Final
Environmental Impact Statement
Second Main Operating Base
KC-46A Beddown at
Alternative Air National Guard Installations

June 2014
Report Documentation Page

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>05 AUG 2014</td>
<td>N/A</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Environmental Impact Statement Second Main Operating Base</td>
<td>KC-46A Beddown at Alternative Air National Guard Installations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
<th>5e. TASK NUMBER</th>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States Air Force</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>b. ABSTRACT</td>
<td>c. THIS PAGE</td>
<td>SAR</td>
</tr>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)

Prepared by ANSI Std Z39.18
RECORD OF DECISION
SECOND MAIN OPERATING BASE KC-46A BEDDOWN AT ALTERNATIVE AIR NATIONAL GUARD INSTALLATIONS

INTRODUCTION

The United States Air Force (Air Force) is issuing this Record of Decision (ROD) for the Environmental Impact Statement (EIS) titled “Second Main Operating Base (MOB 2) KC-46A Beddown at Alternative Air National Guard (ANG) Installations” (Federal Register, Vol. 79, No. 119, EIS No. 20140174, page 35347, 2014). In making this decision, the information, analyses, and public comments contained in the KC-46A MOB 2 Beddown Final EIS were considered, among other relevant factors and supporting materials.

This ROD is prepared in accordance with the regulations implementing the National Environmental Policy Act (NEPA), Title 42 U.S.C. §4321-4347, the President’s Council on Environmental Quality (CEQ) NEPA regulations at 40 CFR, §1505.2, Record of decision in cases requiring environmental impact statements, and 32 CFR §989.21, implementing the Air Force Environmental Impact Analysis Process (EIAP). Specifically, this ROD:

- States the Air Force’s decision (pages 1, 11);
- Identifies alternatives considered by the Air Force in reaching the decision (page 2) and specifies the alternative considered to be environmentally preferable (page 6);
- Identifies and discusses relevant factors that were considered in making the decision among the alternatives and states how those factors entered into its decision (pages 2-8); and
- States whether all practicable means to avoid or minimize environmental harm from the selected alternative were adopted, and if not, why they were not adopted, and summarizes the applicable mitigation (pages 8-10).

SYNOPSIS OF DECISION

The Air Force will beddown up to twelve (12) KC-46A Primary Aerospace Vehicles Authorized (PAA) under the National Guard Bureau (NGB) for MOB 2 at Pease Air National Guard Station (ANGS), New Hampshire.

Pease ANGS was selected as the first ANG-led KC-46A main operating base because of its highly successful existing active duty association, which would lead to the lowest active duty manpower requirement. Selection of Pease ANGS will minimize the challenge of fielding a new weapon system and avoid having to simultaneously establish a new active association. Its location in a region of high air refueling receiver demand was also a key consideration.

BACKGROUND

For more than 50 years, the KC-135 has served as the aerial refueling backbone to project U.S. global reach and combat power. Congress authorized and appropriated funds supporting the Air Force’s selection of the KC-46A as the newest aerial refueling aircraft to replace a portion of the aging fleet of KC-135 Stratotankers. Congress funded a total aircraft inventory of up to 179 KC-46A aircraft by 2028 to correct deficiencies, update the fleet, enhance operations, and
increase mission effectiveness. The new KC-46A will provide updated technology designed to enhance operations and increase mission effectiveness to support Air Force, Navy, Marine Corps, and allies who rely on tanker range and flexibility to strengthen the coalition mission.

This basing action is only part of the Air Force program to replace the older tanker aircraft. This ROD focuses on the location for the NGB’s KC-46A MOB 2. Under a separate decision, the Air Force prepared an EIS that supported a decision to beddown 36 KC-46A aircraft at the first Main Operating Base (MOB 1) and six to eight KC-46A aircraft at the Formal Training Unit (FTU) location.

ALTERNATIVE IDENTIFICATION

As more fully discussed in the Final EIS (pages 2-4 through 2-7, §2.2), the Air Force and NGB presented the planning conventions that described the proposed basing action tenets, force structure mix, and basing timelines. These planning conventions included the critical information that would be used to shape and inform decisions made throughout the Air Force Strategic Basing Process for KC-46A aircraft. The initial screening yielded a defined enterprise of 83 candidate bases to be evaluated for the MOB 2 beddown.

In 2012, selection criteria for the KC-46A MOB 2 beddown were approved by the Secretary of the Air Force. The approved criteria were used to screen the enterprise of 83 candidate bases to identify those bases’ capacity to successfully support the MOB 2 mission. The objective criteria included mission, capacity, environmental considerations, and cost.

The Strategic Basing Process described in §2.2 of the Final EIS resulted in the identification of five alternative bases for consideration for the KC-46A MOB 2 mission. Alternatives that were carried forward for analysis in the EIS were:

- No Action
- Forbes ANGS, Kansas
- Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey
- Pease ANGS, New Hampshire
- Pittsburgh ANGS, Pennsylvania
- Rickenbacker ANGS, Ohio

No Action Alternative: As discussed in the Final EIS (page ES-8, et seq), under the No Action Alternative, the KC-46A MOB 2 beddown would not occur at any of the five action alternatives considered. There would be no change in based aircraft, use of airfields, or use of Special Use Airspace (SUA). The NGB would continue to conduct their current mission using the existing KC-135 aircraft.

Alternative 1 - Forbes ANGS: Forbes ANGS is home of the 190th Air Refueling Wing (190 ARW) of the Kansas Air National Guard (KS ANG). Under this alternative the 190 ARW would convert from 12 KC-135 PAA and no KC-135 Backup Aerospace Vehicle Inventory (BAI) to 12 KC-46A PAA. Concurrent with the beddown of the 12 KC-46A PAA at Forbes ANGS, the existing KC-135 aircraft would either be relocated to other bases or retired out of the Air Force inventory, depending on the life-cycle status of each particular aircraft.

KC-46A aircraft would fly a total of 8,040 hours annually, with an Average Sortie Duration (ASD) of 4.0 hours. This would result in 2,010 sorties annually, 64 percent of which would be
performed at the home-station. It is expected that up to 1,286 sorties would be flown at Forbes Field annually under this alternative. This would be an increase of 36 percent over the 946 home-station sorties identified in 2012 (it is assumed that the same percentage of the sorties found under current baseline conditions would be flown at Forbes ANGS under this alternative). Based on 1,286 annual home-station sorties and an average of 11.32 operations per sortie, there would be 14,562 annual home-station operations, or an additional 4,110 airfield operations annually at Forbes Field Airport (Final EIS, Table 2.3-2). An operation consists of a single action such as a take-off, or a landing. This would increase the average daily airfield operations from 40.2 to 56.0 (Final EIS, Table 2.3-3). There would be no changes expected to departure/arrival patterns and tracks, flight profiles, and use of runways. Current noise abatement procedures would continue to be followed (Final EIS, §4.1.1, Noise).

Primary air refueling tracks used by the 190 ARW were discussed in the Final EIS (Table 2.3-4). There would be a change to the frequency of use due to the proposed increase in the sorties. The KC-46A has a requirement for training as a receiver aircraft (on loading fuel) and would use the existing air refueling tracks as a receiver in addition to the normal use as a refueling aircraft (off-loading fuel). The time in the airspace for each sortie and the operational training conducted is not expected to change in any of the airspace described in the Final EIS (Table 2.3-4).

Basing the KC-46A at Forbes Field requires some construction (Final EIS, Table 2.3-5). The proposed construction would comply with standards set forth in ANG Handbook 32-1084, Facility Space Standards. Anti-Terrorism/Force Protection (AT/FP) requirements also would be incorporated. Proposed facilities would be sited approximately as shown in the Final EIS, (page 2-13, Figure 2.3-2).

Alternative 2 - JB MDL: JB MDL is home of the 108th Wing (108 WG) of the New Jersey Air National Guard (NJ ANG). Under Alternative #2, the 108 WG would convert from 8 KC-135 PAA and 1 KC-135 BAI to 12 KC-46A PAA. Concurrent with the beddown of the 12 KC-46A PAA at 108 WG, the existing KC-135 aircraft would either be relocated to other bases or retired out of the Air Force inventory, depending on the life-cycle status of each particular aircraft.

The 108 WG currently flies 1,112 sorties annually. According to the unit’s scheduling data and Air Traffic Control counts, 834 of these sorties were flown from McGuire Field, or 75 percent of the total annual sorties flown. The remaining sorties were flown from other airfields in the U.S. and/or overseas in support of operational missions. Actual airfield operational data collected from 2012 indicates that the 108 WG accounted for 8,340 annual operations with an average of 10 operations per sortie (Final EIS, Table 2.3-7).

Following the aircraft beddown under Alternative 2, the KC-46A aircraft would fly a total of 8,040 hours, with an ASD of 4.0 hours. This would result in 2,010 annual sorties, 75 percent of which would be performed at the home-station (McGuire Field). Thus, it is expected that up to 1,508 sorties would be flown at McGuire Field. This would be an increase of 81 percent over the baseline 834 sorties identified in the McGuire Field Noise Study (it is assumed that the same percentage of the sorties found under current baseline conditions would be flown at McGuire Field under this alternative). Based on 1,508 annual home-station sorties and an average of 11.68 operations per sortie, there would be 17,608 annual home-station operations, or an additional 9,268 airfield operations annually at McGuire Field (Final EIS, Table 2.3-8). This would increase the average daily airfield operations from 22.9 to 48.2 (Final EIS, Table 2.3-9).
There would be no changes expected to departure/arrival patterns and tracks, and use of runways. Current noise abatement procedures would continue to be followed (Final EIS, §4.2.1, Noise).

The 108 WG conducts air refueling for both training and contingency missions for the receiver aircraft. Primary air refueling tracks used by the 108 WG are described in the Final EIS (Table 2.3-10). Under Alternative #2, there would be an increase to the frequency of use of the associated airspace due to the proposed increase in the number of sorties conducted annually. The KC-46A will also have a requirement for training as a receiver aircraft (on-loading fuel) and would use the existing air refueling tracks as a receiver in addition to the normal use as a refueling aircraft (off-loading fuel).

Basing the KC-46A at 108 WG requires some construction (Final EIS, Table 2.3-11). The proposed construction would comply with standards set forth in ANG Handbook 32-1084, Facility Space Standards. Anti-Terrorism/Force Protection (AT/FP) requirements also would be incorporated. Proposed facilities would be sited approximately as shown in the Final EIS, (page 2-22, Figure 2.3-4).

Alternative 3 - Pease ANGS: Pease ANGS is home of the 157th Air Refueling Wing (157 ARW) of the New Hampshire Air National Guard (NH ANG). Under Alternative #3, the 157 ARW would convert from 8 PAA KC-135 and 1 KC-135 BAI aircraft to 12 KC-46A PAA. Concurrent with the beddown of the 12 KC-46A PAA at Pease ANGS, the existing KC-135 aircraft would either be relocated to other bases or retired out of the Air Force inventory, depending on the life-cycle status of each particular aircraft.

The 157 ARW currently flies 1,382 sorties annually. According to the unit’s scheduling data and airport traffic counts, 614 were flown from Portsmouth IAP, or 44 percent of the annual sorties flown. The remaining sorties were flown from other airfields in the U.S. and/or overseas in support of operational missions. Actual airfield data indicates that the 157 ARW accounted for 6,140 annual operations with an average of 10.0 operations per sortie (Final EIS, Table 2.3-13). Following the aircraft beddown under Alternative #3, the KC-46A aircraft would fly a total of 8,040 hours annually, with an ASD of 4.0 hours. This would result in 2,010 sorties, 44 percent of which would be performed at the home-station (Pease ANGS). Thus, 884 sorties would be flown at Pease ANGS annually under this alternative. This would be an increase of 44.0 percent over the baseline 614 annual sorties currently flown from Pease ANGS (it is assumed the same percentage of sorties would be flown away from Pease ANGS under this alternative as under the current baseline conditions). Based on 884 annual home-station sorties and an average of 10.0 operations per sortie, there would be 8,840 annual home-station operations, or an additional 2,700 airfield operations annually at Portsmouth IAP (Final EIS, Table 2.3-14). This would increase the average daily airfield operations from 16.8 to 24.2 (Final EIS, Table 2.3-15). There would be no changes expected to departure/arrival patterns and tracks, flight profiles, and use of runways. Current noise abatement procedures would continue to be followed (Final EIS, §4.3.1, Noise).

Primary air refueling tracks used by the 157 WG are described in the Final EIS (Table 2.3-16). Under Alternative #3, there would be a slight change to the frequency of use of the airspace due to the proposed increase in the sorties. The KC-46A will also have a requirement for training as a receiver aircraft (on-loading fuel) and will use the existing air refueling tracks as a receiver in addition to the normal use as a refueling aircraft (off-loading fuel). However, the minutes in the
airspace for each sortie, and the operational training conducted would not be expected to change in any of the airspace described.

Under Alternative #3, the 157 ARW would implement construction projects for the conversion to 12 KC-46A PAA (Final EIS, Table 2.3-17). The proposed construction projects would comply with standards set forth in ANG Handbook 32-1084, Facility Space Standards. AT/FP requirements also would be incorporated.

Alternative 4 - Pittsburgh ANGS: Pittsburgh ANGS is home of the 171st Air Refueling Wing (171 ARW) of the Pennsylvania Air National Guard (PA ANG). Under Alternative #4, the 171 ARW would convert from 16 KC-135 PAA and no KC-135 BAI to 12 KC-46A PAA. Concurrent with the beddown of the 12 KC-46A PAA at Pittsburgh ANGS, the existing KC-135 aircraft would either be relocated to other bases or retired out of the Air Force inventory, depending on the life-cycle status of each particular aircraft.

The 171 ARW currently flies 1,569 sorties annually. According to the unit’s scheduling data and airport traffic counts, 926 were flown from Pittsburgh IAP, or 59 percent of the total annual sorties flown. The remaining sorties were flown from other airfields in the U.S. and/or overseas in support of operational missions. Actual airfield data indicates that the 171 ARW flew 6,943 airfield operations with an average of 7.5 operations per sortie during 2012 (Final EIS, Table 2.3-19). Following the aircraft beddown under Alternative #4, the KC-46A aircraft would fly a total of 8,040 hours annually, with an ASD of 4.0 hours. This would result in 2,010 sorties, 59 percent of which would be performed at the home-station (Pittsburgh ANGS). Thus, 1,186 sorties would be flown at Pittsburgh IAP annually under this alternative. This would be an increase of 27 percent over the baseline 926 sorties currently flown at Pittsburgh IAP (it is assumed that the same percentage of the sorties found under current baseline conditions would be flown at Pittsburgh IAP under this alternative). Based on 1,186 annual home-station sorties and an average of 7.78 operations per sortie, there would be 9,226 annual home-station operations, or an additional 2,283 airfield operations annually at Pittsburgh IAP (Final EIS, Table 2.3-20). This would increase the average daily airfield operations from 19.0 to 25.3 (Final EIS, Table 2.3-21). There would be no changes expected to departure/arrival patterns and tracks, and use of runways. Current noise abatement procedures would continue to be followed (Final EIS, §4.4.1, Noise).

Primary air refueling tracks used by the 171 ARW are described in the Final EIS (Table 2.3-22). Under Alternative #4, there would be a slight change to the frequency of use due to the proposed increase in the sorties. The KC-46A will also have a requirement for training as a receiver aircraft (on-loading fuel) and will be using the existing air refueling tracks as a receiver in addition to the normal use as a refueling aircraft (off-loading fuel), but the minutes in the airspace for each sortie, and the operational training conducted would not change in any of the airspace described.

The 171 ARW would also implement minor construction projects for that conversion (Final EIS, Table 2.3-23). The proposed construction projects would comply with standards set forth in ANG Handbook 32-1084, Facility Space Standards. AT/FP requirements would also be addressed to the extent practicable.

Alternative 5 - Rickenbacker ANGS: Rickenbacker ANGS is home of the 121st Air Refueling Wing (121 ARW) of the Ohio Air National Guard (OH ANG). Under Alternative #5, the
121 ARW would convert from 18 KC-135 PAA and no KC-135 BAI to 12 KC-46A PAA. Concurrent with the beddown of the 12 KC-46A PAA at Rickenbacker ANGS, the existing KC-135 aircraft would either be relocated to other bases or retired out of the Air Force inventory, depending on the life-cycle status of each particular aircraft.

In 2012, the 121 ARW flew 2,014 sorties. According to the unit’s scheduling data and airport traffic counts, the unit flew 1,289 of these sorties from Rickenbacker IAP, or 64 percent of the total annual sorties flown. The remaining sorties were flown from other airfields in the U.S. and/or overseas in support of operational missions. Actual airfield data indicates that the 121 ARW conducted 6,445 operations with an average of 5.0 operations per sortie at the airfield (Final EIS, Table 2.3-25). Following the aircraft beddown under Alternative #5, the KC-46A aircraft would fly a total of 8,040 hours annually, with an ASD of 4.0 hours. This would result in 2,010 annual sorties, 64 percent of which would be performed at the home-station (Rickenbacker ANGS). Thus, it is expected that up to 1,286 sorties would be flown at Rickenbacker IAP annually under this alternative. This would be essentially the same as the baseline 1,289 sorties (it is assumed that the same percentage of the sorties found under current baseline conditions would be flown at Rickenbacker IAP under this alternative). Based on 1,286 annual home-station sorties and an average of 5.33 operations per sortie, there would be 6,857 annual home-station operations, or an additional 412 airfield operations annually at Rickenbacker IAP (Final EIS, Table 2.3-26). This would increase the average daily airfield operations from 17.7 to 18.8 (Final EIS, Table 2.3.27). There would be no changes expected to departure/arrival patterns and tracks, and use of runways. Current noise abatement procedures would continue to be followed (Final EIS, §4.5.1, Noise).

Primary air refueling tracks used by the 121 ARW are described in the Final EIS (Table 2.3-28). Under Alternative #5, there would be a slight change to the frequency of use due to the proposed increase in the sorties. The KC-46A will also have a requirement for training as a receiver aircraft (on-loading fuel) and will use the existing air refueling tracks as a receiver in addition to the normal use as a refueling aircraft (off-loading fuel). However, the minutes in the airspace for each sortie and the operational training conducted would not be expected to change in any of the airspace described.

The 121 ARW would also implement minor construction projects for that conversion (Final EIS, Table 2.3-29). The proposed construction projects would comply with standards set forth in ANG Handbook 32-1084, Facility Space Standards. AT/FP requirements would also be addressed to the extent practicable.

Environmentally Preferred Alternative

The environmentally preferred alternative is considered to be the No Action Alternative. Under the No Action Alternative, the proposed aircraft beddown would not occur, and the NGB would not implement the components described above under the five Action Alternatives.

Public Involvement

Public involvement was integral to the Air Force development of the Final EIS. Public and agency comments were received and considered, including those received during scoping, at public hearings, and during the public comment period on the Draft EIS. Comments received on the Final EIS were considered in making this decision.
Information reflecting public involvement associated with the five basing alternative locations for MOB 2 can be found in the Final EIS (pages 1-10 through 1-13, §1.5). Furthermore, Appendix B, provides public involvement documentation as well as copies of comments received during the Draft EIS public comment period. Public notices and meetings included:

- **Notice of Intent**: Published May 17, 2013 in the Federal Register, Volume 78, Number 96, pages 29120-29121.
- **Scoping Period**: Initiated May 17, 2013 and ended July 5, 2013. During this time, scoping meetings were held near each of the five bases in Kansas, New Jersey, New Hampshire, Pennsylvania, and Ohio.
- **Draft EIS Notice of Availability**: Published February 7, 2014 in the Federal Register, Volume 79, Number 26, page 7450.
- **Public Comment and Review Period**: A 45-day comment period ending March 24, 2014.
- **Public Hearings**: During the public comment and review period, five hearings were held near each of the five bases in Kansas, New Jersey, New Hampshire, Pennsylvania, and Ohio.
- **Final EIS Notice of Availability**: Published in the Federal Register on June 20, 2014, Volume 79, Number 119, page 35347. This initiated the mandatory 30-day waiting period prior to ROD signature.

The Air Force summarized the substantive comments received and provided responses (Final EIS, page B6-202 to B6-222, Appendix B).

AGENCY COORDINATION AND CONSULTATION

As set out more completely in the Final EIS (Appendix B), the Air Force coordinated and consulted with federal and state agencies and Federally Recognized Tribes (tribes). The federal and state agencies responsible for biological and cultural resources were contacted early in the environmental planning process and received Air Force notification of the project in May 2013. The Air Force consulted on all of the alternatives in the EIS. However, the descriptions that follow below describe only the consultations associated with the selected alternative for MOB 2; Pease ANGS.

This decision’s regulatory consultations included informal consultation with the U.S. Fish and Wildlife Service (USFWS) under §7 of the Endangered Species Act. The Air Force determined through informal consultation with the USFWS that there are no federal or state threatened or endangered species in the regions of influence at Pease ANGS, and therefore, no further consultation was required.

Pursuant to §106 of the National Historic Preservation Act, the Air Force initiated consultation with the New Hampshire State Historic Preservation Office (SHPO). For the MOB 2 mission at Pease ANGS, it was determined that there would be no impacts to archaeological resources or historic properties resulting from implementation of the MOB 2 mission. The New Hampshire SHPO concurred with the determination that no archaeological resources or historic properties would be affected.

In addition to the coordination and consultation with federal agencies, the Air Force also completed government-to-government consultations with potentially affected tribes. The Air
Force has determined there are no traditional resources known to occur at Pease ANGS. For the MOB 2 mission at Pease ANGS, no adverse impacts to tribal resources are anticipated. Consultation with the one tribe associated with Pease ANGS resulted in no issues of concern with the Air Force finding of no adverse impact. The §106 consultation for the KC-46A MOB 2 mission at Pease ANGS has been completed (see Final EIS, Appendix B, page B2-3).

Pease ANGS is in a maintenance area for ozone (O₃) and in a region that is designated attainment/unclassified area for all other criteria pollutants. Because the project region within Rockingham County is a maintenance area for ozone that is within a designated ozone transport region, the applicable Clean Air Act General Conformity de minimis thresholds for O₃ precursors of oxides of nitrogen (NOₓ) and volatile organic compounds (VOCs) are of 100 tons per year (tpy) for NOx and fifty (50) tpy for VOCs. The aggregate peak net emissions of both NOx and VOCs from construction and operations were below the applicable de minimis thresholds and therefore a positive general conformity determination is not required. Impacts from proposed operational and construction emissions for all other attainment criteria pollutants would be below the Prevention of Significant Deterioration threshold levels and therefore are considered not significant. Impacts from operational hazardous air pollutant (HAP) emissions are considered negligible.

MITIGATIONS AND MANAGEMENT ACTIONS

Avoiding or reducing potential environmental impacts was a consideration guiding the analysis of the KC-46A MOB 2 basing alternatives. Some management actions are built or designed into the proposed action and alternatives.

Specific management actions (i.e., those required by regulation or Air Force guidance and instructions) to facilitate the implementation of the decision were identified in the Final EIS and will be carried forward and implemented. These measures are summarized below by applicable environmental resource areas.

Given the early developmental stage of the KC-46A program, identification of new data and information relative to the KC-46A may arise and it is possible that the impacts identified in the Final EIS (pages 2-55 through 2-68, Table 2.6-2, §2.6) may be different from those expected. An understanding of various aspects that are part of a complex interrelated KC-46A operational environment may not be achieved without a more long-term process built around a continuous cycle of evaluation, learning, and improvement over time. To accommodate this continuous cycle and to track management actions within 90 days of the signature of this ROD, NGB will develop a mitigation plan to identify principal and subordinate organizations having responsibility for oversight and execution of specific mitigation and management actions. The plan will include but not be limited to the following:

- Identification of the specific actions;
- Identification of the responsible organization for each action;
- Timing for execution of the actions; and
- Definition of the adaptive management approach to be used.
Within existing parameters defined by the scope of the analysis contained in the Final EIS, the Air Force may develop an adaptive management program as part of the overarching KC-46A MOB 2 mitigation and monitoring program, in accordance with the President’s Council on Environmental Quality mitigation and monitoring guidance, and other legal and generally accepted practices. The Air Force intent is to provide flexibility in its adaptive management approach in order to comply with regulatory requirements and allow for considered adaptations. Where the proposed use of adaptations are considered, the Air Force will, before adapting, fully consider whether or not the adaptation triggers the need for more full analysis under NEPA and the Air Force’s EIAP (e.g., supplementation, tiering, etc.).

Mitigations

Air Quality

- Demolition and construction best management practices (BMPs) related to air quality will be implemented that will reduce potential impacts to air quality. They include, but are not limited to:
 - Use of water trucks or sprinkler systems to keep areas of vehicle movement damp enough to minimize the generation of fugitive dust
 - Suspension of all soil disturbance activities when winds exceed 25 miles per hour or when visible dust plumes emanate from the site and stabilize all disturbed areas with water application
 - Designation of personnel to monitor the dust control program and to increase watering, as necessary, to minimize the generation of dust
 - Covering truck loads that haul demolition debris, dirt, sand, or gravel
 - Restricting idling of equipment and trucks to a maximum of five minutes at any location
 - Using electricity from power poles instead of temporary diesel- or gasoline-powered generators wherever possible
 - Keeping construction equipment and equipment staging areas away from sensitive receptor areas (such as day care centers)

Management Actions

As described in the Final EIS, management actions applicable to Pease ANGS for the MOB 2 mission are listed below by each of the Final EIS resource areas.

Noise

- Portsmouth IAP has published certain restrictions on flying activities that could adversely affect its neighbors in an effort to reduce noise impacts while maintaining safe operations. The restrictions include guidance for noise abatement procedures for the airfield including, but not limited to, requiring aircraft departing the airport to maintain runway heading to 1,100 feet MSL prior to turning and not allowing aircraft to practice

1 In furtherance of NEPA’s Section 101 goals to “protect, restore, and enhance the environment” (40 Code of Federal Regulations [CFR] Part 1500.1(c))
low approaches or touch-and-go landings between the hours of 11:00 p.m. and 7:00 a.m. for local based aircraft and from 9:00 p.m. to 7:00 a.m. for transient aircraft or before 12:00 on Sundays for all aircraft. The noise abatement procedures are considered voluntary for military aircraft and can be waived based on mission requirements.

Safety

- Personnel conducting construction and/or demolition activities will strictly adhere to all applicable occupational safety requirements during construction activities.

Hazardous Materials and Wastes

- Sampling for asbestos-containing material (ACM) and lead-based paint (LBP) will occur prior to demolition activities for those buildings not previously tested and materials will be handled in accordance with 40 CFR 61.40 through 157, Toxic Substances Control Act, Occupational Safety and Health Administration regulations, New Hampshire requirements, and established ANG procedures. If ACM or LBP are present, the 157 ARW will employ trained and licensed contractors to perform the ACM and/or LBP removal work and will notify the construction contractors of the presence of ACM and/or LBP so that appropriate precautions can be taken to protect the health and safety of the workers.

Earth and Water Resources

- Construction BMPs will be employed during construction activities to minimize soil movement, stabilize runoff, and generally control sedimentation. These BMPs will include, but not be limited to the development of a project specific Stormwater Pollution Prevention Plan (SWPPP), regular and documented site inspections, the installation of silt fencing and sediment traps, minimizing surficial area disturbed at any given moment, stabilization of cut/fill slopes, minimization of earth-moving activities during wet weather, use of temporary detention ponds, application of water sprays to keep soil from becoming airborne, and revegetation of disturbed areas as soon as possible, as appropriate.

- Any increase in surface water runoff as a result of the proposed construction will be attenuated through the use of temporary and/or permanent drainage management features such as use of bioretention, filter strips, vegetated buffers, grassed swales, infiltration trenches, water harvesting, and other applicable BMPs. All proposed construction is outside the 100-year floodplain.

- A Notice of Intent (NOI) will be filed with the United States Environmental Protection Agency (USEPA) to obtain coverage under the Construction General Permit (General Permit No. PAG-02) prior to implementation of individual projects.

Cultural Resources

- In the case of unanticipated or inadvertent cultural resources discoveries made during proposed construction activities, the USAF will comply with Section 106 of the NHPA and Pease ANGS will immediately cease all activities in the area of the discovery. The Pease ANGS Environmental Manager will then immediately contact a qualified archaeologist to evaluate the discovery.
DECISION

The Air Force will implement the Preferred Alternative and beddown up to twelve (12) KC-46A Primary Aerospace Vehicles Authorized (PAA) under the NGB for MOB 2 at Pease ANGS. The first MOB 2 aircraft are scheduled for arrival at Pease ANGS in Fiscal Year 2018.

Within 90 days of the date of this ROD, NGB and Pease ANGS will develop a mitigation and monitoring plan that identifies principal and subordinate organizations having responsibility for oversight and execution of specific mitigation and management actions defined previously in this ROD.

TIMOTHY K. BRIDGES
Deputy Assistant Secretary of the Air Force
(Installations)
Cover Sheet

FINAL ENVIRONMENTAL IMPACT STATEMENT
FOR THE SECOND MAIN OPERATING BASE (MOB 2)
KC-46A BEDDOWN AT ALTERNATIVE AIR NATIONAL GUARD INSTALLATIONS

a. **Responsible and Cooperating Agencies:** United States Air Force, National Guard Bureau (Responsible Agencies); there are no Cooperating Agencies.

b. **Title of Action:** Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations Environmental Impact Statement

c. **Comments and Inquiries:** Anne Rowe, NGB/A7AM, 3501 Fetchet Avenue, Joint Base Andrews MD 20762-5157, (240) 612-8859.

d. **Designation:** Final Environmental Impact Statement (EIS)

e. **Abstract:** This Final EIS has been prepared in accordance with the National Environmental Policy Act (NEPA). The public and agency scoping process resulted in the analysis of the following environmental resources: noise, air quality, safety, soils and water, biological resources, cultural resources, land use, infrastructure and transportation, hazardous materials and wastes, socioeconomics, and environmental justice and the protection of children. The Secretary of the Air Force proposes to beddown KC-46A aircraft for MOB 2 at one of five alternative locations. The goal of KC-46A basing and fielding is to continue to provide optimum Combatant Commander support and to efficiently meet regional and global receiver demands while replacing the KC-135 fleet. This action would involve the beddown of one KC-46A squadron consisting of 12 Primary Aerospace Vehicles Authorized (PAA), and establishing a KC-46A Main Operating Base (MOB). Concurrent with the beddown of the 12 KC-46A, 12 existing KC-135 aircraft would be retired out of the Air National Guard (ANG) fleet. The existing KC-135 aircraft at the selected installation would either be relocated to another installation and/or retired out of the United States Air Force (USAF) inventory, depending on the age and maintenance status of each aircraft. Separate documentation would be prepared if the KC-135 aircraft are relocated to another installation. The beddown of the MOB 2 KC-46A would follow the Total Force Integration (TFI) concept that was enacted into law through the passage of the 2008 Defense Authorization Act, pairing two USAF component units (host and associate) together to operate as one. In support of TFI, an active duty associate unit would be integrated with ANG personnel and equipment under any of the action alternatives, enabling joint training and execution of missions using ANG-assigned aircraft. The ANG host unit would be assigned principal responsibility of the physical resources for mission accomplishment (aircraft, equipment, facilities) and the active duty associate unit would share those resources. Five alternative ANG locations were selected for this beddown:

- Forbes Air National Guard Station (ANGS), Kansas;
- Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey;
- Pease ANGS, New Hampshire;
- Pittsburgh ANGS, Pennsylvania; and,
- Rickenbacker ANGS, Ohio.

The USAF has identified Pease ANGS as the preferred alternative.
TABLE OF CONTENTS

VOLUME I

ACRONYMS AND ABBREVIATIONS

EXECUTIVE SUMMARY

CHAPTER 1 PURPOSE AND NEED FOR THE PROPOSED ACTION

1.1 INTRODUCTION

1.2 PURPOSE AND NEED FOR THE PROPOSED ACTION

1.2.1 Purpose of Action

1.2.2 Need for Action

1.3 BACKGROUND OF THE KC-46A

1.3.1 Aircraft Characteristics

1.3.2 Aircraft Characteristics of the KC-135

1.3.3 Aircraft Characteristics of the KC-46A

1.3.4 Training Requirements

1.4 THE ENVIRONMENTAL IMPACT ANALYSIS PROCESS

1.5 PUBLIC INVOLVEMENT/ENVIRONMENTAL COORDINATION

1.6 LEAD AND COOPERATING AGENCIES

1.7 ORGANIZATION OF THIS ENVIRONMENTAL IMPACT STATEMENT

CHAPTER 2 DESCRIPTION OF THE PROPOSED ACTION AND ALTERNATIVES

2.1 PROPOSED ACTION

2.1.1 Overview of the Proposed Action

2.1.2 Requirements of the Proposed Action

2.1.2.1 Aircraft Beddown/Transition

2.1.2.2 Facility and Infrastructure Requirements

2.1.2.3 Personnel Changes

2.1.2.4 KC-46A Operations

2.2 NARROWING PROCESS FOR ALTERNATIVE BASES

2.3 ACTION ALTERNATIVES CARRIED FORWARD

2.3.1 Alternative #1 – Forbes Air National Guard Station

2.3.1.1 Background

2.3.1.2 Mission

2.3.1.3 Aircraft Conversion

2.3.1.4 Airfield Operations

2.3.1.5 Airspace Operations

2.3.1.6 Construction Required

2.3.1.7 Personnel Changes

2.3.2 Alternative #2 – Joint Base McGuire-Dix-Lakehurst

2.3.2.1 Background

2.3.2.2 Mission

2.3.2.3 Aircraft Conversion

2.3.2.4 Airfield Operations
2.3.2.5 Airspace Operations .. 2-19
2.3.2.6 Construction Required .. 2-20
2.3.2.7 Personnel Changes ... 2-26

2.3.3 Alternative #3 – Pease Air National Guard Station 2-26
2.3.3.1 Background ... 2-26
2.3.3.2 Mission .. 2-28
2.3.3.3 Aircraft Conversion ... 2-28
2.3.3.4 Airfield Operations ... 2-28
2.3.3.5 Airspace Operations .. 2-29
2.3.3.6 Construction Required .. 2-31
2.3.3.7 Personnel Changes ... 2-36

2.3.4 Alternative #4 – Pittsburgh Air National Guard Station 2-37
2.3.4.1 Background ... 2-37
2.3.4.2 Mission .. 2-37
2.3.4.3 Aircraft Conversion ... 2-37
2.3.4.4 Airfield Operations ... 2-39
2.3.4.5 Airspace Operations .. 2-40
2.3.4.6 Construction Required .. 2-40
2.3.4.7 Personnel Changes ... 2-46

2.3.5 Alternative #5 – Rickenbacker Air National Guard Station 2-46
2.3.5.1 Background ... 2-46
2.3.5.2 Mission .. 2-48
2.3.5.3 Aircraft Conversion ... 2-48
2.3.5.4 Airfield Operations ... 2-48
2.3.5.5 Airspace Operations .. 2-49
2.3.5.6 Construction Required .. 2-50
2.3.5.7 Personnel Changes ... 2-54

2.4 NO ACTION ALTERNATIVE .. 2-55
2.5 IDENTIFICATION OF PREFERRED ALTERNATIVE 2-55
2.6 SUMMARY OF ANTICIPATED IMPACTS AMONG ALTERNATIVES 2-55
2.7 MITIGATION .. 2-69

CHAPTER 3 EXISTING CONDITIONS .. 3-1
3.1 FORBES AIR NATIONAL GUARD STATION .. 3-1
3.1.1 Noise .. 3-1
3.1.1.1 Baseline Operations ... 3-2
3.1.1.2 Runway and Flight Profiles ... 3-3
3.1.1.3 Existing Noise Environment .. 3-3
3.1.1.4 Forbes Field Airport Noise Abatement Procedures 3-5
3.1.1.5 Forbes Air National Guard Station Noise Complaint Procedures ... 3-5
3.1.2 Air Quality ... 3-5
3.1.2.1 Regulatory Setting ... 3-5
3.1.2.2 Climate and Meteorology ... 3-7
3.1.2.3 Regional and Local Air Pollutant Sources 3-7
3.1.2.4 Baseline Air Quality ... 3-8
3.1.2.5 190th Air Refueling Wing Emissions .. 3-9
3.1.3 Safety .. 3-10
 3.1.3.1 Ground Safety .. 3-11
 3.1.3.2 Flight Safety ... 3-12
3.1.4 Soils and Water ... 3-13
 3.1.4.1 Soils... 3-13
 3.1.4.2 Surface Water.. 3-14
 3.1.4.3 Groundwater.. 3-14
 3.1.4.4 Floodplains... 3-16
3.1.5 Biological Resources ... 3-16
 3.1.5.1 Vegetation... 3-16
 3.1.5.2 Wildlife... 3-16
 3.1.5.3 Special Status Species ... 3-17
 3.1.5.4 Wetlands... 3-17
3.1.6 Cultural Resources ... 3-17
 3.1.6.1 Archaeological Resources ... 3-17
 3.1.6.2 Architectural Resources ... 3-17
 3.1.6.3 Traditional Resources ... 3-18
3.1.7 Land Use .. 3-18
3.1.8 Infrastructure and Transportation .. 3-21
 3.1.8.1 Potable Water System ... 3-21
 3.1.8.2 Wastewater... 3-21
 3.1.8.3 Stormwater.. 3-21
 3.1.8.4 Electrical and Natural Gas Systems 3-21
 3.1.8.5 Solid Waste Management ... 3-22
 3.1.8.6 Transportation... 3-22
3.1.9 Hazardous Materials and Waste ... 3-22
 3.1.9.1 Hazardous Materials.. 3-22
 3.1.9.2 Hazardous Waste Management ... 3-23
 3.1.9.3 Environmental Restoration Program 3-24
3.1.10 Socioeconomics ... 3-24
 3.1.10.1 Population and Employment ... 3-24
 3.1.10.2 Schools.. 3-26
 3.1.10.3 Housing... 3-26
3.1.11 Environmental Justice and the Protection of Children 3-27
 3.1.11.1 Minority and Low-Income Populations 3-27
 3.1.11.2 Protection of Children... 3-27
3.2 Joint Base McGuire-Dix-Lakehurst .. 3-28
 3.2.1 Noise .. 3-28
 3.2.1.1 Baseline Operations ... 3-28
 3.2.1.2 Runway and Flight Profiles ... 3-29
 3.2.1.3 Existing Noise Environment ... 3-29
 3.2.1.4 Joint Base McGuire-Dix-Lakehurst Noise Abatement
 Procedures... 3-31
 3.2.1.5 Joint Base McGuire-Dix-Lakehurst Noise Complaints
 Procedures... 3-31
<table>
<thead>
<tr>
<th>3.2.2</th>
<th>Air Quality.. 3-31</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.2.1</td>
<td>Regulatory Setting.. 3-31</td>
</tr>
<tr>
<td>3.2.2.2</td>
<td>Climate and Meteorology ... 3-33</td>
</tr>
<tr>
<td>3.2.2.3</td>
<td>Regional and Local Air Pollutant Sources .. 3-34</td>
</tr>
<tr>
<td>3.2.2.4</td>
<td>Baseline Air Quality .. 3-34</td>
</tr>
<tr>
<td>3.2.2.5</td>
<td>108th Wing Emissions ... 3-35</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Safety .. 3-37</td>
</tr>
<tr>
<td>3.2.3.1</td>
<td>Ground Safety .. 3-37</td>
</tr>
<tr>
<td>3.2.3.2</td>
<td>Flight Safety .. 3-38</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Soils and Water ... 3-39</td>
</tr>
<tr>
<td>3.2.4.1</td>
<td>Soils .. 3-39</td>
</tr>
<tr>
<td>3.2.4.2</td>
<td>Surface Water .. 3-40</td>
</tr>
<tr>
<td>3.2.4.3</td>
<td>Groundwater .. 3-42</td>
</tr>
<tr>
<td>3.2.4.4</td>
<td>Floodplains ... 3-42</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Biological Resources ... 3-43</td>
</tr>
<tr>
<td>3.2.5.1</td>
<td>Vegetation .. 3-43</td>
</tr>
<tr>
<td>3.2.5.2</td>
<td>Wildlife .. 3-43</td>
</tr>
<tr>
<td>3.2.5.3</td>
<td>Special Status Species .. 3-44</td>
</tr>
<tr>
<td>3.2.5.4</td>
<td>Wetlands ... 3-44</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Cultural Resources .. 3-45</td>
</tr>
<tr>
<td>3.2.6.1</td>
<td>Archaeological Resources ... 3-45</td>
</tr>
<tr>
<td>3.2.6.2</td>
<td>Architectural Resources .. 3-45</td>
</tr>
<tr>
<td>3.2.6.3</td>
<td>Traditional Resources ... 3-46</td>
</tr>
<tr>
<td>3.2.7</td>
<td>Land Use ... 3-46</td>
</tr>
<tr>
<td>3.2.8</td>
<td>Infrastructure and Transportation .. 3-47</td>
</tr>
<tr>
<td>3.2.8.1</td>
<td>Potable Water System .. 3-47</td>
</tr>
<tr>
<td>3.2.8.2</td>
<td>Wastewater ... 3-47</td>
</tr>
<tr>
<td>3.2.8.3</td>
<td>Stormwater ... 3-47</td>
</tr>
<tr>
<td>3.2.8.4</td>
<td>Electrical and Natural Gas Systems ... 3-49</td>
</tr>
<tr>
<td>3.2.8.5</td>
<td>Solid Waste Management ... 3-49</td>
</tr>
<tr>
<td>3.2.8.6</td>
<td>Transportation ... 3-49</td>
</tr>
<tr>
<td>3.2.9</td>
<td>Hazardous Materials and Waste ... 3-50</td>
</tr>
<tr>
<td>3.2.9.1</td>
<td>Hazardous Materials ... 3-50</td>
</tr>
<tr>
<td>3.2.9.2</td>
<td>Hazardous Waste Management .. 3-50</td>
</tr>
<tr>
<td>3.2.9.3</td>
<td>Environmental Restoration Program ... 3-51</td>
</tr>
<tr>
<td>3.2.10</td>
<td>Socioeconomics ... 3-53</td>
</tr>
<tr>
<td>3.2.10.1</td>
<td>Population and Employment .. 3-53</td>
</tr>
<tr>
<td>3.2.10.2</td>
<td>Schools ... 3-54</td>
</tr>
<tr>
<td>3.2.10.3</td>
<td>Housing .. 3-54</td>
</tr>
<tr>
<td>3.2.11</td>
<td>Environmental Justice and the Protection of Children .. 3-54</td>
</tr>
<tr>
<td>3.2.11.1</td>
<td>Minority and Low-Income Populations .. 3-54</td>
</tr>
<tr>
<td>3.2.11.2</td>
<td>Protection of Children .. 3-56</td>
</tr>
<tr>
<td>3.3</td>
<td>PEASE AIR NATIONAL GUARD STATION .. 3-57</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Noise .. 3-57</td>
</tr>
<tr>
<td>3.3.1.1</td>
<td>Baseline Operations ... 3-57</td>
</tr>
<tr>
<td>3.3.1.2</td>
<td>Runway and Flight Profiles .. 3-58</td>
</tr>
</tbody>
</table>

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS

Table of Contents
3.3.1.3 Existing Noise Environment ... 3-58
3.3.1.4 Portsmouth International Airport Noise Abatement
Procedures.. 3-60
3.3.1.5 Pease Air National Guard Station Noise Complaints
Procedures.. 3-60
3.3.2 Air Quality .. 3-60
 3.3.2.1 Regulatory Setting... 3-60
 3.3.2.2 Climate and Meteorology.. 3-62
 3.3.2.3 Regional and Local Air Pollutant Sources 3-62
 3.3.2.4 Baseline Air Quality... 3-63
 3.3.2.5 157th Air Refueling Wing Emissions 3-64
3.3.3 Safety .. 3-66
 3.3.3.1 Ground Safety ... 3-66
 3.3.3.2 Flight Safety .. 3-67
3.3.4 Soils and Water ... 3-68
 3.3.4.1 Soils.. 3-68
 3.3.4.2 Surface Water... 3-69
 3.3.4.3 Groundwater.. 3-71
 3.3.4.4 Floodplains... 3-72
3.3.5 Biological Resources ... 3-72
 3.3.5.1 Vegetation... 3-72
 3.3.5.2 Wildlife ... 3-72
 3.3.5.3 Special Status Species... 3-73
 3.3.5.4 Wetlands.. 3-73
3.3.6 Cultural Resources .. 3-73
 3.3.6.1 Archaeological Resources ... 3-73
 3.3.6.2 Architectural Resources .. 3-73
 3.3.6.3 Traditional Resources ... 3-73
3.3.7 Land Use .. 3-74
3.3.8 Infrastructure and Transportation ... 3-76
 3.3.8.1 Potable Water System ... 3-76
 3.3.8.2 Wastewater.. 3-76
 3.3.8.3 Stormwater.. 3-76
 3.3.8.4 Electrical and Natural Gas Systems 3-76
 3.3.8.5 Solid Waste Management ... 3-77
 3.3.8.6 Transportation.. 3-77
3.3.9 Hazardous Materials and Waste .. 3-77
 3.3.9.1 Hazardous Materials.. 3-77
 3.3.9.2 Hazardous Waste Management... 3-78
 3.3.9.3 Environmental Restoration Program..................................... 3-79
3.3.10 Socioeconomics ... 3-81
 3.3.10.1 Population and Employment ... 3-81
 3.3.10.2 Schools .. 3-82
 3.3.10.3 Housing ... 3-82
3.3.11 Environmental Justice and the Protection of Children 3-82
 3.3.11.1 Minority and Low-Income Populations 3-82
3.3.11.2 Protection of Children ... 3-83

3.4 PITTSBURGH AIR NATIONAL GUARD STATION ... 3-84
3.4.1 Noise .. 3-84
 3.4.1.1 Baseline Operations .. 3-84
 3.4.1.2 Runway and Flight Profiles ... 3-85
 3.4.1.3 Existing Noise Environment ... 3-86
 3.4.1.4 Pittsburgh International Airport Noise Abatement Procedures ... 3-86
 3.4.1.5 Pittsburgh International Airport Noise Complaints Procedures ... 3-86

3.4.2 Air Quality ... 3-88
 3.4.2.1 Regulatory Setting .. 3-88
 3.4.2.2 Climate and Meteorology .. 3-89
 3.4.2.3 Regional and Local Air Pollutant Sources ... 3-90
 3.4.2.4 Baseline Air Quality .. 3-90
 3.4.2.5 171st Air Refueling Wing Emissions 3-91

3.4.3 Safety ... 3-93
 3.4.3.1 Ground Safety ... 3-93
 3.4.3.2 Flight Safety .. 3-94

3.4.4 Soils and Water .. 3-95
 3.4.4.1 Soils ... 3-95
 3.4.4.2 Surface Water .. 3-96
 3.4.4.3 Groundwater .. 3-98
 3.4.4.4 Floodplains .. 3-98

3.4.5 Biological Resources ... 3-98
 3.4.5.1 Vegetation ... 3-98
 3.4.5.2 Wildlife ... 3-99
 3.4.5.3 Special Status Species ... 3-99
 3.4.5.4 Wetlands .. 3-99

3.4.6 Cultural Resources ... 3-100
 3.4.6.1 Archaeological Resources ... 3-100
 3.4.6.2 Architectural Resources .. 3-100
 3.4.6.3 Traditional Resources ... 3-100

3.4.7 Land Use .. 3-100

3.4.8 Infrastructure and Transportation .. 3-102
 3.4.8.1 Potable Water System ... 3-102
 3.4.8.2 Wastewater .. 3-102
 3.4.8.3 Stormwater .. 3-102
 3.4.8.4 Electrical and Natural Gas Systems 3-102
 3.4.8.5 Solid Waste Management ... 3-103
 3.4.8.6 Transportation ... 3-103

3.4.9 Hazardous Materials and Waste ... 3-103
 3.4.9.1 Hazardous Materials.. 3-103
 3.4.9.2 Hazardous Waste Management ... 3-104
 3.4.9.3 Environmental Restoration Program 3-105

3.4.10 Socioeconomics ... 3-107
3.4.10.1 Population and Employment ... 3-107
3.4.10.2 Schools .. 3-108
3.4.10.3 Housing ... 3-108
3.4.11 Environmental Justice and the Protection of Children 3-108
3.4.11.1 Minority and Low-Income Populations 3-108
3.4.11.2 Protection of Children ... 3-109

3.5 RICKENBACKER AIR NATIONAL GUARD STATION 3-110
3.5.1 Noise ... 3-110
3.5.1.1 Baseline Operations .. 3-110
3.5.1.2 Runway and Flight Profiles ... 3-111
3.5.1.3 Existing Noise Environment ... 3-111
3.5.1.4 Rickenbacker International Airport Noise Abatement Procedures .. 3-113
3.5.1.5 Rickenbacker International Airport Noise Complaints Procedures .. 3-113
3.5.2 Air Quality .. 3-114
3.5.2.1 Regulatory Setting ... 3-114
3.5.2.2 Climate and Meteorology .. 3-115
3.5.2.3 Regional and Local Air Pollutant Sources 3-116
3.5.2.4 Baseline Air Quality ... 3-116
3.5.2.5 121st Air Refueling Wing Emissions 3-117
3.5.3 Safety ... 3-119
3.5.3.1 Ground Safety ... 3-119
3.5.3.2 Flight Safety .. 3-120
3.5.4 Soils and Water ... 3-121
3.5.4.1 Soils ... 3-121
3.5.4.2 Surface Water .. 3-121
3.5.4.3 Groundwater ... 3-122
3.5.4.4 Floodplains .. 3-124
3.5.5 Biological Resources ... 3-124
3.5.5.1 Vegetation ... 3-124
3.5.5.2 Wildlife ... 3-124
3.5.5.3 Special Status Species ... 3-125
3.5.5.4 Wetlands .. 3-125
3.5.6 Cultural Resources ... 3-126
3.5.6.1 Archaeological Resources ... 3-126
3.5.6.2 Architectural Resources .. 3-126
3.5.6.3 Traditional Resources ... 3-126
3.5.7 Land Use .. 3-127
3.5.8 Infrastructure and Transportation ... 3-129
3.5.8.1 Potable Water System ... 3-129
3.5.8.2 Wastewater .. 3-129
3.5.8.3 Stormwater ... 3-129
3.5.8.4 Electrical and Natural Gas Systems 3-129
3.5.8.5 Solid Waste Management ... 3-130
3.5.8.6 Transportation ... 3-130
3.5.9 Hazardous Materials and Waste ... 3-130
 3.5.9.1 Hazardous Materials .. 3-130
 3.5.9.2 Hazardous Waste Management ... 3-131
 3.5.9.3 Environmental Restoration Program 3-132
3.5.10 Socioeconomics ... 3-134
 3.5.10.1 Population and Employment ... 3-134
 3.5.10.2 Schools .. 3-135
 3.5.10.3 Housing ... 3-135
3.5.11 Environmental Justice and the Protection of Children 3-135
 3.5.11.1 Minority and Low-Income Populations 3-135
 3.5.11.2 Protection of Children ... 3-136

CHAPTER 4 ENVIRONMENTAL CONSEQUENCES ... 4-1

 4.1 ALTERNATIVE #1 -- FORBES AIR NATIONAL GUARD STATION 4-1
 4.1.1 Noise .. 4-1
 4.1.1.1 Aircraft Noise .. 4-1
 4.1.1.2 Construction Noise .. 4-6
 4.1.1.3 Summary of Impacts .. 4-6
 4.1.2 Air Quality ... 4-6
 4.1.2.1 Operational Emissions .. 4-6
 4.1.2.2 Construction Emissions .. 4-8
 4.1.2.3 Summary of Impacts .. 4-9
 4.1.3 Safety ... 4-9
 4.1.3.1 Ground Safety ... 4-9
 4.1.3.2 Flight Safety ... 4-10
 4.1.3.3 Summary of Impacts .. 4-12
 4.1.4 Soils and Water .. 4-12
 4.1.4.1 Soils ... 4-12
 4.1.4.2 Surface Water .. 4-13
 4.1.4.3 Groundwater .. 4-13
 4.1.4.4 Floodplains ... 4-15
 4.1.4.5 Summary of Impacts .. 4-15
 4.1.5 Biological Resources ... 4-15
 4.1.5.1 Vegetation .. 4-15
 4.1.5.2 Wildlife ... 4-15
 4.1.5.3 Special Status Species ... 4-16
 4.1.5.4 Wetlands ... 4-16
 4.1.5.5 Summary of Impacts .. 4-16
 4.1.6 Cultural Resources ... 4-17
 4.1.6.1 Archaeological Resources ... 4-17
 4.1.6.2 Architectural Resources ... 4-17
 4.1.6.3 Traditional Resources .. 4-17
 4.1.6.4 Summary of Impacts .. 4-18
 4.1.7 Land Use .. 4-18
 4.1.7.1 Summary of Impacts .. 4-19
 4.1.8 Infrastructure and Transportation .. 4-21
4.1.8.1 Potable Water ... 4-21
4.1.8.2 Wastewater ... 4-21
4.1.8.3 Stormwater ... 4-21
4.1.8.4 Electrical and Natural Gas Systems 4-21
4.1.8.5 Solid Waste Management .. 4-22
4.1.8.6 Transportation .. 4-23
4.1.8.7 Summary of Impacts .. 4-23

4.1.9 Hazardous Materials and Waste 4-23
 4.1.9.1 Hazardous Materials .. 4-23
 4.1.9.2 Hazardous Waste Management 4-24
 4.1.9.3 Environmental Restoration Program 4-25
 4.1.9.4 Summary of Impacts .. 4-26

4.1.10 Socioeconomics .. 4-28
 4.1.10.1 Summary of Impacts .. 4-28

4.1.11 Environmental Justice and the Protection of Children 4-29
 4.1.11.1 Minority and Low-Income Populations 4-29
 4.1.11.2 Protection of Children .. 4-29
 4.1.11.3 Summary of Impacts .. 4-29

4.2 ALTERNATIVE #2 -- JOINT BASE MCGUIRE-DIX-LAKEHURST 4-30
 4.2.1 Noise ... 4-30
 4.2.1.1 Aircraft Noise ... 4-30
 4.2.1.2 Construction Noise .. 4-34
 4.2.1.3 Summary of Impacts .. 4-35
 4.2.2 Air Quality ... 4-35
 4.2.2.1 Operational Emissions 4-35
 4.2.2.2 Construction Emissions 4-37
 4.2.2.3 Summary of Impacts .. 4-38
 4.2.3 Safety ... 4-38
 4.2.3.1 Ground Safety .. 4-38
 4.2.3.2 Flight Safety ... 4-39
 4.2.3.3 Summary of Impacts .. 4-41
 4.2.4 Soils and Water .. 4-41
 4.2.4.1 Soils ... 4-41
 4.2.4.2 Surface Water .. 4-42
 4.2.4.3 Groundwater .. 4-44
 4.2.4.4 Floodplains ... 4-44
 4.2.4.5 Summary of Impacts .. 4-44
 4.2.5 Biological Resources .. 4-45
 4.2.5.1 Vegetation .. 4-45
 4.2.5.2 Wildlife .. 4-45
 4.2.5.3 Special Status Species 4-46
 4.2.5.4 Wetlands ... 4-46
 4.2.5.5 Summary of Impacts .. 4-47
 4.2.6 Cultural Resources ... 4-47
 4.2.6.1 Archaeological Resources 4-47
 4.2.6.2 Architectural Resources 4-48
4.2.6.3 Traditional Resources ... 4-48
4.2.6.4 Summary of Impacts ... 4-48

4.2.7 Land Use .. 4-49
4.2.7.1 Summary of Impacts ... 4-52

4.2.8 Infrastructure and Transportation .. 4-52
4.2.8.1 Potable Water .. 4-52
4.2.8.2 Wastewater .. 4-52
4.2.8.3 Stormwater .. 4-53
4.2.8.4 Electrical and Natural Gas Systems 4-53
4.2.8.5 Solid Waste Management ... 4-54
4.2.8.6 Transportation ... 4-54
4.2.8.7 Summary of Impacts ... 4-55

4.2.9 Hazardous Materials and Waste... 4-55
4.2.9.1 Hazardous Materials.. 4-55
4.2.9.2 Hazardous Waste Management ... 4-56
4.2.9.3 Environmental Restoration Program 4-57
4.2.9.4 Summary of Impacts ... 4-58

4.2.10 Socioeconomics ... 4-60
4.2.10.1 Summary of Impacts ... 4-61

4.2.11 Environmental Justice and the Protection of Children 4-61
4.2.11.1 Minority and Low-Income Populations 4-61
4.2.11.2 Protection of Children ... 4-61
4.2.11.3 Summary of Impacts ... 4-62

4.3 ALTERNATIVE #3 -- PEASE AIR NATIONAL GUARD STATION 4-63
4.3.1 Noise .. 4-63
4.3.1.1 Aircraft Noise .. 4-63
4.3.1.2 Construction Noise ... 4-67
4.3.1.3 Summary of Impacts ... 4-68

4.3.2 Air Quality ... 4-68
4.3.2.1 Operational Emissions .. 4-68
4.3.2.2 Construction Emissions ... 4-70
4.3.2.3 Summary of Impacts ... 4-71

4.3.3 Safety ... 4-71
4.3.3.1 Ground Safety ... 4-71
4.3.3.2 Flight Safety ... 4-72
4.3.3.3 Summary of Impacts ... 4-73

4.3.4 Soils and Water .. 4-74
4.3.4.1 Soils... 4-74
4.3.4.2 Surface Water .. 4-75
4.3.4.3 Groundwater .. 4-77
4.3.4.4 Floodplains .. 4-77
4.3.4.5 Summary of Impacts ... 4-77

4.3.5 Biological Resources ... 4-77
4.3.5.1 Vegetation .. 4-77
4.3.5.2 Wildlife ... 4-78
4.3.5.3 Special Status Species ... 4-79
4.3.5.4 Wetlands ... 4-79
4.3.5.5 Summary of Impacts .. 4-79
4.3.6 Cultural Resources .. 4-80
4.3.6.1 Archaeological Resources 4-80
4.3.6.2 Architectural Resources .. 4-80
4.3.6.3 Traditional Resources .. 4-80
4.3.6.4 Summary of Impacts ... 4-81
4.3.7 Land Use ... 4-81
4.3.7.1 Summary of Impacts ... 4-83
4.3.8 Infrastructure and Transportation 4-83
4.3.8.1 Potable Water ... 4-83
4.3.8.2 Wastewater .. 4-83
4.3.8.3 Stormwater .. 4-83
4.3.8.4 Electrical and Natural Gas Systems 4-84
4.3.8.5 Solid Waste Management 4-84
4.3.8.6 Transportation .. 4-85
4.3.8.7 Summary of Impacts ... 4-86
4.3.9 Hazardous Materials and Waste 4-86
4.3.9.1 Hazardous Materials ... 4-86
4.3.9.2 Hazardous Waste Management 4-87
4.3.9.3 Environmental Restoration Program 4-87
4.3.9.4 Summary of Impacts ... 4-90
4.3.10 Socioeconomics .. 4-90
4.3.10.1 Summary of Impacts ... 4-91
4.3.11 Environmental Justice and the Protection of Children 4-91
4.3.11.1 Minority and Low-Income Populations 4-91
4.3.11.2 Protection of Children ... 4-91
4.3.11.3 Summary of Impacts ... 4-91
4.4 ALTERNATIVE #4 -- PITTSBURGH AIR NATIONAL GUARD STATION 4-92
4.4.1 Noise ... 4-92
4.4.1.1 Aircraft Noise ... 4-92
4.4.1.2 Construction Noise ... 4-97
4.4.1.3 Summary of Impacts ... 4-97
4.4.2 Air Quality ... 4-98
4.4.2.1 Operational Emissions ... 4-98
4.4.2.2 Construction Emissions .. 4-100
4.4.2.3 Summary of Impacts ... 4-101
4.4.3 Safety ... 4-101
4.4.3.1 Ground Safety ... 4-101
4.4.3.2 Flight Safety .. 4-102
4.4.3.3 Summary of Impacts ... 4-103
4.4.4 Soils and Water ... 4-104
4.4.4.1 Soils ... 4-104
4.4.4.2 Surface Water ... 4-105
4.4.4.3 Groundwater ... 4-107
4.4.4.4 Floodplains .. 4-107
4.4.5 Biological Resources ... 4-107
 4.4.5.1 Vegetation ... 4-107
 4.4.5.2 Wildlife ... 4-108
 4.4.5.3 Special Status Species ... 4-108
 4.4.5.4 Wetlands.. 4-108
 4.4.5.5 Summary of Impacts ... 4-109

4.4.6 Cultural Resources .. 4-109
 4.4.6.1 Archaeological Resources ... 4-109
 4.4.6.2 Architectural Resources .. 4-110
 4.4.6.3 Traditional Resources ... 4-110
 4.4.6.4 Summary of Impacts ... 4-110

4.4.7 Land Use .. 4-111
 4.4.7.1 Summary of Impacts ... 4-111

4.4.8 Infrastructure and Transportation .. 4-113
 4.4.8.1 Potable Water .. 4-113
 4.4.8.2 Wastewater .. 4-113
 4.4.8.3 Stormwater .. 4-113
 4.4.8.4 Electrical and Natural Gas Systems 4-113
 4.4.8.5 Solid Waste Management ... 4-114
 4.4.8.6 Transportation ... 4-115
 4.4.8.7 Summary of Impacts ... 4-115

4.4.9 Hazardous Materials and Waste ... 4-116
 4.4.9.1 Hazardous Materials.. 4-116
 4.4.9.2 Hazardous Waste Management ... 4-117
 4.4.9.3 Environmental Restoration Program 4-117
 4.4.9.4 Summary of Impacts ... 4-120

4.4.10 Socioeconomics ... 4-120
 4.4.10.1 Summary of Impacts ... 4-121

4.4.11 Environmental Justice and the Protection of Children 4-121
 4.4.11.1 Minority and Low-Income Populations 4-121
 4.4.11.2 Protection of Children ... 4-122
 4.4.11.3 Summary of Impacts ... 4-122

4.5 ALTERNATIVE #5 -- RICKENBACKER AIR NATIONAL GUARD STATION 4-123
 4.5.1 Noise .. 4-123
 4.5.1.1 Aircraft Noise .. 4-123
 4.5.1.2 Construction Noise.. 4-128
 4.5.1.3 Summary of Impacts ... 4-128

4.5.2 Air Quality ... 4-129
 4.5.2.1 Operational Emissions ... 4-129
 4.5.2.2 Construction Emissions... 4-131
 4.5.2.3 Summary of Impacts ... 4-132

4.5.3 Safety .. 4-132
 4.5.3.1 Ground Safety ... 4-132
 4.5.3.2 Flight Safety .. 4-133
 4.5.3.3 Summary of Impacts ... 4-134

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS

Table of Contents
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5.4</td>
<td>Soils and Water</td>
<td>4-135</td>
</tr>
<tr>
<td>4.5.4.1</td>
<td>Soils</td>
<td>4-135</td>
</tr>
<tr>
<td>4.5.4.2</td>
<td>Surface Water</td>
<td>4-135</td>
</tr>
<tr>
<td>4.5.4.3</td>
<td>Groundwater</td>
<td>4-138</td>
</tr>
<tr>
<td>4.5.4.4</td>
<td>Floodplains</td>
<td>4-138</td>
</tr>
<tr>
<td>4.5.4.5</td>
<td>Summary of Impacts</td>
<td>4-138</td>
</tr>
<tr>
<td>4.5.5</td>
<td>Biological Resources</td>
<td>4-138</td>
</tr>
<tr>
<td>4.5.5.1</td>
<td>Vegetation</td>
<td>4-138</td>
</tr>
<tr>
<td>4.5.5.2</td>
<td>Wildlife</td>
<td>4-139</td>
</tr>
<tr>
<td>4.5.5.3</td>
<td>Special Status Species</td>
<td>4-139</td>
</tr>
<tr>
<td>4.5.5.4</td>
<td>Wetlands</td>
<td>4-140</td>
</tr>
<tr>
<td>4.5.5.5</td>
<td>Summary of Impacts</td>
<td>4-140</td>
</tr>
<tr>
<td>4.5.6</td>
<td>Cultural Resources</td>
<td>4-140</td>
</tr>
<tr>
<td>4.5.6.1</td>
<td>Archaeological Resources</td>
<td>4-140</td>
</tr>
<tr>
<td>4.5.6.2</td>
<td>Architectural Resources</td>
<td>4-141</td>
</tr>
<tr>
<td>4.5.6.3</td>
<td>Traditional Resources</td>
<td>4-141</td>
</tr>
<tr>
<td>4.5.6.4</td>
<td>Summary of Impacts</td>
<td>4-142</td>
</tr>
<tr>
<td>4.5.7</td>
<td>Land Use</td>
<td>4-142</td>
</tr>
<tr>
<td>4.5.7.1</td>
<td>Summary of Impacts</td>
<td>4-145</td>
</tr>
<tr>
<td>4.5.8</td>
<td>Infrastructure and Transportation</td>
<td>4-145</td>
</tr>
<tr>
<td>4.5.8.1</td>
<td>Potable Water</td>
<td>4-145</td>
</tr>
<tr>
<td>4.5.8.2</td>
<td>Wastewater</td>
<td>4-145</td>
</tr>
<tr>
<td>4.5.8.3</td>
<td>Stormwater</td>
<td>4-145</td>
</tr>
<tr>
<td>4.5.8.4</td>
<td>Electrical and Natural Gas Systems</td>
<td>4-146</td>
</tr>
<tr>
<td>4.5.8.5</td>
<td>Solid Waste Management</td>
<td>4-146</td>
</tr>
<tr>
<td>4.5.8.6</td>
<td>Transportation</td>
<td>4-147</td>
</tr>
<tr>
<td>4.5.8.7</td>
<td>Summary of Impacts</td>
<td>4-148</td>
</tr>
<tr>
<td>4.5.9</td>
<td>Hazardous Materials and Waste</td>
<td>4-148</td>
</tr>
<tr>
<td>4.5.9.1</td>
<td>Hazardous Materials</td>
<td>4-148</td>
</tr>
<tr>
<td>4.5.9.2</td>
<td>Hazardous Waste Management</td>
<td>4-149</td>
</tr>
<tr>
<td>4.5.9.3</td>
<td>Environmental Restoration Program</td>
<td>4-149</td>
</tr>
<tr>
<td>4.5.9.4</td>
<td>Summary of Impacts</td>
<td>4-152</td>
</tr>
<tr>
<td>4.5.10</td>
<td>Socioeconomics</td>
<td>4-152</td>
</tr>
<tr>
<td>4.5.10.1</td>
<td>Summary of Impacts</td>
<td>4-153</td>
</tr>
<tr>
<td>4.5.11</td>
<td>Environmental Justice and the Protection of Children</td>
<td>4-153</td>
</tr>
<tr>
<td>4.5.11.1</td>
<td>Minority and Low-Income Populations</td>
<td>4-153</td>
</tr>
<tr>
<td>4.5.11.2</td>
<td>Protection of Children</td>
<td>4-153</td>
</tr>
<tr>
<td>4.5.11.3</td>
<td>Summary of Impacts</td>
<td>4-153</td>
</tr>
<tr>
<td>4.6</td>
<td>No Action Alternative</td>
<td>4-155</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Noise</td>
<td>4-155</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Air Quality</td>
<td>4-156</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Safety</td>
<td>4-156</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Soils and Water</td>
<td>4-156</td>
</tr>
<tr>
<td>4.6.5</td>
<td>Biological Resources</td>
<td>4-157</td>
</tr>
<tr>
<td>4.6.6</td>
<td>Cultural Resources</td>
<td>4-157</td>
</tr>
<tr>
<td>4.6.7</td>
<td>Land Use</td>
<td>4-157</td>
</tr>
</tbody>
</table>
CHAPTER 5 CUMULATIVE EFFECTS AND IRREVERSIBLE AND IRRETRIEVABLE COMMITMENT OF RESOURCES 5-1

5.1 ALTERNATIVE #1 -- FORBES AIR NATIONAL GUARD STATION CUMULATIVE EFFECTS.. 5-1

5.1.1 Past, Present, and Reasonably Foreseeable Actions 5-1
5.1.2 Cumulative Impacts ... 5-2
 5.1.2.1 Noise ... 5-2
 5.1.2.2 Air Quality .. 5-2
 5.1.2.3 Safety ... 5-3
 5.1.2.4 Soils and Water ... 5-3
 5.1.2.5 Biological Resources .. 5-4
 5.1.2.6 Cultural Resources .. 5-4
 5.1.2.7 Land Use ... 5-5
 5.1.2.8 Infrastructure and Transportation 5-5
 5.1.2.9 Hazardous Materials and Waste 5-6
 5.1.2.10 Socioeconomics ... 5-6
 5.1.2.11 Environmental Justice and the Protection of Children 5-7

5.2 ALTERNATIVE #2 -- JOINT BASE MCGUIRE-DIX-LAKEHURST CUMULATIVE EFFECTS .. 5-8

5.2.1 Past, Present, and Reasonably Foreseeable Actions 5-8
5.2.2 Cumulative Impacts ... 5-9
 5.2.2.1 Noise ... 5-9
 5.2.2.2 Air Quality .. 5-9
 5.2.2.3 Safety ... 5-10
 5.2.2.4 Soils and Water ... 5-11
 5.2.2.5 Biological Resources .. 5-12
 5.2.2.6 Cultural Resources .. 5-13
 5.2.2.7 Land Use ... 5-13
 5.2.2.8 Infrastructure and Transportation 5-14
 5.2.2.9 Hazardous Materials and Waste 5-14
 5.2.2.10 Socioeconomics ... 5-14
 5.2.2.11 Environmental Justice and the Protection of Children 5-15

5.3 ALTERNATIVE #3 -- PEASE AIR NATIONAL GUARD STATION CUMULATIVE EFFECTS.. 5-16

5.3.1 Past, Present, and Reasonably Foreseeable Actions 5-16
5.3.2 Cumulative Impacts ... 5-17
 5.3.2.1 Noise ... 5-17
 5.3.2.2 Air Quality .. 5-17
 5.3.2.3 Safety ... 5-17
 5.3.2.4 Soils and Water ... 5-18
 5.3.2.5 Biological Resources .. 5-19
5.3.2.6 Cultural Resources .. 5-20
5.3.2.7 Land Use .. 5-20
5.3.2.8 Infrastructure and Transportation................................. 5-20
5.3.2.9 Hazardous Materials and Waste 5-21
5.3.2.10 Socioeconomics .. 5-21
5.3.2.11 Environmental Justice and the Protection of Children 5-21

5.4 ALTERNATIVE #4 -- PITTSBURGH AIR NATIONAL GUARD STATION

5.4.1 Past, Present, and Reasonably Foreseeable Actions 5-23
5.4.2 Cumulative Impacts ... 5-24
 5.4.2.1 Noise ... 5-24
 5.4.2.2 Air Quality ... 5-25
 5.4.2.3 Safety .. 5-25
 5.4.2.4 Soils and Water ... 5-26
 5.4.2.5 Biological Resources .. 5-27
 5.4.2.6 Cultural Resources ... 5-27
 5.4.2.7 Land Use ... 5-28
 5.4.2.8 Infrastructure and Transportation 5-28
 5.4.2.9 Hazardous Materials and Waste 5-28
 5.4.2.10 Socioeconomics .. 5-29
 5.4.2.11 Environmental Justice and the Protection of Children ... 5-29

5.5 ALTERNATIVE #5 -- RICKENBACKER AIR NATIONAL GUARD STATION

5.5.1 Past, Present, and Reasonably Foreseeable Actions 5-30
5.5.2 Cumulative Impacts ... 5-31
 5.5.2.1 Noise ... 5-31
 5.5.2.2 Air Quality ... 5-32
 5.5.2.3 Safety .. 5-32
 5.5.2.4 Soils and Water ... 5-33
 5.5.2.5 Biological Resources .. 5-34
 5.5.2.6 Cultural Resources ... 5-34
 5.5.2.7 Land Use ... 5-35
 5.5.2.8 Infrastructure and Transportation 5-35
 5.5.2.9 Hazardous Materials and Waste 5-36
 5.5.2.10 Socioeconomics .. 5-36
 5.5.2.11 Environmental Justice and the Protection of Children ... 5-36

5.6 IRREVERSIBLE AND IRRETRIEVABLE COMMITMENT OF RESOURCES FOR ALL
 ALTERNATIVES .. 5-37

CHAPTER 6 REFERENCES ... 6-1
CHAPTER 7 PERSONS AND AGENCIES CONTACTED .. 7-1
CHAPTER 8 LIST OF PREPARERS .. 8-1
INDEX ... IDX-1
LIST OF REPOSITORIES ... REPOS-1
GLOSSARY ... GLOSS-1
TABLES

<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES-1</td>
<td>Summary of Alternatives (Current/Proposed)</td>
</tr>
<tr>
<td>ES-2</td>
<td>Summary of Impacts</td>
</tr>
<tr>
<td>1.3-1</td>
<td>Comparison of KC-135 and KC-46A</td>
</tr>
<tr>
<td>2.3-1</td>
<td>Current 190 ARW KC-135 Operations at Forbes Field Airport</td>
</tr>
<tr>
<td>2.3-2</td>
<td>Proposed 190 ARW KC-46A Operations at Forbes Field Airport</td>
</tr>
<tr>
<td>2.3-3</td>
<td>Changes to 190 ARW Airfield Operations with Proposed KC-46A Aircraft</td>
</tr>
<tr>
<td>2.3-4</td>
<td>Current and Proposed Local Air Refueling Airspace Used by the 190 ARW</td>
</tr>
<tr>
<td>2.3-5</td>
<td>Proposed 190 ARW Construction Projects at Forbes Field Airport</td>
</tr>
<tr>
<td>2.3-6</td>
<td>Comparison of Currently Authorized and Proposed 190 ARW Personnel</td>
</tr>
<tr>
<td>2.3-7</td>
<td>Current 108 WG KC-135 Operations at McGuire Field</td>
</tr>
<tr>
<td>2.3-8</td>
<td>Proposed 108 WG KC-46A Operations at McGuire Field</td>
</tr>
<tr>
<td>2.3-9</td>
<td>Changes to 108 WG Airfield Operations with Proposed KC-46A Aircraft</td>
</tr>
<tr>
<td>2.3-10</td>
<td>Current and Proposed Local Air Refueling Airspace Used by the 108 WG</td>
</tr>
<tr>
<td>2.3-11</td>
<td>Proposed 108 WG Construction Projects at McGuire Field</td>
</tr>
<tr>
<td>2.3-12</td>
<td>Comparison of Currently Authorized and Proposed 108 WG Personnel</td>
</tr>
<tr>
<td>2.3-13</td>
<td>Current 157 ARW Operations at Portsmouth IAP</td>
</tr>
<tr>
<td>2.3-14</td>
<td>Proposed 157 ARW KC-46A Operations at Portsmouth IAP</td>
</tr>
<tr>
<td>2.3-15</td>
<td>Changes to 157 ARW Airfield Operations with Proposed KC-46A Aircraft</td>
</tr>
<tr>
<td>2.3-16</td>
<td>Current and Proposed Local Air Refueling Airspace Used by the 157 ARW</td>
</tr>
<tr>
<td>2.3-17</td>
<td>Proposed 157 ARW Construction Projects at Portsmouth IAP</td>
</tr>
<tr>
<td>2.3-18</td>
<td>Comparison of Currently Authorized and Proposed 157 ARW Personnel</td>
</tr>
<tr>
<td>2.3-19</td>
<td>Current 171 ARW KC-135 Aircraft Operations at Pittsburgh IAP</td>
</tr>
<tr>
<td>2.3-20</td>
<td>Proposed 171 ARW KC-46A Operations at Pittsburgh IAP</td>
</tr>
<tr>
<td>2.3-21</td>
<td>Changes to 171 ARW Airfield Operations with Proposed KC-46A Aircraft</td>
</tr>
<tr>
<td>2.3-22</td>
<td>Current and Proposed Local Air Refueling Airspace Used by the 171 ARW</td>
</tr>
<tr>
<td>2.3-23</td>
<td>Proposed 171 ARW Construction Projects at Pittsburgh IAP</td>
</tr>
<tr>
<td>2.3-24</td>
<td>Comparison of Currently Authorized and Proposed 171 ARW Personnel</td>
</tr>
<tr>
<td>2.3-25</td>
<td>Current 121 ARW KC-135 Operations at Rickenbacker IAP</td>
</tr>
<tr>
<td>2.3-26</td>
<td>Proposed 121 ARW KC-46A Aircraft Operations at Rickenbacker IAP</td>
</tr>
<tr>
<td>2.3-27</td>
<td>Changes to 121 ARW Airfield Operations with Proposed KC-46A Aircraft</td>
</tr>
<tr>
<td>2.3-28</td>
<td>Current and Proposed Local Air Refueling Airspace Used by the 121 ARW</td>
</tr>
<tr>
<td>2.3-29</td>
<td>Proposed 121 ARW Construction Projects at Rickenbacker IAP</td>
</tr>
<tr>
<td>2.3-30</td>
<td>Comparison of Currently Authorized and Proposed 121 ARW Personnel</td>
</tr>
<tr>
<td>2.6-1</td>
<td>Summary of Alternatives (Current/Proposed)</td>
</tr>
<tr>
<td>2.6-2</td>
<td>Summary of Impacts</td>
</tr>
<tr>
<td>3.1.1-1</td>
<td>Current Forbes Field Airport Annual Aircraft Operations</td>
</tr>
<tr>
<td>3.1.1-2</td>
<td>Acres within Baseline Noise Contours, Forbes Field Airport</td>
</tr>
<tr>
<td>3.1.2-1</td>
<td>Ambient Air Quality Standards</td>
</tr>
<tr>
<td>3.1.2-2</td>
<td>Regional Emissions for Shawnee County, Kansas</td>
</tr>
<tr>
<td>3.1.2-3</td>
<td>Ambient Air Monitoring Data for Topeka and Kansas City, Kansas</td>
</tr>
<tr>
<td>3.1.2-4</td>
<td>190 ARW Baseline Emissions at Forbes ANGS</td>
</tr>
<tr>
<td>3.1.9-1</td>
<td>ERP Sites within the 190 ARW Installation</td>
</tr>
<tr>
<td>3.1.10-1</td>
<td>Population Growth within the Vicinity of Forbes ANGS</td>
</tr>
<tr>
<td>3.1.10-2</td>
<td>Employment Data (2011) within the Vicinity of Forbes ANGS</td>
</tr>
</tbody>
</table>
4.1.2-1 Comparison of Baseline and Proposed Annual Operational Emissions, 190 ARW ... 4-7
4.1.2-2 Comparison of Baseline and Proposed Annual Operational GHG Emissions, 190 ARW ... 4-8
4.1.2-3 Annual Construction Emissions Under Alternative #1 4-9
4.1.7-1 Change in Acres Affected by Noise Levels Above 65 dB DNL Outside the Forbes Field Airport Boundary ... 4-19
4.2.1-1 McGuire Field Annual Aircraft Operations with Proposed KC-46A 4-31
4.2.1-2 Land Areas within DNL Contours at JB MDL Affected by DNL Greater than 65 dB under Baseline and Alternative #2 4-31
4.2.2-1 Comparison of Baseline and Proposed Annual Operational Emissions, 108 WG Installation ... 4-36
4.2.2-2 Comparison of Baseline and Proposed Annual Operational GHG Emissions, 108 WG ... 4-37
4.2.2-3 Annual Construction Emissions Under Alternative #2 4-38
4.2.7-1 Change in Acres Affected by Noise Levels Above 65 dB DNL Outside the McGuire Field Boundary ... 4-50
4.2.11-1 Population within Alternative #2 Noise Contours, JB MDL 4-61
4.3.1-1 Portsmouth IAP Annual Aircraft Operations with Proposed KC-46A 4-64
4.3.1-2 Land Areas within DNL Contours at Portsmouth IAP Affected by DNL Greater than 65 dB under Baseline and Alternative #3 4-64
4.3.2-1 Comparison of Baseline and Proposed Annual Operational Emissions, 157 ARW ... 4-69
4.3.2-2 Comparison of Baseline and Proposed Annual Operational GHG Emissions, 157 ARW ... 4-70
4.3.2-3 Annual Construction Emissions Under Alternative #3 4-71
4.3.7-1 Change in Acres Affected by Noise Levels Above 65 dB DNL Outside the Portsmouth IAP ... 4-83
4.4.1-1 Changes to Pittsburgh IAP Airfield Operations with Proposed KC-46A Based on FAR Part 150 Baseline ... 4-93
4.4.1-2 Pittsburgh ANGS Aircraft Operations with Proposed KC-46A 4-93
4.4.1-3 Land Areas within DNL Contours at Pittsburgh IAP Affected by DNL Greater than 65 dB under Baseline and Alternative #4 4-94
4.4.2-1 Comparison of Baseline and Proposed Annual Operational Emissions, 171 ARW ... 4-99
4.4.2-2 Comparison of Baseline and Proposed Annual Operational GHG Emissions, 171 ARW ... 4-100
4.4.2-3 Annual Construction Emissions Under Alternative #4 4-101
4.4.7-1 Change in Acres Affected by Noise Levels Above 65 dB DNL Outside the Pittsburgh IAP Boundary ... 4-111
4.4.11-1 Population within Alternative #4 Noise Contours, Pittsburgh IAP 4-122
4.5.1-1 Changes to Rickenbacker IAP Airfield Operations with Proposed KC-46A Based on FAR Part 150 Baseline ... 4-124
4.5.1-2 Rickenbacker ANGS Aircraft Operations with Proposed KC-46A 4-124
4.5.1-3 Land Areas within DNL Contours at Rickenbacker IAP Affected by DNL Greater than 65 dB under Baseline and Alternative #5 4-125
4.5.2-1 Comparison of Baseline and Proposed Annual Operational Emissions, 121 ARW ... 4-130
4.5.2-2 Comparison of Baseline and Proposed Annual Operational GHG Emissions, 121 ARW ... 4-131
4.5.2-3 Annual Construction Emissions Under Alternative #5 .. 4-132
4.5.7-1 Change in Acres Affected by Noise Levels Above 65 dB DNL Outside the Rickenbacker IAP Boundary ... 4-143
5.1.1-1 Past, Present, and Reasonably Foreseeable Actions in the ROI for Forbes ANGS ... 5-1
5.2.1-1 Past, Present, and Reasonably Foreseeable Actions in the ROI for JB MDL 5-8
5.3.1-1 Past, Present, and Reasonably Foreseeable Actions in the ROI for Pease ANGS ... 5-16
5.4.1-1 Past, Present, and Reasonably Foreseeable Actions in the ROI for Pittsburgh ANGS ... 5-23
5.5.1-1 Past, Present, and Reasonably Foreseeable Actions in the ROI for Rickenbacker ANGS .. 5-30

FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES-1</td>
<td>Alternative Locations for the KC-46A ANG Beddown .. ES-2</td>
</tr>
<tr>
<td>1.1-1</td>
<td>Alternative Locations for the KC-46A ANG Beddown .. 1-2</td>
</tr>
<tr>
<td>2.3-1</td>
<td>Regional Location Forbes ANGS ... 2-8</td>
</tr>
<tr>
<td>2.3-2</td>
<td>Construction Associated with Alternative #1, Forbes ANGS .. 2-13</td>
</tr>
<tr>
<td>2.3-3</td>
<td>Regional Location, JB MDL ... 2-17</td>
</tr>
<tr>
<td>2.3-4</td>
<td>Construction Associated with Alternative #2, JB MDL .. 2-22</td>
</tr>
<tr>
<td>2.3-5</td>
<td>Regional Location Pease ANGS ... 2-27</td>
</tr>
<tr>
<td>2.3-6</td>
<td>Construction Associated with Alternative #3, Pease ANGS ... 2-33</td>
</tr>
<tr>
<td>2.3-7</td>
<td>Regional Location, Pittsburgh ANGS .. 2-38</td>
</tr>
<tr>
<td>2.3-8</td>
<td>Construction Associated with Alternative #4, Pittsburgh ANGS 2-43</td>
</tr>
<tr>
<td>2.3-9</td>
<td>Regional Location Rickenbacker ANGS ... 2-47</td>
</tr>
<tr>
<td>2.3-10</td>
<td>Construction Associated with Alternative #5, Rickenbacker ANGS 2-52</td>
</tr>
<tr>
<td>3.1.1-1</td>
<td>Baseline DNL Noise Contours for Forbes Field Airport .. 3-4</td>
</tr>
<tr>
<td>3.1.4-1</td>
<td>Surface Water Features in the Vicinity of Forbes ANGS .. 3-15</td>
</tr>
<tr>
<td>3.1.7-1</td>
<td>DNL Noise Contours and Land Use at Forbes Field Airport ... 3-20</td>
</tr>
<tr>
<td>3.1.9-1</td>
<td>Environmental Restoration Program Sites at the 190 ARW Installation, Forbes Field Airport ... 3-25</td>
</tr>
<tr>
<td>3.2.1-1</td>
<td>Baseline DNL Noise Contours for McGuire Field ... 3-30</td>
</tr>
<tr>
<td>3.2.4-1</td>
<td>Surface Water Features and Wetlands in the Vicinity of McGuire Field 3-41</td>
</tr>
<tr>
<td>3.2.7-1</td>
<td>DNL Noise Contours and Land Use at McGuire Field ... 3-48</td>
</tr>
<tr>
<td>3.2.9-1</td>
<td>Environmental Restoration Program Sites at the 108 WG Installation, JB MDL 3-52</td>
</tr>
<tr>
<td>3.3.1-1</td>
<td>Baseline DNL Noise Contours for Portsmouth IAP .. 3-59</td>
</tr>
<tr>
<td>3.3.4-1</td>
<td>Surface Water Features and Wetlands in the Vicinity of Pease ANGS 3-70</td>
</tr>
<tr>
<td>3.3.7-1</td>
<td>DNL Noise Contours and Land Use at Portsmouth IAP ... 3-75</td>
</tr>
<tr>
<td>3.3.9-1</td>
<td>ERP Sites at the 157 ARW Installation, Portsmouth IAP .. 3-80</td>
</tr>
<tr>
<td>3.4.1-1</td>
<td>Baseline DNL Noise Contours for Pittsburgh IAP .. 3-87</td>
</tr>
</tbody>
</table>
3.4.4-1 Surface Water Features and Wetlands in the Vicinity of Pittsburgh ANGS 3-97
3.4.7-1 DNL Noise Contours and Land Use at Pittsburgh IAP .. 3-101
3.4.9-1 ERP Sites at the 171 ARW Installation, Pittsburgh IAP .. 3-106
3.5.1-1 Baseline DNL Noise Contours for Rickenbacker IAP ... 3-112
3.5.4-1 Surface Water Features and Wetlands in the Vicinity of Rickenbacker ANGS .. 3-123
3.5.7-1 DNL Noise Contours and Land Use at Rickenbacker IAP 3-128
3.5.9-1 ERP Sites at the 121 ARW Installation, Rickenbacker IAP 3-133
4.1.1-1 DNL Noise Contours Under Alternative #1 at Forbes Field Airport 4-3
4.1.1-2 Comparison of Baseline and Alternative #1 DNL Noise Contours at Forbes Field Airport .. 4-4
4.1.4-1 Surface Water Features and Proposed Construction in the Vicinity of Forbes ANGS ... 4-14
4.1.7-1 DNL Noise Contours and Land Use Under Alternative #1 at Forbes Field Airport ... 4-20
4.1.9-1 ERP Sites and Proposed Construction in the Vicinity of Forbes ANGS 4-27
4.2.1-1 DNL Noise Contours Under Alternative #2 at McGuire Field 4-32
4.2.1-2 Comparison of Baseline and Alternative #2 DNL Noise Contours at McGuire Field .. 4-33
4.2.4-1 Surface Water Features and Proposed Construction in the Vicinity of McGuire Field ... 4-43
4.2.7-1 DNL Noise Contours and Land Use Under Alternative #2 at McGuire Field 4-51
4.2.9-1 ERP Sites and Proposed Construction in the Vicinity of McGuire Field 4-59
4.3.1-1 DNL Noise Contours Under Alternative #3 at Portsmouth IAP 4-65
4.3.1-2 Comparison of Baseline and Alternative #3 DNL Noise Contours at Portsmouth IAP .. 4-66
4.3.4-1 Surface Water Features and Proposed Construction in the Vicinity of Pease ANGS ... 4-76
4.3.7-1 DNL Noise Contours and Land Use Under Alternative #3 at Portsmouth IAP 4-82
4.3.9-1 ERP Sites and Proposed Construction in the Vicinity of Pease ANGS 4-89
4.4.1-1 DNL Noise Contours Under Alternative #4 at Pittsburgh IAP 4-95
4.4.1-2 Comparison of Baseline and Alternative #4 DNL Noise Contours for Pittsburgh IAP ... 4-96
4.4.4-1 Surface Water Features and Proposed Construction in the Vicinity of Pittsburgh ANGS ... 4-106
4.4.7-1 DNL Noise Contours and Land Use Under Alternative #4 at Pittsburgh IAP 4-112
4.4.9-1 ERP Sites and Proposed Construction in the Vicinity of Pittsburgh ANGS 4-119
4.5.1-1 DNL Noise Contours Under Alternative #5 at Rickenbacker IAP 4-126
4.5.1-2 Comparison of Baseline and Alternative #5 DNL Noise Contours at Rickenbacker IAP ... 4-127
4.5.4-1 Surface Water Features and Proposed Construction in the Vicinity of Rickenbacker ANGS ... 4-137
4.5.7-1 DNL Noise Contours and Land Use Under Alternative #5 at Rickenbacker IAP 4-144
4.5.9-1 ERP Sites and Proposed Construction in the Vicinity of Rickenbacker ANGS 4-151
Appendices are included on CD-ROM on the inside back cover of this document.

APPENDIX A RESOURCE DEFINITIONS AND METHODOLOGIES
APPENDIX B CORRESPONDENCE
APPENDIX C BACKGROUND INFORMATION FOR THE NOISE ANALYSIS
APPENDIX D AIR QUALITY
APPENDIX E SPECIAL STATUS SPECIES LISTS
APPENDIX F FINAL GENERAL CONFORMITY DETERMINATION FOR KC-46A ALTERNATIVE BEDDOWN LOCATION
ACRONYMS AND ABBREVIATIONS

°C degree Celsius CO₂ carbon dioxide
°F degree Fahrenheit CO₂e carbon dioxide equivalent
µg/m³ micrograms per cubic meter CONUS continental United States
64 ARS 64th Air Refueling Squadron CRAA Columbus Regional Airport Authority
108 WG 108th Wing CWA Clean Water Act
121 ARW 121st Air Refueling Wing CY Calendar Year
157 ARW 157th Air Refueling Wing CZ Clear Zone
dB decibel DNP Defense Environmental Restoration Program
AAD Average Annual Day DLA Defense Logistics Agency
AAQS Ambient Air Quality Standards DNL Day-Night Average Sound Level
ACAA Allegheny County Airport Authority DoD Department of Defense
ACM asbestos-containing material EIS Environmental Impact Statement
ACS American Community Survey EISA Energy Independence and Security Act
AFB Air Force Base EO Executive Order
AFCEC Air Force Civil Engineer Center ERP Environmental Restoration Program
AFI Air Force Instruction FARM Federal Aviation Regulations
AFMAN Air Force Manual FAA Federal Aviation Administration
AFOSH Air Force Occupational Safety and FEMAC Federal Emergency Management
Health Agency
AFSEC Air Force Safety Center FHWA Federal Highway Administration
AGE Aerospace Ground Equipment FICUN Federal Interagency Committee on
AGL above ground level Urban Noise
AICUZ Air Installation Compatible Use Zone AME Flight Level
AMC Air Mobility Command ANG National Guard
ANG Air National Guard ANGS Air National Guard Station
AOC Area of Concern APL Formal Training Unit
APZ Accident Potential Zone GHG greenhouse gas
ARFF Aircraft Rescue and Fire Fighting GWP global warming potential
ARO Air Refueling Operator HAP Hazardous Air Pollutant
ASD Average Sortie Duration IAP International Airport
ASN Aviation Safety Network I- Interstate
AST above-ground storage tank IAP International Airport
AT/FP Anti-Terrorism/Force Protection IFR Instrument Flight Rule
ATADS Air Traffic Activity Data System INM Integrated Noise Model
ATCAA Air Traffic Control Assigned Airspace JB MDL Joint Base McGuire-Dix-Lakehurst
BAI Backup Aerospace Vehicle Inventory KIAS knots indicated airspeed
BASH Bird/Wildlife Aircraft Strike Hazard KS ANG Kansas Air National Guard
BOMARC Boeing Michigan Aerospace Research LBP lead-based paint
Center LEED Leadership in Energy and
C2 Command and Control LID Low Impact Development
C4 Command, Control, Communications, MEA Migratory Bird Treaty Act
and Computers MILCON Military Construction
CAA Clean Air Act MOA Military Operations Area
CAP Central Accumulation Point MOB Main Operating Base
CEQ Council on Environmental Quality MOB 1 First Main Operating Base
CERCLA Comprehensive Environmental MOB 2 Second Main Operating Base
Response, Compensation, and Liability MSL mean sea level
Act MTAA Metropolitan Topeka Air Authority
CFR Code of Federal Regulations N₂O nitrous oxide
CH₄ methane
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAAQS</td>
<td>National Ambient Air Quality Standards</td>
</tr>
<tr>
<td>NDAA</td>
<td>National Defense Authorization Act</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
</tr>
<tr>
<td>NGB</td>
<td>National Guard Bureau</td>
</tr>
<tr>
<td>NGB/A7AN</td>
<td>National Guard Bureau, Asset Management Division, Natural Infrastructure Management Branch</td>
</tr>
<tr>
<td>NH ANG</td>
<td>New Hampshire Air National Guard</td>
</tr>
<tr>
<td>NHPA</td>
<td>National Historic Preservation Act</td>
</tr>
<tr>
<td>NIOSH</td>
<td>National Institute for Occupational Safety and Health</td>
</tr>
<tr>
<td>NIPTS</td>
<td>Noise-Induced Permanent Threshold Shift</td>
</tr>
<tr>
<td>NJ ANG</td>
<td>New Jersey Air National Guard</td>
</tr>
<tr>
<td>nm</td>
<td>nautical mile</td>
</tr>
<tr>
<td>NO₂</td>
<td>nitrogen dioxide</td>
</tr>
<tr>
<td>NOA</td>
<td>Notice of Availability</td>
</tr>
<tr>
<td>NOI</td>
<td>Notice of Intent</td>
</tr>
<tr>
<td>NO₅ₐ</td>
<td>oxides of nitrogen</td>
</tr>
<tr>
<td>NPDES</td>
<td>National Pollutant Discharge Elimination System</td>
</tr>
<tr>
<td>NRCS</td>
<td>Natural Resources Conservation Service</td>
</tr>
<tr>
<td>NRHP</td>
<td>National Register of Historic Places</td>
</tr>
<tr>
<td>NVIS</td>
<td>Night Vision Imaging System</td>
</tr>
<tr>
<td>O₃</td>
<td>ozone</td>
</tr>
<tr>
<td>OH ANG</td>
<td>Ohio Air National Guard</td>
</tr>
<tr>
<td>OSHA</td>
<td>Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>OWS</td>
<td>oil/water separator</td>
</tr>
<tr>
<td>PA ANG</td>
<td>Pennsylvania Air National Guard</td>
</tr>
<tr>
<td>PAA</td>
<td>Primary Aerospace Vehicles Authorized</td>
</tr>
<tr>
<td>PADEP</td>
<td>Pennsylvania Department of Environmental Protection</td>
</tr>
<tr>
<td>Pb</td>
<td>lead</td>
</tr>
<tr>
<td>PCB</td>
<td>polychlorinated biphenyl</td>
</tr>
<tr>
<td>PDA</td>
<td>Pease Development Authority</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>particulate matter less than or equal to 10 microns in diameter</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>particulate matter less than or equal to 10 microns in diameter</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>particulate matter less than or equal to 10 microns in diameter</td>
</tr>
<tr>
<td>Pol</td>
<td>petroleum, oil, and lubricant</td>
</tr>
<tr>
<td>POV</td>
<td>privately owned vehicle</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PSD</td>
<td>Prevention of Significant Deterioration</td>
</tr>
<tr>
<td>PUD</td>
<td>Planned Unit Development</td>
</tr>
<tr>
<td>QD</td>
<td>quantity-distance</td>
</tr>
<tr>
<td>RCRA</td>
<td>Resource Conservation and Recovery Act</td>
</tr>
<tr>
<td>ROD</td>
<td>Record of Decision</td>
</tr>
<tr>
<td>ROI</td>
<td>Region of Influence</td>
</tr>
<tr>
<td>RPZ</td>
<td>Runway Protection Zone</td>
</tr>
<tr>
<td>SAP</td>
<td>satellite accumulation point</td>
</tr>
<tr>
<td>SEL</td>
<td>Sound Exposure Level</td>
</tr>
<tr>
<td>SF</td>
<td>square foot/feet</td>
</tr>
<tr>
<td>SHPO</td>
<td>State Historic Preservation Office(r)</td>
</tr>
<tr>
<td>SIP</td>
<td>State Implementation Plan</td>
</tr>
<tr>
<td>SO₂</td>
<td>sulfur dioxide</td>
</tr>
<tr>
<td>SR</td>
<td>State Route</td>
</tr>
<tr>
<td>SUA</td>
<td>Special Use Airspace</td>
</tr>
<tr>
<td>SWPPP</td>
<td>Stormwater Pollution Prevention Plan</td>
</tr>
<tr>
<td>TFI</td>
<td>Total Force Integration</td>
</tr>
<tr>
<td>tpy</td>
<td>tons per year</td>
</tr>
<tr>
<td>UFC</td>
<td>Unified Facilities Criteria</td>
</tr>
<tr>
<td>USACE</td>
<td>United States Army Corps of Engineers</td>
</tr>
<tr>
<td>USAF</td>
<td>United States Air Force</td>
</tr>
<tr>
<td>USC</td>
<td>United States Code</td>
</tr>
<tr>
<td>USDA</td>
<td>United States Department of Agriculture</td>
</tr>
<tr>
<td>USEPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>USFWS</td>
<td>United States Fish and Wildlife Service</td>
</tr>
<tr>
<td>USGS</td>
<td>United States Geological Survey</td>
</tr>
<tr>
<td>UST</td>
<td>underground storage tank</td>
</tr>
<tr>
<td>UTBN</td>
<td>Up to But Not Including</td>
</tr>
<tr>
<td>VFR</td>
<td>Visual Flight Rule</td>
</tr>
<tr>
<td>VOC</td>
<td>volatile organic compound</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY

This Environmental Impact Statement (EIS) analyzes the potential environmental impacts associated with the beddown the KC-46A at the Second Main Operating Base (MOB 2), which will be led by an Air National Guard (ANG) unit. The Secretary of the Air Force proposes to replace existing KC-135s with the KC-46A aircraft for MOB 2 at one of five alternative locations. The five alternative ANG locations (Figure ES-1) selected for this beddown include:

- Forbes Air National Guard Station (ANGS), Kansas;
- Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey;
- Pease ANGS, New Hampshire;
- Pittsburgh ANGS, Pennsylvania; and,
- Rickenbacker ANGS, Ohio.

