NDIA Hard Problems Workshop Cyber COI Deep Dive (U)

AFRL/RI, 525 Brooks Rd, Rome NY 13441-4505

Approved for public release, distribution unlimited

The original document contains color images.
NDIA Hard Problems Workshop - Cyber COI Deep Dive

5 Nov 14

Dr. Richard Linderman
Cyber COI Steering Group Lead

This briefing is Approved for Public Distribution. OSD Release #14-S-2118
Outline

- BLUF
- Cyber COI Overview
 - Roadmap Development Process
 - Cyber COI “4 + 2” S&T Roadmaps and Recent Successes
 - Hard Problems and Gaps
 - Engagements, Way Ahead, and Opportunities
- Summary
BLUF – Bottom Line Up Front

- Established, mature, and coordinated community

- Cyber S&T aligned to expanding operational capability gaps/priorities

- Cyber S&T contributions to nearly all Seven DoD Hard Problems

- Driving deeper engagement with industry and international partners
S&T Influencing the DoD Cyber Landscape

"...we will continue to invest in capabilities critical to future success, including... operating in anti-access environments; and prevailing in all domains, including cyber."

- President Obama, January 2012
DoD Cyber S&T Coordination

ASD(R&E) Oversight

Research Directorate

Cyber S&T Community of Interest (COI)

Cyber Coordination Team

Special Cyber Operations Research Engineering (SCORE) Interagency Working Group

Networking and Information Technology Research and Development (NITRD)

Cyber Security and Information Assurance (CSIA) Interagency Working Group

- **COI Steering Group:**
 - **SG Lead:** AF - Dr. Richard Linderman
 - **Deputy:** Army - Mr. Henry Muller
 - Navy - Dr. Wen Masters
 - NSA - Dr. Boyd Livingston
 - OSD - Dr. Steven King

- **COI Working Group:**
 - **WG Lead:** AF - Mr. Chester Maciag
 - **Deputy:** Army - Mr. Giorgio Bertoli
 - Navy - Dr. Gary Toth
 - NSA - Mr. Grant Wagner
 - OSD - Mr. Stephen Luther

Users
- DISA
- NSA IAD
- DCIO
- ONR/NRL
- AFR/AFOSR
- NSA Research
- DARPA
- RDECOM
- DTRA
- USSTRATCOM/USCYBERCOM
- USD(I)

Research Community

Community of Interest and Working Groups are the primary means for oversight, collaboration, & coordination

Distribution A – For Public Release
Cyber COI - Scope

An Operational Domain: JS OV-5a. Based on JROC-Approved Capability Documents and DoD CIO-developed Architectures

- Spans Defense, Effects, Situational Awareness-Course of Action
- Includes enterprise, tactical and embedded
- Cuts across all domains
- Touches C4I, EW, Autonomy, and Human Systems COIs
- Transcends S&T across all DOTMLPF
- QDR Tenets Addressed
 - Mitigates Threats
 - Delivers Affordable Capability
 - Affords Technological Surprise
DoD Cyber S&T: Performers
(FY14 Execution)

- Service S&T Labs
 - AFRL, RDECOM, NRL, SPAWAR
- DoD Agencies
- DoE Labs
- FFRDCs
- Industry
- Academia

Breakout by Recipient (%)

- Academic
- Industry
- FFRDCs
- DOE Labs
- DoD S&T Lab
Cyber COI Recent Activities

- (U) Briefed roadmap to S&T EXCOM in May
 - (U) Cyber PSC → Cyber [Security] COI
 - (U) Incorporated findings of Cyber Investment Management Board
 - (U) High-level cyber S&T metrics

- **Evolving toward a Level 4 COI**
 - (U) International: Working multilateral cyber S&T agreements
 - (U) Academic: HBCU-MI Cyber Center of Excellence
 - (U) Industry: Engagement and collaboration leading to strategic Reliance
Outline

• BLUF
• Cyber COI Overview
• **Roadmap Development Process**
 • Cyber COI “4 + 2” S&T Roadmaps and Recent Successes
 • Hard Problems and Gaps
 • Engagements, Way Ahead, and Opportunities
• Summary
Cyber S&T Roadmap Evolution

2009 → 2010 → 2011 → 2012 → 2013 → 2014

- COI
- PSC
- COI

GOF Study 4.18
DoD S&T
Investment in
Cyberspace Security
and Information
Assurance

