MESOSCALE MODELING OF ENERGETIC MATERIALS

Michael E Nixon and Martin J. Schmidt

AFRL/RWML

OCT 2014

INTERIM REPORT

DISTRIBUTION A. Approved for public release; distribution is unlimited; 96ABW-2012-0263.
NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

Qualified requestors may obtain copies of this report from the Defense Technical Information Center (DTIC) <http://www.dtic.mil/dtic/index.html>.

AFRL-RW-EG-TR-2014-121 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

EWING.CRAIG.M.1229434825
CRAIG EWING, DR-IV, PhD.
CTC Lead, Munitions Effects Sciences

SCHMIDT.MARTIN.J.1229847941
MARTIN J. SCHMIDT, DR-III, PhD.
Work Unit Manager

This report is published in the interest of scientific and technical information exchange, and its publication does not constitute the Government’s approval or disapproval of its ideas or findings.
ABSTRACT

The goal of the program is to incorporate deformation damage into material models for energetic materials and correlate the damage to changes in energetic behavior. Of primary interest is the effect on the energetic sensitivity of the material from internal damage occurring during a penetration event. Changes in the internal structure due to grain fracture and grain debonding from the matrix material may lead to both a change in the mechanical properties as well as the sensitivity to energetic behavior. This briefing represents interim progress towards these goals.
Mesoscale Modeling of Energetic Materials
AFOSR Review

PI: Dr. Michael E Nixon
Co-PI: DR. Martin Schmidt
Sponsor: Dr. David S. Stargel

July 25 2012
Background

• Collaborative effort within AFRL
 – Computational Mechanics Branch (RWWC)
 – High Explosives Research and Development Branch (RWME)
 – Damage Mechanisms Branch (RWMW)

• Goal: Predict survivability of energetic payload of high speed penetrating weapons

• Approach:
 – Use XCMT
 • Investigate internal structure of pristine and damaged materials
 • Generate representative computational meshes
 – Perform meso scale simulations of composite energetic materials used in AF penetrating weapons
 – Incorporate deformation damage into material models for energetic materials
 – Extract data from FEM simulations of RVE’s to feed thermal-reactive prediction code
Status

• Established capability to generate computational mechanical RVE from XCMT data
• Generated experimental data for the mechanical behavior of simple explosive
 – Pristine
 – Damaged
• Performed simulations on mechanical RVE’s
 – From XCMT
 – Idealized
• Developed and performed initial thermal-reactive predictions (currently under development)
Aluminum Foam

Photograph
(2.75 inch x 2 inch)

Slice from XCT-Scan

Representative Volume
(10 mm x 10 mm x 10mm)

Temperature Distribution

Extent of Reaction
0=unreacted and 1=reacted

$u_0=1,435$ m/s
$u_0=958$ m/s
$u_0=499$ m/s

Cleared for Public Release – 96ABW-2012-0263
RVE Study
Pressure Loads from Systems Level Simulation

Pressure near the nose

Contours of pressure shown at 0.002 s

2500 ft/s, 10 ksi Half Space, Normal Impact

Cleared for Public Release – 96ABW-2012-0263
Characterization Data of Composite

Specimen 1 to 5

Compressive Tests at 0.24mm/min

Cleared for Public Release – 96ABW-2012-0263
Characterization Data of Composite

Compression Tests at 24 mm/min

Cleared for Public Release – 96ABW-2012-0263
Characterization Data of Composite

MNX-295 DMA Sample #1

Storage Modulus (MPa)

Loss Modulus (MPa)

Temperature (C)

1 Hz
10 Hz
100 Hz

Cleared for Public Release – 96ABW-2012-0263
Thermal-reactive Model

- We can use nearest-neighbor distributions to help quantify explosive morphology.
- We may estimate statistical distributions of the heterogeneous temperature rise that results from mechanical loading.
- These distributions can be used to initialize a thermal-reactive representative volume element (RVE), which is called a “realization”.
- Many realizations can be initiated using the same statistics.
- Not all realizations will undergo complete chemical reaction, even with adiabatic RVE boundary conditions.
- We are interested in this uncertain “region”, or ignition threshold. It is our goal to understand and quantify this uncertainty.
Main Steps: Processing and Post-processing

Step #1: Run and post-process the finite element (FE) RVE
a. Specify a loading condition and run the FE simulation.
b. Post process the following for each crystal:
 i. centroids, X_i
 ii. size or volume, V_i
 iii. maximum temperature, $T_{\text{max},i}$
 iv. average temperature, $T_{\text{avg},i}$