The official public scoping period for this proposal was initiated when the Notice of Intent (NOI) to prepare the EIS was published in the Federal Register on May 17, 2013 and ended on July 5, 2013. The Notice of Availability (NOA) for the Draft EIS was published in the Federal Register on February 7, which initiated a 45-day public comment period on the Draft EIS that ended on March 24, 2014. All comments received on the Draft EIS have been fully considered and addressed in the Final EIS, as appropriate. Comments received are reflected in Appendix B, Section 6, pages B6-223 to B6-387. Only substantive comments were responded to in the Government Responses to Comments, Appendix B, Section 6, pages B6-202 to B6-222.

PURPOSE AND NEED

Air refueling is the backbone of the United States’ (U.S.) ability to project global reach and combat power. Air refueling aircraft, also known as “tankers,” are a joint asset, serving our sister services and U.S. allies who rely on the range and flexibility of tankers to strengthen their contribution to the coalition fight. Without a robust air refueling capability, U.S. forces would be limited in their ability to provide global reach. The original mission of the current United States Air Force (USAF) air refueling aircraft, the KC-135 Stratotanker, was primarily to refuel strategic bomber aircraft while in flight, which enhances the ability of aircraft to provide sustained mission capability without landing to refuel. Through the course of the KC-135’s service life, structural and functional modifications have added capabilities to select aircraft. The result is a fleet of aircraft with multiple configurations and crews that may not be trained to accomplish every mission for which the aircraft is capable. This lack of standardized equipment and training throughout the fleet limits the ability for KC-135s to support, on a large scale, multi-role missions or exploit new tactics and procedures. The following are examples of capabilities that the current KC-135 fleet lacks:
Figure ES-1. Alternative Locations for the KC-46A ANG Beddown
• Multi-Point Refueling. Simultaneous refueling of two probe-equipped receiver aircraft from the same tanker is limited to 20 sets of wing-mounted refueling pods installed on the aircraft for the fleet of tankers.

• Boom/Probe and Drogue Refueling. With the exception of the refueling pod equipped aircraft, the KC-135 fleet does not have capability to perform boom and probe/drogue refueling on the same sortie1.

• Receiver capabilities. Only eight KC-135s have air refueling receptacles, which means that only eight of the KC-135 aircraft in the fleet can receive fuel in flight. This restricts force extension and limits persistence over the battlefield. It also results in inefficient use of valuable, but limited air refueling assets and limits flexibility within the maintenance schedule.

• Night Vision Imaging System (NVIS). The KC-135 fleet currently lacks a standard NVIS for tanker cockpits and boom operator positions. Additionally, exterior lighting is not currently NVIS-compatible, which prohibits air refueling in tactical NVIS (low vision) conditions. This limits the ability to perform covert air refueling operations at night, and degrades effectiveness of special operations support.

• Command, Control, Communications, and Computers (C4). KC-135s lack robust connectivity to command and control agencies. No secure tactical datalink exists and these aircraft have limited C4 connectivity to other combat, combat support, and mobility aircraft.

• Defensive Protection. KC-135s currently do not have any aircraft defensive systems.

The purpose of this action is to ensure that the National Guard Bureau (NGB) will have air refueling support for both conventional global strike and nuclear deterrence operations into the future. The purpose of the KC-46A is to support air superiority through air refueling of fighter, bomber, attack, special operations, Command and Control, Intelligence, Surveillance and Reconnaissance, and transport aircraft; and to support employment of combat units deploying to areas of operations. Finally, the KC-46A will also support the Command and Control core function as a communications “gateway” when equipped with a roll-on gateway system to provide connectivity between tactical network partners in theater.

The NGB requires a refueling aircraft that will be equipped with major technological improvements designed to enhance operations and increase mission effectiveness. The KC-46A is the USAF’s newest air refueling aircraft that meets this need. NGB requires a location to beddown the KC-46A aircraft in support of MOB 2. The base would support the beddown and

1 Probe and drogue refueling employs a flexible hose that trails from the tanker aircraft. The drogue is a fitting resembling a windsock, and is attached with a valve to a flexible hose.
training of crewmembers and personnel in the operation and maintenance of the KC-46A aircraft in an appropriate geographic location that can provide sufficient airfield, facilities, infrastructure, and airspace to support the KC-46A training and operations.

NARROWING PROCESS FOR ALTERNATIVE BASES

As previously described, the NGB is programmed to beddown one squadron of 12 Primary Aerospace Vehicles Authorized (PAA) KC-46A aircraft at one of five alternative locations. Identification and analysis of alternatives is one of the core elements of the environmental process under the National Environmental Policy Act (NEPA) and the USAF’s implementing regulations. The NGB may expressly eliminate alternatives from detailed analysis based on reasonable selection standards (32 Code of Federal Regulations [CFR] 989.8(c)). Based on extensive analysis by the USAF operations community, a siting study was conducted to determine the specific requirements for beddown of the KC-46A aircraft and to identify potential military installations where this beddown could occur. Following this study, the Secretary of the Air Force and the Chief of Staff of the Air Force approved selection criteria for the KC-46A beddown.

The approved criteria were used to screen the enterprise of 83 candidate installations to identify those installations’ capacity to successfully support the MOB 2 mission. The objective criteria included mission, capacity, environmental considerations, and cost.

The Secretary of the Air Force considered the objective screening results as well as qualitative operational factors in determining the alternative installations for the KC-46A MOB 2 mission. These military judgment factors included:

- Plans and Guidance
- Global and Regional Coverage
- Combatant Commander Support
- Total Force
- Beddown Timing
- Force Structure
- Training Requirements and Efficiencies
- Logistic Supportability
- Resources/Budgeting
The Strategic Basing Process described above resulted in the identification of five alternative bases for consideration.

- Forbes ANGS, Kansas
- JB MDL, New Jersey
- Pease ANGS, New Hampshire
- Pittsburgh ANGS, Pennsylvania
- Rickenbacker ANGS, Ohio

PROPOSED ACTION AND ALTERNATIVES

Overview of the Proposed Action

The USAF has a requirement to provide refueling aircraft that will be equipped with major technological improvements designed to enhance operations and increase mission effectiveness. The NGB proposes to beddown one squadron of 12 KC-46A aircraft at one of five alternative locations: Forbes ANGS, Kansas; JB MDL, New Jersey; Pease ANGS, New Hampshire; Pittsburgh ANGS, Pennsylvania; or Rickenbacker ANGS, Ohio. Additionally, one active duty associate unit would be integrated with ANG personnel and equipment, enabling joint training and execution of missions using ANG-assigned aircraft. Furthermore, the NGB would implement construction projects associated with the aircraft beddown at the selected installation. Concurrent with the beddown of the KC-46A, the existing KC-135 aircraft at the selected installation would either be relocated to another installation and/or retired out of the USAF inventory.

As a result of the Proposed Action, there would be a change to the type of aircraft based at the selected installation; a change to the mix of aircraft using the associated airspace; changes to staffing and manpower at the selected location; changes to the number of airfield operations; as well as minor required construction, building renovation, and facility demolition. There would be no new or modified airspace required to support this action. The proposed beddown is estimated to begin in Fiscal Year (FY) 2018 for the NGB, and construction is estimated to begin FY 2015. Although proposed construction is necessary for the long-term viability of the beddown, aircraft operations with the KC-46A could begin prior to implementation of the construction. Table ES-1 summarizes the major components of each alternative.
Table ES-1. Summary of Alternatives (Current/Proposed)

<table>
<thead>
<tr>
<th>Refueler Aircraft Type</th>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Refueler Aircraft (PAA)</td>
<td>12 / 12</td>
<td>8 / 12</td>
<td>8 / 12</td>
<td>16 / 12</td>
<td>18 / 12</td>
<td>Same as current</td>
</tr>
<tr>
<td>ARW Refueler Flying Hours</td>
<td>4,868 / 8,040</td>
<td>3,687 / 8,040</td>
<td>6,219 / 8,040</td>
<td>6,016 / 8,040</td>
<td>7,215 / 8,040</td>
<td>Same as current</td>
</tr>
<tr>
<td>Annual Sorties</td>
<td>1,478 / 2,010</td>
<td>1,112 / 2,010</td>
<td>1,382 / 2,010</td>
<td>1,569 / 2,010</td>
<td>2,014 / 2,010</td>
<td>Same as current</td>
</tr>
<tr>
<td>% Home-Station Operations</td>
<td>64% / 64%</td>
<td>75% / 75%</td>
<td>44% / 44%</td>
<td>59% / 59%</td>
<td>64% / 64%</td>
<td>Same as current</td>
</tr>
<tr>
<td>Home-Station Sorties</td>
<td>946 / 1,286</td>
<td>834 / 1,508</td>
<td>614 / 884</td>
<td>926 / 1,186</td>
<td>1,289 / 1,286</td>
<td>Same as current</td>
</tr>
<tr>
<td>Annual Airfield Operations</td>
<td>10,452 / 14,562</td>
<td>8,340 / 17,608</td>
<td>6,140 / 8,840</td>
<td>6,943 / 9,226</td>
<td>6,445 / 6,857</td>
<td>Same as current</td>
</tr>
<tr>
<td>Home-Station -- ANG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Actual Airfield Operations (including ANG) based on 2012 FAA/Tower reports</td>
<td>24,630 / 28,740</td>
<td>62,686 / 71,875</td>
<td>37,410 / 40,110</td>
<td>139,217 / 141,500</td>
<td>39,436 / 39,848</td>
<td>Same as current</td>
</tr>
<tr>
<td>Total FAR Part 150 (Baseline 2006/2007) Approved Operations (including ANG)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>321,436<sup>1</sup> / 317,602</td>
<td>67,160<sup>2</sup> / 60,877</td>
<td>Same as current</td>
</tr>
<tr>
<td>Construction -- new</td>
<td>Hangar modifications; new fuel hydrants; new simulator building; ramp/taxiway modifications</td>
<td>Hangar modifications; building additions; new fuel hydrants; ramp/taxiway modifications</td>
<td>Hangar modifications; new fuel hydrants; ramp/taxiway modifications</td>
<td>Hangar modifications; new fuel hydrants; ramp/taxiway modifications</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Construction -- renovations</td>
<td>Internal building renovations</td>
<td>Internal hangar renovations</td>
<td>Internal building renovations</td>
<td>Internal hangar renovations</td>
<td>Internal hangar renovations</td>
<td>None</td>
</tr>
<tr>
<td>Proposed Personnel Change (ANG and active duty)</td>
<td>+194</td>
<td>+287</td>
<td>+171</td>
<td>+59</td>
<td>+197</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes: 1. 2006 Part 150 Study data
2. 2007 Part 150 Study data
ANGS = Air National Guard Station; JB MDL = Joint Base McGuire-Dix-Lakehurst; PAA = Primary Aerospace Vehicles Authorized; ARW = Air Refueling Wing; ANG = Air National Guard; FAR = Federal Aviation Regulations
Requirements of the Proposed Action

Aircraft Beddown/Transition

The KC-46A is planned to eventually replace existing USAF KC-135s. The NGB proposes to begin this process by replacing the aircraft at the selected location with 12 KC-46A operational aircraft (regardless of how many aircraft are currently at the alternative location). It is estimated that the 12 KC-46A aircraft would be beddown at the selected location beginning in FY 2018. The existing KC-135 aircraft at the selected location would either be relocated to another installation and/or would be retired out of the USAF inventory. The relocation/retirement actions would be evaluated under NEPA, as appropriate.

Facility and Infrastructure Requirements

While basing the KC-46A would require certain facilities and infrastructure to support necessary training and operational requirements, utilizing existing infrastructure to the maximum extent feasible comprises a fundamental basis of the Proposed Action. Where existing facilities and infrastructure cannot meet the needs of the Proposed Action, the NGB would implement construction of necessary new and/or renovated infrastructure and facilities at the selected alternative installation. The type of construction needed would vary by installation (Table ES-1).

Personnel Changes

The KC-46A would provide substantial expanded capabilities with only minor overall changes in military personnel; however, the mission would require basing sufficient and appropriate personnel to operate and maintain the Wing and to provide necessary support services. In addition, there would be an active duty associate unit based with the selected MOB 2 alternative installation. The change in number of personnel would vary by installation (Table ES-1).

KC-46A Operations

Under the Proposed Action, the 12 PAA KC-46A aircraft would fly 670 hours per aircraft, per year, for a total of 8,040 hours annually. Because this is a new aircraft flying with a combination of ANG and associate active duty personnel, a uniform distribution of flying hours was assumed for each alternative. This is considered a conservative estimate and any deviation from this would likely be fewer hours flown. Thus, with an estimated average sortie duration (ASD) of 4.0 hours, the KC-46A aircraft would fly 2,010 sorties annually. The 2,010 annual sorties would be flown at a combination of the unit’s home-station as well as off-station airfields, where they are able to train in a different setting than their home-station. Each of the five alternative installations currently fly a different number of airfield operations per sortie, as well as a different percent of home-station/off-station operations. In developing the analysis for each
installation, the installations’ unique ratio of airfield operations was assumed to remain the same into the future, as were the percent of home-station/off-station operations. This resulted in a range of home-station airfield operations across the five action alternatives. Further, it is recognized that there is a recent trend toward an increasing use of flight simulators, which can reduce the number of hours flown. However, without a clear definition in the use of the simulator as opposed to actual airfield operations, the full 8,040 flying hour program has been analyzed for each action alternative. No changes are proposed to airfield departure/arrival patterns and tracks, flight profiles, and use of runways from those that are currently performed with the KC-135 at each MOB 2 location. Any existing noise abatement procedures would continue to be followed.

Under the Proposed Action, there would be some increases in the frequency of use and number of operations conducted in the airspace currently used by the KC-135, depending on the increase of sorties over the current baseline at each alternative installation. The KC-46A would use the same airspace currently used by the selected installation, with no new airspace required to support the mission. The types of airspace used would consist of published air refueling tracks, Anchors, Warning Areas, and Military Operations Areas (MOAs). These are found in the Department of Defense (DoD) AP/1B, Flight Information Publication, and Area Planning documents. All air refueling is accomplished above 10,000 feet mean sea level (MSL), although some MOAs are approved for lower altitude flight for training not involving air refueling. While a large percentage of air refueling occurs close to the home-station airfield, KC-135 aircraft refuel in other refueling tracks and Warning Areas located throughout the U.S. Under the Proposed Action, the KC-46A would use the airspace in the same manner as the KC-135 aircraft. It is anticipated that the KC-46A would operate in existing airspace and conduct flight operations similar to the existing KC-135 aircraft; therefore, detailed analysis of airspace has not been conducted in this EIS.

Identification of the Preferred Alternative

The USAF has identified Pease ANGS as the preferred alternative for the MOB 2 KC-46A beddown. The USAF selected Pease ANGS based on an operational analysis, results of site surveys, and military judgment factors.

No Action Alternative

The Council on Environmental Quality (CEQ) regulation 40 CFR § 1502.14(d) specifically requires analysis of the “No Action” alternative in all NEPA documents. Under the No Action Alternative, the proposed aircraft beddown would not occur, and the NGB would not implement the components described above under the five Action Alternatives. There would be no change in based aircraft; use of the airfield at the proposed locations; or use of Special Use Airspace.
(SUA), construction, or personnel assigned to the KC-46A aircraft squadron. Under the No Action Alternative, the NGB would continue to conduct their current mission using the existing KC-135 aircraft with multiple configurations and crews that are not trained to accomplish every mission. This lack of standardized equipment and training throughout the fleet would continue to negatively impact the ability for KC-135 aircrews to support, on a large scale, multi-role missions or exploit new tactics and procedures. The continued use of the KC-135 aircraft would not meet the identified needs of the NGB or the USAF; however, this alternative is carried forward for analysis in this EIS per CEQ regulations, and as a baseline from which to compare the potential impacts of the Proposed Action and alternatives.

ENVIRONMENTAL CONSEQUENCES

NEPA requires focused analysis on environmental resources and impact topics potentially affected by the Proposed Action or its alternatives. Based on the potential for the Proposed Action to affect the environment at and surrounding the five alternative locations, as well as public and agency concerns, several specific environmental resources were evaluated in detail in this EIS. The potential consequences of each alternative on these resources were evaluated and are summarized in Table ES-2.
Table ES-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Noise Impact</th>
<th>Forbes ANGS Details</th>
<th>JB MDL Details</th>
<th>Pease ANGS Details</th>
<th>Pittsburgh ANGS Details</th>
<th>Rickenbacker ANGS Details</th>
<th>No Action Alternative Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airfield operations would increase by 4,110 (39 percent increase in 190 ARW operations, 17 percent increase in total airfield operations).</td>
<td>Airfield operations would increase by 9,268 (111 percent increase in 108 WG operations, 15 percent increase in total airfield operations). Acreage within the 65 dB DNL (and greater) noise contour would increase by 1,831 acres. Impacts from noise would be negligible.</td>
<td>Airfield operations would increase by 2,700 (44 percent increase in 157 ARW operations, 7 percent increase in total airfield operations). Acreage within the 65 dB DNL (and greater) noise contour would increase by 135 acres. Impacts from noise would be negligible.</td>
<td>Airfield operations would decrease by 3,834 (29 percent decrease from the currently published baseline FAR Part 150 Noise Compatibility Program [2006]; and a 2 percent increase in actual 2012 airfield operations). Acreage within the 65 dB DNL (and greater) noise contour would decrease by 79 acres. Impacts from noise would be negligible.</td>
<td>Airfield operations would decrease by 6,283 (48 percent decrease from the currently published baseline FAR Part 150 Noise Compatibility Program [2007]; and a 1 percent increase in actual 2012 airfield operations). Acreage within the 65 dB DNL (and greater) noise contour would decrease by 99 acres. Impacts from noise would be negligible.</td>
<td>Each of the five installations would retain the KC-135 aircraft and would continue to fly the aircraft in the same manner and with approximately the same number of airfield operations as they currently do. There would be no additional Noise impacts at any of the alternative installations under the No Action Alternative.</td>
<td></td>
</tr>
</tbody>
</table>

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS

ES-10

Executive Summary
Table ES-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forbes ANGS is located in an attainment area for all criteria pollutants. While there would be increases in operational criteria pollutant emissions, they would be below the PSD threshold, and would not be significant. Impacts from construction emissions and operational HAP emissions would be negligible.</td>
<td>The 108 WG installation is in a nonattainment area for O3 (marginal nonattainment) and maintenance area for PM2.5 and CO, and is therefore subject to de minimis thresholds. Impacts from proposed operational emissions would be less than significant for all criteria pollutants. Impacts from construction emissions and operational HAP emissions are negligible.</td>
<td>The Pease ANGS installation is in a maintenance area for O3, and is therefore subject to de minimis thresholds. Impacts from proposed operational emissions would be less than significant for all criteria pollutants. Impacts from construction emissions and operational HAP emissions are negligible.</td>
<td>The Pittsburgh ANGS is located within a nonattainment area for PM2.5, a moderate nonattainment area for the 1997 8-hour O3 standard, and is classified as a marginal nonattainment area for the 2008 8-hour O3 standard, according to 40 CFR 81.339. The Pittsburgh ANGS is therefore subject to de minimis thresholds. Impacts from proposed operational emissions would be less than significant for all criteria pollutants. Impacts from construction emissions and operational HAP emissions are negligible.</td>
<td>The Rickenbacker ANGS is located in a nonattainment area for the O3 and PM2.5 NAAQS. While there are increases in operational criteria pollutant emissions, they are below the PSD/de minimis thresholds for all pollutants and are not significant. Impacts from construction emissions and operational HAP emissions are negligible.</td>
<td>Air Quality at each alternative airfield would remain as it currently is. Each of the five installations would retain the KC-135 aircraft and would continue to fly the aircraft in the same manner and with approximately the same number of airfield operations as they currently do. Emissions at each of the alternative installations would continue to be in compliance with their respective SIPs. There would be no additional impacts to Air Quality at each alternative installation under the No Action Alternative.</td>
</tr>
</tbody>
</table>
Table ES-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>There would be a 39 percent increase in actual 190 ARW airfield operations (17 percent increase in total airfield operations) at Forbes Field Airport with commensurate increase in mishap and BASH potential.</td>
<td>There would be a 111 percent increase in actual 108 WG airfield operations (15 percent increase in total airfield operations) at JB MDL with a commensurate increase in mishap and BASH potential.</td>
<td>There would be a 44 percent increase in actual 157 ARW airfield operations (7 percent increase in total airfield operations) at Portsmouth IAP with a commensurate increase in mishap and BASH potential.</td>
<td>There would be a 33 percent increase in actual 2012 171 ARW airfield operations (2 percent increase in total airfield operations) at Pittsburgh IAP with a commensurate increase in mishap and BASH potential.</td>
<td>There would be a 6 percent increase over the actual 2012 121 ARW airfield operations (1 percent increase in total airfield operations) at Rickenbacker IAP with a commensurate increase in mishap and BASH potential.</td>
<td>Both ground and flight safety at each alternative airfield would remain as they currently are. Each of the five installations would retain the KC-135 aircraft and would continue to fly the aircraft in the same manner and with approximately the same number of airfield operations as they currently do. There would be no additional impacts to Safety under the No Action Alternative.</td>
</tr>
</tbody>
</table>

Construction activities would involve no unusual or extraordinary techniques. During construction, standard construction safety procedures would be employed, and strict adherence to all applicable standard industrial safety requirements and procedures would further minimize the relatively low risk associated with these construction activities. Impacts to safety would be expected to be negligible.

Soils and Water

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>There would be approximately 5.9 acres of temporary soil disturbance and no new impervious surface as a result of the proposed construction.</td>
<td>There would be approximately 4.7 acres of temporary soil disturbance and 2.4 acres of new impervious surface as a result of the proposed construction.</td>
<td>There would be approximately 3.0 acres of temporary soil disturbance and 0.5 acres of new impervious surface as a result of the proposed construction.</td>
<td>There would be approximately 4.3 acres of temporary soil disturbance and 2.0 acres of new impervious surface as a result of the proposed construction.</td>
<td>There would be approximately 8.5 acres of temporary soil disturbance and 0.3 acres of new impervious surface as a result of the proposed construction.</td>
<td>Soils and Water Resources at each alternative airfield would remain as they currently are. There would be no additional impacts to Soils and Water Resources as a result of the No Action alternative.</td>
</tr>
</tbody>
</table>

To minimize potential impacts associated with erosion, runoff, and sedimentation, standard construction practices would be implemented. In addition, as the construction is for national defense purposes and the surrounding land is already in urban development, the Farmland Protection Policy Act does not apply to this alternative. Therefore, impacts to soil and water resources would be negligible.
Table ES-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No impacts to vegetation and wetlands.</td>
<td>Impacts to vegetation would be minor.</td>
<td>There would be no change to Biological Resources under this alternative.</td>
</tr>
<tr>
<td>Impacts to wildlife species from operational noise would be imperceptibly beneficial due to the slight decrease in noise.</td>
<td>No impacts to wetlands. Impacts to wildlife species from operational noise would be expected to be minor due to the slight increase in noise and the temporary nature of construction.</td>
<td>No impacts to wetlands. Impacts to wildlife species from operational noise would be expected to be minor due to the slight increase in noise and the temporary nature of construction.</td>
<td>No significant impacts to wetlands. Impacts to wildlife species from operational noise would be minor due to the 6 percent increase in 121 ARW airfield operations.</td>
<td>Impacts to state listed species would be minor. No federally listed species or critical habitat is known to occur on Portsmouth IAP; therefore, there would be no impacts to federally listed species.</td>
<td>There would be no additional impacts to Biological Resources as a result of the No Action Alternative.</td>
</tr>
<tr>
<td>39 percent increase in 190 ARW (17 percent increase in total) airfield operations may result in a slight increased opportunity for bird/wildlife aircraft strikes to occur, including those with migratory birds. Impacts to wildlife due to construction would be negligible.</td>
<td>No federally listed species or critical habitat is known to occur on McGuire Field. Six state listed species are known to occur on McGuire Field. There would be no impacts to federally listed and impacts to state listed species would be minor.</td>
<td>No impacts to wetlands. Impacts to wildlife species from operational noise would be expected to be minor due to the slight increase in noise and the temporary nature of construction.</td>
<td>Impacts to state listed species would be minor. No federally listed species or critical habitat is known to occur on Rickenbacker IAP; therefore, there would be no impacts to federally listed species.</td>
<td>No federally listed species or critical habitat is known to occur on Rickenbacker IAP; therefore, there would be no impacts to federally listed species.</td>
<td>There would be no additional impacts to Biological Resources as a result of the No Action Alternative.</td>
</tr>
<tr>
<td>111 percent increase in 108 WG (15 percent increase in total) airfield operations may result in a slight increased opportunity for bird/wildlife aircraft strikes to occur, including those with migratory birds.</td>
<td>No federally listed species or critical habitat is known to occur on McGuire Field. Six state listed species are known to occur on McGuire Field. There would be no impacts to federally listed and impacts to state listed species would be minor.</td>
<td>Impacts to state listed species would be minor. No federally listed species or critical habitat is known to occur on Rickenbacker IAP; therefore, there would be no impacts to federally listed species.</td>
<td>No federally listed species or critical habitat is known to occur on Rickenbacker IAP; therefore, there would be no impacts to federally listed species.</td>
<td>No federally listed species or critical habitat is known to occur on Rickenbacker IAP; therefore, there would be no impacts to federally listed species.</td>
<td>There would be no additional impacts to Biological Resources as a result of the No Action Alternative.</td>
</tr>
</tbody>
</table>
Table ES-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultural Resources</td>
<td>Construction activities associated with this alternative would be limited to the developed areas of the installation, primarily in the areas of the aircraft hangars and airfield pavements. Minor interior modifications to Building 679 would not affect the NRHP-eligibility of the building. The Kansas SHPO has concurred with these findings. The installation has been intensively surveyed and no known traditional resources are known to occur. Two responses have been received from the Kaw Nation and the Wichita and Affiliated Tribes stating that they have no objection to the Proposed Action. Additional efforts were made to contact non-responsive tribes without success. While the NGB and the USAF values its relationship with all tribes and will continue to consult on other planning efforts.</td>
<td>Construction activities associated with this alternative would be primarily limited to the developed areas of the installation in the areas of the aircraft hangars and airfield pavements. A small amount of construction (0.15 acre) would occur in forested area near this developed area. Based on previous archaeological surveys at McGuire Field, the area of proposed construction does not contain any known NRHP-eligible sites or traditional resources. Construction activities associated with this alternative would be limited to the developed areas of the installation, primarily in the areas of the aircraft hangars and airfield pavements. The New Hampshire SHPO has concurred with these findings. The Penobscot Indian Nation is the only federally-recognized tribal entity affiliated with Pease ANGS, and has responded stating that they have no issues with the Proposed Action. No impacts to cultural resources and no known traditional resources. Given the extensive development on the installation, it is unlikely that there are traditional resources located at the Pittsburgh ANGS. Construction activities associated with this alternative are limited to the developed areas of the installation, primarily in the areas of the aircraft hangars and airfield pavements and all impacts would be negligible. Correspondence has been received from all tribes consulted including the Seneca Nation of Indians, the Cayuga Nation of New York, the Tonowanda Band of Seneca, Tuscarora Nation of New York, and the Onondaga Nation of New York stating that they have no objection to the Proposed Action.</td>
<td>Based on previous archaeological surveys on the installation, the area of proposed construction does not contain any known NRHP-eligible sites or traditional resources. Construction activities associated with this alternative would be limited to the developed areas of the installation, primarily in the areas of the aircraft hangars and airfield pavements. The installation contains no known traditional resources. Given the extensive development on the installation, it is unlikely that there are traditional resources located at the Pittsburgh ANGS. Construction activities associated with this alternative are limited to the developed areas of the installation, primarily in the areas of the aircraft hangars and airfield pavements and all impacts would be negligible. Correspondence has been received from all tribes consulted including the Seneca Nation of Indians, the Cayuga Nation of New York, the Tonowanda Band of Seneca, Tuscarora Nation of New York, and the Onondaga Nation of New York stating that they have no objection to the Proposed Action.</td>
<td>Construction activities at Rickenbacker ANGS would be limited to the developed areas of the installation, primarily in the areas of the aircraft hangars and airfield pavements. The installation has been intensively surveyed for cultural resources and no known traditional cultural resources are known to exist in the area. The one significant archaeological resource that is located within the installation is not within the proposed construction areas and would not be impacted. Two NRHP-eligible hangars (883 and 885) could be adversely impacted by construction under this alternative. Rickenbacker ANGS and the Ohio SHPO have developed a Programmatic Agreement stating that if Rickenbacker ANGS is selected to host the MOB 2 KC-46A beddown, additional consultation would be conducted to minimize and mitigate all potential impacts to facilities that are eligible for listing on the NRHP. There would be no surface disturbance from construction activities, and thus no potential to impact unknown archaeological resources. There would be no additional impacts to Cultural Resources as a result of the No Action Alternative.</td>
<td>Under the No Action Alternative, Cultural Resources at each alternative installation would remain as they currently are. None of the proposed facility construction/renovations would occur at any of the installations, and thus, there would be no potential impacts to facilities that are eligible for listing on the NRHP. There would be no surface disturbance from construction activities, and thus no potential to impact unknown archaeological resources. There would be no additional impacts to Cultural Resources as a result of the No Action Alternative.</td>
</tr>
</tbody>
</table>
Table ES-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>or matters of known or potential interest to tribes, Section 106 consultation on the KC-46A MOB 2 proposed alternative at Forbes ANGS is now complete.</td>
<td>affected under the proposed action.</td>
<td></td>
<td></td>
<td>adverse effects to these buildings. Correspondence has been received from the Peoria Tribe of Indians, the Pokagon Band of Potawatomi Indians, the Turtle Mountain Band of Chippewa Indians of North Dakota, the Delaware Nation, and the Shawnee Tribe who indicated that they had no objection to the proposed project. Additional efforts were made to contact non-responsive tribes without success. While the NGB and the USAF values its relationship with all tribes and will continue to consult on other planning efforts or matters of known or potential interest to tribes, Section 106 consultation on the KC-46A MOB 2 proposed alternative at Rickenbacker ANGS is now complete.</td>
<td></td>
</tr>
</tbody>
</table>

Land Use

| Total annual airfield operations would increase by 4,110 (17 percent). | Total annual airfield operations would increase by 9,268 (15 percent). | Total annual airfield operations would increase by 2,700 (44 percent). | Airfield operations would decrease by 3,834 (29 percent decrease) from the currently | The number of airfield operations would decrease by 6,283 (48 percent decrease) from the | Land Use at each alternative airfield would remain as it currently is. Each of the five installations would retain the |

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS

Executive Summary
Table ES-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acreage within the 65 dB DNL (and greater) noise contour would decrease by 41 acres (55 acres off airport-controlled property). Current land use and zoning designations would not change due to the basing of the KC-46A. This alternative would be compatible with current land use and zoning designations and would result in imperceptibly beneficial impacts by reducing the off-airport areas currently exposed to a DNL between 65 dB and 70 dB. Airport Hazard Areas would not be affected.</td>
<td>Acreage within the 65 dB DNL (and greater) noise contour would increase by 419 acres. An additional 8 acres of residential use areas would be exposed to greater than 65 dB DNL. Current land use and zoning designations would not change due to the basing of the KC-46A. This alternative would result in minor adverse impacts due to an increase in off-airport areas (including residential areas) exposed to a DNL between 65 dB and 75 dB. Airport Hazard Areas would not be affected.</td>
<td>Acreage within the 65 dB DNL (and greater) noise contour would increase by 135 acres. Of this increase in acreage, 4 acres would be off airport-controlled property. Current land use and zoning designations would not change due to the basing of the KC-46A. This alternative would result in negligible impacts due to an increase in off-airport areas exposed to a DNL above 65 dB. Airport Hazard Areas would not be affected.</td>
<td>Published FAR Part 150 Noise Compatibility Program (2006), and the acreage within the 65 dB DNL (and greater) noise contour would decrease by 79 acres. There would be a decrease of approximately 23 acres within the 65 dB DNL noise contour that are off airport-controlled property. Current land use and zoning designations would not change due to the basing of the KC-46A. This alternative would result in negligible impacts in off-airport areas exposed to a DNL above 65 dB. Airport Hazard Areas would not be affected.</td>
<td>Currently published FAR Part 150 Noise Compatibility Program (2007), and the acreage within the 65 dB DNL (and greater) noise contour would decrease by 99 acres. Decrease of 72 acres within the 65 dB DNL noise contour that are off airport-controlled property, resulting in 345 acres off airport-controlled property that lie within the 65 dB contour. Current land use and zoning designations would not change due to the basing of the KC-46A. This alternative would result in negligible impacts in off-airport areas exposed to a DNL above 65 dB. Airport Hazard Areas would not be affected.</td>
<td>KC-135 aircraft and would continue to fly the aircraft in the same manner and with approximately the same number of airfield operations as they currently do. There would be no additional impacts to Land Use under the No Action Alternative at any of the alternative locations.</td>
</tr>
</tbody>
</table>
Table ES-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure and Transportation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impacts from this alternative would not be expected since there have been no deficiencies identified with the existing systems, and it is expected that the existing infrastructure is generally adequate to serve the facilities and increased personnel proposed under this alternative. Impacts to infrastructure resulting from construction would be negligible since any interruption of utility services or increased demand on infrastructure would be temporary and infrequent. Impacts to infrastructure would be negligible.</td>
<td>Infrastructure and Transportation at each alternative installation would remain as they currently are. There would be no change to the based personnel at any of the alternative locations. There would be no increase in use of various utilities or roadway systems under this alternative. There would be no additional impacts under the No Action Alternative.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table ES-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous Materials and Waste</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>There would be no expected impact from ERP sites, as the ERP site that overlaps proposed construction is closed. However, if contaminated media were encountered during the course of site preparation or site development, work would cease until 190 ARW Program Managers establish an appropriate course of action for the construction project to ensure that federal and state agency notification requirements are met. Impacts relative to hazardous materials and wastes would be negligible.</td>
<td>One of the ERP Sites, SS-39, overlaps with a portion of the existing fuel hydrants that would be capped, as well as the proposed addition to Hangar 3336. Remedial investigation is on-going with this site. It is recommended that a vapor intrusion analysis/testing is completed prior to construction to investigate any potential concern. If testing indicates a vapor intrusion concern, the installation would implement practices in accordance with site-specific vapor mitigation design considerations. If contaminated media were encountered during the course of site preparation or site development, work would cease until 108 WG Program Managers establish an appropriate course of action for the construction project to ensure that federal and state agency notification requirements are met. Impacts relative to hazardous materials and wastes would be negligible.</td>
<td>There would be no expected impact from ERP sites. Impacts relative to hazardous materials and wastes would be negligible.</td>
<td>There would be no expected impact from ERP sites, as the ERP site that overlaps proposed construction is closed. However, if contaminated media were encountered during the course of site preparation or site development, work would cease until 171 ARW Program Managers establish an appropriate course of action for the construction project to ensure that federal and state agency notification requirements are met. Impacts relative to hazardous materials and wastes would be negligible.</td>
<td>Hazardous Materials and Wastes at each alternative installation would remain as described in the baseline section for each alternative location. The benefit of eliminating ozone depleting substances with the KC-46A would not be realized. The throughput and management of hazardous materials and wastes would not change from baseline conditions. There would be no additional impacts to Hazardous Materials and Wastes under the No Action Alternative.</td>
<td></td>
</tr>
</tbody>
</table>
Table ES-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>There would not be an increased risk of hazardous waste releases or exposure from this alternative. The types of hazardous materials needed for maintenance and operation of the KC-46A would be expected to remain similar to those currently used for maintenance and operation of the KC-135 fleet. Any LBP or ACM that may be found in buildings that are scheduled for construction activities would be managed per applicable USAF regulations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Socioeconomics

Impacts to socioeconomics resulting from construction would be beneficial and negligible resulting from construction payrolls and materials purchased. In addition, impacts from proposed operations would be beneficial and minor due to the proposed increase in personnel. Socioeconomics at each alternative installation would remain as described in the baseline section for each alternative. The minor economic benefit of additional based personnel and construction activity would not occur at any of the alternative installations. There would be no additional impacts to Socioeconomics under the No Action Alternative.
Table ES-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Justice and the Protection of Children</td>
<td>There would be no residential populations, including no minority or low-income populations, and no additional schools located within the vicinity of Forbes Field Airport exposed to a DNL of 65 dB or above. There would be no disproportionate impacts to minority or low-income populations. There would be no special health or safety risks to children.</td>
<td>The percentage of minority and low-income persons affected would remain approximately the same as baseline. There would be no disproportionate impacts to minority or low-income populations. The child development center that is currently under the 65 dB contour would be located under the 70 dB contour. There would be no special health or safety risks to children.</td>
<td>There are no residential areas within the noise contours. No additional schools would be located within the vicinity of Portsmouth IAP exposed to a DNL of 65 dB or above. There would be no disproportionate impacts to minority or low-income populations and no special health or safety risks to children.</td>
<td>There would be no residential populations, including no minority or low-income populations, and no additional schools located within the vicinity of Pittsburgh IAP exposed to a DNL of 65 dB or above. There would be no disproportionate impacts to minority or low-income populations. There would be no special health or safety risks to children.</td>
<td>Under the No Action Alternative, Environmental Justice and the Protection of Children at each alternative installation would remain as described in the baseline section for each alternative. There were no disproportionate impacts to low-income, minority, or children identified under any of the action alternatives. There would be no additional impacts as a result of the No Action Alternative.</td>
</tr>
</tbody>
</table>

Notes: 190 ARW = 190th Air Refueling Wing; dB = decibel; DNL = Day-Night Average Sound Level; DoD = Department of Defense; 108 WG = 108th Wing; 157 ARW = 157th Air Refueling Wing; FAR = Federal Aviation Regulations; AICUZ = Air Installation Compatible Use Zone; ANGS = Air National Guard Station; PSD = Prevention of Significant Deterioration; HAP = hazardous air pollutant; O₃ = ozone; PM₂.₅ = particulate matter less than or equal to 2.5 microns in diameter; CO = carbon monoxide; NOₓ = oxides of nitrogen; tpy = tons per year; CFR = Code of Federal Regulations; SIP = State Implementation Plan; BASH = Bird/Wildlife Aircraft Strike Hazard; JB MDL = Joint Base McGuire-Dix-Lakehurst; IAP = International Airport; 171 ARW = 171st Air Refueling Wing; 121 ARW = 121st Air Refueling Wing; NRHP = National Register of Historic Places; SHPO = State Historic Preservation Office; ERP = Environmental Restoration Program; LBP = lead-based paint; ACM = asbestos-containing material; USAF = United States Air Force
CHAPTER 1
PURPOSE AND NEED FOR THE PROPOSED ACTION

1.1 INTRODUCTION

The United States Air Force (USAF) plans to replace existing KC-135s with the KC-46A, which will be a new aircraft to the USAF’s fleet. As such, the USAF plans to identify locations for the beddown of a formal training unit (FTU) and the first main operating base (MOB 1), which will both be led by active duty units. The USAF will also beddown the KC-46A at the Second Main Operating Base (MOB 2), which will be led by an Air National Guard (ANG) unit. The FTU alternative installations are Altus Air Force Base (AFB), Oklahoma and McConnell AFB, Kansas. The MOB 1 alternative installations include both Altus and McConnell AFBs, in addition to Fairchild AFB, Washington; and Grand Forks AFB, North Dakota. This particular document will analyze the potential environmental impacts associated with the MOB 2 beddown only, and will further reference the proposed FTU and MOB 1 beddowns only as necessary in the context of the proposed MOB 2 beddown. A separate Environmental Impact Statement (EIS) is currently being prepared for the FTU and MOB 1 beddowns.

The Secretary of the Air Force proposes to beddown KC-46A aircraft for MOB 2 at one of five alternative locations. The goal of KC-46A basing and fielding is to continue to provide optimum Combatant Commander support and to efficiently meet regional and global receiver demands while replacing existing KC-135s. This action would involve the beddown of one KC-46A squadron consisting of 12 Primary Aerospace Vehicles Authorized (PAA), and establishing a KC-46A Main Operating Base (MOB). Five alternative ANG locations (Figure 1.1-1) were selected for this beddown based on criteria identified in Section 2.2:

- Forbes Air National Guard Station (ANGS), Kansas;
- Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey;
- Pease ANGS, New Hampshire;
- Pittsburgh ANGS, Pennsylvania; and,
- Rickenbacker ANGS, Ohio.
Figure 1.1-1. Alternative Locations for the KC-46A ANG Beddown
Concurrent with the beddown of the 12 KC-46A, 12 existing KC-135 aircraft would be retired out of the USAF fleet. The existing KC-135 aircraft at the selected installation would either be relocated to another installation and/or retired out of the USAF inventory, depending on the age and maintenance status of each aircraft. Separate documentation would be prepared if the KC-135 aircraft are relocated to another installation. The beddown of the MOB 2 KC-46A would follow the Total Force Integration (TFI) concept that was enacted into law through the passage of the 2008 National Defense Authorization Act (NDAA), pairing two USAF component units (host and associate) together to operate as one. TFI supports USAF transformation by developing, promoting, and implementing new and creative organizational constructs and by advocating changes in personnel policy that enhance the integration of active, reserve, and civilian work forces. In support of TFI, an active duty associate unit would be integrated with ANG personnel and equipment under any of the action alternatives, enabling joint training and execution of missions using ANG-assigned aircraft. The ANG host unit would be assigned principal responsibility of the physical resources for mission accomplishment (aircraft, equipment, facilities) and the active duty associate unit would share those resources.

In accordance with the National Environmental Policy Act (NEPA) of 1969 (42 United States Code [USC] 4321-4347), Council on Environmental Quality (CEQ) Regulations for Implementing the Procedural Provisions of NEPA (40 Code of Federal Regulations [CFR] Parts 1500-1508), and Air Force Instruction (AFI) 32-7061 as promulgated at 32 CFR Part 989 et seq., Environmental Impact Analysis Process, the National Guard Bureau (NGB) has prepared this EIS, that considers the potential consequences to the human and natural environment that may result from implementation of this action.

1.2 PURPOSE AND NEED FOR THE PROPOSED ACTION

1.2.1 Purpose of Action

Air refueling is the backbone of the United States’ (U.S.) ability to project global reach and combat power. Air refueling aircraft, also known as “tankers,” are a joint asset, serving our sister services and U.S. allies who rely on the range and flexibility of tankers to strengthen their contribution to the coalition fight. Without a robust air refueling capability, U.S. forces would be limited in their ability to provide global reach. The original mission of the current USAF air refueling aircraft, the KC-135 Stratotanker, was primarily to refuel strategic bomber aircraft while in flight, which enhances the ability of aircraft to provide sustained mission capability without landing to refuel. Through the course of the KC-135’s service life, structural and functional modifications have added capabilities to select aircraft. The result is a fleet of aircraft with multiple configurations and crews that may not be trained to accomplish every mission for which the aircraft is capable. This lack of standardized equipment and training throughout the fleet limits the ability for KC-135s to support, on a large scale, multi-role missions or exploit
new tactics and procedures. The following are examples of capabilities that the current KC-135 fleet lacks.

- **Multi-Point Refueling.** Simultaneous refueling of two probe-equipped receiver aircraft from the same tanker is limited to 20 sets of wing-mounted refueling pods installed on the aircraft for the fleet of tankers.
- **Boom/Probe and Drogue Refueling.** With the exception of the refueling pod equipped aircraft, the KC-135 fleet does not have capability to perform boom and probe/drogue refueling on the same sortie.1
- **Receiver capabilities.** Only eight KC-135s have air refueling receptacles, which means that only eight of the KC-135 aircraft in the fleet can receive fuel in flight. This restricts force extension and limits persistence over the battlefield. It also results in inefficient use of valuable, but limited air refueling assets and limits flexibility within the maintenance schedule.
- **Night Vision Imaging System (NVIS).** The KC-135 fleet currently lacks a standard NVIS for tanker cockpits and boom operator positions. Additionally, exterior lighting is not currently NVIS-compatible, which prohibits air refueling in tactical NVIS (low vision) conditions. This limits the ability to perform covert air refueling operations at night, and degrades effectiveness of special operations support.
- **Command, Control, Communications, and Computers (C4).** KC-135s lack robust connectivity to command and control agencies. No secure tactical datalink exists and these aircraft have limited C4 connectivity to other combat, combat support, and mobility aircraft.
- **Defensive Protection.** KC-135s currently are not normally equipped with aircraft defensive systems, which limits aircraft from operating in anything other than a low-threat environment.

The purpose of this action is to ensure that the NGB will have air refueling support for both conventional global strike and nuclear deterrence operations into the future. The purpose of the KC-46A is to support air superiority through air refueling of fighter, bomber, attack, special operations, Command and Control, Intelligence, Surveillance and Reconnaissance, and transport aircraft; and to support employment of combat units deploying to areas of operations. Finally, the KC-46A will also support the Command and Control (C2) core function as a communications “gateway” when equipped with a roll-on gateway system to provide connectivity between tactical network partners in theater.

1 Probe and drogue refueling employs a flexible hose that trails from the tanker aircraft. The drogue is a fitting resembling a windsock, and is attached with a valve to a flexible hose.
1.2.2 Need for Action

In support of the USAF worldwide operations and as part of the TFI, the NGB requires a refueling aircraft that will be equipped with major technological improvements designed to enhance operations and increase mission effectiveness. The KC-46A is the USAF’s newest air refueling aircraft that meets this need. NGB requires a location to beddown the KC-46A aircraft in support of MOB 2. The base will support the beddown and training of crewmembers and personnel in the operation and maintenance of the KC-46A aircraft in an appropriate geographic location that can provide sufficient airfield, facilities, infrastructure, and airspace to support the KC-46A training and operations.

1.3 BACKGROUND OF THE KC-46A

1.3.1 Aircraft Characteristics

This section compares the aircraft characteristics of the KC-46A and the existing KC-135. Some key specifications of the KC-135 and the KC-46A are compared in Table 1.3-1

<table>
<thead>
<tr>
<th>Specification</th>
<th>KC-135</th>
<th>KC-46A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>136 feet, 3 inches</td>
<td>165 feet, 6 inches</td>
</tr>
<tr>
<td>Height</td>
<td>41 feet, 8 inches</td>
<td>52 feet, 10 inches</td>
</tr>
<tr>
<td>Wingspan</td>
<td>130 feet, 10 inches</td>
<td>156 feet, 1 inch</td>
</tr>
<tr>
<td>Power Plant</td>
<td>4 F108 CF-100</td>
<td>2 Pratt Whitney 4062</td>
</tr>
<tr>
<td>Takeoff Thrust</td>
<td>21,634 pounds per engine</td>
<td>62,000 pounds per engine</td>
</tr>
<tr>
<td>Speed</td>
<td>530 miles per hour (mph) at 30,000 feet</td>
<td>530 mph at 30,000 feet</td>
</tr>
<tr>
<td>Ceiling</td>
<td>50,000 feet</td>
<td>40,100 feet</td>
</tr>
<tr>
<td>Maximum Take-off Weight</td>
<td>322,500 pounds</td>
<td>415,000 pounds</td>
</tr>
<tr>
<td>Maximum Fuel Capacity</td>
<td>200,000 pounds</td>
<td>212,000 pounds</td>
</tr>
<tr>
<td>Pallets/Palletized Cargo Weight Capacity</td>
<td>6/36,000 pounds</td>
<td>18/65,000 pounds</td>
</tr>
<tr>
<td>Crew</td>
<td>3 crewmembers</td>
<td>3 crewmembers</td>
</tr>
<tr>
<td>Receiver Fuel Transfer</td>
<td>Very limited</td>
<td>Yes</td>
</tr>
<tr>
<td>Fuel Jettison</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Night Vision Imaging System</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Multi-point Refueling</td>
<td>Very limited</td>
<td>Yes</td>
</tr>
<tr>
<td>C2 Network</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Defensive Protection</td>
<td>Very limited</td>
<td>Yes</td>
</tr>
<tr>
<td>Aeromedical Evacuation</td>
<td>Limited</td>
<td>Yes</td>
</tr>
</tbody>
</table>
1.3.2 Aircraft Characteristics of the KC-135

The KC-135 Stratotanker was developed in 1954 as the USAF’s first jet-powered refueling tanker to replace the KC-97 Stratotanker and is derived from a commercial Boeing 367-80 commercial passenger plane. Between 1956 and 1966, 820 KC-135 aircraft of many different variations were built. Over the last 50 years, the KC-135 fleet has undergone substantial modifications to add capability. The KC-135 was originally developed to refuel strategic bombers. It was used in the Vietnam War and in all conflicts up to and including Operation Enduring Freedom in Afghanistan. For this EIS, all KC-135 models, including the current R model, are referred to as KC-135. Originally, all KC-135s were equipped with four Pratt & Whitney J-57-P-59W turbojet engines capable of producing approximately 13,000 pounds of thrust each. The current R models were upgraded to use the CFM56-2B1 (Military designation F108-CF-100) turbofan engines, which are capable of generating approximately 21,634 pounds of thrust per engine. The KC-135 has a maximum take-off weight of more than 322,500 pounds and the ability to off-load in excess of 150,000 pounds of fuel. In addition, the KC-135 is capable of transporting up to 36,000 pounds of palletized cargo and/or ambulatory patients during aeromedical evacuations. A cargo deck above the refueling system can hold a mixed load of passengers and cargo depending on the fuel storage configuration. The KC-135 pumps fuel through the flying boom, but some aircraft have been specially fitted with wing pods to allow a multi-point aerial refueling drogue system. As noted previously, the aircraft is limited by not possessing the capability for receiver fuel transfer, NVIS, defensive protection, and C2 capabilities.
1.3.3 Aircraft Characteristics of the KC-46A

The KC-46A is derived from a commercial Boeing 767-200ER series aircraft and will be powered by two Pratt & Whitney 4062 engines with thrust reversers removed. Each engine will have the capability to provide approximately 62,000 pounds of thrust. The aircraft will be Federal Aviation Administration (FAA)-certified for worldwide operations. The KC-46A is a fully provisioned version of the Boeing 767-2C, FAA Amended Type Certified aircraft. It is required to meet the FAA Part 36 Stage 4 (most restrictive commercial aircraft noise level standard) and the International Congress of Aeronautical Organizations, Committee of Environmental Protection 6 air contaminant emission limits. Three crewmembers, (pilot, copilot, and boom operator) will operate the aircraft with permanent seating for an additional 12 aircrew members. With new technology and a maximum fuel capacity expected to be over 212,000 pounds, the KC-46A is capable of accomplishing all current Air Mobility Command (AMC) refueling missions.

The KC-46A will be able to refuel any certified fixed-wing receiver-capable aircraft on any mission both day and night. The aircraft will be equipped with a modernized KC-10 refueling boom integrated with proven fly-by-wire control system and will have the ability to deliver fuel through a centerline hose and drogue system, which adds additional mission capability independent of the boom system.

This aircraft will be capable of accomplishing multi-role missions. By trading fuel for cargo, it will be able to carry up to 18 standard cargo pallets with a total palletized cargo payload of up to 65,000 pounds. With a far greater cargo area contour than the KC-135, KC-46A centerline pallet positions 1 through 8 can be built to carry full height (96-inch-high) cargo without the need for contouring, compared to KC-135 pallets, which are typically restricted to 65-inch-high cargo and must be contoured on the right-hand side starting at 50 inches off the top pallet surface. In normal operations, the KC-46A can be configured to carry 58 passengers and will be capable of providing urgent Aeromedical Evacuation, transporting up to 50 medical patients (24 litters/26 ambulatory).

Additional features include a flush-mounted air refueling receptacle, wing air refueling pods capability, boom air refueling camera and computer control systems, defensive and communication systems, NVIS/covert lighting, and military radio/navigation receivers. The boom operator will control the refueling systems from the crew compartment via the Air
Refueling Operating Station. A series of cameras mounted on the tanker’s fuselage provide a 185-degree field of view under day and night lighting conditions. Imaging may be captured in three-dimensional or two-dimensional high-definition video. Fuel is automatically transferred within the aircraft to maintain center of gravity in all axes. The flow of fuel in, out, and within the aircraft can be manually or automatically controlled by the aircraft and can be manually controlled by the aircrew via control display units at the appropriate duty station.

In addition to fuel and cargo transport, each KC-46A aircraft will possess a secure airborne communications capability, which will provide beyond-the-line-of-sight messaging and line-of-sight tactical datalink multi-modal communications via secure networks. Hosting a suite of network-centric communications equipment, the KC-46A will function with most current C2 systems. The KC-46A will also support the C2 core function as a communications “gateway” when equipped with a roll-on gateway system to provide connectivity between tactical network partners in theater.

This aircraft will have self-defense and protection (both active and passive) capabilities and the necessary operational environment awareness to mitigate threats, but will not be operated in areas of high threats without requesting suppression of enemy air defenses and air support. This aircraft is capable of ferrying fuel into semi-austere airfields. By following Forward Area Refueling Point procedures, the aircraft can off-load fuel into fuel pits, bladders, trucks, or other aircraft, with or without the engines running, without the need for special equipment. The aircraft will be able to operate at certain night vision goggle and/or defensive system-required airfields with a minimum of 7,000 feet of paved runway available for take-off/landing.

The aircraft will be capable of operating in day-night and adverse weather conditions over vast distances to enable deployment, employment, sustainment, and redeployment of U.S., joint, allied, and coalition forces.

1.3.4 Training Requirements

KC-46A aircrews at the selected MOB 2 installation would complete operational sorties as part of their global reach missions and local training sorties to maintain proficiency in the aircraft. Training requirements for the KC-46A aircraft would be similar to those depicted for the KC-135 flight crews, which are detailed in AFI 11-2KC-135 Vol I (2012). An AFI 11-2KC-46 Vol. 1 is currently being developed to provide each flight crew member the minimum semi-annual and annual flying training requirements to qualify and maintain proficiency/currency (allowing for unsupervised flight) for the KC-46A and will provide the same minimum requirements for training.
Flight training, including air refueling and training in the flight simulator, is designed to provide basic and continuation aircrew training needs. A typical KC-46A proficiency training sortie would be very similar to a KC-135 training sortie and would include a departure from the installation, climb to altitude for air refueling training in appropriate airspace, return to the home installation for additional closed pattern training before landing for the sortie termination. Proficiency training sorties to fulfill the requirements of the AFI above typically depart from and return to the home installation on the same day. A global reach mission typically departs the home installation, returns on a later day, and accomplishes training as a by-product of the operational mission. Although some in-flight training and certification would occur, the majority of KC-46A system continuation training would be completed in simulators.

1.4 THE ENVIRONMENTAL IMPACT ANALYSIS PROCESS

In accordance with NEPA of 1969 (42 USC 4321-4347), CEQ Regulations for Implementing the Procedural Provisions of NEPA (40 CFR Parts 1500-1508), and AFI 32-7061 as promulgated at 32 CFR Part 989 et seq., Environmental Impact Analysis Process, the NGB and USAF have prepared this EIS, which considers the potential consequences to the human and natural environment that may result from implementation of these activities.

NEPA requires federal agencies to take into consideration the potential environmental consequences of proposed actions in their decision-making process. The intent of NEPA is to protect, restore, and enhance the environment through well-informed federal decisions. The CEQ was established under NEPA to implement and oversee federal policy in this process. The CEQ subsequently issued the Regulations for Implementing the Procedural Provisions of NEPA (40 CFR Parts 1500-1508) (CEQ 1978).

The activities addressed within this document constitute a major federal action and therefore must be assessed in accordance with NEPA. To comply with NEPA, as well as other pertinent environmental requirements, the decision-making process for the Proposed Action includes the development of this EIS to address the environmental issues related to the proposed activities.
1.5 PUBLIC INVOLVEMENT/ENVIRONMENTAL COORDINATION

This EIS was prepared in compliance with all applicable local, state, and federal environmental regulations. An EIS is prepared as a tool for compiling information for a proposal and provides a full and fair discussion of environmental impacts to the natural and human environment. Reasonable alternatives to the Proposed Action, including the No Action Alternative are also evaluated in an EIS. The USAF has evaluated all reasonable alternatives to ensure that an informed decision is made after review and consideration of the potential environmental consequences.

Compliance with NEPA guidance for preparation of an EIS involves several critical steps summarized below.

1. **Announce that an EIS will be prepared.** For this EIS, a Notice of Intent (NOI) was published in the *Federal Register* on May 17, 2013.

2. **Conduct scoping.** This is the first major step in identifying the relevant issues to be analyzed in detail, and to eliminate issues that are not relevant. Scoping for this EIS occurred between May 17 and July 5, 2013. Throughout the scoping period, the NGB actively solicited public comments on the proposal. Information related to the proposal has been disseminated to the public through several avenues, including newspaper advertisements, public service announcements, a project website (www.angkc46aeis.com), and periodic fact sheets.

Executive Order (EO) 12372, *Intergovernmental Review of Federal Programs*, requires intergovernmental notifications prior to making any detailed statement of environmental impacts. Through the process of Interagency and Intergovernmental Coordination for Environmental Planning, the proponent must notify concerned federal, state, and local agencies and allow them sufficient time to evaluate potential environmental impacts of a Proposed Action. Comments from these agencies are subsequently incorporated into the environmental impact analysis process. Letters requesting input have been distributed to federal, state, and local agencies and are a part of the official project record. Appendix B
provides a list of relevant federal, state, and local agencies as well as sample notification letters, and comments received during the scoping period.

On November 27, 1999, the Department of Defense (DoD) promulgated its Annotated American Indian and Alaska Native Policy, which emphasizes the importance of respecting and consulting with tribal governments on a government-to-government basis. This Policy requires an assessment, through consultation, of the effect of proposed DoD actions that may have the potential to significantly affect protected tribal resources, tribal rights, and Indian lands before decisions are made by the respective services (DoD American Indian/Alaska Native Policy), as does DoD Instruction 4710.02, *Interaction with Federally Recognized Tribes* (September 14, 2006). In addition, coordination with federally recognized Native American tribes must occur in accordance with EO 13175, *Consultation and Coordination with Indian Tribal Governments*. Section 106 consultation and government-to-government consultation for this project continued throughout the duration of EIS preparation. NGB has initiated government-to-government consultation with federally-recognized tribes that are historically, culturally, and linguistically affiliated with the area in recognition of the tribes’ sovereignty as nations. This consultation also provides additional information and is used for Section 106 consultation (see Appendix B for example letters and responses received from tribes).

Concerns and comments identified during the scoping process have been included in the analyses, as appropriate. Scoping meetings were held in New Egypt, New Jersey and Moon Township, Pennsylvania on June 4; Portsmouth, New Hampshire and Columbus, Ohio on June 6; and Topeka, Kansas on June 20, 2013. During the scoping meetings, the NGB presented details about the proposal, the NEPA process, and provided an opportunity for public and agency involvement. In addition to receiving verbal and written comments at the scoping meeting, the NGB has also accepted written comments from the public and agencies through U.S. mail, website, and email. The majority of the comments received during the official comment submittal period (17 May to 5 July 2013) were in support of the KC-46A beddown at each specific location. However, there were some concerns regarding noise impacts and aircraft emissions. To the extent possible, scoping comments have been used to shape the analysis and focus the issues in this EIS.

3. **Prepare a Draft EIS.** The Draft EIS is a comprehensive document for public and agency review. The Draft EIS describes the purpose and need of the Proposed Action and alternatives; presents the existing conditions in the region potentially affected; and provides analysis of the environmental consequences of the Proposed Action and
alternatives, including the No Action Alternative. The Draft EIS was distributed to agencies, regional libraries, and members of the public who requested copies.

4. Public/Agency Review. There was a 45-day public comment period following the Notice of Availability (NOA) for the Draft EIS, which was published in the Federal Register on February 7, 2014. This initiated the public comment period, and public hearings were held at each alternative location. During the public hearings, the NGB presented details about the proposal, the NEPA process, and provided attendees an opportunity to provide written and/or oral comments. In addition to receiving verbal and written comments at the hearings, the NGB also accepted written comments from the public and agencies through U.S. mail, website, and email. All substantive comments received during the public comment period have been fully considered and addressed in the Final EIS, as appropriate. Written comments submitted at the public hearing and those received via other means were given equal consideration in the preparation of the Final EIS.

Generally, substantive comments are regarded as those comments that challenge the analysis, methodologies, or information in the Draft EIS as being factually inaccurate or analytically inadequate; that identify impacts not analyzed or develop and evaluate reasonable alternatives or feasible mitigations not considered by the agency; or that offer specific information that may have a bearing on the decision, such as differences in interpretations of significance or of scientific or technical conclusions. Non-substantive comments, which do not require an agency response, are generally considered those comments that express a conclusion, an opinion, or a vote for or against the proposal itself, or some aspect of it; that state a position for or against a particular alternative; or that otherwise state a personal preference or opinion.

5. Prepare a Final EIS. The Final EIS has been prepared following the public comment period and includes all written comments and verbal testimony from public and agency reviewers during the public hearing and the comment period. The Final EIS has been revised to reflect public and agency comments, the proponent’s responses, and additional information received from reviewers. The Final EIS provides the decision-maker with a comprehensive review of the potential environmental consequences of selecting any of the alternatives carried forward for detailed analysis. A NOA will be published in the Federal Register to announce availability of the Final EIS.

6. Issue a Record of Decision. The final step in the NEPA process is approval of the Record of Decision (ROD). After the NOA is published in the Federal Register, there is a 30-day waiting period before the ROD is signed. The ROD will identify the action that has been selected by the Secretary of the Air Force and what management actions or other
measures would be carried out to reduce, where possible, adverse impacts to the environment.

1.6 LEAD AND COOPERATING AGENCIES

The role of a federal agency in the NEPA process depends on the agency’s expertise and relationship to the proposed undertaking. The agency carrying out the proposed action is responsible for complying with the requirements of NEPA. In some cases, there may be more than one federal agency involved in an undertaking. In this situation, a lead agency is designated to supervise preparation of the environmental analysis. Federal agencies, together with state, tribal, or local agencies, may act as joint lead agencies. The NGB and USAF are the proponents for this proposal and are the responsible agencies for preparation of the EIS. As defined in 40 CFR § 1508.5, a cooperating agency is “any Federal agency other than a lead agency that has jurisdiction by law or special expertise with respect to any environmental impact involved in a proposal (or a reasonable alternative) for legislation or other major Federal action significantly affecting the quality of the human environment. A state or local agency of similar qualifications, or when the effects are on a reservation, an Indian Tribe may, by agreement with the lead agency, become a cooperating agency.” No cooperating agencies have been identified for this EIS.

1.7 ORGANIZATION OF THIS ENVIRONMENTAL IMPACT STATEMENT

Chapter 2 describes the Proposed Action and reasonable alternatives, including the No Action Alternative, and the alternative selection process. Chapter 3 is organized by each of the five alternative bases and presents the environmental baseline conditions at each base. Chapter 4 is also organized by each of the five action alternatives as well as the No Action alternative, and presents the potential environmental impacts associated with implementation of any of the alternatives. Chapter 5 identifies past, present, and reasonably foreseeable projects within the regional context of each of the five alternative locations, and describes potential cumulative impacts of the Proposed Action in combination with these other regional actions at each alternative base. Chapter 6 lists the references cited in the document. Chapter 7 lists those agencies, organizations, and persons that were contacted during the preparation of this EIS. Chapter 8 contains the list of preparers and contributors. In addition to the main text, the following appendices are included in this document: Appendix A, Resource Definitions and Methodologies; Appendix B, Correspondence; Appendix C, Background Information for the Noise Analysis; Appendix D, Air Quality; and Appendix E, Special Status Species Lists.
[This page intentionally left blank.]
CHAPTER 2
DESCRIPTION OF THE PROPOSED ACTION AND
ALTERNATIVES

2.1 PROPOSED ACTION

2.1.1 Overview of the Proposed Action

The USAF has a requirement to provide refueling aircraft that will be equipped with major technological improvements designed to enhance operations and increase mission effectiveness. The NGB proposes to beddown one squadron of 12 KC-46A aircraft at one of five alternative locations: Forbes ANGS, Kansas; JB MDL, New Jersey; Pease ANGS, New Hampshire; Pittsburgh ANGS, Pennsylvania; or Rickenbacker ANGS, Ohio. Additionally, one active duty associate unit would be integrated with ANG personnel and equipment, enabling joint training and execution of missions using ANG-assigned aircraft. Furthermore, the NGB would implement construction projects associated with the aircraft beddown at the selected installation. Concurrent with the beddown of the KC-46A, the existing KC-135 aircraft at the selected installation would either be relocated to another installation and/or retired out of the USAF inventory.

As a result of the Proposed Action, there would be a change to the type of aircraft based at the selected installation; a change to the mix of aircraft using the associated airspace; changes to staffing and manpower at the selected location; changes to the number of airfield operations; as well as minor required construction, building renovation, and facility demolition. There would be no new or modified airspace required to support this action. The proposed beddown is estimated to begin in FY 2018 for the NGB, and construction is estimated to begin in FY 2015. Although proposed construction is necessary for the long-term viability of the beddown, aircraft operations with the KC-46A could begin prior to implementation of the construction.

2.1.2 Requirements of the Proposed Action

2.1.2.1 Aircraft Beddown/Transition

The KC-46A is planned to eventually replace existing USAF KC-135s. The NGB proposes to begin this process by replacing the aircraft at the selected location with 12 KC-46A operational aircraft (regardless of how many aircraft are currently at the alternative location). It is estimated that the 12 KC-46A aircraft would be beddown at the selected location beginning in FY 2018. The existing KC-135 aircraft at the selected location would either be relocated to another
installation and/or would be retired out of the USAF inventory. The relocation/retirement actions would be evaluated under NEPA, as appropriate.

2.1.2.2 Facility and Infrastructure Requirements

While basing the KC-46A would require certain facilities and infrastructure to support necessary training and operational requirements, utilizing existing infrastructure to the maximum extent feasible comprises a fundamental basis of the Proposed Action. Where existing facilities and infrastructure cannot meet the needs of the Proposed Action, the NGB would implement construction of necessary new and/or renovated infrastructure and facilities at the selected alternative installation. The type of construction needed would vary by installation and is detailed further in each respective installation Sections 2.3.1 through 2.3.5.

Facility requirements include:

- **Squadron Operations Facility** – Necessary for daily operational activities.
- **Flight Simulator/Boom Operator Training Facility** - Major aircrew training devices required for a 12 PAA KC-46A aircrew continuation training program include one Flight Simulator, one Boom Operator Trainer, and a Fuselage Trainer.
- **Academic Training Facility (ANG uses Reserve Forces general purpose training areas)** - Space is necessary to provide space for classroom training and brief/debrief areas.
- **Aircrew Flight Equipment Facility (ANG incorporates this facility with Squadron Operations)** – Aircraft equipment and mobility bins are best suited to be located at or near a flightline entry control point.
- **Vehicle Operations Administration and Maintenance Shop**
- **Command Post** – an adequate operational, administrative, and training office space with the ability to discuss up to and including Top Secret, and perform daily and contingency C2 duties.
- **Maintenance Hangar**
- **Corrosion Control/Wash Rack Facility**
- **Fuel System Maintenance Hangar**
- **Parking Ramp for a minimum of eight KC-46A parking spots**
- **Aircraft General Purpose Shops**
- **Maintenance Training Facility**
- **Aerospace Ground Equipment (AGE) Shop**
- **Supply Warehousing**
- **Aerial Port Cargo Facility/Processing yard**
2.1.2.3 Personnel Changes

The KC-46A would provide substantial expanded capabilities with only minor overall changes in military personnel; however, the mission would require basing sufficient and appropriate personnel to operate and maintain the Wing and to provide necessary support services. In addition, there would be an active duty associate unit based with the selected MOB 2 alternative installation. The number of personnel would vary by installation and is detailed further in each respective installation Sections 2.3.1 through 2.3.5.

2.1.2.4 KC-46A Operations

Under the Proposed Action, the 12 PAA KC-46A aircraft would fly 670 hours per aircraft, per year, for a total of 8,040 hours annually. Because this is a new aircraft flying with a combination of ANG and associate active duty personnel, a uniform distribution of flying hours was assumed for each alternative. This is considered a conservative estimate and any deviation from this would likely be fewer hours flown. Thus, with an average sortie duration (ASD) of 4.0 hours, the KC-46A aircraft would fly 2,010 sorties annually. The 2,010 annual sorties would be flown at a combination of the unit’s home-station as well as off-station airfields, where they are able to train in a different setting than their home-station. As discussed in Section 2.3, each of the five alternative installations currently fly a different number of airfield operations per sortie, as well as a different percent of home-station/off-station operations. In developing the analysis for each installation, the installations’ unique ratio of airfield operations was assumed to remain the same into the future, as were the percent of home-station/off-station operations. This resulted in a range of home-station airfield operations across the five action alternatives. Further, it is recognized that there is a recent trend toward an increasing use of flight simulators, which can reduce the number of hours flown. However, without a clear definition in the use of the simulator as opposed to actual airfield operations, the full 8,040 flying hour program has been analyzed for each action alternative. No changes are proposed to airfield departure/arrival patterns and tracks, flight profiles, and use of runways from those that are currently performed with the KC-135 at each MOB 2 location. Any existing noise abatement procedures would continue to be followed.
Under the Proposed Action, there would be some increases in the frequency of use and number of operations conducted in the airspace currently used by the KC-135, depending on the increase of sorties over the current baseline at each alternative installation (described in more detail in Sections 2.3.1 through 2.3.5). The KC-46A would use the same airspace currently used by the selected installation, with no new airspace required to support the mission. The types of airspace used would consist of published air refueling tracks, Anchors, Warning Areas, and Military Operations Areas (MOAs). These are found in the Department of Defense (DoD) AP/1B, Flight Information Publication, and Area Planning documents. All air refueling is accomplished above 10,000 feet mean sea level (MSL), although some MOAs are approved for lower altitude flight for training not involving air refueling. While a large percentage of air refueling occurs close to the home-station airfield, KC-135 aircraft refuel in other refueling tracks and Warning Areas located throughout the U.S. Under the Proposed Action, the KC-46A would use the airspace in the same manner as the KC-135 aircraft. It is anticipated that the KC-46A would operate in existing airspace and conduct flight operations similar to the existing KC-135 aircraft; therefore, detailed analysis of airspace will not be conducted in this EIS.

2.2 NARROWING PROCESS FOR ALTERNATIVE BASES

As previously described, the NGB is programmed to beddown one squadron of 12 PAA KC-46A aircraft at one of five alternative locations. Identification and analysis of alternatives is one of the core elements of the environmental process under NEPA and the USAF’s implementing regulations. The NGB may expressly eliminate alternatives from detailed analysis based on reasonable selection standards (32 CFR 989.8(c)). Based on extensive analysis by the USAF operations community, a siting study was conducted to determine the specific requirements for beddown of the KC-46A aircraft and to identify potential military installations where this beddown could occur. Following this study, the Secretary of the Air Force and the Chief of Staff of the Air Force approved selection criteria for the KC-46A beddown.
In general, the USAF uses the Strategic Basing process outlined in AFI 10-503 (2010) to select locations to beddown USAF missions. The process begins by identifying all the installations that could reasonably support a given mission. This enterprise of installations is then evaluated using objective criteria to screen the top candidate installations. Major Command-led site surveys are then conducted at each alternative location to determine if the installation could reasonably support the mission in question. The Strategic Basing Executive Steering Group oversees the process and reports findings directly to the Secretary of the Air Force and Chief of Staff of the Air Force. This process was mandated by the Secretary of the Air Force to ensure basing decisions were made using a deliberate, standardized, and repeatable process. The KC-46A basing decision followed this general basing process.

In September 2011, Air Mobility Command (AMC) presented to the Secretary of the Air Force the Lead Command Intent for the KC-46A. This Lead Command Intent described the proposed basing action tenets, force structure mix, basing timelines, other critical information, and will ultimately be used to shape and inform decisions made throughout the USAF Strategic Basing Process. The following planning conventions were derived from the Lead Command Intent:

1. Identify the number of KC-46A aircraft scheduled to be delivered between 2014 and 2018. This time period corresponded to the DoD Future Years Defense Program, which is the program and financial plan approved by the Secretary of Defense, and provides a basis for USAF planning. Planning beyond this time period is speculative due to the uncertainty of funding availability.
2. Identify the number of KC-46A aircraft to be allocated to operations based on then-current national strategic considerations.
3. Determine the number of bases capable of supporting one squadron of up to 12 PAA. PAA are those aircraft assigned to meet the primary aircraft authorization and reflect the number of aircraft flown by a unit in performance of its mission.
4. Recognize additional factors of Plans and Guidance and Global Positioning, which include strategic considerations but do not provide meaningful distinction among bases for USAF training within the U.S. and its territories. An additional Logistics Supportability factor equates to Boeing’s support capacity set forth in its contract with the USAF. This factor does not distinguish among bases and is not included in the identification of reasonable MOB 2 beddown alternatives.

Consideration of the planning conventions above led to an initial screening of all ANG installations against the following standards for the MOB 2: 1) A runway of at least 7,000 feet in length, 2) the presence of an ANG Wing on the installation, and 3) the installation had to be located in the continental United States (CONUS). The initial screening yielded a defined enterprise of 83 candidate installations to be evaluated for the MOB 2 beddown. In 2012, AMC presented objective screening criteria to the Strategic Basing Executive Steering Group to be used in the identification of bases for the beddown of the KC-46A. The approved criteria were
used to screen the enterprise of 83 candidate installations to identify those installations’ capacity to successfully support the MOB 2 mission. The objective criteria included mission, capacity, environmental considerations, and cost and are described in more detail below:

Ability to meet the mission requirements. Under this criterion, the candidate location must be within reasonable proximity to refueling receiver demand, airfield and airspace availability, fuel system capabilities, and must have the potential to establish an association with an active duty unit.

Capacity. The candidate location must have hangar capacity; runway length and weight bearing capacity; ramp space; base operation support capacity; squadron operations facilities with aircraft maintenance units; aircrew, maintenance, and fuselage training capabilities; and the necessary communications infrastructure.

Environmental Constraints. The candidate location must be able to demonstrate conformity with the respective State Implementation Plan (SIP), meet the local community’s adoption of zoning or other land use controls to reduce encroachment and preserve the base’s flying operations, waivers or absence of incompatible development in the clear zone (CZ) and/or accident potential zone (APZ), and have an absence or limited amount of incompatible development within noise contours above 65-decibel (dB) Day-Night Average Sound Level (DNL).

Cost. Given budgetary constraints, it was important for the USAF to select candidate bases that have a favorable area construction factor based on DoD Facilities Pricing Guide, dated June 2007 (DoD 2007), as updated by the June 2009 draft Office of the Secretary of Defense Pricing Guide (DoD 2009a).

The Secretary of the Air Force considered the objective screening results as well as qualitative operational factors in determining the alternative installations for the KC-46A MOB 2 mission. These military judgment factors included:

- Plans and Guidance
- Global and Regional Coverage
- Combatant Commander Support
- Total Force
- Beddown Timing
- Force Structure
- Training Requirements and Efficiencies
- Logistic Supportability
- Resources/Budgeting
The Strategic Basing Process described above resulted in the identification of five alternative bases for consideration.

- Forbes ANGS, Kansas
- JB MDL, New Jersey
- Pease ANGS, New Hampshire
- Pittsburgh ANGS, Pennsylvania
- Rickenbacker ANGS, Ohio

2.3 ACTION ALTERNATIVES CARRIED FORWARD

This section describes the specific requirements of the beddown of one squadron of 12 KC-46A aircraft at each of the five alternative installations.

2.3.1 Alternative #1 – Forbes Air National Guard Station

2.3.1.1 Background

Forbes ANGS, home of the 190th Air Refueling Wing (190 ARW) of the Kansas Air National Guard (KS ANG), is located approximately 5 miles south of Topeka in Shawnee County, Kansas (Figure 2.3-1). The 190 ARW base is situated on the northwest side of Forbes Field Airport, a municipal airport owned and operated by Metropolitan Topeka Airport Authority (MTAA). The 190 ARW holds a lease with the Forbes Field Airport for the installation property with a termination date of 2057. The installation occupies approximately 216 acres.

2.3.1.2 Mission

The 190 ARW of the KS ANG is a tenant at Forbes Field Airport in Topeka, Kansas. The 190 ARW is tasked with providing air-to-air refueling and airlift capabilities for DoD assets worldwide. The 190 ARW also supports state emergency missions. The 190 ARW currently flies and maintains 12 KC-135 refueler aircraft to support its air refueling mission. The primary support operations performed at the 190 ARW include aircraft fueling, aircraft deicing, aircraft maintenance, aerospace support equipment maintenance, ground vehicle maintenance, fueling of ground vehicles, and facilities maintenance. These operations involve activities such as corrosion control, non-destructive inspection, fuel cell maintenance, engine maintenance, hydraulics, and wheel and tire maintenance.
Figure 2.3-1.
Regional Location
Forbes ANGS
2.3.1.3 Aircraft Conversion

Under Alternative #1, the 190 ARW would convert from 12 KC-135 PAA and no KC-135 Backup Aerospace Vehicle Inventory (BAI) to 12 KC-46A PAA. Concurrent with the beddown of the 12 KC-46A PAA at Forbes ANGS, the existing KC-135 aircraft would either be relocated to other installations or retired out of the USAF inventory, depending on the life-cycle status of each particular aircraft. Separate NEPA documentation would be prepared for any of the aircraft relocated to other installations.

2.3.1.4 Airfield Operations

Forbes Field Airport has two runways; Runway 13/31 is 12,802 feet long and 200 feet wide and Runway 03/21 is 7,001 feet long and 150 feet wide (AirNav 2013a).

The 190 ARW currently flies 1,478 sorties annually. According to the unit’s scheduling data and airport traffic counts, 946 of these sorties were flown from Forbes Field Airport, or 64 percent of the total annual sorties flown. The remaining sorties were flown from other airfields in the U.S. and/or overseas in support of operational missions. Actual airfield operational data collected for 2012 indicates that the 190 ARW accounted for 10,452 airfield operations, with an average of 11 airfield operations per sortie (Table 2.3-1).

![Table 2.3-1. Current 190 ARW KC-135 Operations at Forbes Field Airport](image)

Following the aircraft beddown under Alternative #1, the KC-46A aircraft would fly a total of 8,040 hours annually, with an ASD of 4.0 hours. This would result in 2,010 sorties annually, 64 percent of which would be performed at the home-station (Forbes ANGS). Thus, it is expected that up to 1,286 sorties would be flown at Forbes Field Airport annually under this alternative. This would be an increase of 36 percent over the 946 home-station sorties identified in 2012 (it is assumed that the same percentage of the sorties found under current baseline conditions would be flown at Forbes ANGS under this alternative). Based on 1,286 annual home-station sorties and an average of 11.32 operations per sortie, there would be 14,562 annual home-station operations, or an additional 4,110 airfield operations annually at Forbes Field Airport (Table 2.3-2). This would increase the average daily airfield operations from 40.2 to 56.0 (Table 2.3-3). There would be no changes expected to departure/arrival patterns and tracks, flight profiles, and use of runways. Current noise abatement procedures would continue to be followed (see Section 4.1.1, Noise).
Table 2.3-2. Proposed 190 ARW KC-46A Operations at Forbes Field Airport

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>DEPARTURES</th>
<th></th>
<th>ARRIVALS</th>
<th></th>
<th>TOTAL</th>
<th></th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night</td>
<td>Day</td>
<td>Night</td>
<td>Day</td>
<td>Night</td>
<td></td>
</tr>
<tr>
<td>KC-46A</td>
<td>6,322</td>
<td>959</td>
<td>6,118</td>
<td>1,163</td>
<td>12,440</td>
<td>2,122</td>
<td>14,562</td>
</tr>
</tbody>
</table>

Notes: 1. Includes Closed Patterns (which count as two airfield operations).
2. Night – Between 10 p.m. and 7 a.m. for environmental night.

Table 2.3-3. Changes to 190 ARW Airfield Operations with Proposed KC-46A Aircraft

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>190 ARW</td>
<td>10,452 (40.2)</td>
<td>14,562 (56.0)</td>
<td>4,110 (39.3%)</td>
</tr>
</tbody>
</table>

Note: 1. Yearly operations for Forbes are based on a 5-day flying week, or 260 days/year.

2.3.1.5 Airspace Operations

The 190 ARW conducts air refueling for both training and contingency missions for receiver aircraft. Primary air refueling tracks used by the 190 ARW are described in Table 2.3-4. Under Alternative #1, there would be a change to the frequency of use due to the proposed increase in the sorties. The KC-46A will also have a requirement for training as a receiver aircraft (on-loading fuel) and would use the existing air refueling tracks as a receiver in addition to the normal use as a refueling aircraft (off-loading fuel). However, the minutes in the airspace for each sortie and the operational training conducted would not be expected to change in any of the airspace described.
Table 2.3-4. Current and Proposed Local Air Refueling Airspace Used by the 190 ARW

<table>
<thead>
<tr>
<th>Airspace Unit</th>
<th>Altitude Floor and Ceiling</th>
<th>Current Aircraft Proposed Aircraft</th>
<th>Minutes in Airspace for Each Sortie</th>
<th>Average KIAS</th>
<th>ANNUAL SORTIE OPERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Current</td>
<td>Proposed</td>
<td></td>
<td>Current</td>
</tr>
<tr>
<td>AR 116</td>
<td>12,000-FL220</td>
<td>KC-135</td>
<td>55</td>
<td>275</td>
<td>100</td>
</tr>
<tr>
<td>AR 330</td>
<td>FL190-FL220</td>
<td>KC-135</td>
<td>55</td>
<td>275</td>
<td>100</td>
</tr>
<tr>
<td>AR 406H</td>
<td>FL 260-290</td>
<td>KC-135</td>
<td>55</td>
<td>275</td>
<td>100</td>
</tr>
<tr>
<td>AR 406L</td>
<td>FL190-FL220</td>
<td>KC-135</td>
<td>55</td>
<td>275</td>
<td>100</td>
</tr>
<tr>
<td>AR 406H</td>
<td>FL260-FL280</td>
<td>KC-135</td>
<td>55</td>
<td>275</td>
<td>100</td>
</tr>
<tr>
<td>AR 110</td>
<td>FL240-FL270</td>
<td>KC-135</td>
<td>55</td>
<td>275</td>
<td>100</td>
</tr>
<tr>
<td>112</td>
<td>FL240-FL310</td>
<td>KC-135</td>
<td>55</td>
<td>275</td>
<td>100</td>
</tr>
<tr>
<td>AR 105</td>
<td>FL190-FL330</td>
<td>KC-135</td>
<td>55</td>
<td>275</td>
<td>100</td>
</tr>
<tr>
<td>Eureka MOA</td>
<td>R 5502 6,000 feet MSL UTBNI FL 180</td>
<td>KC-135</td>
<td>30</td>
<td>315</td>
<td>100</td>
</tr>
<tr>
<td>Bison MOA</td>
<td>1,000 feet MSL UTBNI FL180</td>
<td>KC-135</td>
<td>30</td>
<td>315</td>
<td>100</td>
</tr>
<tr>
<td>Truman MOA</td>
<td>5,000 feet MSL UTBNI FL180</td>
<td>KC-135</td>
<td>30</td>
<td>315</td>
<td>100</td>
</tr>
<tr>
<td>HOG HI MOA</td>
<td>6,000 feet MSL UTBNI FL180</td>
<td>KC-135</td>
<td>30</td>
<td>315</td>
<td>100</td>
</tr>
</tbody>
</table>

Notes:
1. This table only shows KC-135 and KC-46A aircraft that are or would be flown by the 190 ARW in this airspace. Additional aircraft flown by other units that use this airspace are not shown.
2. Annual sortie operations are the number of times air refueling track/MOA is scheduled to be used by unit. KIAS = knots indicated airspeed; FL = Flight Level; MOA = military operations area; UTBNI = up to, but not including; MSL = mean sea level.
2.3.1.6 Construction Required

Under Alternative #1, 12 KC-46A PAA aircraft would be beddown at the 190 ARW installation at Forbes Field Airport, Kansas; the 190 ARW would also implement construction projects for that conversion (Table 2.3-5). The proposed construction projects would comply with standards set forth in ANG Handbook 32-1084, Facility Space Standards (November 2012). Anti-Terrorism/Force Protection (AT/FP) requirements also would be incorporated. Proposed facilities would be sited approximately as shown in Figure 2.3-2. The precise layout and design of proposed facilities is in the early planning stages; therefore, exact locations and layouts are not finalized. Should locations and final layout of the facilities differ substantially from those anticipated and depicted herein, further environmental analysis would be required. Each of these projects is described in more detail in the following sections.

Table 2.3-5. Proposed 190 ARW Construction Projects at Forbes Field Airport

<table>
<thead>
<tr>
<th>Project Description</th>
<th>Total New Construction Footprint (SF)</th>
<th>New Impervious Surface (SF)</th>
<th>Estimated Year of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project #1 (Option 1) – Addition to Hangar 662</td>
<td>11,657</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would include the construction of two additions totaling 11,657 SF to Hangar 662 in order to provide an adequately sized hangar for the new KC-46A aircraft, Fuel Cell Hangar, Maintenance Hangar, Weapons System Trainer, and Boom Operator Trainer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #1 (Option 2) – Addition to Hangar 662</td>
<td>5,847</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would involve a 5,847 SF addition to include a Maintenance Hangar, Weapons System Trainer, and Boom Operator Trainer, and Fuselage Trainer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #2 (Option 1) – Internal Renovations to Hangar 665</td>
<td>0</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Renovate the building interior to include a Fuselage Trainer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #2 (Option 2) – Addition to Hangar 665</td>
<td>18,985</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would include a 18,985 SF addition to the Fuel Cell Hangar in order to provide an adequately sized hangar for the new KC-46A aircraft.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #3 – Internal Renovations to Building 679</td>
<td>0</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would reallocate space within the building for aircrew flight equipment. No modifications would be necessary for squadron operation, base operations, and command post.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #4 (Option 1 and 2) – Pave Apron / Hydrants and Airfield Hold Ramp</td>
<td>184,820</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would include the repair of pavement over the hydrant system and apron pavement between the hangars (184,820 SF).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #4 (Option 2) – Pave Apron / Hydrants and Airfield Hold Ramp</td>
<td>227,507</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would include repavement of approximately 42,687 SF of the airfield hold ramp off the second runway as well as the 184,820 SF addition described above.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>258,149</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Notes: 1. Two options are possible for the modifications to these projects. Only one of these options would be implemented.
2. The total construction footprint includes only the project option that has the greatest footprint of each of the options so as to represent the most conservative (highest amount) facility footprint given the multiple options possible.
SF = square feet; FY = fiscal year
Figure 2.3-2. Construction Associated with Alternative #1, Forbes ANGS
Implementation of the KC-46A aircraft beddown would require the 190 ARW to ensure its installation has properly sized and adequately configured facilities to support 12 KC-46A aircraft. The Forbes ANGS location was deemed to have an acceptable level of facilities to support this beddown and has facilities that currently meet the majority of the requirements identified in Section 2.1.2.2. However, some functional areas require modification. Two construction scenarios are under consideration. Under Option 1, two buildings would be renovated to accommodate the KC-46A maintenance, fuel cell, Weapons System Trainer, Boom Operator Trainer, and Fuselage Trainer. Minor adaptations would be made to a third building to accommodate aircrew flight equipment. This option assumes Sustainment, Restoration, and Modernization execution of pre-existing ramp and primary runway repairs. No changes to fuel hydrants and fuel lines would be required on the parking apron under this option. Under Option 2, two buildings would be renovated: Hangar 662, the Maintenance Hangar, would be modified to house the Maintenance Hangar, Weapons System Trainer, Boom Operator Trainer, and the Fuselage Trainer. Hangar 665, the Fuel Cell Hangar, would be modified to house the Fuel Cell Hangar. Concrete pavements directly over the existing hydrant systems would be repaired and the ramp would be re-striped. Pavement would be added to the airfield hold ramp off the second runway. The hydrant system would be maintained in its current state.

The projects described would incorporate Leadership in Energy and Environmental Design (LEED) and sustainable development concepts. This would achieve optimum resource efficiency, constructability, sustainability, and energy conservation, while minimizing adverse impacts to the built and natural environments through all phases of their life cycle. This may result in primary facility costs exceeding DoD costing standards, but the initial investment in higher acquisition cost would be offset with lower life cycle costs. This is consistent with the requirements of the Energy Policy Act of 2005, 10 USC 2802, EO 13423, and other applicable laws and EOs.

Addition to Hangar 662

A minimum of one Fuel Cell Hangar is required to support the maintenance and operations of KC-46A. Additionally, a minimum of one Maintenance Hangar is required to support the maintenance and operations of KC-46A. Hangars provide an environmentally controlled area to perform maintenance on vital components of the aircraft system. The KC-46A is a military derivative of a commercial Boeing 767 aircraft and has a slightly larger footprint than the KC-135, thus requiring slightly larger hangars. Hangar 662 would be modified to meet KC-46A requirements. One of two options could occur
to satisfy these requirements. Option 1 would house the maintenance shops and safety systems required to perform fuel systems maintenance including pressure checks and inspections. Aircraft hangar space for on-aircraft open fuel cell maintenance would be provided. Interior modifications also would be made to house the KC-46A Weapons System Trainer and Boom Operator Trainer. Option 1 would include the construction of two additions totaling 11,657 square feet (SF). Option 2 would provide space for a Maintenance Hangar, Weapons System Trainer, Boom Operator Trainer, and the Fuselage Trainer. Option 2 would include the construction of a 5,847 SF addition.

Modify Hangar 665

Space would be required for housing the various KC-46A simulators and maintenance functions. One of two options could occur to satisfy this requirement. Option 1 includes internal renovations to Hangar 665 to house the KC-46A Fuselage Trainer. Option 2 includes internal renovations and the construction of an 18,985 SF addition to Hangar 665 to accommodate aircraft fuel cell maintenance.

Modify Building 679

Building 679 was recently renovated; however, areas within the building would need minor interior modifications to house Aircrew Flight Equipment.

Pave Aprons/Hydrant Areas and Airfield Hold Area

The pavement conditions, such as thickness and strength of the hydrant and aircraft apron areas, are important factors in avoiding damage to the KC-46A and/or to the airfield pavement. One of two options could occur under Alternative #1 to satisfy the pavement requirements. Under both Option 1 and Option 2, this project would replace the concrete over the hydrant system and apron areas in the quad; the concrete in these areas currently is rated as in ‘poor’ condition. Under Option 2, a 42,687 SF area of the Airfield Hold Area would also be repaved. Under both options, this project would add pavement to the airfield hold ramp off the secondary runway.
2.3.1.7 Personnel Changes

The 190 ARW currently is authorized 1,242 personnel (Table 2.3-6). Under this alternative, the KC-46A mission would add an additional 194 military positions to the authorized manning requirement at Forbes ANGS (approximately a 16 percent increase in total personnel). Changes to authorized personnel under this alternative are shown in Table 2.3-6.