Cyber S&T
Capability
Framework

Way Ahead: CIMB &
Cyber Metrics Maturation

CIMB Driven Developments

Technology
Challenges

Cyber Forces Concept
of Employment

Roadmap
Development and
Priority Gaps
Cyber S&T Capability Framework

From CLMB Analysis of JS OV-5

Defense
- Reduce attack surface and increase resiliency of DODIN
- Reduce attack surface and increase resiliency of embedded/weapons systems
- Discover, understand, and engage threats

Engagement
- Active defense
- Respond to large-scale threats

Situational Awareness and Courses of Action
- Cyberspace situational awareness
- Understand cyber dependencies of missions
- Integrated course of action, cyber and non-cyber
Cyber S&T Capability Framework
Examples of High Level Metrics

Defense

• Increase total resources required by an adversary to achieve an effect
• Reduce adversary dwell time
• Reduce time until defense forces are aware of adversary

Engagement

• Increase cyber readiness
• Increase sophistication of campaign plans

Situational Awareness and Courses of Action

• Reduce time to map mission dependencies on cyber assets
• Improve robustness of mission-to-cyber mapping
• Increase quality of generated COA’s
Cyber S&T Roadmap
Technology Challenges & Cross Cutting Areas

Assuring Effective Missions
- Cyber Mission Control
- Scalable Operations

Agile Operations
- Cyber Maneuver
- Autonomic Cyber Agility

Resilient Infrastructure
- Resilient Architectures
- Resilient Algorithms and Protocols

Trust
- Trust Foundations

Embedded, Mobile, and Tactical (EMT)
DoD's Joint Cyber S&T Focus Areas

<table>
<thead>
<tr>
<th>Focus Area</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assuring Effective Missions</td>
<td>Assess & control the cyber situation in mission context</td>
</tr>
<tr>
<td>Agile Operations</td>
<td>Escape harm by dynamically reshaping cyber systems as conditions/goals change</td>
</tr>
<tr>
<td>Resilient Infrastructure</td>
<td>Withstand cyber attacks, while sustaining or recovering critical functions</td>
</tr>
<tr>
<td>Trust</td>
<td>Establish known degree of assurance that devices, networks, and cyber-dependent functions perform as expected, despite attack or error</td>
</tr>
<tr>
<td>Embedded, Mobile, & Tactical (EMT)</td>
<td>Increase the capability of cyber systems that rely on technologies beyond wired networking and standard computing platforms</td>
</tr>
<tr>
<td>Modeling, Simulation, & Experimentation (MSE)</td>
<td>Simulate the cyber environment in which the DoD operates to enable mission rehearsal and a more robust assessment and validation of cyber technology development</td>
</tr>
</tbody>
</table>
Outline

- BLUF
- Cyber COI Overview
- Roadmap Development Process
- **Cyber COI “4 + 2” S&T Roadmaps and Recent Successes**
- Hard Problems and Gaps
- Engagements, Way Ahead, and Opportunities
- Summary
Cyber FY15 S&T Across 4+2 Technology Areas

- **Funding Observations**
 - Appropriately increasing emphasis in AEM and EMT
 - Continued strong demand for Resilience
 - Trust focuses on military-unique topics
 - Agility operational goals and tradeoffs under discussion
 - Under-investment in MS&E resulting in acquisition and operational gaps

Note: The EMT figures include some overlap with the other technology areas.
Trust Foundations

Objectives / Accomplishments / Challenges

Objectives:
- Trusted Components and Architectures: Develop measures of trustworthiness for cyber components and large systems of varying pedigree and trustworthiness
- Scalable Supply Chain Analysis and Reverse Engineering: Analyze, attribute, and repurpose hardware and software at the speed and scale required for real-time strategic engagement

Accomplishments:
- FY13/14 Success Stories
 - Army: SW Assurance Toolkit (SWAT)
 - AF: Secure Processor
 - AF: Context/Content Aware Trusted Router
 - AF: Secure View

Technical Challenges:
- Development of Trust Anchors for component-level and composed HW and SW
- Tamper-proof/evident HW and SW components and systems
- Contextual threat/trust scoring calculus
- Rapid, assisted, and automated HW and SW analysis and validation
- Algorithms for accurate attribution of malware authors and supply chain tampering
Trust Foundations Roadmap

