Award Number: W81XWH-10-1-0275

TITLE: GIT2 Gene: Androgenic Regulation of White Adipose Tissue-Prostate Cancer Interactions

PRINCIPAL INVESTIGATOR: Timothy C. Thompson, Ph.D.

CONTRACTING ORGANIZATION: The University of Texas MD Anderson Cancer Center

Houston, TX 77030

REPORT DATE: May 2014

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT:

X Approved for public release; distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Conditioned medium (CM) collected from adipocyte stromal cells (ASC) of WAT of both Glipr1+/+ and Glipr1−/− adult males after surgical castration (or sham) were analyzed for presence of secreted growth promoting factors. Effects of CM from ASCs of each 4 subtypes of Glipr gene status were evaluated using normal human umbilical vein endothelial cells (HUVEC) and mouse prostate cancer cells (RM-9). CM from castrated Glipr1−/− ASCs promoted the highest cell proliferation and tubule formation of HUVEC cells, and cell proliferation and invasion of mouse (RM-9) prostate cancer cells compared with ASCs- CM from both shamed Glipr1+/+ and Glipr1−/− mice and castrated Glipr1+/+ male mice. Microarray assay results showed higher level of proliferin secreted in the CM-ASCs from castrated Glipr1+/+ and Glipr1−/− mice compared to shamed Glipr1+/+ and Glipr1−/− male mice and higher level in Glipr1−/− compared to Glipr1+/+ CM-ASC. These stimulating effects of cell proliferation, tubule formation, and invasion were reduced when CM-ASC from castrated Glipr1−/− ASCs was pretreated with prolierin antibody. Thus, we surmise secreted proliferin from WAT promotes cell proliferation and tubule formation of HUVEC and mouse prostate cancer cell invasion and castration induces proliferin secretion.
TABLE OF CONTENTS

Cover ..1

SF 298 ...2

Introduction ..4

Body ...4

Key Accomplishments ..8

Reportable Outcomes ..8

Conclusion ...8

References ...9
2012 PROGRESS REPORT

INTRODUCTION

Prostate cancer (PCa) cells are initially sensitive to hormonal manipulation, and androgen-deprivation therapy (ADT) generally reverses androgen receptor (AR)–dependent growth and proliferation. ADT is one of the main treatment modalities in the clinical management of PCa, but ADT is only palliative, and PCa eventually progresses to an androgen-insensitive stage, i.e., castrate-resistant PCa (CRPC), after a median of 12–20 months. Progression to CRPC is a dynamic process that is incompletely understood as yet. Potential mechanisms contributing to the development of CRPC include selective growth of a preexisting hormone-insensitive population of cancer cells as a result of suppression by androgen ablation of the androgen-dependent cell population; activation of oncogenes; inactivation of tumor suppression genes; and interaction between cancer cells and tumor-associated stroma and tumor-associated macrophages. The object of this research project is to investigate the effect of castration on epididymal white adipose tissue (WAT), ventral prostate (VP) tissue, and adipose stromal cells (ASCs) from male Glipr1+/+ (WT) and Glipr1−/− (KO) mice. We are testing our hypothesis that the biologic activity of WAT is affected by castration and that although the acute effects of castration (e.g., GLIPR1 induction) may suppress cancer-promoting adipokines, long-term ADT results in monocyte infiltration and the generation of WAT-associated macrophages (WAMs). WAMs, in turn, produce cytokines and promote the growth and survival of growth factor–expressing ASCs, which enter the systemic circulation and promote PCa progression. An important note is that the prostate, an androgen target organ, is significantly affected by castration and also produces cytokines and cytokine receptors that may, in concert with WAT-derived cytokines, contribute to the progression of already established local tumors. We also hypothesize that Glipr1/GLIPR1 protein regulates castration-induced WAMs and ASCs. Our overarching hypothesis is that castration induces alterations in WAT that promote the development of CRPC.

BODY

STATEMENT OF WORK

Aim 1: Identify castration-affected and/or Glipr1-regulated genes in ventral prostate (VP) tissue, epididymal white adipose tissue (WAT), and adipocyte stromal cells (ASCs) using in vivo models.

1. Generate a sufficient number of Glipr1 wild-type (WT) and Glipr1 knockout (KO) 12-week-old male mice (1–6 months).
2. Perform the surgical castration experiment using the Glipr1 WT and KO male mice, and collect VP, WAT, and ASCs on days 3, 14, and 35 after castration (6–9 months).
3. Isolate RNA and perform microarray analyses to characterize genes affected by castration in VP, WAT, and ASCs in Glipr1 WT and KO male mice (9–12 months).

Aim 2: Study the interactions between ASCs isolated from Glipr1 WT (ASCs-WT) and KO (ASCs-KO) male mice and human prostate cancer cell lines in vitro and in vivo.