Table 2.3-6. Comparison of Currently Authorized and Proposed 190 ARW Personnel

<table>
<thead>
<tr>
<th>Personnel</th>
<th>Authorized</th>
<th>Proposed</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Associate (USAF)</td>
<td>0</td>
<td>199</td>
<td>199</td>
</tr>
<tr>
<td>Active Guard and Reserve</td>
<td>78</td>
<td>78</td>
<td>0</td>
</tr>
<tr>
<td>Dual Status Technician (Guard civilians, federal)</td>
<td>297</td>
<td>310</td>
<td>13</td>
</tr>
<tr>
<td>Non-Dual Status (DoD civilians, Air Traffic Control)</td>
<td>28</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>Subtotal</td>
<td>403</td>
<td>615</td>
<td>212</td>
</tr>
<tr>
<td>Part Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drill Status Guardsmen</td>
<td>839</td>
<td>821</td>
<td>-18</td>
</tr>
<tr>
<td>Total Personnel Assignments</td>
<td>1,242</td>
<td>1,436</td>
<td>194</td>
</tr>
<tr>
<td>Total Personnel On Base</td>
<td>945</td>
<td>1,126</td>
<td>181</td>
</tr>
</tbody>
</table>

Note: 1. Total personnel on base is the sum of all categories minus the number of people with two assignments. 2. Some personnel work off-site but are assigned to the unit.

2.3.2 Alternative #2 – Joint Base McGuire-Dix-Lakehurst

2.3.2.1 Background

JB MDL, home of the 108th Wing (108 WG) of the New Jersey Air National Guard (NJ ANG), is located in central New Jersey, spanning more than 20 miles with more than 42,000 contiguous acres (see Figure 2.3-3). The base is located 18 miles southeast of Trenton, 45 miles east of Philadelphia, 50 miles south of New York City, and 14 miles inland from the Atlantic Ocean. JB MDL is located in Ocean and Burlington Counties. The 108 WG installation is situated on the northwest side of McGuire Field within JB MDL. The 108 WG holds an indefinite lease with JB MDL for the installation property. Within Chapters 3 and 4, various resources discuss either JB MDL or McGuire Field, based on the region of influence (ROI) for each particular resource.
Figure 2.3-3. Regional Location, JB MDL
2.3.2.2 Mission

The mission of the 108 WG is to provide support for federal, state, and community interests by providing timely worldwide air refueling, airlift, and support forces; protecting life and property; and preserving peace, order, and public safety. The 108 WG currently flies and maintains eight KC-135 refueler aircraft to support its air refueling mission. The primary support operations performed at the 108 WG include aircraft fueling, aircraft deicing, aircraft maintenance, aerospace support equipment maintenance, ground vehicle maintenance, fueling of ground vehicles, and facilities maintenance. These operations involve activities such as corrosion control, non-destructive inspection, fuel cell maintenance, engine maintenance, hydraulics, and wheel and tire maintenance.

2.3.2.3 Aircraft Conversion

Under Alternative #2, the 108 WG would convert from 8 KC-135 PAA and 1 KC-135 BAI to 12 KC-46A PAA. Concurrent with the beddown of the 12 KC-46A PAA at JB MDL, the existing KC-135 aircraft would either be relocated to other installations or retired out of the USAF inventory, depending on the life-cycle status of each particular aircraft. Separate NEPA documentation would be prepared for any of the aircraft relocated to other installations.

2.3.2.4 Airfield Operations

McGuire Field has two runways; Runway 06/24 is 10,014 feet long and 150 feet wide and Runway 18/36 is 150 feet wide and 7,126 feet long (JB MDL 2013a).

The 108 WG currently flies 1,112 sorties annually. According to the unit’s scheduling data and Air Traffic Control counts, 834 of these sorties were flown from McGuire Field, or 75 percent of the total annual sorties flown (108 WG 2013a). The remaining sorties were flown from other airfields in the U.S. and/or overseas in support of operational missions. Actual airfield operational data collected from 2012 indicates that the 108 WG accounted for 8,340 annual operations with an average of 10 operations per sortie (Table 2.3-7) (108 WG 2013a).
Table 2.3-7. Current 108 WG KC-135 Operations at McGuire Field

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Departures</th>
<th>Arrivals</th>
<th>Total1</th>
<th>Grand Total1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night2</td>
<td>Day</td>
<td>Night2</td>
</tr>
<tr>
<td></td>
<td>Day</td>
<td>Night2</td>
<td>Day</td>
<td>Night2</td>
</tr>
<tr>
<td>KC-135</td>
<td>3,346</td>
<td>815</td>
<td>3,325</td>
<td>854</td>
</tr>
<tr>
<td></td>
<td>6,671</td>
<td>1,669</td>
<td>8,340</td>
<td></td>
</tr>
</tbody>
</table>

Notes: 1. Includes Closed Patterns (which count as two airfield operations).
2. Night – Between 10 p.m. and 7 a.m. for environmental night.

Source: 108 WG 2013a.

Following the aircraft beddown under Alternative #2, the KC-46A aircraft would fly a total of 8,040 hours, with an ASD of 4.0 hours. This would result in 2,010 annual sorties, 75 percent of which would be performed at the home-station (McGuire Field). Thus, it is expected that up to 1,508 sorties would be flown at McGuire Field. This would be an increase of 81 percent over the baseline 834 sorties identified in the McGuire Field Noise Study (it is assumed that the same percentage of the sorties found under current baseline conditions would be flown at McGuire Field under this alternative) (JB MDL 2013a). Based on 1,508 annual home-station sorties and an average of 11.68 operations per sortie, there would be 17,608 annual home-station operations, or an additional 9,268 airfield operations annually at McGuire Field (Table 2.3-8). This would increase the average daily airfield operations from 22.9 to 48.2 (Table 2.3-9). There would be no changes expected to departure/arrival patterns and tracks, and use of runways. Current noise abatement procedures would continue to be followed (see Section 4.2.1, Noise).

Table 2.3-8. Proposed 108 WG KC-46A Operations at McGuire Field

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Departures</th>
<th>Arrivals</th>
<th>Total1</th>
<th>Grand Total1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night2</td>
<td>Day</td>
<td>Night2</td>
</tr>
<tr>
<td></td>
<td>Day</td>
<td>Night2</td>
<td>Day</td>
<td>Night2</td>
</tr>
<tr>
<td>KC-46A</td>
<td>8,047</td>
<td>764</td>
<td>7,863</td>
<td>934</td>
</tr>
<tr>
<td></td>
<td>15,910</td>
<td>1,698</td>
<td>17,608</td>
<td></td>
</tr>
</tbody>
</table>

Notes: 1. Includes Closed Patterns (which count as two airfield operations).
2. Night – Between 10 p.m. and 7 a.m. for environmental night.

Table 2.3-9. Changes to 108 WG Airfield Operations with Proposed KC-46A Aircraft

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>108 WG</td>
<td>8,340 (22.9)</td>
<td>17,608 (48.2)</td>
<td>9,268 (111.1%)</td>
</tr>
</tbody>
</table>

2.3.2.5 Airspace Operations

The 108 WG conducts air refueling for both training and contingency missions for the receiver aircraft. Primary air refueling tracks used by the 108 WG are described in Table 2.3-10. Under Alternative #2, there would be an increase to the frequency of use of the associated airspace due to the proposed increase in the number of sorties conducted annually. The KC-46A will also
have a requirement for training as a receiver aircraft (on-loading fuel) and would use the existing air refueling tracks as a receiver in addition to the normal use as a refueling aircraft (off-loading fuel). Currently, approximately 80 percent of the sorties flown from McGuire Field conduct air refueling training using the tracks found in Table 2.3-10. There would be an increase of 5,400 air refueling operations spread over the existing air refueling tracks currently used by the 108 WG. The increase would range from a maximum annual increase of 88 air refueling operations on the AR 777 track, to the smallest increase of 4 air refueling operations on AR 633. The refueling tracks identified in Table 2.3-10 are the most commonly used with a wide variety of other tracks being used less frequently.

Table 2.3-10. Current and Proposed Local Air Refueling Airspace Used by the 108 WG

<table>
<thead>
<tr>
<th>Airspace Unit</th>
<th>Current Aircraft</th>
<th>Minutes in Airspace for Each Sortie</th>
<th>Average KIAS</th>
<th>Annual Sortie Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>W107 A-Unlimited</td>
<td>KC-135, KC-46A</td>
<td>60</td>
<td>315</td>
<td>70, 127</td>
</tr>
<tr>
<td>AR 777 FL210-FL280</td>
<td>KC-135, KC-46A</td>
<td>80</td>
<td>275</td>
<td>109, 197</td>
</tr>
<tr>
<td>AR 220/218 FL190-FL220</td>
<td>KC-135, KC-46A</td>
<td>75</td>
<td>275</td>
<td>20, 36</td>
</tr>
<tr>
<td>AR 631/609 FL200-FL260</td>
<td>KC-135, KC-46A</td>
<td>75</td>
<td>265</td>
<td>48, 87</td>
</tr>
<tr>
<td>AR 636 FL200-FL290</td>
<td>KC-135, KC-46A</td>
<td>75</td>
<td>300</td>
<td>25, 45</td>
</tr>
<tr>
<td>AR 207 SW/NE FL180-FL280</td>
<td>KC-135, KC-46A</td>
<td>90</td>
<td>265</td>
<td>17, 31</td>
</tr>
<tr>
<td>AR 202 S/AN FL250-280</td>
<td>KC-135, KC-46A</td>
<td>75</td>
<td>265</td>
<td>15, 27</td>
</tr>
<tr>
<td>AR 328 FL180-FL230</td>
<td>KC-135, KC-46A</td>
<td>90</td>
<td>275</td>
<td>16, 29</td>
</tr>
<tr>
<td>AR 633 FL180-FL230</td>
<td>KC-135, KC-46A</td>
<td>70</td>
<td>275</td>
<td>5, 9</td>
</tr>
</tbody>
</table>

Notes:
1. This table only shows KC-135 and KC-46A aircraft that are or would be flown by the 108 ARW in this airspace. Additional aircraft flown by other units that use this airspace are not shown.
2. W-Warning Area Floor is the surface but no refuelings occur below 10,000 feet MSL.
3. FL Altitude is Mean Sea Level.

Source: 108 WG 2013b.

2.3.2.6 Construction Required

Under Alternative #2, 12 KC-46A PAA aircraft would be beddown at the 108 WG installation at JB MDL; the 108 WG would also implement minor construction projects for that conversion (Table 2.3-11). The proposed construction projects would comply with standards set forth in ANG Handbook 32-1084, *Facility Space Standards* (November 2012). AT/FP requirements would also be addressed to the extent practicable. Proposed facilities would be sited approximately as shown in Figure 2.3-4. The precise layout and design of proposed facilities is in the early planning stages, and therefore, exact locations and layouts are not finalized. Should...
locations and final layout of the facilities differ substantially from those anticipated and depicted herein, further environmental analysis would be required. Each of these projects is described in more detail in the following sections.

Table 2.3-11. Proposed 108 WG Construction Projects at McGuire Field

<table>
<thead>
<tr>
<th>Project Description</th>
<th>Total New Construction Footprint (SF)</th>
<th>New Impervious Surface (SF)</th>
<th>Estimated Year of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project #1 – Addition to Hangar 3333</td>
<td>17,892</td>
<td>4,728</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would involve the addition of a 17,892 SF addition to the existing Maintenance Hangar 3333 to provide an adequately sized hangar for the new KC-46A aircraft.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #2 – Addition to Hangar 3336</td>
<td>18,206</td>
<td>5,137</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would involve the addition of an 18,206 SF addition to the existing Fuel Cell Hangar 3336 to provide an adequately sized hangar for the new KC-46A aircraft.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #3 – Internal Renovations to Hangar 3322</td>
<td>0</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would include internal renovations only to provide sufficient space to house the KC-46A Fuselage Trainer Simulator.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #4 – New Simulator Building</td>
<td>6,700</td>
<td>6,700</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would include the construction of a new 6,700 SF simulator building to house the Weapons System Trainer and the Boom Operator Trainer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #5 (Option 1) – Modifications to Existing Parking Ramp and Taxiway</td>
<td>160,074</td>
<td>88,319</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would include the addition of concrete and asphalt to the existing parking ramp and renovation of a small portion of the taxiway. The construction footprint for this project would total approximately 160,074 SF.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #5 (Option 2) – Modifications to Existing Parking Ramp and Taxiway</td>
<td>14,091</td>
<td>12,029</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would include the addition of 12,029 SF of concrete and asphalt to the existing parking ramp as well as renovation of approximately 2,062 SF of existing taxiway surfaces.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #6 – New Hydrants and Fuel Lines and Demolition of Existing Hydrants</td>
<td>1,137</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would include the addition of eight new fuel hydrants as well as new fuel lines to these hydrants. Approximately 1,137 SF of disturbance would occur as a result of the new hydrants and fuel lines.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>204,0091</td>
<td>104,8841</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Two options are possible for the modifications to the existing parking ramp and taxiway. Only one of these options would be implemented.
2. The total construction footprint includes only the project option that has the greatest footprint of each of the options so as to represent the most conservative (highest amount) facility footprint given the multiple options possible.

SF = square foot; FY = fiscal year
Figure 2.3-4. Construction Associated with Alternative #2, JB MDL
Implementation of the KC-46A aircraft beddown would require the 108 WG to ensure their installation has properly sized and adequately configured facilities to support 12 KC-46A aircraft. Although the JB MDL location was deemed to have an acceptable level of facilities to support this beddown, and has facilities that currently meet the majority of the requirements laid out in Section 2.1.2.2, there remain some functional areas that would require modification. Proposed construction includes: addition to Hangar 3333, addition to Hangar 3336, internal renovations of Hangar 3332, construction of a new simulator building, modification to existing ramp and taxiway, and addition and demolition of hydrants and fuel lines on the parking apron.

The projects described below would incorporate LEED and sustainable development concepts, so as to achieve optimum resource efficiency, constructability, sustainability, and energy conservation, while minimizing adverse impacts to the built and natural environments through all phases of their life cycle. This may result in primary facility costs exceeding DoD costing standards, but the initial investment in higher acquisition cost would be rewarded with lower life cycle costs. This is consistent with the requirements of the Energy Policy Act of 2005, 10 USC 2802, EO 13423, and other applicable laws and EOs.

Addition to Hangar 3333

A minimum of one Maintenance Hangar is required to support the maintenance and operations of the KC-46A. Hangars provide an environmentally controlled area to perform maintenance. The hangar bays require enough space to use the support equipment such as stands and carts to perform maintenance functions. The hangars would house the maintenance shops, tool cribs, and personnel. The KC-46A is a military derivative of a commercial Boeing 767 aircraft and has a slightly larger footprint than the KC-135. Therefore, a 17,892 SF addition to Hangar 3333 would need to be added to accommodate the larger aircraft inside the maintenance hangar. Following the construction, there would be an increase of approximately 4,728 SF of impervious surface as a result of this project.
Addition to Hangar 3336

A minimum of one Fuel Systems Maintenance Hangar is required to support the maintenance and operations of the KC-46A aircraft. The Fuel Systems Maintenance Hangar provides space for covered aircraft maintenance, shop and administrative functions, and contains utilities and safety systems required to perform fuel systems maintenance to include pressure checks and inspections. Aircraft hangar space is required for on-aircraft open fuel cell maintenance. The KC-46A is a military derivative of a commercial Boeing 767 aircraft and has a slightly larger footprint than the KC-135. Therefore, an 18,206 SF addition to Hangar 3336 would be required to accommodate the larger aircraft inside the maintenance hangar. Following the construction, there would be an increase of approximately 5,137 SF of impervious surface as a result of this project.

Internal Renovations to Hangar 3322

Internal renovations to Hangar 3322 would be implemented to house the KC-46A Fuselage Trainer Simulator.

New Simulator Building

A new 6,700 SF building would be constructed west of Building 3390 to house the Weapons System Trainer and the Boom Operator Trainer. Following the construction, there would be an increase of approximately 6,700 SF of impervious surface as a result of this project.
Modifications to Existing Parking Ramp

The proposed beddown of 12 PAA KC-46A aircraft requires a minimum of 8 KC-46A parking spots with a fuel hydrant at each location. Additional concrete would be added to the parking ramp and taxiway at JB MDL in order to increase the size of the parking ramp to accommodate the larger KC-46A aircraft. Two options are possible for the modifications to the existing parking ramp. Only one of these options would be implemented.

1. The first option is to add additional pavement to the northeast side of the apron to increase width for taxiing; add pavement to the southeast side for taxiing; and add pavement to the south side for engine run-ups. This would allow for a 50-foot wing clearance for taxiing. In addition, this option would include the renovation of approximately 2,062 SF of the existing taxiway. This project would include a total of 160,074 SF of new pavement. Following the construction, there would be an increase of approximately 88,319 SF of impervious surface as a result of this project.

2. The second option would include a 12,029 SF addition of a small pavement area on the southeast side of the apron as well as the renovation of approximately 2,062 SF of the existing taxiway. Under this option, a waiver would be required since the wing tip clearance would be reduced to only 25 feet instead of 50 feet. The total SF of disturbance would be approximately 14,091 SF. Following the construction, there would be an increase of approximately 12,029 SF of impervious surface as a result of this project.

New Hydrants and Fuel Lines and Demolition of Existing Hydrants

The proposed beddown of 12 PAA KC-46A aircraft requires a minimum of 8 KC-46A parking spots with a fuel hydrant at each location. A fuel hydrant system provides all the equipment and controls to provide clean fuel to fueling points in the aircraft parking apron. The system reduces the amount of physical movement of fuel around an airfield. To fuel an aircraft, one R-12 fueling truck is needed instead of several. Under Alternative #2, eight new fuel hydrants would be added to the existing parking ramp as well as new fuel lines to one of these hydrants. Approximately 1,137 SF of disturbance would occur as a result of the new hydrants and fuel lines.
2.3.2.7 Personnel Changes

The 108 WG currently is authorized 1,329 personnel. Under Alternative #2, the KC-46A mission would add an additional 287 military positions to the authorized manning requirement (approximately a 22 percent increase in total personnel). Changes to authorized personnel under this alternative are shown in Table 2.3-12.

<table>
<thead>
<tr>
<th>Personnel</th>
<th>Authorized</th>
<th>Proposed</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Associate (USAF)</td>
<td>0</td>
<td>199</td>
<td>199</td>
</tr>
<tr>
<td>Active Guard and Reserve</td>
<td>138</td>
<td>138</td>
<td>0</td>
</tr>
<tr>
<td>Dual Status Technician (Guard civilians, federal)</td>
<td>278</td>
<td>310</td>
<td>32</td>
</tr>
<tr>
<td>Non-Dual Status (DoD civilians, Air Traffic Control)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Subtotal</td>
<td>416</td>
<td>647</td>
<td>231</td>
</tr>
<tr>
<td>Part Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drill Status Guardsmen</td>
<td>913</td>
<td>969</td>
<td>56</td>
</tr>
<tr>
<td>Total Personnel Assignments</td>
<td>1,329</td>
<td>1,616</td>
<td>287</td>
</tr>
<tr>
<td>Total Personnel On Base</td>
<td>1,051</td>
<td>1,306</td>
<td>255</td>
</tr>
</tbody>
</table>

Note: 1. Total personnel on base is the sum of all categories minus the number of people with two assignments.
2. Some personnel work off-site but are assigned to the unit.

2.3.3 Alternative #3 – Pease Air National Guard Station

2.3.3.1 Background

Pease ANGS, home of the 157th Air Refueling Wing (157 ARW) of the New Hampshire Air National Guard (NH ANG), is located in Portsmouth and Newington, New Hampshire, approximately 55 miles north of Boston, Massachusetts (Figure 2.3-5). The 157 ARW base is situated on the northeast side of the Portsmouth International Airport (IAP) at Pease, which is owned and operated by Pease Development Authority (PDA). The 157 ARW holds an indefinite lease for the installation property. The 157 ARW installation occupies approximately 220 acres.
Figure 2.3-5.
Regional Location
Pease ANGS
2.3.3.2 Mission

The primary mission of the 157 ARW is to provide worldwide support with the KC-135 air refueling tanker aircraft and to staff, equip, and train combat flying and combat support units to augment the USAF. In addition, the 157 ARW provides both homeland defense and assistance with state emergencies and natural disasters to protect life and property, and to preserve peace, order, and public safety. The major support operations performed at the installation include aircraft fueling, aircraft deicing, aircraft maintenance, AGE maintenance, ground vehicle maintenance, fueling of ground vehicles, and facilities maintenance. Pease ANGS also hosts the 64th Air Refueling Squadron (64 ARS), which stood up at Pease on October 2, 2009. The 64 ARS is administratively assigned to McConnell AFB’s 22d Operations Group but is located with, and gets operational direction from, its host unit, the 157 ARW at Pease. This partnership is part of the USAF’s TFI effort to increase efficiency by combining active-duty, Guard, and Reserve resources. Aircrew, maintenance, and support personnel assigned to the 64 ARS work alongside Guardsmen flying and maintaining the 157 ARW’s aircraft to accomplish the Wing’s refueling missions. As of February 2013, 129 active associate personnel were authorized at Pease. It is the first active-duty USAF unit to return to the ANG Base since 1991, when Pease AFB, then an active-duty installation, closed.

Additionally, the installation has a Medical Training Group and operational command of the 260th Air Traffic Control Squadron, which operates the air traffic control tower for the airport (157 ARW 2008a).

2.3.3.3 Aircraft Conversion

Under Alternative #3, the 157 ARW would convert from 8 PAA KC-135 and 1 KC-135 BAI aircraft to 12 KC-46A PAA. Concurrent with the beddown of the 12 KC-46A PAA at Pease ANGS, the existing KC-135 aircraft would either be relocated to other installations or retired out of the USAF inventory, depending on the life-cycle status of each particular aircraft. Separate NEPA documentation would be prepared for any of the aircraft relocated to other installations.

2.3.3.4 Airfield Operations

Portsmouth IAP has one grooved concrete and asphalt runway, Runway 16/34, which is approximately 11,321 feet long and 150 feet wide (SkyVector 2013a).

The 157 ARW currently flies 1,382 sorties annually. According to the unit’s scheduling data and airport traffic counts, 614 were flown from Portsmouth IAP, or 44 percent of the annual sorties flown. The remaining sorties were flown from other airfields in the U.S. and/or overseas in support of operational missions. Actual airfield data indicates that the 157 ARW accounted for 6,140 annual operations with an average of 10.0 operations per sortie (Table 2.3-13).
Table 2.3-13. Current 157 ARW Operations at Portsmouth IAP

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Departures</th>
<th>Arrivals</th>
<th>Total</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night</td>
<td>Day</td>
<td>Night</td>
</tr>
<tr>
<td>KC-135</td>
<td>2,939</td>
<td>131</td>
<td>2,939</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Night – Between 10 p.m. and 7 a.m. for environmental night.
2. Based on KC-135 data provided by 157 ARW/CC.

Source: 157 ARW 2013a.

Following the aircraft beddown under Alternative #3, the KC-46A aircraft would fly a total of 8,040 hours annually, with an ASD of 4.0 hours. This would result in 2,010 sorties, 44 percent of which would be performed at the home-station (Pease ANGS). Thus, 884 sorties would be flown at Pease ANGS annually under this alternative. This would be an increase of 44.0 percent over the baseline 614 annual sorties currently flown from Pease ANGS (it is assumed the same percentage of sorties would be flown away from Pease ANGS under this alternative as under the current baseline conditions). Based on 884 annual home-station sorties and an average of 10.0 operations per sortie, there would be 8,840 annual home-station operations, or an additional 2,700 airfield operations annually at Portsmouth IAP (Table 2.3-14). This would increase the average daily airfield operations from 16.8 to 24.2 (Table 2.3-15). There would be no changes expected to departure/arrival patterns and tracks, flight profiles, and use of runways. Current noise abatement procedures would continue to be followed (see Section 4.3.1, Noise).

Table 2.3-14. Proposed 157 ARW KC-46A Operations at Portsmouth IAP

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Departures</th>
<th>Arrivals</th>
<th>Total</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night</td>
<td>Day</td>
<td>Night</td>
</tr>
<tr>
<td>KC-46A</td>
<td>4,231</td>
<td>189</td>
<td>4,231</td>
<td>189</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Includes Closed Patterns (which count as two airfield operations).
2. Night – Between 10 p.m. and 7 a.m. for environmental night.

Table 2.3-15. Changes to 157 ARW Airfield Operations with Proposed KC-46A Aircraft

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>157 ARW</td>
<td>6,140 (16.8)</td>
<td>8,840 (24.2)</td>
<td>2,700 (44.0)</td>
</tr>
</tbody>
</table>

2.3.3.5 Airspace Operations

The 157 ARW conducts air refueling for both training and contingency missions for receiver aircraft. Primary air refueling tracks used by the 157 ARW are described in Table 2.3-16. Under Alternative #3, there would be a slight change to the frequency of use of the airspace due to the proposed increase in the sorties. The KC-46A will also have a requirement for training as a receiver aircraft (on-loading fuel) and will use the existing air refueling tracks as a receiver in
addition to the normal use as a refueling aircraft (off-loading fuel). However, the minutes in the airspace for each sortie, and the operational training conducted would not be expected to change in any of the airspace described.

Table 2.3-16. Current and Proposed Local Air Refueling Airspace Used by the 157 ARW

<table>
<thead>
<tr>
<th>Airspace Unit</th>
<th>Current Aircraft</th>
<th>Proposed Aircraft</th>
<th>Minutes in Airspace for Each Sortie</th>
<th>Average KIAS</th>
<th>ANNUAL SORTIE OPERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Altitude Floor and Ceiling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR 020 17,000 feet MSL–FL190</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>60</td>
<td>275</td>
<td>154 222</td>
</tr>
<tr>
<td>AR 777 FL210-FL280</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>60</td>
<td>275</td>
<td>165 238</td>
</tr>
<tr>
<td>AR 062 FL210-FL280</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>60</td>
<td>275</td>
<td>78 112</td>
</tr>
<tr>
<td>AR 107 14,000 MSL – FL230</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>60</td>
<td>275</td>
<td>56 81</td>
</tr>
<tr>
<td>AR 631 FL200-FL260</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>60</td>
<td>275</td>
<td>198 285</td>
</tr>
<tr>
<td>W102 Above 17,000 MSL to FL600</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>30</td>
<td>300</td>
<td>3 4</td>
</tr>
<tr>
<td>W105 SFC to FL500</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>30</td>
<td>300</td>
<td>16 23</td>
</tr>
<tr>
<td>W107 Surface to Unlimited</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>30</td>
<td>315</td>
<td>19 27</td>
</tr>
<tr>
<td>W122 FL190-FL220</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>30</td>
<td>315</td>
<td>2 3</td>
</tr>
<tr>
<td>W386 Surface to Unlimited</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>30</td>
<td>315</td>
<td>3 4</td>
</tr>
<tr>
<td>Kiwi MOA FL190-FL230</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>30</td>
<td>300</td>
<td>14 20</td>
</tr>
<tr>
<td>Duke Surface to 8,000 MSL</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>30</td>
<td>300</td>
<td>9 13</td>
</tr>
<tr>
<td>Falcon MOA FL200-FL260</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>30</td>
<td>300</td>
<td>3 4</td>
</tr>
<tr>
<td>Yankee 1° 9,000 feet MSL UTBNI FL180</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>30</td>
<td>300</td>
<td>5 7</td>
</tr>
</tbody>
</table>

Notes:
1. This table only shows KC-135 and KC-46A aircraft that are or would be flown by the 157 ARW in this airspace. Additional aircraft flown by other units that use this airspace are not shown.
2. MOA Floor is 9,000 feet MSL but no refueling occurs below 10,000 feet MSL.

Source: 157 ARW 2013a.
2.3.3.6 Construction Required

Under Alternative #3, the 157 ARW would implement construction projects for the conversion to 12 KC-46A PAA (Table 2.3-17). The proposed construction projects would comply with standards set forth in ANG Handbook 32-1084, *Facility Space Standards* (November 2012). AT/FP requirements also would be incorporated. Proposed facilities would be sited approximately as shown in Figure 2.3-6. The precise layout and design of proposed facilities is in the early planning stages; therefore, exact locations and layouts are not finalized. Should locations and final layout of the facilities differ substantially from those anticipated and depicted herein, further environmental analysis would be required. Each of these projects is described in more detail in the following sections.

Implementation of the KC-46A aircraft beddown would require the 157 ARW to ensure its installation has properly sized and adequately configured facilities to support 12 KC-46A aircraft. The Pease ANGS location was deemed to have an acceptable level of facilities to support this beddown and has facilities that currently meet the majority of the requirements laid out in Section 2.1.2.2. However, some functional areas require modification. Proposed construction includes: renovation and additions to Buildings/Hangars 156, 264, 166, 251, 253, and 254; construction and upgrade of the taxiway; and demolition and installation of new fuel hydrants and fuel lines on the parking apron.

Construction projects would incorporate LEED and sustainable development concepts. This would achieve optimum resource efficiency, constructability, sustainability, and energy conservation, while minimizing adverse impacts to the built and natural environments through all phases of the project’s life cycle. While implementation of LEED standards may result in primary facility costs that exceed DoD costing standards, the initial investment in higher acquisition cost would be offset with lower life cycle costs. LEED certified construction is consistent with the requirements of the Energy Policy Act of 2005, 10 USC 2802, EO 13423, and other applicable laws and EOs.
Table 2.3-17. Proposed 157 ARW Construction Projects at Portsmouth IAP

<table>
<thead>
<tr>
<th>Project Description</th>
<th>Total New Construction Footprint (SF)</th>
<th>New Impervious Surface (SF)</th>
<th>Estimated Year of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project #1 (Option 1) – Renovation/Addition to Building 156</td>
<td>750</td>
<td>750</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Remove KC-135 Weapons System Trainer and reuse main bay for the KC-46A Weapons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Trainer; upgrade facilities to support storage in the simulator bays; and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>construct addition to the ground floor to house the Boom Operator Trainer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #1 (Option 2) – Renovation/Addition to Building 264</td>
<td>11,600</td>
<td>11,600</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would construct an 11,600 SF addition to Building 264 to house the</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Server Room.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #2 - Addition to Building 166</td>
<td>1,100</td>
<td>1,100</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Add refueler vehicle parking spaces and driveway.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #3 – Internal Renovations to Hangar 251</td>
<td>0</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Renovate mezzanines for administrative space and alter hangar bay for deployment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>processing/fuselage trainer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #4 (Option 1) – Addition/Alteration to Hangar 253</td>
<td>18,985</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Remove existing hangar door and construct hangar addition; reconfigure interior for</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel Cell Hangar, storage and maintenance, and corrosion control shops.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #4 (Option 2) – Demolition/Addition/Alteration to Hangar 253</td>
<td>36,026</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Demolish building and rebuild double hangar with Hangar 254.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #5 – Demolition/Addition/Alteration to Hangar 254</td>
<td>18,530</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Construct new tail addition and reconfigure interior for KC-46A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #6 – Alter Aircraft Taxiway</td>
<td>11,745</td>
<td>10,917</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Construct a concrete taxiway (6,843 SF), an asphalt shoulder (4,074 SF), and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>upgrade concrete taxiway (828 SF).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #7 – Demolition/Modify/Install Aprons and Hydrants</td>
<td>2,890</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would reuse existing hydrants in the north and south loops; add</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>interstitial monitoring and secondary containment; and relocate parking.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #8 – Repave Quad Apron</td>
<td>49,075</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Repave surfaces used to tow aircraft in and out of the hangar and fuel cell, but</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>not the entire facility.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>130,966</td>
<td>23,617</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Two options are possible for the modifications to these projects. Only one of these options would be implemented.
2. The total construction footprint includes only the project option that has the greatest footprint of each of the options so as to represent the most conservative (highest amount) facility footprint given the multiple options possible.

SF = square feet; FY = fiscal year
Figure 2.3-6. Construction Associated with Alternative #3, Pease ANGS.
Alteration or Addition to Building 156 for Weapons System Trainer and Boom Operator Trainer

The KC-46A beddown would require the construction of a new KC-46A Weapons System Trainer and Boom Operator Trainer to train flight crews. One of two options could occur under Alternative #3 to satisfy this requirement. Option 1 would remove the KC-135 Weapons System Trainer in Building 156 and reuse the main bay for the KC-46A Weapons System Trainer. In addition, under Option 1, a 750 SF addition to Building 156 would be constructed to house the KC-46A Boom Operator Trainer. Option 2 would leave the KC-135 Weapons System Trainer in Building 156 and construct an 11,600 SF addition to the new Squadron Operations Building, Building 264 (currently under construction), to house the Weapons System Trainer, the KC-46A Boom Operator Trainer, and supporting Computer Server Room.

Additions to Building 166 Refueler Parking Area

Alteration of this facility is required to provide a facility large enough to house assigned R-11, R-12, and C-300 refueling vehicles. To accommodate refueling vehicles, covered parking spaces would be added, and a new driveway would be built (adjacent to Building 166). Following the construction, there would be an increase of approximately 1,100 SF of impervious surface as a result of this project.

Internal Renovations to Hangar 251

The Mezzanine within Hangar 251 would be renovated for KC-46A administrative space and the hangar bay would be altered to accommodate the Fuselage Trainer and Deployment Processing Center. In addition, the utilities for aircraft power and potable water would be upgraded.

Addition to Hangar 253 and Hangar 254

The hangar bays require enough space to use the support equipment such as stands and carts to perform KC-46A maintenance functions. The hangars would house the maintenance shops, tool cribs, and personnel. The KC-46A is a military derivative of a commercial Boeing 767 aircraft and has a slightly larger footprint than the KC-135, thus requiring slightly larger hangars. Hangar 254 and Hangar 253 require modifications to meet KC-46A requirements. One of two options could occur under Alternative #3 to satisfy these requirements.
Under Option 1, an 18,985 SF addition would be added to the hangar, while existing maintenance shops would be reused, and a 2-hour firewall would be added. A high-bay tail addition and door would be added to the south side of this hangar. Also, mid-bay areas for Wing Air Refueling Pod storage and maintenance with overhead cranes, and corrosion control would be built. Mezzanines would be renovated for administrative use. Under Option 2, both Hangar 253 and the hangar space in Hangar 254 would be demolished. A new 36,026 SF double hangar would be built incorporating the existing Hangar 253 shops in Hangar 254.

Addition to Hangar 254

The existing dormer would be demolished and a new 18,530 SF dormer would be added to the hangar to accommodate the KC-46A. The existing roofs would also be replaced. Excess space in the existing jet engine shop would be used to store aircraft support equipment. The existing maintenance shops would be reused.

Alter Aircraft Taxiway

Alteration of the existing taxiway would be required at Pease ANGS to enable the KC-46A aircraft to access the maintenance hangars. The existing taxiway from the main apron to the hangar area is configured for towing of KC-135 aircraft to the existing hangars. Construction of tail additions combined with the larger dimensions of the KC-46A would not allow the existing taxiway to be reused as-is. In addition, the taxiways would need to be wide enough to support the turning radii of the KC-46A. Under Alternative #3, 828 SF of concrete taxiway would be upgraded, and 6,843 SF concrete taxiway and 4,074 SF asphalt shoulder would be constructed to the quad area to accommodate the aircraft. Following the construction, there would be an increase of approximately 10,917 SF of impervious surface as a result of this project.
New Hydrants and Demolition of Existing Hydrants

The beddown of 12 PAA KC-46A aircraft requires a minimum of 8 KC-46A parking spots with a fuel hydrant at each location. A fuel hydrant system provides all the equipment and controls to provide clean fuel to fueling points in the aircraft parking apron. The system reduces the amount of physical movement of fuel around an airfield. One of two options could occur under Alternative #3 to satisfy this requirement. Option 1 would reuse six of the seven existing hydrants in North Loop and would cap one hydrant under the proposed parking area. In the South Loop, interstitial monitoring and secondary containment would be added; only two hydrants would be used in this area. Under Option 2, the old piping would be demolished and new piping installed; valves and pits would be installed in Rows 4 and 5. Eight existing hydrant valve pits would be used. Approximately 2,890 SF of disturbance would occur as a result of the new hydrants and fuel lines.

Quad Apron

This project would repave surfaces used to tow aircraft in and out of the hangar and fuel cell. The quad apron is currently degrading and is in need of renovations for KC-46A operations. Under Alternative #3, 49,075 SF of surface area used to tow aircraft in and out of the hangar and fuel cell would be repaved.

2.3.3.7 Personnel Changes

The 157 ARW currently is authorized 1,382 personnel (Table 2.3-18). Under Alternative #3, the KC-46A mission would add an additional 171 military positions to the authorized manning requirement (approximately a 12 percent increase in total personnel). Changes to authorized personnel under this alternative are shown in Table 2.3-18.

<table>
<thead>
<tr>
<th>Personnel</th>
<th>Authorized</th>
<th>Proposed</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Associate (USAF)</td>
<td>127</td>
<td>199</td>
<td>72</td>
</tr>
<tr>
<td>Active Guard and Reserve</td>
<td>120</td>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>Dual Status Technician (Guard civilians, federal)¹</td>
<td>283</td>
<td>326</td>
<td>43</td>
</tr>
<tr>
<td>Non-Dual Status (DoD civilians, Air Traffic Control)</td>
<td>9</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Subtotal</td>
<td>539</td>
<td>654</td>
<td>115</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part Time</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Drill Status Guardsmen</td>
<td>843</td>
<td>899</td>
<td>56</td>
</tr>
<tr>
<td>Total Personnel Assignments²</td>
<td>1,382</td>
<td>1,553</td>
<td>171</td>
</tr>
<tr>
<td>Total Personnel On Base</td>
<td>1,099</td>
<td>1,227</td>
<td>128</td>
</tr>
</tbody>
</table>

Note: 1. Total personnel on base is the sum of all categories minus the number of people with two assignments.
2. Some personnel work off-site but are assigned to the unit.
2.3.4 Alternative #4 – Pittsburgh Air National Guard Station

2.3.4.1 Background

Pittsburgh ANGS, home of the 171st Air Refueling Wing (171 ARW) of the Pennsylvania Air National Guard (PA ANG), is located approximately 12 miles northwest of Pittsburgh, Pennsylvania in Allegheny County (Figure 2.3-7). The 171 ARW installation is situated on the southeastern side of the Pittsburgh IAP, an international airport owned and operated by the Allegheny County Airport Authority (ACAA). The 171 ARW installation currently occupies approximately 179 acres in the southeastern corner of Pittsburgh IAP. The 171 ARW holds a lease with the Pittsburgh IAP with a termination date of 2050.

2.3.4.2 Mission

The mission of the 171 ARW is to provide support for federal, state, and community interests by providing timely worldwide air refueling, airlift, and support forces; protecting life and property; and preserving peace, order, and public safety. The 171 ARW currently flies and maintains 16 KC-135 refueler aircraft to support its air refueling mission. The primary support operations performed at the 171 ARW include aircraft fueling, aircraft deicing, aircraft maintenance, aerospace support equipment maintenance, ground vehicle maintenance, fueling of ground vehicles, and facilities maintenance. These operations involve activities such as corrosion control, non-destructive inspection, fuel cell maintenance, engine maintenance, hydraulics, and wheel and tire maintenance.

2.3.4.3 Aircraft Conversion

Under Alternative #4, the 171 ARW would convert from 16 KC-135 PAA and no KC-135 BAI to 12 KC-46A PAA. Concurrent with the beddown of the 12 KC-46A PAA at Pittsburgh ANGS, the existing KC-135 aircraft would either be relocated to other installations or retired out of the USAF inventory, depending on the life-cycle status of each particular aircraft. Separate NEPA documentation would be prepared for any of the aircraft relocated to other installations.
2.3.4.4 Airfield Operations

Pittsburgh IAP has four runways. Runway 10R/28L is 11,500 feet long and 200 feet wide. Runway 10L/28R is 10,502 feet long and 150 feet wide. Runway 10C/28C is 10,774 feet long for takeoff and 9,708 feet long for landing and 150 feet wide. Runway 14/32 is 8,101 feet long and 150 feet wide (AirNav 2013b).

The 171 ARW currently flies 1,569 sorties annually. According to the unit’s scheduling data and airport traffic counts, 926 were flown from Pittsburgh IAP, or 59 percent of the total annual sorties flown (171 ARW 2013a). The remaining sorties were flown from other airfields in the U.S. and/or overseas in support of operational missions. Actual airfield data indicates that the 171 ARW flew 6,943 airfield operations with an average of 7.5 operations per sortie during 2012 (Table 2.3-19).

Table 2.3-19. Current 171 ARW KC-135 Aircraft Operations at Pittsburgh IAP

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>DEPARTURES</th>
<th>ARRIVALS</th>
<th>TOTAL</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night</td>
<td>Day</td>
<td>Night</td>
</tr>
<tr>
<td>KC-135</td>
<td>3,272</td>
<td>200</td>
<td>3,176</td>
<td>295</td>
</tr>
</tbody>
</table>

Notes: 1. Includes Closed Patterns (which count as two airfield operations).
2. Night – Between 10 p.m. and 7 a.m. for environmental night.

Following the aircraft beddown under Alternative #4, the KC-46A aircraft would fly a total of 8,040 hours annually, with an ASD of 4.0 hours. This would result in 2,010 sorties, 59 percent of which would be performed at the home-station (Pittsburgh ANGS). Thus, 1,186 sorties would be flown at Pittsburgh IAP annually under this alternative. This would be an increase of 27 percent over the baseline 926 sorties currently flown at Pittsburgh IAP (it is assumed that the same percentage of the sorties found under current baseline conditions would be flown at Pittsburgh IAP under this alternative). Based on 1,186 annual home-station sorties and an average of 7.78 operations per sortie, there would be 9,226 annual home-station operations, or an additional 2,283 airfield operations annually at Pittsburgh IAP (Table 2.3-20). This would increase the average daily airfield operations from 19.0 to 25.3 (Table 2.3-21). There would be no changes expected to departure/arrival patterns and tracks, and use of runways. Current noise abatement procedures would continue to be followed (see Section 4.4.1, *Noise*).

Table 2.3-20. Proposed 171 ARW KC-46A Operations at Pittsburgh IAP

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>DEPARTURES</th>
<th>ARRIVALS</th>
<th>TOTAL</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night</td>
<td>Day</td>
<td>Night</td>
</tr>
<tr>
<td>KC-46A</td>
<td>4,287</td>
<td>326</td>
<td>4,275</td>
<td>338</td>
</tr>
</tbody>
</table>

Notes: 1. Includes Closed Patterns (which count as two airfield operations).
2. Night – Between 10 p.m. and 7 a.m. for environmental night.
Table 2.3-21. Changes to 171 ARW Airfield Operations with Proposed KC-46A Aircraft

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>171 ARW</td>
<td>6,943 (19.0)</td>
<td>9,226 (25.3)</td>
<td>2,283 (32.9%)</td>
</tr>
</tbody>
</table>

2.3.4.5 Airspace Operations

The 171 ARW conducts air refueling for both training and contingency missions for the receiver aircraft. Primary air refueling tracks used by the 171 ARW are described in Table 2.3-22. Under Alternative #4, there would be a slight change to the frequency of use due to the proposed increase in the sorties. The KC-46A will also have a requirement for training as a receiver aircraft (on-loading fuel) and will be using the existing air refueling tracks as a receiver in addition to the normal use as a refueling aircraft (off-loading fuel), but the minutes in the airspace for each sortie, and the operational training conducted would not change in any of the airspace described.

2.3.4.6 Construction Required

Under Alternative #4, 12 KC-46A PAA aircraft would be beddown at the 171 ARW installation at Pittsburgh ANGS; the 171 ARW would also implement minor construction projects for that conversion (Table 2-3-23). The proposed construction projects would comply with standards set forth in ANG Handbook 32-1084, *Facility Space Standards* (November 2012). AT/FP requirements would also be addressed to the extent practicable. Proposed facilities would be sited approximately as shown in Figure 2.3-8. The precise layout and design of proposed facilities is in the early planning stages, and therefore, exact locations and layouts are not finalized. Should locations and final layout of the facilities differ substantially from those anticipated and depicted herein, further environmental analysis would be required. Each of these projects is described in more detail in the following sections.
Table 2.3-22. Current and Proposed Local Air Refueling Airspace Used by the 171 ARW

<table>
<thead>
<tr>
<th>Airspace Unit</th>
<th>Altitude Floor and Ceiling</th>
<th>Current Aircraft</th>
<th>Proposed Aircraft</th>
<th>Minutes in Airspace for Each Sortie</th>
<th>Average KIAS</th>
<th>Annual Sortie Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duke MOA</td>
<td>ATCAA 8,000 feet –FL180</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>30</td>
<td>315</td>
<td>17/18</td>
</tr>
<tr>
<td></td>
<td>ATCAA FL180-As Assigned</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W105</td>
<td>Surface-FL500</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>45</td>
<td>315</td>
<td>45/54</td>
</tr>
<tr>
<td></td>
<td>W107</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>45</td>
<td>315</td>
<td>35/42</td>
</tr>
<tr>
<td>193WA</td>
<td>TBD</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>60</td>
<td>210</td>
<td>80/97</td>
</tr>
<tr>
<td>AR 777</td>
<td>FL210-FL280</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>75</td>
<td>275</td>
<td>56/68</td>
</tr>
<tr>
<td>AR 109H/L</td>
<td>FL250-310H FL190-230L</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>45</td>
<td>275</td>
<td>41/49</td>
</tr>
<tr>
<td>AR 110</td>
<td>FL240-270</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>50</td>
<td>260</td>
<td>21/25</td>
</tr>
<tr>
<td>AR 609</td>
<td>FL180-FL280</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>60</td>
<td>300</td>
<td>25/30</td>
</tr>
<tr>
<td>AR 631</td>
<td>FL200-FL260</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>60</td>
<td>265</td>
<td>30/36</td>
</tr>
<tr>
<td>AR 206H/L</td>
<td>FL280-FL310H FL250-FL270L</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>50</td>
<td>295</td>
<td>14/16</td>
</tr>
<tr>
<td>KIWI MOA</td>
<td>FL190-FL230</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>60</td>
<td>315</td>
<td>20/24</td>
</tr>
<tr>
<td>AR 636</td>
<td>FL200-290</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>60</td>
<td>300</td>
<td>16/19</td>
</tr>
<tr>
<td>AR 202</td>
<td>FL260-FL280</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>55</td>
<td>265</td>
<td>29/35</td>
</tr>
<tr>
<td>AR 207</td>
<td>FL260-280</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>75</td>
<td>265</td>
<td>37/45</td>
</tr>
<tr>
<td>AR 216</td>
<td>FL260-FL280</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>75</td>
<td>265</td>
<td>33/39</td>
</tr>
<tr>
<td>AR 220</td>
<td>FL190-FL220</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>70</td>
<td>275</td>
<td>239/289</td>
</tr>
<tr>
<td>AR 633</td>
<td>FL180-FL230</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>60</td>
<td>275</td>
<td>40/48</td>
</tr>
<tr>
<td>AR 328</td>
<td>FL180-FL230</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>60</td>
<td>275</td>
<td>20/24</td>
</tr>
</tbody>
</table>

Notes:
1. This table only shows KC-135 and KC-46A aircraft that are or would be flown by the 171 ARW in this airspace. Additional aircraft flown by other units that use this airspace are not shown.
2. FL Altitude is Mean Sea Level.
3. Military Operations Area (MOA) but no refuelings occur below 10,000 feet MSL.
4. W-Warning Area Floor is the Surface but no refuelings occur below 10,000 feet MSL.

KIAS = knots indicated airspeed; MOA = Military Operations Area; ATCAA = Air Traffic Control Assigned Airspace; FL = Flight Level

Source: 171 ARW 2013a.
Table 2.3-23. Proposed 171 ARW Construction Projects at Pittsburgh IAP

<table>
<thead>
<tr>
<th>Project Description</th>
<th>Total New Construction Footprint (SF)</th>
<th>New Impervious Surface (SF)</th>
<th>Estimated Year of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project #1 – Addition to Hangar 302</td>
<td>20,464</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would involve the addition of a 20,464 SF addition to the existing Maintenance Hangar 302 in order to provide an adequately sized hangar for the new KC-46A aircraft.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #2 – Addition to Hangar 320</td>
<td>19,180</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would involve the addition of a 19,180 SF addition to the existing Fuel Cell Hangar 320 in order to provide an adequately sized hangar for the new KC-46A aircraft.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #3 – Internal Renovation to Hangar 301</td>
<td>0</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would include internal renovations only in order to provide sufficient space to house the KC-46A Fuselage Trainer, the Weapons System Trainer, and the Boom Operator Trainer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #4 – Modifications to Existing Parking Ramp and Taxiway</td>
<td>143,505</td>
<td>88,529</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would include the addition of 143,505 SF of concrete and asphalt to the existing parking ramp and taxiway that leads to the parking ramp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #5 – New Hydrants and Fuel Lines and Demolition of Existing Hydrants</td>
<td>3,246</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would include the addition of eight new fuel hydrants as well as new fuel lines to these hydrants. Approximately 58,335 SF of disturbance would occur as a result of the new hydrants and fuel lines.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>186,395</td>
<td>88,529</td>
<td></td>
</tr>
</tbody>
</table>

Notes: SF = square foot; FY = fiscal year
Figure 2.3-8. Construction Associated with Alternative #4, Pittsburgh ANGS
Implementation of the KC-46A aircraft beddown would require the 171 ARW to ensure their installation has properly sized and adequately configured facilities to support 12 KC-46A aircraft. Although the Pittsburgh ANGS location was deemed to have an acceptable level of facilities to support this beddown, and has facilities that currently meet the majority of the requirements laid out in Section 2.1.2.2, there remain some functional areas that require modification. Proposed construction includes an addition to Hangar 302, an addition to Hangar 320, internal renovations of Hangar 301, modification to existing ramp and taxiway, and addition and demolition of hydrants and fuel lines on the parking apron.

The projects described below would incorporate LEED and sustainable development concepts, so as to achieve optimum resource efficiency, constructability, sustainability, and energy conservation, while minimizing adverse impacts to the built and natural environments through all phases of their life cycle. This may result in primary facility costs exceeding DoD costing standards, but the initial investment in higher acquisition cost would be rewarded with lower life cycle costs. This is consistent with the requirements of the Energy Policy Act of 2005, 10 USC 2802, EO 13423, and other applicable laws and EOs.

Addition to Hangar 302

A minimum of one Maintenance Hangar is required to support the maintenance and operations of KC-46A. Hangars provide an environmentally controlled area to perform maintenance. The hangar bays require enough space to use the support equipment such as stands and carts to perform maintenance functions. The hangars would house the maintenance shops, tool cribs, and personnel. The KC-46A is a military derivative of a commercial Boeing 767 aircraft and has a slightly larger footprint than the KC-135. Therefore, a 20,464 SF addition to Hangar 302 would need to be added in order to accommodate the larger aircraft inside the maintenance hangar.
Addition to Hangar 320

A minimum of one Fuel Systems Maintenance Hangar is required to support the maintenance and operations of KC-46A. The Fuel Systems Maintenance Hangar provides space for covered aircraft maintenance, shop, and administrative functions, and contains utilities and safety systems required to perform fuel systems maintenance to include pressure checks and inspections. Aircraft hangar space is required for on-aircraft open fuel cell maintenance. The KC-46A is a military derivative of a commercial Boeing 767 aircraft and has a slightly larger footprint than the KC-135. Therefore, a 19,180 SF addition to Hangar 320 would need to be added in order to accommodate the larger aircraft inside the maintenance hangar.

Internal Renovations to Hangar 301

Internal renovations to Hangar 301 would be made in order to house the KC-46A Fuselage Trainer, the Weapons System Trainer, and the Boom Operator Trainer.

Modifications to Existing Parking Ramp and Taxiway

The proposed beddown of 12 PAA KC-46A aircraft requires a minimum of 8 KC-46A parking spots with a fuel hydrant at each location. Additional concrete would need to be added to the parking ramp and taxiway at Pittsburgh IAP in order to increase the size of the parking ramp to accommodate the larger KC-46A aircraft. In addition, the taxiways would need to be wide enough to support the turning radii of the KC-46A. Therefore, under Alternative #4, the addition of 143,505 SF of concrete and asphalt would be added to the existing parking ramp and the taxiway that leads to the parking ramp. Following the construction, there would be an increase of approximately 88,529 SF of impervious surface as a result of this project.

New Hydrants and Fuel Lines and Demolition of Existing Hydrants

As stated above, the proposed beddown of 12 PAA KC-46A aircraft requires a minimum of 8 KC-46A parking spots with a fuel hydrant at each location. A fuel hydrant system provides all
the equipment and controls to provide clean fuel to fueling points in the aircraft parking apron. The system reduces the amount of physical movement of fuel around an airfield. Under Alternative #4, eight new fuel hydrants would be added to the existing parking ramp as well as new fuel lines to one of these hydrants. Approximately 3,246 SF of disturbance would occur as a result of the new hydrants and fuel lines.

2.3.4.7 Personnel Changes

The 171 ARW currently is authorized 1,306 personnel (Table 2.3-24). Under Alternative #4, the KC-46A mission would add an additional 59 military positions to the authorized manning requirement (approximately a 5 percent increase in total personnel). Changes to the authorized personnel under this alternative are shown in Table 2.3-24.

Table 2.3-24. Comparison of Currently Authorized and Proposed 171 ARW Personnel

<table>
<thead>
<tr>
<th>Personnel</th>
<th>Authorized</th>
<th>Proposed</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Associate (USAF)</td>
<td>0</td>
<td>199</td>
<td>199</td>
</tr>
<tr>
<td>Active Guard and Reserve</td>
<td>101</td>
<td>101</td>
<td>0</td>
</tr>
<tr>
<td>Dual Status Technician (Guard civilians, federal)</td>
<td>292</td>
<td>328</td>
<td>36</td>
</tr>
<tr>
<td>Non-Dual Status (DoD civilians, Air Traffic Control)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Subtotal</td>
<td>393</td>
<td>628</td>
<td>235</td>
</tr>
<tr>
<td>Part Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drill Status Guardsmen</td>
<td>913</td>
<td>737</td>
<td>-176</td>
</tr>
<tr>
<td>Total Personnel Assignments</td>
<td>1,306</td>
<td>1,365</td>
<td>59</td>
</tr>
<tr>
<td>Total Personnel On Base</td>
<td>1,014</td>
<td>1,037</td>
<td>23</td>
</tr>
</tbody>
</table>

Note: 1. Total personnel on base is the sum of all categories minus the number of people with two assignments. 2. Some personnel work off-site but are assigned to the unit.

2.3.5 Alternative #5 – Rickenbacker Air National Guard Station

2.3.5.1 Background

Rickenbacker ANGS, home of the 121st Air Refueling Wing (121 ARW) of the Ohio Air National Guard (OH ANG), is located approximately 12 miles southeast of downtown Columbus, Ohio in Franklin County (Figure 2.3-9). The 121 ARW installation is situated on the west side of Rickenbacker IAP, an international airport operated by the Columbus Regional Airport Authority (CRAA). The 121 ARW holds a lease with the Rickenbacker IAP for the installation property with a termination date of 2061. The installation occupies approximately 170 acres, most of which are within the main cantonment area.
Figure 2.3-9.
Regional Location
Rickenbacker ANGS
2.3.5.2 Mission

The mission of the 121 ARW is to provide support for federal, state, and community interests by providing timely worldwide air refueling, airlift, and support forces; protecting life and property; and preserving peace, order, and public safety. The 121 ARW currently flies and maintains 18 KC-135 refueler aircraft to support its air refueling mission. The primary support operations performed at the 121 ARW include aircraft fueling, aircraft deicing, aircraft maintenance, aerospace support equipment maintenance, ground vehicle maintenance, fueling of ground vehicles, and facilities maintenance. These operations involve activities such as corrosion control, non-destructive inspection, fuel cell maintenance, engine maintenance, hydraulics, and wheel and tire maintenance.

2.3.5.3 Aircraft Conversion

Under Alternative #5, the 121 ARW would convert from 18 KC-135 PAA and no KC-135 BAI to 12 KC-46A PAA. Concurrent with the beddown of the 12 KC-46A PAA at Rickenbacker ANGS, the existing KC-135 aircraft would either be relocated to other installations or retired out of the USAF inventory, depending on the life-cycle status of each particular aircraft. Separate NEPA documentation would be prepared for any of the aircraft relocated to other installations, as necessary.

2.3.5.4 Airfield Operations

Rickenbacker IAP has two parallel runways spaced approximately 1,000 feet apart. Runway 05R/23L is 12,102 feet long and 200 feet wide and Runway 05L/23R is 11,902 feet long and 150 feet wide (AirNav 2013c).

In 2012, the 121 ARW flew 2,014 sorties. According to the unit’s scheduling data and airport traffic counts, the unit flew 1,289 of these sorties from Rickenbacker IAP, or 64 percent of the total annual sorties flown. The remaining sorties were flown from other airfields in the U.S. and/or overseas in support of operational missions. Actual airfield data indicates that the 121 ARW conducted 6,445 operations with an average of 5.0 operations per sortie at the airfield (Table 2.3-25).

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>DEPARTURES</th>
<th>ARRIVALS</th>
<th>TOTAL</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night</td>
<td>Day</td>
<td>Night</td>
</tr>
<tr>
<td>KC-135</td>
<td>3,223</td>
<td>0</td>
<td>3,061</td>
<td>161</td>
</tr>
</tbody>
</table>

Notes: 1. Includes Closed Patterns (which count as two airfield operations).
2. Night – Between 10 p.m. and 7 a.m. for environmental night.
3. Night operations are limited due to Maintenance Union Agreement.

Source: 121 ARW 2013a.
Following the aircraft beddown under Alternative #5, the KC-46A aircraft would fly a total of 8,040 hours annually, with an ASD of 4.0 hours. This would result in 2,010 annual sorties, 64 percent of which would be performed at the home-station (Rickenbacker ANGS). Thus, it is expected that up to 1,286 sorties would be flown at Rickenbacker IAP annually under this alternative. This would be essentially the same as the baseline 1,289 sorties (it is assumed that the same percentage of the sorties found under current baseline conditions would be flown at Rickenbacker IAP under this alternative). Based on 1,286 annual home-station sorties and an average of 5.33 operations per sortie, there would be 6,857 annual home-station operations, or an additional 412 airfield operations annually at Rickenbacker IAP (Table 2.3-26). This would increase the average daily airfield operations from 17.7 to 18.8 (Table 2.3.27). There would be no changes expected to departure/arrival patterns and tracks, and use of runways. Current noise abatement procedures would continue to be followed (see Section 4.5.1, Noise).

Table 2.3-26. Proposed 121 ARW KC-46A Aircraft Operations at Rickenbacker IAP

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Departures</th>
<th>Arrivals</th>
<th>Total</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night¹</td>
<td>Day</td>
<td>Night¹</td>
</tr>
<tr>
<td>KC-46A</td>
<td>3,424</td>
<td>0</td>
<td>3,157</td>
<td>276</td>
</tr>
</tbody>
</table>

Notes: 1. Includes Closed Patterns (which count as two airfield operations). 2. Night – Between 10 p.m. and 7 a.m. for environmental night. 3. Night Operations are limited due to Maintenance Union Agreement.

Table 2.3-27. Changes to 121 ARW Airfield Operations with Proposed KC-46A Aircraft

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>121 ARW</td>
<td>6,445 (17.7)</td>
<td>6,857 (18.8)</td>
<td>412 (6.4%)</td>
</tr>
</tbody>
</table>

2.3.5.5 Airspace Operations

The 121 ARW conducts air refueling for both training and contingency missions for the receiver aircraft. Primary air refueling tracks used by the 121 ARW are described in Table 2.3-28. Under Alternative #5, there would be a slight change to the frequency of use due to the proposed increase in the sorties. The KC-46A will also have a requirement for training as a receiver aircraft (on-loading fuel) and will use the existing air refueling tracks as a receiver in addition to the normal use as a refueling aircraft (off-loading fuel). However, the minutes in the airspace for each sortie and the operational training conducted would not be expected to change in any of the airspace described.
Table 2.3-28. Current and Proposed Local Air Refueling Airspace Used by the 121 ARW

<table>
<thead>
<tr>
<th>Airspace Unit</th>
<th>Current Aircraft</th>
<th>Proposed Aircraft</th>
<th>Minutes in Airspace for Each Sortie</th>
<th>Average KIAS</th>
<th>ANNUAL SORTIE OPERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buckeye MOA ATCAA</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>30</td>
<td>300</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>6,000 feet MSL -FL500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steelhead MOA ATCAA</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>30</td>
<td>315</td>
<td>24</td>
</tr>
<tr>
<td>FL240-FL260</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>AR 202</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>60</td>
<td>275</td>
<td>150</td>
</tr>
<tr>
<td>FL260-FL280</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>151</td>
</tr>
<tr>
<td>AR 207</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>60</td>
<td>275</td>
<td>200</td>
</tr>
<tr>
<td>FL260-280</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>204</td>
</tr>
<tr>
<td>AR 216</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>60</td>
<td>275</td>
<td>200</td>
</tr>
<tr>
<td>FL260-FL280</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>204</td>
</tr>
<tr>
<td>AR 220</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>60</td>
<td>275</td>
<td>20</td>
</tr>
<tr>
<td>FL190-FL220</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>AR 315</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>60</td>
<td>275</td>
<td>300</td>
</tr>
<tr>
<td>FL190-FL210</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>305</td>
</tr>
<tr>
<td>AR 328</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>60</td>
<td>275</td>
<td>50</td>
</tr>
<tr>
<td>FL180-FL230</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>AR 455</td>
<td>KC-135</td>
<td>KC-46A</td>
<td>60</td>
<td>275</td>
<td>100</td>
</tr>
<tr>
<td>FL250-FL270</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>101</td>
</tr>
</tbody>
</table>

Notes: 1. This table only shows KC-135 and KC-46A aircraft that are or would be flown by the 121 ARW in this airspace. Additional aircraft flown by other units that use this airspace are not shown.
2. MOA Floor is 6,000 feet MSL but no refueling occurs below 10,000 feet MSL.
3. KIAS = knots indicated airspeed; MOA = military operations area; ATCAA = Air Traffic Control Assigned Airspace; MSL = mean sea level; FL = Flight Level.

Source: 121 ARW 2013b.

2.3.5.6 Construction Required

Under Alternative #5, 12 KC-46A PAA aircraft would be beddown at the 121 ARW installation at Rickenbacker ANGS; the 121 ARW would also implement minor construction projects for that conversion (Table 2.3-29). The proposed construction projects would comply with standards set forth in ANG Handbook 32-1084, Facility Space Standards (November 2012). AT/FP requirements would also be addressed to the extent practicable. Proposed facilities would be sited approximately as shown in Figure 2.3-10. The precise layout and design of proposed facilities is in the early planning stages, and therefore, exact locations and layouts are not finalized. Should locations and final layout of the facilities differ substantially from those anticipated and depicted herein, further environmental analysis would be required. Each of these projects is described in more detail in the following sections.

Implementation of the KC-46A aircraft beddown would require the 121 ARW to ensure their installation has properly sized and adequately configured facilities to support 12 KC-46A aircraft. Although the Rickenbacker ANGS location was deemed to have an acceptable level of facilities to support this beddown, and has facilities that currently meet the majority of the requirements laid out in Section 2.1.2.2, there remain some functional areas that require
modification. Proposed construction includes additions and renovations to Hangar 885, an addition to Hangar 883, internal renovations of Hangar 888, modifications to the existing ramp and taxiway, and addition and demolition of hydrants and fuel lines on the parking apron.

The projects described below would incorporate LEED and sustainable development concepts, so as to achieve optimum resource efficiency, constructability, sustainability, and energy conservation, while minimizing adverse impacts to the built and natural environments through all phases of their life cycle. This may result in primary facility costs exceeding DoD costing standards, but the initial investment in higher acquisition cost would be rewarded with lower life cycle costs. This is consistent with the requirements of the Energy Policy Act of 2005, 10 USC 2802, EO 13423, and other applicable laws and EOs.

Table 2.3-29. Proposed 121 ARW Construction Projects at Rickenbacker IAP

<table>
<thead>
<tr>
<th>Project Description</th>
<th>Total New Construction Footprint (SF)</th>
<th>New Impervious Surface (SF)</th>
<th>Estimated Year of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project #1 – Addition and Modifications to Hangar 885</td>
<td></td>
<td></td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would involve a 4,000 SF addition to the existing Maintenance Hangar 885 in order to provide an adequately sized hangar for the new KC-46A aircraft, and modification of existing spaces to address changes in the Life Safety code. The Weapons System Trainer and the Boom Operator Trainer would also be installed within this facility.</td>
<td>4,000</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Project #2 – Addition to Hangar 883</td>
<td></td>
<td></td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would involve a 17,290 SF addition to the existing Fuel Cell Hangar 883 in order to provide an adequately sized hangar for the new KC-46A aircraft.</td>
<td>17,290</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Project #3 – Internal Renovation to Hangar 888</td>
<td></td>
<td></td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would include internal renovations only in order to provide sufficient space to house the KC-46A Fuselage Trainer.</td>
<td>0</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Project #4 – Modifications to Existing Parking Ramp and Taxilane</td>
<td></td>
<td></td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would include the renovation of 338,877 SF of concrete to the existing parking ramp and the taxilane that leads to the hangars from the parking ramp, as well as the end of this same parking ramp.</td>
<td>338,877</td>
<td>14,660</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Project #5 – New Hydrants and Fuel Lines and Demolition of Existing Hydrants</td>
<td></td>
<td></td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would include the addition of seven new fuel hydrants. New fuel lines would be added to two of these hydrants, while five would be re-piped from the existing spurs. In addition, demolition of seven hydrants would occur. Approximately 8,163 SF of disturbance would occur as a result of the new hydrants and fuel lines, while an additional 1,206 SF of disturbance would occur as a result of the demolition of existing hydrants and fuel lines.</td>
<td>8,163</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Total</td>
<td>368,330</td>
<td>14,660</td>
<td></td>
</tr>
</tbody>
</table>

Notes: SF = square foot; FY = fiscal year
Figure 2.3-10. Construction Associated with Alternative #5, Rickenbacker ANGS
Addition and Modifications to Hangar 885

A minimum of one Maintenance Hangar is required to support the maintenance and operations of KC-46A. Hangars provide an environmentally controlled area to perform maintenance. The hangar bays require enough space to use the support equipment such as stands and carts to perform maintenance functions. The hangars will house the maintenance shops, tool cribs, and personnel. The KC-46A is a military derivative of a commercial Boeing 767 aircraft and has a slightly larger footprint than the KC-135. Therefore, a 4,000 SF addition to Hangar 885 would need to be added in order to accommodate the larger aircraft inside the maintenance hangar. Interior modifications of Hangar 885 are required to address changes to Life Safety Codes.

Addition to Hangar 883

A minimum of one Fuel Systems Maintenance Hangar is required to support the maintenance and operations of KC-46A. The Fuel Systems Maintenance Hangar provides space for covered aircraft maintenance, shop, and administrative functions, and contains utilities and safety systems required to perform fuel systems maintenance to include pressure checks and inspections. Aircraft hangar space is required for on-aircraft open fuel cell maintenance. The KC-46A is a military derivative of a commercial Boeing 767 aircraft and has a slightly larger footprint than the KC-135. Therefore, a 17,290 SF addition to Hangar 885 would need to be added in order to accommodate the larger aircraft inside the maintenance hangar.

Internal Renovations to Hangar 888

Internal renovations to Hangar 888 would be made in order to house the KC-46A Fuselage Trainer.
Modifications to Existing Parking Ramp

The proposed beddown of 12 PAA KC-46A aircraft requires a minimum of 8 KC-46A parking spots with a fuel hydrant at each location. The correct pavement thickness and strength of the parking ramps and taxiways is also important to avoid damage to the KC-46A and/or to the airfield pavement. During landing, the aircraft is light on fuel and the weight is transferred from the wings to the landing gear as the nose landing gear touches down and the aircraft decelerates. During takeoff the aircraft is heavy, but as the aircraft accelerates the weight is gradually transferred from the wheels to the wings. Thus, the majority of the damage to the pavement occurs during loading and taxiing prior to departure. Additional concrete would need to be added to the parking ramp and taxilane at Rickenbacker IAP in order to satisfy the thickness and strength requirements for the KC-46A aircraft. In addition, the taxilanes would need to be wide enough to support the turning radii of the KC-46A. Therefore, under Alternative #5, the renovation of 338,877 SF of concrete would be added to the existing parking ramp and the taxilane that leads to the hangars from the parking ramp. Following the construction, there would be an increase of approximately 14,660 SF of impervious surface as a result of this project.

New Hydrants and Fuel Lines and Demolition of Existing Hydrants

As stated above, the proposed beddown of 12 PAA KC-46A aircraft requires a minimum of 8 KC-46A parking spots with a fuel hydrant at each location. A fuel hydrant system provides all the equipment and controls to provide clean fuel to fueling points in the aircraft parking apron. The system reduces the amount of physical movement of fuel around an airfield. Under Alternative #5, seven new fuel hydrants would be added to the existing parking ramp. New fuel lines will be added to two of these, while five will be re-piped from the existing spurs. In addition, demolition of seven hydrants would occur. Approximately 8,163 SF of disturbance would occur as a result of the new hydrants and fuel lines, while an additional 1,206 SF of disturbance would occur as a result of the demolition of existing hydrants and fuel lines. Approximately 1,198 SF of the total disturbance occurring would be temporary disturbance occurring on grassland areas; however, this area would remain a pervious surface following construction.

2.3.5.7 Personnel Changes

The 121 ARW currently is authorized 1,497 personnel. Under Alternative #5, the KC-46A mission would add an additional 197 military positions to the authorized manning requirement.
(approximately a 13 percent increase in total personnel). Changes to authorized personnel under this alternative are shown in Table 2.3-30.

Table 2.3-30. Comparison of Currently Authorized and Proposed 121 ARW Personnel

<table>
<thead>
<tr>
<th>Personnel</th>
<th>Authorized</th>
<th>Proposed</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Associate (USAF)</td>
<td>0</td>
<td>199</td>
<td>199</td>
</tr>
<tr>
<td>Active Guard and Reserve</td>
<td>119</td>
<td>119</td>
<td>0</td>
</tr>
<tr>
<td>Dual Status Technician (Guard civilians, federal)</td>
<td>323</td>
<td>336</td>
<td>13</td>
</tr>
<tr>
<td>Non-Dual Status (DoD civilians, Air Traffic Control)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Subtotal</td>
<td>442</td>
<td>654</td>
<td>212</td>
</tr>
<tr>
<td>Part Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drill Status Guardsmen</td>
<td>1,055</td>
<td>1,040</td>
<td>-15</td>
</tr>
<tr>
<td>Total Personnel Assignments</td>
<td>1,497</td>
<td>1,694</td>
<td>197</td>
</tr>
<tr>
<td>Total Personnel On Base</td>
<td>1,174</td>
<td>1,358</td>
<td>184</td>
</tr>
</tbody>
</table>

Note: 1. Total personnel on base is the sum of all categories minus the number of people with two assignments.

2.4 NO ACTION ALTERNATIVE

The CEQ regulation 40 CFR § 1502.14(d) specifically requires analysis of the “No Action” alternative in all NEPA documents. Under the No Action Alternative, the proposed aircraft beddown would not occur, and the NGB would not implement the components described above under the five Action Alternatives. There would be no change in based aircraft; use of the airfield at the proposed locations; or use of Special Use Airspace (SUA), construction, or personnel assigned to the KC-46A aircraft squadron. Under the No Action Alternative, the NGB would continue to conduct their current mission using the existing KC-135 aircraft with multiple configurations and crews that are not trained to accomplish every mission. This lack of standardized equipment and training throughout the fleet would continue to negatively impact the ability for KC-135 aircrews to support, on a large scale, multi-role missions or exploit new tactics and procedures. The continued use of the KC-135 aircraft would not meet the identified needs of the NGB or the USAF; however, this alternative is carried forward for analysis in this EIS per CEQ regulations, and as a baseline from which to compare the potential impacts of the Proposed Action and alternatives.

2.5 IDENTIFICATION OF PREFERRED ALTERNATIVE

The USAF has identified Pease ANGS as the preferred alternative for the MOB 2 KC-46A beddown. The USAF selected Pease ANGS based on an operational analysis, results of site surveys, and military judgment factors.

2.6 SUMMARY OF ANTICIPATED IMPACTS AMONG ALTERNATIVES

Comparing and differentiating among alternatives comprises a fundamental premise of NEPA. A summary of each alternative, including the No Action Alternative, is presented in
Table 2.6-1, which can then be used to compare the anticipated impacts of each alternative. A summary and comparison of the anticipated impacts associated with implementation of each alternative for this action is presented in Table 2.6-2.
Table 2.6-1. Summary of Alternatives (Current/Proposed)

<table>
<thead>
<tr>
<th>Alternative</th>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Refueler Aircraft (PAA)</td>
<td>12 / 12</td>
<td>8 / 12</td>
<td>8 / 12</td>
<td>16 / 12</td>
<td>18 / 12</td>
<td>Same as current</td>
</tr>
<tr>
<td>ARW Refueler Flying Hours</td>
<td>4,868 / 8,040</td>
<td>3,687 / 8,040</td>
<td>6,219 / 8,040</td>
<td>6,016 / 8,040</td>
<td>7,215 / 8,040</td>
<td>Same as current</td>
</tr>
<tr>
<td>Annual Sorties</td>
<td>1,478 / 2,010</td>
<td>1,112 / 2,010</td>
<td>1,382 / 2,010</td>
<td>1,569 / 2,010</td>
<td>2,014 / 2,010</td>
<td>Same as current</td>
</tr>
<tr>
<td>% Home-Station Operations</td>
<td>64% / 64%</td>
<td>75% / 75%</td>
<td>44% / 44%</td>
<td>59% / 59%</td>
<td>64% / 64%</td>
<td>Same as current</td>
</tr>
<tr>
<td>Home-Station Sorties</td>
<td>946 / 1,286</td>
<td>834 / 1,508</td>
<td>614 / 884</td>
<td>926 / 1,186</td>
<td>1,289 / 1,286</td>
<td>Same as current</td>
</tr>
<tr>
<td>Annual Airfield Operations</td>
<td>10,452 / 14,562</td>
<td>8,340 / 17,608</td>
<td>6,140 / 8,840</td>
<td>6,943 / 9,226</td>
<td>6,445 / 6,857</td>
<td>Same as current</td>
</tr>
<tr>
<td>Home-Station -- ANG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Actual Airfield Operations (including ANG) based on 2012 FAA/Tower reports</td>
<td>24,630 / 28,740</td>
<td>62,686 / 71,875</td>
<td>37,410 / 40,110</td>
<td>139,217 / 141,500</td>
<td>39,436 / 39,848</td>
<td>Same as current</td>
</tr>
<tr>
<td>Total FAR Part 150 Approved Operations (including ANG)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>321,436¹ / 317,602</td>
<td>67,160² / 60,877</td>
<td>Same as current</td>
</tr>
<tr>
<td>Construction -- new</td>
<td>Hangar modifications; new fuel hydrants; new simulator building; ramp/taxiway modifications</td>
<td>Hangar modifications; building additions; new fuel hydrants; ramp/taxiway modifications</td>
<td>Hangar modifications; new fuel hydrants; ramp/taxiway modifications</td>
<td>Hangar modifications; new fuel hydrants; ramp/taxiway modifications</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Construction -- renovations</td>
<td>Internal building renovations</td>
<td>Internal hangar renovations</td>
<td>Internal building renovations</td>
<td>Internal hangar renovations</td>
<td>Internal hangar renovations</td>
<td>None</td>
</tr>
<tr>
<td>Proposed Personnel Change (ANG and active duty)</td>
<td>+194</td>
<td>+287</td>
<td>+171</td>
<td>+59</td>
<td>+197</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes: 1. 2006 Part 150 Study data
2. 2007 Part 150 Study data
ANGS = Air National Guard Station; JB MDL = Joint Base McGuire-Dix-Lakehurst; PAA = Primary Aerospace Vehicles Authorized; ARW = Air Refueling Wing; ANG = Air National Guard; FAR = Federal Aviation Regulations
Table 2.6-2. Summary of Impacts

<table>
<thead>
<tr>
<th></th>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airfield operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Each of the five installations would retain the KC-135 aircraft and would continue to fly the aircraft in the same manner and with approximately the same number of airfield operations as they currently do. The noise environment at each of the five alternative airfields would continue to be managed through their existing AICUZ or FAR Part 150 airfield compatibility programs. There would be no additional Noise impacts at any of the alternative installations under the No Action Alternative.</td>
</tr>
<tr>
<td>would increase by</td>
<td>4,110</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(39 percent increase</td>
<td>in 190 ARW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>operations, 17</td>
<td>operations)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acreage within the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65 dB DNL (and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>greater) noise contour would decrease by 41 acres. Impacts from noise would be negligible.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>would increase by</td>
<td>9,268</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(111 percent increase</td>
<td>in 108</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WG operations, 15</td>
<td>operations)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acreage within the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65 dB DNL (and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>greater) noise contour would increase by 1,831 acres. Impacts from noise would be negligible.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>would increase by</td>
<td>2,700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(44 percent increase</td>
<td>in 157 ARW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>operations, 7 percent</td>
<td>operations)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acreage within the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65 dB DNL (and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>greater) noise contour would increase by 135 acres. Impacts from noise would be negligible.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>would decrease by</td>
<td>3,834</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(29 percent decrease</td>
<td>from the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>currently published baseline FAR Part 150 Noise Compatibility Program [2006]; and a 2 percent increase in actual 2012 airfield operations).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acreage within the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65 dB DNL (and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>greater) noise contour would decrease by 79 acres. Impacts from noise would be negligible.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>would decrease by</td>
<td>6,283</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(48 percent decrease</td>
<td>from the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>currently published baseline FAR Part 150 Noise Compatibility Program [2007]; and a 1 percent increase in actual 2012 airfield operations).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acreage within the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65 dB DNL (and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>greater) noise contour would decrease by 99 acres. Impacts from noise would be negligible.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2.6-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Air Quality</th>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forbes ANGS</td>
<td>The 108 WG installation is in a nonattainment area for O3 (marginal nonattainment) and maintenance area for PM2.5 and CO, and is therefore subject to de minimis thresholds. Impacts from proposed operational emissions would be less than significant for all criteria pollutants. Impacts from construction emissions and operational HAP emissions are negligible.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pease ANGS</td>
<td>The Pease ANGS installation is in a maintenance area for O3, and is therefore subject to de minimis thresholds. Impacts from proposed operational emissions would be less than significant for all criteria pollutants. Impacts from construction emissions and operational HAP emissions are negligible.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pittsburgh ANGS</td>
<td>The Pittsburgh ANGS is located within a non-attainment area for PM2.5, a moderate nonattainment area for the 1997 8-hour O3 standard, and is classified as a marginal nonattainment area for the 2008 8-hour O3 standard, according to 40 CFR 81.339. The Pittsburgh ANGS is therefore subject to de minimis thresholds. Impacts from proposed operational emissions would be less than significant for all criteria pollutants. Impacts from construction emissions and operational HAP emissions are negligible.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rickenbacker ANGS</td>
<td>The Rickenbacker ANGS is located in a nonattainment area for the O3 and PM2.5 NAAQS. While there are increases in operational criteria pollutant emissions, they are below the PSD/de minimis thresholds for all pollutants and are not significant. Impacts from construction emissions and operational HAP emissions are negligible.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Air Quality at each alternative airfield would remain as it currently is. Each of the five installations would retain the KC-135 aircraft and would continue to fly the aircraft in the same manner and with approximately the same number of airfield operations as they currently do. Emissions at each of the alternative installations would continue to be in compliance with their respective SIPs. There would be no additional impacts to Air Quality at each alternative installation under the No Action Alternative.
Table 2.6-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>There would be a 39 percent increase in actual 190 ARW airfield operations (17 percent increase in total airfield operations) at Forbes Field Airport with commensurate increase in mishap and BASH potential.</td>
<td>There would be a 111 percent increase in actual 108 WG airfield operations (15 percent increase in total airfield operations) at JB MDL with a commensurate increase in mishap and BASH potential.</td>
<td>There would be a 44 percent increase in actual 157 ARW airfield operations (7 percent increase in total airfield operations) at Portsmouth IAP with a commensurate increase in mishap and BASH potential.</td>
<td>There would be a 33 percent increase in actual 2012 171 ARW airfield operations (2 percent increase in total airfield operations) at Pittsburgh IAP with a commensurate increase in mishap and BASH potential.</td>
<td>There would be a 6 percent increase over the actual 2012 121 ARW airfield operations (1 percent increase in total airfield operations) at Rickenbacker IAP with a commensurate increase in mishap and BASH potential.</td>
<td>Both ground and flight safety at each alternative airfield would remain as they currently are. Each of the five installations would retain the KC-135 aircraft and would continue to fly the aircraft in the same manner and with approximately the same number of airfield operations as they currently do. There would be no additional impacts to Safety under the No Action Alternative.</td>
</tr>
<tr>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction activities would involve no unusual or extraordinary techniques. During construction, standard construction safety procedures would be employed, and strict adherence to all applicable standard industrial safety requirements and procedures would further minimize the relatively low risk associated with these construction activities. Impacts to safety would be expected to be negligible.</td>
<td>Construction activities would involve no unusual or extraordinary techniques. During construction, standard construction safety procedures would be employed, and strict adherence to all applicable standard industrial safety requirements and procedures would further minimize the relatively low risk associated with these construction activities. Impacts to safety would be expected to be negligible.</td>
<td>Construction activities would involve no unusual or extraordinary techniques. During construction, standard construction safety procedures would be employed, and strict adherence to all applicable standard industrial safety requirements and procedures would further minimize the relatively low risk associated with these construction activities. Impacts to safety would be expected to be negligible.</td>
<td>Construction activities would involve no unusual or extraordinary techniques. During construction, standard construction safety procedures would be employed, and strict adherence to all applicable standard industrial safety requirements and procedures would further minimize the relatively low risk associated with these construction activities. Impacts to safety would be expected to be negligible.</td>
<td>Construction activities would involve no unusual or extraordinary techniques. During construction, standard construction safety procedures would be employed, and strict adherence to all applicable standard industrial safety requirements and procedures would further minimize the relatively low risk associated with these construction activities. Impacts to safety would be expected to be negligible.</td>
<td>Construction activities would involve no unusual or extraordinary techniques. During construction, standard construction safety procedures would be employed, and strict adherence to all applicable standard industrial safety requirements and procedures would further minimize the relatively low risk associated with these construction activities. Impacts to safety would be expected to be negligible.</td>
</tr>
<tr>
<td>Soils and Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>There would be approximately 5.9 acres of temporary soil disturbance and no new impervious surface as a result of the proposed construction.</td>
<td>There would be approximately 4.7 acres of temporary soil disturbance and 2.4 acres of new impervious surface as a result of the proposed construction.</td>
<td>There would be approximately 3.0 acres of temporary soil disturbance and 0.5 acres of new impervious surface as a result of the proposed construction.</td>
<td>There would be approximately 4.3 acres of temporary soil disturbance and 2.0 acres of new impervious surface as a result of the proposed construction.</td>
<td>There would be approximately 8.5 acres of temporary soil disturbance and 0.3 acres of new impervious surface as a result of the proposed construction.</td>
<td>Soils and Water Resources at each alternative airfield would remain as they currently are. There would be no additional impacts to Soils and Water Resources as a result of the No Action alternative.</td>
</tr>
<tr>
<td>To minimize potential impacts associated with erosion, runoff, and sedimentation, standard construction practices would be implemented. In addition, as the construction is for national defense purposes and the surrounding land is already in urban development, the Farmland Protection Policy Act does not apply to this alternative. Therefore, impacts to soil and water resources would be negligible.</td>
<td>To minimize potential impacts associated with erosion, runoff, and sedimentation, standard construction practices would be implemented. Proposed construction would not impact prime farmlands; therefore, the Farmland Protection Policy Act does not apply to this alternative. As a result, impacts to soil and water resources would be negligible.</td>
<td>To minimize potential impacts associated with erosion, runoff, and sedimentation, standard construction practices would be implemented. Proposed construction would not impact prime farmlands; therefore, the Farmland Protection Policy Act does not apply to this alternative. As a result, impacts to soil and water resources would be negligible.</td>
<td>To minimize potential impacts associated with erosion, runoff, and sedimentation, standard construction practices would be implemented. Proposed construction would not impact prime farmlands; therefore, the Farmland Protection Policy Act does not apply to this alternative. As a result, impacts to soil and water resources would be negligible.</td>
<td>To minimize potential impacts associated with erosion, runoff, and sedimentation, standard construction practices would be implemented. Proposed construction would not impact prime farmlands; therefore, the Farmland Protection Policy Act does not apply to this alternative. As a result, impacts to soil and water resources would be negligible.</td>
<td>To minimize potential impacts associated with erosion, runoff, and sedimentation, standard construction practices would be implemented. Proposed construction would not impact prime farmlands; therefore, the Farmland Protection Policy Act does not apply to this alternative. As a result, impacts to soil and water resources would be negligible.</td>
</tr>
</tbody>
</table>
Table 2.6-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Biological Resources</th>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impacts to vegetation would be minor. No impacts to wetlands. Impacts to wildlife species from operational noise would be expected to be minor due to the slight increase in noise and the temporary nature of construction.</td>
<td>Impacts to vegetation would be minor. No impacts to wetlands. Impacts to wildlife species from operational noise would be expected to be minor due to the slight increase in noise and the temporary nature of construction.</td>
<td>Impacts to vegetation would be minor. No impacts to wetlands. Impacts to wildlife species from operational noise would be expected to be minor due to the slight increase in noise and the temporary nature of construction.</td>
<td>Impacts to vegetation would be minor. No impacts to wetlands. Impacts to wildlife species from operational noise would be expected to be minor due to the slight increase in noise and the temporary nature of construction.</td>
<td>There would be no change to Biological Resources under this alternative. There would be no additional impacts to Biological Resources as a result of the No Action Alternative.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impacts to vegetation would be minor. No impacts to wetlands. Impacts to wildlife species from operational noise would be expected to be minor due to the slight increase in noise and the temporary nature of construction. Impacts to state listed species would be minor. No federally listed species or critical habitat is known to occur on McGuire Field. Six state listed species are known to occur on McGuire Field. Therefore, there would be no impacts to state listed species.</td>
<td>Impacts to vegetation would be minor. No impacts to wetlands. Impacts to wildlife species from operational noise would be expected to be minor due to the slight increase in noise and the temporary nature of construction.</td>
<td>Impacts to vegetation would be minor. No impacts to wetlands. Impacts to wildlife species from operational noise would be expected to be minor due to the slight increase in noise and the temporary nature of construction.</td>
<td>Impacts to vegetation would be minor. No impacts to wetlands. Impacts to wildlife species from operational noise would be expected to be minor due to the slight increase in noise and the temporary nature of construction.</td>
<td>Impacts to state listed species would be minor. No federally listed species or critical habitat is known to occur on Pittsburgh IAP; therefore, there would be no impacts to state listed species.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impacts to vegetation would be minor. No impacts to wetlands. Impacts to wildlife species from operational noise would be expected to be minor due to the slight increase in noise and the temporary nature of construction. 44 percent increase in 157 ARW (7 percent increase in total) airfield operations may result in a slight increased opportunity for bird/wildlife aircraft strikes to occur, including those with migratory birds. Impacts to state listed species would be minor. No federally listed species or critical habitat is known to occur on Rickenbacker IAP; therefore, there would be no impacts to state listed species.</td>
<td>Impacts to vegetation would be minor. No impacts to wetlands. Impacts to wildlife species from operational noise would be expected to be minor due to the slight increase in noise and the temporary nature of construction.</td>
<td>Impacts to vegetation would be minor. No impacts to wetlands. Impacts to wildlife species from operational noise would be expected to be minor due to the slight increase in noise and the temporary nature of construction.</td>
<td>Impacts to vegetation would be minor. No impacts to wetlands. Impacts to wildlife species from operational noise would be expected to be minor due to the slight increase in noise and the temporary nature of construction.</td>
<td>Impacts to state listed species would be minor. No federally listed species or critical habitat is known to occur on Rickenbacker IAP; therefore, there would be no impacts to state listed species.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS

Chapter 2 – Description of the Proposed Action and Alternatives 2-61
Table 2.6-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultural Resources</td>
<td>Construction activities associated with this alternative would be limited to the developed areas of the installation, primarily in the areas of the aircraft hangars and airfield pavements. Minor interior modifications to Building 679 would not affect the NRHP-eligibility of the building. The Kansas SHPO has concurred with these findings. The installation has been intensively surveyed and no known traditional resources are known to occur. Two responses have been received from the Kaw Nation and the Wichita and Affiliated Tribes stating that they have no objection to the Proposed Action. Additional efforts were made to contact non-responsive tribes without success. While the NGB and the USAF values its relationship with all tribes and will continue to consult on other planning efforts.</td>
<td>Construction activities associated with this alternative would be primarily limited to the developed areas of the installation in the areas of the aircraft hangars and airfield pavements. A small amount of construction (0.15 acre) would occur in forested area near this developed area. Based on previous archaeological surveys at McGuire Field, the area of proposed construction does not contain any known NRHP-eligible sites or traditional resources. Construction activities associated with this alternative would be limited to the developed areas of the installation, primarily in the areas of the aircraft hangars and airfield pavements. The New Hampshire SHPO has concurred with these findings. The Penobscot Nation is the only federally-recognized tribal entity affiliated with Pease ANGS, and has responded stating that they have no issues with the Proposed Action. No impacts to cultural resources are expected to occur.</td>
<td>Based on previous archaeological surveys on the installation, the area of proposed construction does not contain any known NRHP-eligible sites or traditional resources.</td>
<td>The installation contains no known traditional resources. Given the extensive development on the installation, it is unlikely that there are traditional resources located at the Pittsburgh ANGS. Construction activities associated with this alternative are limited to the developed areas of the installation, primarily in the areas of the aircraft hangars and airfield pavements. The installation has been intensively surveyed for cultural resources. Correspondence has been received from all tribes consulted including the Seneca Nation of Indians, the Cayuga Nation of New York, the Tonowanda Band of Seneca, Tuscarora Nation of New York, and the Onondaga Nation of New York stating that they have no objection to the Proposed Action.</td>
<td>Construction activities at Rickenbacker ANGS would be limited to the developed areas of the installation, primarily in the areas of the aircraft hangars and airfield pavements. None of the proposed facility construction/renovations would occur at any of the installations, and thus, there would be no potential impacts to facilities that are eligible for listing on the NRHP. There would be no surface disturbance from construction activities, and thus no potential to impact unknown archaeological resources. There would be no additional impacts to Cultural Resources as a result of the No Action Alternative.</td>
</tr>
</tbody>
</table>

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS
Chapter 2 – Description of the Proposed Action and Alternatives
or matters of known or potential interest to tribes, Section 106 consultation on the KC-46A MOB 2 proposed alternative at Forbes ANGS is now complete.