Step #2: Obtain statistics (Gaussian mean μ and std. deviation σ)
a. Use the cutoff temperature, T_c, to classify each $T_{\text{max},i}$ as either a H.S. (hot spot) or a C.S. (cold spot).
b. For H.S. - $T_{\text{max},i}$, $T_{\text{avg},i}$, $V_{\text{hs},i}$, and NN_{hs} (nearest neighbor), find μ and σ.
c. For C.S. - $T_{\text{avg},i}$, $V_{\text{cs},i}$, and NN_{cs}, find μ and σ.
d. For H.S. - NN_{tmax}, find μ and σ for 3 bins using all H.S. T_{max} values.
Main Steps: Processing and Post-processing

Step #3: Initialize and run a realization of a thermal-reactive RVE
a. For H.S., randomly initialize centroid values, $X_{hs,i}$ with $V_i = V_{hs}(\mu, \sigma)$.
b. For H.S., synthetically anneal $X_{hs,i}$ to fit desired NN_{hs} distribution.
c. For H.S., randomly assign hot spot $T_{max,i}$.
d. For H.S., anneal the 3 temperature nearest neighbor distributions using NN_{tmax} values.
e. For C.S., randomly initialize centroid values, $X_{cs,i}$ with $V_i = V_{cs}(\mu, \sigma)$.
f. For C.S., synthetically anneal $X_{cs,i}$ to fit desired NN_{cs} distribution.
g. Run the thermal-reactive RVE simulation.

Step #4: Obtain ignition distribution for a given load, L
a. Repeat Step #3 many times and record ignition results (either yes or no ignition).
b. Calculate the ignition probability based on multiple realizations for a single load, L.

Step #5: Obtain ignition threshold as a function of load, L
a. Repeat Steps #1-4.
b. Calculate the ignition threshold as $P_i(L)$ as a function of the load, L, where P_i is the probability of ignition that is obtained from the ignition probability in Step #4.
Synthetic Annealing

− Assume that the nearest neighbor, NN1, distribution is Gaussian

\[P[d_k | (d_i - \delta d/2) < d_k \leq (d_i + \delta d/2)] = a_{NN} \exp \left\{ -\frac{1}{2} \left(\frac{d_i + \mu}{\sigma} \right)^2 \right\} \]

− for \(i = 1, \ldots, N_d \), where \(N_d \) = number of bins to discretize NN1
− \(\delta d \) = width of the bins
− \(\mu \) = mean distance
− \(\sigma \) = standard deviation of the distance
− \(a_{NN} \) = scaling parameter so that sum of \(d_i \) probabilities sum to unity

\[a_{NN} \cdot \sum_{i=1}^{N_d} P(d_i) = 1 \]
Synthetic Annealing

– We let $P(d_i)_{syn}$ denote the synthetic probability obtained from the annealed configuration and $P(d_i)_{act}$ denote the actual or experimental distribution.

– The objective function to be minimized is

$$e_{NN} = \sqrt{\sum_{i=1}^{N_d} \left(P(d_i)_{syn} - P(d_i)_{act} \right)^2}$$

– Procedure:
 a) Randomly assign crystal centroids to locations
 b) A subset of the centroids are randomly perturbed in the x, y, and z directions.
Synthetic Annealing

– Procedure (cont.):
 c) The objective function is evaluated again to give a new e_{NN}.
 d) If the new value of e_{NN} is smaller than the previous value, then the new configuration is kept. If not, then the probability that the configuration will be kept is given by,

$$P = \exp\left\{-de_{NN}/T_v\right\}$$

$T_v = \text{virtual temperature (can be a function of number of attempts)}$

e) Steps b-d are repeated until either i) the maximum number of attempts has been reached, or ii) the number of temperature (T_v) decrements has been reached.
Example: Step #3

- The random centroid distribution is shown below.
- Hot spots (hs, red) and cold spots (cs, blue).

