Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>08 OCT 2014</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert Performance and Measurement</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cowley /Jennifer</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited.</td>
<td>The original document contains color images.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT unclassified</td>
<td>SAR</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>b. ABSTRACT unclassified</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE unclassified</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® and CERT® are registered marks of Carnegie Mellon University.

DM-0001754
What is an expert?
How do we get more of them?
What is an expert in this context?
What is an expert in this context?
Traditional Performance Attributes-
Speed and Accuracy

Violinist
- Accuracy is important
- Speed is not

Long distance running
- Speed is important
- Accuracy is not
Attributes of our definition of experts in cybersecurity

- Job function level with generalizable tasks
- Reliability
- Speed of only accurate performance
Why do we care?

- Expert systems
- Socially-elected experts
- Personnel selection
- Training
Other impacts to the development of expertise

Organizational influences

Performance
Past research focused on these individual factors:

- Cognitive Abilities
- Personality Traits
- Attitudes and Beliefs
Our contribution:

- Cognitive Abilities
- Personality Traits
- Metacognitive Skills
- Teamwork Skills
- Attitudes and Beliefs
Multi-Year Research Process

Phase 1

Step 1. Map the Domain.

Step 2. Map the job roles using job task analysis.

Phase 2

Step 3: Identify Levels of Performance and Respective Performance Metrics.

Step 4. Create a test battery.

Phase 3

Step 5. Run new test battery on a large sample of operators and correlated predictors with performance.

Past FY13 Work
FY13 Research

Phase 1

Step 1. Map the Domain.

Step 2. Map the job roles using job task analysis.

Step 3: Identify Levels of Performance and Respective Performance Metrics.

Step 4. Create a test battery.

Step 5. Run new test battery on a large sample of operators and correlated predictors with performance.

Target Population

Malicious-code reverse engineers
Research Question

Predictors of the development of experts in malicious-code reverse engineering?
Types of Factors Responsible for Performance

- Domain-Specific Knowledge and Skills
- Meta Cognitive Skills
- Teamwork Knowledge and Skills
- Cognitive Abilities
- Personality
- Work History
- Other Personal Attributes

Performance
Results of Step 2

Abilities
- Large working memory capacity

Personality:
- Curious
- Self-motivated
- Conscientiousness

Teamwork Attitudes:
- Attracted to working with smart people

Abilities
- Abstraction
- LTWM

Personality:
- Passion for work
- Conscientiousness
- Autonomous

Other:
- Self-taught
- See the big picture

FAST DEVELOPMENT

Novice Initiate Apprentice Journeyman Expert Master
Organizational Factors

- Time spent in deliberate practice = #1 predictor of expertise
- Create environment that maximizes deliberate task engagement
 - Attract interesting work
 - Minimize distractions
 - Evaluate policies and procedures that reduce task engagement time
 - Groom and retain experts
Current Work
FY14-15 Work

Phase 2

Step 1. Map the Domain.
Step 2. Map the job roles using job task analysis.
Step 3: Identify Levels of Performance and Respective Performance Metrics.
Step 4. Create a test battery.
Step 5. Run new test battery on a large sample of operators and correlated predictors with performance.
Step-by-step method

1. Generate all metrics for objective task performance
2. Use existing job analysis results to generate test battery
3. Beta-test metrics on student individuals and teams
4. Regress test battery factors on objective performance metrics
5. Evaluate metrics
Target Population

Cyber Defender Teams
Teams and Events

<table>
<thead>
<tr>
<th>Team</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandia National Labs</td>
<td>TRACERFIRE 2014</td>
</tr>
<tr>
<td>US Army Reserves</td>
<td>Cyber Endeavor, 2014 & MIT-LL Project C</td>
</tr>
<tr>
<td>US Army National Guard</td>
<td>Cyber Shield 2015</td>
</tr>
<tr>
<td>West Point</td>
<td>Weekend CTFs</td>
</tr>
</tbody>
</table>
Step 3 Task Performance Metrics Generated

• Individual Performance Metrics
 • Rotem Guttman’s work

• Team Performance Metrics
 • APL’s MATT tool
 • Booze Allen’s team performance metric
Step 4 Test Battery

- Neo PI-3 sub scales
- AIS Inventory
- Team Interaction Inventory
- Bio-data
Some dimensions tested in Team Interaction Inventory

<table>
<thead>
<tr>
<th>Knowledge</th>
<th>Skills</th>
<th>Attitudes</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Shared task models</td>
<td>- Adaptability, flexibility, dynamic reallocation of function, compensatory behavior</td>
<td>- Team orientation</td>
</tr>
<tr>
<td>- Knowledge of team mission, objectives, norms</td>
<td>- Shared situation awareness</td>
<td>- Conflict efficacy</td>
</tr>
<tr>
<td>- Task sequencing</td>
<td>- Mutual performance monitoring and feedback self-correction</td>
<td>- Shared vision</td>
</tr>
<tr>
<td>- Accurate problem models</td>
<td>- Leadership/team management, conflict resolution assertiveness</td>
<td>- Team cohesion</td>
</tr>
<tr>
<td>- Understanding teamwork skills</td>
<td>- Coordination and task integration</td>
<td>- Mutual trust</td>
</tr>
<tr>
<td>- Knowledge of boundary spanning roles</td>
<td>- Communication</td>
<td>- Collective orientation</td>
</tr>
<tr>
<td>- Teammate characteristics</td>
<td>- Decision making</td>
<td></td>
</tr>
</tbody>
</table>
What avenues does this research open up?

Professionalization - the social process by which any trade or occupation transforms itself into a true "profession of the highest integrity and competence"
Contact Information Slide Format

Jennifer Cowley
Expertise and Measurement
Foundations | CERT
Telephone: +1 412-268-4461
Email: jcowley@sei.cmu.edu

U.S. Mail
Software Engineering Institute
Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

Customer Relations
Email: jcowley@cert.org
Telephone: +1 412-268-4461
SEI Fax: +1 412-268-6257
Fuzzy Line Between *Identifiers* and *Predictors*

“FACTORS”