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>affected under the proposed action.</td>
<td></td>
<td></td>
<td></td>
<td>adverse effects to these buildings. Correspondence has been received from the Peoria Tribe of Indians, the Pokagon Band of Potawatomi Indians, the Turtle Mountain Band of Chippewa Indians of North Dakota, the Delaware Nation, and the Shawnee Tribe who indicated that they had no objection to the proposed project. Additional efforts were made to contact non-responsive tribes without success. While the NGB and the USAF values its relationship with all tribes and will continue to consult on other planning efforts or matters of known or potential interest to tribes, Section 106 consultation on the KC-46A MOB 2 proposed alternative at Rickenbacker ANGS is now complete.</td>
<td></td>
</tr>
</tbody>
</table>

Land Use

| Total annual airfield operations would increase by 4,110 (17 percent). | Total annual airfield operations would increase by 9,268 (15 percent). | Total annual airfield operations would increase by 2,700 (44 percent). | Airfield operations would decrease by 3,834 (29 percent decrease) from the currently | The number of airfield operations would decrease by 6,283 (48 percent decrease) from the currently | Land Use at each alternative airfield would remain as it currently is. Each of the five installations would retain the |
Table 2.6-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acreage within the 65 dB DNL (and greater) noise contour would decrease by 41 acres (55 acres off airport-controlled property). Current land use and zoning designations would not change due to the basing of the KC-46A. This alternative would be compatible with current land use and zoning designations and would result in imperceptibly beneficial impacts by reducing the off-airport areas currently exposed to a DNL between 65 dB and 70 dB. Airport Hazard Areas would not be affected.</td>
<td>Acreage within the 65 dB DNL (and greater) noise contour off DoD-controlled property would increase by 419 acres. An additional 8 acres of residential use areas would be exposed to greater than 65 dB DNL. Current land use and zoning designations would not change due to the basing of the KC-46A. This alternative would result in minor adverse impacts due to an increase in off-airport areas (including residential areas) exposed to a DNL between 65 dB and 75 dB. Airport Hazard Areas would not be affected.</td>
<td>Acreage within the 65 dB DNL (and greater) noise contour would increase by 135 acres. Of this increase in acreage, 4 acres would be off airport-controlled property. Current land use and zoning designations would not change due to the basing of the KC-46A. This alternative would result in negligible impacts due to an increase in off-airport areas exposed to a DNL above 65 dB. Airport Hazard Areas would not be affected.</td>
<td>published FAR Part 150 Noise Compatibility Program (2006), and the acreage within the 65 dB DNL (and greater) noise contour would decrease by 79 acres. There would be a decrease of approximately 23 acres within the 65 dB DNL noise contour that are off airport-controlled property. Current land use and zoning designations would not change due to the basing of the KC-46A. This alternative would result in negligible impacts in off-airport areas exposed to a DNL above 65 dB. Airport Hazard Areas would not be affected.</td>
<td>currently published FAR Part 150 Noise Compatibility Program (2007), and the acreage within the 65 dB DNL (and greater) noise contour would decrease by 99 acres. Decrease of 72 acres within the 65 dB DNL noise contour that are off airport-controlled property, resulting in 345 acres off airport-controlled property that lie within the 65 dB contour. Current land use and zoning designations would not change due to the basing of the KC-46A. This alternative would result in negligible impacts in off-airport areas exposed to a DNL above 65 dB. Airport Hazard Areas would not be affected.</td>
<td>KC-135 aircraft and would continue to fly the aircraft in the same manner and with approximately the same number of airfield operations as they currently do. There would be no additional impacts to Land Use under the No Action Alternative at any of the alternative locations.</td>
</tr>
</tbody>
</table>
Table 2.6-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure and Transportation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impacts from this alternative would not be expected since there have been no deficiencies identified with the existing systems, and it is expected that the existing infrastructure is generally adequate to serve the facilities and increased personnel proposed under this alternative. Impacts to infrastructure resulting from construction would be negligible since any interruption of utility services or increased demand on infrastructure would be temporary and infrequent. Impacts to infrastructure would be negligible.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Infrastructure and Transportation at each alternative installation would remain as they currently are. There would be no change to the based personnel at any of the alternative locations. There would be no increase in use of various utilities or roadway systems under this alternative. There would be no additional impacts under the No Action Alternative.</td>
</tr>
</tbody>
</table>
Table 2.6-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous Materials and Waste</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>There would be no expected impact from ERP sites, as the ERP site that overlaps proposed construction is closed. However, if contaminated media were encountered during the course of site preparation or site development, work would cease until 190 ARW Program Managers establish an appropriate course of action for the construction project to ensure that federal and state agency notification requirements are met. Impacts relative to hazardous materials and wastes would be negligible.</td>
<td>One of the ERP Sites, SS-39, overlaps with a portion of the existing fuel hydrants that would be capped, as well as the proposed addition to Hangar 3336. Remedial investigation is on-going with this site. It is recommended that a vapor intrusion analysis/testing is completed prior to construction to investigate any potential concern. If testing indicates a vapor intrusion concern, the installation would implement practices in accordance with site-specific vapor mitigation design considerations. If contaminated media were encountered during the course of site preparation or site development, work would cease until 108 WG Program Managers establish an appropriate course of action for the construction project to ensure that federal and state agency notification requirements are met. Impacts relative to hazardous materials and wastes would be negligible.</td>
<td>There would be no expected impact from ERP sites, as the ERP site that overlaps proposed construction is closed. However, if contaminated media were encountered during the course of site preparation or site development, work would cease until 171 ARW Program Managers establish an appropriate course of action for the construction project to ensure that federal and state agency notification requirements are met. Impacts relative to hazardous materials and wastes would be negligible.</td>
<td>There would be no expected impact from ERP sites, as the ERP site that overlaps proposed construction is closed. However, if contaminated media are encountered during the course of site preparation or site development, work would cease until 121 ARW Program Managers establish an appropriate course of action for the construction project to ensure that federal and state agency notification requirements are met. Impacts relative to hazardous materials and wastes would be negligible.</td>
<td>There would be no expected impact from hazardous Materials and Wastes at each alternative installation would remain as described in the baseline section for each alternative location. The benefit of eliminating ozone depleting substances with the KC-46A would not be realized. The throughput and management of hazardous materials and wastes would not change from baseline conditions. There would be no additional impacts to Hazardous Materials and Wastes under the No Action Alternative.</td>
<td></td>
</tr>
</tbody>
</table>
Table 2.6-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>There would not be an increased risk of hazardous waste releases or exposure from this alternative. The types of hazardous materials needed for maintenance and operation of the KC-46A would be expected to remain similar to those currently used for maintenance and operation of the KC-135 fleet. Any LBP or ACM that may be found in buildings that are scheduled for construction activities would be managed per applicable USAF regulations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Socioeconomics

Impacts to socioeconomics resulting from construction would be beneficial and negligible resulting from construction payrolls and materials purchased. In addition, impacts from proposed operations would be beneficial and minor due to the proposed increase in personnel. Socioeconomics at each alternative installation would remain as described in the baseline section for each alternative. The minor economic benefit of additional based personnel and construction activity would not occur at any of the alternative installations. There would be no additional impacts to Socioeconomics under the No Action Alternative.
Table 2.6-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Justice and the Protection of Children</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>There would be no residential populations, including no minority or low-income populations, and no additional schools located within the vicinity of Forbes Field Airport exposed to a DNL of 65 dB or above.</td>
<td>There would be no residential populations, including no minority or low-income populations. The child development center that is currently under the 65 dB contour would be located under the 70 dB contour. There would be no special health or safety risks to children.</td>
<td>There would be no residential areas within the noise contours. No additional schools would be located within the vicinity of Portsmouth IAP exposed to a DNL of 65 dB or above.</td>
<td>There would be no disproportionate impacts to minority or low-income populations and no special health or safety risks to children.</td>
<td>There would be no disproportionate impacts to minority or low-income populations, and no additional schools located within the vicinity of Pittsburgh IAP exposed to a DNL of 65 dB or above.</td>
<td>Under the No Action Alternative, Environmental Justice and the Protection of Children at each alternative installation would remain as described in the baseline section for each alternative. There were no disproportionate impacts to low-income, minority, or children identified under any of the action alternatives. There would be no additional impacts as a result of the No Action Alternative.</td>
</tr>
</tbody>
</table>

Notes: 190 ARW = 190th Air Refueling Wing; dB = decibel; DNL = Day-Night Average Sound Level; DoD = Department of Defense; 108 WG = 108th Wing; 157 ARW = 157th Air Refueling Wing; FAR = Federal Aviation Regulations; AICUZ = Air Installation Compatible Use Zone; ANGS = Air National Guard Station; PSD = Prevention of Significant Deterioration; HAP = hazardous air pollutant; O₃ = ozone; PM₂·₅ = particulate matter less than or equal to 2.5 microns in diameter; CO = carbon monoxide; NOₓ = oxides of nitrogen; tpy = tons per year; CFR = Code of Federal Regulations; SIP = State Implementation Plan; BASH = Bird/Wildlife Aircraft Strike Hazard; JB MDL = Joint Base McGuire-Dix-Lakehurst; IAP = International Airport; 171 ARW = 171st Air Refueling Wing; 121 ARW = 121st Air Refueling Wing; NRHP = National Register of Historic Places; SHPO = State Historic Preservation Office; ERP = Environmental Restoration Program; LBP = lead-based paint; ACM = asbestos-containing material; USAF = United States Air Force.
2.7 Mitigation

Mitigation measures avoid, minimize, remediate, or compensate for environmental impacts. CEQ regulations (40 CFR 1508.20) define mitigation to include the following:

1. Avoiding the impact altogether by not taking a certain action or parts of an action.
2. Minimizing impacts by limiting the degree or magnitude of the action, and its implementation.
3. Rectifying the impact by repairing, rehabilitating, or restoring the affected environment.
4. Reducing or eliminating the impact over time by preservation and maintenance operations during the life of the action.
5. Compensating for the impact by replacing or providing substitute resources or environments.

Avoiding, minimizing, or reducing potential impacts has been a priority guiding the development of the KC-46A alternatives and the proposed aircraft operations associated with each. Measures to minimize impacts are designed into the alternatives; applied to construction, operation, or maintenance involved in the action; or implemented as compensatory measures.

Depending on which base is eventually selected to host the MOB 2 KC-46A beddown, there are potential mitigation actions that will be required. These mitigation actions would be carried forward in implementing the selected alternative. Listed below are the potential mitigations that could be required at JB MDL and Rickenbacker ANGS. The proponent of the action is responsible for ensuring that mitigations are carried forward. No mitigation actions have been identified for Forbes ANGS, Pease ANGS, and Pittsburgh ANGS.

If JB MDL is selected to host the MOB 2 KC-46A beddown, mitigation for air quality would be required. The 108 WG installation is in a nonattainment area for O₃ (marginal nonattainment), and maintenance area for CO and PM₂.₅, and is therefore subject to de minimis thresholds (see Section 4.2.2 and Appendix F). Impacts from proposed operational emissions would be less than significant for all criteria pollutants, except NOₓ, which would be above the de minimis threshold of 100 tpy. If JB MDL is selected to host the MOB 2 KC-46A beddown, a conformity determination must be completed, demonstrating compliance with the SIP, prior to signature of the ROD.

If Rickenbacker ANGS is selected to host the MOB 2 KC-46A beddown, mitigation for adverse impacts to cultural resources could be required (see Section 4.5.6). Two of the hangars (885 and 888) proposed for additions, modifications, and renovations are eligible to the NRHP. The Ohio SHPO concurred with the eligibility determination. Hangar 885 would have an addition and renovations inside to house the new aircraft and support facilities. Because these renovations
would alter a structure that is considered eligible for the NRHP, the construction would have an adverse effect on a historic property. Modification to Hangar 888 would all be interior; however, they could have an adverse effect to this NRHP-eligible resource. Rickenbacker ANGS and the Ohio SHPO have developed a Programmatic Agreement stating that if Rickenbacker ANGS is selected to host the MOB 2 KC-46A beddown, further consultation would be conducted to minimize and mitigate adverse effects (see Appendix B, Section B3).

Following signature of the ROD, a Mitigation Plan will be prepared in accordance with 32 CFR 989.22(d). The Mitigation Plan will address specific mitigations identified for the selected alternative and agreed to during the environmental impact analysis process.
CHAPTER 3 EXISTING CONDITIONS

This section describes the natural and human environment that would be affected by implementation of the various alternatives described in Chapter 2. In describing the affected environment, a framework for understanding the potential direct, indirect, and cumulative effects of each alternative, including the No Action Alternative is provided.

As directed by guidelines contained in NEPA, CEQ regulations, and 32 CFR 989, *Environmental Impact Analysis Process*, the description of the affected environment focuses only on those resource areas potentially subject to impacts and should be commensurate with the anticipated level of environmental impact.

The affected environment is described for 11 resource topics: Noise, Air Quality, Safety, Soils and Water, Biological Resources, Cultural Resources, Land Use, Infrastructure and Transportation, Hazardous Materials and Waste, Socioeconomics, and Environmental Justice and the Protection of Children. The following sections reference Appendix A, which presents an introduction that defines each of the resources addressed in the section, summarizes applicable laws and regulations that apply to all installations, defines key terms as necessary, and describes the general ROI within which the effects from implementation of the various alternatives are anticipated to occur. The ROI varies from resource to resource, but in general, effects from the proposed activities are expected to be concentrated around each of the alternative installations. A more specific ROI for each installation/resource is described within each Chapter 3 section that follows, as are any local/regional regulations.

3.1 FORBES AIR NATIONAL GUARD STATION

Forbes ANGS, home of the 190 ARW of KS ANG, is located approximately 5 miles south of Topeka in Shawnee County, Kansas. The 190 ARW base is situated on the northwest side of Forbes Field Airport, a municipal airport owned and operated by MTAA.

3.1.1 Noise

To evaluate noise impacts in the vicinity of a military installation located within a commercial airport with a published Federal Aviation Regulations (FAR) Part 150 Airport Noise Compatibility Study, the USAF allows for use of the Federal Aviation Administration’s (FAA’s) Integrated Noise Model (INM) to generate DNL noise contours; however, if the primary noise generator are military aircraft, NOISEMAP may also be used. For this noise analysis, the USAF generated DNL noise files reflecting 2012 airport operations using NOISEMAP, a computer program used to model noise exposure in the vicinity of military airfields. For commercial
airfields, the most current and approved FAR Part 150 noise files were used for the baseline conditions and airfield operations and for noise impacts, these baselines were used for analysis. For other resource areas, the most current 2012 FAA/airport airfield operational data was used. For more detailed information on the noise modeling methods, see Appendix A, Section A.1.2.

3.1.1.1 Baseline Operations

In 1984, the MTAA published a noise study in support of the 1984 Airport Master Plan Update (Johnson 2013) and represents 1982 operational levels (Forbes Field Airport 1984). Due to the age of the data, and because the military aircraft (KC-135 and Army National Guard HH-60’s) are the prominent aircraft based at Forbes Field Airport, the USAF completed a new study to estimate baseline noise exposure using the NOISEMAP computer program. The new study was completed to reflect 2012 airport operations and is used as the baseline for this analysis.

Based on aircraft operations data validated in May 2013, approximately 24,630 total aircraft operations occurred at Forbes Field Airport during the 12-month period ending December 2012 (Forbes ANGS 2013). An aircraft operation is counted each time an aircraft departs from the runway and each time they approach the runway. Table 3.1.1-1 summarizes the frequency of aircraft operations for Forbes Field Airport based on information provided by base staff, flying organizations, and air traffic control personnel. The majority of aircraft traffic includes air cargo, commercial regional jets (air taxi), and larger commercial aircraft and other based military aircraft, along with based ANG KC-135 aircraft. Although the number of aircraft operations at an installation varies from day to day, for Forbes Field Airport, operations were calculated for an average busy day for military aircraft and an average annual day (AAD) for civilian aircraft. Yearly operations were averaged over the number of flying days flown (260 days) for military aircraft and across all 365 days of the year for civilian aircraft. Table 3.1.1-1 reflects a total of approximately 79 total aircraft operations on an AAD (10,452 divided by 260 days plus 14,178 divided by 365 days) flown at Forbes Field Airport. Approximately 8 percent of the total operations at Forbes Field Airport occur during environmental night (10:00 p.m. through 7:00 a.m.).

Table 3.1.1-1. Current Forbes Field Airport Annual Aircraft Operations

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>DEPARTURES</th>
<th>ARRIVALS</th>
<th>TOTAL 1</th>
<th>Grand Total 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night 2</td>
<td>Day</td>
<td>Night 2</td>
</tr>
<tr>
<td>KC-135</td>
<td>4,541</td>
<td>685</td>
<td>4,390</td>
<td>836</td>
</tr>
<tr>
<td>Other Aircraft</td>
<td>6,848</td>
<td>241</td>
<td>6,848</td>
<td>241</td>
</tr>
<tr>
<td>Total</td>
<td>11,389</td>
<td>926</td>
<td>11,238</td>
<td>1,077</td>
</tr>
</tbody>
</table>

Notes: 1. Includes Closed Patterns (which count as two airfield operations).
2. Night – Between 10 p.m. and 7 a.m. for environmental night.
3. Other based military and civilian aircraft and transient aircraft (multiple type aircraft); example aircraft include: L-1011, MD-80, Lear 35, and HH-60.

Using the 2012 baseline data, the 190 ARW KC-135 aircraft flew a total of 10,452 annual airfield operations, or an average of 40 airfield operations a day. Approximately 15 percent of the total KC-135 operations occur during environmental night. Approximately 42 percent of total operations at Forbes Field Airport are accomplished by the 190 ARW KC-135 aircraft.

3.1.1.2 Runway and Flight Profiles

Forbes Field Airport aircraft use straight out departures, straight in approaches, Instrument Flight Rule (IFR) or radar closed patterns, and Visual Flight Rule (VFR) closed patterns as the basic flight patterns for training, local arrival, and departures. Detailed representative arrival, departure, and closed pattern flight tracks are found in Appendix C, Noise.

3.1.1.3 Existing Noise Environment

Noise contours developed for the baseline conditions at Forbes Field Airport are shown in Figure 3.1.1-1. The acreage within each DNL contour on and off Forbes Field Airport property is shown in Table 3.1.1-2 for the baseline condition. Approximately 971 acres are exposed to DNL greater than or equal to 65 dB. Detailed information on off-airport land use that lies within a DNL greater than 65 dB can be found in Section 3.1.7, Land Use.

<table>
<thead>
<tr>
<th>Noise Level (dB)</th>
<th>On-Airport (acres)</th>
<th>Off-Airport (acres)</th>
<th>Total (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>65-70</td>
<td>448</td>
<td>165</td>
<td>613</td>
</tr>
<tr>
<td>70-75</td>
<td>308</td>
<td>0</td>
<td>308</td>
</tr>
<tr>
<td>75-80</td>
<td>50</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>80-85</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Greater than 85</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>806</td>
<td>165</td>
<td>971</td>
</tr>
</tbody>
</table>

Note: dB = decibel
Figure 3.1.1-1. Baseline DNL Noise Contours for Forbes Field Airport
Potential Hearing Loss

There is no property off the Forbes Field Airport that falls within the baseline 80+ dB DNL noise contour; therefore, no potential hearing loss risk is currently associated with these areas.

3.1.1.4 Forbes Field Airport Noise Abatement Procedures

Forbes Field Airport has no published noise abatement procedures. The 117th Air Refueling Squadron (117 ARS) (a squadron of the 190 ARW) has one noise abatement procedure published in their In-Flight Guide (117 ARS 2011) that requires pilots to avoid overflight of a housing area located 2 nautical miles (nm) west of Runway 13. This published procedure minimizes flying activities of the 117 ARS that could adversely affect its neighbors in an effort to reduce noise impacts while maintaining safe operations.

3.1.1.5 Forbes Air National Guard Station Noise Complaint Procedures

Currently, noise complaints are handled through the MTAA. There have been no recent noise complaints (Johnson 2013).

3.1.2 Air Quality

3.1.2.1 Regulatory Setting

Individual states are delegated the responsibility to regulate air quality in order to achieve or maintain air quality in attainment with these standards. The Kansas Department of Health and Environment Bureau of Air is the agency responsible for the regulation of air quality within the state of Kansas. The state of Kansas regulates air quality through the Kansas Air Quality Act, Section 65.3001 through 65.3030 of the Kansas Air Quality Statues, and the Kansas Air Quality Regulations, Section 28, Article 19 of the Kansas Administrative Regulations. The state of Kansas has not adopted separate ambient air quality standards from the NAAQS. The NAAQS are summarized in Table 3.1.2-1.
Table 3.1.2-1. Ambient Air Quality Standards

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>National Standards<sup>a</sup></th>
<th>Primary<sup>b,c</sup></th>
<th>Secondary<sup>b,d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>O<sub>3</sub></td>
<td>8-hour</td>
<td>0.075 ppm (147 µg/m<sup>3</sup>)</td>
<td>Same as primary</td>
<td>—</td>
</tr>
<tr>
<td>O<sub>3</sub></td>
<td>1-hour</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>CO</td>
<td>8-hour</td>
<td>9 ppm (10 mg/m<sup>3</sup>)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>CO</td>
<td>1-hour</td>
<td>35 ppm (40 mg/m<sup>3</sup>)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>NO<sub>2</sub></td>
<td>Annual</td>
<td>0.053 ppm (100 µg/m<sup>3</sup>)</td>
<td>Same as primary</td>
<td>—</td>
</tr>
<tr>
<td>NO<sub>2</sub></td>
<td>1-hour</td>
<td>0.100 ppm (188 µg/m<sup>3</sup>)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>SO<sub>2</sub></td>
<td>24-hour</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>SO<sub>2</sub></td>
<td>3-hour</td>
<td>—</td>
<td>0.5 ppm (1,300 µg/m<sup>3</sup>)</td>
<td>—</td>
</tr>
<tr>
<td>SO<sub>2</sub></td>
<td>1-hour</td>
<td>0.075 ppm (189 µg/m<sup>3</sup>)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>PM<sub>10</sub></td>
<td>Annual</td>
<td>—</td>
<td>—</td>
<td>Same as primary</td>
</tr>
<tr>
<td>PM<sub>2.5</sub></td>
<td>24-hour</td>
<td>150 µg/m<sup>3</sup></td>
<td>Same as primary</td>
<td>—</td>
</tr>
<tr>
<td>PM<sub>2.5</sub></td>
<td>Annual</td>
<td>12 µg/m<sup>3</sup></td>
<td>15 µg/m<sup>3</sup></td>
<td>—</td>
</tr>
<tr>
<td>Pb</td>
<td>Rolling 3-month period</td>
<td>0.15 µg/m<sup>3</sup></td>
<td>Same as primary</td>
<td>—</td>
</tr>
<tr>
<td>Pb</td>
<td>30-Day Average</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Notes:
^a Standards other than the 1-hour ozone, 24-hour PM₁₀, 24-hour PM_{2.5}, and those based on annual averages are not to be exceeded more than once a year. The 8-hour ozone national standard has replaced the 1-hour ozone national standard.
^b Concentrations are expressed first in units in which they were promulgated. Equivalent units given in parenthesis.
^c Primary Standards: The levels of air quality necessary, with an adequate margin of safety to protect the public health. Each state must attain the primary standards no later than 3 years after that state’s implementation plan is approved by the USEPA.
^d Secondary Standards: The levels of air quality necessary to protect the public welfare from any known or anticipated adverse effects of a pollutant.
µg/m³ = micrograms per cubic meter; CO = carbon monoxide; mg/m³ = milligrams per cubic meter; NO₂ = nitrogen dioxide; O₃ = ozone; Pb = lead; PM_{2.5} = particulate matter less than or equal to 2.5 microns in diameter; PM₁₀ = particulate matter less than or equal to 10 microns in diameter; ppm = parts per million; SO₂ = sulfur dioxide

Source: USEPA 2012.

Forbes ANGS, home of the 190 ARW of the KS ANG, is located on Forbes Field Airport, approximately 5 miles south of Topeka in Shawnee County, Kansas. The U.S. Environmental Protection Agency (USEPA) has classified the state of Kansas as an attainment/unclassified area for all criteria pollutants. The Proposed Action is therefore not subject to the requirements of Section 176(c) of the Clean Air Act (CAA), as articulated in the USEPA General Conformity Rule.

The USEPA recently promulgated a more stringent standard for lead, and has redesigned its monitoring program to address lead and identified airports for monitoring because aviation gas
used in piston aircraft still contains lead. The project area is considered attainment/unclassified for lead, and lead is not used in aviation fuel used in the KC-135 or KC-46A aircraft.

3.1.2.2 Climate and Meteorology

The state of Kansas has a continental climate, meaning that it is not influenced by any major bodies of water. Summers are warm with the majority of annual precipitation occurring from April through September. Winters tend to be cold with an occasional mild period and moderate snowfall amounts. Much of the severe weather for which Kansas is often noted is due to weather patterns that bring cold dry air into contact with warm moist air over the state. There are many severe thunderstorms each year with an average of 111 tornadoes per year in the state (High Plains Regional Climate Center 2013).

Annual average temperatures in Topeka range from an average minimum temperature of 43.5 degrees Fahrenheit (°F) to an average maximum temperature of 65.8°F, with a yearly average of 54.6°F (Western Regional Climate Center 2013). January is the coldest month, with average minimum temperatures of 17.6°F. July is the hottest month in the area, with average maximum temperatures reaching 89.7°F. In the Topeka area, average annual precipitation (1948-2012) was 34.77 inches (High Plains Regional Climate Center 2013).

The prevailing wind direction for the state of Kansas is from the south. The average annual wind speed for Topeka is 10.4 miles per hour (High Plains Regional Climate Center 2013).

3.1.2.3 Regional and Local Air Pollutant Sources

The area surrounding Forbes Field Airport is mainly used for agriculture, with some development in the surrounding areas to the north, west, and south. The USEPA’s National Emissions Inventory includes data for the year 2008 for Shawnee County. Table 3.1.2-2 summarizes the regional emissions (stationary, area-wide sources, and mobile) of criteria pollutants and precursor emissions for the affected areas.
Table 3.1.2-2. Regional Emissions for Shawnee County, Kansas

<table>
<thead>
<tr>
<th>EMISSIONS, TONS/YEAR</th>
<th>CO</th>
<th>VOCs</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional Emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stationary Sources</td>
<td>2,143</td>
<td>2,009</td>
<td>3,853</td>
<td>6,036</td>
<td>635</td>
<td>342</td>
</tr>
<tr>
<td>Area-Wide Source</td>
<td>3,866</td>
<td>7,543</td>
<td>410</td>
<td>34</td>
<td>17,149</td>
<td>2,117</td>
</tr>
<tr>
<td>Mobile Sources</td>
<td>31,885</td>
<td>6,840</td>
<td>2,902</td>
<td>77</td>
<td>348</td>
<td>280</td>
</tr>
<tr>
<td>Total</td>
<td>37,894</td>
<td>16,392</td>
<td>7,165</td>
<td>6,147</td>
<td>18,132</td>
<td>2,739</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding. Emissions of Pb are not included because the affected region contains no significant sources of this criteria pollutant. CO = carbon monoxide; NOx = oxides of nitrogen; PM10 = particulate matter less than or equal to 10 microns in diameter; PM2.5 = particulate matter less than or equal to 2.5 microns in diameter; SO2 = sulfur dioxide; VOC = volatile organic compound

Source: USEPA 2008.

3.1.2.4 Baseline Air Quality

Representative background air monitoring data for the 190 ARW for the period 2008-2012 are shown in Table 3.1.2-3. The closest monitoring station to the Forbes Field Airport is located in Topeka, and monitors ozone (O3), particulate matter less than or equal to 10 microns in diameter (PM10), and particulate matter less than or equal to 2.5 microns in diameter (PM2.5). The closest monitoring station to the Forbes Field Airport that monitors carbon monoxide (CO), nitrogen dioxide (NO2), and sulfur dioxide (SO2) is located in Kansas City. Values measured at the Kansas City monitoring station are likely to be conservative because Kansas City is more developed than the Forbes Field Airport area.

As shown in Table 3.1.2-3, some O3 exceedances have been measured in Topeka during the recent 5-year period; however, the area has not been designated as a nonattainment area for O3. One exceedance of the 24-hour PM2.5 standard was measured in 2011; however, that exceedance was attributed to an exceptional event. The 1-hour SO2 standard was exceeded in 2008 and 2010; however, the 99th percentile did not exceed the standard. The data show that the area did not experience violations of all other NAAQS.
Table 3.1.2-3. Ambient Air Monitoring Data for Topeka and Kansas City, Kansas

<table>
<thead>
<tr>
<th>Air Quality Indicator</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone (O₃)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 8-hour value (ppm)</td>
<td>0.068</td>
<td>0.068</td>
<td>0.082</td>
<td>0.084</td>
<td>0.085</td>
</tr>
<tr>
<td>Days above federal standard (0.075 ppm)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Particulate matter less than or equal to 2.5 microns in diameter (PM₂.⁵)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 24-hour value (µg/m³)</td>
<td>26.6</td>
<td>35.6</td>
<td>29.1</td>
<td>40.8</td>
<td>35.2</td>
</tr>
<tr>
<td>Days above federal standard (35 µg/m³)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Annual Average value (µg/m³)</td>
<td>10</td>
<td>8.7</td>
<td>9</td>
<td>9.9</td>
<td>8.6</td>
</tr>
<tr>
<td>Particulate matter less than or equal to 10 microns in diameter (PM₁₀)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 24-hour value (µg/m³)</td>
<td>51</td>
<td>78</td>
<td>72</td>
<td>76</td>
<td>67</td>
</tr>
<tr>
<td>Days above federal standard (150 µg/m³)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 1-hour value (ppm)</td>
<td>2.2</td>
<td>2.4</td>
<td>2.1</td>
<td>2.3</td>
<td>3.3</td>
</tr>
<tr>
<td>Days above federal standard (9 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peak 8-hour value (ppm)</td>
<td>1.8</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>2.0</td>
</tr>
<tr>
<td>Days above federal standard (35 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO₂)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 1-hour value (ppm)</td>
<td>0.066</td>
<td>0.062</td>
<td>0.077</td>
<td>0.061</td>
<td>0.064</td>
</tr>
<tr>
<td>98th Percentile (ppm)</td>
<td>0.062</td>
<td>0.045</td>
<td>0.054</td>
<td>0.053</td>
<td>0.052</td>
</tr>
<tr>
<td>Days above federal standard (0.100 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO₂)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 1-hour value (ppm)</td>
<td>0.090</td>
<td>0.050</td>
<td>0.081</td>
<td>0.065</td>
<td>0.071</td>
</tr>
<tr>
<td>99th Percentile (ppm)</td>
<td>0.043</td>
<td>0.043</td>
<td>0.049</td>
<td>0.048</td>
<td>0.050</td>
</tr>
<tr>
<td>Days above federal standard (0.075 ppm)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peak 24-hour value (ppm)</td>
<td>0.017</td>
<td>0.015</td>
<td>0.013</td>
<td>0.012</td>
<td>0.013</td>
</tr>
</tbody>
</table>

Notes: 1. The federal 1-hour SO₂ standard was adopted in 2010.
 Numbers may not add precisely due to rounding.
 µg/m³ = micrograms per cubic meter; NA = data not available; ppm = parts per million

Source: USEPA 2013a.

3.1.2.5 190th Air Refueling Wing Emissions

The 190 ARW currently flies and maintains 12 KC-135 refueler aircraft to support its air refueling mission. The primary support operations performed at the 190 ARW include aircraft fueling, aircraft deicing, aircraft maintenance, aerospace support equipment maintenance, ground vehicle maintenance, fueling of ground vehicles, and facilities maintenance. These operations involve activities such as corrosion control, non-destructive inspection, fuel cell maintenance, engine maintenance, hydraulics, and wheel and tire maintenance.

Emissions for the 190 ARW have been quantified in the Final 2006 Air Emissions Inventory (190 ARW 2008a). The inventory evaluated the emissions from the 190 ARW to determine its status under the Title V Federal Operating Permits program. Based on the major source thresholds for the area, the major source thresholds are 100 tons per year (tpy) for all criteria pollutants and less than 10 tpy of any single hazardous air pollutant (HAP) or 25 tpy of any combination of HAPs. The 190 ARW does not currently hold a Federal Operating Permit as its emissions are below the major source thresholds, and is not required to hold Class I or Class II
Operating Permits under the Title V permitting requirements or the requirements of the Kansas Department of Health and Environment.

Stationary source emissions at the 190 ARW include emissions from natural gas-fired heating units, waste oil boilers, diesel generators, and open detonation of ordnance. Mobile source emissions include emissions from aircraft operations (take-offs and landings), AGE, ground vehicle operations, and maintenance aircraft operations performed with the engines still mounted on the aircraft (engine run-ups and trim checks). Emissions from aircraft operations at the 190 ARW installation considered all based and transient aircraft. Aircraft emissions were calculated for all flight activities below the default mixing height (3,000 feet above ground level [AGL]). Baseline emissions also include stationary sources and emissions associated with vehicle trips associated with existing personnel and dependents. These emissions, combined with those from the other mobile sources, account for the majority of the emissions from the installation.

To provide a baseline for evaluating the net emissions increases/decreases associated with Alternative #1, emissions from the KC-135 aircraft operations, aircraft refueling, KC-135 engine testing, KC-135-related AGE, and privately owned vehicles (POVs) associated with KC-135 flight operations were evaluated. Emissions from the KC-135 aircraft operations were calculated based on 2012 aircraft operations identified in Table 2.3-1, utilizing site-specific flight profiles to calculate aircraft operations below a default mixing height of 3,000 feet AGL. A discussion of the methodology for quantifying emissions is provided in Appendix A, Section A.2.3. Emissions for the baseline emissions associated with baseline operations of the KC-135 aircraft are provided in Table 3.1.2-4.

Table 3.1.2-4. 190 ARW Baseline Emissions at Forbes ANGS

<table>
<thead>
<tr>
<th>Emission Source</th>
<th>VOCs</th>
<th>CO</th>
<th>NOX</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 Baseline Aircraft Operations</td>
<td>3.63</td>
<td>54.09</td>
<td>99.23</td>
<td>8.48</td>
<td>0.45</td>
<td>0.45</td>
<td>23,585</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2,446</td>
</tr>
<tr>
<td>Engine Testing</td>
<td>0.17</td>
<td>2.52</td>
<td>0.69</td>
<td>0.11</td>
<td>0.01</td>
<td>0.01</td>
<td>299</td>
</tr>
<tr>
<td>POVs</td>
<td>1.94</td>
<td>26.38</td>
<td>1.46</td>
<td>0.02</td>
<td>0.06</td>
<td>0.03</td>
<td>993</td>
</tr>
<tr>
<td>Total Baseline Emissions</td>
<td>5.75</td>
<td>83.00</td>
<td>101.39</td>
<td>8.61</td>
<td>0.53</td>
<td>0.49</td>
<td>27,324</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding. CO = carbon monoxide; CO2e = carbon dioxide equivalent; NOX = oxides of nitrogen; PM10 = particulate matter less than or equal to 10 microns in diameter; PM2.5 = particulate matter less than or equal to 2.5 microns in diameter; SO2 = sulfur dioxide; VOC = volatile organic compound; AGE = aerospace ground equipment; POV = privately owned vehicle

Source: 190 ARW 2008a.

3.1.3 Safety

This section provides information on both ground and flight safety. Ground safety includes discussions of fire/crash response capabilities, APZs/Runway Protection Zones (RPZs), explosive safety, and AT/FP. Flight safety includes discussions on flight safety procedures,
aircraft mishaps, bird/wildlife aircraft strike hazards (BASH), and fuel jettison requirements. The affected environment includes the airfield and local airspace surrounding Forbes Field Airport.

3.1.3.1 Ground Safety

Fire/Crash Response

Day-to-day operations and maintenance activities conducted by the 190 ARW are performed in accordance with applicable USAF safety regulations, published USAF Technical Orders, and standards prescribed by Air Force Occupational Safety and Health (AFOSH) requirements. The 190 ARW provides fire, crash, rescue, and structural fire protection for the installation and its aircraft. The 190 ARW has a cooperative response agreement with the local Metropolitan Topeka Airport fire department for mutual aid in fire protection, first responder and lifesaving services, and hazardous materials incident response.

Accident Potential Zone/Runway Protection Zone

Development restrictions associated with RPZs are intended to preclude incompatible land use activities from being established in these areas (see Appendix A, Section A.3, for specific RPZ discussion and Section 3.1.7 for land use compatibilities). The city of Topeka, Kansas utilizes the FAA’s airport land use compatibility guidelines, and as such, the RPZs have allowed development to be compatible with airport operations.

Explosive Safety

The 190 ARW stores, maintains, and uses a small range of munitions required for performance of their mission. Ordnance for the 190 ARW is currently stored in an aboveground storage magazine, with an operating location in a nearby Munitions Inspection Building. Both facilities are located on the north end of the flightline near the engine test cell and have limits of 4,000 pounds and 1,000 pounds of Hazard Division explosives 1.3 and 1.4, respectively.

Anti-Terrorism/Force Protection

Many of the military facilities at the 190 ARW installation at Forbes Field Airport were constructed before AT/FP considerations became a critical concern. Thus, under current conditions, many facilities do not comply with all current AT/FP standards. However, as new construction occurs and as facilities are modified, the 190 ARW would incorporate these standards to the maximum extent practicable.
3.1.3.2 Flight Safety

Flight Safety Procedures

Aircraft flight operations from Forbes Field Airport are governed by standard flight rules. Specific safety requirements are contained in standard operating procedures that must be followed by all aircrews operating from the airfield (AFI 11-2KC-135V3, *Flying Operations, C/KC-135 Operations Procedures* 2010) to ensure flight safety. While having aircraft in close proximity during air refueling is inherently dangerous, refueling mishaps are rare. Emergency separation procedures are established and practiced by both tanker and receiver aircrews.

Aircraft Mishaps

KC-135 aircraft (all models) have flown more than 14,750,000 hours since the aircraft entered the USAF inventory in 1957. Over that period, 83 Class A mishaps have occurred and 64 aircraft have been destroyed (specific statistics for mishaps during refueling are not recorded). This results in a Class A mishap rate of 0.56 per 100,000 flight-hours, and an aircraft destroyed rate of 0.43 per 100,000 flight-hours (Air Force Safety Center [AFSEC] 2012). The 190 ARW has not experienced a Class A mishap in the past 11 years (190 ARW 2013b). Together, the low KC-135 mishap rate and the lack of 190 ARW mishap history would make the chances of a Class A accident involving a KC-135 aircraft at Forbes Field Airport an unlikely event.

Bird/Wildlife Aircraft Strike Hazard

USAF BASH Team maintains a database that documents all reported bird/wildlife aircraft strikes. Historic information across the USAF for the past 40 years indicates that 39 USAF KC-135 aircraft have been destroyed and 33 fatalities have occurred from bird/wildlife aircraft strikes, with the last Class A mishap occurring in 2010 (AFSEC 2013).

The 190 ARW of the KS ANG has an on-going BASH program through which information and assistance is freely shared between airfield users, the Forbes Field Airport staff, and the local air traffic controllers. Serious BASH-related accidents within the immediate Forbes Field Airport area are unusual and have never resulted in a Class A mishap (190 ARW 2013a). The 190 ARW has recorded 63 minor BASH incidents from 2002 to 2012, with an average of fewer than six per year (190 ARW 2013a).

Fuel Jettison

For use in emergency situations, the KC-135 aircraft have the capability to jettison fuel and reduce aircraft gross weight for flight safety. Airbases must establish jettison areas and
procedures to minimize the impact of fuel jettisoning. Ideally, jettison areas are established at altitudes above 20,000 feet AGL, off published federal airways, avoiding urban areas, agricultural regions, and water supply sources. AFIs cover the fuel jettison procedures, and local operating policies define specific fuel ejection areas for each base.

After receiving approval from the Operations Group Commander and coordinating with Kansas City Air Route Traffic Control Center, the primary fuel jettison area for the 190 ARW is a holding pattern between 20 and 30 miles southwest of the field at 21,000 feet MSL. The aircrew would follow fuel jettisoning procedures in AFI 11-2KC135, C/KC-135 Operations Procedures (2010).

3.1.4 Soils and Water

3.1.4.1 Soils

This area of Kansas is within the Interior Plains on a glacial drift plain with broad, smooth ridgetops and slopes that are nearly level to strongly sloping. Loess covers the surface of almost all of the uplands in this area underlying glacial drift (U.S. Department of Agriculture [USDA] 2006). The 190 ARW installation is located on relatively flat improved land with an elevation of approximately 1,080 feet MSL (Kansas Army National Guard 2010).

The Natural Resources Conservation Service (NRCS) Soil Survey for Pawnee County, Kansas identifies the following three individual soil types at the installation:

Ladysmith silty clay loam, 0 to 1 percent slopes: This soil is typically found on summits and uplands from weathered limestone and shale. This soil type displays properties that would potentially limit building site development due to high shrink-swell potential, low strength, and depth to saturated zone. In addition, this soil type is designated as Prime Farmland (NRCS 2013a). Approximately 70 percent of the installation is composed of this soil type.

Ladysmith silty clay loam, 1 to 3 percent slopes: This soil is identical to the soil type above; however, the slopes are slightly steeper. This soil type is also designated as Prime Farmland (NRCS 2013a). Approximately 28 percent of the installation is composed of this soil type.

Pawnee clay loam, 4 to 8 percent slopes, eroded: This soil type is often found on side slopes of till plains. The rating class for building site development is considered very limited due to high shrink-swell potential, low strength, and depth to saturated zone. In addition, this soil type is considered a Farmland of Statewide Importance (NRCS 2013a). Approximately 2 percent, located in the northwestern corner of the installation, is composed of this soil type.
3.1.4.2 Surface Water

The 190 ARW installation is located within the Shunganunga Creek Watershed, a sub-basin of the Middle Kansas Watershed that encompasses over 5,684 square miles within the state of Kansas (USEPA 2013b). The Kansas River valley is 138 miles long; this course roughly follows the maximum extent of the Kansan glaciation, and the river likely began as a path of glacial meltwater drain (Kansas Center for Agricultural Resources and the Environment 2011). The Shunganunga Creek Watershed drains the Shunganunga Creek until it joins the Kansas River further downstream.

Surface water features within the vicinity of the 190 ARW installation include Lynn Creek to the east and South Branch Shunganunga Creek to the west (Figure 3.1.4-1). The Kansas River is approximately 6 miles north of the installation and the Wakarusa River is approximately 3 miles south. Forbes Field Airport is located on a drainage divide between Lynn Creek to the east and the South Branch of Shunganunga Creek to the west. Lynn Creek flows southeasterly into the Wakarusa River approximately 5 miles from the installation. The South Branch Shunganunga Creek flows north into the Kansas River about 6.5 miles from the installation (190 ARW 2008b).

Surface water within the installation primarily consists of a series of manmade ditches, storm sewers, and drainage swales. Drainage of the developed area is typified by overland flow to storm drain inlets and basins connected by a network of underground pipes. There are three primary drainage basins on the installation: SDO-001, -002, and -003. All three outfalls ultimately join the South Branch Shunganunga Creek. The two outfalls associated with industrial activity (SDO-001 and -002) are regulated under the Kansas General Permit for Stormwater Runoff Associated with Industrial Activity (S-ISWA-1111-1). The permit is administered by the Kansas Department of Health and the Environment under the auspice of the USEPA (190 ARW 2012a).

3.1.4.3 Groundwater

Groundwater in this area often occurs in valley-fill of alluvium and terrace deposits associated with the Kansas River Valley. There is no regional circulation of groundwater in this area due to the highly dissected nature of the upland topography. Therefore, water level fluctuations in upland wells are a direct result of local additions or withdrawals of groundwater. Water-level fluctuations in wells in the valley alluvium are somewhat more complex owing to the influence of the Kansas River and its tributaries which tend to reverse normal groundwater gradients (Kansas Geological Survey 2012).
Figure 3.1.4-1. Surface Water Features in the Vicinity of Forbes ANGS
Groundwater resources underlying the 190 ARW are found in two distinct units: the Nodaway Coal underlying bedrock and the unconsolidated material overlying the bedrock. The water table occurs at 10 feet below ground surface beneath most of the installation but ranges from 2 to 24 feet in portions of the installation. Groundwater flow is generally to the northwest. Due to lack of hydraulic connectivity of groundwater underlying the installation, groundwater does not flow from one end of the installation to the other, but occurs as isolated pockets. The potential for contaminant migration in groundwater underlying the installation is low due to the lack of hydraulic connectivity (190 ARW 2008b).

3.1.4.4 Floodplains

Per the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map for Shawnee County, Kansas, Panel 310 (Map Number 20177C0310E, Effective September 29, 2011), the 190 ARW installation is located within an area designated as Zone X. The designation Zone X are areas determined to be outside the 0.2 percent annual chance flood (500 year flood), indicating areas of minimal flooding (FEMA 2011).

3.1.5 Biological Resources

3.1.5.1 Vegetation

Forbes Field Airport occurs within the Prairie Parkland (Temperate) Province. Vegetation in this region typically is forest-steppe characterized by intermixed prairie, groves, and bands of deciduous trees. Prairies are dominated by grasses such as big bluestem (*Andropogon gerardii*), little bluestem (*Schizachyrium scoparium*), switchgrass (*Panicum virgatum*), and Indian grass (*Sorghastrum nutans*). Upland forests are dominated by oak (*Quercus* spp.) and hickory (*Carya* spp.) (Bailey 1995). The majority of the airport is developed or actively landscaped, with little natural vegetation or habitat remaining.

3.1.5.2 Wildlife

Due to the lack of substantial pockets of native vegetation, high noise levels, and human activities at and surrounding the airport, wildlife habitat is limited. As a result, the majority of wildlife present at the airport and the 190 ARW installation consists of species that are highly adapted to developed and disturbed areas. Forbes ANGS is located within the Central Flyway, one of four major North American corridors for migratory birds. The majority of the bird species found at Forbes Field Airport or its vicinity are protected under the Migratory Bird Treaty Act of 1918 (MBTA). Common bird species observed on the installation include Killdeer (*Charadrius vociferous*), Barn Swallow (*Hirundo rustica*), Great Horned Owl (*Bubo virgianus*), European Starling (*Sturnus vulgaris*), Chimney Swift (*Chaetura pelagica*), Western Meadowlark (*Sturnella neglecta*), and Red-shouldered Hawk (*Buteo lineatus*).
(Sturnella neglecta), Mourning Dove (Zenaida macroura), American Kestrel (Falco sparverius), American Robin (Turdus migratorius), Broad-winged Hawk (Buteo platypterus), Franklin’s Gull (Sternula franklinii), Rock Pigeon (Columbia livia), Lesser Scaup (Aythya affinis), Horned Lark (Eremophila alpestris), and Eastern Meadowlark (Sturnella magna). Other common wildlife include the white-tailed deer (Odocoileus virginianus), coyote (Canis latrans), red fox (Vulpes vulpes), striped skunk (Mephitis mephitis), and eastern cottontail (Sylvilagus floridanus) (190 ARW 2004, 2012b).

3.1.5.3 Special Status Species

No federally or state listed species have been observed at Forbes Field Airport. The potential for several federally and state listed species to occur within Shawnee County within the vicinity of the airport exists; however, there is little to no habitat for these species within the airport or the installation. A list of these species can be found in Appendix E. There is no critical habitat located on the installation.

3.1.5.4 Wetlands

No wetland delineation has been conducted on the 190 ARW installation (190 ARW 2004). In addition, no National Wetland Inventory wetlands occur on the installation (U.S. Fish and Wildlife Service [USFWS] 2013). A general survey of the proposed construction sites conducted in March 2013 showed no signs of wetlands.

3.1.6 Cultural Resources

3.1.6.1 Archaeological Resources

All undeveloped and relatively undisturbed areas of the 190 ARW installation have been intensively surveyed for archaeological resources and no archaeological resources have been identified at the 190 ARW installation (KS ANG 2008).

The 2008 cultural resources survey verified that the entire installation has low to no probability for archaeological resources due to past disturbances from construction and the high level of development. Additionally, the installation lacks the types of landforms associated with previously recorded cultural resources on adjacent lands (KS ANG 2008, 2010). The Kansas SHPO concurred with these findings (Zollner 2008).

3.1.6.2 Architectural Resources

All of the 190 ARW installation’s 24 buildings pre-dating the end of the Cold War (pre-1990) have been inventoried and evaluated for NRHP eligibility (KS ANG 2008). One building
(Building 679) was determined eligible by the Kansas SHPO for listing in the NRHP. The remaining 23 buildings were determined not eligible for listing in the NRHP. The Kansas SHPO concurred with these determinations (see Zollner 2008 in Appendix B4). Building 679 is eligible for listing in the NRHP under criterion A for having contributed to events important in history (the U.S. defensive military response during the Cold War) and under criterion C as a prime example of a particular type of architecture. It was one of only ten 150-men alert readiness structures constructed in the U.S., and one of approximately 40 alert crew dormitories of the various sizes nationwide that are extant today. In May of 2008, the Kansas SHPO received notice of a proposed major renovation of Building 679. Subsequently, a Memorandum of Agreement was signed among the Kansas SHPO, the KS ANG, and the 190 ARW that outlined procedures to mitigate the adverse effects the renovations would have to this NRHP-eligible building (see Appendix B4). The building was demolished to the foundation and entirely rebuilt the following year.

3.1.6.3 Traditional Resources

The 190 ARW contains no known traditional resources; however, eight federally-recognized Tribes that are historically, culturally, and linguistically affiliated with the area have been identified including: Citizen Potawatomi Nation, Delaware Nation, Kaw Nation, Osage Nation of Oklahoma, the Prairie Band Potawatomi Tribe, Absentee Shawnee Tribe of Oklahoma, East Shawnee Tribe of Oklahoma, and the Wichita and Affiliated Tribes.

3.1.7 Land Use

Forbes ANGS is located on Forbes Field Airport, a public use airport owned by the MTAA. The airfield is located in Topeka, Shawnee County, Kansas, about 10 miles south of the city center. The 190 ARW installation consists of approximately 160 acres on the northwest corner of Forbes Field Airport, adjacent to the runway.

Land adjacent to the airfield in unincorporated Shawnee County is traditionally agricultural and remains sparsely populated and rural in character. On the west side of the airfield within the city limits of Topeka, industrial uses have developed along U.S. Highway 75. Long-term land use for the city is guided by a comprehensive plan. Short-term actions are regulated by zoning ordinances implemented through the Topeka Municipal Code and Shawnee County (City of Topeka 2011, Shawnee County 2013)

Zoning surrounding the airport generally supports compatible land use planning and provides for protection of the areas surrounding Forbes Field Airport. The Topeka Municipal Code 1981 § 4-55 defines and establishes airport hazard zones, height limitations, and land use restrictions.
within these zones. This zoning protects RPZs. Detailed descriptions of RPZs can be found in Section A.3.1.1 of Appendix A. The City of Topeka has zoned the areas to the west of the airfield for industrial use. A triangular area, north of the airport boundary and between U.S. Highway 75 and S.E. 53rd Street, is a Planned Unit Development (PUD) district, which allows more flexibility in the use of land and structures to account for specific site features than standard land use categories. The PUD north of the airport currently includes industrial uses and vacant land, but also accommodates streets and commercial use (City of Topeka 2011). The unincorporated areas to the east of the airfield are zoned as Residential Reserve District, where the maximum density permitted is one single-family dwelling per 3 acres minimum. This designation provides a transitional area between urbanized development and rural-agricultural areas where increased urbanization occurs if municipal services and facilities were to become available (Shawnee County 2013).

Currently, aircraft noise from Forbes Field Airport exposes approximately 166 acres of off-airport areas of land zoned as industrial, residential reserve, and PUD to noise levels between 65 dB and 70 dB DNL. No houses, churches, schools or other sensitive noise receptors are located within the 65 dB and 70 dB DNL off-airport noise contour areas. Figure 3.1.7-1 shows an overlay of the baseline noise contours onto a map displaying the existing land use in the vicinity of Forbes Field Airport.
Figure 3.1.7-1. DNL Noise Contours and Land Use at Forbes Field Airport

3.1.8 Infrastructure and Transportation

3.1.8.1 Potable Water System

Potable water for the 190 ARW installation is provided by the City of Topeka. Potable water in the area is supplied primarily from the Kansas River. The City of Topeka Water Division pumps an average of approximately 8 trillion gallons of water per year to its customers (City of Topeka 2013a). In calendar year (CY) 2012, 2,424,824 gallons of potable water were supplied to the 190 ARW installation (190 ARW 2013b).

3.1.8.2 Wastewater

The 190 ARW installation generates wastewater from sanitary, stormwater, and industrial processes, including oil/water separator discharge (OWS), wash rack discharge, floor washdown, latrines, sinks, and showers. Wastewater generated within the 190 ARW installation is conveyed into the municipal sewage system to the City of Topeka Wastewater Treatment Plant. The City owns two wastewater treatment plans, The Oakland and the North Topeka Wastewater Treatment Plants, which have a combined capacity to treat 28 million gallons of wastewater daily (City of Topeka 2010).

3.1.8.3 Stormwater

A high percentage of the active administrative and industrial areas of the installation are paved or roofed, resulting in high runoff rates during precipitation events. As described in the 190 ARW Stormwater Pollution Prevention Plan (SWPPP) (2012), the 190 ARW installation has a stormwater drainage conveyance system typified by overland flow to catch basins, inlets, surface drains, underground pipes, culverts, ditches, and swales that discharge to receiving waters (see Section 3.1.4, Soils and Water) or other municipal separate storm sewer systems. The stormwater drainage system has been designed to safely collect and transport surface water runoff from storm events to prevent flooding within the installation and is a separate system from the wastewater (sewage) system.

3.1.8.4 Electrical and Natural Gas Systems

Electricity is supplied to the 190 ARW installation by West Star Energy via an underground powerline. Natural gas is supplied by Kansas Gas Service via an 8-inch main line. Electricity consumption for CY 2012 at the 190 ARW installation was 6,144,451 kilowatt-hours. Natural gas consumption for CY 2012 at the 190 ARW installation was 152,900 cubic feet (190 ARW 2013b).
3.1.8.5 Solid Waste Management

Municipal solid waste at the 190 ARW installation is managed in accordance with the 190 ARW Solid Waste Management Plan (190 ARW 2009a) and guidelines specified in AFI 32-7042, *Waste Management* (2009). This AFI incorporates, by reference, the federal standard for solid waste regulations contained within 40 CFR, Subtitle D, *Non-hazardous Waste*, and other applicable federal regulations, AFIs, and DoD Directives. In general, AFI 32-7042 establishes the requirement for installations to have a solid waste management program that incorporates the following: a solid waste management plan; procedures for recycling, diversion, handling, storage, collection, and disposal of solid waste; recordkeeping and reporting; and pollution prevention.

The 190 ARW installation generates solid waste in the form of office trash, non-hazardous industrial wastes, normal municipal waste, and construction debris. These nonhazardous solid wastes are collected in dumpsters located throughout the 190 ARW installation and transported by contractor to the Rolling Meadows Waste Management facility in Topeka, Kansas.

3.1.8.6 Transportation

The 190 ARW installation is located within close proximity to several major highways. Interstate (I-) 70 and I-470 lie to the north of the installation and run primarily east and west. In addition, I-335 intersects with I-470 and runs north and south, to the west of the installation. The installation’s main gate is accessed from SW Topeka Boulevard, which can be accessed from I-470 or U.S. Highway 75.

3.1.9 Hazardous Materials and Waste

3.1.9.1 Hazardous Materials

Hazardous materials are used at the 190 ARW installation for aircraft operations support and maintenance, including petroleum, oil, and lubricant (POL) management and distribution, liquid fuels maintenance, transportation maintenance, vehicle paint, power production, machine shop operations, and flight simulation. Types of hazardous substances found on the 190 ARW installation include hydraulic fluid, waste oils, recovered fuels, spent cleaners, strippers, solvents, flammable and combustible liquids, acids, aerosols, batteries, corrosives, and paints (190 ARW 2009b).

There is currently one 1,500-gallon aboveground storage tank (AST) on the 190 ARW installation in Building 176 that stores polyvinyl chloride. There are currently two underground storage tanks (USTs) located on the 190 ARW installation. One is located at Building 775 and is
used for capturing an accidental release of pesticide. The other is an 8,000-gallon UST in the POL (ANG 2008).

Toxic Substances

Regulated toxic substances typically associated with buildings and facilities include asbestos, lead-based paint (LBP), and polychlorinated biphenyls (PCBs). Asbestos-containing material (ACM) is known to occur in Buildings/Hangars 665, 666, 673, 679, 692, 770, and 780. ACM was removed from Buildings 151 and 167 prior to a recent renovation that was completed. In addition, ACM was removed from Buildings 656 and 659 prior to their demolition in the early 1990s (190 ARW 2005).

An LBP survey has not been conducted at the 190 ARW installation. Any buildings on the installation constructed prior to 1978 are presumed to contain LBP and would be tested for LBP prior to demolition or renovation.

The installation is considered PCB free. PCBs may still be present in older light ballasts; however, these are not regulated as PCB equipment or PCB-contaminated equipment (ANG 2008).

3.1.9.2 Hazardous Waste Management

The 190 ARW Oil and Hazardous Substances Spill Prevention and Response Plan contains the governing regulations for spill prevention and describes specific protocols for preventing and responding to releases, accidents, and spills involving oils and hazardous materials (190 ARW 2012c). The 190 ARW Hazardous Waste Management Plan outlines procedures for controlling and managing hazardous wastes from the point where they are generated until they are disposed. In addition, it includes guidance for compliance with all federal, state, and local regulations pertaining to hazardous waste (190 ARW 2009b).

The 190 ARW is regulated as a Small Quantity Generator of hazardous waste and maintains USEPA Identification Number KS0572824043. A hazardous waste generation point is where the waste is initially created or generated. A satellite accumulation point (SAP) is an area where hazardous waste is initially accumulated at the point of generation and is under the control of the SAP manager. Hazardous wastes initially accumulated at a SAP are accumulated in appropriate containers before being transferred to the installation central accumulation point (CAP). There are six SAPs (where a waste is initially accumulated) identified at the installation in Buildings/Hangars 662, 668, and 770. The installation CAP is located in Building 57008 (190 ARW 2009b).
OWSs are used to separate oils, fuels, sand, and grease from wastewater and to prevent contaminants from entering the sanitary sewer and stormwater drainage systems. Two former OWSs were located on the installation but were removed in the 1990s. Currently there are no active OWSs located within the 190 ARW installation (190 ARW 2005).

3.1.9.3 Environmental Restoration Program

Ten potentially contaminated Environmental Restoration Program (ERP) sites were identified in 1986 for closure at the 190 ARW.

For all except three sites, Decision Documents for no further action were recorded due to a determination to have little or no threat for contaminant migration. For the remaining three sites, Decision Documents for no further action but periodic groundwater monitoring were recorded (190 ARW 2005). Table 3.1.9-1 provides details for each of these sites and Figure 3.1.9-1 shows the locations.

Table 3.1.9-1. ERP Sites within the 190 ARW Installation

<table>
<thead>
<tr>
<th>ERP Site</th>
<th>Materials of Concern</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>This site is adjacent to the JP-4 storage area where contamination was judged to be minimal. Monitoring conducted during 1990-1993 at these three sites were completed with no contaminants reported above detection limits.</td>
<td>Closed</td>
</tr>
<tr>
<td>6</td>
<td>This site is a surface drainage ditch and storm sewer overflow. Low contaminant concentrations and relative immobility of contaminants cause the risk to the public or the environment to be judged minimal. Monitoring conducted during 1990-1993 at these three sites were completed with no contaminants reported above detection limits.</td>
<td>Closed</td>
</tr>
<tr>
<td>8</td>
<td>This site is the refueling hydrant C, where Total Petroleum Hydrocarbon was reported in groundwater and soil gas samples. No evidence of contaminant migration was indicated. Monitoring conducted during 1990-1993 at these three sites were completed with no contaminants reported above detection limits.</td>
<td>Closed</td>
</tr>
</tbody>
</table>

Notes: ERP = Environmental Restoration Program
Source: 190 ARW 2005.

3.1.10 Socioeconomics

3.1.10.1 Population and Employment

Population

Forbes ANGS is located approximately 5 miles south of Topeka in Shawnee County, Kansas. Current population data and estimates for the state of Kansas, Shawnee County, and the city of Topeka are provided in Table 3.1.10-1. From 1990 to 2010, Shawnee County’s population increased by 16,958, an increase of approximately 11 percent (U.S. Census Bureau [USCB] 1990a, 2000a, 2010a).
Figure 3.1.9-1. Environmental Restoration Program Sites at the 190 ARW Installation, Forbes Field Airport
Table 3.1.10-1. Population Growth within the Vicinity of Forbes ANGS

<table>
<thead>
<tr>
<th>Area</th>
<th>1990 Census</th>
<th>2000 Census</th>
<th>2010 Census</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kansas</td>
<td>2,477,574</td>
<td>2,688,418</td>
<td>2,853,118</td>
</tr>
<tr>
<td>Shawnee County</td>
<td>160,976</td>
<td>169,871</td>
<td>177,934</td>
</tr>
<tr>
<td>City of Topeka</td>
<td>119,883</td>
<td>122,377</td>
<td>127,473</td>
</tr>
</tbody>
</table>

The 190 ARW currently supports a workforce authorization of 1,242, including 403 full-time and 839 part-time personnel (see Table 2.3-6).

Employment and Earnings

Table 3.1.10-2 presents total labor force and employment rates for Kansas, Shawnee County, and the city of Topeka. Based on 2007-2011 American Community Survey (ACS) 5-year estimates, there were 92,855 persons in the labor force (able to work) and 86,188 employed within Shawnee County, resulting in an unemployment rate of approximately 7 percent. Top employment industries in Shawnee County include 1) educational services, and health care and social assistance; 2) retail; and 3) public administration (USCB 2011a). Principal employers include State of Kansas, Storemont-Vail Healthcare, Topeka School District, Blue Cross Blue Shield, and St. Francis Health Center (City of Topeka 2013b).

Table 3.1.10-2. Employment Data (2011) within the Vicinity of Forbes ANGS

<table>
<thead>
<tr>
<th>Area</th>
<th>Labor Force</th>
<th>Employed</th>
<th>Unemployed</th>
<th>Unemployment Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kansas</td>
<td>1,506,400</td>
<td>1,410,911</td>
<td>95,489</td>
<td>6.3</td>
</tr>
<tr>
<td>Shawnee County</td>
<td>92,855</td>
<td>86,188</td>
<td>6,667</td>
<td>7.2</td>
</tr>
<tr>
<td>City of Topeka</td>
<td>66,056</td>
<td>60,550</td>
<td>5,506</td>
<td>8.3</td>
</tr>
</tbody>
</table>

Note: Employment numbers include individuals in the Armed Forces.
Source: USCB 2011a.

3.1.10.2 Schools

According to the 2011 ACS enrollment 5-year estimates, 31,296 students were enrolled in schools from Kindergarten through Grade 12 in Shawnee County (USCB 2011a).

3.1.10.3 Housing

In 2010, the number of housing units in Shawnee County was 79,140 with a vacancy rate of approximately 8 percent (USCB 2010a).
3.1.11 Environmental Justice and the Protection of Children

3.1.11.1 Minority and Low-Income Populations

Table 3.1.11-1 displays the minority, low-income, and children under age 18 within the state of Kansas, as well as the city and county within the vicinity of Forbes Field Airport. Approximately 19 percent of the population of Shawnee County is composed of minorities (i.e., an ethnic or racial group with a distinctive presence in a community), compared to approximately 16 percent for the state of Kansas. The percentage of population living below the poverty level for the state of Kansas (approximately 13 percent) is the lower than Shawnee County (approximately 15 percent) (USCB 2010a).

<table>
<thead>
<tr>
<th>Geographic Area</th>
<th>Total Population</th>
<th>Minority Population</th>
<th>Percent Minority</th>
<th>Low-Income Population</th>
<th>Percent Low-Income</th>
<th>Children Under Age 18</th>
<th>Percent Children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kansas</td>
<td>2,853,118</td>
<td>462,074</td>
<td>16.2</td>
<td>359,493</td>
<td>12.6</td>
<td>726,939</td>
<td>25.5</td>
</tr>
<tr>
<td>Shawnee County</td>
<td>177,934</td>
<td>33,522</td>
<td>18.8</td>
<td>26,156</td>
<td>14.7</td>
<td>44,171</td>
<td>24.8</td>
</tr>
<tr>
<td>City of Topeka</td>
<td>127,473</td>
<td>30,301</td>
<td>23.8</td>
<td>24,092</td>
<td>18.9</td>
<td>31,093</td>
<td>24.4</td>
</tr>
</tbody>
</table>

Note: 1. Total population, minority population, and number of children under the age of 18 were obtained from the 2010 census data. Low-income population numbers are from the 2007-2011 ACS 5-Year Estimates.
2. The percentage of low-income persons is calculated as a percentage of all persons for whom the USCB determines poverty status, which is generally a lower number than the total population because it excludes institutionalized persons, persons in military group quarters and college dormitories, and unrelated individuals under 15 years old.

Currently there are no populations, including minority or low-income populations, located in the vicinity of Forbes Field Airport within the baseline DNL greater than 65 dB.

3.1.11.2 Protection of Children

In 2010, the number of children under the age of 18 living in Shawnee County was approximately 44,171 (approximately 25 percent of the population) (Table 3.1.11-1). The state of Kansas has a slightly higher percentage population of children compared to the county (approximately 26 percent) (USCB 2010a). There are no on-installation housing or facilities for children located at the 190 ARW installation. Currently, there are no Kindergarten through Grade 12 off-installation schools that are exposed to DNL of 65 dB or above.
3.2 **JOINT BASE MCGUIRE-DIX-LAKEHURST**

JB MDL, home of the 108 WG of the NJ ANG, is located in central New Jersey, spanning more than 20 miles with more than 42,000 contiguous acres. The base is located 18 miles southeast of Trenton, 45 miles east of Philadelphia, 50 miles south of New York City, and 14 miles inland from the Atlantic Ocean.

3.2.1 **Noise**

To evaluate noise impacts in the vicinity of a military installation, the USAF uses NOISEMAP, a computer program used to model noise exposure in the vicinity of military airfields. Noise contours were generated for JB MDL (McGuire Field) in 2012. For more detailed information on the noise modeling methods, see Appendix A, Section A.1.2.

3.2.1.1 **Baseline Operations**

In 2012, JB MDL initiated an update to their 2009 McGuire AFB Air Installation Compatible Use Zone (AICUZ) study that included noise modeling for current McGuire Field aircraft operations. The aircraft operations included in the 2012 NOISEMAP update form the baseline for this analysis.

Based on aircraft operations data validated in March 2013, approximately 62,686 total aircraft operations occurred at McGuire Field during the 12-month period ending October 2011 (JB MDL 2013a). An aircraft operation is counted each time an aircraft departs from the runway and each time they approach the runway. Table 3.2.1-1 summarizes the frequency of aircraft operations for McGuire Field based on information provided by base staff, flying organizations, and air traffic control personnel. The majority of active USAF and ANG flying units currently at McGuire Field operate the C-17, KC-10, KC-135, and the C-32 aircraft. Although the number of aircraft operations at an installation varies from day to day, for McGuire Field, operations were calculated for an AAD, meaning that yearly operations were averaged across all 365 days of the year. Table 3.2.1-1 reflects a total of approximately 172 aircraft operations on an AAD (62,686 divided by 365 days). Approximately 34 percent of the total operations at McGuire Field occur during environmental night (10:00 p.m. through 7:00 a.m.).

Based on the 2012 baseline data, the 108 WG KC-135 aircraft flew a total of 8,340 annual airfield operations, or an average of 23 airfield operations a day. Approximately 20 percent of the total KC-135 operations occur during environmental night. Approximately 13 percent of total operations at McGuire Field are accomplished by the 108 ARW KC-135 aircraft.
Table 3.2.1-1. Current McGuire Field Annual Aircraft Operations

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>DEPARTURES</th>
<th></th>
<th>ARRIVALS</th>
<th></th>
<th>TOTAL¹</th>
<th></th>
<th>Grand</th>
<th>Total²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night²</td>
<td>Day</td>
<td>Night²</td>
<td>Day</td>
<td>Night²</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>KC-135</td>
<td>3,348</td>
<td>822</td>
<td>3,308</td>
<td>862</td>
<td>6,656</td>
<td>1,684</td>
<td>8,340</td>
<td></td>
</tr>
<tr>
<td>Other Aircraft³</td>
<td>18,842</td>
<td>8,316</td>
<td>15,895</td>
<td>11,293</td>
<td>34,737</td>
<td>19,609</td>
<td>54,346</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>22,190</td>
<td>9,138</td>
<td>19,203</td>
<td>12,155</td>
<td>41,393</td>
<td>21,293</td>
<td>62,686</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Includes Closed Patterns (which count as two airfield operations).
2. Night –Between 10 p.m. and 7 a.m. for environmental night.
3. Other based military and civilian aircraft, and transient aircraft (multiple type aircraft); example aircraft include: KC-10, C-17, and C-32.

Source: JB MDL 2013a, Lamar 2013.

3.2.1.2 Runway and Flight Profiles

McGuire Field aircraft use straight in approaches, overhead approaches, IFR or radar closed patterns, and VFR closed patterns along with re-entry VFR patterns as the basic flight patterns for training, local arrival, and departures. Detailed representative arrival, departure, and closed pattern flight tracks are found in Appendix C, *Noise* (JB MDL 2013a).

3.2.1.3 Existing Noise Environment

Noise contours developed for the baseline conditions at JB MDL are shown in Figure 3.2.1-1. The acreage within each DNL contour on and off JB MDL property is shown in Table 3.2.1-2. Approximately 3,561 acres are exposed to DNL greater than or equal to 65 dB. Detailed information on off-airport land use that lies within a DNL greater than 65 dB can be found in Section 3.2.7, *Land Use*.

Table 3.2.1-2. Acres within Baseline Noise Contours, McGuire Field

<table>
<thead>
<tr>
<th>Noise Level (dB)</th>
<th>On-Base (acres)</th>
<th>Off-Base (acres)</th>
<th>Total (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>65-70</td>
<td>1,375</td>
<td>311</td>
<td>1,686</td>
</tr>
<tr>
<td>70-75</td>
<td>1,186</td>
<td>21</td>
<td>1,207</td>
</tr>
<tr>
<td>75-80</td>
<td>370</td>
<td>0</td>
<td>370</td>
</tr>
<tr>
<td>80-85</td>
<td>222</td>
<td>0</td>
<td>222</td>
</tr>
<tr>
<td>Greater than 85</td>
<td>76</td>
<td>0</td>
<td>76</td>
</tr>
<tr>
<td>Total</td>
<td>3,229</td>
<td>332</td>
<td>3,561</td>
</tr>
</tbody>
</table>

Note: dB = decibel
Figure 3.2.1-1. Baseline DNL Noise Contours for McGuire Field
Potential Hearing Loss

As shown in Table 3.2.1-2, there is no property off the JB MDL that falls within the baseline 80+ dB DNL noise contour; therefore, no potential hearing loss risk is currently associated with these areas.

3.2.1.4 Joint Base McGuire-Dix-Lakehurst Noise Abatement Procedures

JB MDL has placed certain restrictions on flying activities that could adversely affect its neighbors in an effort to reduce noise impacts while maintaining safe operations. Local noise abatement procedures are published in AFI 11-2KC135 V3, 108 ARW Supplement (2009).

For McGuire Field, noise abatement procedures include, but are not limited to, restrictions on rolling and intersection take-offs, and maximum gross weights for practice landings (i.e., closed patterns). Additional McGuire Field local restrictions provide additional protection in housing areas by requiring aircraft to avoid overflight of the housing areas by 1,600 feet MSL from 6:00 a.m. to 10:00 p.m. and restricting aircraft overflight between the hours of 10:00 p.m. and 7:00 a.m., and to avoid overflight of Fort Dix housing, McGuire AFB Clinic, and Deborah Hospital at all times (JB MDL 2009).

3.2.1.5 Joint Base McGuire-Dix-Lakehurst Noise Complaints Procedures

Currently, JB MDL receives noise complaints through the 87th Air Base Wing Public Affairs office. In 2012, McGuire Field received a total of nine noise complaints. Each compliant was routed through JB MDL Radar Approach Control to determine what, if any, military aircraft were in the vicinity of the noise complainant. If it is determined that a JB MDL aircraft was in the vicinity of the complainant, the complaint is forwarded to the appropriate operations flying groups for response and appropriate action (McGee 2013a).

3.2.2 Air Quality

3.2.2.1 Regulatory Setting

Individual states are delegated the responsibility to regulate air quality in order to achieve or maintain air quality in attainment with these standards. The New Jersey Department of Environmental Protection (NJDEP) is the agency responsible for the regulation of air quality within the state of New Jersey. The state of New Jersey regulates air quality through the New Jersey Administrative Code, Title 7:27A through 7:27D. The state of New Jersey has adopted additional ambient air quality standards that apply within the state. The NAAQS and state AAQS are summarized in Table 3.2.2-1.
<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>NATIONAL STANDARDS</th>
<th>NEW JERSEY STANDARDS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Primary</td>
<td>Secondary</td>
</tr>
<tr>
<td>O₃</td>
<td>8-hour</td>
<td>0.075 ppm</td>
<td>Same as primary</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(147 µg/m³)</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>8-hour</td>
<td>9 ppm</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>35 ppm</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(10 mg/m³)</td>
<td></td>
</tr>
<tr>
<td>NO₂</td>
<td>Annual</td>
<td>0.053 ppm</td>
<td>Same as primary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(100 µg/m³)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>0.100 ppm</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(188 µg/m³)</td>
<td></td>
</tr>
<tr>
<td>SO₂</td>
<td>Annual</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3-hour</td>
<td>—</td>
<td>0.5 ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>—</td>
<td>(1,300 µg/m³)</td>
</tr>
<tr>
<td>Total Suspended Particulate</td>
<td>Annual</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>Annual</td>
<td>—</td>
<td>Same as primary</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>150 µg/m³</td>
<td>Same as primary</td>
</tr>
<tr>
<td>PM₂.₅</td>
<td>Annual</td>
<td>12 µg/m³</td>
<td>15 µg/m³</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>35 µg/m³</td>
<td>Same as primary</td>
</tr>
<tr>
<td>Pb</td>
<td>Rolling 3-month period</td>
<td>0.15 µg/m³</td>
<td>Same as primary</td>
</tr>
</tbody>
</table>

Notes:
1. Standards other than the 1-hour ozone, 24-hour PM₁₀, 24-hour PM₂.₅, and those based on annual averages are not to be exceeded more than once a year. The 8-hour ozone national standard has replaced the 1-hour ozone national standard.
2. Concentrations are expressed first in units in which they were promulgated. Equivalent units given in parenthesis.
3. Primary Standards: The levels of air quality necessary, with an adequate margin of safety to protect the public health. Each state must attain the primary standards no later than 3 years after that state’s implementation plan is approved by the USEPA.
4. Secondary Standards: The levels of air quality necessary to protect the public welfare from any known or anticipated adverse effects of a pollutant.
5. µg/m³ = micrograms per cubic meter; CO = carbon monoxide; mg/m³ = milligrams per cubic meter; NO₂ = nitrogen dioxide; O₃ = ozone; Pb = lead; PM₂.₅ = particulate matter less than or equal to 2.5 microns in diameter; PM₁₀ = particulate matter less than or equal to 10 microns in diameter; ppm = parts per million; SO₂ = sulfur dioxide
JB MDL is located in the central portion of the state of New Jersey, in Ocean and Burlington counties. The USEPA has classified the Philadelphia-Wilmington-Atlantic City area of the states of Pennsylvania, Delaware, and New Jersey as nonattainment for the O₃ (marginal nonattainment) NAAQS, and a maintenance area for PM₂.₅ and CO. The region is designated attainment/unclassified area for all other criteria pollutants. The Proposed Action is therefore subject to the requirements of Section 176(c) of the CAA, as articulated in the USEPA General Conformity Rule. Based on the nonattainment classification for the region, the \textit{de minimis} emission thresholds for the General Conformity Rule for O₃ precursors (oxides of nitrogen [NOₓ] and volatile organic compounds [VOCs]) is 100 tpy, and the \textit{de minimis} emission thresholds for PM₂.₅ and CO emissions are also 100 tpy.

The USEPA recently promulgated a more stringent standard for lead, and has redesigned its monitoring program to address lead and identified airports for monitoring because aviation gas used in piston aircraft still contains lead. The project area is considered attainment/unclassified for lead, and lead is not used in aviation fuel used in the KC-135 or KC-46A aircraft.

3.2.2.2 Climate and Meteorology

JB MDL is located in the central portion of the state of New Jersey, in Ocean and Burlington counties. The climate in the central portion of New Jersey is influenced by its vegetation, with moderation due to its proximity to the Atlantic Ocean. Scrub pine and oak forests dominate the interior southern portion of New Jersey, hence the name, Pine Barrens. Sandy soils, which are porous and not very fertile, have a major effect on the climate of this region. On clear nights, solar radiation absorbed during the day is quickly radiated back into space, resulting in surprisingly low minimum temperatures. The porous soil permits any precipitation to rapidly infiltrate and leave surfaces quite dry. Drier conditions allow for a wider range between the daily maximum and minimum temperatures, and make the area vulnerable to forest fires.

The warmest month of the year is July with an average maximum temperature of 87.10°F, while the coldest month of the year is January with an average minimum temperature of 22.50°F. Temperature variations between night and day tend to be moderate during summer with a difference that can reach 24°F, and moderate during winter with an average difference of 20°F. The annual average precipitation at Fort Dix is 47.12 inches. Rainfall is fairly evenly distributed throughout the year. The wettest month of the year is August with an average rainfall of 5.16 inches (Northeast Regional Climate Center 2013a). Prevailing winds in New Jersey are from the southwest in summer and from the northwest in winter.
3.2.2.3 Regional and Local Air Pollutant Sources

The 108 WG of the NJ ANG is based at McGuire Field in New Jersey. The area surrounding JB MDL is a mix of agricultural uses, developed areas, and undeveloped areas and includes Fort Dix to the west.

The USEPA’s National Emissions Inventory includes data for the year 2008 for Burlington and Ocean counties. Table 3.2.2-2 summarizes the regional emissions (stationary, area-wide, and mobile) of criteria pollutants and precursor emissions for the affected areas.

<p>| Table 3.2.2-2. Regional Emissions for Burlington and Ocean Counties, New Jersey |
|---------------------------------|--------|--------|--------|--------|--------|--------|</p>
<table>
<thead>
<tr>
<th></th>
<th>CO</th>
<th>VOCs</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional Emissions – Burlington County</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stationary Sources</td>
<td>6,767</td>
<td>1,882</td>
<td>2,935</td>
<td>500</td>
<td>1,010</td>
<td>940</td>
</tr>
<tr>
<td>Area-Wide Sources</td>
<td>12,110</td>
<td>24,564</td>
<td>311</td>
<td>73</td>
<td>4,191</td>
<td>1,066</td>
</tr>
<tr>
<td>Mobile Sources</td>
<td>60,287</td>
<td>6,056</td>
<td>9,594</td>
<td>122</td>
<td>592</td>
<td>487</td>
</tr>
<tr>
<td>Total</td>
<td>79,164</td>
<td>32,502</td>
<td>12,840</td>
<td>695</td>
<td>5,793</td>
<td>2,493</td>
</tr>
<tr>
<td>Regional Emissions – Ocean County</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stationary Sources</td>
<td>5,078</td>
<td>1,277</td>
<td>2,881</td>
<td>582</td>
<td>883</td>
<td>666</td>
</tr>
<tr>
<td>Area-Wide Sources</td>
<td>6,369</td>
<td>19,656</td>
<td>339</td>
<td>36</td>
<td>2,740</td>
<td>583</td>
</tr>
<tr>
<td>Mobile Sources</td>
<td>70,288</td>
<td>12,765</td>
<td>8,415</td>
<td>109</td>
<td>656</td>
<td>516</td>
</tr>
<tr>
<td>Total</td>
<td>81,735</td>
<td>33,698</td>
<td>11,635</td>
<td>727</td>
<td>4,279</td>
<td>1,765</td>
</tr>
</tbody>
</table>

Notes: Emissions of Pb are not included because the affected region contains no significant sources of this criteria pollutant. Numbers may not add precisely due to rounding. CO = carbon monoxide; NOx = oxides of nitrogen; PM10 = particulate matter less than or equal to 10 microns in diameter; PM2.5 = particulate matter less than or equal to 2.5 microns in diameter; SO2 = sulfur dioxide; VOC = volatile organic compound.

Source: USEPA 2008.

3.2.2.4 Baseline Air Quality

Representative background air monitoring data for the 108 WG for the period 2008-2012 are shown in Table 3.2.2-3. The closest monitoring stations to JB MDL are located in Ocean County (Jackson Township), Camden County (Camden and Winslow), Trenton, and Burlington County. Values measured in more developed areas such as Camden and Trenton are likely to be conservative due to the amount of development in those areas.

As shown in Table 3.2.2-3, O3 exceedances have been measured in the developed areas surrounding JB MDL during the recent 5-year period. The data show that the area did not experience violations of other NAAQS.
Table 3.2.2-3. Ambient Air Monitoring Data for the JB MDL Area

<table>
<thead>
<tr>
<th>Air Quality Indicator</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone (O₃)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 8-hour value (ppm)</td>
<td>0.100</td>
<td>0.085</td>
<td>0.094</td>
<td>0.094</td>
<td>0.09</td>
</tr>
<tr>
<td>Days above federal standard (0.075 ppm)</td>
<td>15</td>
<td>2</td>
<td>16</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>Particulate matter less than or equal to 2.5 microns in diameter (PM₂.₅)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 24-hour value (µg/m³)</td>
<td>36.2</td>
<td>35.8</td>
<td>36.5</td>
<td>33.8</td>
<td>27.7</td>
</tr>
<tr>
<td>Days above federal standard (35 µg/m³)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Annual Average value (µg/m³)</td>
<td>11.1</td>
<td>9.3</td>
<td>9.5</td>
<td>10.3</td>
<td>8.8</td>
</tr>
<tr>
<td>Particulate matter less than or equal to 10 microns in diameter (PM₁₀)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 24-hour value (µg/m³)</td>
<td>56</td>
<td>81</td>
<td>86</td>
<td>77</td>
<td>67</td>
</tr>
<tr>
<td>Days above federal standard (150 µg/m³)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 1-hour value (ppm)</td>
<td>3.7</td>
<td>2.5</td>
<td>2.7</td>
<td>0.7</td>
<td>2.2</td>
</tr>
<tr>
<td>Days above federal standard (9 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peak 8-hour value (ppm)</td>
<td>1.8</td>
<td>1.4</td>
<td>1.9</td>
<td>0.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Days above federal standard (35 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO₂)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 1-hour value (ppm)</td>
<td>0.090</td>
<td>0.045</td>
<td>0.046</td>
<td>NA</td>
<td>0.051</td>
</tr>
<tr>
<td>98th Percentile (ppm)</td>
<td>0.058</td>
<td>0.040</td>
<td>0.040</td>
<td>NA</td>
<td>0.043</td>
</tr>
<tr>
<td>Days above federal standard (0.100 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO₂)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 1-hour value (ppm)</td>
<td>0.040</td>
<td>0.028</td>
<td>0.016</td>
<td>NA</td>
<td>0.017</td>
</tr>
<tr>
<td>99th Percentile (ppm)</td>
<td>0.025</td>
<td>0.020</td>
<td>0.010</td>
<td>NA</td>
<td>0.015</td>
</tr>
<tr>
<td>Days above federal standard (0.075 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td>Peak 24-hour value (ppm)</td>
<td>0.013</td>
<td>0.015</td>
<td>0.006</td>
<td>NA</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Notes: 1. The federal 1-hour SO₂ standard was adopted in 2010.
2. µg/m³ = micrograms per cubic meter; NA = data not available; ppm = parts per million

Source: USEPA 2013a.

3.2.2.5 108th Wing Emissions

The 108 WG currently flies and maintains eight KC-135 refueler aircraft to support its air refueling mission. The primary support operations performed at the 108 WG include aircraft fueling, aircraft deicing, aircraft maintenance, aircraft support equipment maintenance, ground vehicle maintenance, fueling of ground vehicles, and facilities maintenance. These operations involve activities such as corrosion control, non-destructive inspection, fuel cell maintenance, engine maintenance, hydraulics, and wheel and tire maintenance.

Emissions for the 108 WG have been quantified in the Final 2009 Air Emissions Inventory (108 WG 2011a). The inventory evaluated the emissions from the 108 WG to determine its status under the Title V Federal Operating Permits program. Based on the major source thresholds for the area, the major source thresholds are 25 tpy for O₃ precursors NOₓ and VOCs, 100 tpy for all other criteria pollutants, and less than 10 tpy of any single HAP or 25 tpy of any combination of HAPs.
In December 2009, the base was issued an air permit from the NJDEP that contains operational limits such that its potential emissions are restricted below the Title V major source thresholds. While the 2009 Air Emissions Inventory also contains fugitive emission calculations, it demonstrates that total base-wide potential emissions from stationary sources are below the major source thresholds.

Stationary source emissions at the 108 WG include emissions from natural gas-fired heating units, emergency generators and pumps, fuel tanks, fuel cell maintenance, and various minor sources such as solvent use, deicing, and welding. Mobile source emissions include emissions from aircraft operations (take-offs and landings), AGE, ground vehicle operations, and maintenance aircraft operations performed with the engines still mounted on the aircraft (engine run-ups and trim checks). Emissions from aircraft operations at the 108 WG considered all based and transient aircraft. Aircraft emissions were calculated for all flight activities below the default mixing height (3,000 feet AGL). Baseline emissions also include stationary sources and emissions associated with vehicle trips associated with existing personnel and dependents. These emissions, combined with those from the other mobile sources, account for the majority of the emissions from the installation.

To provide a baseline for evaluating the net emissions increases/decreases associated with Alternative #2, emissions from the KC-135 aircraft operations, aircraft refueling, KC-135 engine testing, KC-135-related AGE, and POVs associated with KC-135 flight operations were evaluated. Emissions from the KC-135 aircraft operations were calculated based on 2012 aircraft operations identified in Table 2.3.7 utilizing site-specific flight profiles to calculate aircraft operations below a default mixing height of 3,000 feet AGL. A discussion of the methodology for quantifying emissions is provided in Appendix A, Section A.2.3. Emissions associated with baseline operations of the KC-135 aircraft are provided in Table 3.2.2-4.

Table 3.2.2-4. 108 WG Baseline Emissions at JB MDL

<table>
<thead>
<tr>
<th>Emission Source</th>
<th>VOCs</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 Baseline Aircraft Operations</td>
<td>3.21</td>
<td>49.03</td>
<td>83.34</td>
<td>7.43</td>
<td>0.39</td>
<td>0.39</td>
<td>20,659</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.01</td>
<td>0.09</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2,157</td>
</tr>
<tr>
<td>Engine Testing</td>
<td>0.14</td>
<td>2.01</td>
<td>0.55</td>
<td>0.09</td>
<td>0.01</td>
<td>0.01</td>
<td>239</td>
</tr>
<tr>
<td>POVs</td>
<td>5.12</td>
<td>110.72</td>
<td>5.20</td>
<td>0.07</td>
<td>0.21</td>
<td>0.12</td>
<td>3,543</td>
</tr>
<tr>
<td>Total Baseline Emissions</td>
<td>8.48</td>
<td>161.78</td>
<td>89.18</td>
<td>7.59</td>
<td>0.61</td>
<td>0.53</td>
<td>26,597</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding.

CO = carbon monoxide; CO2e = carbon dioxide equivalent; NOx = oxides of nitrogen; PM10 = particulate matter less than or equal to 10 microns in diameter; PM2.5 = particulate matter less than or equal to 2.5 microns in diameter; SO2 = sulfur dioxide; VOC = volatile organic compound; AGE = aerospace ground equipment; POV = privately owned vehicle.

3.2.3 Safety

This section provides information on both ground and flight safety. Ground safety includes discussions of fire/crash response capabilities, APZs/RPZs, explosive safety, and AT/FP. Flight safety includes discussions on flight safety procedures, aircraft mishaps, BASH, and fuel jettison requirements. The affected environment includes the airfield and local airspace surrounding McGuire Field.

3.2.3.1 Ground Safety

Fire/Crash Response

Day-to-day operations and maintenance activities conducted by the 108 WG are performed in accordance with applicable USAF safety regulations, published USAF Technical Orders, and standards prescribed by AFOSH requirements. The USAF active duty host at JB MDL provides fire, crash, rescue, and structural fire protection for the McGuire Field installation, including the 108 WG, and its aircraft. Aircraft Rescue Fire Fighting (ARFF) services at McGuire Field are available on a 24-hour basis. Upon notification of an in-flight or ground emergency, the crash and rescue services personnel would coordinate emergency services. ARFF equipment and personnel at McGuire Field meet USAF requirements (JB MDL 2013b).

Accident Potential Zone/Runway Protection Zone

APZs are established to delineate recommended surrounding land uses for the protection of people and property on the ground, as described in Appendix A, Section A.3. At McGuire Field, airfield operations currently has waivers for two buildings, 1931 and 5650, which violate the CZs for Runways 24 and 36 respectively. Both are scheduled for demolition. Details of development and land use in the McGuire Field vicinity are included in Section 3.2.7, Land Use.

Explosive Safety

The 108 WG uses a small range of munitions required for performance of their mission. The existing munitions storage capabilities on JB MDL meet the requirement for small arms deployment/training ammunition and other munitions required by the 108 WG.

Anti-Terrorism/Force Protection

Many of the 108 WG military facilities at JB MDL were constructed before AT/FP considerations became a critical concern. Thus, under current conditions, many facilities do not comply with all current AT/FP standards. However, as new construction occurs and as facilities
are modified, the New Jersey 108 WG would incorporate these standards to the maximum extent practicable.

3.2.3.2 Flight Safety

Flight Safety Procedures

Aircraft flight operations from McGuire Field are governed by standard flight rules. Specific safety requirements are contained in standard operating procedures that must be followed by all aircrews operating from the airfield (AFI 11-2KC-135V3, *Flying Operations, C/KC-135 Operations Procedures* 2010) to ensure flight safety. While having aircraft in close proximity during air refueling is inherently dangerous, air refueling mishaps are rare. Emergency separation procedures are established and practiced by both tanker and receiver aircrews.

Aircraft Mishaps

KC-135 aircraft (all models) have flown more than 14,750,000 hours since the aircraft entered the USAF inventory in 1957. Over that period, 83 Class A mishaps have occurred and 64 aircraft have been destroyed (specific statistics for mishaps during refueling are not recorded). This results in a Class A mishap rate of 0.56 per 100,000 flight-hours, and an aircraft destroyed rate of 0.43 per 100,000 flight-hours (AFSEC 2012). There have been no Class A mishaps involving 108 WG aircraft at McGuire Field. The aircrew members at the 108 WG are highly experienced and have accumulated over 270,000 accident free hours (JB MDL 2013b).

Bird/Wildlife Aircraft Strike Hazard

The USAF BASH Team maintains a database that documents all reported bird/wildlife aircraft strikes. Historic information across the USAF for the past 40 years indicates that 39 USAF KC-135 aircraft have been destroyed and 33 fatalities have occurred from bird/wildlife-aircraft strikes, with the last Class A mishap occurring in 2010 (AFSEC 2013).

The 108 WG has an effective, on-going BASH program through which information and assistance is freely shared between airfield users, the McGuire Field staff, and the local air traffic controllers. Serious BASH-related accidents within the immediate JB MDL area are unusual and have never resulted in a Class A mishap (JB MDL 2013c). JB MDL recorded a total of 94 minor BASH incidents and one deer mishap from 2008 to 2013. From this total, the 108 WG experienced 22, for an average of fewer than 2 per year (JB MDL 2013c).
Fuel Jettison

For use in emergency situations, the KC-135 aircraft have the capability to jettison fuel and reduce aircraft gross weight for flight safety. Although fuel jettisoning is not practiced, airbases must establish jettison areas and procedures to minimize the impact of fuel jettisoning should it occur during an emergency situation. Ideally, jettison areas are established at altitudes above 20,000 feet, off published federal airways, avoiding urban areas, agricultural regions, and water supply sources.

The primary emergency fuel jettison area for the 108 WG is the PREPI (charted, mandatory overwater reporting point) overwater intersection, 62 miles southeast of JB MDL. Aircrews enter a holding pattern east of PREPI intersection, flying 7-mile legs, with right hand turns, after notifying the appropriate Air Traffic Control facility of intentions to jettison fuel. Aircrews will request an altitude as high as practical, consistent with the nature of the in-flight emergency; however, 20,000 feet AGL or above is preferred (JB MDL 2009).

3.2.4 Soils and Water

3.2.4.1 Soils

This area of New Jersey is within the Coastal Plain Province, a nearly level to rolling, dissected coastal plain that has been subjected to episodes of rising and falling sea levels. During low sea levels, eroding streams have dissected the area, leaving a series of terraces across the landscape (USDA 2006). The 108 WG installation is located on improved land, and relief ranges from 70 to 90 feet above MSL (JB MDL 2011).

The NRCS Soil Survey for Burlington County, New Jersey identifies eight individual soil types at the 108 WG installation. The following four soil types are located within the project study area:

Adelphia-Urban land complex, 0 to 5 percent slopes: This soil consists of strongly intermingled Urban land and Adelphia soil. Urban land consists of soil from cut/fill sites used for buildings, paved roads, parking lots, and other areas of urban development. The rating class for building site development is considered somewhat limited due to shrink-swell potential and depth to saturated zone (NRCS 2013b). Approximately 54 percent of the installation is composed of this soil type.

Holmdel sandy loam, 0 to 2 percent slopes: This soil is typically found on flats from loamy marine deposits. The rating class for building site development is considered somewhat limited
due to depth to saturated zone. In addition, this soil type is designated as Prime Farmland (NRCS 2013b). Approximately 4 percent of the installation is composed of this soil type.

Sassafras sandy loam, 2 to 5 percent slopes: This soil is typically found on knolls and low hills from loamy or gravelly marine deposits. There are no known limitations to site development associated with this soil type. In addition, this soil type is designated as Prime Farmland (NRCS 2013b). Approximately 18 percent of the installation is composed of this soil type.

Udorthents, wet substratum, 0 to 8 percent slopes: This soil is found in areas that have been excavated and regraded or that have been filled with soil material and graded. This soil type is typically used for urban development or landfills. The suitability of the soils as a site for development varies. The rating class for building site development is not rated for this soil type (NRCS 2013b). Approximately 5 percent of the installation is composed of this soil type.

The remaining 19 percent is comprised of soil types that would not be affected.

3.2.4.2 Surface Water

The 108 WG is located within the Middle Delaware-Musconetcong Watershed that encompasses over 3,480 square miles across New Jersey and Pennsylvania (USEPA 2013c). The Delaware is the longest un-dammed river in the U.S., extending 330 miles from the confluence of its east and west branches at Hancock, New York to the mouth of the Delaware Bay where it meets the Atlantic Ocean. Three-quarters of the Delaware River is now included in the National Wild and Scenic Rivers System. Sections of the Maurice River and the Musconetcong River in New Jersey also have been included in the national system (Delaware River Basin Commission 2013).

Surface water features within the vicinity of the JB MDL include Assiscunk Creek, Crosswicks Creek, Manapaqua Brook, North Ruckles, Rancocas Creek, Ridgeway Brook, and the Toms River which drains southeast into Barnegat Bay (Figure 3.2.4-1). Three of these creeks are tributaries to the Delaware River: Assiscunk Creek, Crosswicks Creek, and Rancocas Creek. The western portion of the installation, including McGuire Field, is in the Rancocas Creek watershed. Smaller streams include Harris Branch, Elisha Branch, Paint Branch, and a number of unnamed tributaries (87th Civil Engineering Squadron 2012).
There are five stormwater outfalls on McGuire Field, Drainage Basins 1 through 5. Drainage basins containing industrial activities include Basins 1, 2, and 3. Drainage Basin 1 directs effluent into the South Run of Crosswicks Creek, while Drainage Basin 2 directs effluent to Jacks Run. Drainage Basin 3 discharges into Larkins Run of the North Branch of Rancocas Creek. Drainage Basin 4 directly discharges stormwater to Drainage Basin 5, which in turn discharges into the North Run of the Crosswicks Creek. The outfalls associated with industrial activity are regulated under a New Jersey Basic Industrial General Stormwater Permit (NJ0088315). The permit is administered by the NJDEP under the auspice of the USEPA (USAF School of Aerospace Medicine 2010).

3.2.4.3 Groundwater

Groundwater in this area is part of the Northern Atlantic Coastal Plain aquifer system consisting of sedimentary deposits that range in age from Early Cretaceous to Holocene (U.S. Geological Survey [USGS] 1995a). The installation lies within the Kirkwood-Cohansey Aquifer present throughout the New Jersey coastal plain and covers approximately 3,000 square miles. The Cohansey Formation is mostly sand with minor lenses of silt, clay, and gravel. The Kirkwood Formation contains both sand and clay beds. The Kirkwood-Chansey water table is highly permeable due to the dominance of well-sorted medium- to coarse-grained sand (New Jersey Geological Survey 2009). Because of the high water table and permeable soils, the underlying groundwater resources are particularly sensitive to contamination making groundwater pollution prevention an important issue on the installation (87th Civil Engineering Squadron 2012).

Immediately below the Cohansey Formation is the Kirkwood Formation. Together, these two aquifers are estimated to contain as much as 17 trillion gallons of water. Underlying the Cohansey and Kirkwood Formations is the Potomac-Raritan-Magothy Formation. The installation’s largest capacity well taps into the Potomac-Raritan-Magothy Aquifer at about 1,580 feet (87th Civil Engineering Squadron 2012).

3.2.4.4 Floodplains

Per the FEMA Flood Insurance Rate Map for Burlington County, New Jersey, the 108 WG installation falls within an unmapped area, and no FEMA floodplains have been delineated within this area (FEMA 2013).

A floodplain study was prepared by the U.S. Army Corps of Engineers (USACE) for the Lakehurst area of JB MDL in 1989 and was later revised in 1990. Peak discharges for flood levels that occur with average intervals of 10, 50, 100, and 500 years were determined for Ridgeway Branch, North Ruckles Branch, Manapaqua Brook, Paint Branch, and Harris Branch.
Flood Insurance Studies have also been prepared by FEMA for the Township of Manchester and the Borough of Lakehurst. No floodplain studies have been conducted on the Fort Dix or McGuire areas of JB MDL (87th Civil Engineering Squadron 2012).

3.2.5 Biological Resources

3.2.5.1 Vegetation

The 108 WG installation occurs within the Eastern Broadleaf Forest (Oceanic) Province. Vegetation in this region typically is characterized by a winter deciduous forest dominated by tall broadleaf trees (Bailey 1995). Within this region, the 108 WG installation lies within the Pinelands, a heavily forested area characterized by a mix of pitch pine (*Pinus rigida*), Virginia pine (*Pinus virginiana*), and short leaf pine (*Pinus echinata*). The majority of the JB MDL (69 percent) is forested with pine/oak or oak/pine forests with dense deciduous stands of red maple, sweet gum, and black gum in the wetland forests. However, the majority of McGuire Field and the 108 WG installation is either developed or comprised of turf and landscaped areas (87th Civil Engineering Squadron 2012, Headquarters AMC 2008).

3.2.5.2 Wildlife

Since 69 percent of JB MDL is forested, and the majority of the 108 WG installation is developed, wildlife present within the vicinity includes a mix of species highly adapted to developed and disturbed areas as well as species typical of native forests in the area. Common mammal species found on JB MDL include white-tailed deer, woodchuck (*Marmota marmox*), beaver (*Castor canadensis*), eastern cottontail rabbit (*Sylvilagus floridanus*), red squirrel (*Tamiasciurus hudsonicus*), white-footed mouse (*Peromyscus leucopus*), and meadow vole (*Microtus pennsylvanicus*) (87th Civil Engineering Squadron 2012, Headquarters AMC 2008).