<table>
<thead>
<tr>
<th>Area</th>
<th>FY13</th>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
<th>FY18</th>
<th>FY19</th>
<th>FY20</th>
<th>FY21</th>
<th>FY22</th>
<th>FY23</th>
<th>FY24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trusted Components and Architectures</td>
<td></td>
</tr>
<tr>
<td>Reduce DODIN attack surface and increase resiliency</td>
<td></td>
</tr>
<tr>
<td>CSG</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWAT</td>
<td></td>
</tr>
<tr>
<td>HACMS</td>
<td></td>
</tr>
<tr>
<td>Trust Measurement and Management</td>
<td></td>
</tr>
<tr>
<td>Distributed Reputation Mgmt</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Context-Aware Trust Scoring</td>
<td></td>
</tr>
<tr>
<td>Composite Trust Measures</td>
<td></td>
</tr>
<tr>
<td>Vetting IT Security</td>
<td></td>
</tr>
<tr>
<td>Active Defense</td>
<td></td>
</tr>
<tr>
<td>Attack Surface Measurement</td>
<td></td>
</tr>
<tr>
<td>Define and Measure Surface</td>
<td></td>
</tr>
<tr>
<td>System of Systems Assessment</td>
<td></td>
</tr>
<tr>
<td>Analyze trust mechanisms</td>
<td></td>
</tr>
<tr>
<td>Scalable Supply Chain Analysis and Reverse Engineering</td>
<td></td>
</tr>
<tr>
<td>Auto SW Vulnerability Discovery</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>RAPID</td>
<td></td>
</tr>
<tr>
<td>Manual RE/Assessment</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Auto Detection of supply chain HW counterfeit</td>
<td></td>
</tr>
<tr>
<td>Detection/mitigation of malicious HW functions</td>
<td></td>
</tr>
</tbody>
</table>

Key
- **Funded**
- **Unfunded Gap**
- **DARPA**
- **Partially/Fully Unfunded Gap**
- **Expected TRL (#)**

Distribution A – For Public Release
Resilient Infrastructure
Objectives / Accomplishments / Challenges

Objectives:
- **Resilient Architectures**: Develop integrated architectures that are optimized for the ability to absorb shock and speed recovery to a known secure operable state.
- **Resilient Algorithms and Protocols**: Develop novel protocols and algorithms to increase the repertoire of resiliency mechanisms available to the architecture that are orthogonal to cyber threats.

Accomplishments:
- **FY13/14**
 - Army DEFIANT
 - Army: CRUSHPROOF

Technical Challenges:
- Assessment environments and tools for measuring resiliency of HW, SW, networks, and systems
- Calculus for relating resiliency concepts into measurable operational impact and automated DODIN defense actions
- Resilient overlay control planes that orchestrate defense of heterogeneous DODIN systems
- Secure, LPI/J, energy-efficient, mobile communication protocols
- Certifiable, agile, and affordable mobile device HW, OS, and app ecosystem
Resilient Infrastructure Roadmap

<table>
<thead>
<tr>
<th>FY13</th>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
<th>FY18</th>
<th>FY19</th>
<th>FY20</th>
<th>FY21</th>
<th>FY22</th>
<th>FY23</th>
<th>FY24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near</td>
<td>Mid</td>
<td>Far</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resilient Architectures</td>
<td>Resiliency Metrics and Assessment</td>
<td>M&S models for resiliency determination</td>
<td>In-situ resiliency analysis tools</td>
<td>Resilient Service Net</td>
<td>Threat-Aware Resilient Service Net</td>
<td>Resilient, Threat-Aware DODIN</td>
<td>Autonomous, self-managing resilient systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduce Attack Surface/Increase Resiliency of the DODIN</td>
<td>JIE Hardened Cloud</td>
<td>Resilient Service Net</td>
<td>Threat-Aware Resilient Service Net</td>
<td>Resilient, Threat-Aware DODIN</td>
<td>Autonomous, self-managing resilient systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Control planes</td>
<td>Defiant</td>
<td>CRUSHPROOF</td>
<td>CND/IA</td>
<td>Control Planes for Heterogeneous Networks</td>
<td>Automated response and recovery</td>
<td>Resilient Frameworks</td>
<td>Autonomous Self-healing networks and hosts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Components & Systems</td>
<td>Resilient multi-core processing</td>
<td>Threat-Aware System Resiliency</td>
<td>Resilient Frameworks</td>
<td>Autonomous Self-healing networks and hosts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Algorithms and Protocols</td>
<td>SW Resiliency</td>
<td>Resilience Validation Tools</td>
<td>Resilience Validation Tools</td>
<td>Resilience Validation Tools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>CRASH, SAFER</td>
<td></td>
</tr>
</tbody>
</table>

