules to be sensed and (b) fast response time so that the visible output is displayed with minimal delay with respect to when the environmental molecule appeared.

Sensing through phosphorylation: Isolation Amplifier Circuit in *E. coli*

The phosphorylation circuit that was assembled in the previous grant to obtain an optimal sensing device is depicted in Figure 2 [1]. This year, we tested the system with its several variants and assessed its temporal response through a new equipment for single-cell real-time measurement.

![Diagram of a semi-synthetic transmission system based on phosphorylation in *E. coli*. The phosphorylation cycle is given by the NRI-NRI⁺ (phosphorylated) cycle depicted in blue.](image)
Result 1: Making an inverter

We fixed the amount of NRII Kinase by fixing the aTc induction level and then used IPTG as a new input. IPTG induction increases the concentration of the NRII phosphatase and, as a consequence, should decrease the level of NRI* (phosphorylated NRI). The experimental results shown in Figure 3 confirm this prediction showing a linear inverter characteristics.

![Figure 3. Inverter characteristics of the device.](image)

Result 2: Time-varying induction and automated measurement

Figure 4 shows the experimental setup if we have assembled to perform time-varying single cell measurements. Specifically, the system is composed of 16 bioreactors (Takahashi *et al.* (2014)), where we have 15 mL per bioreactor at 500 rpm and 30 or 37 °C. The following customized growth conditions: Batch (maximal growth rate); Turbidostat (constant OD); Chemostat (constant growth rate); Cytostat (constant cell numbers). Also, we have remote control through the wireless network, autosampler with sampling time of 8-10 mins and sampling vol.:>25 uL. Figure 5 shows a sample time trajectory where the experiment run for 3 full days. Since the circuit
responds as expected to the time varying induction, it shows that the circuit plasmid is very stable.

Result 3: Breaking The Tradeoff with Multiple Stages

Figure 6 shows the steady state and temporal performance of the device based on a single stage phosphorylation cycle. While the system is able to keep a desired input/output characteristic in the face of load, this goes to the expense of a slower temporal response. We were able to overcome this limitation by employing a device based on two stages of phosphorylation.
Figure 7 shows a device with two stages along with simulation results. Because of the presence of the two stages, we were able to use the second stage to attenuate the steady state effect of the load and the first stage fast dynamics to compensate any slow-down in the temporal response due to a high load that X applied on W*. This design was experimentally tested and validated in yeast cells [2].

Noise Properties of the Device

Figure 8 shows the noise properties of the device based on a single stage. While the coefficient of variation (CV) is not affected by the gain of the system, the frequency spectrum is. In particular, higher gains tend to decrease the content of the noise of the device at low frequencies but increase it at higher frequencies. Since most useful input stimuli occur on the lower frequency range, this result says that our device possesses also the ability of attenuating noise in addition to attenuating the deleterious effects of the load.
Limitations in Biosensing due to Limitations of Resources

Because the transcriptional and translational resources are limited in genetic circuits, hidden interactions arise as multiple genes share these resources. As a consequence a simple activation cascade gives rise (see Figure 9) to hidden interactions (shown in red) that lead to a feedforward loop. Because of this feedforward loop, the ideal input/output response of the cascade (an increasing function) transforms into a biphasic or decreasing one (see Figure 10).

This result shows that the limited availability of resources can cause the sensor to perform in an unexpected and undesirable way. New techniques and research is required to find ways to mitigate the problem and to optimize circuits accordingly.

PAPERS (past year only)

INVITED SEMINARS (past year only)

- LabLinks (Cell Press), *MIT*, 2014