Common reptilian and amphibian species observed within the vicinity of the installation include the milk snake (*Lampropeltis* spp.), northern black racer (*Coluber constrictor*), northern fence lizard (*Sceloporus undulates hyacinthus*), painted turtle (*Chrysemys picta*), American toad (*Bufo americanus*), Fowler’s toad (*Bufo woodhousei fowleri*), and northern leopard frog (*Rana pipiens sphenopehala*) (Headquarters AMC 2008).

The 108 WG installation is located within the Atlantic Flyway, one of four major North American corridors for migratory birds. The majority of the bird species found within the 108 WG installation or its vicinity are protected under the MBTA. Grassland areas on the installation, as well as those grassland areas near the airfield, provide habitat for birds such as the Upland Sandpiper (*Bartramia longicauda*), Grasshopper Sparrow (*Ammodramus savannarum*), and Savannah Sparrow (*Passerculus sandwhichensis*). The ecotone between grassland and
forested ecosystems provides excellent habitat for bird species such as the Gray Catbird (*Dumetella carolinensis*), Yellow Warbler (*Dendroica petechia*), Northern Cardinal (*Cardinalis cardinalis*), Indigo Bunting (*Passerina cyanea*), Rufous-sided Towhee (*Pipilo erythrophthalmus*), Song Sparrow (*Melospiza melodia*), Brown-headed Cowbird (*Molothrus ater*), and American Goldfinch (*Carduelis tristis*). Common birds found in the wetlands areas include the Great Blue Heron (*Ardea herodias*), Northern Rough-winged Willow Flycatcher (*Empidonax traillii*), Eastern Kingbird (*Tyrannus tyrannus*), Cedar Waxwing (*Bombycilla cedrorum*), and Red-winged Blackbird (*Agelaius phoeniceus*). Common birds that could be found in the upland forest areas include the Downy Woodpecker (*Picoides pubescens*), Eastern Wood-pewee (*Contopus virens*), Carolina Chickadee (*Parus carolinensis*), Pine Warbler (*Dendroica pinus*) and Chipping Sparrow (*Spizella passerina*). Common raptor species that may be found include the American Kestrel (*Falco sparverius*), Red-tailed Hawk (*Buteo jamaicensis*), Great Horned Owl (*Bubo virginianus*), and the Turkey Vulture (*Cathartes aura*) (Headquarters AMC 2008).

3.2.5.3 Special Status Species

Appendix E lists federally threatened, endangered, candidate, and state listed species observed or potentially occurring in the vicinity of JB MDL. No federally listed species have been observed on McGuire Field or the 108 WG installation. Three federally listed plant species and one candidate plant species have been observed within the vicinity of JB MDL, but have not been observed within the 108 WG installation. An additional 30 state listed species have been observed on JB MDL, while 6 state listed species have been observed within McGuire Field (American Kestrel, Grasshopper Sparrow, Northern Harrier, Pie-billed Grebe, Savannah Sparrow, and Upland Sandpiper). There is no critical habitat located on JB MDL (87th Civil Engineer Squadron 2012, Air Mobility Command 2008, New Jersey Department of Environmental Protection 2013).

3.2.5.4 Wetlands

Approximately 21 percent (8,791 acres) of JB MDL is comprised of emergent, scrub-shrub, and forested wetlands (Figure 3.2.4-1). Approximately 900 acres occur at Lakehurst, 238 acres occur at McGuire, and 7,653 acres occur at Dix (87th Civil Engineer Squadron 2012). There are no wetlands located within the vicinity of the construction projects under Alternative #2.
3.2.6 Cultural Resources

3.2.6.1 Archaeological Resources

A survey of cultural resources including archaeological resources and pre-Cold War era buildings and structures was completed in 1995 for McGuire AFB (now McGuire Field) (Headquarters AMC 1995). This survey included all areas within the 1995 boundary of McGuire AFB and all off-base facilities, except for a 20-acre parcel of leased land (the Boeing Michigan Aerospace Research Center [BOMARC] missile site at Fort Dix). Areas that were highly disturbed from construction or ERP sites were excluded from the survey and five previously designated areas of archaeological sensitivity were included based on geomorphology, the history of land disturbance on base, vegetation, and prehistoric and historic site distribution patterns on surrounding lands. A sixth area of archaeological sensitivity was added in the North Run area of the base due to the potential for buried prehistoric remains in undisturbed alluvial deposits and on locations of historic buildings on historic maps (Headquarters AMC 1995). This survey resulted in the recordation of 11 historic archaeological sites. Following further testing in 1998, three of these sites (site numbers 28BU458, 28BU459, and 28BU473) were determined eligible for listing in the NRHP. The three sites include two mid-eighteenth to early-nineteenth century agricultural households associated with a nearby mill site, which was reported but not identified; and one mid-eighteenth to early nineteenth century domestic site associated with the historic village of Pointville. The remaining eight sites were determined not eligible for listing in the NRHP (Duryee 2013, 87th Civil Engineering Squadron 2013, Headquarters AMC 2008).

3.2.6.2 Architectural Resources

The 1995 survey of McGuire AFB included an inventory and NRHP evaluation of all buildings and structures constructed before 1947, the BOMARC missile complex at Fort Dix, and the 1956 Semi-Automatic Ground Environment complex. Both the Semi-Automatic Ground Environment complex and the BOMARC site were recommended as NRHP-eligible Cold War era resources under the criteria for exceptional significance (Criterion Consideration G). Additionally, as a result of this survey, 18 World War II era temporary structures were found to be eligible for listing in the NRHP. The structures are considered eligible; however, per the 1986 Memorandum of Agreement between the DOD, the Advisory Council on Historic Preservation, and the National Conference of SHPOs, these structures could be demolished without further Section 106 review. All other buildings were found not eligible for listing in the NRHP (Headquarters AMC 2008).

A follow-up survey in 1996 included all Cold War era buildings, which were all less than 50 years old at the time. No buildings were recommended eligible to the NRHP under criteria for exceptional significance (Criterion Consideration G) (Headquarters AMC 1995). In 2013, a
survey was completed for pre-1967 resources that have since become 50 years old. Hangar 3322, built in 1957, was evaluated for NRHP eligibility during this survey. The results of the inventory indicated that Hangar 3322 is not eligible for listing in the NRHP (JB MDL 2013d).

3.2.6.3 Traditional Resources

McGuire Field contains no known traditional resources; however, three federally-recognized Tribes that are historically, culturally, and linguistically affiliated with the area have been identified: Delaware Nation, Delaware Tribe of Indians, and Stockbridge-Munsee Community. JB MDL has completed consultation with the Delaware Nation and Delaware Tribe of Indians, who were identified as potentially having an interest in JB MDL. In the past, the Stockbridge-Munsee Community was invited by JB MDL to participate in government-to-government consultation, but declined interest in being further consulted (87th Civil Engineering Squadron 2013, Duryee 2013).

3.2.7 Land Use

JB MDL is located in central Burlington County, adjacent to and southeast of the Borough of Wrightstown and within New Hanover Township. Land use within those portions of Burlington County adjacent to McGuire Field is a mix of residential and commercial to the north and south, with several open and agricultural areas adjacent to the western boundary of the installation. The land use in Ocean County northeast of JB MDL is similar to the existing land use in Burlington County that is north of the airfield (Figure 3.2.7-1).

Aircraft noise and potential hazards from aircraft operations at McGuire Field currently are incompatible with some off-installation land use. Since JB MDL surrounds McGuire Field to the east, south, and west, the impact of airfield activities on adjacent communities is limited. Higher DNL contours and APZs associated with the runways at McGuire Field do not extend off installation. (Detailed descriptions of APZs can be found in Section A.1.3 of Appendix A.)

An updated noise study in support of the AICUZ program was completed for JB MDL in 2013 and the JB MDL Joint Land Use Study was completed in 2009. These documents identify incompatible land uses and supports compatible land use planning in the vicinity of JB MDL. Both Burlington and Ocean Counties have supported the AICUZ and Joint Land Use Study programs in their on-going planning and zoning decisions to reduce land use conflicts and ensure future land uses are compatible (JB MDL 2013a, DoD 2009b).

Currently, aircraft noise from JB MDL exposes approximately 332 acres of off-JB MDL areas of land zoned as Recreational, Agricultural, Commercial, Residential, Open Space, and Other to
noise levels between 65 dB and 75 dB DNL. Figure 3.2.7-1 shows an overlay of the baseline DNL contours onto a map displaying the existing land use in the vicinity of JB MDL.

3.2.8 Infrastructure and Transportation

3.2.8.1 Potable Water System

Potable water for the 108 WG installation is supplied by four wells drawn from the Potomac-Raritan-Magothy aquifer. McGuire Field has a water allocation permit that entitles the installation to use 450.75 million gallons of water per year with capacity of 4.03 million gallons per day. Average daily water usage averages between 1 and 1.4 million gallons per day. Water is treated at each well and temporarily stored in 25,000-gallon ASTs, then pumped to a single elevated 750,000-gallon water storage tank by the McGuire Field Water Department (Headquarters AMC 2008, 108 WG 2012).

3.2.8.2 Wastewater

The 108 WG installation generates wastewater from sanitary, stormwater, and industrial processes, including OWS discharge, wash rack discharge, floor wash-down, latrines, sinks, and showers. Wastewater generated within the 108 WG installation is conveyed into the Fort Dix tertiary wastewater treatment plant. The facility has a capacity of 4.6 million gallons per day but typically receives 1.0 to 1.5 million gallons of wastewater per day from McGuire Field (Headquarters AMC 2008).

3.2.8.3 Stormwater

A high percentage of the active administrative and industrial areas of the installation are paved or roofed, resulting in high runoff rates during precipitation events. As described in the 108 WG SWPPP (2010), the 108 WG installation has a stormwater drainage conveyance system typified by overland flow to catch basins, inlets, surface drains, underground pipes, culverts, ditches, and swales that discharge to receiving waters (see Section 3.2.4, Soils and Water) or other municipal separate storm sewer systems. The stormwater drainage system has been designed to safely collect and transport surface water runoff from storm events to prevent flooding within the installation and is a separate system from the wastewater (sewage) system.
Figure 3.2.7-1. DNL Noise Contours and Land Use at McGuire Field
3.2.8.4 Electrical and Natural Gas Systems

Electricity is supplied to the 108 WG installation by Jersey Central Power & Light via a single 34.5-kilovolt switching station and aboveground lines. Natural gas is supplied by Public Service Electric and Gas Company via two separate metered main lines. Electricity consumption for CY 2012 at the 108 WG installation was 6,071 megawatt hours. Natural gas consumption for CY 2012 at the 108 WG installation was 34,609 thousand cubic feet (108 WG 2012).

3.2.8.5 Solid Waste Management

Municipal solid waste at the 108 WG installation is managed in accordance with the McGuire AFB Solid Waste Management Plan (USAF 2002) and guidelines specified in AFI 32-7042, Waste Management (2009). This AFI incorporates, by reference, the federal standard for solid waste regulations contained within 40 CFR, Subtitle D, Non-hazardous Waste, and other applicable federal regulations, AFIs, and DoD Directives. In general, AFI 32-7042 establishes the requirement for installations to have a solid waste management program that incorporates the following: a solid waste management plan; procedures for recycling, diversion, handling, storage, collection, and disposal of solid waste; recordkeeping and reporting; and pollution prevention.

The 108 WG installation generates solid waste in the form of office trash, non-hazardous industrial wastes, normal municipal waste, and construction debris. These non-hazardous solid wastes are collected in dumpsters located throughout the 108 WG installation and transported to the Burlington County Resource Recovery Complex in Mansfield and Florence Townships, New Jersey (USAF 2002).

3.2.8.6 Transportation

The 108 WG installation is located within close proximity to several major highways. The New Jersey Turnpike I-95), a major north/south highway, is less than 10 miles to the west of the installation. State Route (SR) 68 serves as the primary access to the installation from the New Jersey Turnpike. The 108 WG installation can be accessed through McGuire Field or through Fort Dix at Broidy Road Gate (Gate 9) or the NJ ANG gate (Gate 5). Wrightstown-Cookstown Road provides access to the main gate of McGuire Field as well as a secondary entrance to the east (Headquarters AMC 2008).
3.2.9 Hazardous Materials and Waste

3.2.9.1 Hazardous Materials

Hazardous materials are used at the 108 WG installation for aircraft operations support and maintenance, including POL management and distribution, liquid fuels maintenance, transportation maintenance, vehicle paint, power production, machine shop operations, and flight simulation. Types of hazardous substances found on the 108 WG installation include hydraulic fluid, waste oils, recovered fuels, spent cleaners, strippers, solvents, flammable and combustible liquids, acids, aerosols, batteries, corrosives, and paints (108 WG 2011b).

There are currently 14 regulated USTs and 140 ASTs on McGuire Field containing jet fuel, diesel, and motor gasoline (Headquarters AMC 2008). Of these, the 108 WG has no regulated USTs and five ASTs on the installation.

Toxic Substances

Regulated toxic substances typically associated with buildings and facilities include asbestos, LBP, and PCBs. An asbestos survey was performed at the 108 WG installation in 2007. ACM identified in the insulation, floor tiles, and mastic were found in 18 buildings (Buildings/Hangars 1811, 3302, 3303, 3305, 3306, 3310, 3315, 3321, 3322, 3323, 3325, 3326, 3331, 3332, 3369, 3373, and 3379) (NJ ANG 2007).

A LBP survey has not been conducted at the 108 WG installation. Any buildings on the installation constructed prior to 1978 are presumed to contain LBP and would be tested for LBP prior to demolition or renovation.

The 108 WG does not maintain, operate, or own any PCB equipment or PCB-contaminated equipment and the subject property is considered PCB-free (108 WG 2011b).

3.2.9.2 Hazardous Waste Management

McGuire AFB Integrated Contingency Plan for Oil Spill Prevention and Response Plan incorporates the requirements for a Spill Prevention Control and Countermeasure Plan and a Facility Response Plan (87th Air Base Wing 2009). It contains the governing regulations for spill prevention and describes specific protocols for preventing and responding to releases, accidents, and spills involving oils and hazardous materials (87th Air Base Wing 2009). The 108 WG Hazardous Waste Management plan outlines procedures for controlling and managing hazardous wastes from the point where they are generated until they are disposed. In addition, it includes guidance for compliance with all federal, state, and local regulations pertaining to hazardous waste (108 WG 2011b).
The 108 WG hazardous waste disposal activities are covered under the McGuire Field USEPA Identification Number NJ2571824018, which is regulated as a Large Quantity Generator of hazardous waste. A hazardous waste generation point is where the waste is initially created or generated. An SAP is an area where hazardous waste is initially accumulated at the point of generation and is under the control of the SAP manager. Hazardous wastes initially accumulated at a SAP are accumulated in appropriate containers before being transferred to the installation CAP. There are seven SAPs (where a waste is initially accumulated) identified at the 108 WG installation in Buildings/Hangars 3324, 3325, 3331, 3333, 3336, 3379, and 3384. The 108 WG installation CAP is located on McGuire Field in Building 2310 (108 WG 2013c).

OWSs are used to separate oils, fuels, sand, and grease from wastewater and to prevent contaminants from entering the sanitary sewer and stormwater drainage systems. OWSs located on the 108 WG installation primarily receive discharge from floor drains in maintenance areas.

3.2.9.3 Environmental Restoration Program

There are currently 42 ERP sites on McGuire Field, with 1 of these sites (SS-39) located on the 108 WG installation. In addition, there is currently a contaminated area located in the POL facility on the 108 WG installation that has recently been discovered and is currently being investigated. Table 3.2.9-1 provides details for each of these sites on the 108 WG installation and Figure 3.2.9-1 shows the locations. The exact boundaries for the Defense Logistics Agency (DLA) site is still being investigated. Therefore, the area shown on the map is only a general location.

<table>
<thead>
<tr>
<th>ERP Site</th>
<th>Materials of Concern</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS-39</td>
<td>Site SS-39 includes several former and current industrial buildings at which aircraft maintenance, aircraft washing, and fuel cell repairs currently and historically were performed. It includes Buildings 3321, 3322, 3325, and 3350. A portion of Site SS-39 is currently an aircraft parking apron.</td>
<td>Remedial Investigation</td>
</tr>
<tr>
<td>DLA Site</td>
<td>Recently an area located within the POL facility on the 108 WG installation was discovered to have low levels of jet fuel and other fuel types. This site is being managed by the Defense Logistics Agency (DLA) and is still in the discovery phase. The extent and the source of the contamination is still unknown at this time. Soil and groundwater investigations are ongoing</td>
<td>Preliminary Assessment/Site Investigation</td>
</tr>
</tbody>
</table>

Source: Air Force Center for Engineering and the Environment 2012, 108 WG 2013c
Figure 3.2.9-1. Environmental Restoration Program Sites at the 108 WG Installation, JB MDL
3.2.10 Socioeconomics

3.2.10.1 Population and Employment

Population

JB MDL is located approximately 18 miles southeast of Trenton, New Jersey in Ocean and Burlington counties. Current population data and estimates for the state of New Jersey, Burlington and Ocean counties, and New Hanover, North Hanover, and Pemberton Townships are provided in Table 3.2.10-1. From 1990 to 2010, Burlington County’s population increased by 53,668, an increase of approximately 14 percent. Ocean County grew by 143,364 between 1990 and 2010, an increase of approximately 33 percent (USCB 1990b, 2000b, 2010b).

Table 3.2.10-1. Population Growth within the Vicinity of JB MDL

<table>
<thead>
<tr>
<th>Area</th>
<th>1990 Census</th>
<th>2000 Census</th>
<th>2010 Census</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Jersey</td>
<td>7,730,188</td>
<td>8,414,350</td>
<td>8,791,894</td>
</tr>
<tr>
<td>Burlington County</td>
<td>395,066</td>
<td>423,394</td>
<td>448,734</td>
</tr>
<tr>
<td>Ocean County</td>
<td>433,203</td>
<td>510,916</td>
<td>576,567</td>
</tr>
<tr>
<td>New Hanover Township</td>
<td>9,546</td>
<td>9,744</td>
<td>7,385</td>
</tr>
<tr>
<td>North Hanover Township</td>
<td>9,994</td>
<td>7,347</td>
<td>7,678</td>
</tr>
<tr>
<td>Pemberton Township</td>
<td>31,342</td>
<td>28,691</td>
<td>27,912</td>
</tr>
<tr>
<td>Plumsted Township</td>
<td>2,089</td>
<td>7,275</td>
<td>8,421</td>
</tr>
<tr>
<td>Wrightstown Borough</td>
<td>3,843</td>
<td>748</td>
<td>802</td>
</tr>
</tbody>
</table>

The 108 WG currently supports a workforce authorization of 1,329, including 416 full-time and 913 part-time personnel (see Table 2.3-12).

Employment and Earnings

Table 3.2.10-2 presents total labor force and employment rates for New Jersey; Burlington and Ocean counties; New Hanover, North Hanover, Pemberton and Plumsted Townships; and Wrightstown Borough. Based on 2007-2011 ACS 5-year estimates, there were 244,032 persons in the labor force (able to work) and 224,720 employed within Burlington County, resulting in an unemployment rate of approximately 8 percent. Labor force estimates for Ocean County include 267,716 persons, with 243,182 employed, resulting in an unemployment rate of approximately 9 percent. Top employment industries in Burlington County include 1) educational services, and health care and social assistance; 2) professional, scientific, and management, and administrative and waste management services; and 3) retail trade (USCB 2011b). Principal employers include Virtua Memorial Hospital of Burlington County, Lockheed Martin, Burlington Coat Factory, Viking Yacht Company, and PHH Mortgage (Burlington County 2010). Top employment industries in Ocean County include 1) educational services, and health care and social assistance; 2) retail; and 3) professional, scientific, and management, and administrative and waste management services;
management services (USCB 2011b). Principal employers include Saint Barnabas Health Care System, Six Flags theme parks, Naval Engineering Station-Naval Air Warfare Center, Toms River Regional School System, and Ocean County government (Ocean County 2008).

Table 3.2.10-2. Employment Data (2011) within the Vicinity of JB MDL

<table>
<thead>
<tr>
<th>Area</th>
<th>Labor Force</th>
<th>Employed</th>
<th>Unemployed</th>
<th>Unemployment Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Jersey</td>
<td>4,633,565</td>
<td>4,230,814</td>
<td>402,751</td>
<td>8.7</td>
</tr>
<tr>
<td>Burlington County</td>
<td>244,032</td>
<td>224,720</td>
<td>19,312</td>
<td>7.9</td>
</tr>
<tr>
<td>Ocean County</td>
<td>267,716</td>
<td>243,182</td>
<td>24,534</td>
<td>9.2</td>
</tr>
<tr>
<td>New Hanover Township</td>
<td>2,082</td>
<td>1,984</td>
<td>98</td>
<td>4.7</td>
</tr>
<tr>
<td>North Hanover Township</td>
<td>4,030</td>
<td>3,641</td>
<td>389</td>
<td>9.7</td>
</tr>
<tr>
<td>Pemberton Township</td>
<td>15,079</td>
<td>13,465</td>
<td>1,614</td>
<td>10.7</td>
</tr>
<tr>
<td>Plumsted Township</td>
<td>4,731</td>
<td>4,391</td>
<td>340</td>
<td>7.2</td>
</tr>
<tr>
<td>Wrightstown Borough</td>
<td>467</td>
<td>432</td>
<td>35</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Note: Employment numbers include individuals in the Armed Forces.
Source: USCB 2011b.

3.2.10.2 Schools

According to the 2011 ACS enrollment 5-year estimates, 80,547 students were enrolled in schools from Kindergarten through Grade 12 in Burlington County. In Ocean County, 95,936 students were enrolled in schools from Kindergarten through Grade 12 (USCB 2011b).

3.2.10.3 Housing

In 2010, the number of housing units in Burlington County was 175,615, with a vacancy rate of 5.3 percent. In Ocean County in 2010, there were a total of 278,052 housing units with a vacancy rate of approximately 21 percent (USCB 2010b). Currently, approximately 20 percent of active duty personnel live on-base (108 WG 2013c).

3.2.11 Environmental Justice and the Protection of Children

3.2.11.1 Minority and Low-Income Populations

Table 3.2.11-1 displays the minority, low-income, and children under age 18 within the state of New Jersey, as well as the counties, boroughs, and townships within the vicinity of McGuire Field. Approximately 26 percent of the population of Burlington County is composed of minorities (i.e., an ethnic or racial group with a distinctive presence in a community), compared to approximately 31 percent for the state of New Jersey. Ocean County has a lower proportion of minorities (approximately 9 percent) than Burlington County or the state (USCB 2010c).
The percentage of population living below the poverty level for the state of New Jersey (approximately 9 percent) is higher than Burlington County (approximately 5 percent), and similar to Ocean County (approximately 10 percent) (USCB 2010b).

Table 3.2.11-1. Population within the Vicinity of JB MDL

<table>
<thead>
<tr>
<th>Geographic Area</th>
<th>Total Population</th>
<th>Minority Population</th>
<th>Percent Minority</th>
<th>Low-Income Population</th>
<th>Percent Low-Income</th>
<th>Children Under Age 18</th>
<th>Percent Children</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Jersey</td>
<td>8,791,894</td>
<td>2,762,646</td>
<td>31.6</td>
<td>826,438</td>
<td>9.4</td>
<td>2,065,214</td>
<td>23.5</td>
</tr>
<tr>
<td>Burlington County</td>
<td>448,734</td>
<td>117,392</td>
<td>26.2</td>
<td>23,783</td>
<td>5.3</td>
<td>104,243</td>
<td>23.2</td>
</tr>
<tr>
<td>Ocean County</td>
<td>576,567</td>
<td>51,990</td>
<td>9.0</td>
<td>54,774</td>
<td>9.5</td>
<td>134,919</td>
<td>23.4</td>
</tr>
<tr>
<td>New Hanover Township</td>
<td>7,385</td>
<td>3,393</td>
<td>45.9</td>
<td>258</td>
<td>3.5</td>
<td>586</td>
<td>7.9</td>
</tr>
<tr>
<td>North Hanover Township</td>
<td>7,678</td>
<td>1,522</td>
<td>19.8</td>
<td>499</td>
<td>6.5</td>
<td>2,266</td>
<td>29.5</td>
</tr>
<tr>
<td>Pemberton Township</td>
<td>27,912</td>
<td>9,064</td>
<td>32.5</td>
<td>2,735</td>
<td>9.8</td>
<td>6,869</td>
<td>24.6</td>
</tr>
<tr>
<td>Plumsted Township</td>
<td>8,421</td>
<td>489</td>
<td>5.8</td>
<td>1,322</td>
<td>15.7</td>
<td>2,207</td>
<td>26.2</td>
</tr>
<tr>
<td>Wrightstown Borough</td>
<td>802</td>
<td>422</td>
<td>52.6</td>
<td>36</td>
<td>4.5</td>
<td>216</td>
<td>26.9</td>
</tr>
</tbody>
</table>

Note: 1. Total population, minority population, and number of children under the age of 18 were obtained from the 2010 census data. Low income population numbers are from the 2007-2011 American Community Survey 5-Year Estimates.
2. The percentage of low-income persons is calculated as a percentage of all persons for whom the Bureau of the Census determines poverty status, which is generally a lower number than the total population because it excludes institutionalized persons, persons in military group quarters and college dormitories, and unrelated individuals under 15 years old.

Source: USCB 2010b, 2011c.

Table 3.2.11-2 displays the total population, total minority population, percentage minority, total low-income population, and low-income percentages for the vicinity of JB MDL with the baseline DNL greater than 65 dB.

Table 3.2.11-2. Population within Baseline Noise Contours, JB MDL

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>65-70</td>
<td>54</td>
<td>8</td>
<td>15</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>70-75</td>
<td>26</td>
<td>4</td>
<td>15</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>75-80</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>80-85</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
<td>12</td>
<td>15</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Note: 1. Total population, minority population, and number of children under the age of 18 were obtained from the 2010 census data. Low income population numbers are from the 2007-2011 ACS 5-Year Estimates.
2. The percentage of low-income persons is calculated as a percentage of all persons for whom the USCB determines poverty status, which is generally a lower number than the total population because it excludes institutionalized persons, persons in military group quarters and college dormitories, and unrelated individuals under 15 years old.

Sources: USCB 2010c, 2011c.
In the area surrounding JB MDL, approximately 80 people were estimated to be affected by existing DNL between 65 and 75 dB. Out of that total, approximately 30 percent are considered to be minorities and 5 percent to be low-income. The percentage of minority populations currently affected by noise is greater than the approximate 26 percent minority average in Burlington County and greater than the approximate 9 percent minority average in Ocean County. The percentage of low-income populations in the area surrounding JB MDL affected by the DNL greater than 65 dB is approximately the same as the 5 and slightly lower than the 10 percent low-income average in Burlington and Ocean counties (respectively).

3.2.11.2 Protection of Children

In 2010, the number of children under the age of 18 living in Burlington County was approximately 104,243 (approximately 23 percent of the population). In 2010, the number of children under the age of 18 living in Ocean County was approximately 134,919 (approximately 23 percent of the population) (Table 3.2.11-1). The state of New Jersey has a similar percentage population of children compared to the counties (approximately 24 percent). There are no on-installation housing or facilities for children located at the 108 WG installation. Currently, there are no Kindergarten through Grade 12 off-installation schools that are exposed to aircraft DNL of 65 dB or above; however, there is one child development center that is currently located within the 65 dB contour.
3.3 Pease Air National Guard Station

Pease ANGS, home of the 157 ARW of the NH ANG, is located in Portsmouth and Newington, New Hampshire, approximately 55 miles north of Boston, Massachusetts. The 157 ARW base is situated on the northeast side of the Portsmouth IAP at Pease, which is owned and operated by PDA.

3.3.1 Noise

To evaluate noise impacts in the vicinity of a military installation located at a commercial airport with a published FAR Part 150 Airport Noise Compatibility Study, the USAF allows for use of the FAA’s INM to generate DNL noise contours. The Airport Authority under the FAA uses INM for generating noise contours and for Portsmouth IAP, the FAA’s INM was used. For more detailed information on the noise modeling methods, see Appendix A, Section A.1.2.

3.3.1.1 Baseline Operations

In 1996, the PDA published a FAR Part 150 Airport Noise Compatibility study for Portsmouth IAP. This study is currently being updated but was not available to use for this EIS. The 1996 INM aircraft operational data was updated in 2008 in support of an Environmental Assessment prepared to support construction projects at Pease ANGS (157 ARW 2008a). This data for the KC-135 was updated to reflect the actual KC-135 2012 aircraft operations and is used as the baseline for this analysis.

Based on aircraft operations data validated in March 2013, approximately 37,016 total aircraft operations occurred at Portsmouth IAP during the 12-month period ending October 2012 (Pomeroy 2013). An aircraft operation is counted each time an aircraft departs from the runway and each time they approach the runway. Table 3.3.1-1 summarizes the frequency of aircraft operations for the Portsmouth IAP airfield based on information provided by base staff, flying organizations, and air traffic control personnel. The majority of aircraft traffic includes air cargo, commercial regional jets (air taxi), and larger commercial aircraft and other based military aircraft, along with based ANG KC-135 aircraft. Although the number of aircraft operations at an installation varies from day to day, for Portsmouth IAP, operations are calculated for an AAD, meaning that yearly operations are averaged across all 365 days of the year. Table 3.3.1-1 reflects a total of approximately 102 aircraft operations on an AAD (37,410 divided by 365 days). Approximately 4 percent of the total operations at Portsmouth IAP occur during environmental night (10:00 p.m. through 7:00 a.m.).
Table 3.3.1-1. Current Portsmouth IAP Annual Aircraft Operations

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>DEPARTURES</th>
<th>ARRIVALS</th>
<th>TOTAL</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Day</td>
<td>Night²</td>
<td>Day</td>
<td>Night¹</td>
</tr>
<tr>
<td>KC-135</td>
<td>2,939</td>
<td>131</td>
<td>2,939</td>
<td>131</td>
</tr>
<tr>
<td>Other Aircraft³</td>
<td>14,541</td>
<td>1,094</td>
<td>14,853</td>
<td>782</td>
</tr>
<tr>
<td>Total</td>
<td>17,480</td>
<td>1,225</td>
<td>17,792</td>
<td>913</td>
</tr>
</tbody>
</table>

Notes: 1. Includes Closed Patterns (which count as two airfield operations). 2. Night – Between 10 p.m. and 7 a.m. for environmental night. 3. Other based military and civilian aircraft and transient aircraft (multiple type aircraft); example aircraft include: Lear 25, 35, Airbus 319.

Source: 157 ARW 2013a.

Based on the 2012 baseline data, the 157 ARW KC-135 aircraft flew a total of 6,140 annual airfield operations, or an average of 17 airfield operations a day. Approximately 4 percent of the total KC-135 operations occur during environmental night. Approximately 16 percent of total operations at Portsmouth IAP are accomplished by the 157 ARW KC-135 aircraft.

3.3.1.2 Runway and Flight Profiles

Portsmouth IAP aircraft use straight out departures, straight in approaches, IFR or radar closed patterns, and VFR closed patterns as the basic flight patterns for training flights and local arrival and departures. Detailed representative arrival, departure, and closed pattern flight tracks are found in Appendix C, Noise.

3.3.1.3 Existing Noise Environment

Noise contours developed for baseline conditions at Portsmouth IAP are shown in Figure 3.3.1-1. The acreage within each DNL contour on Portsmouth IAP property is shown in Table 3.3.1-2; no off-airport noise levels greater than 65 dB DNL occur.

Table 3.3.1-2. Acres within Baseline Noise Contours, Portsmouth IAP

<table>
<thead>
<tr>
<th>Noise Level (dB)</th>
<th>On-Airport (acres)</th>
<th>Off-Airport (acres)</th>
<th>Total (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>65-70</td>
<td>237</td>
<td>0</td>
<td>237</td>
</tr>
<tr>
<td>70-75</td>
<td>81</td>
<td>0</td>
<td>81</td>
</tr>
<tr>
<td>75-80</td>
<td>16</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>80-85</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Greater than 85</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>334</td>
<td>0</td>
<td>334</td>
</tr>
</tbody>
</table>

Note: Numbers may not add precisely due to rounding. dB = decibel
Figure 3.3.1-1. Baseline DNL Noise Contours for Portsmouth IAP

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS
Chapter 3 – Base Affected Environment
Pease ANGS
Potential Hearing Loss

As shown in Table 3.3.1-2, there is no property off the Portsmouth IAP that falls within the baseline 80+ dB DNL noise contour; therefore, no potential hearing loss risk is currently associated with these areas.

3.3.1.4 Portsmouth International Airport Noise Abatement Procedures

Portsmouth IAP has published certain restrictions on flying activities that could adversely affect its neighbors in an effort to reduce noise impacts while maintaining safe operations. The restrictions are published on aeronautical charts and apply to both military and civilian aircraft (SkyVector 2013a). The restrictions include guidance for noise abatement procedures for the airfield including, but not limited to, requiring aircraft departing the airport to maintain runway heading to 1,100 feet MSL prior to turning and not allowing aircraft to practice low approaches or touch-and-go landings between the hours of 11:00 p.m. and 7:00 a.m. for local based aircraft and from 9:00 p.m. to 7:00 a.m. for transient aircraft or before 12:00 on Sundays for all aircraft. The noise abatement procedures are considered voluntary for military aircraft and can be waived based on mission requirements (Smith 2013a).

3.3.1.5 Pease Air National Guard Station Noise Complaints Procedures

Currently, all noise complaints are handled through the PDA noise complaint hotline or website. Thirty-one noise complaints were logged between April 10, 2012 and December 12, 2012 (nine of the complaints received were from one specific individual, five complaints from another specific individual, and the rest were from others). Sherman Village, a housing development, lies just outside of the 65 dB DNL noise contour; complaints received from that area are typically associated with helicopter activity (PDA 2012a, 2012b).

3.3.2 Air Quality

3.3.2.1 Regulatory Setting

Individual states are delegated the responsibility to regulate air quality in order to achieve or maintain air quality in attainment with these standards. The New Hampshire Department of Environmental Services is the agency responsible for the regulation of air quality within the state of New Hampshire. The state of New Hampshire regulates air quality through the New Hampshire Code of Administrative Rules, ENV-A 100 to ENV-A 4805. The state of New Hampshire has adopted the NAAQS and has not adopted separate state air quality standards. The NAAQS are summarized in Table 3.3.2-1.
Table 3.3.2-1. Ambient Air Quality Standards

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>National Standards<sup>a</sup></th>
<th>Primary<sup>b,c</sup></th>
<th>Secondary<sup>b,d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>O<sub>3</sub></td>
<td>8-hour</td>
<td></td>
<td>0.075 ppm (147 µg/m<sup>3</sup>)</td>
<td>Same as primary</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>8-hour</td>
<td></td>
<td>9 ppm (10 mg/m<sup>3</sup>)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td></td>
<td>35 ppm (40 mg/m<sup>3</sup>)</td>
<td></td>
</tr>
<tr>
<td>NO<sub>2</sub></td>
<td>Annual</td>
<td></td>
<td>0.053 ppm (100 µg/m<sup>3</sup>)</td>
<td>Same as primary</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td></td>
<td>0.100 ppm (188 µg/m<sup>3</sup>)</td>
<td></td>
</tr>
<tr>
<td>SO<sub>2</sub></td>
<td>24-hour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-hour</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td></td>
<td>0.075 ppm (189 µg/m<sup>3</sup>)</td>
<td></td>
</tr>
<tr>
<td>PM<sub>10</sub></td>
<td>Annual</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td></td>
<td>150 µg/m<sup>3</sup></td>
<td>Same as primary</td>
</tr>
<tr>
<td>PM<sub>2.5</sub></td>
<td>Annual</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td></td>
<td>12 µg/m<sup>3</sup></td>
<td>15 µg/m<sup>3</sup></td>
</tr>
<tr>
<td>Pb</td>
<td>Rolling 3-month period</td>
<td></td>
<td>0.15 µg/m<sup>3</sup></td>
<td>Same as primary</td>
</tr>
</tbody>
</table>

Notes:
- Standards other than the 1-hour ozone, 24-hour PM₁₀, 24-hour PM_{2.5}, and those based on annual averages are not to be exceeded more than once a year. The 8-hour ozone national standard has replaced the 1-hour ozone national standard.
- Concentrations are expressed first in units in which they were promulgated. Equivalent units given in parenthesis.
- Primary Standards: The levels of air quality necessary, with an adequate margin of safety to protect the public health. Each state must attain the primary standards no later than 3 years after that state’s implementation plan is approved by the USEPA.
- Secondary Standards: The levels of air quality necessary to protect the public welfare from any known or anticipated adverse effects of a pollutant.

µg/m³ = micrograms per cubic meter; CO = carbon monoxide; mg/m³ = milligrams per cubic meter; NO₂ = nitrogen dioxide; O₃ = ozone; Pb = lead; PM_{2.5} = particulate matter less than or equal to 2.5 microns in diameter; PM₁₀ = particulate matter less than or equal to 10 microns in diameter; ppm = parts per million; SO₂ = sulfur dioxide.

Source: USEPA 2012.

Pease ANGS, home of the 157 ARW of the NH ANG, is located in Portsmouth and Newington, New Hampshire, approximately 55 miles north of Boston, Massachusetts. The USEPA had previously classified the Boston-Manchester-Portsmouth area as a moderate nonattainment area for the 1997 O₃ standard. On January 31, 2013, the USEPA formally redesignated southeastern New Hampshire as an attainment area for the 1997 O₃ standard. The region is therefore considered a maintenance area for O₃. The region is designated attainment/unclassified area for all other criteria pollutants. The Proposed Action is therefore subject to the requirements of Section 176(c) of the CAA, as articulated in the USEPA General Conformity Rule. Based on the classification for the region as a maintenance area, the *de minimis* emission thresholds for the General Conformity Rule for ozone precursors (NO_x and VOCs) is 100 tpy.
The USEPA recently promulgated a more stringent standard for lead, and has redesigned its monitoring program to address lead and identified airports for monitoring because aviation gas used in piston aircraft still contains lead. The project area is considered attainment/unclassified for lead, and lead is not used in aviation fuel used in the KC-135 or KC-46A aircraft.

3.3.2.2 Climate and Meteorology

Portsmouth, New Hampshire has a humid continental climate with warm summers and no dry season. The area within 25 miles of this station is covered by forests (62 percent), oceans and seas (34 percent), and lakes and rivers (2 percent). Over the course of a year, the temperature typically varies from 17°F to 81°F and is rarely below 3°F or above 89°F. The warm season lasts from June 4 to September 15 with an average daily high temperature above 71°F. The highest temperatures occur in July, with an average high of 81°F and low of 63°F. The cold season lasts from December 5 to March 13 with an average daily high temperature below 42°F. The coldest temperatures occur in January, with an average low of 17°F and high of 32°F (Northeast Regional Climate Center 2013b).

The wind is most often out of the west (24 percent of the time), north west (14 percent of the time), and south west (11 percent of the time). Over the course of the year, typical wind speeds vary from 0 miles per hour to 16 miles per hour (calm to moderate breeze), rarely exceeding 25 miles per hour (strong breeze). Winds are generally highest during the springtime (Northeast Regional Climate Center 2013b).

3.3.2.3 Regional and Local Air Pollutant Sources

The 157 ARW is based on the northeast side of Portsmouth IAP, approximately 1 mile from Portsmouth, New Hampshire. The surrounding area is developed to the east and south of the airport. To the west of the airport lies the Great Bay National Wildlife Refuge and Great Bay.

The USEPA’s National Emissions Inventory includes data for the year 2008 for Rockingham County. Table 3.3.2-2 summarizes the regional emissions (stationary, area-wide, and mobile) of criteria pollutants and precursor emissions for the affected areas.
Table 3.3.2-2. Regional Emissions for Rockingham County, New Hampshire

<table>
<thead>
<tr>
<th>Regional Emissions</th>
<th>CO</th>
<th>VOCs</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stationary Sources</td>
<td>5,780</td>
<td>1,042</td>
<td>2,628</td>
<td>6,982</td>
<td>3,888</td>
<td>3,696</td>
</tr>
<tr>
<td>Area-Wide Source</td>
<td>4,368</td>
<td>3,521</td>
<td>159</td>
<td>8</td>
<td>4,055</td>
<td>981</td>
</tr>
<tr>
<td>Mobile Sources</td>
<td>50,746</td>
<td>5,226</td>
<td>8,648</td>
<td>587</td>
<td>534</td>
<td>421</td>
</tr>
<tr>
<td>Total</td>
<td>60,894</td>
<td>9,789</td>
<td>11,435</td>
<td>7,577</td>
<td>8,477</td>
<td>5,098</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding. Emissions of Pb are not included because the affected region contains no significant sources of this criteria pollutant. CO = carbon monoxide; NOx = oxides of nitrogen; PM10 = particulate matter less than or equal to 10 microns in diameter; PM2.5 = particulate matter less than or equal to 2.5 microns in diameter; SO2 = sulfur dioxide; VOC = volatile organic compound.

Source: USEPA 2008.

3.3.2.4 Baseline Air Quality

Representative background air monitoring data for the 157 ARW for the period 2008-2012 are shown in Table 3.3.2-3. The closest monitoring stations to Portsmouth IAP include the monitoring station in Portsmouth itself, along with monitoring stations in Nashua and Manchester.

As shown in Table 3.3.2-3, the area has experienced one to two O3 exceedances annually during the recent 5-year period. The data show that the area did not experience violations of other NAAQS.
Table 3.3.2-3. Ambient Air Monitoring Data for the Portsmouth Area

<table>
<thead>
<tr>
<th>Air Quality Indicator</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone (O₃)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 8-hour value (ppm)</td>
<td>0.079</td>
<td>0.076</td>
<td>0.081</td>
<td>0.086</td>
<td>0.083</td>
</tr>
<tr>
<td>Days above federal standard (0.075 ppm)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Particulate matter less than or equal to 2.5 microns in diameter (PM₂.₅)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 24-hour value (µg/m³)</td>
<td>33.2</td>
<td>29</td>
<td>26.3</td>
<td>14</td>
<td>24.3</td>
</tr>
<tr>
<td>Days above federal standard (35 µg/m³)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Annual Average value (µg/m³)</td>
<td>8.2</td>
<td>7.1</td>
<td>7.4</td>
<td>6.5</td>
<td>7.7</td>
</tr>
<tr>
<td>Particulate matter less than or equal to 10 microns in diameter (PM₁₀)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 24-hour value (µg/m³)</td>
<td>61</td>
<td>57</td>
<td>60</td>
<td>59</td>
<td>59</td>
</tr>
<tr>
<td>Days above federal standard (150 µg/m³)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 1-hour value (ppm)</td>
<td>9.4</td>
<td>3.3</td>
<td>3.4</td>
<td>2.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Days above federal standard (9 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peak 8-hour value (ppm)</td>
<td>4.4</td>
<td>2.3</td>
<td>2.4</td>
<td>2.4</td>
<td>0.6</td>
</tr>
<tr>
<td>Days above federal standard (35 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO₂)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 1-hour value (ppm)</td>
<td>NA</td>
<td>0.051</td>
<td>0.050</td>
<td>0.012</td>
<td>0.011</td>
</tr>
<tr>
<td>99th Percentile (ppm)</td>
<td>NA</td>
<td>0.047</td>
<td>0.042</td>
<td>0.010</td>
<td>0.010</td>
</tr>
<tr>
<td>Days above federal standard (0.100 ppm)</td>
<td>NA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO₂)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 1-hour value (ppm)</td>
<td>0.085</td>
<td>0.073</td>
<td>0.048</td>
<td>0.070</td>
<td>0.034</td>
</tr>
<tr>
<td>99th Percentile (ppm)</td>
<td>0.062</td>
<td>0.042</td>
<td>0.045</td>
<td>0.037</td>
<td>0.021</td>
</tr>
<tr>
<td>Days above federal standard (0.075 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peak 24-hour value (ppm)</td>
<td>0.025</td>
<td>0.016</td>
<td>0.015</td>
<td>0.014</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Notes:
1. The federal 1-hour SO₂ standard was adopted in 2010.
2. µg/m³ = micrograms per cubic meter; NA = data not available; ppm = parts per million

3.3.2.5 157th Air Refueling Wing Emissions

The 157 ARW currently flies and maintains eight KC-135 refueler aircraft and one backup inventory KC-135 to support its air refueling mission. The primary support operations performed at the 157 ARW include aircraft fueling, aircraft deicing, aircraft maintenance, aircraft support equipment maintenance, ground vehicle maintenance, fueling of ground vehicles, and facilities maintenance. These operations involve activities such as corrosion control, non-destructive inspection, fuel cell maintenance, engine maintenance, hydraulics, and wheel and tire maintenance (157 ARW 2005, 2013c).

Emissions for the 157 ARW have been quantified in the Final 2009 Air Emissions Inventory (157 ARW 2010). The inventory evaluated the emissions from the 157 ARW to determine its status under the Title V Federal Operating Permits program. Based on the major source thresholds for the area, the major source thresholds are 50 tpy for O₃ precursors NOₓ and VOCs, 100 tpy for all other criteria pollutants, and less than 10 tpy of any single HAP or 25 tpy of any combination of HAPs (157 ARW 2010).
The 157 ARW operates under General State Permit GSP-EG-0370 which includes nine emergency generators and one emergency fire pump. The permit contains operational limits such that its potential emissions are restricted below the Title V major source thresholds. The 2009 Air Emissions Inventory demonstrates that the installation operates in compliance with the limits in its permit, and total base-wide potential emissions from stationary sources are below the major source thresholds (157 ARW 2010).

Stationary source emissions at the 157 ARW include emissions from natural gas, diesel, and propane-fired heating units, internal combustion engines, fuel tanks, a gasoline service station, and various minor sources such as solvent use, deicing, and welding. Mobile source emissions include emissions from aircraft operations (take-offs and landings), AGE, ground vehicle operations, and maintenance aircraft operations performed with the engines still mounted on the aircraft (engine run-ups and trim checks). Emissions from aircraft operations at the 157 ARW installation considered all based and transient aircraft. Aircraft emissions were calculated for all flight activities below the default mixing height (3,000 feet AGL). Baseline emissions also include stationary sources, and emissions associated with vehicle trips associated with existing personnel and dependents. These emissions, combined with those from the other mobile sources, account for the majority of the emissions from the installation.

To provide a baseline for evaluating the net emissions increases/decreases associated with Alternative #3, emissions from the KC-135 aircraft operations, aircraft refueling, KC-135 engine testing, KC-135-related AGE, and POVs associated with KC-135 flight operations were evaluated. Emissions from the KC-135 aircraft operations were calculated based on 2012 aircraft operations identified in Table 2.3-13, utilizing site-specific flight profiles to calculate aircraft operations below a default mixing height of 3,000 feet AGL. A discussion of the methodology for quantifying emissions is provided in Appendix A, Section A.2.3. Emissions for the baseline emissions associated with baseline operations of the KC-135 aircraft are provided in Table 3.3.2-4.

<table>
<thead>
<tr>
<th>Emission Source</th>
<th>VOCs</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 Baseline Aircraft Operations</td>
<td>2.41</td>
<td>36.29</td>
<td>73.94</td>
<td>6.29</td>
<td>0.33</td>
<td>0.33</td>
<td>17,480</td>
</tr>
<tr>
<td>AGE</td>
<td>0.00</td>
<td>0.01</td>
<td>0.07</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1,588</td>
</tr>
<tr>
<td>Engine Testing</td>
<td>0.10</td>
<td>1.47</td>
<td>0.40</td>
<td>0.06</td>
<td>0.01</td>
<td>0.01</td>
<td>174</td>
</tr>
<tr>
<td>POVs</td>
<td>1.11</td>
<td>19.06</td>
<td>0.91</td>
<td>0.01</td>
<td>0.04</td>
<td>0.02</td>
<td>597</td>
</tr>
<tr>
<td>Total Baseline Emissions</td>
<td>3.62</td>
<td>56.84</td>
<td>75.32</td>
<td>6.36</td>
<td>0.37</td>
<td>0.35</td>
<td>19,839</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding. CO = carbon monoxide; CO2e = carbon dioxide equivalent; NOx = oxides of nitrogen; PM10 = particulate matter less than or equal to 10 microns in diameter; PM2.5 = particulate matter less than or equal to 2.5 microns in diameter; SO2 = sulfur dioxide; VOC = volatile organic compound

3.3.3 Safety

This section provides information on both ground and flight safety. Ground safety includes discussions of fire/crash response capabilities, APZs/RPZs, explosive safety, and AT/FP. Flight safety includes discussions on flight safety procedures, aircraft mishaps, BASH, and fuel jettison requirements. The affected environment includes the airfield and local airspace surrounding Portsmouth IAP.

3.3.3.1 Ground Safety

Fire/Crash Response

Day-to-day operations and maintenance activities conducted by the 157 ARW are performed in accordance with applicable USAF safety regulations, published USAF Technical Orders, and standards prescribed by AFOSH requirements. ARFF services at Pease ANGS are available on a 24-hour basis. Upon notification of an in-flight or ground emergency, the crash and rescue services personnel would coordinate emergency services. ARFF equipment and personnel at Pease ANGS meet USAF requirements (Headquarters AMC and NGB 2013a).

Accident Potential Zone/Runway Protection Zone

Development restrictions associated with RPZs are intended to preclude incompatible land use activities from being established in these areas. The city of Portsmouth, New Hampshire utilizes the FAA’s airport land use compatibility guidelines, and as such, the RPZs have allowed development to be compatible with airport operations. Details of development and land use in the Portsmouth IAP vicinity are included in Section 3.3.7, Land Use.

Explosive Safety

The 157 ARW uses a small range of munitions required for performance of their mission. The existing munitions storage capabilities on Pease ANGS meet the requirement for small arms deployment/training ammunition and other munitions required by the 157 ARW. The munitions storage complex consists of five earth-covered igloos of 208 SF each (total storage area of 1,040 SF), with a 192 SF receipt/inspection facility. Additional storage was established in the Squadron Operations building, which provides additional square footage for aircrew flight equipment assets. Additionally, a 2013 Memorandum of Agreement with Westover Air Reserve Base is in place augmenting munitions storage capacity.
Anti-Terrorism/Force Protection

Many of the 157 ARW military facilities at Pease ANGS were constructed before AT/FP considerations became a critical concern. Thus, under current conditions, many facilities do not comply with all current AT/FP standards. However, as new construction occurs and as facilities are modified, the 157 ARW would incorporate these standards to the maximum extent practicable.

3.3.3.2 Flight Safety

Flight Safety Procedures

Aircraft flight operations from Pease ANGS are governed by standard flight rules. Specific safety requirements are contained in standard operating procedures that must be followed by all aircrews operating from the airfield (AFI 11-2KC-135V3, Flying Operations, C/KC-135 Operations Procedures, 2010) to ensure flight safety. While having aircraft in close proximity during air refueling is inherently dangerous, refueling mishaps are rare. Emergency separation procedures are established and practiced by both tanker and receiver aircrews.

Aircraft Mishaps

KC-135 aircraft (all models) have flown more than 14,750,000 hours since the aircraft entered the USAF inventory in 1957. Over that period, 83 Class A mishaps have occurred and 64 aircraft have been destroyed (specific statistics for mishaps during refueling are not recorded). This results in a Class A mishap rate of 0.56 per 100,000 flight-hours, and an aircraft destroyed rate of 0.43 per 100,000 flight-hours (AFSEC 2012). The 157 ARW has not experienced a Class A mishap in the past 10 years (Pease ANGS 2013).

Bird/Wildlife Aircraft Strike Hazard

The USAF BASH Team maintains a database that documents all reported bird/wildlife aircraft strikes. Historic information across the USAF for the past 40 years indicates that 39 USAF KC-135 aircraft have been destroyed and 33 fatalities have occurred from bird/wildlife-aircraft strikes, with the last Class A mishap occurring in 2010 (AFSEC 2013).

The 157 ARW of the NH ANG has an effective, on-going BASH program through which information and assistance is freely shared between airfield users, the Portsmouth IAP staff, and the local air traffic controllers. The airport also has an aggressive program with the USDA, including continual monitoring within the fenceline to minimize BASH potential. The airport has an excellent track record of managing BASH issues and has successfully included the management at the off-airport landfill property. Serious BASH-related accidents within the
immediate Portsmouth IAP area are rare and have never resulted in a Class A mishap (Pease ANGS 2013). The 157 ARW has recorded 98 minor BASH incidents from 2008 to 2013, with an average of fewer than 20 per year (Pease ANGS 2013).

Fuel Jettison

For use in emergency situations, the KC-135 aircraft have the capability to jettison fuel and reduce aircraft gross weight for flight safety. In accordance with AFIs, Pease ANGS has established local procedures for gross weight adjustments; fuel jettison areas are over the Atlantic Ocean and above 20,000 feet AGL. 157 ARW aircraft jettisoned fuel once in 2012 and twice in 2011 (Pease ANGS 2013).

3.3.4 Soils and Water

3.3.4.1 Soils

The Portsmouth area of New Hampshire is within the Appalachian Highlands and consists almost entirely of glaciated till plains and rolling hills dissected by narrow valleys with a thin mantle of till. The river valleys and coastal plains are filled with glacial lake sediments, marine sediments, and glacial outwash (USDA 2006). The 157 ARW installation is located on improved land and is generally flat with plateau-like declining coastal terrain. Relief ranges from approximately 0 to 115 feet MSL with slopes generally under 5 percent (157 ARW 2008a).

The NRCS Soil Survey for Rockingham County, New Hampshire identifies the following five individual soil types at the installation:

Pennichuck channery very fine sandy loam, 3 to 8 percent slopes: This is a gently sloping soil typically found on low hills and terraces from till or glacial drift composed of an unconsolidated mixture of sediments. The rating class for building site development is considered somewhat limited due to slope, depth to hard bedrock, and depth to saturated zone. This soil type is designated as Prime Farmland (NRCS 2012). Approximately 11 percent of the installation is composed of this soil type.

Udorthents, smoothed: This soil is found in areas that have been excavated and regraded or that have been filled with soil material and graded. This soil type is typically used for urban development or landfills. The suitability of the soils as a site for development varies (NRCS 2012). The rating class for building site development is not rated for this soil type. Approximately 15 percent of the installation is composed of this soil type.

Urban land: This soil primarily consists of cut/fill sites used for buildings, paved roads, parking lots, and other areas of urban development. The rating class for building site development is not
rated for this soil type and requires onsite investigation and evaluation for most land use
decisions to identify any potential limitations (NRCS 2012). Approximately 42 percent of the
installation is composed of this soil type.

Urban land-Canton complex, 3 to 15 percent slopes: This soil is typically found on broad plains
and low hills that are partially covered by streets, parking lots, and buildings. The soil consists
of strongly intermingled Urban land and sloping Canton soil (NRCS 2012). The rating class for
building site development is not rated for this soil type. Approximately 30 percent of the
installation is composed of this soil type.

Windsor loamy sand, 3 to 8 percent slopes: This gently sloping soil is typically found on low
hills, broad plains, and adjacent to major streams. The rating class for building site development
is considered somewhat limited due to slope and depth to saturated zone. In addition, this soil
type is designated as Farmland of Local Importance (NRCS 2012). Approximately 2 percent of
the installation is composed of this soil type.

3.3.4.2 Surface Water

The 157 ARW installation is located within the Piscataqua-Salmon Falls Watershed that
encompasses over 2,590 square miles across the states of Maine, New Hampshire, and
Massachusetts (USEPA 2013d). The Piscataqua River Watershed, a sub-basin of Piscataqua-
Salmon Falls Watershed, is the local watershed surrounding Portsmouth IAP. The Piscataqua
River Watershed begins at the confluence of Salmon Falls and Cocheco Rivers and ultimately
drains to Portsmouth Harbor (Seacoast Watershed Information Manager 2013).

Surface water features within the vicinity of the 157 ARW installation include the Atlantic
Ocean and Portsmouth Harbor to the east, the Great Bay National Estuary to the southwest, Little
Bay to the northwest, and several rivers and creeks including: Flagstone Brook to the north, the
confluence of Oyster and Piscataqua rivers to the northeast, Paul’s Brook to the northeast,
Grafton Ditch to the south, Hodgson Brook to the east, and McIntyre Brook to the west (Figure
3.3.4-1).

The Great Bay National Estuary, adjacent to the Portsmouth IAP along its southwestern border,
is a unique water feature as it is both a saltwater and a freshwater system, set apart from the
coastline. Great Bay lies at the confluence of tidally driven salt water from the Gulf of Maine
and fresh water from the Salmon Falls, Cocheco, Bellamy, Oyster, Lamprey, Squamscott, and
Winnicut rivers. The USEPA has afforded special protection to it as one of only 28 Estuaries of
National Significance (New Hampshire Department of Environmental Services 2013).
Figure 3.3.4-1. Surface Water Features and Wetlands in the Vicinity of Pease ANGS
Surface water within the installation primarily consists of a series of man-made ditches, storm sewers, and drainage swales. Drainage of the developed area is typified by overland flow to storm drain inlets and basins connected by a network of underground pipes. There are four primary drainage basins on the installation: Outfall-001, -002, -003, and -004. Outfall-001 drains to Hodgson Brook and ultimately joins the Piscataqua River. Outfall-002 drains to Flagstone Brook and eventually discharges to Little Bay. Outfall-003 drains to McIntyre Brook ultimately discharging to Great Bay. Outfall-004 drains to Grafton Ditch and eventually discharges to the Piscataqua River. The outfalls associated with industrial activity are regulated under an individual National Pollutant Discharge Elimination System (NPDES) permit for Stormwater Runoff Associated with Industrial Activity (Permit No. NH0090000). The permit is administered by the USEPA New England Region (Portsmouth IAP 2011).

3.3.4.3 Groundwater

Groundwater in this area is primarily composed of crystalline-rock aquifers of the New England Physiographic Province (USGS 1995b). The regional groundwater system within the Great Bay area consists of a till- or marine-sediment-covered crystalline bedrock aquifer. Coarse-grained sand and gravel aquifers are generally small and discontinuous with the exception of a large ice-contact deposit beneath the former Pease AFB, in Newington. Crystalline bedrock consists of three main units: the Kittery Formation, a metasandstone on the western side of the bay; the Eliot Formation, a phyllite along the eastern and southern sides of the bay; and the Exeter Diorite, inland west of the bay (USGS 2001).

Groundwater at the 157 ARW occurs in unconsolidated material, fractured bedrock, and competent bedrock. The principal water-bearing overburden units are the Upper Sand and Lower Sand. Tidal fluctuations can be measured in both water table and bedrock wells within the installation. Groundwater elevations also vary seasonally, with groundwater highs from December to May and lows from July to September. Based on the installation groundwater contour map, the subject property is on a localized high point with radial flow outward (157 ARW 2008a).

The primary water source for the Pease International Tradeport are three wells operated by Portsmouth waterworks; Haven, Smith, and Harrison wells (City of Portsmouth 2010). There are currently three active Groundwater Management Zones located on the installation, as mandated by the New Hampshire Department of Environmental Services. A Groundwater Management Zone is a three-dimensional region containing groundwater being managed to mitigate impairment caused by the release of contaminants from a site. The source of contaminants in the three Groundwater Management Zones on the installation include the flightline, Building 249 (a storage facility), and the Bulk Fuels Storage area (157 ARW 2008a).
3.3.4.4 Floodplains

Per the FEMA Flood Insurance Rate Map for Rockingham County, New Hampshire, Panel 255 (Map Number 33015C0255E, Effective May 17, 2005), the 157 ARW installation is located within an area designated as Zone X. The designation Zone X are areas determined to be outside the 0.2 percent annual chance flood (500 year flood), indicating areas of minimal flooding (FEMA 2005).

3.3.5 Biological Resources

3.3.5.1 Vegetation

Portsmouth IAP occurs within the Eastern Broadleaf Forest (Oceanic) Province. Vegetation in this region typically is characterized by a winter deciduous forest dominated by tall broadleaf trees (Bailey 1995). The majority of the 157 ARW installation is developed or actively landscaped, with approximately 37 percent containing natural vegetation. Natural vegetation consists of primarily fragmented areas comprised of Appalachian oak-pine forests in the northern and southeastern portion of the installation. Dominant evergreen species include white pine (*Pinus strobus*) and hemlock (*Tsuga canadensis*). Dominant deciduous species include maples (*Acer* spp.), oaks (*Quercus* spp.), birch (*Betula* spp.), beech (*Fagus grandifolia*), and hickories (*Carya* spp.) (NGB 2011; 157 ARW 2008a, 2013b).

3.3.5.2 Wildlife

Due to the fragmented pockets of native vegetation, high noise levels, and human activities at and surrounding the airport, wildlife habitat is limited. As a result, the majority of wildlife present at the airport and the 157 ARW installation consists of species that are highly adapted to developed and disturbed areas. Pease ANGS is located within the Atlantic Flyway, one of four major North American corridors for migratory birds. The majority of the bird species found at Portsmouth IAP or within its vicinity are protected under the MBTA. Common bird species occurring or potentially occurring in or near the airport include Rock Doves (*Columba livia*), European Starlings (*Sturnus vulgaris*), Mourning Doves (*Zenaida macroura*), American Crows (*Corvus brachyrhynchos*), American Kestrels (*Falco sparverius*), Red-winged Blackbirds (*Agelaius phoeniceus*), Short-eared Owls (*Asio flammeus*), and Red-tailed Hawks (*Buteo jamaicensis*). Common mammals include white-tailed deer (*Odocoileus virginianus*), red foxes (*Vulpes vulpes*), coyotes (*Canis latrans*), eastern chipmunk (*Tamias striatus*), gray squirrel (*Sciurus carolinensis*), and raccoon (*Procyon lotor*). Common reptiles and amphibians include the American bullfrog (*Lithobates catesbianus*), American toad (*Anaxyrus americanus*), eastern red-backed salamander (*Plethodon cinereus*), black racer (*Coluber constrictor*), snapping turtle (*Chelydra serpentina*), and spotted turtle (*Clemmys guttata*) (157 ARW 2008a, 2013b).
3.3.5.3 Special Status Species

No federally listed or candidate species are known to occur within the airport vicinity or on the 157 ARW installation. However, eight state listed species have been observed within the airport vicinity, and additional special status species have been observed within Rockingham County within the vicinity of Portsmouth IAP. A list of these species can be found in Appendix E. There is no critical habitat located on the installation (157 ARW 2013, New Hampshire Fish and Game 2013, New Hampshire Natural Heritage Bureau 2013).

3.3.5.4 Wetlands

Nine jurisdictional wetlands, totaling 6.86 acres, occur on the 157 ARW installation in the southeast and northern portion of the installation (Figure 3.3.4-1). Seven of these wetlands are palustrine forested and two are considered palustrine emergent wetlands (NGB 2011, 157 ARW 2013b). None of these wetlands occur within the vicinity of the proposed construction projects.

3.3.6 Cultural Resources

3.3.6.1 Archaeological Resources

All portions of the 157 ARW installation determined to be relatively undisturbed were intensively surveyed for cultural resources. One archaeological resource consisting of two Native American artifacts was encountered in a shovel test pit within a layer of fill material from adjacent construction activities. Due to the isolated and sparse nature of the find and its location in fill, the resource is considered not eligible for listing in the NRHP (157 ARW 2009). The New Hampshire SHPO has concurred with these findings (see Muzzey 2009 in Appendix B4).

3.3.6.2 Architectural Resources

All 46 buildings and structures pre-dating the end of the Cold War era (pre-1990) were inventoried and evaluated for NRHP-eligibility (157 ARW 2009). None of the buildings, structures, or monuments were recommended as eligible for listing in the NRHP (157 ARW 2009; St. Louis 2009). The New Hampshire SHPO has concurred with these recommendations (see Muzzey 2009 and St. Louis 2009 in Appendix B4).

3.3.6.3 Traditional Resources

The 157 ARW installation contains no known traditional resources; however, one federally-recognized Tribe that is historically, culturally, and linguistically affiliated with the area has been identified: The Penobscot Indian Nation.
3.3.7 Land Use

The Pease ANGS occupies approximately 220 fee owned acres in the northeastern portion of Portsmouth IAP, situated in both Newington and Portsmouth in Rockingham County, New Hampshire. Portsmouth IAP is a holding of the Pease International Tradeport; the Tradeport is owned and operated by the PDA, a state agency of New Hampshire. The present day Pease International Tradeport was established in the 1950s by the USAF as Pease AFB and owned by the USAF Strategic Air Command. When the Base Realignment and Closure Committee closed Pease AFB in October 1991, the 157 ARW became the sole occupant. The USAF maintained ownership of and management responsibility for the property of the remaining 1,073 acres until 1997. Between 1992 and 1997, the USAF transferred 1,054 acres to the USFWS and 19 acres to the U.S. Department of Transportation (157 ARW 2008a).

Land use surrounding Portsmouth IAP is predominantly open space characterized by forested areas interspersed with commercial, residential, industrial parcels. Small parcels of agricultural use are located to the southwest. Wetland areas lie to the northwest and southeast. The Great Bay National Wildlife Refuge, established in 1992 and managed by the USFWS, occupies a large tract of land just to the northwest of the airport and presents a barrier to future development (Rockingham Planning Commission 2006). The Great Bay Estuary, New Hampshire’s largest estuarine system, lies approximately 1 mile to the west and north of the airport boundary. This estuarine complex is fed by the tidal waters of the Piscataqua River, flowing approximately 1.5 miles east of the airport. The Spaulding Turnpike (SR 4) runs roughly parallel to the airport’s eastern boundary and I-95 traverses just beyond the southeastern boundary of the airport.

Zoning surrounding the airport generally supports compatible land use planning and provides protection of Portsmouth IAP (City of Portsmouth 2012a). Zoning codes define and establish airport hazard zones height limitations and land use restrictions within these zones. This zoning protects RPZs, details of which can be found in the Safety section of Appendix A, Section A.3. In Portsmouth, land surrounding the airport to the south and west is zoned primarily as Natural Resource Protection (Open Space/Conservation) with an isolated development zoned for Residential use, located between I-95 and the south end of the airport. A golf course is also located just south of the airport. Adjacent areas to the east of the airport are zoned for Business (Commercial), Residential, and Municipal (Public) (City of Portsmouth 2012a). In Newington, areas to the north are generally zoned for Residential and Commercial uses (Town of Newington 2009). Current average noise levels from aircraft operations above 65 dB DNL do not extend off-base (Figure 3.3.7-1).
Figure 3.3.7-1. DNL Noise Contours and Land Use at Portsmouth IAP

LEGEND
- Portsmouth International Airport at Pease
- Pease Air National Guard Station
- Baseline Noise Contour and Level
- Land Use Designations
 - Agriculture
 - Industrial/Commercial
 - Recreation/Open Space
 - Residential
 - Vacant
 - Wetlands
- Representative Noise Receptors
 - School/College
3.3.8 Infrastructure and Transportation

3.3.8.1 Potable Water System

Potable water for the 157 ARW installation is supplied by the Madbury Treatment Plant operated by the City of Portsmouth Water Department. Potable water in the area is supplied primarily from the three regional groundwater aquifer wells located on Pease International Tradeport. The City of Portsmouth pumps approximately 1.64 trillion gallons of water per year to its customers (City of Portsmouth 2012b). In CY 2012, 26,510,960 gallons of potable water was supplied to the 157 ARW installation (157 ARW 2012a).

3.3.8.2 Wastewater

The 157 ARW installation generates wastewater from sanitary, stormwater, and industrial processes, including oil/water separator discharge, wash rack discharge, floor wash-down, latrines, sinks, and showers. Wastewater generated within the 157 ARW installation is conveyed into the municipal sewage system, operated by the City of Portsmouth to the Pease International Tradeport Wastewater Treatment Facility. The facility has an average daily flow capacity of 1.2 million gallons per day but typically receives 0.75 million gallons of wastewater per day for treatment (City of Portsmouth 2006).

3.3.8.3 Stormwater

A high percentage of the active administrative and industrial areas of the installation are paved or roofed, resulting in high runoff rates during precipitation events. As described in the Pease International Tradeport SWPPP (2011), the 157 ARW installation has a stormwater drainage conveyance system typified by overland flow to catch basins, inlets, surface drains, underground pipes, culverts, ditches, and swales that discharge to receiving waters (see Section 3.3.4, Soils and Water) or other municipal separate storm sewer systems. The stormwater drainage system has been designed to safely collect and transport surface water runoff from storm events to prevent flooding within the installation and is a separate system from the wastewater (sewage) system.

3.3.8.4 Electrical and Natural Gas Systems

Electricity is supplied to the 157 ARW installation by Public Service of New Hampshire via a substation located on the north side of Building 153 and is distributed via underground lines. Natural gas is supplied by Unitil Corporation. Electricity consumption for CY 2012 at the 157 ARW installation was 4,271,136 kilowatt hours. Natural gas consumption for CY 2012 at the 157 ARW installation was 124,582 thousand cubic feet (157 ARW 2012a).
3.3.8.5 Solid Waste Management

Municipal solid waste at the 157 ARW installation is managed in accordance with the 157 ARW Solid Waste Management Plan (157 ARW 2012a) and guidelines specified in AFI 32-7042, Waste Management (2009). This AFI incorporates, by reference, the federal standard for solid waste regulations contained within 40 CFR, Subtitle D, Non-hazardous Waste, and other applicable federal regulations, AFIs, and DoD Directives. In general, AFI 32-7042 establishes the requirement for installations to have a solid waste management program that incorporates the following: a solid waste management plan; procedures for recycling, diversion, handling, storage, collection, and disposal of solid waste; recordkeeping and reporting; and pollution prevention.

The 157 ARW installation generates solid waste in the form of office trash, non-hazardous industrial wastes, normal municipal waste, and construction debris. These nonhazardous solid wastes are collected in dumpsters located throughout the 157 ARW installation, recyclables are separated, and waste is transported by contract to Turnkey Landfill in Rochester, New Hampshire or other local landfill (157 ARW 2012a). Up to 83 percent of mixed containers (both debris and recyclables) is recycled, and 100 percent of metal and cardboard are recycled (Smith 2013b).

3.3.8.6 Transportation

The 157 ARW installation is located within close proximity to several major highways. U.S. Route 4 is located to the north and east of the installation and runs west to Concord, New Hampshire. U.S. Route 4 intersects with New Hampshire Route 16 northeast of the installation. New Hampshire Route 16 intersects with I-95 southeast of the airport and runs the entire length of the eastern seaboard. In addition, SRs 101 and 108 are located near the installation to the south and west. Access to the installation is located at the intersection of Pease Boulevard and Arboretum Drive (157 ARW 2008a).

3.3.9 Hazardous Materials and Waste

3.3.9.1 Hazardous Materials

Hazardous materials are used at the 157 ARW installation for aircraft operations support and maintenance, including POL management and distribution, liquid fuels maintenance, transportation maintenance, vehicle paint, power production, machine shop operations, and flight simulation. Types of hazardous substances found on the 157 ARW installation include hydraulic fluid, waste oils, recovered fuels, spent cleaners, strippers, solvents, flammable and combustible liquids, acids, aerosols, batteries, corrosives, and paints (157 ARW 2013c).
The are 16 ASTs that are currently on the installation that are used to store heating oil, diesel, jet fuel, motor gasoline, and high expansion foam. The majority of USTs currently at the installation are used as overflow storage tanks in conjunction with various OWSs. There is one registered 4,000-gallon UST adjacent to Building 168 in the Bulk Fuels Storage Area (157 ARW 2005).

Toxic Substances

Regulated toxic substances typically associated with buildings and facilities include asbestos, LBP, and PCBs. An asbestos survey was performed at the 157 ARW installation in 2011. ACM identified in the insulation, floor tiles, and mastic were found in Buildings/Hangars 149, 151, 152, 153, 241, 247, 251, 252, 254, and 262 (157 ARW 2005, 2011a).

A LBP survey has not been conducted at the 157 ARW installation. Any buildings on the installation constructed prior to 1978 are presumed to contain LBP and would be tested for LBP prior to demolition or renovation (157 ARW 2005).

PCB-containing transformers were removed from the subject property in 1993. With the exception of occasionally encountering a PCB ballast, there are no known sources of PCBs at the subject property (157 ARW 2005).

3.3.9.2 Hazardous Waste Management

The 157 ARW Spill Prevention, Control, and Countermeasure Plan contains the governing regulations for spill prevention and describes specific protocols for preventing and responding to releases, accidents, and spills involving oils and hazardous materials (157 ARW 2012b). The 157 ARW Hazardous Waste Management plan outlines procedures for controlling and managing hazardous wastes from the point where they are generated until they are disposed. In addition, it includes guidance for compliance with all federal, state, and local regulations pertaining to hazardous waste (157 ARW 2012a).

The 157 ARW is regulated as a Small Quantity Generator of hazardous waste by the USEPA and maintains USEPA Identification Number NH8572824847. The 157 ARW is regulated as a Full Quantity Generator of hazardous waste per New Hampshire regulations. Full Quantity Generators are defined as those entities generating greater than or equal to 100 kilograms of hazardous waste a month. Although facilities that generate this amount (but no more than 2,200 pounds) of hazardous waste are considered a small quantity generator by the USEPA, the 157 ARW follows the more stringent Full Quantity Generator requirements of New Hampshire. A hazardous waste generation point is where the waste is initially created or generated. A SAP is an area where hazardous waste is initially accumulated at the point of generation and is under the
control of the SAP manager. Hazardous wastes initially accumulated at a SAP are accumulated in appropriate containers before being transferred to the installation CAP. There are 29 SAPs (where a waste is initially accumulated) identified at the installation in Buildings/Hangars 145, 146, 149, 157, 243, 244, 245, 168, 249, 251, 253, 254, and 256. The installation CAP consists of two outdoor hazmat storage sheds and a small portion of Hangar 253 (157 ARW 2013c).

OWSs are used to separate oils, fuels, sand, and grease from wastewater and to prevent contaminants from entering the sanitary sewer and stormwater drainage systems. Fourteen OWSs are located on the 157 ARW installation. These OWSs primarily receive discharge from floor drains in maintenance areas. One 3,000-gallon concrete OWS for Building 249 failed in the 1980s and contaminated the soil and groundwater. It was replaced in 1992 with a new 1,000-gallon concrete OWS. This resulted in the institution of a ground water management zone to monitor the petroleum contaminants (see Section 3.3.4, Soils and Water) (157 ARW 2005).

3.3.9.3 Environmental Restoration Program

There are two closed ERP sites at the 157 ARW installation. Table 3.3.9-1 provides details for each of these sites and Figure 3.3.9-1 shows the locations.

<table>
<thead>
<tr>
<th>ERP Site</th>
<th>Materials of Concern</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Waste Solvent Tank located at Building 244, former aircraft maintenance and repair building. Degreasing operations generated waste solvents, primarily trichloroethene. Trichloroethene was held in a 1,200-gallon UST adjacent to Building 244. Soil and groundwater sampling confirmed that the UST had leaked.</td>
<td>Closed</td>
</tr>
<tr>
<td>44</td>
<td>This site was a Paint Can Disposal Area and was a common location for burial waste flocculent generated at the industrial waste treatment plant. Soil and groundwater sampling conducted showed that contaminant concentrations did not exceed action levels.</td>
<td>Closed</td>
</tr>
</tbody>
</table>

*Note: UST = underground storage tank
Source: 157 ARW 2005.*
Figure 3.3.9-1. ERP Sites at the 157 ARW Installation, Portsmouth IAP
3.3.10 Socioeconomics

3.3.10.1 Population and Employment

Population

Pease ANGS is located in Portsmouth and Newington, New Hampshire, in Rockingham County. Current population data and estimates for the state of New Hampshire, Rockingham County, Town of Newington, and Portsmouth are provided in Table 3.3.10-1. From 1990 to 2010, Rockingham County’s population increased by 49,378, an increase of approximately 20 percent (USCB 1990c, 2000c, 2010d).

Table 3.3.10-1. Population Growth within the Vicinity of Pease ANGS

<table>
<thead>
<tr>
<th>Area</th>
<th>1990 Census</th>
<th>2000 Census</th>
<th>2010 Census</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Hampshire</td>
<td>1,109,252</td>
<td>1,235,786</td>
<td>1,316,470</td>
</tr>
<tr>
<td>Rockingham County</td>
<td>245,845</td>
<td>277,359</td>
<td>295,223</td>
</tr>
<tr>
<td>Town of Newington</td>
<td>990</td>
<td>775</td>
<td>753</td>
</tr>
<tr>
<td>Portsmouth</td>
<td>25,925</td>
<td>20,784</td>
<td>20,779</td>
</tr>
</tbody>
</table>

Source: Town of Newington 2009; USCB 1990c, 2000c, 2010d.

The 157 ARW currently supports a workforce authorization of 1,382, including 539 full-time and 843 part-time personnel (see Table 2.3-18).

Employment and Earnings

Table 3.3.10-2 presents total labor force and employment rates for New Hampshire, Rockingham County, Town of Newington, and Portsmouth. Based on 2007-2011 ACS 5-year estimates, there were 171,749 persons in the labor force (able to work) and 161,577 employed within Rockingham County, resulting in an unemployment rate of approximately 6 percent. Top employment industries in Rockingham County include 1) educational services, and health care and social assistance; 2) retail; and 3) manufacturing (USCB 2011d). Principal employers in the region include Portsmouth Naval Shipyard, UA Local 788 Marine Pipefitter, Portsmouth Regional Hospital, and Liberty Mutual Insurance (InfoGroup 2013, 157 ARW 2008a).

Table 3.3.10-2. Employment Data (2011) within the Vicinity of Pease ANGS

<table>
<thead>
<tr>
<th>Area</th>
<th>Labor Force</th>
<th>Employed</th>
<th>Unemployed</th>
<th>Unemployment Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Hampshire</td>
<td>743,342</td>
<td>696,674</td>
<td>46,668</td>
<td>6.3</td>
</tr>
<tr>
<td>Rockingham County</td>
<td>171,749</td>
<td>161,577</td>
<td>10,172</td>
<td>5.9</td>
</tr>
<tr>
<td>Town of Newington</td>
<td>416</td>
<td>414</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>Portsmouth</td>
<td>13,222</td>
<td>12,625</td>
<td>597</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Note: Employment numbers include individuals in the Armed Forces.

Source: USCB 2011d.
3.3.10.2 Schools

According to the 2011 ACS enrollment 5-year estimates, 53,702 students were enrolled in schools from Kindergarten through Grade 12 in Rockingham County (USCB 2011d).

3.3.10.3 Housing

In 2010, the number of housing units in Rockingham County was 126,709, with a vacancy rate of approximately 9 percent (USCB 2010d).

3.3.11 Environmental Justice and the Protection of Children

3.3.11.1 Minority and Low-Income Populations

Table 3.3.11-1 displays the minority, low-income, and children under age 18 within the state of New Hampshire, as well as the county and towns within the vicinity of Portsmouth IAP. Approximately 4 percent of the population of Rockingham County is composed of minorities (i.e., an ethnic or racial group with a distinctive presence in a community), compared to approximately 6 percent for the state of New Hampshire. The percentage of population living below the poverty level for the state of New Hampshire (approximately 8 percent) is higher than Rockingham County (approximately 5 percent) (USCB 2010d).

<table>
<thead>
<tr>
<th>Geographic Area</th>
<th>Total Population</th>
<th>Minority Population</th>
<th>Percent Minority</th>
<th>Low-Income Population</th>
<th>Percent Low-Income 2</th>
<th>Children Under Age 18</th>
<th>Percent Children</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Hampshire</td>
<td>1,316,470</td>
<td>80,420</td>
<td>6.1</td>
<td>105,318</td>
<td>8.0</td>
<td>287,234</td>
<td>21.8</td>
</tr>
<tr>
<td>Rockingham County</td>
<td>295,223</td>
<td>13,257</td>
<td>4.4</td>
<td>14,466</td>
<td>4.9</td>
<td>67,438</td>
<td>22.8</td>
</tr>
<tr>
<td>Town of Newington</td>
<td>753</td>
<td>28</td>
<td>3.7</td>
<td>28</td>
<td>3.7</td>
<td>130</td>
<td>17.3</td>
</tr>
<tr>
<td>Portsmouth</td>
<td>20,779</td>
<td>1,762</td>
<td>8.5</td>
<td>1,870</td>
<td>9.0</td>
<td>3,459</td>
<td>16.6</td>
</tr>
</tbody>
</table>

Note: 1. Total population, minority population, and number of children under the age of 18 were obtained from the 2010 census data. Low income population numbers are from the 2007-2011 ACS 5-Year Estimates.

The 65 dB DNL contour does not extend off the airport property; therefore, currently there are no populations, including minority or low-income populations, in the vicinity of Portsmouth IAP within the baseline DNL greater than 65 dB.
3.3.11.2 Protection of Children

In 2010, the number of children under the age of 18 living in Rockingham County was approximately 67,438 (22.8 percent of the population) (Table 3.3.11-1). The state of New Hampshire has a slightly lower percentage population of children compared to the counties (21.8 percent). There are no on-installation housing or facilities for children located at the 157 ARW installation. Currently there are no Kindergarten through Grade 12 off-installation schools that are exposed to DNL of 65 dB or above.
3.4 PITTSBURGH AIR NATIONAL GUARD STATION

Pittsburgh ANGS, home of 171 ARW of the PA ANG, is located approximately 12 miles northwest of Pittsburgh, Pennsylvania in Allegheny County. The 171 ARW installation is situated on the southeastern side of the Pittsburgh IAP, an international airport owned and operated by the ACAA.

3.4.1 Noise

To evaluate noise impacts in the vicinity of a military installation located within a commercial airport with a published FAR Part 150 Airport Noise Compatibility Study, the USAF allows for use of the FAA’s INM to generate DNL noise contours. The ACAA under the FAA uses the INM computer model for generating noise contours and for Pittsburgh IAP, the FAA’s INM was used. For more detailed information on the noise modeling methods see Appendix A, Section A.1.2.

3.4.1.1 Baseline Operations

This section describes the baseline conditions as approved by the ACAA. In 2006, the ACAA completed Noise Exposure Maps Update as part of the FAA’s FAR Part 150 Noise Compatibility Program for Pittsburgh IAP based on operational data from a 12-month period ending February 2005. The study used the standard FAA INM program to establish noise contours based on those operations and is the FAA approved and public document for the noise compatibility program currently in effect for the airport.

Based on aircraft operations data validated in March 2013 (FAA 2013, 171 ARW 2013a), approximately 139,217 total aircraft operations occurred at Pittsburgh IAP during 2012; of those, the 171 ARW flew a total of 6,943 airfield operations with approximately 7 percent at night (approximately 5 percent of total operations at the airfield). These numbers were validated by the 171 ARW and Pittsburgh ATADs (FAA tower) report and are used as the basis for determination of KC-46A airfield operations for the Proposed Action (FAA 2013, 171 ARW 2013a).

The current FAR Part 150 data identified 321,436 total aircraft operations that occurred at Pittsburgh IAP during the 12-month period ending March 2006. Per the request of the ACAA, the current approved and published FAR Part 150 Noise Compatibility Program Update for Pittsburgh IAP is used as the baseline for this analysis (Belotti 2013). The baseline aircraft operations at the airport used for this analysis differs from the current 2012 aircraft operations.
due to changes to airfield use by U.S. Air which no longer uses Pittsburgh IAP as a major commercial airline hub.

Table 3.4.1-1 summarizes the frequency of aircraft operations for Pittsburgh IAP based on information provided by base staff, flying organizations, and air traffic control personnel. An aircraft operation is counted each time an aircraft departs from the runway and each time they approach the runway. The majority of aircraft traffic includes air cargo, commercial regional jets (air taxi), and larger commercial aircraft and other based military aircraft, along with based ANG KC-135 aircraft. There are also a number of general aviation jet and non-jet and corporate aircraft based at the airfield. Although the number of aircraft operations at an airfield varies from day to day, for Pittsburgh IAP, operations are calculated for an AAD, meaning that yearly operations are averaged across all 365 days of the year. Table 3.4.1-1 reflects a total of approximately 881 aircraft operations on an AAD (321,436 divided by 365 days). Approximately 9 percent of the total operations at Pittsburgh IAP occur during environmental night (10:00 p.m. through 7:00 a.m.).

Table 3.4.1-1. Current Pittsburgh IAP Annual Aircraft Operations FAR Part 150

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Departures</th>
<th>Arrivals</th>
<th>Total AAD</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night</td>
<td>Day</td>
<td>Night</td>
</tr>
<tr>
<td>KC-135</td>
<td>6,530</td>
<td>0</td>
<td>6,530</td>
<td>0</td>
</tr>
<tr>
<td>Other Aircraft</td>
<td>140,683</td>
<td>13,505</td>
<td>140,683</td>
<td>13,505</td>
</tr>
<tr>
<td>Total</td>
<td>147,213</td>
<td>13,505</td>
<td>147,213</td>
<td>13,505</td>
</tr>
</tbody>
</table>

Notes: 1. Operations based on currently approved FAR Part 150.
2. Includes Closed Patterns (which count as two airfield operations).
3. Night – Between 10 p.m. and 7 a.m. for environmental night.
4. Other based military and civilian aircraft and transient aircraft (multiple type aircraft); example aircraft include: Boeing 747, 717, and the Airbus 321.

Source: ACAA 2006.

Based on the published FAR Part 150 Study (2006), the 171 ARW KC-135 aircraft flew a total of 13,060 annual airfield operations, or an average of 36 airfield operations a day. No KC-135 operations at Pittsburgh IAP occur during environmental night in the baseline data. Approximately 4 percent of total operations at Pittsburgh IAP are accomplished by the 171 ARW KC-135 aircraft (ACAA 2006).

3.4.1.2 Runway and Flight Profiles

Pittsburgh IAP aircraft use VFR departures, published Standard Instrument Departures, straight in approaches, overhead approaches, IFR or radar closed patterns, and VFR closed patterns along with re-entry VFR patterns as the basic flight patterns for general aviation and military training flights and local arrival and departures. Detailed representative arrival, departure, and closed pattern flight tracks are found in the Appendix C, Noise.
3.4.1.3 Existing Noise Environment

Noise contours developed for the baseline conditions at Pittsburgh IAP are shown in Figure 3.4.1-1. The acreage within each DNL contour on and off Pittsburgh IAP property is shown in Table 3.4.1-2. Approximately 3,138 acres are exposed to DNL greater than or equal to 65 dB. Detailed information on off-airport land use that lies within a DNL greater than 65 dB can be found in Section 3.4.7, Land Use.

Table 3.4.1-2. Acres within Baseline Noise Contours, Pittsburgh IAP

<table>
<thead>
<tr>
<th>Noise Level (dB)</th>
<th>On Airport (acres)</th>
<th>Off Airport (acres)</th>
<th>Total (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>65-70</td>
<td>1,331.5</td>
<td>128.6</td>
<td>1,460.1</td>
</tr>
<tr>
<td>70-75</td>
<td>850.7</td>
<td>0</td>
<td>850.7</td>
</tr>
<tr>
<td>75-80</td>
<td>468.6</td>
<td>0</td>
<td>468.6</td>
</tr>
<tr>
<td>80-85</td>
<td>151.5</td>
<td>0</td>
<td>151.5</td>
</tr>
<tr>
<td>Greater than 85</td>
<td>207.5</td>
<td>0</td>
<td>207.5</td>
</tr>
<tr>
<td>Total</td>
<td>3,009.8</td>
<td>128.6</td>
<td>3,138.4</td>
</tr>
</tbody>
</table>

Notes: dB = decibel

Potential Hearing Loss

As shown in Table 3.4.1-2, there is no property off the Pittsburgh IAP that falls within the 80+ dB DNL noise contour; therefore, no potential hearing loss risk is currently associated with these areas.

3.4.1.4 Pittsburgh International Airport Noise Abatement Procedures

Pittsburgh IAP has no published restrictions on flying activities but has instituted noise abatement procedures that are incorporated directly into their Air Traffic Control Operating Procedures. Procedures include departing aircraft to maintain runway heading to 1,700 feet above mean sea level (AMSL) and follow Departure Control (SkyVector 2013b).

3.4.1.5 Pittsburgh International Airport Noise Complaints Procedures

Currently, Pittsburgh IAP procedures for registering and logging noise complaints are through the Airport Operation’s staff, who receive calls on a 24-hour basis. Calls requiring investigation and/or follow up to assure compliance with the FAR Part 150 Noise Program are submitted to the Manager of Planning Services. During 2012, the airport reported a total of 274 complaints, 259 from three specific individuals and 15 from others. Any noise complaints resulting from the 171 ARW are routed through 171 ARW operations for resolution. The number of noise complaints is not considered significant due to the large airport property and lack of urban encroachment (Belotti 2013).
Figure 3.4.1-1. Baseline DNL Noise Contours for Pittsburgh IAP

Source: Pittsburgh IAP 2005
3.4.2 Air Quality

3.4.2.1 Regulatory Setting

In addition to criteria pollutants, the USEPA has defined 187 substances as HAPs. HAPs are substances that have been determined to present some level of acute or chronic health risk (cancer or non-cancer) to the general public. These pollutants may be emitted in trace amounts from various types of sources, including combustion sources. HAPs are regulated for specific source categories under the USEPA’s National Emission Standards for Hazardous Air Pollutants regulations.

Individual states are delegated the responsibility to regulate air quality in order to achieve or maintain air quality in attainment with these standards. The Pennsylvania Department of Environmental Protection (PADEP) Bureau of Air Quality is the agency responsible for the regulation of air quality within the state of Pennsylvania. The state of Pennsylvania regulates air quality through the Pennsylvania Code Title 25, Article III, Chapters 121 through 145. Within Allegheny County, air quality is regulated by the Allegheny County Health Department Division of Air Quality through Article XXI Air Quality Regulations. The state of Pennsylvania has adopted the NAAQS, and has adopted additional standards regulating beryllium, fluorides, hydrogen sulfide, and settled particulate matter. Because the Proposed Action would not contribute to emissions of these pollutants, they are not considered further in this EIS. The NAAQS are summarized in Table 3.4.2-1.

Pittsburgh ANGS is located approximately 12 miles northwest of Pittsburgh, Pennsylvania in Allegheny County. The USEPA has classified Allegheny County as a moderate nonattainment area for the 1997 8-hour O₃ NAAQS, and is classified as a marginal nonattainment area for the 2008 8-hour O₃ NAAQS. Allegheny County is also a nonattainment area for PM₂.₅. Pittsburgh is also designated as a nonattainment area for CO, but this designation applies only in high traffic areas in the central business district of the city. The region is designated attainment/unclassified area for all other criteria pollutants. Alternative #4 is therefore subject to the requirements of Section 176(c) of the CAA, as articulated in the USEPA General Conformity Rule. Based on the nonattainment classification for the region, the de minimis emission thresholds for the General Conformity Rule for O₃ precursors (NOₓ and VOCs) is 100 tpy, and the de minimis emission threshold for PM₂.₅ emissions is also 100 tpy.
Table 3.4.2-1. Ambient Air Quality Standards

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>National Standards<sup>a</sup></th>
<th>Primary<sup>b,c</sup></th>
<th>Secondary<sup>b,d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>O<sub>3</sub></td>
<td>8-hour</td>
<td>0.075 ppm (147 µg/m³)</td>
<td>Same as primary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>CO</td>
<td>8-hour</td>
<td>9 ppm (10 mg/m³)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>35 ppm (40 mg/m³)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>NO<sub>2</sub></td>
<td>Annual</td>
<td>0.053 ppm (100 µg/m³)</td>
<td>Same as primary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>0.100 ppm (188 µg/m³)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>SO<sub>2</sub></td>
<td>24-hour</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-hour</td>
<td>—</td>
<td>0.5 ppm (1,300 µg/m³)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>0.075 ppm (189 µg/m³)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>PM<sub>10</sub></td>
<td>Annual</td>
<td>—</td>
<td>Same as primary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>150 µg/m³</td>
<td>Same as primary</td>
<td></td>
</tr>
<tr>
<td>PM<sub>2.5</sub></td>
<td>Annual</td>
<td>12 µg/m³</td>
<td>15 µg/m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>35 µg/m³</td>
<td>Same as primary</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>Rolling 3-month period</td>
<td>0.15 µg/m³</td>
<td>Same as primary</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

a. Standards other than the 1-hour ozone, 24-hour PM₁₀, 24-hour PM_{2.5}, and those based on annual averages are not to be exceeded more than once a year. The 8-hour ozone national standard has replaced the 1-hour ozone national standard.

b. Concentrations are expressed first in units in which they were promulgated. Equivalent units given in parenthesis.

c. Primary Standards: The levels of air quality necessary, with an adequate margin of safety to protect the public health. Each state must attain the primary standards no later than 3 years after that state’s implementation plan is approved by the USEPA.

d. Secondary Standards: The levels of air quality necessary to protect the public welfare from any known or anticipated adverse effects of a pollutant.

µg/m³ = micrograms per cubic meter; CO = carbon monoxide; mg/m³ = milligrams per cubic meter; NO₂ = nitrogen dioxide; O₃ = ozone; Pb = lead; PM_{2.5} = particulate matter less than or equal to 2.5 microns in diameter; PM₁₀ = particulate matter less than or equal to 10 microns in diameter; ppm = parts per million; SO₂ = sulfur dioxide

Source: USEPA 2012.

The USEPA recently promulgated a more stringent standard for lead, and has redesigned its monitoring program to address lead and identified airports for monitoring because aviation gas used in piston aircraft still contains lead. The project area is considered attainment/unclassified for lead, and lead is not used in aviation fuel used in the KC-135 or KC-46A aircraft.

3.4.2.2 Climate and Meteorology

Pittsburgh is located in the southwestern corner of Pennsylvania, at the foothills of the Allegheny Mountains, where the Allegheny and Monongahela Rivers join to form the Ohio. The city’s humid climate is modified slightly by its relative proximity to the Atlantic Seaboard and the
Great Lakes. The Pittsburgh area experiences extremes of all four seasons. Precipitation is distributed throughout the year, with much of the precipitation occurring as snow during the winter months (Northeast Regional Climate Center 2013c).

January is the coldest month, with an average minimum temperature of 19.9°F. July is the hottest month, with an average maximum temperature of 82.7°F. The average annual temperature is 50.3°F. The average annual precipitation in Pittsburgh is 36.9 inches (Northeast Regional Climate Center 2013c).

The average wind speed in the Pittsburgh area is 9 miles per hour. Winds are generally westerly to southwesterly during the year (Northeast Regional Climate Center 2013c).

3.4.2.3 Regional and Local Air Pollutant Sources

The 171 ARW of the PA ANG is based on the southwestern side of Pittsburgh IAP in Allegheny County, Pennsylvania. The surrounding area includes a mix of uses, including residential development, commercial development, and open space.

The USEPA’s National Emissions Inventory includes data for the year 2008 for Allegheny County. Table 3.4.2-2 summarizes the regional emissions (stationary and mobile) of criteria pollutants and precursor emissions for the affected areas.