1. Isolate, expand, and prepare a stock of frozen ASCs from Glipr1 WT and KO male mice (6–12 months).
2. Determine the effect of ASCs on the cell growth rate of human prostate cancer cell lines in vitro (12-18 moths)
3. Determine the effect of ASCs conditioned media on the cell growth rate of human prostate cancer cell lines in vitro (12-18 moths).
4. Analyze and compare cytokine and growth factor profiles in conditioned media produced by ASCs (18-24 moths)
Aim 3: To test the response to surgical castration and systemic GLIPR1-ΔTM in vivo using VCaP xenograft model:

1. Generate orthotopic VCaP tumors in athymic nude male mice and determine the effect of surgical castration on the tumor growth and ASCs infiltration profiles at acute, intermediate and chronic time points.
2. Test the effects of systemic GLIPR1-ΔTM on orthotopic VCaP tumor growth and ASCs infiltration profiles ± surgical castration at acute (3d), intermediate (14d) and chronic time points (35d).

RESEARCH

Materials and Methods
Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) Analysis
Total RNA was isolated from each ASC subtype as described in previous report, and reverse-transcribed with High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA) according to the manufacturer’s instructions. Appropriate forward and reverse primers to detect transcripts of interest were used in the qRT-PCR for cDNA amplification. qRT-PCR was performed using the following primers (Integrated DNA technologies, Coralville, IO): Glipr1: 5’-TTTGACCGAAGCTGGTTGTGA-3’ (Forward) and 5’-CATCCTTGCTGTGATAGTCTGG-3’ (Reverse); PLF (Prolactin family2, subfamily C, member 2): 5’-AGCCCCATGAGATGCAATACT-3’ (Forward) and 5’-CACTCACTAGATCGTCCAGAGG-3’ (Reverse); GAPDH (glyceraldehyde-3-phosphate dehydrogenase): 5’-TGTAGACCATGTAGTTGAGGTCA-3’ (Forward) and 5’-AGGTCGGTGAACGGATTTG-3’ (Reverse); with StepOne Real time PCR system (Applied Biosystems). The quantity of each target was normalized against the quantity of GAPDH.

Western blotting
ASCs were prepared from each subtype and protein concentration was determined. The protein in the conditioned medium was precipitated by application of trichloroacetic acid and then the precipitate was washed with acetone and dissolved in 30 μL of sample buffer. Conventional western blotting protocol was used to detect protein levels of PLF (from Santa Cruz, CA) and Glipr-1 (Ren, Li et al. 2002). α-tubulin (Sigma-Aldrich, St. Louis, MO) was used as a loading control. Computer assisted quantitative analysis was done with Nikon's NIS-Elements AR 3.0 imaging and quantification software.

Cell viability assay
Cells were plated in 96-well plate with each appropriate growth medium with 1% FBS at a density of 3×10^3 for RM-9 or 5x10^3 for HUVEC. Next day, the growth medium from each cell line was aspirated completely, and then ASC-CM was added to each well. After 48h incubation, the number of living cells was measured using an 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay (CellTiter 96 Aqueous One-solution Cell Proliferation assay)(Promega, Madison, WI) according to the manufacturer’s instruction. Absorbance at 490 nm was measured using a multiwell plate reader (Synergy2, BioTech Instruments, Inc., Winooski, VT).

For PLF neutralization assays, ASC-CM of each subtype was incubated with anti-PLF antibody (50μg/ml) (Santa Cruz Biotechnology, Santa Cruz, CA), normal IgG antibody (50μg/ml) (Santa Cruz) or phosphate buffered saline (PBS) and was mixed gently overnight at 4 ºC. PLF antibody and normal IgG were dialyzed with Slide-A-Lyzer Dialysis Cassette (3.5K MWCO) (Thermo Scientific Inc., Rockford, IL) to remove sodium azide before they were added to ASC-CMs. To confirm PLF effect in prostate cancer cells, we performed the same cell viability assay with ASC-CM after adding anti-PLF antibody (Santa Cruz Biotechnology, Santa Cruz, CA).

Tubule formation assay
The tubule formation assay was performed as described previously (Tahir, Yang et al. 2008). Briefly, HUVEC were trypsinized counted and plated on Matrigel™ Matrix (growth factor-reduced matrigel; BD Biosciences) coated 24 well-plates in EGM-2 (Lonza, Inc., Walkersville, MD) medium containing 2% FBS. After 16–24 h of incubation at 37°C in 5% CO₂, images of the tubules formed were captured by phase contrast microscopy. The tubule lengths of the endothelial network was measured by image analysis of five low-power fields using Nikon's NIS-Elements AR 3.0 imaging and quantification software.