Key:
- Yellow: Funded
- Gray: Unfunded Gap
- Purple: DARPA
- Red: Partially/Fully Unfunded Gap Expected TRL (#)

Distribution A - For Public Release
Agile Operations
Objectives / Accomplishments / Challenges

Objectives:
• **Cyber Maneuver**: Develop mechanisms that enable dynamically changing cyber assets to be marshaled and directed toward an objective – to create or maintain a defensive or offensive advantage.
• **Autonomic Cyber Agility**: Speed the ability to reconfigure, heal, optimize, and protect cyber mechanisms via automated sensing and control processes.

Accomplishments:
• Army: MorphiNator
• AF: ARCSYNE/COSYNE

Technical Challenges:
• Real-time, mission-aware traffic engineering including routing of threats
• Collaborative, coordinated cyber maneuver of multiple actors and forces (including coalition)
• Cyber maneuver for deceiving threats
• Dynamic reconfiguration of networks, systems and applications
• Autonomous reconfiguration
Agile Operations Roadmap

<table>
<thead>
<tr>
<th>Cyber Maneuver</th>
<th>Near</th>
<th>Mid</th>
<th>Far</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FY13</td>
<td>FY14</td>
<td>FY15</td>
</tr>
<tr>
<td>Discover, understand, and engage Threats</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAFER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIAC, Transparent Computing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Defense</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real-time, Mission-aware Traffic Engineering of Blue and Red</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real-time goal-based traffic engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threat-based Dynamic Routing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large Scale Threat Hardening</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISN/624OC Transition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Context Aware Decision Support</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mission/System Mapping and Modeling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decision Support & Commander's Intent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workflow Analysis and Prediction</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Respond to large-scale threats</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autonomic real-time course of action management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MorphINator</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic reconfiguration and repurposing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ambiguity Reasoning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graded and Automated Attack Mitigation Options</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key:
- **Funded**
- **Unfunded Gap**
- **DARPA**
- Partially/Fully Unfunded Gap
- Expected TRL (#)

Distribution A – For Public Release
Assuring Effective Missions
Objectives / Accomplishments / Challenges

Objectives:
- Cyber Mission Control: Develop tools and techniques that enable efficient models of cyber operational behaviors (cyber and kinetic) to determine the correct course of action in the cyber domain
- Scalable Operations: Develop ability to operate and survive during operations conducted by large-scale threats

Accomplishments:
- Promised last year for FY13
 - OSD: Purple Musket
 - Navy: Flying Squirrel BT Integration
- FY13/14 AF: Mission Aware Cyber C2 (MACC2)

Technical Challenges:
- Tools for mapping and real-time analysis of missions to enable cyber/kinetic situational awareness
- Understanding dynamically evolving missions and their dependencies, identifying cyber/kinetic change indicators, updating models and resolving cross-dependencies, projecting change trends
- Decision Support and reasoning tools that factor in multiple dimensions (e.g., attribution, severity, reversibility of effect, BDA, ...)

Cyber Col
14-Nov-14 Page-23

Distribution A – For Public Release
Modeling, Simulation, & Experimentation

Objectives / Accomplishments / Challenges

Objectives:
- **Simulation and Experimentation Technology:**
 - Enable robust, quantifiable, and repeatable assessment and validation of candidate cyber technology
- **Models & Analysis:**
 - Simulate the cyber operational environment with high fidelity
 - Describe and predict interactions and effect between physical and cyber domains

Accomplishments:
- Sequoia HPC achieved world record 10^{15} events/sec
- Army: Cyber Army Modeling & Simulation (CyAMS)
- AF: Cyber Experimentation Environment

Technical Challenges:
- Automated, rapid instantiation of large-scale, complex computing and network environments
- Objective architecture for heterogeneous range component integration and synchronization
- M&S for large-scale aggregate Internet behavior, operating at multiple timescales
- Integrated high-fidelity models of kinetic and cyber phenomena
- Human behavioral and intention models
- Planning and Assessment algorithms to evaluate operational agility and assurance
Modeling, Simulation, and Experimentation (MSE) Roadmap