Table 3.4.2-2. Regional Emissions for Allegheny County, Pennsylvania

<table>
<thead>
<tr>
<th>EMISSIONS, TONS/YEAR</th>
<th>CO</th>
<th>VOCs</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional Emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stationary Sources</td>
<td>21,006</td>
<td>4,790</td>
<td>17,467</td>
<td>43,185</td>
<td>6,387</td>
<td>5,411</td>
</tr>
<tr>
<td>Area-Wide Source</td>
<td>1,196</td>
<td>20,270</td>
<td>165</td>
<td>29</td>
<td>11,969</td>
<td>1,613</td>
</tr>
<tr>
<td>Mobile Sources</td>
<td>141,851</td>
<td>13,231</td>
<td>24,496</td>
<td>351</td>
<td>1,203</td>
<td>1,038</td>
</tr>
<tr>
<td>Total</td>
<td>164,053</td>
<td>38,291</td>
<td>42,128</td>
<td>43,565</td>
<td>19,559</td>
<td>8,062</td>
</tr>
</tbody>
</table>

Notes: Numbers may not match precisely due to rounding. Emissions of Pb are not included because the affected region contains no significant sources of this criteria pollutant. CO = carbon monoxide; NOx = oxides of nitrogen; PM10 = particulate matter less than or equal to 10 microns in diameter; PM2.5 = particulate matter less than or equal to 2.5 microns in diameter; SO2 = sulfur dioxide; VOC = volatile organic compound

Source: USEPA 2008.

3.4.2.4 Baseline Air Quality

Representative background air monitoring data for the 171 ARW for the period 2008-2012 are shown in Table 3.4.2-3. The closest monitoring stations to Pittsburgh IAP include three monitoring stations in Pittsburgh itself.
As shown in Table 3.4.2-3, the area has experienced several O₃ exceedances during the recent 5-year period. The Pittsburgh area also experienced exceedances of the 24-hour PM₂.₅ standard. The data show that the area did not experience violations of other NAAQS.

Table 3.4.2-3. Ambient Air Monitoring Data for the Pittsburgh Area

<table>
<thead>
<tr>
<th>Air Quality Indicator</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone (O₃)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 8-hour value (ppm)</td>
<td>0.08</td>
<td>0.071</td>
<td>0.084</td>
<td>0.086</td>
<td>0.086</td>
</tr>
<tr>
<td>Days above federal standard (0.075 ppm)</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Particulate matter less than or equal to 2.5 microns in diameter (PM₂.₅)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 24-hour value (µg/m³)</td>
<td>39.7</td>
<td>33.3</td>
<td>41.5</td>
<td>32.1</td>
<td>23.1</td>
</tr>
<tr>
<td>Days above federal standard (35 µg/m³)</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Annual Average value (µg/m³)</td>
<td>12.9</td>
<td>11.6</td>
<td>12.2</td>
<td>11.1</td>
<td>10.1</td>
</tr>
<tr>
<td>Particulate matter less than or equal to 10 microns in diameter (PM₁₀)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 24-hour value (µg/m³)</td>
<td>58</td>
<td>53</td>
<td>58</td>
<td>55</td>
<td>54</td>
</tr>
<tr>
<td>Days above federal standard (150 µg/m³)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 1-hour value (ppm)</td>
<td>1.8</td>
<td>1.9</td>
<td>1.8</td>
<td>1.9</td>
<td>4.6</td>
</tr>
<tr>
<td>Days above federal standard (9 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peak 8-hour value (ppm)</td>
<td>1.3</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Days above federal standard (35 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO₂)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 1-hour value (ppm)</td>
<td>0.086</td>
<td>0.059</td>
<td>0.066</td>
<td>0.069</td>
<td>0.047</td>
</tr>
<tr>
<td>98th Percentile (ppm)</td>
<td>0.066</td>
<td>0.049</td>
<td>0.051</td>
<td>0.058</td>
<td>0.043</td>
</tr>
<tr>
<td>Days above federal standard (0.100 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO₂)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 1-hour value (ppm)</td>
<td>0.106</td>
<td>0.087</td>
<td>0.057</td>
<td>0.037</td>
<td>0.034</td>
</tr>
<tr>
<td>99th Percentile (ppm)</td>
<td>0.062</td>
<td>0.061</td>
<td>0.035</td>
<td>0.023</td>
<td>0.022</td>
</tr>
<tr>
<td>Days above federal standard (0.075 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peak 24-hour value (ppm)</td>
<td>0.019</td>
<td>0.020</td>
<td>0.021</td>
<td>0.013</td>
<td>0.010</td>
</tr>
</tbody>
</table>

Notes:
1. The federal 1-hour SO₂ standard was adopted in 2010.
2. µg/m³ = micrograms per cubic meter; NA = data not available; ppm = parts per million

3.4.2.5 171st Air Refueling Wing Emissions

The 171 ARW currently flies and maintains 16 KC-135 refueler aircraft to support its air refueling mission. The primary support operations performed at the 171 ARW include aircraft fueling, aircraft deicing, aircraft maintenance, aircraft support equipment maintenance, ground vehicle maintenance, fueling of ground vehicles, and facilities maintenance. These operations involve activities such as corrosion control, non-destructive inspection, fuel cell maintenance, engine maintenance, hydraulics, and wheel and tire maintenance.

Emissions for the 171 ARW have been quantified in the *Final 2011 Air Emissions Inventory* (171 ARW 2013b). The inventory evaluated the emissions from the 171 ARW to determine its status under the Title V Federal Operating Permits program. Based on the major source
thresholds for the area, the major source thresholds are 50 tpy for VOCs, 100 tpy for all other criteria pollutants, and less than 10 tpy of any single HAP or 25 tpy of any combination of HAPs.

The 171 ARW does not currently hold a Title V Operating Permit, but operates under a Minor Source Operating Permit (No. 0287) issued by the Allegheny County Health Department. The 2011 Air Emissions Inventory demonstrates that total base-wide potential emissions from stationary sources are below the major source thresholds.

Stationary source emissions at the 171 ARW include emissions from combustion sources, chemical use, and small arms fire. Mobile source emissions include emissions from aircraft operations (take-offs and landings), AGE, ground vehicle operations, and maintenance aircraft operations performed with the engines still mounted on the aircraft (engine run-ups and trim checks). Emissions from aircraft operations at the 171 ARW installation considered all based and transient aircraft. Aircraft emissions were calculated for all flight activities below the default mixing height (3,000 feet AGL). Baseline emissions also include stationary sources, and emissions associated with vehicle trips associated with existing personnel and dependents. These emissions, combined with those from the other mobile sources, account for the majority of the emissions from the installation.

To provide a baseline for evaluating the net emissions increases/decreases associated with Alternative #4, emissions from the KC-135 aircraft operations, aircraft refueling, KC-135 engine testing, KC-135-related AGE, and POVs associated with KC-135 flight operations were evaluated. Emissions from the KC-135 aircraft operations were calculated based on 2012 aircraft operations identified in Table 2.3-19, utilizing site-specific flight profiles to calculate aircraft operations below a default mixing height of 3,000 feet AGL. A discussion of the methodology for quantifying emissions is provided in Appendix A, Section A.2.3. Emissions for the baseline emissions associated with baseline operations of the KC-135 aircraft are provided in Table 3.4.2-4.

<table>
<thead>
<tr>
<th>Emission Source</th>
<th>VOCs</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 Baseline Aircraft Operations</td>
<td>3.42</td>
<td>50.69</td>
<td>67.79</td>
<td>6.14</td>
<td>0.33</td>
<td>0.33</td>
<td>17,082</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.01</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2,395</td>
</tr>
<tr>
<td>Engine Testing</td>
<td>0.11</td>
<td>1.67</td>
<td>0.46</td>
<td>0.07</td>
<td>0.01</td>
<td>0.01</td>
<td>198</td>
</tr>
<tr>
<td>POVs</td>
<td>4.27</td>
<td>65.56</td>
<td>3.37</td>
<td>0.05</td>
<td>0.14</td>
<td>0.06</td>
<td>2,270</td>
</tr>
<tr>
<td>Total Baseline Emissions</td>
<td>7.81</td>
<td>117.93</td>
<td>71.72</td>
<td>6.26</td>
<td>0.48</td>
<td>0.40</td>
<td>21,946</td>
</tr>
</tbody>
</table>

Notes: Numbers may not match precisely due to rounding.

CO = carbon monoxide; CO2e = carbon dioxide equivalent; NOx = oxides of nitrogen; PM10 = particulate matter less than or equal to 10 microns in diameter; PM2.5 = particulate matter less than or equal to 2.5 microns in diameter; SO2 = sulfur dioxide; VOC = volatile organic compound

Source: 171 ARW 2013b.
3.4.3 Safety

This section provides information on both ground and flight safety. Ground safety includes discussions of fire/crash response capabilities, APZs/RPZs, explosive safety, and AT/FP. Flight safety includes discussions on flight safety procedures, aircraft mishaps, BASH, and fuel jettison requirements. The affected environment includes the airfield and local airspace surrounding Pittsburgh IAP.

3.4.3.1 Ground Safety

Fire/Crash Response

Day-to-day operations and maintenance activities conducted by the 171 ARW are performed in accordance with applicable USAF safety regulations, published USAF Technical Orders, and standards prescribed by AFOSH requirements. Under previous NEPA analysis (171 ARW 2012a), the 171 ARW plans to move the Fire/Crash Rescue Station to Building 304. The Fire/Crash Rescue Station currently provides fire, crash, rescue, and structural fire protection for the installation and its aircraft. The 171 ARW also has arrangements with the Allegheny County Fire Department; Ohio Valley Fire Defense Mutual Aid Association; and the PADEP Emergency Response Team, Greater Pittsburgh area for mutual aid in fire protection, first responder and lifesaving services, and hazardous materials incident response (171 ARW 2009).

Accident Potential Zone/Runway Protection Zone

Development restrictions associated with RPZs are intended to preclude incompatible land use activities from being established in these areas. The city of Pittsburgh, Pennsylvania utilizes the FAA’s airport land use compatibility guidelines, and as such, the RPZs have allowed development to be compatible with airport operations. Details of development and land use in the Pittsburgh IAP vicinity are included in Section 3.4.7, Land Use.

Explosive Safety

The 171 ARW uses a small range of munitions required for performance of their mission. The existing munitions storage capabilities on Pittsburgh ANGS meet the requirement for small arms deployment/training ammunition and other munitions required by the 171 ARW. Three munitions storage areas (Buildings 515, 516, and 517) have quantity-distance (QD) safety zones (171 ARW 2012a).
Anti-Terrorism/Force Protection

Many of the 117 ARW military facilities at Pittsburgh ANGS were constructed before AT/FP considerations became a critical concern. Thus, under current conditions, many facilities do not comply with all current AT/FP standards. However, as new construction occurs and as facilities are modified, the PA ANG would incorporate these standards to the maximum extent practicable.

3.4.3.2 Flight Safety

Flight Safety Procedures

Aircraft flight operations from Pittsburgh ANGS are governed by standard flight rules. Specific safety requirements are contained in standard operating procedures that must be followed by all aircrews operating from the airfield (AFI 11-2KC-135V3, Flying Operations, C/KC-135 Operations Procedures, 2010) to ensure flight safety. While having aircraft in close proximity during air refueling is inherently dangerous, refueling mishaps are rare. Emergency separation procedures are established and practiced by both tanker and receiver aircrews.

Aircraft Mishaps

KC-135 aircraft (all models) have flown more than 14,750,000 hours since the aircraft entered the USAF inventory in 1957. Over that period, 83 Class A mishaps have occurred and 64 aircraft have been destroyed (specific statistics for mishaps during refueling are not recorded). This results in a Class A mishap rate of 0.56 per 100,000 flight-hours, and an aircraft destroyed rate of 0.43 per 100,000 flight hours (AFSEC 2012). The 171 ARW recently completed their 53rd consecutive year and nearly 230,000 flying hours without a Class-A mishap (Pittsburgh ANGS 2013).

Bird/Wildlife Aircraft Strike Hazard

The USAF BASH Team maintains a database that documents all reported bird/wildlife-aircraft strikes. Historic information across the USAF for the past 40 years indicates that 39 USAF aircraft have been destroyed and 33 fatalities have occurred from bird/wildlife aircraft strikes, with the last Class A mishap occurring in 2010 (AFSEC 2013).

The 171 ARW has an on-going BASH program through which information and assistance is freely shared between airfield users, the Pittsburgh IAP staff, and the local air traffic controllers. Most strikes occur in August and September with small birds such as blackbirds, swallows, or larks. Serious BASH-related accidents within the immediate Pittsburgh IAP area are rare and
have never resulted in a Class A mishap (Pittsburgh ANGS 2013). The 171 ARW has recorded 69 minor BASH incidents in the airfield area from 2005 to 2012, with an average of fewer than nine bird strikes per year (Pittsburgh ANGS 2013).

Fuel Jettison

For use in emergency situations, the KC-135 aircraft have the capability to jettison fuel and reduce aircraft gross weight for flight safety. Airbases must establish jettison areas and procedures to minimize the impact of fuel jettisoning. Ideally, jettison areas are established at altitudes above 20,000 feet AGL, off published federal airways, avoiding urban areas, agricultural regions, and water supply sources. AFIs cover the fuel jettison procedures, and local operating policies define specific fuel ejection areas for each base. In accordance with the AFI, Pittsburgh ANGS has established local procedures for gross weight adjustments but fuel jettisoning is an emergency procedure only and is not practiced (Pittsburgh ANGS 2013).

3.4.4 Soils and Water

3.4.4.1 Soils

This area of Pennsylvania is within the Appalachian Highlands on a dissected plateau that is underlain by sedimentary rocks. There are narrow, level valleys and narrow, sloping ridgetops separated by long, steep to very steep side slopes (USDA 2006). The 171 ARW installation is surrounded by steep slopes that can exceed 25 percent in some areas. The developed areas within the installation consist of a graded hilltop leveled to accommodate aircraft facilities and a series of terraces to maximize buildable land. Relief ranges from 135 to 140 feet MSL (171 ARW 2012a).

The NRCS Soil Survey for Allegheny County, Pennsylvania identifies the following eight individual soil types at the installation:

- **Atkins silt loam**: This soil is typically found on floodplains from recent alluvium derived from sandstone and shale. The rating class for building site development is considered very limited due to high flooding potential and depth to saturated zone (NRCS 2013c). Approximately 5 percent of the installation is composed of this soil type.

- **Ernest silt loam, 2 to 8 percent slopes**: This soil is typically found on hillslopes from colluvium derived from shale and siltstone. The rating class for building site development is considered somewhat limited due to steep slopes and depth to saturated zone. In addition, this soil type is designated as Farmland of Statewide Importance (NRCS 2013c). Approximately 3 percent of the installation is composed of this soil type.
Gilpin-Upshur complex, very steep: This soil is typically found on hillslopes from residuum weathered from sandstone, siltstone, and shale. The rating class for building site development is considered very limited due to steep slope and depth to hard bedrock (NRCS 2013c). Approximately 10 percent of the installation is composed of this soil type.

Gilpin silt loam: This soil is typically found on hills from residuum weathered from sandstone, siltstone, and shale. The rating class for building site development is considered very limited due to steep slope and depth to hard bedrock (NRCS 2013c). Approximately 3 percent of the installation is composed of this soil type.

Gilpin, Weikert, and Culleoka shaly silt loams, very steep: This soil is typically found on hillslopes from residuum weathered from sandstone, siltstone, and shale. The rating class for building site development is considered very limited due to steep slope and depth to hard bedrock (NRCS 2013c). Approximately 3 percent of the installation is composed of this soil type.

Urban land-Culleoka complex, gently sloping and moderately steep: This soil consists of strongly intermingled Urban land and Culleoka soil. Urban land consists of soil from cut/fill sites used for buildings, paved roads, parking lots, and other areas of urban development. The rating class for building site development is not rated for this soil type (NRCS 2013c). Approximately 56 percent of the installation is composed of this soil type.

Wharton silt loam: This soil is typically found on hills from residuum weathered from siltstone and shale. The rating class for building site development is considered somewhat limited to very limited due to shrink-well potential, slope, and depth to saturated zone. In addition, this soil type is designated as Prime Farmland or Farmland of Statewide Importance depending upon slope (NRCS 2013c). Approximately 21 percent of the installation is composed of this soil type.

3.4.4.2 Surface Water

Surface water features within the vicinity of the 171 ARW installation include McClarens Run to the southwest, a tributary of Montour Run, that ultimately discharges into the Ohio River. Surface water within the installation primarily consists of a series of man-made ditches, storm sewers, and drainage swales (Figure 3.4.4-1). Drainage of the developed area is typified by overland flow to storm drain inlets and basins connected by a network of underground pipes (171 ARW 2010a).
There are 15 stormwater outfalls on the 171 ARW installation, including an OWS outfall. Nine drainage basins receive runoff from industrial areas on the installation: SDO-001, -002, -003, -004, -006, -007, -010, -014, and -015. All outfalls ultimately discharge to McClarens Run. The nine outfalls associated with industrial activity are regulated under the Pennsylvania General Permit for Discharges of Stormwater Associated with Industrial Activity (PA-R806184). The permit is administered by the PA DEP under the auspice of the USEPA (171 ARW 2010a).

3.4.4.3 Groundwater

Groundwater in this area is part of the Appalachian Plateaus aquifers. The principal coal-bearing formations are Pennsylvanian in age and consist of sequences of sandstone, shale, conglomerate, clay, coal, and minor limestone. The sandstones are the most productive aquifers, although coal beds and limestones also yield water (USGS 1995c). Historical large-scale coal mining has led to pollution issues in both groundwater and surface water in many areas by sulfur and iron exposure (PADEP 2004).

Based on topography of the installation, the direction of regional groundwater flow is to the southwest, toward McClarens Run. Site-specific groundwater flow may fluctuate based on local geology, local well use, and seasonal variations (Department of Military and Veterans Affairs 2007). The major source of groundwater near the installation is alluvial deposits in floodplains, particularly along the Allegheny and Ohio rivers (171 ARW 2012a).

3.4.4.4 Floodplains

Per the FEMA Flood Insurance Rate Map for Allegheny County, Pennsylvania, Panel 302 (Map Number 42003C0302E, Effective October 4, 1995), the 171 ARW installation is located within an area designated as Zone X. The designation Zone X are areas determined to be outside the 0.2 percent annual chance flood (500 year flood), indicating areas of minimal flooding (FEMA 1995).

3.4.5 Biological Resources

3.4.5.1 Vegetation

The Pittsburgh IAP occurs within the Eastern Broadleaf Forest (Oceanic) Province. Vegetation in this region typically is characterized by a winter deciduous forest dominated by tall broadleaf trees (Bailey 1995). The majority of the 171 ARW installation is developed or actively landscaped, with approximately 15 percent containing natural vegetation. Natural vegetation is comprised of fragmented stands of deciduous forest along the southwest portion of the installation which consist of primarily sugar maple (Acer saccharum), black cherry (Prunus serotina), American elm (Ulmus americana), shagbark hickory (Carya ovata), and box elder (Acer negundo). In addition, small areas of shrublands occur along the edge of the forest stands.
and are comprised of species such as blackberry (*Rubus* spp.), red-panicle dogwood (*Cornus racemosa*), and multiflora rose (*Rosa multiflora*) (171 ARW 2012a).

3.4.5.2 Wildlife

Due to the lack of substantial pockets of native vegetation, high noise levels, and human activities at and surrounding the airport, wildlife habitat is limited. As a result, the majority of wildlife present in the vicinity of the airport and the 171 ARW installation consists of species that are highly adapted to developed and disturbed areas. Pittsburgh ANGS is located within the Atlantic Flyway, one of four major North American corridors for migratory birds. The majority of the bird species found within Pittsburgh IAP or its vicinity are protected under the MBTA. Common bird species found within the vicinity of the airport include Ring-Billed Gull (*Larus delawarensis*), Canada Goose (*Branta canadensis*), American Crow (*Corvus brachyrhynchos*), European Starling (*Sturnus vulgaris*), Killdeer (*Charadrius wilsonia*) and Mourning Dove (*Zenaida macroura*). Other common wildlife species include white-tailed deer (*Odocoileus virginianus*), red fox (*Vulpes vulpes*), Eastern gray squirrel (*Sciurus carolinensis*), opossum (*Didelphis marsupialis*), eastern cottontail (*Sylvilagus floridanus*), raccoon (*Procyon lotor*), and woodchuck (*Marmota monax*) (171 ARW 2012a).

3.4.5.3 Special Status Species

No federally listed or candidate species are known to occur within the airport or on the 171 ARW installation. The potential for several federally listed species that have been observed in Allegheny County to occur within the vicinity of the airport exists; however, there is little to no habitat for these species within the airport or the installation (171 ARW 2012a). Several state listed species have been observed within Allegheny County and have the potential to occur on or within the vicinity of the installation; however, only one of these have been observed on the installation (Torrey’s Rush). Torrey’s Rush (*Juncus torrei*), a Pennsylvania threatened plant species, has been identified on the installation, in the area of the mitigation wetlands (see Wetland Section below). A list of these species can be found in Appendix E. There is no critical habitat located on the installation.

3.4.5.4 Wetlands

One palustrine emergent/scrub-shrub wetland occurs on the installation between the east and west aircraft parking aprons. This wetland was constructed as mitigation for the wetlands that were impacted during the construction of the east aircraft parking apron in the 1990s. This wetland is associated with headwaters of two unnamed tributaries to McClaren’s Run and are most likely jurisdictional wetlands (Figure 3.4.4-1) (171 ARW 2012a).
3.4.6 Cultural Resources

3.4.6.1 Archaeological Resources

A majority of the 171 ARW installation is developed with buildings and pavement. Approximately 1.2 acres in the southeast portion of the installation was determined to be relatively undisturbed. This area was intensively surveyed for cultural resources in 2011. No NRHP-eligible resources were located (171 ARW 2012b, McLearen 2011). The Pennsylvania SHPO concurred with these findings (see McLearen 2011 in Appendix B4).

3.4.6.2 Architectural Resources

All 25 architectural resources at the 171 ARW installation pre-dating the end of the Cold War era or constructed before 1990 were inventoried and evaluated for NRHP eligibility (171 ARW 2012b). None of the buildings were recommended as eligible to the NRHP.

3.4.6.3 Traditional Resources

The 171 ARW installation contains no known traditional resources; however, five federally-recognized Tribes that are historically, culturally, and linguistically affiliated with the area have been identified: Cayuga Nation of New York, Onondaga Nation of New York, Seneca Nation of Indians, Tonawanda Band of Seneca Indians of New York, and Tuscarora Nation of New York.

3.4.7 Land Use

The 171 ARW is located at Pittsburgh IAP, in Allegheny County, Pennsylvania. Two townships are immediately adjacent to the airport: Moon Township is north and east of the Airport, and Findlay Township is west and south of the airport. Independence Township (Beaver County), North Fayette Township, Robinson Township, and Coraopolis Township are located to the west, south, southeast, and northeast of the airport, respectively. Land uses surrounding the airport include a mixture of suburban and rural land uses including Recreation/Conservation, Commercial, Industrial, and Undeveloped (Allegheny County 2008). No houses, churches, schools or other sensitive noise receptors are located within areas exposed to DNL greater than 70 dB off-airport.

Zoning surrounding the airport generally supports compatible land use planning and provides for protection of the areas surrounding Pittsburgh IAP. Zoning codes define and establish airport hazard zones height limitations and land use restrictions within these zones. This zoning protects RPZs, details of which can be found in the Safety section of Appendix A, Section A.3.

Pittsburgh IAP exposes 128.6 acres, off-airport, to noise levels between 65 dB and 70 dB DNL. Figure 3.4.7-1 shows an overlay of the baseline noise contours onto a map displaying the existing land use in the vicinity of the airfield.
Figure 3.4.7-1. DNL Noise Contours and Land Use at Pittsburgh IAP

Source: Moon Township Zoning 2013, Findlay Township Zoning 2012, Pittsburgh IAP 2005
3.4.8 **Infrastructure and Transportation**

3.4.8.1 **Potable Water System**

Currently, Findlay Township Water Authority is acting as a back-up source for potable water for the 171 ARW installation due to a break in the line from the Moon Township Water Authority, which is typically the primary source of potable water for the installation. A new waterline from Moon Township is in the process of design for construction. Findlay Township buys water from Moon Township, Robinson Township, and other sources (Tower 2013a). Potable water in the area is supplied primarily from four regional groundwater aquifer wells. Moon Township pumps approximately 1.18 trillion gallons of water per year to its customers (Moon Township no date). The groundwater supply is supplemented with treated surface water from the Ohio River. In FY 2012, 4.7 million gallons of potable water were supplied to the 171 ARW installation (171 ARW 2013c).

3.4.8.2 **Wastewater**

The 171 ARW installation generates wastewater from sanitary, stormwater, and industrial processes, including oil/water separator discharge, wash rack discharge, floor wash-down, latrines, sinks, and showers. Wastewater generated within the 171 ARW installation is conveyed into the municipal sewage system, operated by Moon Township Municipal Authority. The Authority’s Leonard L. Nary Wastewater Treatment plant treats water from Moon, Findlay, North Fayette, and Robinson Townships, as well as the installation. The facility has a capacity of a 6.2 million gallons per day (171 ARW 2012a).

3.4.8.3 **Stormwater**

A high percentage of the active administrative and industrial areas of the installation are paved or roofed, resulting in high runoff rates during precipitation events. As described in the 171 ARW *SWPPP* (2010), the 171 ARW installation has a stormwater drainage conveyance system typified by overland flow to catch basins, inlets, surface drains, underground pipes, culverts, ditches, and swales that discharge to receiving waters (see Section 3.4.4, *Soils and Water*) or other municipal separate storm sewer systems. The stormwater drainage system has been designed to safely collect and transport surface water runoff from storm events to prevent flooding within the installation and is a separate system from the wastewater (sewage) system.

3.4.8.4 **Electrical and Natural Gas Systems**

Electricity is supplied to the 171 ARW installation by Duquesne Light Company via three single phase 667 kilovolt ampere transformers and underground power lines. Natural gas is supplied by UGI Energy Services from a single 4-inch steel line. Electricity consumption for FY 2012 at the
171 ARW installation was 5,751 megawatt hours. Natural gas consumption for FY 2012 at the 171 ARW installation was 26,880 thousand cubic feet (171 ARW 2013c).

3.4.8.5 Solid Waste Management

Municipal solid waste at the 171 ARW installation is managed in accordance with the 171 ARW Solid Waste Management Plan/Qualified Recycling Program (171 ARW 2010b) and guidelines specified in AFI 32-7042, *Waste Management* (2009). This AFI incorporates, by reference, the federal standard for solid waste regulations contained within 40 CFR, Subtitle D, *Non-hazardous Waste*, and other applicable federal regulations, AFIs, and DoD Directives. In general, AFI 32-7042 establishes the requirement for installations to have a solid waste management program that incorporates the following: a solid waste management plan; procedures for recycling, diversion, handling, storage, collection, and disposal of solid waste; recordkeeping and reporting; and pollution prevention.

The 171 ARW installation generates solid waste in the form of office trash, non-hazardous industrial wastes, normal municipal waste, and construction debris. These nonhazardous solid wastes are collected in dumpsters located throughout the 171 ARW installation and transported to the Allied Waste Imperial Landfill.

3.4.8.6 Transportation

The 171 ARW installation is located approximately 14 miles northwest of downtown Pittsburgh and is easily accessible from several major highways. I-79 runs in a north-south direction approximately 4 miles east of the installation. I-376/SR 60 runs in a northwest-southeast direction through the Pittsburgh IAP property and provides direct access to the airport. In addition, U.S. Highway 30, a principal arterial that runs east-west south of the airport and then takes a turn to the north running parallel to the airport on the western side, also provides regional access. McClaren Road exit off of I-376 provides direct access to the main entrance for the 171 ARW installation.

3.4.9 Hazardous Materials and Waste

3.4.9.1 Hazardous Materials

Hazardous materials are used at the 171 ARW installation for aircraft and vehicle operations support and maintenance. Types of hazardous substances found on the 171 ARW installation include hydraulic fluid, waste oils, recovered fuels, spent cleaners, strippers, solvents, flammable and combustible liquids, acids, aerosols, batteries, corrosives, and paints (171 ARW 2009).

Nineteen ASTs occur on the 171 ARW installation and are used to store diesel, jet fuel, motor gasoline, aqueous film forming foam, potassium acetate, developer, dye penetrant, emulsifier,
and rinse solution. There is one 1,000-gallon UST on the installation located in the POL yard used to store reclaimed JP-8 (171 ARW 2012a).

Toxic Substances

Regulated toxic substances typically associated with buildings and facilities include asbestos, LBP, and PCBs. An asbestos survey was performed at the 171 ARW installation in 1991. ACMs identified in the insulation, floor tiles, and mastic were found in Buildings/Hangars 102, 103, 107, 110, 201, 206, 300, 301/302, 304 (171 ARW 2012a).

A LBP survey has not been conducted at the 171 ARW installation. Any buildings on the installation constructed prior to 1978 are presumed to contain LBP and would be tested for LBP prior to demolition or renovation (171 ARW 2012a).

The 171 ARW does not maintain, operate, or own any PCB equipment or PCB-contaminated equipment and the subject property is considered PCB-free (171 ARW 2008).

3.4.9.2 Hazardous Waste Management

The 171 ARW Oil and Hazardous Substances Spill Prevention and Response Plan contains the governing regulations for spill prevention and describes specific protocols for preventing and responding to releases, accidents, and spills involving oils and hazardous materials (171 ARW 2012c). The 171 ARW Hazardous Waste Management Plan outlines procedures for controlling and managing hazardous wastes from the point where they are generated until they are disposed. In addition, it includes guidance for compliance with all federal, state, and local regulations pertaining to hazardous waste (171 ARW 2009).

The 171 ARW is regulated as a Large Quantity Generator of hazardous waste and maintains USEPA Identification Number PAD114942832. A hazardous waste generation point is where the waste is initially created or generated. An SAP is an area where hazardous waste is initially accumulated at the point of generation and is under the control of the SAP manager. Hazardous wastes initially accumulated at a SAP are accumulated in appropriate containers before being transferred to the installation CAP. There are 20 SAPs (where a waste is initially accumulated) identified at the installation in Buildings/Hangars 103, 107, 113, 121, 213, 301, 302, 304, 307, 308, 310, 316, 320, 403, 404, and 520. The installation CAP is located in Building 501/502 (171 ARW 2009, Tower 2013b).

OWSs are used to separate oils, fuels, sand, and grease from wastewater and to prevent contaminants from entering the sanitary sewer and stormwater drainage systems. Fifteen OWSs are located on the 171 ARW installation. These OWSs primarily receive discharge from floor drains in maintenance areas (171 ARW 2012c).
3.4.9.3 Environmental Restoration Program

There are three closed ERP sites and two closed Areas of Concern (AOCs) at the 171 ARW installation. Table 3.4.9-1 provides details for each of these sites and Figure 3.4.9-1 shows the locations.

Table 3.4.9-1. ERP Sites within the 171 ARW Installation

<table>
<thead>
<tr>
<th>ERP/AOC Site</th>
<th>Materials of Concern</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>This site was a waste oil tank where JP-4 fuel, hydraulic, and engine oils were released from a UST. Soil and groundwater sampling performed at this site did not reveal contaminants of concern above PADEP guidelines.</td>
<td>Closed</td>
</tr>
<tr>
<td>2</td>
<td>This site was a UST for a gasoline for a motor pool area. Soil and groundwater sampling performed at this site revealed gasoline-related soil contamination at low levels. Results from a risk assessment of this area showed that contaminated soils did not pose a threat to human life or the environment.</td>
<td>Closed</td>
</tr>
<tr>
<td>7</td>
<td>This site was a POL storage area and fuel hydrant system for JP-4 fuel. Soil and groundwater sampling performed at this site did not reveal contaminants of concern above PADEP guidelines.</td>
<td>Closed</td>
</tr>
<tr>
<td>AOC A</td>
<td>This site is referred to as the Cabbage Patch Area and was used for dumping fuels, POLs, and solvents. Soil sampling results at this location did not identify contaminants in exceedance of regulatory criteria or posing a threat to human health or the environment. No further action was recommended.</td>
<td>Closed</td>
</tr>
<tr>
<td>AOC B</td>
<td>This site is referred to as the Embankment Area and was used for dumping petroleum distillate, tetrachloroethylene, methyl ethyl ketone, and other liquid wastes. Soil sampling results at this location did not identify contaminants in exceedance of regulatory criteria or posing a threat to human health or the environment. No further action was recommended.</td>
<td>Closed</td>
</tr>
</tbody>
</table>

Notes: ERP = Environmental Restoration Program; AOC = Area of Concern; UST = underground storage tank; PADEP = Pennsylvania Department of Environmental Protection; POL = petroleum, oil, and lubricant

Source: 171 ARW 2012a.
Figure 3.4.9-1. ERP Sites at the 171 ARW Installation, Pittsburgh IAP
3.4.10 Socioeconomics

3.4.10.1 Population and Employment

Population

Pittsburgh ANGS is located approximately 12 miles northwest of Pittsburgh, Pennsylvania in Allegheny County. The airport ROI includes portions of Moon and Finlay Townships. Current population data and estimates for the state of Pennsylvania, Allegheny County, and Findlay and Moon Townships are provided in Table 3.4.10-1. From 1990 to 2010, Allegheny County’s population decreased by 113,101, approximately 9 percent (USCB 1990d, 2000d, 2010e).

Table 3.4.10-1. Population Growth within the Vicinity of Pittsburgh ANGS

<table>
<thead>
<tr>
<th>Area</th>
<th>1990 Census</th>
<th>2000 Census</th>
<th>2010 Census</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pennsylvania</td>
<td>11,881,643</td>
<td>12,281,054</td>
<td>12,702,379</td>
</tr>
<tr>
<td>Allegheny County</td>
<td>1,336,449</td>
<td>1,281,666</td>
<td>1,223,348</td>
</tr>
<tr>
<td>Findlay Township</td>
<td>4,500</td>
<td>5,145</td>
<td>5,060</td>
</tr>
<tr>
<td>Moon Township</td>
<td>19,631</td>
<td>22,290</td>
<td>24,185</td>
</tr>
</tbody>
</table>

The 171 ARW currently supports a workforce authorization of 1,306, including 393 full-time and 913 part-time personnel (see Table 2.3-24).

Employment and Earnings

Table 3.4.10-2 presents total labor force and employment rates for Pennsylvania, Allegheny County, and Findlay and Moon Townships. Based on 2007-2011 ACS 5-year estimates, there were 644,951 persons in the labor force (able to work) and 598,554 employed within Allegheny County, resulting in an unemployment rate of approximately 7 percent. Top employment industries in Allegheny County include 1) educational services, and health care and social assistance; 2) professional, scientific, and management, and administrative and waste management services; and 3) retail (USCB 2011e). Principal employers include UPMC Presbyterian Shadyside, University of Pittsburgh, the federal government, Giant Eagle Inc., and PNC Bank NA (Center for Workforce Information and Analysis 2012).

Table 3.4.10-2. Employment Data (2011) within the Vicinity of Pittsburgh ANGS

<table>
<thead>
<tr>
<th>Area</th>
<th>Labor Force</th>
<th>Employed</th>
<th>Unemployed</th>
<th>Unemployment Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pennsylvania</td>
<td>6,456,527</td>
<td>5,947,873</td>
<td>508,654</td>
<td>7.9</td>
</tr>
<tr>
<td>Allegheny County</td>
<td>644,951</td>
<td>598,554</td>
<td>46,397</td>
<td>7.2</td>
</tr>
<tr>
<td>Findlay Township</td>
<td>2,879</td>
<td>2,598</td>
<td>281</td>
<td>9.8</td>
</tr>
<tr>
<td>Moon Township</td>
<td>13,199</td>
<td>12,532</td>
<td>667</td>
<td>5.1</td>
</tr>
</tbody>
</table>

Note: Employment numbers include individuals in the Armed Forces.
Source: USCB 2011e.
3.4.10.2 Schools

According to the 2011 ACS enrollment 5-year estimates, 179,072 students were enrolled in schools from Kindergarten through Grade 12 in Allegheny County (USCB 2011e).

3.4.10.3 Housing

In 2010, the number of housing units in Allegheny County was 589,201, with a vacancy rate of approximately 9 percent (USCB 2010e).

3.4.11 Environmental Justice and the Protection of Children

3.4.11.1 Minority and Low-Income Populations

Table 3.4.11-1 displays the minority, low-income, and children under age 18 within the state of Pennsylvania, as well as the county and townships within the vicinity of Pittsburgh IAP. Approximately 19 percent of the population of Allegheny County is composed of minorities (i.e., an ethnic or racial group with a distinctive presence in a community), compared to approximately 18 percent for the state of Pennsylvania. The percentage of population living below the poverty level for the state of Pennsylvania (approximately 13 percent) is slightly higher than Allegheny County (approximately 12 percent) (USCB 2010e).

<table>
<thead>
<tr>
<th>Geographic Area</th>
<th>Total Population</th>
<th>Minority Population</th>
<th>Percent Minority</th>
<th>Low-Income Population</th>
<th>Percent Low-Income</th>
<th>Children Under Age 18</th>
<th>Percent Children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pennsylvania</td>
<td>12,702,379</td>
<td>2,296,091</td>
<td>18.1</td>
<td>1,600,500</td>
<td>12.6</td>
<td>2,792,155</td>
<td>22.0</td>
</tr>
<tr>
<td>Alleghany County</td>
<td>1,223,348</td>
<td>226,053</td>
<td>18.5</td>
<td>151,695</td>
<td>12.4</td>
<td>241,663</td>
<td>19.8</td>
</tr>
<tr>
<td>Findlay Township</td>
<td>5,060</td>
<td>198</td>
<td>3.9</td>
<td>202</td>
<td>4.0</td>
<td>1,139</td>
<td>22.5</td>
</tr>
<tr>
<td>Moon Township</td>
<td>24,185</td>
<td>2,473</td>
<td>10.2</td>
<td>2,080</td>
<td>8.6</td>
<td>5,169</td>
<td>21.4</td>
</tr>
</tbody>
</table>

Note: 1. Total population, minority population, and number of children under the age of 18 were obtained from the 2010 census data. Low income population numbers are from the 2007-2011 American Community Survey 5-Year Estimates.
2. The percentage of low-income persons is calculated as a percentage of all persons for whom the Bureau of the Census determines poverty status, which is generally a lower number than the total population because it excludes institutionalized persons, person in military group quarters and college dormitories, and unrelated individuals under 15 years old.

Source: USCB 2010e, 2011f.

Table 3.4.11-2 displays the total population, total minority population, percentage minority, total low-income population, and low-income percentages for the areas in the vicinity of Pittsburgh IAP within the baseline DNL greater than 65 dB.
Table 3.4.11-2. Population within Baseline Noise Contours, Pittsburgh ANGS¹

<table>
<thead>
<tr>
<th>Noise Contour</th>
<th>Total Population</th>
<th>Minority Population</th>
<th>Percent Minority</th>
<th>Low-Income Population</th>
<th>Percent Low-Income²</th>
</tr>
</thead>
<tbody>
<tr>
<td>65-70</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>70-75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>75-80</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>80-85</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: 1. Total population, minority population, and number of children under the age of 18 were obtained from the 2010 census data. Low income population numbers are from the 2007-2011 ACS 5-Year Estimates.
2. The percentage of low-income persons is calculated as a percentage of all persons for whom the USCB determines poverty status, which is generally a lower number than the total population because it excludes institutionalized persons, persons in military group quarters and college dormitories, and unrelated individuals under 15 years old.

Source: USCB 2010f, 2011f.

In the area surrounding Pittsburgh IAP, approximately 12 people were estimated to be affected by baseline DNL between 65 dB and 70 dB. Out of that total, none are considered to be minorities or low-income populations.

3.4.11.2 Protection of Children

In 2010, the number of children under the age of 18 living in Allegheny County was approximately 241,633 (19.8 percent of the population). The state of Pennsylvania has a slightly higher percentage population of children compared to the county (22 percent). There are no on-installation housing or facilities for children located at the 171 ARW installation. Currently, there are no Kindergarten through Grade 12 off-installation schools that are exposed to aircraft DNL of 65 dB or above.
3.5 **RICKENBACKER AIR NATIONAL GUARD STATION**

Rickenbacker ANGS, home of the 121 ARW of the OH ANG, is located approximately 12 miles southeast of downtown Columbus, Ohio in Franklin County. The 121 ARW installation is situated on the west side of Rickenbacker IAP, an international airport operated by the CRAA.

3.5.1 Noise

To evaluate noise impacts in the vicinity of a military installation located within a commercial airport with a published FAR Part 150 Airport Noise Compatibility Study, the USAF allows for use of the FAA’s INM to generate DNL noise contours. The CRAA under the FAA uses the INM computer model for generating noise contours and for Rickenbacker IAP, the FAA’s INM was used. For more detailed information on the noise modeling methods see Appendix A, Section A.1.2.

3.5.1.1 Baseline Operations

In August 2007, the CRAA approved a Noise Compatibility Program Update as part of the FAA’s FAR Part 150 Noise Compatibility Program for Rickenbacker IAP based on operational data from a 12-month period ending April 2005. The study used the standard FAA INM program to establish noise contours based on those operations and is the FAA-approved and public document for the noise compatibility program currently in affect for the airport.

Based on aircraft operations data validated in February 2013 (FAA 2012a, 121 ARW 2013a), approximately 39,436 total aircraft operations occurred at Rickenbacker IAP during 2012; of those, the 121 ARW flew a total of 6,445 airfield operations with approximately 3 percent at night (approximately 16 percent of total operations at the airfield). These numbers were validated by the 121 ARW and Rickenbacker ATADs (FAA tower) report and are used as the basis for determining airfield operations for the Proposed Action (FAA 2012a, 121 ARW 2013a).

The current FAR Part 150 data identified 67,160 total aircraft operations that occurred at Rickenbacker IAP during the 12-month period ending April 2005. Per the request of the CRAA, the current approved Final FAR Part 150 Noise Compatibility Program Update August 2007 for Rickenbacker IAP is used as the baseline for this analysis (Gwiner 2013). The baseline aircraft operations at the airport used for this analysis differs from the current 2012 aircraft operations due to changes to airfield use by AirNet Systems Cargo with significantly reduced activity, along with reductions in general aviation and other cargo aircraft (CRAA 2007).

Table 3.5.1-1 summarizes the frequency of aircraft operations for Rickenbacker IAP based on the 2007 published FAR Part 150 Study. An aircraft operation is counted each time an aircraft
departs from the runway and each time they approach the runway. The majority of aircraft traffic includes jet cargo, charter aircraft along with based ANG KC-135, C-130, and general aviation aircraft. Although the number of aircraft operations at an airfield varies from day to day, for Rickenbacker IAP, operations are calculated for an AAD, meaning that yearly operations are averaged across all 365 days of the year. Table 3.5.1-1 reflects a total of approximately 184 aircraft operations on an AAD (67,160 divided by 365 days). Approximately 40 percent of the total operations occur during environmental night (10:00 p.m. through 7:00 a.m.).

Table 3.5.1-1. Current Rickenbacker IAP Annual Aircraft Operations FAR Part 150\(^1\)

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>DEPARTURES</th>
<th>ARRIVALS</th>
<th>TOTAL(^2)</th>
<th>Grand Total(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night(^1)</td>
<td>Day</td>
<td>Night(^1)</td>
</tr>
<tr>
<td>KC-135</td>
<td>6,570</td>
<td>0</td>
<td>6,205</td>
<td>365</td>
</tr>
<tr>
<td>Other Aircraft(^4)</td>
<td>13,870</td>
<td>13,140</td>
<td>13,505</td>
<td>13,505</td>
</tr>
<tr>
<td>Total</td>
<td>20,440</td>
<td>13,140</td>
<td>19,710</td>
<td>13,870</td>
</tr>
</tbody>
</table>

Notes:
1. Operations based on currently approved FAR Part 150
2. Includes Closed Patterns (which count as two airfield operations).
3. Night – Between 10 p.m. and 7 a.m. for environmental night.
4. Other based military, civilian aircraft and transient aircraft (multiple type aircraft) including: Boeing 737, 747, and Airbus 300.

Based on the 2007 baseline data, the 121 ARW KC-135 aircraft flew a total of 13,140 annual airfield operations, or an average of 36 airfield operations a day. Approximately 3 percent of the total KC-135 operations occur during environmental night. Approximately 20 percent of total operations at Rickenbacker are accomplished by the 121 ARW KC-135 aircraft.

3.5.1.2 Runway and Flight Profiles

Rickenbacker IAP aircraft use VFR departures, published Standard Instrument Departures, straight in approaches, overhead approaches, published IFR or radar patterns, and VFR closed patterns along with re-entry VFR patterns as the basic flight patterns for local arrival and departures and flight training. Detailed representative arrival, departure, and closed pattern flight tracks are found in Appendix C, Noise.

3.5.1.3 Existing Noise Environment

Noise contours developed for the baseline conditions at Rickenbacker IAP are shown in Figure 3.5.1-1. The acreage within each DNL contour on and off Rickenbacker IAP property is shown in Table 3.5.1-2. Approximately 2,359 acres are exposed to DNL greater than or equal to 65 dB. Detailed information on off-airport land use that lies within a DNL greater than 65 dB can be found in Section 3.5.7, Land Use.
Figure 3.5.1-1. Baseline DNL Noise Contours for Rickenbacker IAP

Legend:
- Rickenbacker International Airport
- Rickenbacker Air National Guard Station
- Baseline DNL Noise Contours and Range
- Representative Sensitive Recipients
- Church

Source: Rickenbacker IAP 2005
Table 3.5.1-2. Acres within Baseline Noise Contours, Rickenbacker IAP

<table>
<thead>
<tr>
<th>Noise Level (dB)</th>
<th>On Airport (acres)</th>
<th>Off Airport (acres)</th>
<th>Total (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>65-70</td>
<td>811</td>
<td>417</td>
<td>1,228</td>
</tr>
<tr>
<td>70-75</td>
<td>478</td>
<td>0</td>
<td>478</td>
</tr>
<tr>
<td>75-80</td>
<td>156</td>
<td>0</td>
<td>156</td>
</tr>
<tr>
<td>80-85</td>
<td>265</td>
<td>0</td>
<td>265</td>
</tr>
<tr>
<td>Greater than 85</td>
<td>232</td>
<td>0</td>
<td>232</td>
</tr>
<tr>
<td>Total</td>
<td>1,942</td>
<td>417</td>
<td>2,359</td>
</tr>
</tbody>
</table>

Notes: dB = decibel

Potential Hearing Loss

As shown in Table 3.5.1-2, there is no property off the Rickenbacker IAP that falls within the 80+ dB DNL noise contour; therefore, no potential hearing loss risk is currently associated with these areas.

3.5.1.4 Rickenbacker International Airport Noise Abatement Procedures

Rickenbacker IAP has published certain restrictions on flying activities that could adversely affect its neighbors in an effort to reduce noise impacts while maintaining safe operations. The restrictions are published on aeronautical charts and apply to both military and civilian aircraft. The restrictions include guidance for noise abatement procedures for the airfield including noise abatement procedures in effect from 11:00 p.m. until 7:00 a.m. for departures on Runways 23L and 23R with winds 10 knots or less and arrivals on Runways 05L and 05R with winds 10 knots or less. Aircraft are advised to contact airport operations for any other noise abatement instructions or more information (SkyVector 2013c).

3.5.1.5 Rickenbacker International Airport Noise Complaints Procedures

Rickenbacker IAP has an automated phone messaging system that the public can call to leave a complaint. The complaint is investigated and the individual receives a call back within 3 days. The airport planning office reviews the radar and listens to tower and ground communication to explore the noise complaints and provide a response. In 2012, Rickenbacker IAP received 17 noise complaints, 13 of which were found to be from military aircraft (primary transient military aircraft). Over the past five years, 156 noise complaints were submitted with 50 percent of those from military transient aircraft focused on the F-16, F-18, and other fighter or high performance transient aircraft (Gwiner 2013).

In addition, the 121 ARW noise complaint procedures include referring callers to the CRAA Noise Hotline at 614-239-4065. The caller may also submit noise complaints via email to the airport noise web site: noisemanagementoffice@columbusairports.com (121 ARW 2013c).
3.5.2 Air Quality

3.5.2.1 Regulatory Setting

Individual states are delegated the responsibility to regulate air quality in order to achieve or maintain air quality in attainment with these standards. The Ohio Environmental Protection Agency is the agency responsible for the regulation of air quality within the state of Ohio. The state of Ohio regulates air quality through the Ohio Administrative Code, Chapters 3745-14 through 3745-114. The state of Ohio has adopted the NAAQS, and has not adopted additional more stringent state standards. The NAAQS are summarized in Table 3.5.2-1.

Rickenbacker ANGS is located approximately 12 miles south of downtown Columbus, Ohio in Franklin County. The USEPA has classified the Columbus area, including all of Franklin County, as nonattainment for the O$_3$ and PM$_{2.5}$ NAAQS. The region is designated attainment/unclassified area for all other criteria pollutants. The Proposed Action is therefore subject to the requirements of Section 176(c) of the CAA, as articulated in the USEPA General Conformity Rule. Based on the nonattainment classification for the region, the *de minimis* emission thresholds for the General Conformity Rule for ozone precursors (NOx and VOCs) is 100 tpy, and the *de minimis* emission threshold for PM$_{2.5}$ emissions is also 100 tpy.

The USEPA recently promulgated a more stringent standard for lead, and has redesigned its monitoring program to address lead and identified airports for monitoring because aviation gas used in piston aircraft still contains lead. The project area is considered attainment/unclassified for lead, and lead is not used in aviation fuel used in the KC-135 or KC-46A aircraft.
Table 3.5.2-1. Ambient Air Quality Standards

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Average Time</th>
<th>National Standards a</th>
<th>Primary b,c</th>
<th>Secondary b,d</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₃</td>
<td>8-hour</td>
<td>0.075 ppm (147 µg/m³)</td>
<td>Same as primary</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>CO</td>
<td>8-hour</td>
<td>9 ppm (10 mg/m³)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>35 ppm (40 mg/m³)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>NO₂</td>
<td>Annual</td>
<td>0.053 ppm (100 µg/m³)</td>
<td>Same as primary</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>0.100 ppm (188 µg/m³)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>SO₂</td>
<td>24-hour</td>
<td>—</td>
<td>0.5 ppm (1,300 µg/m³)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3-hour</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>0.075 ppm (189 µg/m³)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>Annual</td>
<td>—</td>
<td>—</td>
<td>Same as primary</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>150 µg/m³</td>
<td>Same as primary</td>
<td>—</td>
</tr>
<tr>
<td>PM₂₅</td>
<td>Annual</td>
<td>12 µg/m³</td>
<td>15 µg/m³</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>35 µg/m³</td>
<td>Same as primary</td>
<td>—</td>
</tr>
<tr>
<td>Pb</td>
<td>Rolling 3-month period</td>
<td>0.15 µg/m³</td>
<td>Same as primary</td>
<td>—</td>
</tr>
</tbody>
</table>

Notes: a Standards other than the 1-hour ozone, 24-hour PM₁₀, 24-hour PM₂₅, and those based on annual averages are not to be exceeded more than once a year. The 8-hour ozone national standard has replaced the 1-hour ozone national standard.
b Concentrations are expressed first in units in which they were promulgated. Equivalent units given in parenthesis.
c Primary Standards: The levels of air quality necessary, with an adequate margin of safety to protect the public health. Each state must attain the primary standards no later than 3 years after that state’s implementation plan is approved by the USEPA.
d Secondary Standards: The levels of air quality necessary to protect the public welfare from any known or anticipated adverse effects of a pollutant.

µg/m³ = micrograms per cubic meter; CO = carbon monoxide; mg/m³ = milligrams per cubic meter; NO₂ = nitrogen dioxide; O₃ = ozone; Pb = lead; PM₂₅ = particulate matter less than or equal to 2.5 microns in diameter; PM₁₀ = particulate matter less than or equal to 10 microns in diameter; ppm = parts per million; SO₂ = sulfur dioxide

Source: USEPA 2012.

3.5.2.2 Climate and Meteorology

Columbus is located in the central portion of Ohio in an area with relatively flat terrain. Situated in central Ohio in the drainage area of the Ohio River, Columbus is located on the Scioto and Olentangy rivers; two minor streams running through the city are Alum Creek and Big Walnut Creek. Columbus’s weather is changeable, influenced by air masses from central and southwest Canada; air from the Gulf of Mexico reaches the region during the summer and to a lesser extent in the fall and winter. The moderate climate is characterized by four distinct seasons. Snowfall averages around 27 inches annually (Midwest Regional Climate Center 2013).
January is the coldest month, with an average minimum temperature of 20°F. July is the hottest month, with an average maximum temperature of 86°F. The average annual temperature is 52.8°F. The average annual precipitation in Columbus is 40.0 inches (Midwest Regional Climate Center 2013).

Prevailing winds in Columbus are generally westerly to southwesterly during the year. The annual average wind speed is 8.3 miles per hour (Midwest Regional Climate Center 2013).

3.5.2.3 Regional and Local Air Pollutant Sources

The 121 ARW is based on the western side of Rickenbacker IAP in Franklin County, Ohio. The surrounding area to the west, south, and east of the airport is mainly agricultural, with light industrial/commercial uses to the north.

The USEPA’s National Emissions Inventory includes data for the year 2008 for Franklin County. Table 3.5.2-2 summarizes the regional emissions (stationary, area-wide, and mobile) of criteria pollutants and precursor emissions for the affected areas.

Table 3.5.2-2. Regional Emissions for Franklin County, Ohio

<table>
<thead>
<tr>
<th>EMISSIONS, TONS/YEAR</th>
<th>CO</th>
<th>VOCs</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional Emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stationary Sources</td>
<td>18,108</td>
<td>3,208</td>
<td>3,797</td>
<td>1,326</td>
<td>3,180</td>
<td>2,719</td>
</tr>
<tr>
<td>Area-Wide Source</td>
<td>1,124</td>
<td>14,821</td>
<td>376</td>
<td>11</td>
<td>16,452</td>
<td>1,764</td>
</tr>
<tr>
<td>Mobile Sources</td>
<td>220,807</td>
<td>19,397</td>
<td>35,271</td>
<td>318</td>
<td>1,948</td>
<td>1,559</td>
</tr>
<tr>
<td>Total</td>
<td>240,039</td>
<td>37,426</td>
<td>39,444</td>
<td>1,655</td>
<td>21,580</td>
<td>6,042</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding.

Emissions of Pb are not included because the affected region contains no significant sources of this criteria pollutant.

CO = carbon monoxide; NOx = oxides of nitrogen; PM10 = particulate matter less than or equal to 10 microns in diameter; PM2.5 = particulate matter less than or equal to 2.5 microns in diameter; SO2 = sulfur dioxide; VOC = volatile organic compound.

Source: USEPA 2008.

3.5.2.4 Baseline Air Quality

Representative background air monitoring data for the Rickenbacker ANGS for the period 2008-2012 are shown in Table 3.5.2-3. The closest monitoring stations to Rickenbacker IAP include monitoring stations in Columbus, which measure O3, CO, PM10, PM2.5, and SO2 (2008 – 2009). NO2 data were collected in Cincinnati, and SO2 data were collected from 2010 through 2012 in Clark County. NO2 data from Cincinnati may be conservative as the area is more developed than the area surrounding Rickenbacker IAP.

As shown in Table 3.5.2-3, the area has experienced several O3 exceedances during the recent 5-year period; however, Franklin County has not been designated as an O3 nonattainment area.
The Columbus area also experienced two exceedances of the 24-hour PM$_{2.5}$ standard in 2010. The data show that the area did not experience violations of other NAAQS.

Table 3.5.2-3. Ambient Air Monitoring Data for the Columbus Area

<table>
<thead>
<tr>
<th>Air Quality Indicator</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone (O_3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 8-hour value (ppm)</td>
<td>0.087</td>
<td>0.074</td>
<td>0.079</td>
<td>0.079</td>
<td>0.102</td>
</tr>
<tr>
<td>Days above federal standard (0.075 ppm)</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Particulate matter less than or equal to 2.5 microns in diameter (PM$_{2.5}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 24-hour value (μg/m3)</td>
<td>33.1</td>
<td>26.2</td>
<td>38.7</td>
<td>31</td>
<td>26.6</td>
</tr>
<tr>
<td>Days above federal standard (35 μg/m3)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Annual Average value (μg/m3)</td>
<td>12.8</td>
<td>11.5</td>
<td>13.1</td>
<td>11.9</td>
<td>10.7</td>
</tr>
<tr>
<td>Particulate matter less than or equal to 10 microns in diameter (PM$_{10}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 24-hour value (μg/m3)</td>
<td>82</td>
<td>64</td>
<td>138</td>
<td>86</td>
<td>74</td>
</tr>
<tr>
<td>Days above federal standard (150 μg/m3)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 1-hour value (ppm)</td>
<td>2.7</td>
<td>3.1</td>
<td>3.1</td>
<td>2.3</td>
<td>3.0</td>
</tr>
<tr>
<td>Days above federal standard (9 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peak 8-hour value (ppm)</td>
<td>1.7</td>
<td>1.6</td>
<td>2.0</td>
<td>1.9</td>
<td>2.0</td>
</tr>
<tr>
<td>Days above federal standard (35 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO$_2$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 1-hour value (ppm)</td>
<td>0.079</td>
<td>0.056</td>
<td>0.069</td>
<td>0.054</td>
<td>0.043</td>
</tr>
<tr>
<td>98th Percentile (μg/m3)</td>
<td>0.058</td>
<td>0.050</td>
<td>0.054</td>
<td>0.046</td>
<td>0.040</td>
</tr>
<tr>
<td>Days above federal standard (0.100 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO$_2$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 1-hour value (ppm)</td>
<td>0.038</td>
<td>0.036</td>
<td>0.034</td>
<td>0.028</td>
<td>0.023</td>
</tr>
<tr>
<td>99th Percentile (μg/m3)</td>
<td>0.029</td>
<td>0.036</td>
<td>0.028</td>
<td>0.022</td>
<td>0.018</td>
</tr>
<tr>
<td>Days above federal standard (0.075 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peak 24-hour value (ppm)</td>
<td>0.013</td>
<td>0.012</td>
<td>0.014</td>
<td>0.013</td>
<td>0.010</td>
</tr>
</tbody>
</table>

Notes: 1. The federal 1-hour SO$_2$ standard was adopted in 2010.

μg/m3 = micrograms per cubic meter; NA = data not available; ppm = parts per million

Source: USEPA 2013a.

3.5.2.5 121st Air Refueling Wing Emissions

The 121 ARW currently flies and maintains 18 KC-135 refueler aircraft to support its air refueling mission. The primary support operations performed at the 121 ARW include aircraft fueling, aircraft deicing, aircraft maintenance, aircraft support equipment maintenance, ground vehicle maintenance, fueling of ground vehicles, and facilities maintenance. These operations involve activities such as corrosion control, non-destructive inspection, fuel cell maintenance, engine maintenance, hydraulics, and wheel and tire maintenance (121 ARW 2008).

Emissions for the 121 ARW have been quantified in the Final 2009 Air Emissions Inventory (121 ARW 2011a). The inventory evaluated the emissions from the 121 ARW to determine its status under the Title V Federal Operating Permits program. Based on the major source thresholds for the area, the major source thresholds are 100 tpy for all criteria pollutants, and less than 10 tpy of any single HAP or 25 tpy of any combination of HAPs (121 ARW 2011a).
The 121 ARW is not required to operate under a Title V Operating Permit. The 2009 Air Emissions Inventory demonstrates that total base-wide potential emissions from stationary sources are below the major source thresholds (121 ARW 2011a).

Stationary source emissions at the 121 ARW include emissions from natural gas and fuel oil fired heating units, internal combustion engines, fuel tanks, and minor sources including chemical use, aircraft deicing, and fuel cell maintenance activities. Mobile source emissions include emissions from aircraft operations (take-offs and landings), AGE, ground vehicle operations, and maintenance aircraft operations performed with the engines still mounted on the aircraft (engine run-ups and trim checks). Emissions from aircraft operations at the 121 ARW considered all based and transient aircraft. Aircraft emissions were calculated for all flight activities below the default mixing height (3,000 feet AGL). Baseline emissions also include stationary sources and emissions associated with vehicle trips associated with existing personnel and dependents. These emissions, combined with those from the other mobile sources, account for the majority of the emissions from the installation (121 ARW 2011a).

To provide a baseline for evaluating the net emissions increases/decreases associated with Alternative #5, emissions from the KC-135 aircraft operations, aircraft refueling, KC-135 engine testing, KC-135-related AGE, and POVs associated with KC-135 flight operations were evaluated. Emissions from the KC-135 aircraft operations were calculated based on 2012 aircraft operations identified baseline airfield operations identified in Table 2.3-25, utilizing site-specific flight profiles to calculate aircraft operations below a default mixing height of 3,000 feet AGL. A discussion of the methodology for quantifying emissions is provided in Appendix A, Section A.2.3. Emissions for the baseline emissions associated with baseline operations of the KC-135 aircraft are provided in Table 3.5.2-4.

<table>
<thead>
<tr>
<th>Emission Source</th>
<th>VOCs</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 Baseline Aircraft Operations</td>
<td>4.63</td>
<td>68.57</td>
<td>64.35</td>
<td>6.38</td>
<td>0.34</td>
<td>0.34</td>
<td>17,742</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.02</td>
<td>0.15</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>3,333</td>
</tr>
<tr>
<td>Engine Testing</td>
<td>0.11</td>
<td>1.55</td>
<td>0.43</td>
<td>0.07</td>
<td>0.01</td>
<td>0.01</td>
<td>185</td>
</tr>
<tr>
<td>POVs</td>
<td>4.55</td>
<td>67.35</td>
<td>3.55</td>
<td>0.05</td>
<td>0.15</td>
<td>0.07</td>
<td>2,407</td>
</tr>
<tr>
<td>Total Baseline Emissions</td>
<td>9.29</td>
<td>137.50</td>
<td>68.48</td>
<td>6.50</td>
<td>0.51</td>
<td>0.42</td>
<td>23,667</td>
</tr>
</tbody>
</table>

Notes: Numbers might not add precisely due to rounding. CO = carbon monoxide; CO2e = carbon dioxide equivalent; NOx = oxides of nitrogen; PM10 = particulate matter less than or equal to 10 microns in diameter; PM2.5 = particulate matter less than or equal to 2.5 microns in diameter; SO2 = sulfur dioxide; VOC = volatile organic compound

Source: 121 ARW 2011a.
3.5.3 Safety

This section provides information on both ground and flight safety. Ground safety includes discussions of fire/crash response capabilities, APZs/RPZs, explosive safety, and AT/FP. Flight safety includes discussions on flight safety procedures, aircraft mishaps, BASH, and fuel jettison requirements. The affected environment includes the airfield and local airspace surrounding Rickenbacker IAP.

3.5.3.1 Ground Safety

Fire/Crash Response

ARFF services at Rickenbacker ANGS are available on a 24-hour basis. Upon notification of an in-flight or ground emergency, the crash and rescue services personnel would coordinate emergency services. ARFF equipment and personnel at Rickenbacker ANGS meet USAF requirements (Headquarters AMC and NGB 2013b).

Accident Potential Zone/Runway Protection Zone

Development restrictions associated with RPZs are intended to preclude incompatible land use activities from being established in these areas. The city of Columbus, Ohio utilizes the FAA’s airport land use compatibility guidelines, and as such, the RPZs have allowed development to be compatible with airport operations. Details of development and land use in the Rickenbacker IAP vicinity are included in Section 3.5.7, Land Use.

Explosive Safety

No QD arcs exist at Rickenbacker IAP as there are no storage facilities of any hazardous materials on the installation (Headquarters AMC and NGB 2013b).

Anti-Terrorism/Force Protection

Many of the military facilities at the 121 ARW installation at Rickenbacker ANGS were constructed before AT/FP considerations became a critical concern. Thus, under current conditions, many facilities do not comply with all current AT/FP standards. However, as new construction occurs and as facilities are modified, the 121 ARW would incorporate these standards to the maximum extent practicable.
3.5.3.2 Flight Safety

Flight Safety Procedures

Aircraft flight operations from Rickenbacker ANGS are governed by standard flight rules. Specific safety requirements are contained in standard operating procedures that must be followed by all aircrews operating from the airfield (AFI 11-2KC-135V3, Flying Operations, C/KC-135 Operations Procedures, 2010) to ensure flight safety. While having aircraft in close proximity during air refueling is inherently dangerous, refueling mishaps are rare. Emergency separation procedures are established and practiced by both tanker and receiver aircrews.

Aircraft Mishaps

KC-135 aircraft (all models) have flown more than 14,750,000 hours since the aircraft entered the USAF inventory in 1957. Over that period, 83 Class A mishaps have occurred and 64 aircraft have been destroyed (specific statistics for mishaps during refueling are not recorded). This results in a Class A mishap rate of 0.56 per 100,000 flight-hours, and an aircraft destroyed rate of 0.43 per 100,000 flying hours (AFSEC 2012). The last Class A mishap of a 121 ARW aircraft at the Rickenbacker airfield was in 2002 (Buzzard 2013).

Bird/Wildlife Aircraft Strike Hazard

The USAF BASH Team maintains a database that documents all reported bird/wildlife-aircraft strikes. Historic information across the USAF for the past 40 years indicates that 39 USAF KC-135 aircraft have been destroyed and 33 fatalities have occurred from bird/wildlife aircraft strikes, with the last Class A mishap occurring in 2010 (AFSEC 2013).

The 121 ARW has an on-going BASH program through which information and assistance is freely shared between airfield users, the Rickenbacker IAP staff, and the local air traffic controllers. Serious BASH-related accidents within the immediate Rickenbacker IAP area are unusual and have never resulted in a Class A mishap (Buzzard 2013). The 121 ARW has recently recorded 21 minor BASH incidents in 2010, 19 in 2011, and 13 in 2012, and an average over 8 years of 22 incidents (Buzzard 2013).

Fuel Jettison

For use in emergency situations, the KC-135 aircraft have the capability to jettison fuel and reduce aircraft gross weight for flight safety. Airbases must establish jettison areas and procedures to minimize the impact of fuel jettisoning. Ideally, jettison areas are established at
altitudes above 20,000 feet AGL, off published federal airways, avoiding urban areas, agricultural regions, and water supply sources

The primary fuel jettison area for the 121 ARW is within the Buckeye MOA, and above 20,000 feet AGL (121 ARW 2011b). The aircrew would follow fuel jettisoning procedures in AFI 11-2KC135, C/KC-135 Operations Procedures.

3.5.4 Soils and Water

3.5.4.1 Soils

This area of Ohio is within the Columbus Valley, which was formed by glaciers and has relatively level to gently rolling terrain. This area is characterized by limited relief except near streams, glacial moraines, or resistant bedrock (USDA 2006). The 121 ARW installation is located on relatively flat improved land with relief ranging from 734 to 744 feet MSL (121 ARW 2010).

The NRCS Soil Survey for Franklin County, Ohio identifies the following two individual soil types at the installation:

Kokomo-Urban land complex. This soil, typically found in shallow depressions and drainages, is composed of silty and clayey till. The rating class for building site development is considered very limited due to ponding, shrink-swell potential, and depth to saturated zone (NRCS 2013d). Approximately 20 percent of the installation is composed of this soil type.

Crosby-Urban land complex, 0 to 2 percent slopes. This soil consists of strongly intermingled Urban land and Crosby soil. Urban land consists of soil from cut/fill sites used for buildings, paved roads, parking lots, and other areas of urban development. The rating class for building site development is not rated for this soil type (NRCS 2013d). Approximately 80 percent of the installation is composed of this soil type.

3.5.4.2 Surface Water

The 121 ARW installation is located within the Scioto River Watershed that encompasses over 6,510 square miles within the state of Ohio (USEPA 2013e) (Figure 3.5.4-1). The Scioto River Watershed drains a very diverse landscape from rural to dense urban environments and covers portions of Crawford, Delaware, Franklin, Hardin, Logan, Madison, and Union counties. The Scioto River originates near Roundhead in Hardin County, running south through central Ohio before emptying into the Ohio River at the confluence in Portsmouth, Ohio (Mid-Ohio Regional Planning Commission 2012).
Surface water features within the vicinity of the 121 ARW installation include Scioto River and Big Walnut Creek to the east and Walnut Creek to the west. Surface water within the installation primarily consists of a series of man-made ditches, storm sewers, and drainage swales. Drainage of the developed area is typified by overland flow to storm drain inlets and basins connected by a network of underground pipes.

There are two primary drainage areas on the installation, SDO-014 and SDO-601. Both outfalls, SDO-014 and -601, exit the installation via the SDO-014 drainage ditch that discharges into an unnamed tributary that ultimately converges with the Big Walnut Creek. These two outfalls are regulated under the Ohio Industrial Stormwater General Permit (OHR000005). The permit is administered by the Ohio Environmental Protection Agency under the auspice of the USEPA (121 ARW 2009).

3.5.4.3 Groundwater

Groundwater in this area is part of the Central Lowland Aquifer Province. Central Lowland aquifers are generally comprised of unconsolidated sand and gravel deposits and consolidated sandstone, limestone, and dolomite. The unconsolidated sand and gravel deposits, which are collectively called the surficial aquifer system, supply more than 50 percent of the fresh groundwater withdrawn in the Central Lowland Province, and are primarily glacial in origin (USGS 1995d).

Three aquifers have been identified beneath the 121 ARW installation: the upper water-bearing zone, the intermediate aquifer, and the deep aquifer. The upper water-bearing zone is found beneath all portions of the installation, with the top of the water table typically less than 10 feet below ground surface. Groundwater flow direction and gradient in the upper zone is controlled primarily by surface topography, including the configuration of the drainage system and the locations of the creeks in the area. A north/south trending groundwater divide is located in the central portion of the installation. Groundwater west of this divide flows southwest toward Big Walnut Creek. Groundwater east of the divide flows southeast toward Little Walnut Creek (121 ARW 2010).
Figure 3.5-4.1. Surface Water Features and Wetlands in the Vicinity of Rickenbacker ANGS.
The intermediate and deep aquifers are confined. The intermediate aquifer is the shallowest aquifer capable of supporting a water supply adequate for domestic use. It is present beneath the installation at depths of between 60 and 100 feet below ground surface with a west and west southwest gradient. The deep aquifer lies at depths of between 130 and 210 feet below ground surface, where it meets a shale bedrock layer. The gradient of the deep aquifer is west and west southwest (121 ARW 2010).

3.5.4.4 Floodplains

A majority of the installation lies within the FEMA Flood Insurance Rate Map for Franklin County, Ohio, Panel 437 (Map Number 39049C0437K, Effective June 17, 2008) within an area designated as Zone X. The designation Zone X are areas determined to be outside the 0.2 percent annual chance flood (500 year flood), indicating areas of minimal flooding. The northern portion of the installation lies within Panel 433 (Map Number 39049C0433K) also determined to be Zone X (FEMA 2008).

3.5.5 Biological Resources

3.5.5.1 Vegetation

The Rickenbacker IAP occurs within the ecotone between the Eastern Broadleaf Forest Continental and Oceanic Provinces. Vegetation in this region typically is characterized by deciduous forests dominated by tall broadleaf trees often with a drought-resistant oak-hickory association in the western portion of the province. Dominant trees within these forests include white oak (*Quercus alba*), red oak (*Quercus rubra*), black oak (*Quercus velutina*), bitternut hickory (*Carya cordiformis*), and shagbark hickory (*Carya ovata*) (Bailey 1995). The majority of the airport is developed or actively landscaped, with little natural vegetation or habitat remaining. A few small, hardwood forested areas occur near the southwest, south, and east sides of the 121 ARW installation.

3.5.5.2 Wildlife

Due to the lack of substantial pockets of native vegetation, high noise levels, and human activities at and surrounding the airport, wildlife habitat is limited. As a result, the majority of wildlife present at the airport and the 121 ARW ANGS consists of species that are highly adapted to developed and disturbed areas. Rickenbacker ANGS is located within the Mississippi Flyway, one of four major North American corridors for migratory birds. The majority of the bird species found at Rickenbacker IAP or its vicinity are protected under the MBTA. Common bird species include Turkey Vultures (*Cathartes aura*), Rock Pigeons (*Columbia livia*), House Sparrows (*Passer domesticus*), Red-tailed Hawks (*Buteo jamaicensis*), Rough-legged Hawks
(Buteo lagopus), Great Horned Owls (Bubo virgianus), Barn Owls (Tyto alba), Screech Owls (Otus asio), American Goldfinch (Carduellis tristis), Killdeer (Charadrius Vociferous), Blue Jay (Cyanocitta cristata), Horned Lark (Eremophila alpestris), Barn Swallow (Hirundo rustica), European Starling (Sturnus vulgaris), and Mourning Dove (Zenaida macroura). Other common wildlife species observed in or near the airport include white-tailed deer (Odocoileus virginianus), woodchuck (Marmota monax), eastern gray squirrel (Sciurus carolinensis), and spring frog (Hyla sp.) (121 ARW 2010, 2011c).

3.5.5.3 Special Status Species

No federally listed or candidate species are known to occur within the airport or on the 121 ARW installation. The potential for several federally listed species to occur within Franklin County within the vicinity of the airport exists; however, there is little to no habitat for these species within the airport or the installation (USFWS 2005). One state endangered species, the Northern Harrier (Circus cyaneus), was observed during a 2004 survey of the airport. However, no nesting habitat (i.e., shrubby thickets) occurs within the airport boundaries. Several other state listed species have been observed within Franklin County and have the potential to occur on or within the vicinity of the installation; however, none of these have been observed on the installation. A list of these species can be found in Appendix E. There is no critical habitat located on the installation (Ohio Department of Natural Resources 2012; USFWS 2005, 2010).

3.5.5.4 Wetlands

A formal wetland delineation was conducted on the 121 ARW installation in 2005. This delineation identified only one jurisdictional stream in the northwest corner of the installation. This stream is an unnamed tributary to Big Walnut Creek and has a small wetland fringe immediately adjacent estimated to be 0.05 acre. No other jurisdictional wetlands or waters of the U.S. were identified within the installation boundaries (121 ARW 2010, OH ANG 2006) (see Figure 3.5.4-1).

A small drainage ditch is located near the intersection of Second Street and Tank Truck Road, as shown in Figure 3.5.4-1. This ditch is approximately 30 feet wide and flows to the northwest and eventually drains to Big Walnut Creek via a network of ditches. Although this ditch has not been surveyed, it is similar to other ditches (including the one surveyed during the 2005 delineation) on and around the airport and it is therefore likely a jurisdictional stream (121 ARW 2010, OH ANG 2006).
3.5.6 Cultural Resources

3.5.6.1 Archaeological Resources

The entire 121 ARW installation at Rickenbacker has been intensively surveyed for archaeological resources. Three archaeological sites have been recorded on the installation. Sites 33FR2652 and 33FR2653 are both isolated prehistoric artifacts found in disturbed soil contexts (National Guard Bureau 2008). These sites are not considered eligible to the NRHP and the Ohio SHPO has concurred (see Snyder 2007 in Appendix B4). Site 33FR2844 was discovered in 1985 during excavation for a new building foundation. It was described as a multi-component archaeological site consisting of two historic burials with associated historic coffin materials, a historic dump, and a prehistoric lithic scatter. The site was determined eligible for inclusion on the NRHP (Ohio ANG 2011).

3.5.6.2 Architectural Resources

Eighteen buildings within the 121 ARW property pre-dating the end of the Cold War-era (pre-1990) were inventoried in 2006. Two hangars (Hangars 885 and 888) are considered eligible for listing in the NRHP under criterion A and criterion C (121 ARW 2011d). The remaining 16 buildings are not eligible for listing in the NRHP. The Ohio Historic Preservation Office has concurred with these eligibility determinations (121 ARW 2011d, Snyder 2007).

3.5.6.3 Traditional Resources

The 121 ARW installation contains no known traditional resources; however, 13 federally-recognized Tribes that are historically, culturally, and linguistically affiliated with the area have been identified: Citizen Potawatomi Nation, Delaware Nation, Prairie Band of Potawatomi Nation, Eastern Shawnee Tribe of Oklahoma, Forest County Potawatomi Community, Hannahville Indian Community, Miami Tribe of Oklahoma, Ottawa Tribe of Oklahoma, Peoria Tribe of Indians Oklahoma, Pokagon Band of Potawatomi Indians, Shawnee Tribe, Turtle Mountain Band of Chippewa Indians of North Dakota, and Wyandotte Nation.
3.5.7 Land Use

Rickenbacker ANGS operates as a tenant activity of Rickenbacker IAP, which operates military, commercial, and cargo flights. The entire airport occupies 4,342 acres and is located 10 miles south of the central business district of Columbus, Ohio, near the village of Lockbourne in southern Franklin County and the northernmost part of Pickaway County.

Zoning surrounding the airport generally supports compatible land use planning and provides for protection of the areas surrounding Rickenbacker IAP. Comprehensive Land Use plans adopted by Franklin and Pickaway Counties guide long-term planning. Hamilton Township land use codes define and established airport hazard zones, height limitations, and land use restrictions within these zones. This zoning protects RPZs from incompatible land use. Detailed descriptions of RPZs can be found in the Safety section of Appendix A, Section A.3. Land use in the areas surrounding the airfield is predominantly Agricultural/Open Space interspersed with pockets of single-family residential parcels. Commercial use dominates along the northwest boundary of the airfield in Hamilton Township. No houses, churches, schools or other sensitive noise receptors are located within the 65 dB and 70 dB DNL off-airport noise contour areas (CRAA 2007).

Figure 3.5.7-1 is an overlay of the baseline noise contours onto a map displaying the existing land use in the vicinity of the installation. The impact of baseline airfield activities on surrounding communities in these areas is limited. Current noise levels between 65 dB DNL and 70 dB DNL expose off-base areas of Agricultural and Industrial to the southwest in Pickaway County and to a lesser degree to the northeast of the airport in Franklin County. Both land use designations are considered compatible uses under Federal Interagency Committee on Urban Noise (FICUN) standards found in Appendix A, Section A.7 (CRAA 2007).
Figure 3.5.7-1. DNL Noise Contours and Land Use at Rickenbacker IAP

Source: Pickaway County 2013, Franklin County Zoning 2013, Rickenbacker IAP 2005.
3.5.8 Infrastructure and Transportation

3.5.8.1 Potable Water System

Potable water for the 121 ARW installation is provided by the Franklin County Parsons Avenue Water Treatment Plant operated by the City of Columbus (121 ARW 2010). Potable water in the area is supplied primarily from the regional groundwater aquifer wells. The City of Columbus Water Division pumps approximately 190 trillion gallons of water per year to its customers. The groundwater supply is supplemented with treated surface water from the Scioto River and the Big Walnut Creek (Franklin County Department of Sanitary Engineering 2010). In CY 2012, 1.8 trillion gallons of potable water was supplied to the 121 ARW installation (121 ARW 2013d).

3.5.8.2 Wastewater

The 121 ARW installation generates wastewater from sanitary, stormwater, and industrial processes, including OWS discharge, wash rack discharge, floor wash-down, latrines, sinks, and showers. Wastewater generated within the 121 ARW installation is conveyed into the municipal sewage system, operated by the City of Columbus to the Columbus Southerly Wastewater Treatment Plant. The facility has a capacity of 114 million gallons per day but typically receives 96 million gallons of wastewater per day for treatment (City of Columbus n.d.).

3.5.8.3 Stormwater

A high percentage of the active administrative and industrial areas of the installation are paved or roofed, resulting in high runoff rates during precipitation events. As described in the 121 ARW SWPPP (2009), the 121 ARW installation has a stormwater drainage conveyance system typified by overland flow to catch basins, inlets, surface drains, underground pipes, culverts, ditches, and swales that discharge to receiving waters (see Section 3.5.4, Soils and Water) or other municipal separate storm sewer systems. The stormwater drainage system has been designed to safely collect and transport surface water runoff from storm events to prevent flooding within the installation and is a separate system from the wastewater (sewage) system.

3.5.8.4 Electrical and Natural Gas Systems

Electricity is supplied to the 121 ARW installation by South-Central Power via an aboveground, 46,000-volt primary power line that was recently buried on the northern half of the installation. Natural gas is supplied by Columbia Gas of Ohio via main lines ranging in size from 0.5 inch to 4 inches in diameter. Electricity consumption for CY 2012 at the 121 ARW installation was 4,999,752 kilowatt hours. Natural gas consumption for CY 2012 at the 121 ARW installation was 219,801 hundred cubic feet (121 ARW 2013d).
3.5.8.5 Solid Waste Management

Municipal solid waste at the 121 ARW installation is managed in accordance with the *121 ARW Solid Waste Management Plan* (121 ARW 2013e) and guidelines specified in AFI 32-7042, *Waste Management* (2009). This AFI incorporates, by reference, the federal standard for solid waste regulations contained within 40 CFR, Subtitle D, *Non-hazardous Waste*, and other applicable federal regulations, AFIs, and DoD Directives. In general, AFI 32-7042 establishes the requirement for installations to have a solid waste management program that incorporates the following: a solid waste management plan; procedures for recycling, diversion, handling, storage, collection, and disposal of solid waste; recordkeeping and reporting; and pollution prevention.

The 121 ARW installation generates solid waste in the form of office trash, non-hazardous industrial wastes, normal municipal waste, and construction debris. These nonhazardous solid wastes are collected in dumpsters located throughout the 121 ARW installation and transported to the Franklin County Landfill.

3.5.8.6 Transportation

The 121 ARW installation is located within close proximity to several major highways. I-70 runs in an east-west direction approximately 8 miles north of the installation. I-270 runs in a northwest-southeast direction approximately 4 miles north of the installation and provides regional access to Rickenbacker IAP and the Rickenbacker ANGS. SR 317 provides direct access to Rickenbacker IAP. The principal access route to the airport is Alum Creek Drive, a four-lane arterial road that intersects I-70 and I-270, linking the airport to the regional ground transportation network. U.S. Highway 23, a principal arterial that runs north-south approximately 3 miles west of the airport and intersects I-270, also provides regional access. This highway intersects with Groveport Road, an arterial that provides access to the airport.

Rickenbacker Drive provides vehicle access to the road network and main cantonment area of the installation. The secondary entrance to the installation, Gate N-5, is typically used only by contractors (e.g., delivery of supplies by truck) to access the installation. This gate enters the installation off Tank Truck Road on the west side of the installation. Tank Truck Road connects to Zistel Street, which also connects with Rickenbacker Drive.

3.5.9 Hazardous Materials and Waste

3.5.9.1 Hazardous Materials

Hazardous materials are used at the 121 ARW installation for aircraft operations support and maintenance, including POL management and distribution, liquid fuels maintenance, transportation maintenance, vehicle paint, power production, machine shop operations, and flight
simulation. Types of hazardous substances found on the 121 ARW installation include strippers, batteries, spent cleaners, aerosols, paints, solvents, waste oils, hydraulic fluid, flammable and combustible liquids, acids, corrosives, and recovered fuels (121 ARW 2008). The primary storage facility for hazardous materials on the installation is in Building 872 (121 ARW 2006).

Sixteen ASTs are located on the 121 ARW installation and are used to store propylene glycol, gasoline, diesel, jet fuel, used oil, and used hydraulic oil. USTs were previously used at the installation to store kerosene, diesel, fuel oil, waste oil, jet fuel, gasoline, hydraulic fluid, and liquid propane. All USTs were removed from the 121 ARW installation in 1994 (121 ARW 2006).

Toxic Substances

Regulated toxic substances typically associated with buildings and facilities include asbestos, LBP, and PCBs. An asbestos survey was performed at the 121 ARW installation in 1995. ACM identified in the insulation, floor tiles, and mastic were found in Buildings 846 and 872 (121 ARW 2006).

A LBP survey has not been conducted at the 121 ARW installation. Any buildings on the installation constructed prior to 1978 are presumed to contain LBP and would be tested for LBP prior to demolition or renovation. Lead abatement was conducted in 2004 at Hangars 885 and 888 (121 ARW 2006).

The 121 ARW installation is permitted by the Nuclear Regulatory Commission for use of radioactive material in chemical agent monitoring devices (Permit No. OH-30567-01/00AFP). These devices are returned to the manufacturer for repair and disposal (121 ARW 2006).

The 121 ARW does not maintain, operate, or own any PCB equipment or PCB-contaminated equipment and the subject property is considered PCB-free (121 ARW 2006).

3.5.9.2 Hazardous Waste Management

The 121 ARW Oil and Hazardous Substances Spill Prevention and Response Plan contains the governing regulations for spill prevention and describes specific protocols for preventing and responding to releases, accidents, and spills involving oils and hazardous materials (121 ARW 2012). The 121 ARW Hazardous Waste Management plan outlines procedures for controlling and managing hazardous wastes from the point where they are generated until they are disposed. In addition, it includes guidance for compliance with all federal, state, and local regulations pertaining to hazardous waste (121 ARW 2008).

The 121 ARW is regulated as a Small Quantity Generator of hazardous waste and maintains USEPA Identification Number OH0000553829. A hazardous waste generation point is where
the waste is initially created or generated. An SAP is an area where hazardous waste is initially accumulated at the point of generation and is under the control of the SAP manager. Hazardous wastes initially accumulated at a SAP are accumulated in appropriate containers before being transferred to the installation CAP. There are 15 SAPs (where a waste is initially accumulated) identified at the installation in Buildings/Hangars 888, 2000, 883, 885, 872, and 846. The installation CAP is located in Building 872 (121 ARW 2008).

OWSs are used to separate oils, fuels, sand, and grease from wastewater and to prevent contaminants from entering the sanitary sewer and stormwater drainage systems. There are currently five OWSs located on the 121 ARW installation. These OWSs primarily receive discharge from floor drains in maintenance areas (121 ARW 2006).

3.5.9.3 Environmental Restoration Program

There is one active ERP site and five closed sites located on the 121 ARW installation. Table 3.5.9-1 provides details for each of these sites and Figure 3.5.9-1 shows the locations.

<table>
<thead>
<tr>
<th>ERP Site</th>
<th>Materials of Concern</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Old drum storage area that continued until 1984. Some drums contained methyl ethyl ketone, solvents, and paint strippers. Investigations determined that groundwater on the northwest side of the site was contaminated with chlorinated solvents. Groundwater remediation was performed to reduce contaminant concentrations below detection limits. In 1995 the southeast portion of the site was paved to create a parking lot for Building 887. In 1996, soils and grass were placed on the remaining portion of the site.</td>
<td>Active</td>
</tr>
<tr>
<td>46</td>
<td>Formerly known as AOC A. This site was investigated as part of a jet fuel pipeline investigation. Tier 1 and Tier 2 Bureau of Underground Storage Tank Regulation investigations were conducted and petroleum contamination levels were found to be below Bureau of Underground Storage Tank Regulation limits. Therefore, it was determined that remedial actions were not necessary.</td>
<td>Closed</td>
</tr>
<tr>
<td>19</td>
<td>Known as the North Coal Pile, this location was a concrete pad used for holding up to 6,000 tons of coal soaked in fuel oil. Arsenic, cadmium, chromium, mercury, lead, and nickel were detected in the groundwater underneath the site and polynuclear aromatic hydrocarbons were found in the soil and sediments.</td>
<td>Closed</td>
</tr>
<tr>
<td>22</td>
<td>This site was located behind the heating plant and adjacent to the former North Coal Pile and consisted of a concrete pad for drum storage. The concrete pad was removed and an interim remedial action was conducted to remove and treat the contaminated soils.</td>
<td>Closed</td>
</tr>
<tr>
<td>25</td>
<td>This includes all of the open drainage ditches throughout the installation which have had spills and leaks of hazardous materials and petroleum products discharged into them in the past. VOCs, semi-volatile organic compounds, pesticides, and metals were detected at several sites out of 51 sediment sampling locations.</td>
<td>Closed</td>
</tr>
<tr>
<td>35</td>
<td>Former UST that was removed in 1991.</td>
<td>Closed</td>
</tr>
</tbody>
</table>

Notes: AOC = Area of Concern; VOC = volatile organic compound; UST = underground storage tank
Figure 3.5.9-1. ERP Sites at the 121 ARW Installation, Rickenbacker IAP
3.5.10 Socioeconomics

3.5.10.1 Population and Employment

Population

Rickenbacker ANGS is located approximately 12 miles southeast of downtown Columbus in Franklin County. Current population data and estimates for the state of Ohio, Franklin, and Pickaway counties, Groveport and Lockbourne Villages, and Hamilton, Harrison, and Madison Townships are provided in Table 3.5.10-1. From 1990 to 2010, Franklin County’s population increased by 201,977, an increase of approximately 21 percent. Pickaway County grew by 7,443 between 1990 and 2010, an increase of approximately 15 percent (USCB 1990e, 2000e, 2010g).

Table 3.5.10-1. Population Growth within the Vicinity of Rickenbacker ANGS

<table>
<thead>
<tr>
<th>Area</th>
<th>1990 Census</th>
<th>2000 Census</th>
<th>2010 Census</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio</td>
<td>10,847,115</td>
<td>11,353,140</td>
<td>11,536,504</td>
</tr>
<tr>
<td>Franklin County</td>
<td>961,437</td>
<td>1,068,978</td>
<td>1,163,414</td>
</tr>
<tr>
<td>Pickaway County</td>
<td>48,255</td>
<td>52,727</td>
<td>55,698</td>
</tr>
<tr>
<td>Groveport Village¹</td>
<td>2,948</td>
<td>3,865</td>
<td>5,363</td>
</tr>
<tr>
<td>Lockbourne Village¹</td>
<td>N/A</td>
<td>280</td>
<td>237</td>
</tr>
<tr>
<td>Hamilton Township</td>
<td>9,746</td>
<td>7,950</td>
<td>8,260</td>
</tr>
<tr>
<td>Harrison Township</td>
<td>5,292</td>
<td>6,424</td>
<td>7,593</td>
</tr>
<tr>
<td>Madison Township</td>
<td>18,749</td>
<td>21,243</td>
<td>23,509</td>
</tr>
</tbody>
</table>

Notes: 1990 census data was not available for this village.
N/A = not available
Source: USCB 1990e, 2000e, 2010g.

The 121 ARW currently supports a workforce authorization of 1,497, including 442 full-time and 1,055 part-time personnel (see Table 2.3-30).

Employment and Earnings

Table 3.5.10-2 presents total labor force and employment rates for Ohio, Franklin and Pickaway counties, and Groveport and Lockbourne Villages. Based on 2007-2011 ACS 5-year estimates, there were 632,774 persons in the labor force (able to work) and 580,359 employed within Franklin County, resulting in an unemployment rate of approximately 8 percent. Labor force estimates for Pickaway County include 25,074 persons, with 23,184 employed, resulting in an unemployment rate of approximately 7 percent. Top employment industries in Franklin County include 1) educational services, and health care and social assistance; 2) retail; and 3) professional, scientific, and management, and administrative and waste management services (USCB 2011g). Principal employers include state of Ohio, The Ohio State University, JP Morgan Chase, Nationwide, and Ohio Health (Franklin County 2010). Top employment industries in Pickaway County include 1) educational services, and health care and social
assistance; 2) manufacturing; and 3) retail (USCB 2011g). Principal employers include ALSO Metals Corporation, Berger Health System, Circle Plastics/TriMold LLC, Circleville City Schools, and DuPont (Pickaway Progress Partnership 2013).

Table 3.5.10-2. Employment Data (2011) within the Vicinity of Rickenbacker ANGS

<table>
<thead>
<tr>
<th>Area</th>
<th>Labor Force</th>
<th>Employed</th>
<th>Unemployed</th>
<th>Unemployment Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio</td>
<td>5,883,960</td>
<td>5,338,072</td>
<td>545,888</td>
<td>9.2</td>
</tr>
<tr>
<td>Franklin County</td>
<td>632,774</td>
<td>580,359</td>
<td>52,415</td>
<td>8.3</td>
</tr>
<tr>
<td>Pickaway County</td>
<td>25,074</td>
<td>23,184</td>
<td>1,918</td>
<td>7.6</td>
</tr>
<tr>
<td>Groveport Village</td>
<td>2,973</td>
<td>2,842</td>
<td>131</td>
<td>4.4</td>
</tr>
<tr>
<td>Lockbourne Village</td>
<td>139</td>
<td>112</td>
<td>27</td>
<td>19.4</td>
</tr>
<tr>
<td>Hamilton Township</td>
<td>4,089</td>
<td>3,404</td>
<td>685</td>
<td>16.8</td>
</tr>
<tr>
<td>Harrison Township</td>
<td>3,710</td>
<td>3,443</td>
<td>267</td>
<td>7.2</td>
</tr>
<tr>
<td>Madison Township</td>
<td>12,473</td>
<td>11,612</td>
<td>861</td>
<td>6.9</td>
</tr>
</tbody>
</table>

Note: 1. Employment numbers include individuals in the Armed Forces and are from the 2007-2011 American Community Survey 5-Year Estimates.
Source: USCB 2011g.

3.5.10.2 Schools

According to the 2011 ACS enrollment 5-year estimates, 195,535 students were enrolled in schools from Kindergarten through Grade 12 in Franklin County. In Pickaway County, 10,658 students were enrolled in schools from Kindergarten through Grade 12 (USCB 2011g).

3.5.10.3 Housing

In 2010, the number of housing units in Franklin County was 525,186, with a vacancy rate of approximately 10 percent. In the Pickaway County in 2010, there were a total of 21,275 housing units with a vacancy rate of approximately 7 percent (USCB 2010g).

3.5.11 Environmental Justice and the Protection of Children

3.5.11.1 Minority and Low-Income Populations

Table 3.5.11-1 displays the minority, low-income, and children under age 18 within the state of Ohio, as well as the counties, villages, and townships within the vicinity of Rickenbacker IAP. Approximately 31 percent of the population of Franklin County is composed of minorities (i.e., an ethnic or racial group with a distinctive presence in a community), compared to approximately 17 percent for the state of Ohio. Pickaway County has a lower proportion of minorities (5.5 percent) than Franklin County or the state (USCB 2010g).
The percentage of population living below the poverty level for the state of Ohio (approximately 15 percent) is the lower than Franklin County (approximately 17 percent), but higher than Pickaway County (approximately 13 percent) (USCB 2010g).

Table 3.5.11-1. Population within the Vicinity of Rickenbacker ANGS¹

<table>
<thead>
<tr>
<th>Geographic Area</th>
<th>Total Population</th>
<th>Minority Population</th>
<th>Percent Minority</th>
<th>Low-Income Population</th>
<th>Percent Low-Income²</th>
<th>Children Under Age 18</th>
<th>Percent Children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio</td>
<td>11,536,504</td>
<td>1,997,067</td>
<td>17.3</td>
<td>1,707,403</td>
<td>14.8</td>
<td>2,730,751</td>
<td>23.7</td>
</tr>
<tr>
<td>Franklin County</td>
<td>1,163,414</td>
<td>357,797</td>
<td>30.8</td>
<td>202,434</td>
<td>17.4</td>
<td>278,542</td>
<td>23.9</td>
</tr>
<tr>
<td>Pickaway County</td>
<td>55,698</td>
<td>3,043</td>
<td>5.5</td>
<td>7,296</td>
<td>13.1</td>
<td>13,157</td>
<td>23.6</td>
</tr>
<tr>
<td>Groveport Village</td>
<td>5,363</td>
<td>962</td>
<td>17.9</td>
<td>493</td>
<td>9.2</td>
<td>1,271</td>
<td>23.7</td>
</tr>
<tr>
<td>Lockbourne Village</td>
<td>237</td>
<td>5</td>
<td>2.1</td>
<td>14</td>
<td>5.8</td>
<td>58</td>
<td>24.5</td>
</tr>
<tr>
<td>Hamilton Township</td>
<td>8,260</td>
<td>621</td>
<td>7.5</td>
<td>942</td>
<td>11.4</td>
<td>1,897</td>
<td>23.0</td>
</tr>
<tr>
<td>Harrison Township</td>
<td>7,593</td>
<td>266</td>
<td>3.5</td>
<td>1,496</td>
<td>19.7</td>
<td>2,141</td>
<td>28.2</td>
</tr>
<tr>
<td>Madison Township</td>
<td>23,509</td>
<td>3,856</td>
<td>16.4</td>
<td>2,092</td>
<td>8.9</td>
<td>5,953</td>
<td>25.3</td>
</tr>
</tbody>
</table>

Note: 1. Total population, minority population, and number of children under the age of 18 were obtained from the 2010 census data. Low income population numbers are from the 2007-2011 ACS 5-Year Estimates.
2. The percentage of low-income persons is calculated as a percentage of all persons for whom the USCB determines poverty status, which is generally a lower number than the total population because it excludes institutionalized persons, persons in military group quarters and college dormitories, and unrelated individuals under 15 years old.

