Fall 2014
SEI Research Review
Contract-Based Integration of CPS Analyses

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Dionisio de Niz
Team: Sagar Chaki (SEI), Ivan Ruchkin (ISR), David Garlan (SCS)

October 28th, 2014
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE
28 OCT 2014

2. REPORT TYPE
N/A

3. DATES COVERED

4. TITLE AND SUBTITLE
Contract-Based Integration of CPS Analyses - SEI Research Review

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)
; ; Chaki /Dionisio de Niz SagarRuchkin /IvanGarlan /David

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited.

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT unclassified
b. ABSTRACT unclassified
c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT
SAR

18. NUMBER OF PAGES
13

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0001790
Motivation

The development of Cyber-Physical Systems (aircrafts, cars, trains, robots, etc.) increasingly relies on many types of analyses from different disciplines for assurance purposes

- Control stability, scheduling, logic, thermal, power, aerodynamics, etc.

Large CPS are integrated out of components developed by suppliers that use their own analysis methods and make their own assumptions

Analysis assumption mismatches are discovered late in the system integration phase

- Difficult and costly to solve
Boeing 787 Suppliers

Source: Boeing / Reuters
Analyses Interactions

Scheduling + Frequency Scaling

Selected Voltage

Battery Recharge Scheduling

Cell Interconnects

Thermal Runaway Analysis

Source: National Renewable Energy Laboratory
Analysis Contracts

- Frequency Scaling
- Schedulability
- Model checking
- Control Stability
- Power
- exec Time
- Battery Sched
- Sensor Board
- CPU
- Actuator Board
- Comm Protocol (reliable/unreliable)
- AADL
Analysis Contract Scheme

Model

Analysis 1 Analysis 2 Analysis 3

Contract 1 Contract 2

Domain 1 Domain 2
Contract Language & Verification

Contract formulas
• Given domain $\sigma = (\mathcal{A}, \mathcal{S}, \mathcal{R}, \mathcal{T}, \llbracket \cdot \rrbracket_\sigma)$,
• $\mathcal{F}_\sigma ::= \forall v_1, \ldots, v_j \cdot \phi \mid \exists v_1, \ldots, v_j \cdot \phi \mid \forall v_1, \ldots, v_j \cdot \phi \mid \psi \mid \exists v_1, \ldots, v_j \cdot \phi \cdot \psi$
 – $v_i : A_i$, ϕ: static (first order) formula
 – ψ: LTL formula

Contract $C = (I, O, A, G)$
• $I \subseteq (\mathcal{A} \cup \mathcal{S})$: Sorts and properties read by the analysis
• $O \subseteq (\mathcal{A} \cup \mathcal{S})$: Sorts and properties written by the analysis
• $A \subseteq \mathcal{F}_\sigma$: assumptions: must be true in input
• $G \subseteq \mathcal{F}_\sigma$: guarantees: must be true in output

Verification
– Contract (& analysis) dependency: $d(C_i, C_j) : C_i. I \cap C_j. O \neq \emptyset$
– First order: in SMT (Z3), LTL : Model checker
Example: Surveillance Aircraft

Analysis

Security: tasks of different level to different processor

Scheduling: meet all deadlines

Freq. Scaling: minimize power

Logic: no deadlocks or race conditions

Battery scheduling: meet battery lifetime

Battery thermal: no runaways
Surveillance Aircraft Contracts

Security Analysis

- \(\text{An}_{\text{sec}} \cdot C : I = \{T, \text{ThSecCl}\}, O = \{\text{NotColoc}\}, A = \emptyset, G = \{g\}\)
 - \(g : \forall t_1, t_2 \cdot \text{ThSecCl}(t_1) \neq \text{ThSecCl}(t_2) \Rightarrow t_1 \in \text{NotColoc}(t_2)\)

Multiprocessor scheduling: (Binpacking + scheduling)