Simulation & Experimentation Technology

<table>
<thead>
<tr>
<th></th>
<th>Near FY13</th>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
<th>FY18</th>
<th>FY19</th>
<th>FY20</th>
<th>FY21</th>
<th>FY22</th>
<th>FY23</th>
<th>FY24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respond to Large-scale Threats</td>
<td>NCR</td>
<td>CEE</td>
<td>CyAMS</td>
<td>NCR</td>
<td></td>
<td>Joint IO Range Architecture Upgrade</td>
<td>Joint IO Range Fidelity/Scale Upgrade</td>
<td>Automated instantiation of large-scale complex network environments</td>
<td>Objective Architecture for Cyber Experiment and Test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M & S for large-scale aggregate behavior, operating at multiple timescales</td>
<td>Sequoia PDES @ 10^15</td>
<td>Validated Cyber Benchmark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Country-Level Simulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Models & Analysis

<table>
<thead>
<tr>
<th></th>
<th>FY13</th>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
<th>FY18</th>
<th>FY19</th>
<th>FY20</th>
<th>FY21</th>
<th>FY22</th>
<th>FY23</th>
<th>FY24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understand Cyber Dependencies of Missions // Integrated COA // Discover, Understand, Engage Threats</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cyber Ops Plan/Assess Tool</td>
<td>Cyber-Kinetic Planning/Assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated high-fidelity models of kinetic and cyber phenomena</td>
<td>Large Scale Cyber Quantification</td>
<td>Internodal Modeling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Human behavioral and intent models</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key

- Funded
- Unfunded Gap
- DARPA
- Partially/Fully Unfunded Gap
- Expected TRL (#)
Objectives:

- **Mobile and Tactical Systems Security**
 - Secure information sharing at tactical edge
 - Reduction of mobile computing attack surface in all its aspects

- **Embedded Tactical Composite Trust**
 - Architectural approaches for composing embedded systems
 - Security capabilities needed for robust and secure composed systems

- **Leverage International Partners**

Accomplishments:

- **Navy:** Network Pump – II

- **Army:** Tactical Army Cross Domain Information Sharing (TACDIS)

Technical Challenges:

- Secure, LPI/J, energy-efficient, mobile communication protocols
- Certifiable, agile, and affordable mobile device hardware, OS, and app ecosystem
- Tools to monitor and assess assurance of cyber operations in converged strategic/tactical systems
- Self-monitoring systems in systems, including real-time integrity measurement
- Tools to monitor and assess the health and behaviors of embedded cyber systems - security of weapons systems and platforms

Apply the Cyber S&T Roadmap to Embedded, Mobile, and Tactical Environments
Embedded, Mobile and Tactical Roadmap

<table>
<thead>
<tr>
<th></th>
<th>FY13</th>
<th>FY14</th>
<th>FY15</th>
<th>FY16</th>
<th>FY17</th>
<th>FY18</th>
<th>FY19</th>
<th>FY20</th>
<th>FY21</th>
<th>FY22</th>
<th>FY23</th>
<th>FY24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near</td>
<td></td>
</tr>
<tr>
<td>Mobile and</td>
<td></td>
</tr>
<tr>
<td>Tactical</td>
<td></td>
</tr>
<tr>
<td>Systems</td>
<td></td>
</tr>
<tr>
<td>Security</td>
<td></td>
</tr>
<tr>
<td>Cyberspace</td>
<td></td>
</tr>
<tr>
<td>Situational</td>
<td></td>
</tr>
<tr>
<td>Awareness</td>
<td></td>
</tr>
<tr>
<td>Mid</td>
<td></td>
</tr>
<tr>
<td>Assurance</td>
<td></td>
</tr>
<tr>
<td>of Converged</td>
<td></td>
</tr>
<tr>
<td>Mobile &</td>
<td></td>
</tr>
<tr>
<td>Back-end</td>
<td></td>
</tr>
<tr>
<td>Systems</td>
<td></td>
</tr>
<tr>
<td>Reduce</td>
<td></td>
</tr>
<tr>
<td>Attack Surface</td>
<td></td>
</tr>
<tr>
<td>& Increase</td>
<td></td>
</tr>
<tr>
<td>Resiliency of</td>
<td></td>
</tr>
<tr>
<td>Embedded/Tac</td>
<td></td>
</tr>
<tr>
<td>tical Systems</td>
<td></td>
</tr>
<tr>
<td>Far</td>
<td></td>
</tr>
<tr>
<td>Secure</td>
<td></td>
</tr>
<tr>
<td>Embedded</td>
<td></td>
</tr>
<tr>
<td>System</td>
<td></td>
</tr>
<tr>
<td>Architectures</td>
<td></td>
</tr>
<tr>
<td>Distribution</td>
<td></td>
</tr>
<tr>
<td>A—For Public</td>
<td></td>
</tr>
<tr>
<td>Release</td>
<td></td>
</tr>
</tbody>
</table>