Source: USCB 2010g.

Currently there are no residential populations, including minority or low-income populations, located within the vicinity of Rickenbacker IAP within the baseline DNL greater than 65 dB or above.

3.5.11.2 Protection of Children

In 2010, the number of children under the age of 18 living in Franklin County was approximately 278,542 (approximately 24 percent of the population). In 2010, the number of children under the age of 18 living in Pickaway County was approximately 13,157 (approximately 24 percent of the population) (Table 3.5.11-1). The state of Ohio has a similar percentage population of children compared to the counties (approximately 24 percent). There are no on-installation housing or facilities for children located at the 121 ARW installation. Currently there are no schools exposed to DNL of 65 dB or above.
CHAPTER 4 ENVIRONMENTAL CONSEQUENCES

The resource analyses presented in this chapter are based on an examination of potential effects that the various alternatives, including the No Action Alternative may have on existing environmental conditions. The alternatives are described in Chapter 2, and the existing environmental conditions for each resource are described in Chapter 3. This chapter examines the potential environmental consequences for each of the resource areas in the same sequence as presented in Chapter 3. The sections that follow present an evaluation of potential impacts within the specific ROI as a result of implementation of each of the alternatives using the analytical methodology presented in Appendix A.

4.1 ALTERNATIVE #1 -- FORBES AIR NATIONAL GUARD STATION

4.1.1 Noise

In this section, noise associated with flying operations and construction activities related to Alternative #1 are considered and compared with current conditions to assess potential impacts. Details of the methodologies used for this section can be found in Appendix A, Section A.1.2.

The DNL noise contours for Forbes ANGS were generated using the NOISEMAP computer model and represent the most current noise data available for establishing baseline conditions and for which to analyze changes to the noise environment in the Forbes ANGS ROI. DNL noise contours for the KC-46A under Alternative #1 were also generated using NOISEMAP through the removal of all KC-135 operations and the insertion of the proposed KC-46A operations using the substitute KC-46A noise data and flight profile data provided by Air Force Civil Engineer Center (AFCEC) and applying the data to the current KC-135 flight tracks and operational procedures.

4.1.1.1 Aircraft Noise

Under Alternative #1, 12 KC-46As would be based at Forbes ANGS, replacing the current 12 KC-135 aircraft. There would be no change in the number or type of other aircraft using the airfield and KC-46A aircrews would use the same flying procedures (e.g., ground tracks, altitude profiles) currently used by KC-135 aircrews. Aircrews associated with the KC-46A would continue to practice closed patterns, including tactical procedures in which the aircraft climbs or descends in the immediate vicinity of the airfield. Tactical training prepares aircrews for operations in forward operating locations in which flying at low-altitudes over land not controlled by friendly forces exposes the aircraft to ground-based threats. This procedure is currently being flown with the KC-135. Aircrews associated with the KC-46A would continue
to practice closed patterns, including tactical procedures; however, most tactical procedures would be accomplished in the simulator and at other locations away from Forbes Field Airport.

Under Alternative #1, the 190 ARW would have an increase in flying hours generating an increase in annual airfield operations by 4,110 from 10,452 to 14,562 operations (a 39 percent increase). Aircraft operations per average busy flying day (arrivals and departures [3.64] and closed patterns [16.64]) would increase under Alternative #1 to 4.94 arrivals and departures and 23.1 closed patterns/day. The percentage of 190 ARW annual aircraft operations occurring during environmental night (10 p.m. to 7 a.m.) would remain at the same 15 percent as under baseline conditions. The total number of operations flown by all other aircraft at Forbes Field Airport would not change from previously identified airfield activities (Table 4.1.1-1). There would be no change to any other aircraft types or aircraft flight tracks and profiles from the baseline condition.

Table 4.1.1-1. Forbes Field Airport Annual Aircraft Operations with Proposed KC-46A

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>DEPARTURES</th>
<th>ARRIVALS</th>
<th>TOTAL</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night(^c)</td>
<td>Day</td>
<td>Night(^c)</td>
</tr>
<tr>
<td>KC-46A</td>
<td>6,322</td>
<td>959</td>
<td>6,118</td>
<td>1,163</td>
</tr>
<tr>
<td>Other Aircraft(^3)</td>
<td>6,848</td>
<td>241</td>
<td>6,848</td>
<td>241</td>
</tr>
<tr>
<td>Total</td>
<td>13,170</td>
<td>1,200</td>
<td>12,966</td>
<td>1,404</td>
</tr>
</tbody>
</table>

Notes: 1. Includes Closed Patterns (which count as two airfield operations).
2. Night –Between 10 p.m. and 7 a.m. for environmental night.
3. Other based military and civilian aircraft and transient aircraft (multiple type aircraft); example aircraft include: L-1011, MD-80, Lear 35, and HH-60.

Figure 4.1.1-1 depicts the noise exposure area from aircraft operations after the conversion from the current 12 KC-135 aircraft to 12 KC-46A aircraft, and Figure 4.1.1-2 compares baseline noise contours with Alternative #1 contours. The aircraft operations modeled include all transient aircraft, and general and commercial aircraft operations depicted in the most current Forbes Field Airport 2013 noise modeling update using 2012 data. Table 4.1.1-2 shows changes to the acreage of land within each noise contour under Alternative #1.

Table 4.1.1-2. Land Areas within DNL Contours at Forbes Field Airport Affected by DNL Greater than 65 dB under Baseline and Alternative #1

<table>
<thead>
<tr>
<th>Noise Contour (dB DNL)</th>
<th>BASELINE (KC-135)</th>
<th>ALTERNATIVE #1 (KC-46A)</th>
<th>Change Total (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On Airport</td>
<td>Off Airport</td>
<td>Total</td>
</tr>
<tr>
<td>65-70</td>
<td>448</td>
<td>165</td>
<td>613</td>
</tr>
<tr>
<td>70-75</td>
<td>308</td>
<td>0</td>
<td>308</td>
</tr>
<tr>
<td>75-80</td>
<td>50</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>80-85</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>>85</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>806</td>
<td>165</td>
<td>971</td>
</tr>
</tbody>
</table>

Notes: DNL = Day Night Average Sound Level; dB = decibel
Figure 4.1.1-1. DNL Noise Contours Under Alternative #1 at Forbes Field Airport

Forbes ANGS
Figure 4.1.1-2. Comparison of Baseline and Alternative #1 DNL Noise Contours at Forbes Field Airport

Source: Forbes Field Airport 2013
While the operations increase under Alternative #1, the DNL noise contours would reduce slightly from the baseline DNL noise contours because the KC-46A is generally a quieter aircraft (5 dB quieter on landing and 1 dB louder on take-off) than the KC-135 and other aircraft such as the F-18 and E-3 contributing more to the DNL levels than the KC-46A. Overall, the number of acres contained within the 65 dB DNL and greater exposure area would decrease by approximately 41 acres, or 4 percent, and would remain primarily on airport property with approximately 111 of the acres off the airport property. Information regarding the number of people residing in this area can be found in Section 4.1.11, *Environmental Justice and the Protection of Children*; and information regarding the area of residential use is located in Section 4.1.7, *Land Use*.

Percent of the Population Expected to be Highly Annoyed

The percentage of the population expected to be highly annoyed under Alternative #1 would not be expected to change from baseline conditions because there are no additional residences exposed to levels above 65 dB DNL.

Single Event Sound Analysis

Under Alternative #1, the flying profiles would not change, and the scheduled flying program would not change. As shown in Appendix A, Section A.1.2, Table A.1.2-2 provides representative SELs, indicating that the SEL for individual landings by the KC-46A would be 5 dB less while take-offs would be 1 dB more than the KC-135. Under Alternative #1, only the number of aircraft operations would change; there would be no change in where or when individual aircraft operate. Flights would be scheduled for similar time periods as currently flown during the morning and afternoons, with less than 15 percent of flights occurring during environmental night (after 10 p.m. and before 7 a.m.).

Per the ANG mission, the KC-46A would be operated Monday through Friday for a total of approximately 260 operational days per year, mirroring the operational patterns of current KC-135 operations. Based on the average annual day, aircrews would fly 4.94 sorties (initial departure and initial arrival) and approximately 23.1 additional practice approaches (closed patterns) at the airfield. The KC-46A mission would add an additional 4,110 airfield operations per year at the airport with approximately 15 percent conducted between 10:00 p.m. and 7:00 a.m.

Potential Hearing Loss

As shown in Table 4.1.1-1, there is no property off the Forbes Field Airport that falls within the 80+ dB DNL noise contour; therefore, there would be no potential hearing loss risk associated with these areas.
4.1.1.2 Construction Noise

There would be some minor noise from construction equipment associated with construction activities that would occur intermittently during the construction period (beginning FY 2015). Typical noise levels from heavy equipment range from 69 to 84 dB at 100 feet from the source (Federal Highway Administration [FHWA] 2006) (Appendix C, Noise, Section A.1.2.2). Aviation-related activities at Forbes Field Airport dominate the local noise environment for brief times on some days. Equipment used during the facility construction would contribute little to the general background noise levels around the airfield. Therefore, impacts from construction under Alternative #1 would be negligible.

4.1.1.3 Summary of Impacts

While the number of annual airfield operations would increase by 4,110 (39 percent increase in 190 ARW operations, 17 percent increase in total airfield operations), the acreage within the 65 dB DNL (and greater) noise contour would decrease by 41 acres. There would be no potential for hearing loss off the airport and no increase in the percent population highly annoyed. Construction noise would be localized and temporary and would not add to the overall noise environment. Impacts from noise would be negligible.

4.1.2 Air Quality

The air quality analysis estimated the magnitude of emissions that would result from implementation of the proposed KC-46A construction and operational activities at the 190 ARW of the KS ANG at Forbes Field Airport in Topeka, Kansas. The estimation of proposed operational emissions is based on the net change in emissions between existing aircraft operations and projected KC-46A operations.

As discussed in Appendix A.2.3, air quality impacts from the beddown of the KC-46A aircraft at Forbes Field Airport were reviewed for significance relative to the Prevention of Significant Deterioration (PSD) threshold for new major sources for attainment pollutants, and the General Conformity de minimis thresholds for nonattainment pollutants. Because the project region within Shawnee County attain all of the NAAQS, the PSD threshold of 250 tpy (100,000 tpy for greenhouse gases [GHGs]) was used as an indicator of the potential significance of the emissions from Alternative #1.

4.1.2.1 Operational Emissions

Sources associated with operation of the proposed KC-46A beddown at Forbes Field Airport include (1) operations and engine maintenance/testing of aircraft; (2) onsite POVs; (3) off-site POV commutes; and (4) AGE. It was assumed that other sources, including nonroad mobile equipment, mobile fuel transfer, and stationary source emissions would be unchanged.
Operational data used to calculate projected KC-46A aircraft emissions were obtained from the data used in the project noise analysis. Factors used to calculate combustion emissions for the KC-46A aircraft are based on emissions data developed by Pratt and Whitney for the PW4062 engine (International Civil Aviation Organization 2013). The operational times in mode for the KC-46A engine are based on those currently used for the KC-135 aircraft (AFCEC 2013). The analysis of proposed aircraft operations is limited to operations that occur within the lowest 3,000 feet of the atmosphere, as this is the typical depth of the atmospheric mixing layer where the release of aircraft emissions would affect ground-level pollutant concentrations.

Emissions from AGE were estimated based on the methodology recommended in the *Air Emissions Guide for Air Force Mobile Sources* (AFCEC 2013). Emissions from POVs were estimated based on the proposed personnel for the existing and proposed scenarios, using emission factors for vehicles from AFCEC 2013.

Table 4.1.2-1 summarizes the annual operational emissions that would result from KC-46A operations at Forbes Field Airport. Table 4.1.2-1 also presents the net emissions increase associated with the beddown of the KC-46A aircraft at Forbes Field Airport. As shown in Table 4.1.2-1, the net emissions increases are below the PSD thresholds for all pollutants.

Table 4.1.2-1. Comparison of Baseline and Proposed Annual Operational Emissions, 190 ARW

<table>
<thead>
<tr>
<th>Baseline</th>
<th>ANNUAL EMISSIONS, TONS/YEAR</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 Aircraft Operations</td>
<td>3.63</td>
<td>54.09</td>
<td>99.23</td>
<td>8.48</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.17</td>
<td>2.52</td>
<td>0.69</td>
<td>0.11</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>POVs</td>
<td>1.94</td>
<td>26.38</td>
<td>1.46</td>
<td>0.02</td>
<td>0.06</td>
<td>0.03</td>
</tr>
<tr>
<td>Total</td>
<td>5.75</td>
<td>83.00</td>
<td>101.39</td>
<td>8.61</td>
<td>0.53</td>
<td>0.49</td>
</tr>
<tr>
<td>Proposed Action</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KC-46A Aircraft Operations</td>
<td>22.27</td>
<td>83.94</td>
<td>253.12</td>
<td>14.22</td>
<td>0.95</td>
<td>0.81</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>1.27</td>
<td>4.33</td>
<td>1.17</td>
<td>0.14</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>POVs</td>
<td>1.59</td>
<td>23.99</td>
<td>1.11</td>
<td>0.02</td>
<td>0.06</td>
<td>0.03</td>
</tr>
<tr>
<td>Total</td>
<td>25.14</td>
<td>112.28</td>
<td>255.42</td>
<td>14.38</td>
<td>1.04</td>
<td>0.86</td>
</tr>
<tr>
<td>Net Increase</td>
<td>19.40</td>
<td>29.28</td>
<td>154.03</td>
<td>5.77</td>
<td>0.51</td>
<td>0.37</td>
</tr>
<tr>
<td>MOB 2 Net Emissions Increase</td>
<td>3.47</td>
<td>0.35</td>
<td>1.52</td>
<td>0.67</td>
<td>0.96</td>
<td>0.76</td>
</tr>
<tr>
<td>Fraction of Existing Emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSD Threshold</td>
<td></td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding. CO = carbon monoxide; CO₂e = carbon dioxide equivalent; NOx = oxides of nitrogen; PM₁₀ = particulate matter less than or equal to 10 microns in diameter; PM₂.₅ = particulate matter less than or equal to 2.5 microns in diameter; SO₂ = sulfur dioxide; VOC = volatile organic compound; AGE = aerospace ground equipment; POV = privately owned vehicle; PSD = Prevention of Significant Deterioration
In addition to criteria pollutant emissions, the beddown of the KC-46A aircraft at Forbes Field Airport would result in emissions of HAPs and GHGs. Operational activities would result in a net increase of HAPs that is below 1 tpy.

Table 4.1.2-2 summarizes the annual operational greenhouse gas (GHG) emissions that would result from KC-46A operations at Forbes Field Airport, along with the net increase in comparison with the baseline. As shown in Table 4.1.2-2, emissions are below the PSD thresholds for GHGs.

![Table 4.1.2-2. Comparison of Baseline and Proposed Annual Operational GHG Emissions, 190 ARW](image)

Table 4.1.2-2. Comparison of Baseline and Proposed Annual Operational GHG Emissions, 190 ARW

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Annual GHG Emissions, Metric Tons/Year</th>
<th>CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>CO₂e</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 Aircraft Operations</td>
<td>23,347</td>
<td>0.65</td>
<td>0.73</td>
<td>23,585</td>
<td></td>
</tr>
<tr>
<td>AGE</td>
<td>2,421</td>
<td>0.07</td>
<td>0.08</td>
<td>2,446</td>
<td></td>
</tr>
<tr>
<td>Engine Tests</td>
<td>296</td>
<td>0.01</td>
<td>0.01</td>
<td>299</td>
<td></td>
</tr>
<tr>
<td>POVs</td>
<td>993</td>
<td>0.00</td>
<td>0.00</td>
<td>993</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>27,056</td>
<td>0.72</td>
<td>0.81</td>
<td>27,324</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proposed Action</th>
<th>Annual GHG Emissions, Metric Tons/Year</th>
<th>CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>CO₂e</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A Aircraft Operations</td>
<td>38,724</td>
<td>1.02</td>
<td>1.15</td>
<td>39,102</td>
<td></td>
</tr>
<tr>
<td>AGE</td>
<td>3,291</td>
<td>0.09</td>
<td>0.11</td>
<td>3,326</td>
<td></td>
</tr>
<tr>
<td>Engine Tests</td>
<td>384</td>
<td>0.01</td>
<td>0.01</td>
<td>388</td>
<td></td>
</tr>
<tr>
<td>POVs</td>
<td>1,015</td>
<td>0.00</td>
<td>0.00</td>
<td>1,015</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>43,413</td>
<td>1.13</td>
<td>1.27</td>
<td>43,831</td>
<td></td>
</tr>
<tr>
<td>Net Increase</td>
<td>16,359</td>
<td>0.41</td>
<td>0.46</td>
<td>16,507</td>
<td></td>
</tr>
<tr>
<td>PSD Threshold</td>
<td>100,000</td>
<td>100,000</td>
<td>100,000</td>
<td>100,000</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding. GHG = greenhouse gas; CO₂ = carbon dioxide; CH₄ = methane; N₂O = nitrous oxide; CO₂e = carbon dioxide equivalent; AGE = aerospace ground equipment; POV = privately owned vehicle

4.1.2.2 Construction Emissions

The KC-46A beddown at Forbes Field Airport would require construction and renovation of existing airfield facilities, including hangars, buildings, and aprons and ramps. Air quality impacts resulting from the proposed construction activities would occur from (1) combustion emissions from heavy equipment and vehicles; and (2) fugitive dust emissions due to operation of equipment on exposed soil. Table 4.1.2-3 presents a summary of the annual construction emissions for the beddown of the KC-46A aircraft at Forbes Field Airport. As shown in Table 4.1.2-3, emissions would be below the PSD thresholds for all pollutants. For construction emissions, the project option with the greatest potential to emit was used in the analysis (see Table 2.3-5).
Table 4.1.2-3. Annual Construction Emissions Under Alternative #1

<table>
<thead>
<tr>
<th>Construction Project</th>
<th>CO</th>
<th>NOₓ</th>
<th>VOC</th>
<th>SOₓ</th>
<th>PM₁₀</th>
<th>PM₂.₅</th>
<th>Total CO₂, Metric tons/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project #1 (Option 1) - Addition to Hangar 662</td>
<td>0.94</td>
<td>1.49</td>
<td>0.26</td>
<td>0.03</td>
<td>1.34</td>
<td>1.12</td>
<td>498.26</td>
</tr>
<tr>
<td>Project #2 (Option 2) - Addition to Building 665</td>
<td>1.52</td>
<td>2.42</td>
<td>0.43</td>
<td>0.05</td>
<td>2.45</td>
<td>1.88</td>
<td>808.91</td>
</tr>
<tr>
<td>Project #3 - Internal Renovations to Building 679</td>
<td>0.30</td>
<td>0.47</td>
<td>0.06</td>
<td>0.01</td>
<td>0.04</td>
<td>0.04</td>
<td>122.59</td>
</tr>
<tr>
<td>Project #4 (Option 2) - Pave Apron/Hydrants and Airfield Hold Ramp</td>
<td>5.38</td>
<td>12.98</td>
<td>1.32</td>
<td>0.66</td>
<td>10.93</td>
<td>4.59</td>
<td>3,319.19</td>
</tr>
<tr>
<td>Total Maximum Emissions</td>
<td>8.14</td>
<td>17.36</td>
<td>2.07</td>
<td>0.75</td>
<td>14.76</td>
<td>7.63</td>
<td>4,748.95</td>
</tr>
<tr>
<td>PSD Threshold</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>100,000</td>
</tr>
</tbody>
</table>

Note: Numbers may not add precisely due to rounding. CO = carbon monoxide; NOₓ = oxides of nitrogen; VOC = volatile organic compound; SOₓ = oxides of sulfur; PM₁₀ = particulate matter less than or equal to 10 microns in diameter; PM₂.₅ = particulate matter less than or equal to 2.5 microns in diameter; CO₂ = carbon dioxide; PSD = Prevention of Significant Deterioration

4.1.2.3 Summary of Impacts

Forbes ANGS is located in an attainment area for all criteria pollutants. While there would be increases in operational criteria pollutant emissions, they would be below the PSD threshold, and would not be significant. Operational GHG emissions would be within thresholds in the PSD tailoring. Impacts from construction emissions and operational HAP emissions would be negligible.

4.1.3 Safety

4.1.3.1 Ground Safety

Existing facilities at Forbes Field Airport for fire response and crash recovery meet KC-46A beddown requirements (Headquarters AMC and NGB 2013c).

Providing new and renovated facilities for the 190 ARW that support operational requirements of the KC-46A, and are properly sited with adequate space and a modernized supporting infrastructure would generally enhance ground and flight safety during required operations, training, maintenance and support procedures, security functions, and other activities conducted by the 190 ARW.

Proposed renovation and infrastructure improvement projects related to Alternative #1 would not impact aircraft take-off and landings or penetrate any RPZs. New building construction is not proposed, only existing building renovation and minor additions; therefore, construction activity would not result in any greater safety risk or obstructions to navigation. Operations would fall within the same general types as those that have historically occurred at Forbes Field Airport.
For example, the KC-46A would follow established local approach and departure patterns used. Therefore, flight activity and subsequent operations would not require changes to RPZs.

Planned construction at Forbes Field Airport comprises additions to existing buildings and internal modifications only; no new facilities are proposed. Therefore, none of the construction or demolition would be in conflict with the current QD arcs. Per Air Force Manual (AFMAN) 91-201, * Explosive Safety Standards*, there would be no public transportation route or inhabited building located within the proposed QD arcs. No explosives would be handled during construction or demolition activities. Therefore, no additional risk would be expected as a result of implementation of this alternative.

To support the aircraft beddown at Forbes ANGS, some facilities would require renovation/modification. However, no construction activities would involve any unusual or extraordinary techniques. During construction and modifications, standard construction safety procedures would be employed, and strict adherence to all applicable standard industrial safety requirements and procedures, including AFI 13-213, *Airfield Driving* (2011), would further minimize the relatively low risk associated with these construction activities.

The proposed construction projects meet all criteria specified in the ANG Handbook 32-1084, *Facility Space Standards*. AT/FP requirements have also been addressed to the extent practicable in all projects. Projects would use AT/FP site design standards for siting of facilities, parking, walkways, and other features. Renovations would bring the facilities into compliance with Unified Facilities Criteria (UFC) 4-022-01, *Security Engineering: Entry Control Facilities/Access Control Points* and UFC 4-010-01, *DoD Minimum Antiterrorism Standards for Buildings*, providing additional protection for the personnel based there.

4.1.3.2 Flight Safety

Although the KC-46A is a new aircraft, it is a military derivative of the commercial Boeing 767 aircraft. First flown commercially in 1982, more than 1,000 commercial Boeing 767 aircraft have been produced and it is a proven commercial airliner, freighter, and tanker already in service (Boeing 2012). Mishap statistics for the commercial Boeing 767 show 14 total aircraft losses (similar to a Class A military mishap definition) during its 31 year lifetime (Aviation Safety Network [ASN] 2013).

Although no facilities are proposed that would affect navigable airspace, Forbes ANGS would comply with 14 CFR Part 77, *Objects Affecting Navigable Airspace*, as appropriate, should they be selected to host the KC-46A.
To augment airborne training missions, pilots flying the KC-46A would use simulators extensively. Simulator training includes all facets of flight operations and comprehensive emergency procedures. The sophistication and fidelity of current simulators and related computer programs are commensurate with the advancements made in aircraft technology and are extremely realistic. These factors should minimize risk associated with mishaps due to pilot error.

Under Alternative #1, there would be an increase of approximately 39 percent 190 ARW operations (17 percent in total airfield operations) at Forbes Field Airport airfield operations compared to existing conditions. Even after the proposed increase, however, the total airfield operations would remain fewer than many of the state’s other commercial airfields, including Salina Regional Airport, Hutchinson Municipal Airport, Philip Billard Municipal (Topeka) Airport, and New Century (Olathe) AirCenter (FAA 2013). This increase in take-offs, landings, proficiency training, and other flights would result in a commensurate increase in the safety risk to aircrews and personnel.

The proposed increase in airfield flight operations would be expected to increase the opportunity for aircraft mishaps, including BASH incidents; however, the expected rate of mishaps or BASH incidents would not be expected to change from current conditions. Both the KC-135 and the commercial Boeing 767 have very low mishap rates, and with a new airframe and technological improvements, the KC-46A would be expected to have a similar safety record. In addition, current airfield safety procedures discussed previously would continue to be implemented and additional airfield flight operations would adhere to established safety procedures (190 ARW 2012b). In addition, KC-46A aircrews would be required to follow applicable procedures outlined in the 190 ARW BASH Plan (2012); adherence to this program has minimized bird/wildlife aircraft strikes. When risk increases, limits are placed on low-altitude flights and some types of training (e.g., multiple approaches, closed pattern work). Furthermore, special briefings are provided to pilots whenever the potential exists for greater bird/wildlife strike risks within the airspace; KC-46A pilots would also be subject to these procedures.

Given the low likelihood for an aircraft accident or BASH mishap to occur in the local airfield area and even lower likelihood for civilians to be impacted, impacts to safety in the vicinity of Forbes Field Airport as a result of Alternative #1 are expected to be negligible.

The KC-46A will have the capability to jettison fuel for emergency situations. Military policy is to avoid fuel jettisons, unless safety of flight dictates an immediate jettison, and requires senior officer approval before fuel jettison, unless under emergency situations. Records of KC-135 fuel jettison events reveal that such circumstances are rare, occurring in slightly less than two sorties per thousand (Headquarters AMC 2013). Additionally, unlike the KC-135, the KC-46A will
have the capability to land fully loaded with fuel so long as adequate runway length and braking capability are available (Headquarters AMC 2013), which could potentially lessen the need to jettison fuel in certain circumstances. Based on information provided by Boeing, landing the KC-46A above maximum landing weight is not prohibited; however, it does drive costly inspection requirements. To land above maximum landing weight routinely could reduce the fatigue life of the airplane (Headquarters AMC 2013).

4.1.3.3 Summary of Impacts

There would be a 39 percent increase in actual 190 ARW airfield operations (17 percent increase in total airfield operations) at Forbes Field Airport with commensurate increase in mishap and BASH potential. Construction activities would involve no unusual or extraordinary techniques. During construction, standard construction safety procedures would be employed, and strict adherence to all applicable standard industrial safety requirements and procedures would further minimize the relatively low risk associated with these construction activities. Impacts to safety would be expected to be negligible.

4.1.4 Soils and Water

4.1.4.1 Soils

Under Alternative #1, new construction would consist of four separate projects resulting in up to 258,149 SF (5.9 acres) of new construction footprint and no new impervious surface. There are two construction scenarios for the aircraft conversion under consideration; only one of these options for each project would be implemented. The total construction footprint analyzed represents the largest possible footprint of each of the options (Table 2.3-5). These proposed construction projects would meet all criteria specified in ANG Handbook 32-1084, *Facility Space Standards*.

Proposed construction under Alternative #1 would occur on Ladysmith silty clay loam (0 to 1 percent slopes). This soil type is rated by the NRCS Web Soil Survey as very limited for roads and small commercial building development due to high shrink swell potential, low strength, ponding, frost action, and depth to saturated zone (NRCS 2013). In addition, this soil is designated as Prime Farmland under the Farmland Protection Policy Act. However, there would be no new impervious surface as a result of Alternative #1 and construction would occur on previously paved ground. In addition, as the construction is for national defense purposes and the surrounding land is already in urban development, the Farmland Protection Policy Act does not apply to this alternative.
To minimize potential impacts to soil and water resources associated with erosion, runoff, and sedimentation during construction activity, standard construction practices as described in the 190 ARW SWPPP (190 ARW 2012a) would be implemented during and following the construction period. Such practices could include the use of well-maintained silt fences or straw wattles, minimizing surficial areas disturbed, stabilization of cut/fill slopes, minimization of earth-moving activities during wet weather, and covering of soil stockpiles, as appropriate. A site-specific and detailed SWPPP that coordinates the timing of soil disturbing activities with the installation of soil erosion and runoff controls is an effective way of controlling erosion while soil is exposed and subject to construction activity. An NOI must be filed with the state of Kansas to obtain coverage under the General Permit for Stormwater Runoff from Construction Activities (General Permit No. S-MCST-0312-1) prior to implementation of individual projects. Construction activities subject to this permit include clearing, grading, and disturbances to the ground such as stockpiling or excavation. Implementation of these measures, as necessary and appropriate, would ensure that impacts to earth resources as a result of implementation of Alternative #1 would be minimal.

4.1.4.2 Surface Water

As a result of implementation of Alternative #1, there would be up to 258,149 SF (5.9 acres) of temporary soil disturbance from the proposed facility construction; however, there would be no increase in impervious surface (Figure 4.1.4-1). In accordance with UFC 3-210-10, Low Impact Development (LID) (as amended, 2010) and Energy and Independence Security Act (EISA) Section 438, any increase in surface water runoff as a result of the proposed construction would be attenuated through the use of temporary and/or permanent drainage management features. However, EISA does not apply in this instance since there would be no increase in impervious surface. Temporary soil disturbance could result in localized increases in total suspended particulates to nearby surface waters. To minimize potential impacts associated with erosion, runoff, and sedimentation, standard construction practices as described above and in the 190 ARW SWPPP (190 ARW 2012a) would be implemented during and following the construction period. Implementation of these measures, as necessary and appropriate, would ensure that impacts to surface water as a result of implementation of Alternative #1 would be minimal.

4.1.4.3 Groundwater

As a result of Alternative #1, there would be no increase in the amount of impervious surface as a result of proposed construction. Therefore, impacts to groundwater would be negligible.
Figure 4.1.4-1. Surface Water Features and Proposed Construction in the Vicinity of Forbes ANGS
4.1.4.4 Floodplains

Proposed construction activities at the installation would not occur within the 100-year floodplain zone. As such, there would be no impacts to floodplains under this alternative.

4.1.4.5 Summary of Impacts

There would be approximately 5.9 acres of temporary soil disturbance and no new impervious surface as a result of the proposed construction. To minimize potential impacts associated with erosion, runoff, and sedimentation, standard construction practices would be implemented. In addition, as the construction is for national defense purposes and the surrounding land is already in urban development, the Farmland Protection Policy Act does not apply to this alternative. Therefore, impacts to soil and water resources would be negligible.

4.1.5 Biological Resources

4.1.5.1 Vegetation

Construction of new facilities associated with Alternative #1 at the 190 ARW installation would occur on currently paved areas and would not result in an increase of impervious surfaces. Therefore, there would be no impacts to the vegetation at the installation.

4.1.5.2 Wildlife

Under Alternative #1, impacts to wildlife due to construction would be minor. Noise and human activity associated with construction could evoke reactions to wildlife, including those that are protected under the MBTA, and may cause them to temporarily avoid the area. Disturbed nests in the immediate vicinity of construction activity would be susceptible to abandonment and depredation. A study conducted by Strasser and Heath (2013) suggested that cavity nesting birds, such as kestrels, who inhabit noisy environments may compensate for decreased auditory cues by increasing vigilance behavior, leading to changes in energy allocation or extended periods away from the nest during incubation. This behavior appeared to be followed, at a high rate, by nest abandonment. However, bird and wildlife populations in the vicinity of the airport where project components would occur are accustomed to elevated noise associated with aircraft and general military industrial use. As a result, indirect impacts from construction noise are expected to be minimal because the ambient noise levels within the vicinity are high under existing conditions and would be unlikely to substantially increase by the relatively minor and temporary nature of the proposed construction and modifications.

Under Alternative #1, impacts to wildlife due to proposed operations would be minor. Operational noise levels would be expected to decrease slightly from baseline with the
conversion to the KC-46A aircraft. Bird/wildlife aircraft strikes are also an inevitable hazard associated with military aircraft training. Under Alternative #1, the KC-46A would operate in the same airfield environment as the current aircraft. Annual operations for the KC-46A at Forbes Field Airport would be projected to increase by approximately 39 percent over the KC-135 baseline operations (17 percent increase in total airfield operations). An increase in airfield operations may result in a slight increased opportunity for bird/wildlife aircraft strikes to occur, including those with migratory birds. Adherence to the existing BASH program would minimize the risk of bird/wildlife aircraft strikes (see Section 4.1.3, Safety). The 190 ARW has developed procedures designed to minimize the occurrence of bird/wildlife aircraft strikes, and has documented detailed procedures to monitor and react to heightened risk of bird/wildlife aircraft strikes. When risk increases, limits are placed on low-altitude flight and some types of training (e.g., multiple approaches, closed pattern work) in the airport environment. Special briefings are provided to pilots whenever the potential exists for increased bird/wildlife aircraft strikes within the airspace.

4.1.5.3 Special Status Species

No special status species are currently known to occur on Forbes Field Airport and there is only a low potential for them to occur within the vicinity due to the lack of habitat. In addition, noise levels would be expected to decrease slightly from baseline with the conversion to the KC-46A aircraft. Therefore, under Alternative #1, there would be no effect to special status species. The USFWS Kansas Ecological Services Field Office stated in a letter sent on March 13, 2014 that they have no concerns regarding the Proposed Action.

4.1.5.4 Wetlands

There are no wetland areas that occur within the vicinity of the proposed project footprints. Therefore, no impacts to wetlands would occur as a result of Alternative #1.

4.1.5.5 Summary of Impacts

There would be no impacts to vegetation and wetlands under this alternative. Impacts to wildlife species from operational noise would be imperceptibly beneficial due to the slight decrease in noise. A 39 percent increase in 190 ARW (17 percent increase in total) airfield operations may result in a slight increased opportunity for bird/wildlife aircraft strikes to occur, including those with migratory birds. Impacts to wildlife due to construction would be negligible. No special status species or critical habitat is known to occur on Forbes Field Airport; therefore, there would be no impacts to these species.
4.1.6 Cultural Resources

Potential direct impacts to cultural resources examined in this analysis include effects to archaeological sites due to ground disturbing activities during construction or modification to buildings. Indirect impacts from an increase in personnel from 1,242 to 1,436 would be negligible as personnel would primarily be confined to the developed areas on the installation, which lack cultural resources.

4.1.6.1 Archaeological Resources

Based on previous archaeological surveys that identified no archaeological resources, the installation is considered to have low to no potential of containing buried archaeological resources (KS ANG 2008). The Kansas SHPO has concurred with these findings (Zollner 2008, 2013). In the unlikely event that archaeological or human remains are identified during construction, the 190 ARW would immediately cease all activities in the area of the discovery and contact the 190 ARW Environmental Manager who would contact a qualified archaeologist to evaluate the discovery. Because there are no significant archaeological resources (prehistoric or historic) on the 190 ARW installation, the implementation of Alternative #1 would have no impact to archaeological resources.

4.1.6.2 Architectural Resources

Two of the buildings proposed for alteration (Hangars 662 and 665) are not eligible for listing in the NRHP (Zollner 2008). The third building (Building 679) is eligible for listing in the NRHP. However, Building 679 has been demolished and completely rebuilt. These actions were mitigated by a Memorandum of Agreement between the Kansas SHPO, Kansas ANG, and 190 ARW for a previous project (Air National Guard Readiness Center et al. 2009). The current proposed Alternative #1 would not affect the existing agreement. The interpretive display located in the entry corridor of the new building that was the major component of the Memorandum of Agreement would not be altered (KS ANG 2010). Therefore, the NGB has determined that there would be no effect to historic properties as a result of the Proposed Action. The Kansas SHPO concurs that no historic properties would be affected by the Proposed Action (see Zollner 2013 in Appendix B3). Therefore, the implementation of Alternative #1 would have no impact to architectural resources.

4.1.6.3 Traditional Resources

There are no known traditional resources on the 190 ARW installation. Given the extensive development on the installation, it is considered unlikely that there are traditional resources located at the 190 ARW. Government-to-government consultation for this action was conducted with each federally-recognized Tribe in recognition of their status as sovereign nations, and to
provide information regarding tribal concerns per Section 106 of the National Historic Preservation Act as well as information on traditional resources that may be present on or near the installation. Two responses from federally-recognized tribes have been received (the Kaw Nation and the Wichita and Affiliated Tribes). The Kaw Nation and the Wichita and Affiliated Tribes stated that they have no objection to the Proposed Action. Letters and written correspondence to Tribes were followed up with telephone calls and emails in an effort to increase accessibility and encourage communication in the event a Tribe would have any concerns regarding the Proposed Action or land below the affected or proposed airspace areas. Correspondence sent to the tribes and follow-up efforts are located in Appendix B2. Additional efforts were made to contact non-responsive tribes without success (see Appendix B2). While the NGB and the USAF values its relationship with all tribes and will continue to consult on other planning efforts or matters of known or potential interest to tribes, Section 106 consultation on the KC-46A MOB 2 proposed alternative at Forbes ANGS is now complete.

4.1.6.4 Summary of Impacts

Construction activities associated with this alternative would be limited to the developed areas of the installation, primarily in the areas of the aircraft hangars and airfield pavements, where no archaeological resources are known. Interior modifications to Building 679 would not affect the NRHP-eligibility of the building. Other architectural resources are not eligible for listing in the NRHP. The Kansas SHPO has concurred with the determination that no historic properties would be affected (Zollner 2013). No traditional resources are known to occur at the installation. Therefore, no impacts to cultural resources at the 190 ARW installation are anticipated under Alternative #1.

4.1.7 Land Use

The primary source of impacts to land use resulting from Alternative #1 would be from noise. As shown in Table 4.1.7-1 and Figure 4.1.7-1, areas outside of the airport boundaries currently exposed to DNL of 65 dB to 70 dB would decrease by 55 acres, overall. By zoning districts, the PUD area affected by DNL of 65 dB to 70 dB would decrease by approximately 3 acres; Industrial areas would decrease by approximately 8 acres; and Residential Reserve areas would decrease by approximately 42 acres. No houses, churches, schools, or other known noise sensitive receptors would be located within the 65 dB DNL noise contour. Therefore, Alternative #1 is compatible with current land use and zoning designations and would result in minor beneficial impacts. A more detailed discussion of aircraft operations and noise can be found in Section 4.1.1, Noise.
Table 4.1.7-1. Change in Acres Affected by Noise Levels Above 65 dB DNL Outside the Forbes Field Airport Boundary

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Baseline Total (acres)</th>
<th>Proposed Total (acres)</th>
<th>Change Total (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned Unit Development</td>
<td>24.0</td>
<td>21.4</td>
<td>-2.6</td>
</tr>
<tr>
<td>Industrial</td>
<td>36.0</td>
<td>28.3</td>
<td>-7.7</td>
</tr>
<tr>
<td>Residential Reserve</td>
<td>97.4</td>
<td>55.4</td>
<td>-42.0</td>
</tr>
<tr>
<td>Non-designated</td>
<td>8.1</td>
<td>5.8</td>
<td>-2.3</td>
</tr>
<tr>
<td>Total Area</td>
<td>165.5</td>
<td>110.9</td>
<td>-54.6</td>
</tr>
</tbody>
</table>

4.1.7.1 Summary of Impacts

While the number of total annual airfield operations would increase by 4,110 (17 percent), the acreage within the 65 dB DNL (and greater) noise contour would decrease by 41 acres (55 acres off airport property). Current land use and zoning designations would not change due to the basing of the KC-46A. This alternative would be compatible with current land use and zoning designations and would result in imperceptibly beneficial impacts by reducing the off-airport areas currently exposed to noise levels between 65 dB and 70 dB DNL. Airport Hazard Areas would not be affected.
Figure 4.1.7-1. DNL Noise Contours and Land Use Under Alternative #1 at Forbes Field Airport

4.1.8 Infrastructure and Transportation

4.1.8.1 Potable Water

Water consumption would be expected to increase slightly under Alternative #1 as a result of the increase in personnel; however, an increase in 181 personnel on the installation would not be expected to impact regional water supply. Additionally, the demand for water (e.g., if used to control dust) could also increase during demolition and construction phases. However, this increase would be temporary and intermittent and would not be expected to impact regional water supply.

4.1.8.2 Wastewater

Wastewater generation would be expected to increase slightly as a result of the increase in 181 personnel on the installation. However, there have been no deficiencies identified with the existing system, and it is expected that the existing sanitary sewer system is generally adequate to serve the facilities proposed under this alternative.

4.1.8.3 Stormwater

Under Alternative #1, there would be up to 258,149 SF (5.9 acres) of temporary soil disturbance and no new impervious surface as a result of proposed construction. The proposed construction activities could temporarily impact the quality of stormwater runoff (see Section 4.1.4, Soils and Water); however, through implementation of appropriate standard construction practices (as described previously), preventative maintenance, and periodic inspections and sampling to detect risk to stormwater, especially during active construction activity, no impacts would be expected to the existing stormwater drainage system as a result of the proposed construction.

4.1.8.4 Electrical and Natural Gas Systems

Demand for electricity and natural gas would be expected to increase slightly as a result of the increase in personnel, and the building space and facilities to be constructed would require additional electricity. However, any new facilities and additions associated with Alternative #1 would be implemented with more energy efficient design standards and utility systems than are currently in place. In addition, construction projects would incorporate LEED and sustainable development concepts to achieve optimum resource efficiency, sustainability, and energy conservation. Therefore, average energy consumption would be expected to remain consistent or decrease compared to energy consumption associated with existing facilities.
Construction activity associated with Alternative #1 could result in some temporary interruption of utility services during construction. These impacts would be temporary, occurring briefly during active construction periods. In addition, the demand for energy (primarily electricity) could increase slightly during demolition and construction phases. The energy supply at the installation and in the region is adequate and would not be affected by this temporary increase in demand.

4.1.8.5 Solid Waste Management

The building space and facilities to be constructed would generate construction and demolition debris requiring landfill disposal. Construction activities would result in approximately 258,149 SF of additions and alterations to existing facilities. Using a multiplier provided by the USEPA to determine solid waste generation, it was estimated that proposed renovations at Forbes ANGS would generate 3,043,577 pounds (1,522 tons) of renovation debris requiring landfill disposal (USEPA 2009).

Solid waste generated as a result of the proposed construction could result in impacts to solid waste management facilities in the area. The Rolling Meadows Landfill has a remaining life expectancy of 15 years and a permitted throughput of 321,000 tons per year (Rolling Meadows Waste Management 2009). The 1,522 tons of proposed construction debris generated at Forbes ANGS would represent approximately 0.5 percent of the yearly capacity of the landfill. In addition, Shawnee County has a remaining municipal solid waste capacity of 20-40 years (Kansas Department of Health and Environment 2010). Impacts to local landfills would not be expected to exceed the permitted throughput or contribute significantly to the remaining capacity.

Off-installation contractors completing construction and demolition projects at the 190 ARW installation would be responsible for disposing of waste generated from these activities. Contractors would be required to comply with federal, state, and local regulations for the collection and disposal of municipal solid waste from the installation. Much of this material can be recycled or reused, or otherwise diverted from landfills. EO 13514, Federal Leadership in Environmental, Energy, and Economic Performance, sets a target diversion rate of 50 percent for recycling and waste diversion for DoD facilities by 2015, including construction and demolition waste; compliance with EO 13514 would further minimize the increase in solid waste generation as a result of the proposed construction. All non-recyclable construction and demolition waste would be collected in a dumpster until removal. Construction and demolition waste contaminated with hazardous waste, ACM, LBP, or other undesirable components would be managed in accordance with AFI 32-7042, Waste Management (2009).
4.1.8.6 Transportation

Construction equipment would be driven to proposed construction areas and would be kept on-site for the duration of the respective activity. Construction workers would drive daily in their personal vehicles to and from the construction site. In general, construction traffic would result in increases in the use of on-installation roadways during construction activities; however, increases would be temporary and intermittent, occurring only during active construction periods.

The number of authorized personnel on the installation would increase by 181 under Alternative #1 (see Table 2.3-6). The increase in personnel would create a potential 181 additional one-way vehicle trips to and from the installation during morning and evening peak periods for these additional personnel. Assuming that each person makes two trips per day, the implementation of Alternative #1 would add an additional 362 trips onto the existing roadway network after the construction phase is complete. However, regional roads used to access the installation as well as those located on the installation have sufficient capacity to manage this increase in traffic without substantial impacts to circulation. Therefore, impacts to transportation infrastructure would not be significant under Alternative #1.

4.1.8.7 Summary of Impacts

Impacts from this alternative would not be expected since there have been no deficiencies identified with the existing systems, and it is expected that the existing infrastructure is generally adequate to serve the facilities and increased personnel proposed under this alternative. Impacts to infrastructure resulting from construction would be negligible since any interruption of utility services or increase demand on infrastructure would be temporary and infrequent. Impacts to infrastructure would be negligible.

4.1.9 Hazardous Materials and Waste

4.1.9.1 Hazardous Materials

A Hazardous Materials Management Program has been developed for the KC-46A program. Training activities and other functions would be expected to remain similar between the KC-46A and existing KC-135 aircraft. The types of hazardous materials needed for maintenance and operation of the KC-46A would be expected to remain similar to those currently used for maintenance and operation of the KC-135 fleet. However, unlike the KC-135, the KC-46A aircraft will be free of ozone depleting substances (ODSs). ODSs were typically used as part of the fire suppression systems on aircraft; ODS use and/or storage would no longer be required under Alternative #1.
The KC-46A aircraft has been designed with a focus on reduction of hazardous materials such that hazardous materials currently required for maintenance, operations, and materials on or associated with the new aircraft would be less than or equal to the existing aircraft (Boeing 2011). In addition, it is anticipated that the amount of hazardous waste generated for one KC-46A aircraft for maintenance activities would be slightly less than that generated for one KC-135 aircraft since the KC-46A has two engines as opposed to the four engines for the KC-135. Furthermore, the KC-46A is a newer aircraft and is expected to need less maintenance than the older KC-135 aircraft.

Under Alternative #1, the total number of annual flying hours for the 190 ARW would increase from 4,868 to 8,040 (a 65 percent increase); therefore, the throughput of petroleum substances (e.g., fuels, oils) used during operations would be expected to increase commensurately from what is currently used to maintain the KC-135 fleet (see Appendix A, Section A.1, for more details). Additionally, it is expected that short-term increases would be realized in terms of the quantity of fuel used during construction activities, because various fuels (e.g., diesel, gasoline) would be required to run earth moving equipment and power tools and to provide electricity and lighting as conditions warrant. Procedures for hazardous material management established for the 190 ARW installation would continue to be followed in future operations associated with Alternative #1 and as required during all construction and renovation activities.

Toxic Substances

Under Alternative #1, additions to Hangars 662 and 665 are proposed, and internal renovations to Building 679 are proposed. ACM is known to occur in Hangar 665 and Building 679. An LBP survey has not been conducted at the 190 ARW installation. However, Hangar 662 and 665, and Building 669 were constructed prior to 1978 and therefore may contain LBP. Any structures proposed for demolition, addition, or retrofit would be inspected for ACM and LBP according to established ANG procedures prior to any renovation or demolition activities. All ACM would be properly removed and disposed of prior to or during demolition in accordance with 40 CFR 61.40 through 157. All LBP would be managed and disposed of in accordance with the Toxic Substances Control Act (TSCA), Occupational Safety and Health Administration (OSHA) regulations, Kansas requirements (regarding site work practices for buildings with LBP), and established ANG procedures. Materials, especially discarded oil products, would be screened for PCB contamination prior to disposal.

4.1.9.2 Hazardous Waste Management

The type of hazardous waste streams generated by KC-46A operations would be expected to remain similar to those being generated by the existing KC-135 aircraft, with the exception of ODSs. Additionally, the two aircraft require the same types of hazardous materials for their
maintenance and operations (e.g., fuels, oils). Under Alternative #1, the total number of flying hours for the 190 ARW would increase approximately 65 percent; therefore, hazardous waste streams would be expected to increase commensurately (see Appendix A, Section A.9, for more details). However, the increase in hazardous waste streams is supportable by the current infrastructure at the installation. Hazardous waste generation (e.g., used oil, used filters, oily rags, etc.) would continue to be managed in accordance with the installation’s Hazardous Waste Management Plan and all applicable federal, state, and local regulations. Additionally, no changes to the installation’s small quantity generator status would be expected to occur due to the increase in hazardous waste generation from aircraft operations.

4.1.9.3 Environmental Restoration Program

In accordance with AFI 32-7020, The Environmental Restoration Program, construction, modifications and/or additions to existing buildings can occur on or in proximity to existing ERP sites. Accordingly, the appropriate organizations (e.g., installation planners, ERP managers, design engineers) must consider a compatible land use based on current site conditions and the selected or projected remedial action alternatives. Construction should be sited and designed to minimize life-cycle costs to include those associated with impacts from existing contaminated sites. If the potential for uncharacterized ERP sites exist, the installation is responsible for identifying existing contamination at the proposed construction sites to avoid unknowingly locating construction projects in areas with contamination. The installation is responsible for performing necessary environmental baseline surveys, accomplishing environmental impact analysis process requirements, and for otherwise informing itself about existing site conditions and their associated cost impacts in preparation for a construction project. When warranted by the site history, environmental restoration funds may be used to accomplish Resource Conservation and Recovery Act (RCRA) facility assessments, or preliminary assessments and site inspections undertaken in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, or similar site investigations in accordance with applicable state laws for suspected releases. To the extent that a construction project generates actions to address contamination, or a need to change the timing of ERP-generated actions to address contamination, the costs of such actions are not Environmental Restoration Account-eligible and shall be funded as part of the construction project. This includes the handling, mitigation, and disposal or other disposition of contamination discovered before or during the construction activity.

The removal and disposal of contamination unexpectedly encountered within the construction project footprint during the execution of a construction project will be undertaken as part of the construction project using construction project funds which may include other military construction (MILCON) funds reprogrammed to a MILCON construction project. Construction
contractor costs (such as direct delay costs and unabsorbed or extended overhead) incidental to discovery and removal of the contamination will be construction project funded to the extent that the government is responsible and liable for such costs.

Vapor intrusion should be evaluated when volatile chemicals are present in soil, soil gas, or groundwater that underlies existing structures or has the potential to underlie future buildings and there may be a complete human exposure pathway. Due to their physical properties, volatile chemicals can migrate through unsaturated soil and into the indoor air of buildings located near zones of subsurface contamination.

One site, ERP Site 8, overlaps with a portion of the proposed renovation of the existing pervious surfaces on the parking apron (Figure 4.1.9-1). This site is closed and monitoring conducted during 1990-1993 was completed with no contaminants reported above detection limits; therefore, it is not expected to pose a vapor intrusion concern. However, it is recommended that a vapor intrusion analysis/testing is completed prior to construction to investigate any potential concern. If testing indicates a vapor intrusion concern, the installation would implement practices in accordance with site-specific vapor mitigation design considerations.

If contaminated media (e.g., soil, vapor, groundwater) are encountered during the course of site preparation (e.g., clearing, grading) or site development (e.g., excavation for installation of building footers) for proposed construction activities, work would cease until 190 ARW Program Managers establish an appropriate course of action for the construction project to ensure that federal and state agency notification requirements are met, and to arrange for agency consultation as necessary if existing ERP sites are affected. Also, prior to construction activities, the construction contractors would be notified of the nature and extent of known contamination so that they can inform their employees in advance of on-site activities and take appropriate precautions to protect health and safety, and to prevent the spread of contamination. The construction contractors would be responsible for ensuring their workers follow appropriate health and safety requirements.

4.1.9.4 Summary of Impacts

There would not be an increased risk of hazardous waste releases or exposure from this alternative. Any LBP or ACM that may be found in buildings that are scheduled for construction activities would be managed per applicable USAF regulations. There would be no expected impact from ERP sites, as the ERP site that overlaps proposed construction is closed. However, if contaminated media were encountered during the course of site preparation or site development, work would cease until 190 ARW Program Managers establish an appropriate course of action for the construction project to ensure that federal and state agency notification requirements are met. Impacts relative to hazardous materials and wastes would be negligible.
Figure 4.1.9-1. ERP Sites and Proposed Construction in the Vicinity of Forbes ANGS
4.1.10 Socioeconomics

Under Alternative #1, construction activities would be contained entirely within the boundaries of Forbes Field Airport. Economic activity associated with proposed construction activities at the 190 ARW installation, such as employment and materials purchasing, would provide short-term economic benefits to the local economy. However, short-term beneficial impacts resulting from construction payrolls and materials purchased would be negligible on a regional scale.

The proposed aircraft beddown and related activities would result in a change in staffing requirements for the 190 ARW. Currently, the 190 ARW is authorized 1,242 personnel. Under Alternative #1, the KC-46A mission would add an additional 194 military positions (increase in 212 full-time positions and reduction of 18 traditional Guard positions) (see Table 2.3-6). Combined with their approximately 264 family members, this would represent less than 0.1 percent of Shawnee County population. Of the 264 family members, approximately 114 would be anticipated to be of school age. The students entering the local schools would be expected to be enrolled in various grades and live in different areas within Shawnee County. It is anticipated that there is enough capacity within the schools in Shawnee County to absorb this minimal increase in school age children.

An increase in 194 military personnel positions would amount to an increase of approximately 16 percent to the existing 190 ARW personnel. Total payroll associated with the 212 additional full-time personnel would amount to an estimated annual salary increase of approximately $16 million for full-time employees.

All 190 ARW personnel live off-installation as there is no on-installation housing. A conservative scenario would result in 194 homes purchased at the same time as personnel relocate to the area. This would represent less than 0.2 percent of the total housing units in Shawnee County. However, not all the military personnel who would relocate would own homes.

4.1.10.1 Summary of Impacts

Impacts to socioeconomics resulting from construction would be beneficial and negligible resulting from construction payrolls and materials purchased. In addition, impacts from proposed operations would be beneficial and minor due to the proposed increase in personnel.
4.1.11 Environmental Justice and the Protection of Children

4.1.11.1 Minority and Low-Income Populations

Under Alternative #1, there would be no residential populations, including no minority or low-income populations, located within the vicinity of Forbes Field Airport exposed to 65 dB DNL or above. Therefore, there would be no disproportionate impacts to minority or low-income populations in the vicinity of Forbes Field Airport.

4.1.11.2 Protection of Children

There are no facilities on the installation where children may be encountered on a regular basis. Currently there are no off-installation Kindergarten through Grade 12 schools that are exposed to 65 dB DNL or above. Under Alternative #1 there would be no new Kindergarten through Grade 12 schools exposed to 65 dB DNL or above. Therefore, under Alternative #1 there would be no special health or safety risks to children.

4.1.11.3 Summary of Impacts

Given that the acreage within the 65 dB DNL noise contour would be reduced, there would be no residential populations, including no minority or low-income populations, and no additional schools located within the vicinity of Forbes Field Airport exposed to 65 dB DNL or above; thus, there would be no disproportionate impacts to minority or low-income populations in the vicinity of Forbes Field Airport. In addition, there would be no special health or safety risks to children.
4.2 ALTERNATIVE #2 -- JOINT BASE MCGUIRE-DIX-LAKEHURST

4.2.1 Noise

In this section, noise associated with flying operations and construction activities related to Alternative #2 are considered and compared with baseline conditions to assess potential impacts. Details of the methodologies used for this section can be found in Appendix A, Section A.1.2.

The DNL noise contours for this alternative were generated using the NOISEMAP computer model and represent the most current noise data available for establishing baseline conditions and for which to analyze changes to the noise environment in the McGuire Field ROI. The DNL noise contours for the KC-46A under Alternative #2 were also generated using NOISEMAP through the removal of all KC-135 operations and the insertion of the proposed KC-46A operations using the substitute KC-46A noise data and flight profile data provided by AFCEC and applying the data to the current KC-135 flight tracks and operational procedures.

4.2.1.1 Aircraft Noise

Under Alternative #2, 12 KC-46As would be based at JB MDL, replacing the current 8 KC-135 aircraft. There would be no change in the number or type of other aircraft using the airfield and KC-46A aircrews would use the same flying procedures (e.g., ground tracks, altitude profiles) currently used by KC-135 aircrews. Aircrews associated with the KC-46A would continue to practice closed patterns, including tactical procedures in which the aircraft climbs or descends in the immediate vicinity of the airfield. Tactical training prepares aircrews for operations in forward operating locations in which flying at low-altitudes over land not controlled by friendly forces exposes the aircraft to ground-based threats. This procedure is currently being flown with the KC-135. Aircrews associated with the KC-46A would continue to practice closed patterns, including tactical procedures; however, most tactical procedures would be accomplished in the simulator or at other locations away from JB MDL. The percentage of aircraft operations occurring during the night (10 p.m. to 7 a.m.) would decrease from that in the baseline conditions. Under Alternative #2, JB MDL would have an increase in flying hours generating an increase in KC-46A airfield operations.

Following the aircraft beddown under Alternative #2, the 108 WG would have an increase in total flying hours resulting in 1,508 sorties being flown at McGuire Field. This would be an increase of 81 percent over the baseline 834 sorties identified in the McGuire Field Noise Study (it is assumed that the same percentage of the sorties found under current baseline conditions would be flown at McGuire Field under this alternative) (JB MDL 2013a). Based on 1,508 annual home-station sorties and an average of 11.68 operations per sortie, there would be 17,608 annual home-station operations, or an additional 9,268 airfield operations annually at McGuire...
Field (an increase of 111 percent for the 108 WG, and 15 percent increase in total JB MDL annual operations) (Table 4.2.1-1). This would increase the average daily airfield operations from 23 to 48. The 108 WG KC-46A operations would be approximately 24 percent of all aircraft operations at the airfield.

All operations would remain as described under existing conditions (with the exception of a decrease in published night operations [JB MDL 2013a]); however, the KC-135 would be replaced by the KC-46A. There would be no changes expected to departure/arrival patterns and tracks, and use of runways. Current noise abatement procedures would continue to be followed as documented in Section 3.2.1.4.

Table 4.2.1-1. McGuire Field Annual Aircraft Operations with Proposed KC-46A

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>DEPARTURES</th>
<th>ARRIVALS</th>
<th>TOTAL</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night</td>
<td>Day</td>
<td>Night</td>
</tr>
<tr>
<td>KC-46A</td>
<td>8,047</td>
<td>764</td>
<td>7,863</td>
<td>934</td>
</tr>
<tr>
<td>Other Aircraft</td>
<td>18,803</td>
<td>8,316</td>
<td>15,855</td>
<td>11,293</td>
</tr>
<tr>
<td>Total</td>
<td>26,850</td>
<td>9,080</td>
<td>23,718</td>
<td>12,227</td>
</tr>
</tbody>
</table>

Notes: 1. Includes Closed Patterns (which count as two airfield operations).
2. Night – Between 10 p.m. and 7 a.m. for environmental night.
3. Other Based aircraft and Transient Aircraft (multiple type aircraft) including: KC-10, C-17, and C-32.

KC-135 aircraft operations per average annual day (arrivals and departures [2.28] and closed patterns [9.14]) would increase with the KC-46A to 11.6 arrivals and departures and 12.5 closed patterns/day. There would be approximately 10 percent of the KC-46A airfield operations flown during environmental night. The total number of operations flown by all other aircraft at JB MDL would not change from previously identified airfield activities. There would be no change to any other aircraft types or aircraft flight tracks and profiles from the baseline condition.

Figure 4.2.1-1 depicts the noise exposure area from aircraft operations after the conversion from the current 8 KC-135 aircraft to 12 KC-46A aircraft, and Figure 4.2.1-2 compares baseline noise contours with Alternative #2 contours. The aircraft operations modeled include all current based and transient aircraft operations depicted in the 2012 JB MDL noise update. Table 4.2.1-2 shows changes to the acreage of land within each noise contour under Alternative #2.

Table 4.2.1-2. Land Areas within DNL Contours at JB MDL Affected by DNL Greater than 65 dB under Baseline and Alternative #2

<table>
<thead>
<tr>
<th>Noise Contour (dB DNL)</th>
<th>BASELINE (KC-135)</th>
<th>ALTERNATIVE #2 (KC-46A)</th>
<th>Change Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On Base</td>
<td>Off Base</td>
<td>Total</td>
</tr>
<tr>
<td>65-70</td>
<td>1,375</td>
<td>311</td>
<td>1,686</td>
</tr>
<tr>
<td>70-75</td>
<td>1,186</td>
<td>21</td>
<td>1,207</td>
</tr>
<tr>
<td>75-80</td>
<td>370</td>
<td>0</td>
<td>370</td>
</tr>
<tr>
<td>80-85</td>
<td>222</td>
<td>0</td>
<td>222</td>
</tr>
<tr>
<td>>85</td>
<td>76</td>
<td>0</td>
<td>76</td>
</tr>
<tr>
<td>Total</td>
<td>3,229</td>
<td>332</td>
<td>3,561</td>
</tr>
</tbody>
</table>

Notes: DNL = Day Night Average Sound Level; dB = decibel
Figure 4.2.1-1. DNL Noise Contours Under Alternative #2 at McGuire Field
Figure 4.2.1-2. Comparison of Baseline and Alternative #2 DNL Noise Contours at McGuire Field.
Under Alternative #2, the DNL noise contours would expand slightly in all directions from the baseline DNL noise contours. Overall, the number of acres contained within the 65 dB DNL and greater exposure area would increase by approximately 1,831 acres, or 51 percent, but would remain primarily on McGuire Field with approximately 751 of these acres off the base property (an increase of 419 acres off base). Information regarding number of people residing in this area can be found in Section 4.2.11, *Environmental Justice and the Protection of Children*; and information regarding the area of residential use is located in Section 4.2.7, *Land Use*.

Percent of the Population Expected to be Highly Annoyed

The percentage of the population expected to be highly annoyed under Alternative #2 would increase slightly from baseline conditions because there would be an expected 48 additional individuals living in residences exposed to levels above a DNL of 65 dB.

Single Event Sound Analysis

Under Alternative #2, the flying profiles would not change, and the scheduled flying program would not change. As shown in Appendix A, Table A.1-1 provides representative SELs, indicating that the SEL for individual landings by the KC-46A would be 5 dB less while take-offs would be 1 dB more than the KC-135. Under Alternative #2, flights would be scheduled for similar time periods as currently flown during the morning and afternoons, with less than 10 percent of flights occurring during environmental night (after 10 p.m. and before 7 a.m.).

Potential Hearing Loss

As shown in Table 4.2.1-2, there is no property off the JB MDL that falls within the 80+ dB DNL noise contour; therefore, there would be no potential hearing loss risk associated with these areas. In addition, the on-base housing area lies outside of the 65 dB DNL contour; therefore, there would be no potential hearing loss risk associated with these areas.

4.2.1.2 Construction Noise

There would be some minor temporary noise from construction equipment associated with construction activities that would occur intermittently during the construction period (beginning FY 2015). Typical noise levels from heavy equipment range from 69 to 84 dB at 100 feet from the source (FHWA 2006) (see Appendix C, *Noise*, Section A.1.2.2). Aviation-related activities at JB MDL dominate the local noise environment. Equipment used during the facility construction would contribute little to the general background noise levels around the airfield and would be only temporary. Therefore, impacts from construction under Alternative #2 would be negligible.
4.2.1.3 Summary of Impacts

The number of annual airfield operations would increase by 9,268 (111 percent increase in 108 WG operations, 15 percent increase in total airfield operations), and the acreage within the 65 dB DNL (and greater) noise contour would increase by 1,831 acres. Of this increase in acreage, 419 acres would be off DoD-controlled property. There would be no potential for hearing loss off the airport and only a slight increase in the percent of the population highly annoyed. Construction noise would be localized and temporary and would not add to the overall noise environment. Impacts from noise would be negligible.

4.2.2 Air Quality

The air quality analysis estimated the magnitude of emissions that would result from implementation of the proposed KC-46A construction and operational activities at the 108 WG installation. The estimation of proposed operational emissions is based on the net change in emissions between existing aircraft operations and projected KC-46A operations.

As discussed in Appendix A.2.3, air quality impacts from the beddown of the KC-46A aircraft at JB MDL were reviewed for significance relative to the PSD threshold for new major sources for attainment pollutants, and the General Conformity de minimis thresholds for nonattainment pollutants. Because the project region within Burlington and Ocean counties are part of the Philadelphia-Wilmington-Atlantic City nonattainment area for O₃ (marginal nonattainment), and is a maintenance area for PM₂.₅ and CO, the de minimis threshold of 100 tpy for O₃ precursors NOₓ and VOCs, PM₂.₅, and CO was used as an indicator of the potential significance of the emissions from the KC-46A conversion. For attainment pollutants PM₁₀ and SO₂, the PSD threshold of 250 tpy (100,000 tpy for GHGs) was used as an indicator of the potential significance of the emissions from Alternative #2.

4.2.2.1 Operational Emissions

Sources associated with operation of the proposed KC-46A beddown at the 108 WG installation include (1) operations and engine maintenance/testing of aircraft; (2) onsite POVs; (3) offsite POV commutes; and (4) AGE. It was assumed that other sources, including non-road mobile equipment, mobile fuel transfer, and stationary source emissions would be unchanged. Operational data used to calculate projected KC-46A aircraft emissions were obtained from the data used in the project noise analysis. Factors used to calculate combustion emissions for the KC-46A aircraft are based on emissions data developed by Pratt and Whitney for the PW4062 engine (International Civil Aviation Organization 2013). The operational times in mode for the KC-46A engine are based on those currently used for the KC-135 aircraft (AFCEC 2013). The analysis of proposed aircraft operations is limited to operations that occur within the lowest 3,000 feet of the atmosphere, as this is the typical depth of the atmospheric mixing layer where the release of aircraft emissions would affect ground-level pollutant concentrations.
Emissions from AGE were estimated based on the methodology recommended in the *Air Emissions Guide for Air Force Mobile Sources* (AFCEC 2013). Emissions from POVs were estimated based on total personnel for the existing and proposed scenarios, using emission factors for vehicles from AFCEC 2013.

Table 4.2.2-1 summarizes the annual operational emissions that would result from KC-46A operations at 108 WG installation. Table 4.2.2-1 also presents the net emissions increase associated with the beddown of the KC-46A aircraft at JB MDL. As shown in Table 4.2.2-1, the net emissions increases are below the PSD/de minimis thresholds for all pollutants except NO\textsubscript{x}. Emissions of NO\textsubscript{x} would exceed the de minimis threshold, and this alternative would therefore require a Conformity Determination under the General Conformity Rule (Appendix F).

The ANG has prepared a Draft Conformity Determination that demonstrates that emissions associated with Alternative #2 would be within the SIP NO\textsubscript{x} emissions budget for McGuire AFB (now JB MDL), should this alternative be selected. The ANG is coordinating with the NJDEP regarding the 2011 SIP emissions budget and the proposed increase in NO\textsubscript{x} emissions associated with Alternative #2 to ensure that the 2011 budget is still effective. If Alternative #2 is selected, it is anticipated that the ANG will obtain an affirmative General Conformity Determination prior to signing of the ROD.

Table 4.2.2-1. Comparison of Baseline and Proposed Annual Operational Emissions, 108 WG Installation

<table>
<thead>
<tr>
<th>Baseline</th>
<th>VOC</th>
<th>CO</th>
<th>NO\textsubscript{x}</th>
<th>SO\textsubscript{2}</th>
<th>PM\textsubscript{10}</th>
<th>PM\textsubscript{2.5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 Aircraft Operations</td>
<td>3.21</td>
<td>49.03</td>
<td>83.34</td>
<td>7.43</td>
<td>0.39</td>
<td>0.39</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.01</td>
<td>0.09</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.14</td>
<td>2.01</td>
<td>0.55</td>
<td>0.09</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>POVs</td>
<td>5.12</td>
<td>110.72</td>
<td>5.20</td>
<td>0.07</td>
<td>0.21</td>
<td>0.12</td>
</tr>
<tr>
<td>Total</td>
<td>8.48</td>
<td>161.78</td>
<td>89.18</td>
<td>7.59</td>
<td>0.61</td>
<td>0.53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proposed Action</th>
<th>VOC</th>
<th>CO</th>
<th>NO\textsubscript{x}</th>
<th>SO\textsubscript{2}</th>
<th>PM\textsubscript{10}</th>
<th>PM\textsubscript{2.5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A Aircraft Operations</td>
<td>26.19</td>
<td>100.37</td>
<td>294.03</td>
<td>17.32</td>
<td>1.13</td>
<td>0.96</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.02</td>
<td>0.17</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>1.53</td>
<td>5.23</td>
<td>1.38</td>
<td>0.17</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>POVs</td>
<td>4.75</td>
<td>126.34</td>
<td>3.97</td>
<td>0.09</td>
<td>0.22</td>
<td>0.12</td>
</tr>
<tr>
<td>Total</td>
<td>32.48</td>
<td>231.97</td>
<td>299.54</td>
<td>17.58</td>
<td>1.38</td>
<td>1.11</td>
</tr>
</tbody>
</table>

Net Increase

<table>
<thead>
<tr>
<th>Net Increase</th>
<th>VOC</th>
<th>CO</th>
<th>NO\textsubscript{x}</th>
<th>SO\textsubscript{2}</th>
<th>PM\textsubscript{10}</th>
<th>PM\textsubscript{2.5}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24.01</td>
<td>70.19</td>
<td>210.36</td>
<td>9.99</td>
<td>0.77</td>
<td>0.58</td>
</tr>
</tbody>
</table>

MOB 2 Net Emissions Increase

<table>
<thead>
<tr>
<th>Fraction of Existing Emissions</th>
<th>VOC</th>
<th>CO</th>
<th>NO\textsubscript{x}</th>
<th>SO\textsubscript{2}</th>
<th>PM\textsubscript{10}</th>
<th>PM\textsubscript{2.5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>2.83</td>
<td>0.43</td>
<td>2.36</td>
<td>1.32</td>
<td>1.26</td>
<td>1.09</td>
</tr>
</tbody>
</table>

PSD/de minimis Threshold

| 100 | 250 | 250 | 250 |

Notes: Numbers may not add precisely due to rounding.

CO = carbon monoxide; CO\textsubscript{2e} = carbon dioxide equivalent; NO\textsubscript{x} = oxides of nitrogen; PM\textsubscript{10} = particulate matter less than or equal to 10 microns in diameter; PM\textsubscript{2.5} = particulate matter less than or equal to 2.5 microns in diameter; SO\textsubscript{2} = sulfur dioxide; VOC = volatile organic compound; AGE = aerospace ground equipment; POV = privately owned vehicle; PSD = Prevention of Significant Deterioration
In addition to criteria pollutant emissions, the beddown of the KC-46A aircraft under Alternative #2 would result in emissions of HAPs and GHGs. Operational activities would result in a net increase of HAPs that is below 1 ton per year.

Table 4.2.2-2 summarizes the annual operational GHG emissions that would result from KC-46A operations at JB MDL, along with the net increase in comparison with the baseline. As shown in Table 4.2.2-2, emissions are below the PSD thresholds for GHGs.

Table 4.2.2-2. Comparison of Baseline and Proposed Annual Operational GHG Emissions, 108 WG

<table>
<thead>
<tr>
<th></th>
<th>CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>CO₂e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KC-135 Aircraft Operations</td>
<td>20,450</td>
<td>0.57</td>
<td>0.64</td>
<td>20,659</td>
</tr>
<tr>
<td>AGE</td>
<td>2,134</td>
<td>0.06</td>
<td>0.07</td>
<td>2,157</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>237</td>
<td>0.01</td>
<td>0.01</td>
<td>239</td>
</tr>
<tr>
<td>POV's</td>
<td>3,543</td>
<td>0.00</td>
<td>0.00</td>
<td>3,543</td>
</tr>
<tr>
<td>Total</td>
<td>26,363</td>
<td>0.63</td>
<td>0.71</td>
<td>26,597</td>
</tr>
<tr>
<td>Proposed Action</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KC-46A Aircraft Operations</td>
<td>47,195</td>
<td>1.25</td>
<td>1.41</td>
<td>47,657</td>
</tr>
<tr>
<td>AGE</td>
<td>3,859</td>
<td>0.11</td>
<td>0.12</td>
<td>3,900</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>459</td>
<td>0.01</td>
<td>0.01</td>
<td>464</td>
</tr>
<tr>
<td>POV's</td>
<td>4,359</td>
<td>0.00</td>
<td>0.00</td>
<td>4,359</td>
</tr>
<tr>
<td>Total</td>
<td>55,872</td>
<td>1.37</td>
<td>1.54</td>
<td>56,379</td>
</tr>
<tr>
<td>Net Increase</td>
<td>29,509</td>
<td>0.74</td>
<td>0.83</td>
<td>29,782</td>
</tr>
<tr>
<td>PSD Threshold</td>
<td>100,000</td>
<td>100,000</td>
<td>100,000</td>
<td>100,000</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding. CO₂ = carbon dioxide; CH₄ = methane; N₂O = nitrous oxide; CO₂e = carbon dioxide equivalent; AGE = aerospace ground equipment; POV = privately owned vehicle.

4.2.2.2 Construction Emissions

The KC-46A beddown at JB MDL would require construction and renovation of existing airfield facilities, including hangars, buildings, and aprons and ramps. Air quality impacts resulting from the proposed construction activities would occur from (1) combustion emissions from heavy equipment and vehicles; and (2) fugitive dust emissions due to operation of equipment on exposed soil. Table 4.2.2-3 presents a summary of the annual construction emissions for the beddown of the KC-46A aircraft at JB MDL. As shown in Table 4.2.2-3, emissions would be below the PSD/de minimis thresholds for all pollutants.

For construction emissions the project option with the greatest potential to emit was used in the analysis (see Table 2.3-11).
Table 4.2.2-3. Annual Construction Emissions Under Alternative #2

<table>
<thead>
<tr>
<th>Construction Project</th>
<th>CO</th>
<th>NOx</th>
<th>VOC</th>
<th>SOx</th>
<th>PM10</th>
<th>PM2.5</th>
<th>Total CO2 Metric tons/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project #1 - Addition to Hangar 3333</td>
<td>1.43</td>
<td>2.28</td>
<td>0.40</td>
<td>0.04</td>
<td>2.27</td>
<td>1.77</td>
<td>762.34</td>
</tr>
<tr>
<td>Project #2 - Addition to Hangar 3336</td>
<td>1.46</td>
<td>2.32</td>
<td>0.41</td>
<td>0.04</td>
<td>2.32</td>
<td>1.80</td>
<td>775.72</td>
</tr>
<tr>
<td>Project #3 - Internal Renovations to Hangar 3322</td>
<td>0.30</td>
<td>0.47</td>
<td>0.06</td>
<td>0.01</td>
<td>0.04</td>
<td>0.04</td>
<td>122.59</td>
</tr>
<tr>
<td>Project #4 - New Simulator Building</td>
<td>0.54</td>
<td>0.85</td>
<td>0.15</td>
<td>0.02</td>
<td>0.71</td>
<td>0.63</td>
<td>285.47</td>
</tr>
<tr>
<td>Project #5 - Modifications to Existing Parking Ramp and Taxiway</td>
<td>4.28</td>
<td>10.18</td>
<td>1.06</td>
<td>0.51</td>
<td>6.15</td>
<td>3.00</td>
<td>2,529.83</td>
</tr>
<tr>
<td>Project #6 - New Hydrants and Fuel Lines and Demolition of Existing Hydrants</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>3.88</td>
</tr>
<tr>
<td>Total Option 1</td>
<td>8.01</td>
<td>16.11</td>
<td>2.08</td>
<td>0.62</td>
<td>11.48</td>
<td>7.23</td>
<td>4,479.82</td>
</tr>
<tr>
<td>PSD/de minimis Threshold</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>250</td>
<td>250</td>
<td>100</td>
<td>100,000</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding.
CO = carbon monoxide; NOx = oxides of nitrogen; VOC = volatile organic compound; SOx = oxides of sulfur; PM10 = particulate matter less than or equal to 10 microns in diameter; PM2.5 = particulate matter less than or equal to 2.5 microns in diameter; CO2 = carbon dioxide; PSD = Prevention of Significant Deterioration

4.2.2.3 Summary of Impacts

The 108 WG installation is in a nonattainment area for O3 (marginal nonattainment), and maintenance area for CO and PM2.5, and is therefore subject to de minimis thresholds. Impacts from proposed operational emissions would be less than significant for all criteria pollutants, except NOx, which would be above the de minimis threshold of 100 tpy. A conformity determination must be prepared. Operational GHG emissions are within thresholds in the PSD tailoring rule. Impacts from construction emissions and operational HAP emissions are negligible.

The ANG has prepared a Draft Conformity Determination that demonstrates that emissions associated with Alternative #2 would be within the 2011 SIP NOx emissions budget for McGuire AFB (JB MDL), should this alternative be selected. The ANG is coordinating with the NJDEP regarding the 2011 SIP emissions budget and the proposed increase in NOx emissions associated with Alternative #2 to ensure that the 2011 budget is still effective. If Alternative #2 is selected, it is anticipated that the ANG will obtain an affirmative General Conformity Determination prior to signing of the ROD.

4.2.3 Safety

4.2.3.1 Ground Safety

Existing facilities at McGuire Field for fire response and crash recovery meet KC-46A beddown requirements (JB MDL 2013b).
Proposed renovation and infrastructure improvement projects related to this alternative would not penetrate any APZs or impact aircraft take-off or landings (JB MDL 2013b). New construction and building renovation activity would not result in any greater safety risk or obstructions to navigation. Operations would fall within the same general types as those that have historically occurred at JB MDL. For example, the KC-46A would follow established local approach and departure patterns. Therefore, flight activity and subsequent operations would not require changes to APZs. Planned construction at JB MDL would be sited to be in compliance with the current QD arcs and no unauthorized construction would occur within the proposed QD arcs. None of the construction or demolition would be in conflict with the QD arcs. Per AFMAN 91-201, *Explosive Safety Standards*, there would be no public transportation route or inhabited building located within the proposed QD arcs. No explosives would be handled during construction or demolition activities. Therefore, no additional risk would be expected as a result of implementation of this alternative.

To support the aircraft beddown at JB MDL, some facilities would require renovation/modification. However, no construction activities would involve any unusual or extraordinary techniques. During construction and modifications, standard construction safety procedures would be employed, and strict adherence to all applicable standard industrial safety requirements and procedures, including AFI 13-213, *Airfield Driving* (2011), would further minimize the relatively low risk associated with these construction activities.

The proposed construction projects meet all criteria specified in the ANG Handbook 32-1084, *Facility Space Standards*. AT/FP requirements have also been addressed to the extent practicable in all projects. Projects would use AT/FP site design standards for siting of facilities, parking, walkways, and other features. Renovations would bring the facilities into compliance with UFC 4-022-01, *Security Engineering: Entry Control Facilities/Access Control Points* and UFC 4-010-01, *DoD Minimum Antiterrorism Standards for Buildings*, providing additional protection for the personnel based there.

4.2.3.2 Flight Safety

Although the KC-46A is a new aircraft, it is a military derivative of the commercial Boeing 767 aircraft. First flown commercially in 1982, more than 1,000 commercial Boeing 767 aircraft have been produced and it is a proven commercial airliner, freighter, and tanker already in service (Boeing 2012). Mishap statistics for the commercial Boeing 767 show 14 total aircraft losses (similar to a Class A military mishap definition) during its 31 year lifetime (ASN 2013).
Although no facilities are proposed that would affect navigable airspace, JB MDL would comply with 14 CFR Part 77, *Objects Affecting Navigable Airspace*, as appropriate, should they be selected to host the KC-46A.

To augment airborne training missions, pilots flying the KC-46A would use simulators extensively. Simulator training includes all facets of flight operations and comprehensive emergency procedures. The sophistication and fidelity of current simulators and related computer programs are commensurate with the advancements made in aircraft technology and are extremely realistic. These factors should minimize risk associated with mishaps due to pilot error.

Under Alternative #2, there would be an increase of approximately 111 percent 108 WG operations (15 percent in total JB MDL airfield operations) for the Proposed Action compared to existing conditions. This increase in take-offs, landings, proficiency training, and other flights would result in a commensurate increase in the safety risk to aircrews and personnel.

The proposed increase in airfield flight operations would be expected to increase the opportunity for aircraft mishaps, including BASH incidents; however, the expected rate of mishaps or BASH incidents would not be expected to change from current conditions. Both the KC-135 and the commercial Boeing 767 have very low mishap rates, and with a new airframe and technological improvements the KC-46A would be expected to have a similar safety record. In addition, current airfield safety procedures discussed previously would continue to be implemented and additional airfield flight operations would adhere to established safety procedures (JB MDL 2010).

Given the low likelihood for an aircraft accident or BASH mishap to occur in the local airfield area and even lower likelihood for civilians to be impacted, impacts to safety in the vicinity of JB MDL as a result of Alternative #2 are expected to be negligible.

The KC-46A will have the capability to jettison fuel for emergency situations. Military policy is to avoid fuel jettisons, unless safety of flight dictates an immediate jettison, and requires senior officer approval before fuel jettison, unless under emergency situations. Records of KC-135 fuel jettison events reveal that such circumstances are rare, occurring in slightly less than two sorties per thousand (Headquarters AMC 2013). Additionally, unlike the KC-135, the KC-46A will have the capability to land fully loaded with fuel so long as adequate runway length and braking capability are available (Headquarters AMC 2013), which could potentially lessen the need to jettison fuel in certain circumstances. Based on information provided by Boeing, landing the KC-46A above maximum landing weight is not prohibited; however, it does drive costly
inspection requirements. To land above maximum landing weight routinely could reduce the fatigue life of the airplane (Headquarters AMC 2013).

4.2.3.3 Summary of Impacts

There would be a 111 percent increase in actual 108 WG airfield operations (15 percent in total airfield operations) at JB MDL with a commensurate increase in mishap and BASH potential. Construction activities would involve no unusual or extraordinary techniques. During construction and modifications, standard construction safety procedures would be employed, and strict adherence to all applicable standard industrial safety requirements and procedures would further minimize the relatively low risk associated with these construction activities. Impacts to safety would be expected to be negligible.

4.2.4 Soils and Water

4.2.4.1 Soils

Under Alternative #2, new construction would consist of six separate projects resulting in up to 204,009 SF (4.7 acres) of new construction footprint and up to 104,884 SF (2.4 acres) of new impervious surface. There are two construction scenarios for the aircraft conversion under consideration; only one of these options would be implemented. The total construction footprint analyzed represents the largest possible footprint of each of the options (Table 2.3-11). These proposed construction projects would meet all criteria specified in ANG Handbook 32-1084, Facility Space Standards.

Proposed construction under Alternative #2 would occur primarily on Adelphia-Urban land complex (0 to 5 percent slopes), with a small amount (approximately 0.5 acre) of the new construction footprint on Sassafras sandy loam and Udorthents. Adelphia-Urban land complex is rated by the NRCS Web Soil Survey as somewhat limited for small commercial building development due to shrink-swell potential and depth to saturated zone and very limited for roadway development due to frost action and depth to saturated zone (NRCS 2013). In addition, Sassafras sandy loam (2 to 5 percent slopes) is designated as Prime Farmland under the Farmland Protection Policy Act; however, only 3 percent of the proposed construction footprint would occur on this soil type. The proposed construction is for national defense purposes and the surrounding land is already in urban development. Pursuant to the Farmland Protection Policy Act, the USAF determined that the land is not farmland subject to the Farmland Protection Policy Act; therefore, the Farmland Protection Policy Act does not apply to this alternative.
To minimize potential impacts to soil and water resources associated with erosion, runoff, and sedimentation during construction activity, standard construction practices as described in the 108 WG SWPPP (USAF School of Aerospace Medicine 2010) would be implemented during and following the construction period. Such practices could include the use of well-maintained silt fences or straw wattles, minimizing surficial areas disturbed, stabilization of cut/fill slopes, minimization of earth-moving activities during wet weather, and covering of soil stockpiles, as appropriate. A site-specific and detailed SWPPP that coordinates the timing of soil disturbing activities with the installation of soil erosion and runoff controls is an effective way of controlling erosion while soil is exposed and subject to construction activity. The contractor would also submit a Burlington County Erosion and Sediment Control Plan and receive certification of the plan prior to commencing site work. An NOI must be filed with the state of New Jersey to obtain coverage under the Construction Activity Stormwater General Permit (General Permit No. NJ0088323) prior to implementation of individual projects. Construction activities subject to this permit include clearing, grading, and disturbances to the ground such as stockpiling or excavation. Implementation of these measures, as necessary and appropriate, would ensure that impacts to earth resources as a result of implementation of Alternative #2 would be minimal.

4.2.4.2 Surface Water

As a result of implementation of Alternative #2, there would be a maximum of 104,884 SF (2.4 acres) of new impervious surface from the proposed construction (Figure 4.2.4-1). This could result in localized increases in stormwater runoff volume and intensity, in addition to increases in total suspended particulates to nearby surface waters. However, in accordance with UFC 3-210-10, LID (as amended, 2010) and EISA Section 438, any increase in surface water runoff as a result of the proposed construction would be attenuated through the use of temporary and/or permanent drainage management features. The integration of LID design concepts incorporates site design and stormwater management to maintain the site’s pre-development runoff rates and volumes to further minimize potential adverse impacts associated with increases in impervious surface area.

Increased runoff and peak discharge volumes as a result of increases to impervious surface can be managed by appropriately designed conveyance structures (such as roadways, channels, and culverts) in accordance with site-specific engineering standards that take into consideration the influence of surface water drainage within, adjacent to, and downstream of the project. In addition, implementing features that manage surface water runoff into the design of the project would avoid or minimize conflicts with city, county, state, or federal regulations and prevent adversely affecting adjacent properties and/or the project area itself. Such measures could include:
Figure 4.2.4-1. Surface Water Features and Proposed Construction in the Vicinity of McGuire Field
• water harvesting and natural open space,
• installation of detention basins for water recharge or for release of runoff at predetermined times to minimize peak discharges,
• the use of porous materials, such as pavers or gravel, for driveway and walkway construction, and
• directing runoff toward permeable areas, such that discharge exiting each site post-construction would be equal to or less than existing conditions.

Implementation of these measures, as necessary and appropriate, would ensure that impacts to surface water as a result of implementation of Alternative #2 would be minimal.

4.2.4.3 Groundwater

As a result of Alternative #2, the increase in the amount of impervious surface (2.4 acres) would also result in a decrease in groundwater recharge. However, as noted above, any increase in surface water runoff as a result of the proposed construction would be attenuated through the use of permit-related temporary and/or permanent drainage management features such as detention/retention basins and standard construction practices as described above. The integration of water harvesting and natural open space into project design would further minimize potential adverse impacts due to increased impervious surface. The use of these features would also increase groundwater recharge through direct percolation offsetting the loss of pervious surface due to future construction. Additionally, the impervious surface area resulting from the proposed activities would not be one continuous, hardened surface. Rather, the impervious surfaces would occupy several smaller areas, which would further minimize localized impacts to groundwater recharge.

4.2.4.4 Floodplains

Proposed construction activities at the installation would not occur within the 100-year floodplain zone. As such, there would be no impacts to floodplains under this alternative.

4.2.4.5 Summary of Impacts

There would be approximately 4.7 acres of temporary soil disturbance and 2.4 acres of new impervious surface as a result of the proposed construction. To minimize potential impacts associated with erosion, runoff, and sedimentation, standard construction practices would be implemented. In addition, as the construction is for national defense purposes and the surrounding land is already in urban development, the Farmland Protection Policy Act does not apply to this alternative. Therefore, impacts to soil and water resources would be negligible.
4.2.5 Biological Resources

4.2.5.1 Vegetation

Construction of new facilities associated with Alternative #2 at the 108 WG installation would primarily occur on currently paved areas or actively managed (i.e., mowed and landscaped) areas. In addition, approximately 0.15 acre (6,700 SF) of forest on the 108 WG installation (<0.001 percent of the total forested area on JB MDL) would be removed in order to build the new simulator. However, this forested area is a small isolated fragmented parcel, and provides limited quality wildlife habitat. Alternative #2 would result in an increase of 104,884 SF (2.4 acres) of impervious surfaces. Impacts to the vegetation at the installation would be minor due to the lack of sensitive vegetation in the project area.

4.2.5.2 Wildlife

Under Alternative #2, minor impacts to wildlife would occur as a result of construction. Noise and human activity associated with construction could evoke reactions to wildlife, including those that are protected under the MBTA, and may cause them to temporarily avoid the area. Disturbed nests in the immediate vicinity of construction activity would be susceptible to abandonment and depredation. However, bird and wildlife populations in the vicinity of the 108 WG installation where project components would occur are accustomed to human activity and elevated noise associated with aircraft and general military industrial use. In addition, to the extent possible, construction would not occur during the breeding season for grassland birds (April 15 to July 31). As a result, indirect impacts from construction are expected to be minimal because the ambient noise levels within the vicinity are high under existing conditions and would be unlikely to substantially increase by the relatively minor and temporary nature of the proposed construction and modifications. Additionally, any tree clearing would be performed outside the migratory bird breeding season (March 15 to July 31) to avoid any impacts to migratory birds.

Under Alternative #2, impacts to wildlife due to proposed operations would be minor. DNL noise contours would be expected to increase slightly from baseline with the conversion to the KC-46A aircraft; however, these noise levels would not be expected to impact wildlife in the area because they are accustomed to elevated noise levels associated with existing aircraft and military operations. Bird/wildlife aircraft strikes are also an inevitable hazard associated with military aircraft training. Under Alternative #2, the KC-46A would operate in the same airfield environment as the current aircraft. Annual operations for the 108 WG would be projected to increase by approximately 111 percent over the KC-135 baseline operations (15 percent increase in total airfield operations). An increase in airfield operations would increase the potential for bird/wildlife aircraft strikes to occur. The 108 WG has developed procedures designed to
minimize the occurrence of bird/wildlife aircraft strikes, and has documented detailed procedures
to monitor and react to heightened risk of bird/wildlife aircraft strikes. Adherence to the
existing, effective BASH program would minimize the risk of bird/wildlife aircraft strikes (see
Section 4.2.3, Safety). When risk increases, limits are placed on low-altitude flight and some
types of training (e.g., multiple approaches, closed pattern work) in the airport environment.
Special briefings are provided to pilots whenever the potential exists for increased bird/wildlife
aircraft strikes within the airspace.

4.2.5.3 Special Status Species

No federally listed species are currently known to occur on the 108 WG installation and there is
only a low potential for them to occur within the vicinity due to the lack of habitat. Six state
listed species have been observed on McGuire Field. Grassland habitat located within the
potential ramp expansion area could provide habitat for these species. However, to the extent
possible, construction would not occur during the breeding season for grassland birds (March 15
to July 31). Operational noise levels under Alternative #2 would be expected to increase slightly
from baseline with the conversion to the KC-46A aircraft. Under Alternative #2, the flying
profiles would not change, and the scheduled flying program would not change. As shown in
Appendix A, Table A.1.2-2 provides representative SELs, indicating that the SEL for individual
landings by the KC-46A would be 5 dB less while take-offs would be 1 dB more than the
KC-135. Under Alternative #2, only the number of aircraft operations would change; there
would be no change in where or when individual aircraft operate. Flights would be scheduled
for similar time periods as currently flown during the morning and afternoons, with
approximately 4 percent of flights occurring during environmental night (after 10 p.m. and
before 7 a.m.). An additional 419 acres of land off the airport property would be exposed to
DNL between 65 dB and 70 dB. However, since ambient noise levels within the vicinity are
relatively high under existing conditions, the Proposed Action under Alternative #2 would be
unlikely to substantially increase enough to preclude wildlife from utilizing the area as they
currently do. Therefore, there would be no effect to federally listed species and impacts to state
listed species would be minor under Alternative #2. The USFWS New Jersey Field Office sent
an e-mail on September 27, 2013 stating that they have no objection to the Proposed Action.

4.2.5.4 Wetlands

There are no wetland areas that occur within the vicinity of the proposed project footprints.
Therefore, no impacts to wetlands would occur as a result of Alternative #2.
4.2.5.5 Summary of Impacts

Impacts to vegetation under this alternative would be minor due to the lack of sensitive vegetation in the project area. There would be no impacts to wetlands. Impacts to wildlife from operational noise would be expected to be minor due to the slight increase in noise and the temporary nature of construction. A 111 percent increase in 108 WG (15 percent increase in total) airfield operations may result in a slight increased opportunity for bird/wildlife aircraft strikes to occur, including those with migratory birds. No federally listed species or critical habitat is known to occur on McGuire Field; therefore, there would be no impacts to federally listed species. Six state listed species have been observed on McGuire Field. Impacts to state listed species would be minor.

4.2.6 Cultural Resources

Potential impacts to cultural resources examined in this analysis include effects to archaeological sites due to ground disturbing activities during construction or modification to buildings. Indirect impacts that would come from an increase in personnel from 1,329 to 1,616 necessary for the KC-46A beddown would be negligible as personnel would primarily be confined to the developed areas on the installation, which lack cultural resources.

4.2.6.1 Archaeological Resources

The area of McGuire Field was occupied during the late eighteenth through early twentieth century by rural homesteads outlying the nearby towns such as Pointville and Wrightstown. Both Texas Avenue and McGuire Road lie on the alignment of historic roads known to have been used as through routes during the nineteenth century. However, military development of Camp Dix Army Airfield in the early twentieth century, as well as Rudd Field and McGuire Air Force Base during the mid to late twentieth century, led to large scale disturbance of previously occupied historic landscapes. Nonetheless, there are pockets of historic archaeological resources extant within the installation boundaries including the three NRHP eligible sites mentioned in Section 3.2.6. None of these sites are within the area of potential disturbance for Alternative #2. A small amount of construction (0.15 acre) for a new simulator building off of Broidy Road would occur in a stand of trees near this developed area. This area was the location of barracks in the 1940s and 1950s and likely has some buried foundations dating to that period. However, those barracks remains are not considered eligible to the NRHP (Duryee 2013). Therefore, based on previous archaeological surveys at McGuire Field and the historic land use patterns of the installation, the area of proposed construction does not contain any known NRHP-eligible sites and this area is considered to have a low potential for containing buried archaeological materials (87th Civil Engineering Squadron 2013). In the unlikely event that archaeological or human
remains are identified during construction, all activities in the area of the discovery would cease and the JB MDL Cultural Resources Manager would be immediately contacted for further instruction. Because the 108 WG installation has been inventoried for archaeological resources and no such resources were encountered within the area of disturbance of Alternative #2, there would be no impacts to archaeological resources (prehistoric or historic) under Alternative #2. The New Jersey SHPO has concurred that there would be no historic properties affected under Alternative #2 (Saunders 2013).