- \(\text{An}_{\text{sched}} \cdot C : I = \{T, C, \text{NotColoc, Per, WCET, Dline}\}, O = \{\text{CPUBind}\}, A = \emptyset, G = \{g\}\)
 - \(g : \forall t_1, t_2 \cdot t_1 \in \text{NotColoc}(t_2) \Rightarrow \text{CPUBind}(t_1) \neq \text{CPUBind}(t_2)\)

Frequency Scaling

- \(\text{An}_{\text{freqsc}} \cdot C : I = \{T, C, \text{CPUBind, Dline}\}, O = \{\text{CPUFreq}\}, G = \emptyset, A = \{a\}\)
 - \(a : \forall t_1, t_2 \cdot \text{CPUBind}(t_1) = \text{CPUBind}(t_2) : G(\text{CanPrmpt}(t_1, t_2) \Rightarrow \text{Dline}(t_1) < \text{Dline}(t_2)\)

Model checking periodic program (REK):

- \(\text{An}_{\text{rek}} \cdot C : I = \{T, C, \text{Per, Dline, WCET, CPUBind}\}, O = \{\text{ThSafe}\}, G = \emptyset, A = \{a_1, a_2\}\)
 - \(a_1 : \forall t \cdot \text{Per}(t) = \text{Dline}(t), a_2 : \forall t_1, t_2 \cdot G(\text{Canprmpt}(t_1, t_2) \Rightarrow G \neg \text{CanPrmpt}(t_2, t_1))\)

Thermal runaway:

- \(\text{An}_{\text{therm}} \cdot C : I = \{B, \text{BatRows, BatCols, Voltage}\}, O = \{K\}, A = \emptyset, G = \emptyset\)

Battery Scheduling

- \(\text{An}_{\text{bsched}} \cdot C : I = \{B, \text{BatRows, BatCols}\}, O = \{\text{BatConnSchedPol, HasReqLifetime, SeriqlReq, ParalRea}\}, A = \emptyset, G = \{g\}\)
 - \(g : G(K(0) \times TN(0) + K(1) \times TN(1) + K(2) \times TN(2) + K(3) \times TN(3) \geq 0)\)
Frequency Scaling Assumption

\[a: \forall t_1, t_2 \cdot CPUBind(t_1) = CPUBind(t_2) : G(CanPrmpt(t_1, t_2) \Rightarrow Dline(t_1) < Dline(t_2) \]

- **DMS ≠ RMS**
 - \(P=D \)
 - \(D \) and \(P \) are not equal

- **EDF ≠ RMS**
 - \(P=D \)
 - \(P=\)D, Harmonic, Sync

- **DMS = RMS**
 - \(P=D \)
 - \(P=\)D

- **EDF = RMS**
 - \(P=D \)
 - \(P=\)D
Battery Scheduling Assumption

\[g: G(K(0) \times TN(0) + K(1) \times TN(1) + K(2) \times TN(2) + K(3) \times TN(3) \geq 0) \]

Ratio of cells with 0, 1, 2, 3 neighbors: \[1 \cdot TN(1) - 1 \cdot TN(2) + 10 \cdot TN(3) \geq 0 \]

1 \cdot 4 - 1 \cdot 10 + 10 \cdot 2 = 14 \geq 0

1 \cdot 2 - 1 \cdot 14 + 10 \cdot 0 = -12 < 0
Analyses Dependencies
Implementation

Models in the Architecture Analysis and Design Language (AADL)

- Supports multiple analysis
- Supports language extensions (subannexes)
- OSATE Implementation

Analysis Contract Annex

- Implement contract language
- Generates model interpretation

Contract formulas verification

- First Order Logic (Static): SMT / Z3
- LTL (Runtime): Model checking / SPIN

Contact Information

Dionisio de Niz
Senior MTS
CSD/CSC
Telephone: +1 412-268-9002
Email: dionisio@sei.cmu.edu

U.S. Mail
Software Engineering Institute
Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

Web
www.sei.cmu.edu
www.sei.cmu.edu/contact.cfm

Customer Relations
Email: info@sei.cmu.edu
Telephone: +1 412-268-5800
SEI Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257