\(N_{hs} = 4 \text{ to } 12 \) (varies linearly with load)

\(N_{total} = 30 \) crystals

\(N_{cs} = N_{total} - N_{hs} \)

\(L_x = L_y = L_z = 15 \text{ microns} \)

\(\mu_{(D,hs)} = \mu_{(D,cs)} = 2 \text{ microns} \)

\(\sigma_{(D,hs)} = \sigma_{(D,cs)} = 1 \text{ microns} \)

Min diameter = 0.5 micron (hs and cs)

\(\mu_{(NN1,hs)} = (4.5 - N_{hs}/20)*1e-6 \text{ microns} \)

\(\mu_{(NN1,cs)} = (3.0 - N_{cs}/20)*1e-6 \text{ microns} \)

\(\sigma_{(NN1,hs)} = \sigma_{(NN1,cs)} = 1 \text{ microns} \)

\(nx = ny = nz = 31 \)
Example: Step #3

Hot spot centroid annealing – nearest neighbor distribution (NN1)

\[N_{\text{attempt}} = 300, \: D_{\text{move}} = 2dx, \: T_{\text{virtual}} = 80, \: \varphi_{\text{move}} = 0.20 \]

\[\text{ENN1 (random)} = 0.4151 \]
\[\text{ENN1 (annealed)} = 0.1679 \]
Example: Step #3

Non-hot spot centroid annealing – nearest neighbor distribution (NN1)

ENN1 (random) = 0.3837

ENN1 (annealed) = 0.0939

Cleared for Public Release – 96ABW-2012-0263
Example: Step #3

Demonstration assumptions for this example:

– All grains have the same volume.
– Initial temperature, within each grain, is equal to the bulk temperature of the RVE.
– The material properties C_p, ρ, k_c, and dH_{rxn} are all constant.
– The hot spot maximum temperature distribution is constant.
– Loading is simulated by linearly varying the bulk temperature and the number of hot spots.
– There is no correlations between crystal temperature and the NN1 distribution.
– The RVE is adiabatic, and it has symmetric boundary conditions.
Example: Step #3

- (Right) Temperature contour on one face of the RVE cube at 300 microseconds.
- Periodic boundary conditions.

Run time = 300 microseconds

$\mu_{(T,hs)}(avg) = 800 \, K$
$\mu_{(T,bulk)}(avg) = 522 \, to \, 625 \, K$
$\sigma_{(T,hs)}(avg) = 100 \, K$
$\sigma_{(T,cs)}(avg) = 100 \, K$
CFL = 0.6
kc (conductivity) = 0.2 \, \text{W/m*K}
Cp = 1466 \, \text{J/kg*K}
Rho = 1180 \, \text{kg/m}^3

$dHrxn$ (heat of reaction) = $2.0e9 \, \text{J/m}^3$

$T_{critical} = 700 \, K$ (crystal ignition criterion)
Example: Steps #4-5

- A single loading condition shows the average crystal temperature, not the bulk RVE temperature.
- 20 realizations for each loading condition.
- Threshold is approximately 530 to 580 K (50 degree range)
Summary

• Can generate meshes from XCMT
• Have experimental data of mock and explosive composite
• Have carried out simulations on mechanical RVE’s from XCMT and idealized
• Developed and demonstrated thermal ignition predictive approach
Future Work

• Develop approaches for extracting data from FEM to feed thermal ignition code
• Improve temperature computation approach in FEM
• Implement better thermal-reactive modeling
• Quantify the range of validity using experiments
Related Efforts

- **SBIR’s**
 - Phase 2 PENETRATION SURVIVABLE ADVANCED ENERGETIC
 - Symmetrix
 - Streamline
 - Illinois RocStar
- **STTR’s**
 - Phase I with Multiscale Design
 - Topic on NDE for low density gradient materials
- **Los Alamos NL**
- **Should soon have a signed Project Agreement with Germany**
- **Udaykumar of University of Iowa**
Cleared for Public Release – 96ABW-2012-0263
DISTRIBUTION LIST
AFRL-RW-EG-TR-2014-121

<table>
<thead>
<tr>
<th>Distribution Center</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defense Technical Information Center</td>
<td>1 Electronic Copy (1 File & 1 Format)</td>
</tr>
<tr>
<td>Attn: Acquisition (OCA)</td>
<td></td>
</tr>
<tr>
<td>8725 John J. Kingman Road, Ste 0944</td>
<td></td>
</tr>
<tr>
<td>Ft Belvoir, VA 22060-6218</td>
<td></td>
</tr>
</tbody>
</table>

EGLIN AFB OFFICES:

<table>
<thead>
<tr>
<th>Office</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFRL/RWOC (STINFO Office)</td>
<td>1 Hard (Color) Copy</td>
</tr>
</tbody>
</table>