Key
- **Funded**
- **Unfunded Gap**
- **DARPA**
- **Partially/Fully Unfunded Gap**
- **Expected TRL (#)**
Outline

• BLUF
• Cyber COI Overview
• Roadmap Development Process
• Cyber COI “4 + 2” S&T Roadmaps and Recent Successes
• Hard Problems and Gaps
 • Engagements, Way Ahead, and Opportunities
• Summary
Specific Gap Assessment

Defense
- Trustworthy embedded system architectures composed of components of mixed trust
- Trust scoring mechanisms
- Scalable HW/SW analysis and verification techniques
- Resilient mobility

Engagement
- Control planes for heterogeneous components and systems
- Threat-aware defenses
- Real-time defensive traffic management

Situational Awareness and Courses of Action
- Graded options responsive to commander’s intent
- Analysis of Mission Dependencies to Cyber Infrastructure
- Cyber-Kinetic integration, planning, and assessment

Measurement and Metrics
- Quantifiable attack surface measurement
- Component and system resiliency metrics
- Threat-based agility metrics
- Calculus for Mission Assurance
- Cyber modeling and simulation and experimentation
Outline

• BLUF
• Cyber COI Overview
• Roadmap Development Process
• Cyber COI “4 + 2” S&T Roadmaps and Recent Successes
• Hard Problems and Gaps
• Engagements, Way Ahead, and Opportunities
• Summary
Community Engagement

- TTCP Cyber Grand Challenge (Kickoff Jun 2014)
 - Trust Foundations
 - Mission Assurance Through Mission Awareness (MASA)
 - Integrated Cyber-EW Operations

- STRATCOM/J8 EW-Cyber ICD (Draft Dec 2014)

- Five RDA-TFs for Cyber

- DoD Innovation Marketplace
 - Bi-Weekly engagement
 - AFRL IR&D Review
DoD Unique Cyber Capabilities

- **Experimentation/Assessment**
 - Cyber Experimentation Environment (CEE)
 - Army Cyber Research & Analytics Laboratory (ACAL)
 - D-Shell
 - High Performance Computing (HPC)
 - CND data sets

- **Ranges**
 - National Cyber Range (NCR)
 - Joint IO Range (JIOR)

- **Maturing Capabilities**
 - Contested Cyber Environment (CCE)
 - Network Integration Environment (NIE)

- **Telecommunications/Wireless**
 - Telecommunications Labs (CERDEC)
 - Communications System Integration Laboratory (CSIL)
 - HI-FI Advance Waveform and Cyber laboratory
 - Electromagnetic Environment (EME)
DoD Cyber Transition to Practice (CTP) Initiative

Emerging "Best of Breed" S&T Matured through Cyber Range-based T&E, Demonstrations, and Operational Pilots

- CTP is maturing and transitioning DoD-funded cyber S&T
 - Get S&T addressing key gaps into Ops
 - White House priority
 - Increase TRL, reduce risk
- CTP emphasizes:
 - Rapid results near term
 - Committed transition partner(s)
 - Co-funding by transition partner(s)

- FY14 funding: $4.2M
- Two white paper rounds so far
 - Phase 1: DoD Labs, DARPA, NSA
 - Phase 2: UARCs, FFRDCs, SPAWAR
- 8 projects underway
- Future
 - Planning currently underway for next phase of CTP
Industry Engagement - Way Ahead

- **Strategic DoD-Industrial cooperation in security marketplace**
 - Metrics development
 - Standards bodies participation/voting
 - Army: Cooperative development model with industry
 - Intellectual Property business cases that reduce market friction