Transwell invasion assay
Transwell invasion assay was performed using BioCoat™ Matrigel™ invasion chambers (BD Bioscience, San Jose, CA) according to manufacturer’s instruction. Briefly, 5.0x10³ of RM-9 cells were seeded in the upper chambers (the inserts with 8.0 µm membrane) of 24-well plate with 500µL serum free growth medium, and 700 µL of each subgroup ASC-CM were added to the lower chambers. After RM-9 cells were allowed to invade to the bottom of the transwell for 24 hours, the invaded cells on the bottom surface of membrane were stained with HEMA 3 stain kit (Fisher Scientific, Kalamazoo, MI) according to manufacturer’s protocol. The invading cells were counted under the microscope at 10x magnification.

Statistical analysis
The statistical significance of the differences between the cell growth of Glipr1 WT and KO ASCs on different cell lines was determined by using two-tailed Student’s t testing. The level of significance was set at \(P < 0.05 \). Data are expressed as means ± SE.

Results
Loss of Glipr1 enhanced Castration induced PLF expression/secretion in ASC/ASC-CM
To identify the factors secreted in response to castration and Glipr1 gene status, we performed microarray assay using isolated RNA from each ASC subtype. PLF (Prolactin family2, subfamily C, member 2 and 3) were upregulated in the castrated ASC of both genotypes compared to the shamed genotypes. Beside cholecystokinin, PLF was consistently found to be upregulated in Glipr1\(^-/-\) ASC compared to shamed Glipr1\(^-/-\) ASC (data not shown).
qRT-PCR analysis showed surgical castration reduced statistically significant amount of *Glipr1* mRNA (38%) in *Glipr1*+/+ ASC (CxCtx) compared to the shamed *Glipr1*+/+ ASC (ShWT). Next, we detected that mRNA level of PLF was increased not only in ASC from *Glipr1*+/+ (CxCxKO), but also after castration in both genotypes (CxKO CxWT ShKO ShWT). Increased amount of PLF mRNA expression was significantly higher in castrated *Glipr1*+/+ ASC subtype than other subtypes (Fig.1A). Western blotting analysis showed higher PLF protein expression in the ASC lysates from surgically castrated mice compared with surgically sham mice, even though not much differences were detected between *Glipr1*+/+ and *Glipr1*+/+ ASC. However, ASC-CM from castrated *Glipr1*+/+ (CxCxKO) ASC subtype expressed highest level of PLF secretion, and this data supports the qRT-PCR data above (Fig.1B).

PLF induced EC proliferation and tubule formation.

Since secreted PLF has been associated with angiogenesis in endothelial cells and many malignancies, ASC-CM from the four subtype were added separately to HUVEC cells and the effect of cell proliferation and tubule formations were compared among the four subtypes. Significantly increased proliferation and tubule formation of HUVEC were found in the cells that were grown with ASC-CM from castrated *Glipr1*+/+ (CxCxKO) males compared to the ASC-CM from *Glipr1*+/+ (CxCWT) or shamed *Glipr1*+/+ (SjxKO) and *Glipr1*+/+ (ShWT) males (Fig.2A,B). When we added ASC-CM from castrated *Glipr1*+/+ males to HUVEC after it was neutralized with PLF antibody, we found reduced cell proliferation and the tubule formation. In fact, the reduction of the cell proliferation is statistically significant compared with the IgG control (P<0.01) and the tubule formation was also significantly reduced compared with PBS and IgG control groups (P<0.01 for both). This data confirms the cellular effect of PLF on proliferation and tubule formation of HUVEC (Fig.2Ca, 2Cb).

PLF promoted prostate cancer cell growth.

Next, to examine whether ASC-CM alters prostate tumor cell behavior, we performed the proliferation and the invasion assay of RM-9 (Fig.3A, 3B). As in the HUVE cells, we detected CM from castrated *Glipr1*+/+ (CxCxKO) ASC promoted significantly increased cancer cell growth and invasion compared with ASC-CMs from *Glipr1*+/+ (CxCWT) or shamed *Glipr1*+/+ (ShxKO) and *Glipr1*+/+ (ShWT) males. We also observed that pre-PLF
antibody treatment of the ASC-CMs in the four subtypes offsets the effect of PLF in RM-9 as seen with HUVEC above (Fig.3C). Reductions of RM-9 cell proliferation grown with CMs after pre-treatment by PLF antibody were statistically significant in all the subtypes except CM from shamed Glipr1+/+ (ShWT) males.

KEY RESEARCH ACCOMPLISHMENTS

We are in the process of preparing and revising a manuscript detailing our discovery for publication.

REPORTABLE OUTCOMES

CONCLUSIONS

During this year of no-cost-extension, we spent time to organize and re-analyze the data for publication purpose as there was a change of personnel involved in the project.

REFERENCES

8. Rouet V, Bogorad RL, Kayser C, Kessal K, Genestie C, Bardier A, Grattan DR, Kelder B, Kopchick JJ, Kelly PA, Goffin V. Local prolactin is a target to prevent expansion of basal/stem