- **DoD-Industrial Collaboration and Co-Development**
 - Personnel Exchanges
 - Cooperative R&D Agreements (CRADA)
 - Experimentation, T&E Ranges

- **Increase speed of cyber acquisition**
 - Enhanced M&S for early assessment of S&T candidates
 - Rapid-response S&T development
 - Examples: DARPA Cyber Fast Track, AFRL ACT IDIQ...other Services also exploring similar vehicles

- **OTHER IDEAS?**
Defense Innovation Marketplace
Resources For Industry And DoD

CONNECTING INDUSTRY & DoD
The Defense Innovation Marketplace is a centralized resource to reinvigorate innovation.
For Industry: the Marketplace is a resource for information about Department of Defense (DoD) investment priorities and capability needs.
For Government: the Marketplace provides access to search tools to assess and then leverage industry R&D projects for current and future programs.

Marketplace: Resources for DoD
- Secure portal with 10,000+ IR&D Project Summaries
- Access for DoD S&T/ R&D and Acquisition Professionals
- DoD Searchers encouraged to contact the Industry POC listed on project summaries of interest

Marketplace: Resources for Industry
- DoD R&D Roadmaps; Investment Strategy
- Business Opportunities with the DoD
- Virtual Interchanges & Events
- Secure Portal for IR&D Project Summaries
- Top Downloads/Pages visited
- DoD IR&D SEARCH Trends

Additional Resources

- **DIA Needipedia** (http://www.dia.mil/Business/Needipedia.aspx)
 - Provides a direct channel of Defense Intelligence Agency (DIA) needs into the emerging technology community

- **FedBizOps** (https://www.fbo.gov/)
 - Portal into government acquisitions providing a centralized repository for federal contract opportunities.

- **SBIR Announcements** (http://www.dodsbir.net)
 - Resource center for DoD SBIR

- For more information on DoD cyber Science & Technology news, research needs and engagement opportunities, visit:
 - Army Research Office (ARO)/Army Research Lab (ARL) (http://www.arl.army.mil)
 - Office of Naval Research (ONR) (http://www.onr.navy.mil)
 - Naval Research Laboratory (NRL) (http://www.nrl.navy.mil)
 - Defense Advanced Research Projects Agency (DARPA) (http://www.darpa.mil)
Contacts

- **OSD SG Rep: Dr Steven King**
 - OSD SG Rep
 - OASD(R&E) Deputy Director Cyber Technologies
 - (571) 372-6710
 - Steven.E.King.50.civ@mail.mil

- **Army SG Rep: Mr. Henry Muller**
 - CERDEC Acting Director
 - POC: Mr. Giorgio Bertoli
 - (443) 861-0743
 - Giorgio.Bertoli.civ@mail.mil

- **Navy SG Rep: Dr. Wen Masters**
 - Office of Naval Research
 - POC: Dr. Gary Toth
 - (703) 696-4961
 - Gary.Toth@navy.mil

- **NSA SG Rep: Dr. Boyd Livingston**
 - NSA/R Chief Scientist for Research
 - POC: Dr. Grant Wagner
 - (443) 634-4200
 - gmw@tycho.nsa.mil

- **SG Lead: Dr Richard W. Linderman**
 - Cyber COI Steering Group Chair
 - AFRL/RI Chief Scientist
 - (315) 330-4512
 - Richard.Linderman@us.af.mil

- **WG Lead: Mr. Chester Maciag**
 - Cyber COI WG Chair
 - AFRL/RI Principal Cyber S&T Strategist
 - (315) 330-2560
 - Chester.Maciag@us.af.mil
Summary

- Established, mature, and coordinated community
- Cyber S&T aligned to expanding operational capability gaps/priorities
- Cyber S&T contributions to nearly all Seven DoD Hard Problems
- Driving deeper engagement with industry and international partners
BACKUP
DoD Cyber Ecosystem

Large Defense Contractors
Small Businesses
System Integrators
Trusted Hardware/Software Manufacturing
Information Technology Vendors
Venture Capitalists
Non-traditional Defense Companies

Business Systems
Data Systems
High Performance Computing Systems
IT Systems
Weapon Systems
Many More...

DOD CUSTOMERS

ACADEMIA

DOD LABS

GOOD IDEAS

DOD PROGRAMS