4.2.6.2 Architectural Resources

Alternative #2 would include additions to Hangars 3333 and 3336 and interior renovations to Hangar 3322. Hangars 3333 and 3336 were built in the late 1990s and are not historic; therefore, they are not eligible to the NRHP as they are not yet 50 years old and they do not meet criterion G for exceptional significance under the Cold War or any other event. Hangar 3322, built in 1957, was evaluated for NRHP eligibility in 2013 and determined not eligible for listing in the NRHP (JB MDL 2013d). The New Jersey SHPO concurred that there would be no historic properties affected under the proposed action and that Section 106 consultation was complete (see Saunders 2013 in Appendix B3). Therefore, based on current information, there would be no adverse impact to Hangars 3333, 3336, and 3322 under Alternative #2.

4.2.6.3 Traditional Resources

The 108 WG installation contains no known traditional resources. Given the extensive development on much of the installation, it is considered unlikely that there are traditional resources located at the 108 WG. Government-to-government consultation for this action has been conducted with the Delaware Nation and the Delaware Tribe of Indians in recognition of their status as sovereign nations. This consultation also provides information regarding tribal concerns per Section 106 of the NRHP and information on traditional resources that may be present on or near the installation. The Delaware Tribe of Indians sent a response on October 4, 2013 stating that their review indicated no religious or culturally significant sites in the area and that they have no objection to the Proposed Action (see Obermeyer 2013 in Appendix B2). The Delaware Nation stated via telephone on April 3, 2014 that they had no objection to the Proposed Action. The NGB and the USAF values its relationship with tribes and will continue to seek opportunities to consult on other planning efforts or matters of known/potential interest to tribes.

4.2.6.4 Summary of Impacts

Construction activities associated with this alternative would be primarily limited to the developed areas of the installation in the areas of the aircraft hangars and airfield pavements,
where no archaeological resources are known. A small amount of construction (0.15 acre) for a new simulator building off of Broidy Road would occur in a stand of trees near this developed area. This area was the location of barracks in the 1940s and 1950s and likely has some buried foundations dating to that period. However, those barracks remains are not considered eligible to the NRHP (Duryee 2013). Therefore, based on previous archaeological surveys and historic land use patterns at McGuire Field, the area of proposed construction does not contain any known NRHP-eligible archaeological sites and is considered to have a low potential for containing buried archaeological materials. The New Jersey SHPO has concurred that there would be no historic properties affected under Alternative #2. No traditional resources have been identified. Therefore, no impacts to cultural resources are anticipated at the 108 WG installation under Alternative #2.

4.2.7 Land Use

The primary source of impacts to land use resulting from Alternative #2 would be from noise. As shown in Table 4.2.7-1 and Figure 4.2.7-1, areas outside of JB MDL boundaries currently exposed to DNLs of 65 dB to 70 dB would increase by approximately 350 acres, overall. By zoning districts, Recreation areas affected by DNL of 65 dB to 70 dB would increase by approximately 6 acres. Agricultural areas would increase by approximately 213 acres; Commercial areas would increase by approximately 7 acres, Residential areas would increase by approximately 2 acres, Open Space areas would increase by approximately 109 acres, and non-designated areas would increase by approximately 13 acres. Areas outside of the airport boundaries currently exposed to DNL of 70 dB to 75 dB would increase by approximately 69 acres, overall. By zoning districts, Recreation, Commercial, and other non-designated areas affected by DNL of 70 dB to 75 dB would remain approximately the same; Agricultural areas would increase by approximately 51 acres; Residential areas would increase by approximately 6 acres, and Open Space areas would increase by approximately 11 acres.
Table 4.2.7-1. Change in Acres Affected by Noise Levels Above 65 dB DNL Outside the McGuire Field Boundary

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Baseline 65 dB to 70 dB DNL</th>
<th>Proposed 65 dB to 70 dB DNL</th>
<th>Change 65 dB to 70 dB DNL</th>
<th>Baseline 70 dB to 75 dB DNL</th>
<th>Proposed 70 dB to 75 dB DNL</th>
<th>Change 70 dB to 75 dB DNL</th>
<th>Total Change (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline (acres)</td>
<td>Proposed (acres)</td>
<td>Change (acres)</td>
<td>Baseline (acres)</td>
<td>Proposed (acres)</td>
<td>Change (acres)</td>
<td></td>
</tr>
<tr>
<td>Recreation</td>
<td><1</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Agricultural</td>
<td>214</td>
<td>427</td>
<td>213</td>
<td>10</td>
<td>61</td>
<td>51</td>
<td>264</td>
</tr>
<tr>
<td>Commercial</td>
<td>2</td>
<td>9</td>
<td>7</td>
<td>0</td>
<td><1</td>
<td><1</td>
<td>7</td>
</tr>
<tr>
<td>Residential</td>
<td>13</td>
<td>15</td>
<td>2</td>
<td>7</td>
<td>13</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Open Space</td>
<td>73</td>
<td>182</td>
<td>109</td>
<td>4</td>
<td>16</td>
<td>11</td>
<td>119</td>
</tr>
<tr>
<td>Non-designated</td>
<td>9</td>
<td>22</td>
<td>13</td>
<td>0</td>
<td><1</td>
<td><1</td>
<td>13</td>
</tr>
<tr>
<td>Total Area</td>
<td>311</td>
<td>661</td>
<td>350</td>
<td>21</td>
<td>90</td>
<td>69</td>
<td>419</td>
</tr>
</tbody>
</table>
Figure 4.2.7-1. DNL Noise Contours and Land Use Under Alternative #2 at McGuire Field
Agricultural areas would be most likely to be exposed to increases in noise levels, but those levels (60-75 dB DNL) would remain compatible as per FICUN standards (Appendix A, Section A.7). An additional 8 acres of residential use areas would be exposed to DNL above 65 dB, levels considered incompatible as per FICUN standards. With the exception of residences associated with 48 additional people, no churches, schools, or other known noise sensitive receptors would be located within the 65 dB DNL noise contour. The minimal increase in incompatible noise levels would result in minor impacts to land use. A more detailed discussion of aircraft operations and noise can be found in Section 4.2.1, *Noise*.

4.2.7.1 Summary of Impacts

The number of total annual airfield operations would increase by 9,268 (15 percent), and the acreage within the 65 dB DNL (and greater) noise contour off DoD-controlled property would increase by 419 acres. An additional 8 acres of residential use areas would be exposed to DNL greater than 65 dB. Current land use and zoning designations would not change due to the basing of the KC-46A. This alternative would result in minor adverse impacts due to an increase in off-airport areas (including residential areas) exposed to noise levels between 65 dB and 75 dB DNL. Airport Hazard Areas would not be affected.

4.2.8 Infrastructure and Transportation

4.2.8.1 Potable Water

Water consumption would be expected to increase slightly under Alternative #2 as a result of the increase in personnel; however, an increase in 255 personnel on the installation would not be expected to impact regional water supply. Additionally, the demand for water (e.g., if used to control dust) could also increase during demolition and construction phases. However, this increase would be temporary and intermittent and would not be expected to impact regional water supply.

4.2.8.2 Wastewater

Wastewater generation would be expected to increase slightly as a result of the increase in 255 personnel on the installation. However, there have been no deficiencies identified with the existing system, and it is expected that the existing sanitary sewer system is generally adequate to serve the facilities proposed under this alternative.
4.2.8.3 Stormwater

Under Alternative #2, there would be up to 204,009 SF (4.7 acres) of temporary soil disturbance as a result of proposed construction. The proposed construction activities could temporarily impact the quality of stormwater runoff (see Section 4.2.4, Soils and Water); however, through implementation of appropriate standard construction practices (as described previously), preventative maintenance, and periodic inspections and sampling to detect risk to stormwater, especially during active construction activity, no impacts would be expected to the existing stormwater drainage system as a result of the proposed construction.

In addition, there would be an increase in up to 104,884 SF (2.4 acres) of new impervious surface. The addition of new impervious surfaces would potentially increase stormwater runoff volume and peak discharge rates; however, as discussed in further detail in Section 4.2.4, Soils and Water, stormwater runoff increases would be managed such that discharge exiting each site post-construction would be equal to or less than existing conditions in accordance with UFC 3-210-10 and EISA Section 438. Implementation of these measures would ensure that impacts to the stormwater drainage system as a result of implementation of Alternative #2 would be minimal.

4.2.8.4 Electrical and Natural Gas Systems

Demand for electricity and natural gas would be expected to increase slightly as a result of the increase in personnel, and the building space and facilities to be constructed would require additional electricity. However, any new facilities and additions associated with Alternative #2 would be implemented with more energy efficient design standards and utility systems than are currently in place. In addition, construction projects would incorporate LEED and sustainable development concepts to achieve optimum resource efficiency, sustainability, and energy conservation. Therefore, average energy consumption would be expected to remain consistent or decrease compared to energy consumption associated with existing facilities.

Construction activity associated with Alternative #2 could result in some temporary interruption of utility services during construction. These impacts would be temporary, occurring briefly during active construction periods. In addition, the demand for energy (primarily electricity) could increase slightly during demolition and construction phases. The energy supply at the installation and in the region is adequate and would not be affected by this temporary increase in demand.
4.2.8.5 Solid Waste Management

The building space and facilities to be constructed would generate construction and demolition debris requiring landfill disposal. Construction activities would result in approximately 204,009 SF of additions and alterations to existing facilities and 104,884 SF of new building construction. Using a multiplier provided by the USEPA to determine solid waste generation, it was estimated proposed renovations at JB MDL would generate 2,405,266 pounds (1,203 tons) of renovation debris requiring landfill disposal and proposed new construction at JB MDL would generate 455,197 pounds (228 tons) of construction debris (USEPA 2009). Therefore, the total amount of construction and demolition debris generated at JB MDL would be 1,431 tons.

Solid waste generated as a result of the proposed construction could result in impacts to solid waste management facilities in the area. The Burlington County Resource Recovery Complex has a remaining life expectancy of 5 years and a permitted throughput of 360,000 tons per year (Burlington County 2009). The 1,507 tons of proposed construction debris generated at JB MDL would represent approximately 0.4 percent of the yearly capacity of the landfill. In addition, Burlington County Resource Recovery Complex has room for expansion to meet the needs for future growth (Burlington County 2009). Impacts to local landfills would not be expected to exceed the permitted throughput or contribute significantly to the remaining capacity.

Off-installation contractors completing construction and demolition projects at the 108 WG installation would be responsible for disposing of waste generated from these activities. Contractors would be required to comply with federal, state, and local regulations for the collection and disposal of municipal solid waste from the installation. Much of this material can be recycled or reused, or otherwise diverted from landfills. EO 13514, Federal Leadership in Environmental, Energy, and Economic Performance, sets a target diversion rate of 50 percent for recycling and waste diversion for DoD facilities by 2015, including construction and demolition waste; compliance with EO 13514 would further minimize the increase in solid waste generation as a result of the proposed construction. All non-recyclable construction and demolition waste would be collected in a dumpster until removal. Construction and demolition waste contaminated with hazardous waste, ACM, LBP, or other undesirable components would be managed in accordance with AFI 32-7042, Waste Management (2009).

4.2.8.6 Transportation

Construction equipment would be driven to proposed construction areas and would be kept on-site for the duration of the respective activity. Construction workers would drive daily in their personal vehicles to and from the construction site. In general, construction traffic would result in increases in the use of on-installation roadways during construction activities; however,
increases would be temporary and intermittent, occurring only during active construction periods.

The number of authorized personnel on the installation would increase by 255 under Alternative
#2 (see Table 2.3-12). The increase in personnel would create a potential 255 additional one-
way vehicle trips to and from the installation during morning and evening peak periods for these
additional personnel. Assuming that each person makes two trips per day, the implementation of
Alternative #2 would add an additional 510 trips onto the existing roadway network after the
construction phase is complete. However, regional roads used to access the installation as well
as those located on the installation have sufficient capacity to manage this increase in traffic
without substantial impacts to circulation. Therefore, impacts to transportation infrastructure
would not be significant under Alternative #2.

4.2.8.7 Summary of Impacts

Impacts from this alternative would not be expected since there have been no deficiencies
identified with the existing systems, and it is expected that the existing infrastructure is generally
adequate to serve the facilities and increased personnel proposed under this alternative. Impacts
to infrastructure resulting from construction would be negligible since any interruption of utility
services or increase demand on infrastructure would be temporary and infrequent. Impacts to
infrastructure would be negligible.

4.2.9 Hazardous Materials and Waste

4.2.9.1 Hazardous Materials

A HMMP has been developed for the KC-46A program. Training activities and other functions
would be expected to remain similar between the KC-46A and existing KC-135 aircraft. The
types of hazardous materials needed for maintenance and operation of the KC-46A would be
expected to remain similar to those currently used for maintenance and operation of the KC-135
fleet. However, unlike the KC-135, the KC-46A aircraft will be free of ODSs. ODSs were
typically used as part of the fire suppression systems on aircraft; ODS use and/or storage would
no longer be required under Alternative #2.

The KC-46A aircraft has been designed with a focus on reduction of hazardous materials such
that hazardous materials currently required for maintenance, operations, and materials on or
associated with the new aircraft would be less than or equal to the existing aircraft (Boeing
2011). In addition, it is anticipated that the amount of hazardous waste generated for one
KC-46A aircraft for maintenance activities would be slightly less than that generated for one
KC-135 aircraft since the KC-46A has two engines as opposed to the four engines for the
Furthermore, the KC-46A is a newer aircraft and is expected to need less maintenance than the older KC-135 aircraft.

Under Alternative #2, the total number of flying hours for the 108 WG would increase from 3,687 to 8,040 (an increase of 118 percent); therefore, the throughput of petroleum substances (e.g., fuels, oils) used during operations would be expected to increase commensurately from what is currently used to maintain the KC-135 fleet (see Appendix A, Section A.9, for more details). Additionally, it is expected that short-term increases would be realized in terms of the quantity of fuel used during construction activities, because various fuels (e.g., diesel, gasoline) would be required to run earth moving equipment and power tools and to provide electricity and lighting as conditions warrant. Procedures for hazardous material management established for the 108 WG installation would continue to be followed in future operations associated with Alternative #2 and as required during all construction and renovation activities.

Toxic Substances

Under Alternative #2, additions to Hangars 3333 and 3336 are proposed, and internal renovations to Hangar 3322 are proposed. An asbestos survey was performed at the 108 WG installation in 2007. According to the 2007 asbestos report, Hangar 3322 was found to contain ACM in the insulation, floor tiles, and mastic. An LBP survey has not been conducted at the 108 WG installation. However, Hangar 3322 was constructed prior to 1978, and therefore may contain LBP. Hangars 3333 and 3336 were built after 1978 and therefore are assumed to contain no LBP. Any structures proposed for demolition, addition, or retrofit would be inspected for ACM and LBP according to established ANG procedures prior to any renovation or demolition activities. All ACM would be properly removed and disposed of prior to or during demolition in accordance with 40 CFR 61.40 through 157. All LBP would be managed and disposed of in accordance with TSCA, OSHA regulations, State of New Jersey requirements (regarding site work practices for buildings with LBP), and established ANG procedures. Materials, especially discarded oil products, would be screened for PCB contamination prior to disposal.

Hazardous Waste Management

The type of hazardous waste streams generated by KC-46A operations would be expected to remain similar to those being generated by the existing KC-135 aircraft, with the exception of ODSs. Additionally, the two aircraft require the same types of hazardous materials for their maintenance and operations (e.g., fuels, oils). Under Alternative #2, the total number of flying hours for the 108 WG would increase approximately 118 percent; therefore, hazardous waste streams would be expected to increase commensurately (see Appendix A, Section A.9, for more details). However, the increase in hazardous waste streams is supportable by the current
infrastructure at the installation. Hazardous waste generation (e.g., used oil, used filters, oily rags, etc.) would continue to be managed in accordance with the installation’s Hazardous Waste Management Plan and all applicable federal, state, and local regulations. Additionally, no changes to the installation’s large quantity generator status would be expected to occur due to the increase in hazardous waste generation from aircraft operations.

4.2.9.3 Environmental Restoration Program

In accordance with AFI 32-7020, *The Environmental Restoration Program*, construction, modifications and/or additions to existing buildings can occur on or in proximity to existing ERP sites. Accordingly, the appropriate organizations (e.g., installation planners, ERP managers, design engineers) must consider a compatible land use based on current site conditions and the selected or projected remedial action alternatives. Construction should be sited and designed to minimize life-cycle costs to include those associated with impacts from existing contaminated sites. If the potential for uncharacterized ERP sites exist, the installation is responsible for identifying existing contamination at the proposed construction sites to avoid unknowingly locating construction projects in areas with contamination. The installation is responsible for performing necessary environmental baseline surveys, accomplishing environmental impact analysis process requirements, and for otherwise informing itself about existing site conditions and their associated cost impacts in preparation for a construction project. When warranted by the site history, environmental restoration funds may be used to accomplish RCRA facility assessments, or preliminary assessments and site inspections undertaken in accordance with the CERCLA process, or similar site investigations in accordance with applicable state laws for suspected releases. To the extent that a construction project generates actions to address contamination, or a need to change the timing of ERP-generated actions to address contamination, the costs of such actions are not Environmental Restoration Account-eligible and shall be funded as part of the construction project. This includes the handling, mitigation, and disposal or other disposition of contamination discovered before or during the construction activity.

The removal and disposal of contamination unexpectedly encountered within the construction project footprint during the execution of a construction project will be undertaken as part of the construction project using construction project funds which may include other MILCON funds reprogrammed to a MILCON construction project. Construction contractor costs (such as direct delay costs and unabsorbed or extended overhead) incidental to discovery and removal of the contamination will be construction project funded to the extent that the government is responsible and liable for such costs.
Vapor intrusion should be evaluated when volatile chemicals are present in soil, soil gas, or groundwater that underlies existing structures or has the potential to underlie future buildings and there may be a complete human exposure pathway. Due to their physical properties, volatile chemicals can migrate through unsaturated soil and into the indoor air of buildings located near zones of subsurface contamination.

One of the ERP Sites, SS-39, overlaps with a portion of the existing fuel hydrants that would be capped, as well as the proposed addition to Hangar 3336, under Alternative #2 (Figure 4.2.9-1). Remedial investigation is on-going with this site. It is recommended that a vapor intrusion analysis/testing is completed prior to construction to investigate any potential concern. If testing indicates a vapor intrusion concern, the installation would implement practices in accordance with site-specific vapor mitigation design considerations.

If contaminated media (e.g., soil, vapor, groundwater) are encountered during the course of site preparation (e.g., clearing, grading) or site development (e.g., excavation for installation of building footers) for proposed construction activities, work would cease until 108 WG Program Managers establish an appropriate course of action for the construction project to ensure that federal and state agency notification requirements are met, and to arrange for agency consultation as necessary if existing ERP sites are affected. Also, prior to construction activities, the construction contractors would be notified of the nature and extent of known contamination so they can inform their employees in advance of on-site activities and take appropriate precautions to protect health and safety, and to prevent the spread of contamination. The construction contractors would be responsible for ensuring their workers follow appropriate health and safety requirements.

4.2.9.4 Summary of Impacts

There would not be an increased risk of hazardous waste releases or exposure from this alternative. Any LBP or ACM that may be found in buildings that are scheduled for construction activities would be managed per applicable USAF regulations. There would be no expected impact from ERP sites. Impacts relative to hazardous materials and wastes would be negligible.
Figure 4.2.9-1. ERP Sites and Proposed Construction in the Vicinity of McGuire Field
4.2.10 Socioeconomics

Under Alternative #2, construction activities would be contained entirely within the boundaries of JB MDL. Economic activity associated with proposed construction activities at the 108 WG installation, such as employment and materials purchasing, would provide short-term economic benefits to the local economy. However, short-term beneficial impacts resulting from construction payrolls and materials purchased would be negligible on a regional scale.

The proposed aircraft beddown and related activities would result in a minor change in staffing requirements for the 108 WG. Currently, the 108 WG is authorized 1,329 personnel. Under Alternative #2, the KC-46A mission would add an additional 287 military positions (increase in 231 full-time positions and an increase of 56 traditional Guard position) (see Table 2.3-12). Combined with their approximately 390 family members, this would represent less than 0.09 percent of Burlington County and 0.07 percent of Ocean County (assumes 100 percent of increase in off-base population living in each county). Of the 390 family members, approximately 156 would be anticipated to be of school age. The students entering the local schools would be expected to be enrolled in various grades and live in different areas within Ocean and Burlington counties. It is anticipated that there is enough capacity within the schools in these counties to absorb this minimal increase in school age children.

An increase in 287 military personnel positions would amount to an increase of approximately 21.6 percent to the existing 108 WG personnel. Total payroll associated with the 231 full-time personnel would amount to an estimated total annual salary increase of approximately $21 million.

While there is housing located on JB MDL, currently all 108 WG personnel live off-installation. Under Alternative #2, there is ample on-base housing to accommodate the 199 new active associate personnel should they choose to live on base. However, currently only 20 percent of active duty personnel live on base. Therefore, it is assumed that approximately 20 percent of the 199 proposed active associate personnel (approximately 40 individuals) and their families would live on base. This could in turn result in approximately 247 personnel living off the installation and purchasing 247 homes as personnel relocate to the area. This would represent less than 0.2 percent of the total housing units in Burlington County and less than 0.1 percent of Ocean County. However, not all the military personnel who would relocate would own homes and personnel would most likely be distributed between the two counties.
4.2.10.1 Summary of Impacts

Impacts to socioeconomics resulting from construction would be beneficial and negligible resulting from construction payrolls and materials purchased. In addition, impacts from proposed operations would be beneficial and minor due to the proposed increase in personnel.

4.2.11 Environmental Justice and the Protection of Children

4.2.11.1 Minority and Low-Income Populations

As presented in Table 4.2.11-1, of the roughly 128 persons (48 more than baseline) that would be affected by a DNL above 65 dB, approximately 23 would be minority (18 percent). This is an increase of 11 people, or 3 percent, of minorities affected. The number of low-income persons affected by a DNL greater than 65 dB would be approximately 6 (an increase of 2 people and less than 1 percent). Overall, the number of persons affected by a DNL of 65 dB and greater would increase slightly under this alternative, and the increase in the percentage of minority and low-income persons affected would be minor. Therefore, impacts to minority or low-income populations in the vicinity of JB MDL would not be significant and there would be no disproportionate impacts to minority or low-income populations.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>65-70</td>
<td>77</td>
<td>14</td>
<td>18</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>70-75</td>
<td>51</td>
<td>9</td>
<td>18</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>75-80</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>80-85</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>128</td>
<td>23</td>
<td>18</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

Note: 1. Total population, minority population, and number of children under the age of 18 were obtained from the 2010 census data. Low income population numbers are from the 2007-2011 5-Year Estimates.
2. The percentage of low-income persons is calculated as a percentage of all persons for whom the USCB determines poverty status, which is generally a lower number than the total population because it excludes institutionalized persons, persons in military group quarters and college dormitories, and unrelated individuals under 15 years old.

Sources: USCB 2010b and 2011c.

4.2.11.2 Protection of Children

There are no facilities on the installation where children may be encountered on a regular basis. Currently there are no Kindergarten through Grade 12 off-installation schools that are exposed to a DNL of 65 dB or above; however, there is one child development center located within the 65 dB contour. Under Alternative #2 there would be no new Kindergarten through Grade 12 schools exposed to a DNL of 65 dB or above; however, the child development center that is currently under the 65 dB contour would be located under the 70 dB contour.
4.2.11.3 Summary of Impacts

Although the acreage and the number of persons within the 65 dB DNL noise contours would increase slightly under this alternative, the percentage of minority and low-income persons affected would remain approximately the same as baseline, and no additional schools would be located within the vicinity of JB MDL exposed to DNL of 65 dB or above; thus, there would be no disproportionate impacts to minority or low-income populations and no special health or safety risks to children.
4.3 ALTERNATIVE #3 – PEASE AIR NATIONAL GUARD STATION

4.3.1 Noise

In this section, noise associated with flying operations and construction activities related to Alternative #3 are considered and compared with current conditions to assess potential impacts at Portsmouth IAP. Details of the methodologies used for this section can be found in Appendix A, Section A.1.2.

DNL noise contours for the KC-46A under Alternative #3 were generated using INM. Based KC-135 operations were removed and replaced with KC-46A operations using the B-767-300 and the standard flight profile data provided with INM as substitute data and applying the data to the current based KC-135 flight tracks and operational procedures (INM does not have a standard profile or noise curve data for the KC-46A). Using the standard flight profile data provided for this substitute aircraft in INM provides an accurate analysis of noise contour comparisons that would be expected with the new KC-46A. Flight profiles, flight tracks, and operational procedures currently being used by the KC-135 were used in this INM program.

4.3.1.1 Aircraft Noise

Under Alternative #3, 12 KC-46As would be based at Pease ANGS, replacing the current 8 KC-135 aircraft. There would be no change in the number or type of other aircraft using the airfield and the KC-46A aircrews would use the same flying procedures (e.g., ground tracks, altitude profiles) currently used by KC-135 aircrews. Aircrews associated with the KC-46A would continue to practice closed patterns, including tactical procedures in which the aircraft climbs or descends in the immediate vicinity of the airfield. Tactical training prepares aircrews for operations in forward operating locations in which flying at low-altitudes over land not controlled by friendly forces exposes the aircraft to ground-based threats. This procedure is currently being flown with the KC-135. Aircrews associated with the KC-46A would continue to practice closed patterns, including tactical procedures; however, most tactical procedures would be accomplished primarily in the simulator or at other locations away from Portsmouth IAP.

Under Alternative #3, the 157 ARW would have an increase in flying hours generating an increase in airfield operations by 2,700 from 6,140 to 8,840 operations (a 44 percent increase). Aircraft operations per average annual day (arrivals and departures [1.68] and closed patterns [6.73]) would increase under Alternative #3 to 2.42 arrivals and departures and 9.7 closed patterns/day. The percentage of 157 ARW aircraft operations occurring during environmental night (10 p.m. to 7 a.m.) would remain at the same 4 percent as under baseline conditions. The
total number of operations flown by all other aircraft at Portsmouth IAP would not change from previously identified airfield activities. There would be no change to any other aircraft types or aircraft flight tracks and profiles from the baseline condition (Table 4.3.1-1).

Table 4.3.1-1. Portsmouth IAP Annual Aircraft Operations with Proposed KC-46A

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>DEPARTURES</th>
<th></th>
<th></th>
<th>TOTAL</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night</td>
<td>Day</td>
<td>Night</td>
<td>Day</td>
</tr>
<tr>
<td>KC-46A</td>
<td>4,231</td>
<td>189</td>
<td>4,231</td>
<td>189</td>
<td>8,462</td>
</tr>
<tr>
<td>Other Aircraft</td>
<td>14,541</td>
<td>1,094</td>
<td>14,853</td>
<td>782</td>
<td>29,394</td>
</tr>
<tr>
<td>Total</td>
<td>18,772</td>
<td>1,283</td>
<td>19,084</td>
<td>971</td>
<td>37,856</td>
</tr>
</tbody>
</table>

Notes: 1. Includes Closed Patterns (which count as two airfield operations).
2. Night – Between 10 p.m. and 7 a.m. for environmental night.
3. Other based military and civilian aircraft and transient aircraft (multiple type aircraft) including: Lear 25, 35, and Airbus 319.
Source: 157 ARW 2013a.

Figure 4.3.1-1 depicts the noise exposure area from aircraft operations after the conversion from the current 8 KC-135 aircraft to 12 KC-46A aircraft, and Figure 4.3.1-2 compares baseline noise contours with Alternative #3 contours. The aircraft operations modeled include all transient aircraft, and general and commercial aircraft operations depicted in the most current Portsmouth IAP 2012 noise modeling update. Table 4.3.1-2 shows changes to the acreage of land within each noise contour under Alternative #3.

Table 4.3.1-2. Land Areas within DNL Contours at Portsmouth IAP Affected by DNL Greater than 65 dB under Baseline and Alternative #3

<table>
<thead>
<tr>
<th>Noise Contour (dB DNL)</th>
<th>BASELINE (KC-135)</th>
<th>ALTERNATIVE #3 (KC-46A)</th>
<th>Change Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On Airport</td>
<td>Off Airport</td>
<td>Total</td>
</tr>
<tr>
<td>65-70</td>
<td>237</td>
<td>0</td>
<td>237</td>
</tr>
<tr>
<td>70-75</td>
<td>81</td>
<td>0</td>
<td>81</td>
</tr>
<tr>
<td>75-80</td>
<td>16</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>80-85</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>>85</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>334</td>
<td>0</td>
<td>334</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding.
DNL = Day Night Average Sound Level; dB = decibel
Figure 4.3.1-1. DNL Noise Contours Under Alternative #3 at Portsmouth IAP
Under Alternative #3, the DNL noise contours would expand slightly in all directions from the baseline DNL noise contours. Overall, the number of acres contained within the 65 dB DNL and greater exposure area would increase by approximately 135 acres, or 40 percent, but would remain primarily on airport property with approximately 4 of these acres off the airport property. Information regarding number of people residing in this area can be found in Section 4.3.11, *Environmental Justice and the Protection of Children*; and information regarding the area of residential use is located in Section 4.3.7, *Land Use*.

Percent of the Population Expected to be Highly Annoyed

The percentage of the population expected to be highly annoyed under Alternative #3 would not be expected to change from baseline conditions because there are no additional residences exposed to levels above DNL65 dB.

Single Event Sound Analysis

Under Alternative #3, the flying profiles would not change, and the scheduled flying program would not change. As shown in Appendix A, Table A.1.2-2 provides representative SELs, indicating that the SEL for individual landings by the KC-46A would be 5 dB less while take-offs would be 1 dB more than the KC-135. Under Alternative #3, only the number of aircraft operations would change; there would be no change in where or when individual aircraft operate. Flights would be scheduled for similar time periods as currently flown during the morning and afternoons, with approximately 4 percent of flights occurring during environmental night (after 10 p.m. and before 7 a.m.).

Potential Hearing Loss

As shown in Table 4.3.1-1, there is no property off the Portsmouth IAP that falls within the 80+ dB DNL noise contour; therefore, there would be no potential hearing loss risk associated with these areas.

4.3.1.2 **Construction Noise**

There would be some minor noise from construction equipment associated with construction activities that would occur intermittently during the construction period (beginning FY 2015). Typical noise levels from heavy equipment range from 69 to 84 dB at 100 feet from the source (FHWA 2006) (see Appendix C, *Noise*, Section A.1.2.2). Aviation-related activities at Portsmouth IAP dominate the local noise environment. Equipment used during the facility construction would contribute little to the general background noise levels around the airfield. Therefore, impacts from construction under Alternative #3 would be negligible.
4.3.1.3 Summary of Impacts

The number of annual airfield operations would increase by 2,700 (44 percent increase in 157 ARW operations, 7 percent increase in total airfield operations), and the acreage within the 65 dB DNL (and greater) noise contour would increase by 135 acres. Of this increase in acreage, 4 acres would be off airport-controlled property. There would be no potential for hearing loss off the airport and no increase in the percent of the population highly annoyed. Construction noise would be localized and temporary and would not add to the overall noise environment. Impacts from noise would be negligible.

4.3.2 Air Quality

The air quality analysis estimated the magnitude of emissions that would result from implementation of the proposed KC-46A construction and operational activities at the 157 ARW of the NH ANG at Pease ANGS, in Newington, New Hampshire. The estimation of proposed operational emissions is based on the net change in emissions between existing aircraft operations and projected KC-46A operations.

As discussed in Appendix A.2.3, air quality impacts from the beddown of the KC-46A aircraft at Pease ANGS were reviewed for significance relative to the PSD threshold for new major sources for attainment pollutants, and the General Conformity de minimis thresholds for nonattainment pollutants. Because the project region within Rockingham County is a maintenance area for O3, the de minimis threshold of 100 tpy for O3 precursors NOx and VOCs was used as an indicator of the potential significance of the emissions from the KC-46A conversion. For attainment pollutants, the PSD threshold of 250 tpy (100,000 tpy for GHGs) was used as an indicator of the potential significance of the emissions from Alternative #3.

4.3.2.1 Operational Emissions

Sources associated with operation of the proposed KC-46A beddown at Pease ANGS include (1) operations and engine maintenance/testing of aircraft; (2) onsite POVs; (3) offsite POV commutes; and (4) AGE. It was assumed that other sources, including nonroad mobile equipment, mobile fuel transfer, and stationary source emissions would be unchanged. Operational data used to calculate projected KC-46A aircraft emissions were obtained from the data used in the project noise analysis. Factors used to calculate combustion emissions for the KC-46A aircraft are based on emissions data developed by Pratt and Whitney for the PW4062 engine (International Civil Aviation Organization 2013). The operational times in mode for the KC-46A engine are based on those currently used for the KC-135 aircraft (AFCEC 2013). The analysis of proposed aircraft operations is limited to operations that occur within the lowest
3,000 feet of the atmosphere, as this is the typical depth of the atmospheric mixing layer where the release of aircraft emissions would affect ground-level pollutant concentrations.

Emissions from AGE were estimated based on the methodology recommended in the *Air Emissions Guide for Air Force Mobile Sources* (AFCEC 2013). Emissions from POVs were estimated based on the proposed personnel for the existing and proposed scenarios, using emission factors for vehicles from AFCEC 2013.

Table 4.3.2-1 summarizes the annual operational emissions that would result from KC-46A operations at Pease ANGS. Table 4.3.2-1 also presents the net emissions increase associated with the beddown of the KC-46A aircraft at Pease ANGS. As shown in Table 4.3.2-1, the net emissions increases are below the PSD/de minimis thresholds for all pollutants.

Table 4.3.2-1. Comparison of Baseline and Proposed Annual Operational Emissions, 157 ARW

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Voc</th>
<th>Co</th>
<th>NOₓ</th>
<th>SO₂</th>
<th>PM₁₀</th>
<th>PM₂.₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 Aircraft Operations</td>
<td>2.41</td>
<td>36.29</td>
<td>73.94</td>
<td>6.29</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>AGE</td>
<td>0.00</td>
<td>0.01</td>
<td>0.07</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.10</td>
<td>1.47</td>
<td>0.40</td>
<td>0.06</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>POVs</td>
<td>1.11</td>
<td>19.06</td>
<td>0.91</td>
<td>0.01</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>Total</td>
<td>3.62</td>
<td>56.84</td>
<td>75.32</td>
<td>6.36</td>
<td>0.37</td>
<td>0.35</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proposed Action</th>
<th>Voc</th>
<th>Co</th>
<th>NOₓ</th>
<th>SO₂</th>
<th>PM₁₀</th>
<th>PM₂.₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A Aircraft Operations</td>
<td>15.24</td>
<td>56.95</td>
<td>157.41</td>
<td>8.96</td>
<td>0.61</td>
<td>0.52</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.01</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.77</td>
<td>2.63</td>
<td>0.71</td>
<td>0.08</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>POVs</td>
<td>0.91</td>
<td>17.45</td>
<td>0.70</td>
<td>0.01</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>Total</td>
<td>16.93</td>
<td>77.05</td>
<td>158.92</td>
<td>9.06</td>
<td>0.66</td>
<td>0.55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Net Increase</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Voc</td>
<td>3.68</td>
<td>0.36</td>
<td>1.11</td>
<td>0.42</td>
<td>0.76</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding.
CO = carbon monoxide; CO₂e = carbon dioxide equivalent; NOₓ = oxides of nitrogen; PM₁₀ = particulate matter less than or equal to 10 microns in diameter; PM₂.₅ = particulate matter less than or equal to 2.5 microns in diameter; SO₂ = sulfur dioxide; VOC = volatile organic compound; AGE = aerospace ground equipment; POV = privately owned vehicle; PSD = Prevention of Significant Deterioration

In addition to criteria pollutant emissions, the beddown of the KC-46A aircraft at Pease ANGS would result in emissions of HAPs and GHGs. Operational activities would result in a net increase of HAPs that is below 1 ton per year.

Table 4.3.2-2 summarizes the annual operational GHG emissions that would result from KC-46A operations at Pease ANGS, along with the net increase in comparison with the baseline. As shown in Table 4.3.2-2, emissions are below the PSD thresholds for GHGs.
Table 4.3.2-2. Comparison of Baseline and Proposed Annual Operational GHG Emissions, 157 ARW

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Annual GHG Emissions, Metric Tons/Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO₂</td>
</tr>
<tr>
<td>KC-135 Aircraft Operations</td>
<td>17,303</td>
</tr>
<tr>
<td>AGE</td>
<td>1,571</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>172</td>
</tr>
<tr>
<td>POVs</td>
<td>597</td>
</tr>
<tr>
<td>Total</td>
<td>19,643</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proposed Action</th>
<th>CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>CO₂e</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A Aircraft Operations</td>
<td>24,391</td>
<td>0.64</td>
<td>0.72</td>
<td>24,629</td>
</tr>
<tr>
<td>AGE</td>
<td>2,262</td>
<td>0.06</td>
<td>0.07</td>
<td>2,286</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>233</td>
<td>0.01</td>
<td>0.01</td>
<td>235</td>
</tr>
<tr>
<td>POVs</td>
<td>612</td>
<td>0.00</td>
<td>0.00</td>
<td>612</td>
</tr>
<tr>
<td>Total</td>
<td>27,499</td>
<td>0.71</td>
<td>0.80</td>
<td>27,762</td>
</tr>
<tr>
<td>Net Increase</td>
<td>7,855</td>
<td>0.18</td>
<td>0.21</td>
<td>7,924</td>
</tr>
<tr>
<td>PSD Threshold</td>
<td>100,000</td>
<td>100,000</td>
<td>100,000</td>
<td>100,000</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding.
CO₂ = carbon dioxide; CH₄ = methane; N₂O = nitrous oxide; CO₂e = carbon dioxide equivalent; AGE = aerospace ground equipment; POV = privately owned vehicle; GMV = government motor vehicle

4.3.2.2 Construction Emissions

The KC-46A beddown at Pease ANGS would require construction and renovation of existing airfield facilities, including hangars, buildings, and aprons and ramps. Air quality impacts resulting from the proposed construction activities would occur from (1) combustion emissions from heavy equipment and vehicles; and (2) fugitive dust emissions due to operation of equipment on exposed soil. Table 4.3.2-3 presents a summary of the annual construction emissions for the beddown of the KC-46A aircraft at Pease ANGS. As shown in Table 4.3.2-3, emissions would be below the PSD/de minimis thresholds for all pollutants. For construction emissions, the project option with the greatest potential to emit, was used in the analysis (see Table 2.3-17).
Table 4.3.2-3. Annual Construction Emissions Under Alternative #3

<table>
<thead>
<tr>
<th>Construction Project</th>
<th>CO</th>
<th>NOx</th>
<th>VOC</th>
<th>SOx</th>
<th>PM10</th>
<th>PM2.5</th>
<th>Total CO₂ Metric tons/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project #1 (Option 2) - Renovation/Addition to Building 264</td>
<td>0.93</td>
<td>1.48</td>
<td>0.26</td>
<td>0.03</td>
<td>1.33</td>
<td>1.11</td>
<td>494.25</td>
</tr>
<tr>
<td>Project #2 - Addition to Building 166</td>
<td>0.35</td>
<td>0.55</td>
<td>0.10</td>
<td>0.01</td>
<td>0.44</td>
<td>0.41</td>
<td>185.26</td>
</tr>
<tr>
<td>Project #3 - Internal Renovations to Hangar 251</td>
<td>0.30</td>
<td>0.47</td>
<td>0.06</td>
<td>0.01</td>
<td>0.04</td>
<td>0.04</td>
<td>122.59</td>
</tr>
<tr>
<td>Project #4 (Option 1) - Addition/Alteration to Hangar 253</td>
<td>1.52</td>
<td>2.42</td>
<td>0.43</td>
<td>0.05</td>
<td>2.45</td>
<td>1.88</td>
<td>808.91</td>
</tr>
<tr>
<td>Project #5 - (Option 1) - Demolition/Addition/Alteration to Hangar 254</td>
<td>1.48</td>
<td>2.36</td>
<td>0.41</td>
<td>0.04</td>
<td>2.37</td>
<td>1.83</td>
<td>789.52</td>
</tr>
<tr>
<td>Project #6 - Alter Aircraft Taxiway</td>
<td>0.31</td>
<td>0.75</td>
<td>0.08</td>
<td>0.04</td>
<td>0.18</td>
<td>0.16</td>
<td>185.62</td>
</tr>
<tr>
<td>Project #7 - Demolition/Modify/Install Aprons and Hydrants</td>
<td>0.07</td>
<td>0.16</td>
<td>0.02</td>
<td>0.01</td>
<td>0.04</td>
<td>0.04</td>
<td>42.16</td>
</tr>
<tr>
<td>Project #8 - Repave Quad Apron</td>
<td>1.16</td>
<td>2.80</td>
<td>0.28</td>
<td>0.14</td>
<td>1.01</td>
<td>0.71</td>
<td>715.98</td>
</tr>
<tr>
<td>Total maximum emissions</td>
<td>6.12</td>
<td>10.99</td>
<td>1.64</td>
<td>0.33</td>
<td>7.86</td>
<td>6.18</td>
<td>3,344.29</td>
</tr>
<tr>
<td>PSD/de minimis Threshold</td>
<td>250</td>
<td>100</td>
<td>100</td>
<td>250</td>
<td>250</td>
<td>100,000</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding.
CO = carbon monoxide; NOx = oxides of nitrogen; VOC = volatile organic compound; SOx = oxides of sulfur; PM10 = particulate matter less than or equal to 10 microns in diameter; PM2.5 = particulate matter less than or equal to 2.5 microns in diameter; CO₂ = carbon dioxide; PSD = Prevention of Significant Deterioration

4.3.2.3 Summary of Impacts

The Pease ANGS installation is in a maintenance area for O₃, and is therefore subject to de minimis thresholds. While there are increases in operational criteria pollutant emissions, they are below the PSD/de minimis thresholds for all pollutants and are not significant. Operational GHG emissions are within thresholds in the PSD tailoring rule. Impacts from construction emissions and operational HAP emissions are negligible.

4.3.3 Safety

4.3.3.1 Ground Safety

Existing facilities at Pease ANGS for fire response and crash recovery meet KC-46A beddown requirements (Headquarters AMC and NGB 2013a).

Proposed renovation and infrastructure improvement projects related to this alternative would not penetrate any RPZs or impact aircraft takeoff or landing (Headquarters AMC and NGB 2013a). New construction and building renovation activity would not result in any greater safety risk or obstructions to navigation. Operations would fall within the same general types as those that have historically occurred at Portsmouth IAP. For example, the KC-46A would follow established local approach and departure patterns used. Therefore, flight activity and subsequent operations would not require changes to RPZs.
Under this alternative, no new facilities are proposed for Pease ANGS. Planned construction at the installation comprises renovation and additions to several hangars; construction and upgrades to the taxiway; and demolition and installation of new fuel hydrants and lines on the parking apron. None of the construction or demolition would be in conflict with the current QD arcs.

Providing new and renovated facilities for the 157 ARW that support operational requirements of the KC-46A, and are properly sited with adequate space and a modernized supporting infrastructure would generally enhance ground and flight safety during required operations, training, maintenance and support procedures, security functions, and other activities conducted by the 157 ARW.

Construction activities would not involve any unusual or extraordinary techniques. During construction and modifications, standard construction safety procedures would be employed, and strict adherence to all applicable standard industrial safety requirements and procedures, including AFI 13-213, *Airfield Driving* (2011), would further minimize the relatively low risk associated with these construction activities.

The proposed construction projects meet all criteria specified in the ANG Handbook 32-1084, *Facility Space Standards*. AT/FP requirements have also been addressed to the extent practicable in all projects. Projects would use AT/FP site design standards for siting of facilities, parking, walkways, and other features. Renovations would bring the facilities into compliance with UFC 4-022-01, *Security Engineering: Entry Control Facilities/Access Control Points* and UFC 4-010-01, *DoD Minimum Antiterrorism Standards for Buildings*, providing additional protection for the personnel based there.

4.3.3.2 Flight Safety

Although the KC-46A is a new aircraft, it is a military derivative of the commercial Boeing 767 aircraft. First flown commercially in 1982, more than 1,000 commercial Boeing 767 aircraft have been produced and it is a proven commercial airliner, freighter, and tanker already in service (Boeing 2012). Mishap statistics for the commercial Boeing 767 show 14 total aircraft losses (similar to a Class A military mishap definition) during its 31 year lifetime (ASN 2013).

Although no facilities are proposed that would affect navigable airspace, Pease ANGS would comply with 14 CFR Part 77, *Objects Affecting Navigable Airspace*, as appropriate, should they be selected to host the KC-46A.

To augment airborne training missions, pilots flying the KC-46A would use simulators extensively. Simulator training includes all facets of flight operations and comprehensive emergency procedures. The sophistication and fidelity of current simulators and related computer programs are commensurate with the advancements made in aircraft technology and
are extremely realistic. These factors should minimize risk associated with mishaps due to pilot error.

Under Alternative #3, there would be an increase of approximately 44 percent 157 ARW airfield operations (7 percent in total Portsmouth IAP operations) at Portsmouth IAP compared to existing conditions. This increase in take-offs, landings, proficiency training, and other flights would result in a commensurate increase in the safety risk to aircrews and personnel.

The proposed increase in airfield flight operations would be expected to increase the opportunity for aircraft mishaps, including BASH incidents; however, the expected rate of mishaps or BASH incidents would not be expected to change from current conditions. Both the KC-135 and the commercial Boeing 767 have very low mishap rates, and with a new airframe and technological improvements the KC-46A would be expected to have a similar safety record. In addition, current airfield safety procedures discussed previously would continue to be implemented and additional airfield flight operations would adhere to established safety procedures (157 ARW 2011b).

Given the low likelihood for an aircraft accident or BASH mishap to occur in the local airfield area and even lower likelihood for civilians to be impacted, impacts to safety in the vicinity of Portsmouth IAP as a result of Alternative #3 would be expected to be negligible.

The KC-46A will have the capability to jettison fuel for emergency situations. Military policy is to avoid fuel jettisons, unless safety of flight dictates an immediate jettison, and requires senior officer approval before fuel jettison, unless under emergency situations. Records of KC-135 fuel jettison events reveal that such circumstances are rare, occurring in slightly less than two sorties per thousand (Headquarters AMC 2013). Additionally, unlike the KC-135, the KC-46A will have the capability to land fully loaded with fuel so long as adequate runway length and braking capability are available (Headquarters AMC 2013), which could potentially lessen the need to jettison fuel in certain circumstances. Based on information provided by Boeing, landing the KC-46A above maximum landing weight is not prohibited; however, it does drive costly inspection requirements. To land above maximum landing weight routinely could reduce the fatigue life of the airplane (Headquarters AMC 2013).

4.3.3.3 Summary of Impacts

There would be a 44 percent increase in actual 157 ARW airfield operations (7 percent increase in total airfield operations) at Portsmouth IAP with a commensurate increase in mishap and BASH potential. Construction activities would involve no unusual or extraordinary techniques. During construction and modifications, standard construction safety procedures would be employed, and strict adherence to all applicable standard industrial safety requirements and

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS
Chapter 4 – Environmental Consequences
Pease ANGS
procedures would further minimize the relatively low risk associated with these construction activities. Impacts to safety would be expected to be negligible.

4.3.4 Soils and Water

4.3.4.1 Soils

Under Alternative #3, new construction would consist of eight separate projects resulting in up to 130,966 SF (3.0 acres) of new construction footprint and up to 23,617 SF (0.5 acre) of new impervious surface. There are two construction scenarios for the aircraft conversion under consideration; only one of these options for each project would be implemented. The total construction footprint analyzed represents the largest possible footprint of each of the options (Table 2.3-17). These proposed construction projects would meet all criteria specified in ANG Handbook 32-1084, Facility Space Standards.

Proposed construction under Alternative #3 would occur primarily on Urban land-Canton complex (3 to 15 percent slopes), with a small amount of the new construction footprint on Urban land and Uorthents. These three soils are either not rated or not limited for road or small commercial building development and may require onsite investigation and evaluation for most land use decisions to identify any potential limitations (NRCS 2013). Proposed construction would not impact prime farmlands; therefore the Farmland Protection Policy Act does not apply.

Under Alternative #3, there would be 130,966 SF (3.0 acres) of temporary soil disturbance as a result of the proposed construction. To minimize potential impacts to soil and water resources associated with erosion, runoff, and sedimentation during construction activity, standard construction practices, as described in the Portsmouth IAP SWPPP (Portsmouth IAP 2011) would be implemented during and following the construction period. Such practices could include the use of well-maintained silt fences or straw wattles, minimizing surficial areas disturbed, stabilization of cut/fill slopes, minimization of earth-moving activates during wet weather, and covering of soil stockpiles, as appropriate. A site-specific and detailed SWPPP that coordinates the timing of soil disturbing activities with the installation of soil erosion and runoff controls is an effective way of controlling erosion while soil is exposed and subject to construction activity. An NOI must be filed with the USEPA New England Region to obtain coverage under the NPDES General Permit for Discharges from Construction Activities prior to implementation of individual projects. Construction activities subject to this permit include clearing, grading, and disturbances to the ground such as stockpiling or excavation. Implementation of these measures, as necessary and appropriate, would ensure that impacts to earth resources as a result of implementation of Alternative #3 would be minimal.
As a result of implementation of Alternative #3, there would be approximately 23,617 SF (0.5 acre) of new impervious surface from the proposed construction (Figure 4.3.4-1). This could result in localized increases in stormwater runoff volume and intensity, in addition to increases in total suspended particulates to nearby surface waters. However, in accordance with UFC 3-210-10, LID (as amended, 2010) and EISA Section 438, any increase in surface water runoff as a result of the proposed construction would be attenuated through the use of temporary and/or permanent drainage management features. The integration of LID design concepts incorporates site design and stormwater management to maintain the site’s pre-development runoff rates and volumes to further minimize potential adverse impacts associated with increases in impervious surface area.

Increased runoff and peak discharge volumes as a result of increases to impervious surface can be managed by appropriately designed conveyance structures (such as roadways, channels, and culverts) in accordance with site-specific engineering standards that take into consideration the influence of surface water drainage within, adjacent to, and downstream of the project. In addition, implementing features that manage surface water runoff into the design of the project would avoid or minimize conflicts with city, county, state, or federal regulations and prevent adversely affecting adjacent properties and/or the project area itself. Such measures could include:

- water harvesting and natural open space,
- installation of retention/detention basins for water recharge or for release of runoff at predetermined times to minimize peak discharges,
- the use of porous materials, such as pavers or gravel, for driveway and walkway construction, and
- directing runoff toward permeable areas, such that discharge exiting each site post-construction would be equal to or less than existing conditions.

Implementation of these measures, as necessary and appropriate, would ensure that impacts to surface water as a result of implementation of Alternative #3 would be minimal.
Figure 4.3.4-1. Surface Water Features and Proposed Construction in the Vicinity of Pease ANGS
4.3.4.3 Groundwater

As a result of Alternative #3, the increase in the amount of impervious surface (0.5 acre) would also result in a decrease in groundwater recharge. However, as noted above, any increase in surface water runoff as a result of the proposed construction would be attenuated through the use of permit-related temporary and/or permanent drainage management features such as detention/retention basins and standard construction practices, as described above. The integration of water harvesting and natural open space into project design would further minimize potential adverse impacts due to increased impervious surface. The use of these features would also increase groundwater recharge through direct percolation offsetting the loss of pervious surface due to future construction. Additionally, the impervious surface area resulting from the proposed activities would not be one continuous, hardened surface. Rather, the impervious surfaces would occupy several smaller areas, which would further minimize localized impacts to groundwater recharge.

4.3.4.4 Floodplains

Proposed construction activities at the installation would not occur within the 100-year floodplain zone. As such, there would be no impacts to floodplains under this alternative.

4.3.4.5 Summary of Impacts

There would be approximately 3.0 acres of temporary soil disturbance and 0.5 acre of new impervious surface as a result of the proposed construction. To minimize potential impacts associated with erosion, runoff, and sedimentation, standard construction practices would be implemented. Proposed construction would not impact prime farmlands; therefore the Farmland Protection Policy Act does not apply to this alternative. Therefore, impacts to soil and water resources would be negligible.

4.3.5 Biological Resources

4.3.5.1 Vegetation

Construction of new facilities associated with Alternative #3 at the 157 ARW installation would occur primarily on currently paved areas or actively managed (i.e., mowed and landscaped) areas, and would result in an increase of 23,617 SF (0.5 acre) of impervious surfaces. No native vegetation would be impacted. Impacts to the vegetation at the installation would be negligible due to the lack of sensitive vegetation in the project area.
4.3.5.2 Wildlife

Under Alternative #3, impacts to wildlife due to construction would be minor. Noise associated with construction may cause wildlife to temporarily avoid the area, including those that are protected under the MBTA. Noise associated with construction activities, as well as an increase in general industrial activity and human presence, could evoke reactions in birds. Disturbed nests in the immediate vicinity of construction activity would be susceptible to abandonment and depredation. However, bird and wildlife populations in the vicinity of the airport where project components would occur are accustomed to elevated noise associated with aircraft and general military industrial use. As a result, indirect impacts from construction noise are expected to be minimal because the ambient noise levels within the vicinity are high under existing conditions and would be unlikely to substantially increase by the relatively minor and temporary nature of the proposed construction and modifications.

Operational noise levels under Alternative #3 would be expected to increase slightly from baseline with the conversion to the KC-46A aircraft. Under Alternative #3, the flying profiles would not change, and the scheduled flying program would not change. As shown in Appendix A, Table A.1.2-2 provides representative SELs, indicating that the SEL for individual landings by the KC-46A would be 5 dB less while take-offs would be 1 dB more than the KC-135. Under Alternative #3, only the number of aircraft operations would change; there would be no change in where or when individual aircraft operate. Flights would be scheduled for similar time periods as currently flown during the morning and afternoons, with approximately 4 percent of flights occurring during environmental night (after 10 p.m. and before 7 a.m.). In addition, an additional 4 acres of land off the airport property would be exposed to DNL between 65 dB and 70 dB. As a result, since ambient noise levels within the vicinity are relatively high under existing conditions, the Proposed Action under Alternative #3 would be unlikely to substantially increase enough to preclude wildlife from utilizing the area as they currently do.

Bird/wildlife aircraft strikes are also an inevitable hazard associated with military aircraft training. Under Alternative #3, the KC-46A would operate in the same airfield environment as the current aircraft. Annual operations for the KC-46A at Portsmouth IAP would increase by approximately 44 percent over the KC-135 baseline operations (7 percent increase in total airfield operations). An increase in airfield operations may result in a slight increased opportunity for bird/wildlife aircraft strikes to occur, including those with migratory birds. Adherence to the existing BASH program would minimize the risk of bird/wildlife aircraft strikes (see Section 4.3.3, Safety). The 157 ARW has developed procedures designed to minimize the occurrence of bird/wildlife aircraft strikes, and has documented detailed procedures to monitor and react to heightened risk of bird/wildlife aircraft strikes. When risk increases, limits are placed on low-altitude flight and some types of training (e.g., multiple approaches,
closed pattern work) in the airport environment. Special briefings are provided to pilots whenever the potential exists for increased bird/wildlife aircraft strikes within the airspace.

4.3.5.3 Special Status Species

No federally threatened and endangered species and eight state listed species are currently known to occur on Portsmouth IAP. The USFWS New England Field Office concurred in a letter written on March 25, 2014 that no federally listed or proposed, threatened or endangered species or critical habitat are known to occur in the project area. There is only a low potential for additional species to occur within the vicinity due to the lack of habitat. Under Alternative #3, impacts to special status species would be similar to that described under wildlife. Impacts due to construction and proposed operations would be minor. Operational noise levels under Alternative #3 would be expected to increase slightly from baseline with the conversion to the KC-46A aircraft. Under Alternative #3, the flying profiles would not change, and the scheduled flying program would not change. As shown in Appendix A, Table A.1.2-2 provides representative SELs, indicating that the SEL for individual landings by the KC-46A would be 5 dB less while take-offs would be 1 dB more than the KC-135. Under Alternative #3, only the number of aircraft operations would change; there would be no change in where or when individual aircraft operate. Flights would be scheduled for similar time periods as currently flown during the morning and afternoons, with approximately 4 percent of flights occurring during environmental night (after 10 p.m. and before 7 a.m.). In addition, an additional 4 acres of land off the airport property would be exposed to DNL between 65 dB and 70 dB. As a result, since ambient noise levels within the vicinity are relatively high under existing conditions, the Proposed Action under Alternative #3 would be unlikely to substantially increase enough to preclude wildlife from utilizing the area as they currently do.

Therefore, there would be no effect to federally listed species and impacts to state listed species would be minimal under Alternative #3.

4.3.5.4 Wetlands

There are no wetland areas that occur within the vicinity of the proposed project footprints. Therefore, no impacts to wetlands would occur as a result of Alternative #3.

4.3.5.5 Summary of Impacts

Construction of new facilities associated with this alternative would occur primarily on currently paved areas or actively managed areas. Therefore, impacts to vegetation would be negligible. There would be no impacts to wetlands under this alternative. Impacts to wildlife and sensitive species from operational noise would be expected to be minor due to the slight increase in noise and the temporary nature of construction. A 44 percent increase in 157 ARW (7 percent increase
in total) airfield operations may result in a slight increased opportunity for bird/wildlife aircraft strikes to occur, including those with migratory birds. Impacts to state listed species would be minor. No federally listed species or critical habitat is known to occur on Portsmouth IAP, therefore there would be no impacts to federally listed species.

4.3.6 **Cultural Resources**

Potential direct impacts to cultural resources examined in this analysis include effects to archaeological sites due to ground disturbing activities during construction or modification to buildings. Indirect impacts from an increase in personnel from 1,382 to 1,553 would be negligible as personnel would primarily be confined to the developed areas on the installation, which lack cultural resources.

4.3.6.1 **Archaeological Resources**

The entire undeveloped 157 ARW installation has been intensively surveyed for archaeological resources and it has been determined that no NRHP-eligible archaeological resources are present on the installation. The New Hampshire SHPO has concurred with this determination (157 ARW 2009, Muzzey 2009). In the unlikely event that archaeological or human remains are identified during construction, all activities in the area of the discovery would cease and the Environmental Manager would contact a qualified archaeologist to evaluate the discovery. Under these conditions, there would be no adverse impact to archaeological resources with implementation of Alternative #3.

4.3.6.2 **Architectural Resources**

At the 157 ARW installation, six buildings (Buildings 156, 166, 251, 253, 254, and 264) are proposed for additions, interior renovations, or demolition. Buildings 251, 253, and 254 have been inventoried, evaluated, and determined not eligible to the NRHP with concurrence from the New Hampshire SHPO (see Muzzey 2009 and St. Louis 2009 in Appendix B4). Buildings 156, 166, and 264 were all recently constructed and so they are less than 50 years old, are not Cold War-era resources, and would not be eligible under Criteria Consideration G. As such, Buildings 156, 166, and 264 are not eligible to the NRHP. SHPO consultation for this EIS has provided concurrence that no historic resources are present within the proposed project area (see Appendix B3). Therefore, there would be no impact to architectural resources as a result of implementation of Alternative #3.

4.3.6.3 **Traditional Resources**

The 157 ARW installation contains no known traditional resources. Given the extensive development on the installation, it is unlikely that there are traditional resources located at the
157 ARW. Government-to-government consultation for this action has been conducted with this Tribe in recognition of their status as a sovereign nation. This consultation also provides information regarding tribal concerns per Section 106 of the NRHP and information on traditional resources that may be present on or near the installation. The Penobscot Indian Nation has responded and indicated that they have no issues with the Proposed Action. The NGB and the USAF values its relationship with tribes and will continue to seek opportunities to consult on other planning efforts or matters of known/potential interest to tribes.

4.3.6.4 Summary of Impacts

Construction activities associated with this alternative would be limited to the developed areas of the installation, primarily in the areas of the aircraft hangars and airfield pavements, where no archaeological resources are known. None of the buildings that would be impacted under the Proposed Action are eligible to the NRHP. The New Hampshire SHPO has concurred with the determination that no historic properties would be affected (Muzzey 2013). No traditional resources are known to occur at the installation. Therefore, no impacts to cultural resources are anticipated at the 157 ARW installation under Alternative #3.

4.3.7 Land Use

Under this alternative, the number of operations at Pease ANGS would increase, resulting in a slight increase in average noise levels as measured as discussed in Section 3.3.1, Noise. An additional 4 acres of land off the airport property would be exposed to DNL between 65 dB and 70 dB. The majority of this area is zoned for Open Space/Conservation, which under FAA Regulation 14 CFR Part 150, effective January 18, 1985, is considered a compatible land use up to within this range of noise exposure. The primary source of impacts to land use resulting from Alternative #3 would be from noise. As shown in Table 4.3.7-1 and Figure 4.3.7-1, new areas outside of the airport boundaries would be exposed to DNL of 65 dB to 70 dB. By zoning areas, Recreation areas affected by DNL of 65 dB to 70 dB would remain the same; Open Space areas would increase by approximately 3.6 acres; and non-designated areas would increase by less than 1 acre. However, all of these land uses are considered compatible with this range of DNL under FICUN. No houses, churches, schools or other sensitive noise receptors are located within the 65 dB DNL off-airport noise contour areas. Therefore, Alternative #3 is compatible with current land use and zoning designations and would result in negligible impacts. A more detailed discussion of aircraft operations and noise under Alternative #3 can be found in Section 4.3.1, Noise.
Figure 4.3.7-1. DNL Noise Contours and Land Use Under Alternative #3 at Portsmouth IAP

Table 4.3.7-1. Change in Acres Affected by Noise Levels Above 65 dB DNL Outside the Portsmouth IAP

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Baseline Total (acres)</th>
<th>Proposed Total (acres)</th>
<th>Change Total (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recreation</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Open Space</td>
<td>0</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>Non-designated</td>
<td>0</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Total Area</td>
<td>0</td>
<td>3.9</td>
<td>3.9</td>
</tr>
</tbody>
</table>

4.3.7.1 Summary of Impacts

The number of total annual airfield operations would increase by 2,700 (7 percent), and the acreage within the 65 dB DNL (and greater) noise contour would increase by 135 acres. Of this increase in acreage, 4 acres would be off airport-controlled property. Current land use and zoning designations would not change due to the basing of the KC-46A. This alternative would result in negligible impacts due to an increase in off-airport areas exposed to noise levels above 65 dB DNL. Airport Hazard Areas would not be affected.

4.3.8 Infrastructure and Transportation

4.3.8.1 Potable Water

Water consumption would be expected to increase slightly under Alternative #3 as a result of the increase in personnel; however, an increase in 128 personnel on the installation would not be expected to impact regional water supply. Additionally, the demand for water (e.g., if used to control dust) could also increase during demolition and construction phases. However, this increase would be temporary and intermittent and would not be expected to impact regional water supply.

4.3.8.2 Wastewater

Wastewater generation would be expected to increase slightly as a result of the increase in 128 personnel on the installation. However, there have been no deficiencies identified with the existing system, and it is expected that the existing sanitary sewer system is generally adequate to serve the facilities proposed under this alternative.

4.3.8.3 Stormwater

Under Alternative #3, there would be up to 130,966 SF (3.0 acres) of temporary soil disturbance as a result of proposed construction. The proposed construction activities could temporarily impact the quality of stormwater runoff (see Section 4.3.4, Soils and Water); however, through implementation of appropriate standard construction practices, (as described previously),
preventative maintenance, and periodic inspections and sampling to detect risk to stormwater, especially during active construction activity, no impacts would be expected to the existing stormwater drainage system as a result of the proposed construction.

In addition, there would be an increase in up to 23,617 SF (0.5 acre) of new impervious surface. The addition of new impervious surfaces would potentially increase stormwater runoff volume and peak discharge rates; however, as discussed in further detail in Section 4.3.4, *Soils and Water*, stormwater runoff increases would be managed such that discharge exiting each site post-construction would be equal to or less than existing conditions in accordance with UFC 3-210-10 and EISA Section 438. Implementation of these measures would ensure that impacts to the stormwater drainage system as a result of implementation of Alternative #3 would be minimal.

4.3.8.4 Electrical and Natural Gas Systems

Demand for electricity and natural gas would be expected to increase slightly as a result of the increase in personnel, and the building space and facilities to be constructed would require additional electricity. However, any new facilities and additions associated with this alternative would be implemented with more energy efficient design standards and utility systems than are currently in place. In addition, construction projects would incorporate LEED and sustainable development concepts to achieve optimum resource efficiency, sustainability, and energy conservation. Therefore, average energy consumption would be expected to remain consistent or decrease compared to energy consumption associated with existing facilities.

Construction activity associated with Alternative #3 could result in some temporary interruption of utility services during construction. These impacts would be temporary, occurring briefly during active construction periods. In addition, the demand for energy (primarily electricity) could increase slightly during demolition and construction phases. The energy supply at the installation and in the region is adequate and would not be affected by this temporary increase in demand.

4.3.8.5 Solid Waste Management

The building space and facilities to be constructed would generate construction and demolition debris requiring landfill disposal. Construction activities would result in approximately 130,966 SF of additions and alterations to existing facilities and 23,617 SF of new building construction. Using a multiplier provided by the USEPA to determine solid waste generation, it was estimated that proposed renovations at Pease ANGS would generate 1,544,089 pounds (772 tons) of renovation debris requiring landfill disposal and proposed new construction at Pease ANGS...
would generate 102,498 pounds (51 tons) of construction debris (USEPA 2009). Therefore, the total amount of construction and demolition debris generated at Pease ANGS would be 823 tons.

Solid waste generated as a result of the proposed construction could result in impacts to solid waste management facilities in the area. The Turnkey Recycling and Environmental Enterprise Landfill has a remaining life expectancy of 7 years and a permitted throughput of 900,000 tons per year (New Hampshire Department of Environmental Services 2009). The 823 tons of proposed construction debris generated at Pease ANGS would represent less than 1 percent of the yearly capacity of the landfill. Impacts to local landfills would not be expected to exceed the permitted throughput or contribute significantly to the remaining capacity.

Off-installation contractors completing construction and demolition projects at the 157 ARW installation would be responsible for disposing of waste generated from these activities. Contractors would be required to comply with federal, state, and local regulations for the collection and disposal of municipal solid waste from the installation. Much of this material can be recycled or reused, or otherwise diverted from landfills. EO 13514, Federal Leadership in Environmental, Energy, and Economic Performance, sets a target diversion rate of 50 percent for recycling and waste diversion for DoD facilities by 2015, including construction and demolition waste; compliance with EO 13514 would further minimize the increase in solid waste generation as a result of the proposed construction. All non-recyclable construction and demolition waste would be collected in a dumpster until removal. Construction and demolition waste contaminated with hazardous waste, ACM, LBP, or other undesirable components would be managed in accordance with AFI 32-7042, Waste Management (2009).

4.3.8.6 Transportation

Construction equipment would be driven to proposed construction areas and would be kept on-site for the duration of the respective activity. Construction workers would drive daily in their personal vehicles to and from the construction site. In general, construction traffic would result in increases in the use of on-installation roadways during construction activities; however, increases would be temporary and intermittent, occurring only during active construction periods.

The number of authorized personnel on the installation would increase by 128 under Alternative #3 (see Table 2.3-18). The increase in personnel would create a potential 128 additional one-way vehicle trips to and from the installation during morning and evening peak periods for these additional personnel. Assuming that each person makes two trips per day, the implementation of Alternative #3 would add an additional 256 trips onto the existing roadway network after the construction phase is complete. However, regional roads used to access the installation as well
as those located on the installation have sufficient capacity to manage this increase in traffic without substantial impacts to circulation and level of service. Therefore, impacts to transportation infrastructure would not be significant under Alternative #3.

4.3.8.7 Summary of Impacts

Impacts from this alternative would not be expected since there have been no deficiencies identified with the existing systems, and it is expected that the existing infrastructure is generally adequate to serve the facilities and increased personnel proposed under this alternative. Impacts to infrastructure resulting from construction would be negligible since any interruption of utility services or increased demand on infrastructure would be temporary and infrequent. Impacts to infrastructure would be negligible.

4.3.9 Hazardous Materials and Waste

4.3.9.1 Hazardous Materials

A HMMP has been developed for the KC-46A program. Training activities and other functions would be expected to remain similar between the KC-46A and existing KC-135 aircraft. The types of hazardous materials needed for maintenance and operation of the KC-46A would be expected to remain similar to those currently used for maintenance and operation of the KC-135 fleet. However, unlike the KC-135, the KC-46A aircraft will be free of ODSs. ODSs were typically used as part of the fire suppression systems on aircraft; ODS use and/or storage would no longer be required under Alternative #3.

The KC-46A aircraft has been designed with a focus on reduction of hazardous materials such that hazardous materials currently required for maintenance, operations, and materials on or associated with the new aircraft would be less than or equal to the existing aircraft (Boeing 2011). In addition, it is anticipated that the amount of hazardous waste generated for one KC-46A aircraft for maintenance activities would be slightly less than that generated for one KC-135 aircraft since the KC-46A has two engines as opposed to the four engines for the KC-135. Furthermore, the KC-46A is a newer aircraft and is expected to need less maintenance than the older KC-135 aircraft.

Under Alternative #3, the total number of flying hours for the 157 ARW would increase from 6,219 to 8,040 (a 29 percent increase); therefore, the throughput of petroleum substances (e.g., fuels, oils) used during operations would be expected to increase commensurately from what is currently used to maintain the KC-135 fleet (see Appendix A, Section A.9, for more details). Additionally, it is expected that short-term increases would be realized in terms of the quantity of fuel used during construction activities, because various fuels (e.g., diesel, gasoline) would be
required to run earth moving equipment and power tools and to provide electricity and lighting as conditions warrant. Procedures for hazardous material management established for the 157 ARW installation would continue to be followed in future operations associated with Alternative #3 and as required during all construction and renovation activities.

Toxic Substances

Under Alternative #3, additions and renovations to Buildings 156, 264, 166 and Hangars 251, 253, and 254 are proposed. According to the 1997 asbestos report, Hangars 251 and 254 were found to contain ACM in the insulation, floor tiles, and mastic. A LBP survey has not been conducted at the 157 ARW installation. However, Hangars 251, 253, and 254 were built prior to 1978 and may contain LBP. Any structures proposed for demolition, addition, or retrofit would be inspected for ACM and LBP according to established ANG procedures prior to any renovation or demolition activities. All ACM would be properly removed and disposed of prior to or during demolition in accordance with 40 CFR 61.40 through 157. All LBP would be managed and disposed of in accordance with TSCA, OSHA regulations, New Hampshire requirements (regarding site work practices for buildings with LBP), and established ANG procedures. Materials, especially discarded oil products, would be screened for PCB contamination prior to disposal.

4.3.9.2 Hazardous Waste Management

The type of hazardous waste streams generated by KC-46A operations would be expected to remain similar to those being generated by the existing KC-135 aircraft, with the exception of ODSs. Additionally, the two aircraft require the same types of hazardous materials for their maintenance and operations (e.g., fuels, oils). Under Alternative #3, the total number of flying hours for the 157 ARW would increase approximately 29 percent; therefore, hazardous waste streams would be expected to increase commensurately (see Appendix A, Section A.9, for more details). Hazardous waste generation (e.g., used oil, used filters, oily rags, etc.) would continue to be managed in accordance with the installation’s Hazardous Waste Management Plan and all applicable federal, state, and local regulations. Additionally, no changes to the installation’s small quantity generator status would be expected to occur due to the increase in hazardous waste generation from aircraft operations.

4.3.9.3 Environmental Restoration Program

In accordance with AFI 32-7020, The Environmental Restoration Program, construction, modifications and/or additions to existing buildings can occur on or in proximity to existing ERP sites. Accordingly, the appropriate organizations (e.g., installation planners, ERP managers, design engineers) must consider a compatible land use based on current site conditions and the
selected or projected remedial action alternatives. Construction should be sited and designed to minimize life-cycle costs to include those associated with impacts from existing contaminated sites. If the potential for uncharacterized ERP sites exist, the installation is responsible for identifying existing contamination at the proposed construction sites to avoid unknowingly locating construction projects in areas with contamination. The installation is responsible for performing necessary environmental baseline surveys, accomplishing environmental impact analysis process requirements, and for otherwise informing itself about existing site conditions and their associated cost impacts in preparation for a construction project. When warranted by the site history, environmental restoration funds may be used to accomplish RCRA facility assessments, or preliminary assessments and site inspections undertaken in accordance with the CERCLA process, or similar site investigations in accordance with applicable state laws for suspected releases. To the extent that a construction project generates actions to address contamination, or a need to change the timing of ERP-generated actions to address contamination, the costs of such actions are not Environmental Restoration Account-eligible and shall be funded as part of the construction project. This includes the handling, mitigation, and disposal or other disposition of contamination discovered before or during the construction activity.

The removal and disposal of contamination unexpectedly encountered within the construction project footprint during the execution of a construction project will be undertaken as part of the construction project using construction project funds which may include other MILCON funds reprogrammed to a MILCON construction project. Construction contractor costs (such as direct delay costs and unabsorbed or extended overhead) incidental to discovery and removal of the contamination will be construction project funded to the extent that the government is responsible and liable for such costs.

None of the ERP sites overlap the proposed construction projects under Alternative #3 (Figure 4.3.9-1). If contaminated media (e.g., soil, groundwater) are encountered during the course of site preparation (e.g., clearing, grading) or site development (e.g., excavation for installation of building footers) for proposed construction activities, work would cease until 157 ARW Program Managers establish an appropriate course of action for the construction project to ensure that federal and state agency notification requirements are met, and to arrange for agency consultation as necessary if existing ERP sites are affected. Also, prior to construction activities, the construction contractors would be notified of the nature and extent of known contamination so that they can inform their employees in advance of on-site activities and take appropriate precautions to protect health and safety, and to prevent the spread of contamination. The construction contractors would be responsible for ensuring their workers follow appropriate health and safety requirements.
Figure 4.3.9-1. ERP Sites and Proposed Construction in the Vicinity of Pease ANGS
4.3.9.4 Summary of Impacts

There would not be an increased risk of hazardous waste releases or exposure from this alternative. Any LBP or ACM that may be found in buildings that are scheduled for construction activities would be managed per applicable USAF regulations. There would be no expected impact from ERP sites as there are no sites that overlap with areas proposed for ground disturbance. Impacts relative to hazardous materials and wastes would be negligible.

4.3.10 Socioeconomics

Under Alternative #3, construction activities would be contained entirely within the boundaries of Portsmouth IAP. Economic activity associated with proposed construction activities at the 157 ARW installation, such as employment and materials purchasing, would provide short-term economic benefits to the local economy. However, short-term beneficial impacts resulting from construction payrolls and materials purchased would be negligible on a regional scale.

The proposed aircraft beddown and related activities under this alternative would result in a change in staffing requirements for the 157 ARW. Currently, the 157 ARW is authorized 1,382 personnel. Under Alternative #3, the KC-46A mission would add an additional 171 military positions (increase in 115 full-time positions and 56 traditional Guard positions) (see Table 2.3-18). Combined with their approximately 233 family members, this would represent less than 0.08 percent of Rockingham County. Of the 233 family members, approximately 92 would be anticipated to be of school age. The students entering the local schools would be expected to be enrolled in various grades and live in different areas within Rockingham County. It is anticipated that there is enough capacity within the schools in this county to absorb this minimal increase in school age children.

An increase in 171 military personnel positions would amount to an increase of approximately 12 percent to the existing 157 ARW personnel. Total payroll associated with the 115 full-time personnel would amount to a total estimated annual salary increase of approximately $9.5 million.

All 157 ARW personnel live off-installation as there is no on-installation housing. A conservative scenario would result in 171 homes purchased at the same time as personnel relocate to the area. This would represent less than 0.13 percent of the total housing units in Rockingham County. However, not all the military personnel who would relocate would own homes.
4.3.10.1 Summary of Impacts

Impacts to socioeconomics resulting from construction would be beneficial and negligible resulting from construction payrolls and materials purchased. In addition, impacts from proposed operations would be beneficial and minor due to the proposed increase in personnel.

4.3.11 Environmental Justice and the Protection of Children

4.3.11.1 Minority and Low-Income Populations

Under Alternative #3, there would be no residential populations, including no minority or low-income populations, located within the vicinity of Portsmouth IAP exposed to DNL greater than 65 dB. Therefore, there would be no disproportionate impacts to minority or low-income populations in the vicinity of Portsmouth IAP.

4.3.11.2 Protection of Children

There are no facilities on the installation where children may be encountered on a regular basis. Currently there is no off-installation Kindergarten through Grade 12 schools that are exposed to DNL of 65 dB or above. Under Alternative #3 there would be no new Kindergarten through Grade 12 schools exposed to DNL of 65 dB or above. Therefore, under Alternative #3 there would be no special health or safety risks to children.

4.3.11.3 Summary of Impacts

Although the acreage within the 65 dB DNL noise contours would increase slightly under this alternative, there are no residential areas within the noise contours and no additional schools would be located within the vicinity of Portsmouth IAP exposed to DNL of 65 dB or above; thus, there would be no disproportionate impacts to minority or low-income populations and no special health or safety risks to children.
4.4 **ALTERNATIVE #4 -- PITTSBURGH AIR NATIONAL GUARD STATION**

4.4.1 **Noise**

In this section, noise associated with flying operations and construction activities related to Alternative #4 are considered and compared with current conditions associated with the most current approved and published baseline noise study to assess potential impacts. Details of the noise modeling methodologies used for this section can be found in Appendix A, Section A.1.2.

Actual 2012 KC-135 airfield operations were identified in Table 2.3-19. This data was used in determining the proposed KC-46A airfield operations based on most current home-station sorties and airfield operations to provide a more accurate determination of the number of airfield operations for the Proposed Action. Under this analysis, the proposed airfield operations are compared to the most current approved and published 2006 baseline noise study for Pittsburgh IAP.

The DNL noise contours for the KC-46A under Alternative #4 were generated using INM. Based KC-135 operations were removed and replaced with KC-46A operations using the B-767-300 and the standard flight profile data provided with INM as substitute data and applying the data to the current based KC-135 flight tracks and operational procedures (INM does not have a standard profile or noise curve data for the KC-46A). Using the standard flight profile data provided for this substitute aircraft in INM provides an accurate analysis of noise contour comparisons that would be expected with the new KC-46A. Flight profiles, flight tracks, and operational procedures currently being used by the KC-135 were used in this INM program.

4.4.1.1 **Aircraft Noise**

Under Alternative #4, 12 KC-46As would be based at Pittsburgh ANGS, replacing the current 16 KC-135 aircraft. There would be no change in the number or type of other aircraft using the airfield and the KC-46A aircrews would use the same flying procedures (e.g., ground tracks, altitude profiles) currently used by KC-135 aircrews. KC-46A aircraft flight profiles would continue to fly the same standard flight profiles for departures and arrivals and closed pattern airfield training. KC-46A aircrews would use the same flying procedures (e.g., ground tracks, altitude profiles) currently used by KC-135 aircrews. Aircrews associated with the KC-46A would continue to practice closed patterns, including tactical procedures in which the aircraft climbs or descends in the immediate vicinity of the airfield. Tactical training prepares aircrews for operations in forward operating locations in which flying at low-altitudes over land not controlled by friendly forces exposes the aircraft to ground-based threats. This procedure is currently being flown with the KC-135; however most tactical procedures would be accomplished in the simulator and at the other locations away from Pittsburgh IAP.
Under Alternative #4, the 171 ARW aircraft would fly a total of 8,040 hours resulting in 2,010 annual sorties of which it is expected that up to 1,186 sorties would be flown at Pittsburgh ANGS. Baseline conditions for the KC-135 are represented here as the same number of the Pittsburgh ANGS airfield operations published in the Pittsburgh IAP FAR Part 150 Study (ACAA 2006). Based on 1,186 annual home-station sorties with an average of 7.78 operations per sortie, there would be 9,226 annual home-station operations, or a reduction of 3,834 airfield operations annually at Pittsburgh IAP. This would decrease the average daily airfield operations from 35.8 to 25.3 as shown in Table 4.4.1-1. The 171 ARW KC-46A operations would be approximately 3 percent of all aircraft operations at the airfield under the current approved FAR Part 150 Noise Compatibility Update.

Table 4.4.1-1. Changes to Pittsburgh IAP Airfield Operations with Proposed KC-46A Based on FAR Part 150 Baseline

<table>
<thead>
<tr>
<th>Unit</th>
<th>Total Based KC-135 (Average Daily Airfield Operations)</th>
<th>Total Based KC-46A (Average Daily Airfield Operations)</th>
<th>Change in Airfield Operations for Proposed KC-46A (% Change)</th>
</tr>
</thead>
<tbody>
<tr>
<td>171 ARW</td>
<td>13,060(^1) (35.8)</td>
<td>9,226 (25.3)</td>
<td>-3,834 (-29.3%)</td>
</tr>
</tbody>
</table>

Note: 1. Operations based on currently approved FAR Part 150.

All operations would remain as described under existing conditions; however, the KC-135 would be replaced by the KC-46A. There would be no changes expected to departure/arrival patterns and tracks, and use of runways. Current noise abatement procedures would continue to be followed as documented in Section 3.4.1.4.

Table 4.4.1-2 provides details on the total airfield operations for Pittsburgh IAP under Alternative #4 using the most current FAR Part 150 as the baseline operations. There would be a 1.2 percent decrease in the overall airfield operations from the current baseline operations. There would be approximately 7 percent of the KC-46A airfield operations flown during environmental night. The total number of operations flown by all other aircraft at Pittsburgh IAP would not change from previously identified airfield activities. There would be no change to any other aircraft types or aircraft flight tracks and profiles from the baseline condition.

Table 4.4.1-2. Pittsburgh ANGS Aircraft Operations with Proposed KC-46A

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>DEPARTURES</th>
<th>ARRIVALS</th>
<th>TOTAL</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night(^2)</td>
<td>Day</td>
<td>Night(^2)</td>
</tr>
<tr>
<td>KC-46A</td>
<td>4,287</td>
<td>326</td>
<td>4,275</td>
<td>338</td>
</tr>
<tr>
<td>Other Aircraft(^3,4)</td>
<td>140,683</td>
<td>13,505</td>
<td>140,683</td>
<td>13,505</td>
</tr>
<tr>
<td>Total</td>
<td>144,970</td>
<td>13,831</td>
<td>144,958</td>
<td>13,843</td>
</tr>
</tbody>
</table>

Notes:
1. Includes Closed Patterns (which count as two airfield operations).
2. Night –Between 10 p.m. and 7 a.m. for environmental night.
3. Other Based aircraft and Transient Aircraft (multiple type aircraft) including: Boeing 747, 717, and the Airbus 321.
4. Operations based on currently approved FAR Part 150.
Figure 4.4.1-1 depicts the noise exposure area from the aircraft operations after the conversion from the current 16 KC-135 aircraft to 12 KC-46A aircraft, and Figure 4.4.1-2 compares baseline noise contours with Alternative #4 contours. The aircraft operations modeled include all transient aircraft and general and commercial aircraft operations depicted in the current approved 2006 FAR Part 150 Noise Compatibility Update. Table 4.4.1-3 shows changes to the acreage of land within each noise contour under Alternative #4.

Table 4.4.1-3. Land Areas within DNL Contours at Pittsburgh IAP Affected by DNL Greater than 65 dB under Baseline and Alternative #4

<table>
<thead>
<tr>
<th>Noise Contour (dB DNL)</th>
<th>Baseline (KC-135)</th>
<th>Alternative #4 (KC-46A)</th>
<th>Change Total (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On Airport</td>
<td>Off Airport</td>
<td>Total</td>
</tr>
<tr>
<td>65-70</td>
<td>1,331.5</td>
<td>128.6</td>
<td>1,460.1</td>
</tr>
<tr>
<td>70-75</td>
<td>850.7</td>
<td>0</td>
<td>850.7</td>
</tr>
<tr>
<td>75-80</td>
<td>468.6</td>
<td>0</td>
<td>468.6</td>
</tr>
<tr>
<td>80-85</td>
<td>151.5</td>
<td>0</td>
<td>151.5</td>
</tr>
<tr>
<td>>85</td>
<td>207.5</td>
<td>0</td>
<td>207.5</td>
</tr>
<tr>
<td>Total</td>
<td>3,009.8</td>
<td>128.6</td>
<td>3,138.4</td>
</tr>
</tbody>
</table>

Notes: DNL = Day Night Average Sound Level; dB = decibel

Under Alternative #4, the DNL noise contours would decrease slightly in the areas of arrivals and departures from the DNL baseline contours because of fewer KC-46A airfield operations than depicted in the approved FAR Part 150 and the KC-46A is generally a quieter aircraft (5 dB quieter on landing and 1 dB louder on take-off) than the KC-135.

Overall, the number of acres contained within the 65 dB DNL and greater exposure area would decrease by approximately 79 acres, or approximately 2.5 percent, and would remain primarily on airport property with approximately 106 of the acres off airport property. Information regarding the number of people residing in the area can be found in Section 4.4.11, *Environmental Justice and the Protection of Children* and information regarding the area of residential use is located in the Section 4.4.7, *Land Use*.

Percent of the Population Expected to be Highly Annoyed

The percentage of the population expected to be highly annoyed under Alternative #4 would not be expected to change from baseline conditions because there are no additional residences exposed to levels above a DNL of 65 dB.
Figure 4.4.1-1. DNL Noise Contours Under Alternative #4 at Pittsburgh IAP
Figure 4.4.1-2. Comparison of Baseline and Alternative #4 DNL Noise Contours for Pittsburgh IAP
Single Event Sound Analysis

Under Alternative #4, the flying profiles would not change, and the scheduled flying program would not change. As shown in Appendix A, Table A.1-1 provides representative SELs, indicating that the SEL for individual landings by the KC-46A would be 5 dB less while take-offs would be 1 dB more than the KC-135. Under Alternative #4, only the number of aircraft operations would change; there would be no change in where or when individual aircraft operate. Flights would be scheduled for similar time periods as currently flown during the morning and afternoons, with approximately 7 percent of flights occurring during environmental night (after 10 p.m. and before 7 a.m.).

Potential Hearing Loss

As shown in Table 4.4.1-3, there is no property off the Pittsburgh IAP that falls within the 80+ dB DNL noise contour; therefore, there would be no potential hearing loss risk associated with these areas.

4.4.1.2 Construction Noise

There would be some minor temporary noise from construction equipment associated with construction activities that would occur intermittently during the construction period (beginning 2015). Typical noise levels from heavy equipment range from 69 to 84 dB at 100 feet from the source (FHWA 2006) (see Appendix C, Noise, Section A.1.2.2). Aviation-related activities at Pittsburgh IAP dominate the local noise environment. Equipment used during the facility construction would contribute little to the general background noise levels around the airfield. Therefore, impacts from construction under Alternative #4 would be negligible.

4.4.1.3 Summary of Impacts

The number of 171 ARW airfield operations would decrease by 3,834 (29 percent decrease from the currently published FAR Part 150 Noise Compatibility Program; and a 2 percent increase in actual 2012 airfield operations), and the acreage within the 65 dB DNL (and greater) noise contour would decrease by 88 acres. There would be a decrease of approximately 23 acres within the 65 dB DNL noise contour that are off airport-controlled property, resulting in 106 acres off airport-controlled property that lie within the 65 dB contour. There would be no potential for hearing loss off the airport and no increase in the percent of the population highly annoyed. Construction noise would be localized and temporary and would not add to the overall noise environment. Impacts from noise would be negligible.
4.4.2 Air Quality

The air quality analysis estimated the magnitude of emissions that would result from implementation of the proposed KC-46A construction and operational activities at the 171 ARW of the PA ANG at Pittsburgh IAP, approximately 12 miles northwest of Pittsburgh, Pennsylvania. The estimation of proposed operational emissions is based on the net change in emissions between existing aircraft operations and projected KC-46A operations.

As discussed in Appendix A.2.3, air quality impacts from the beddown of the KC-46A aircraft at Pittsburgh IAP were reviewed for significance relative to the PSD threshold for new major sources for attainment pollutants, and the General Conformity de minimis thresholds for nonattainment pollutants. Because the project region within Allegheny County is a nonattainment area for O₃ (moderate) and PM₂.₅, the de minimis threshold of 100 tpy for O₃ precursors NOₓ and VOCs, and PM₂.₅ was used as an indicator of the potential significance of the emissions from the KC-46A conversion. For attainment pollutants, the PSD threshold of 250 tpy (100,000 tpy for GHGs) was used as an indicator of the potential significance of the emissions from Alternative #4.

4.4.2.1 Operational Emissions

Sources associated with operation of the proposed KC-46A beddown at Pittsburgh IAP include (1) operations and engine maintenance/testing of aircraft; (2) onsite POVs; (3) offsite POV commutes; and (4) AGE. It was assumed that other sources, including nonroad mobile equipment, mobile fuel transfer, and stationary source emissions would be unchanged. Operational data used to calculate projected KC-46A aircraft emissions were obtained from the data used in the 2012 baseline airfield analysis. Factors used to calculate combustion emissions for the KC-46A aircraft are based on emissions data developed by Pratt and Whitney for the PW4062 engine (International Civil Aviation Organization 2013). The operational times in mode for the KC-46A engine are based on those currently used for the KC-135 aircraft (AFCEC 2013). The analysis of proposed aircraft operations is limited to operations that occur within the lowest 3,000 feet of the atmosphere, as this is the typical depth of the atmospheric mixing layer where the release of aircraft emissions would affect ground-level pollutant concentrations.

Emissions from AGE were estimated based on the methodology recommended in the Air Emissions Guide for Air Force Mobile Sources (AFCEC 2013). Emissions from POVs were estimated based on the proposed personnel for the existing and proposed scenarios, using emission factors for vehicles from AFCEC 2013.
Table 4.4.2-1 summarizes the annual operational emissions that would result from KC-46A operations at Pittsburgh IAP. Table 4.4.2-1 also presents the net emissions increase associated with the beddown of the KC-46A aircraft at Pittsburgh IAP. As shown in Table 4.4.2-1, the net emissions increases are below the PSD/de minimis thresholds for all pollutants.

Table 4.4.2-1. Comparison of Baseline and Proposed Annual Operational Emissions, 171 ARW

<table>
<thead>
<tr>
<th></th>
<th>ANNUAL EMISSIONS, TONS/YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VOC</td>
</tr>
<tr>
<td>Baseline</td>
<td></td>
</tr>
<tr>
<td>KC-135 Aircraft Operations</td>
<td>3.42</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.11</td>
</tr>
<tr>
<td>POVs</td>
<td>4.27</td>
</tr>
<tr>
<td>Total</td>
<td>7.81</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposed Action</td>
<td></td>
</tr>
<tr>
<td>KC-46A Aircraft Operations</td>
<td>20.22</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.80</td>
</tr>
<tr>
<td>POVs</td>
<td>3.44</td>
</tr>
<tr>
<td>Total</td>
<td>24.48</td>
</tr>
<tr>
<td>Net Increase</td>
<td>16.67</td>
</tr>
<tr>
<td>MOB2 Net Emissions Increase</td>
<td></td>
</tr>
<tr>
<td>Fraction of Existing Emissions</td>
<td>2.13</td>
</tr>
<tr>
<td>PSD/de minimis Threshold</td>
<td>100</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding.

CO = carbon monoxide; CO₂ₑ = carbon dioxide equivalent; NOₓ = oxides of nitrogen; PM₁₀ = particulate matter less than or equal to 10 microns in diameter; PM₂.₅ = particulate matter less than or equal to 2.5 microns in diameter; SO₂ = sulfur dioxide; VOC = volatile organic compound; AGE = aerospace ground equipment; POV = privately owned vehicle; PSD = Prevention of Significant Deterioration

In addition to criteria pollutant emissions, the beddown of the KC-46A aircraft at Pittsburgh IAP would result in emissions of HAPs and GHGs. Operational activities would result in a net increase of HAPs that is below 1 tpy.

Table 4.4.2-2 summarizes the annual operational GHG emissions that would result from KC-46A operations at Pittsburgh IAP, along with the net increase in comparison with the baseline. As shown in Table 4.4.2-2, emissions are below the PSD thresholds for GHGs.
Table 4.4.2-2. Comparison of Baseline and Proposed Annual Operational GHG Emissions, 171 ARW

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Annual GHG Emissions, Metric Tons/Year</th>
<th>CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
<th>CO₂e</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 Aircraft Operations</td>
<td></td>
<td>16,909</td>
<td>0.47</td>
<td>0.53</td>
<td>17,082</td>
</tr>
<tr>
<td>AGE</td>
<td></td>
<td>2,370</td>
<td>0.07</td>
<td>0.08</td>
<td>2,395</td>
</tr>
<tr>
<td>Engine Tests</td>
<td></td>
<td>196</td>
<td>0.01</td>
<td>0.01</td>
<td>198</td>
</tr>
<tr>
<td>POVs</td>
<td></td>
<td>2,270</td>
<td>0.00</td>
<td>0.00</td>
<td>2,270</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>21,746</td>
<td>0.54</td>
<td>0.61</td>
<td>21,946</td>
</tr>
<tr>
<td>Proposed Action</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KC-46A Aircraft Operations</td>
<td></td>
<td>25,411</td>
<td>0.66</td>
<td>0.74</td>
<td>25,655</td>
</tr>
<tr>
<td>AGE</td>
<td></td>
<td>3,035</td>
<td>0.09</td>
<td>0.10</td>
<td>3,067</td>
</tr>
<tr>
<td>Engine Tests</td>
<td></td>
<td>243</td>
<td>0.01</td>
<td>0.01</td>
<td>245</td>
</tr>
<tr>
<td>POVs</td>
<td></td>
<td>2,274</td>
<td>0.00</td>
<td>0.00</td>
<td>2,274</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>30,963</td>
<td>0.75</td>
<td>0.85</td>
<td>31,242</td>
</tr>
<tr>
<td>Net Increase</td>
<td></td>
<td>9,218</td>
<td>0.21</td>
<td>0.24</td>
<td>9,296</td>
</tr>
<tr>
<td>PSD Threshold</td>
<td></td>
<td>100,000</td>
<td>100,000</td>
<td>100,000</td>
<td>100,000</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding. CO₂ = carbon dioxide; CH₄ = methane; N₂O = nitrous oxide; CO₂e = carbon dioxide equivalent; AGE = aerospace ground equipment; POV = privately owned vehicle

4.4.2.2 Construction Emissions

The KC-46A beddown at Pittsburgh IAP would require construction and renovation of existing airfield facilities, including hangars, buildings, and aprons and ramps. Air quality impacts resulting from the proposed construction activities would occur from (1) combustion emissions from heavy equipment and vehicles; and (2) fugitive dust emissions due to operation of equipment on exposed soil. Table 4.4.2-3 presents a summary of the annual construction emissions for the beddown of the KC-46A aircraft at Pittsburgh IAP. As shown in Table 4.4.2-3, emissions would be below the PSD/de minimis thresholds for all pollutants.
Table 4.4.2-3. Annual Construction Emissions Under Alternative #4

<table>
<thead>
<tr>
<th>Construction Project</th>
<th>CO</th>
<th>NOx</th>
<th>VOC</th>
<th>SOx</th>
<th>PM10</th>
<th>PM2.5</th>
<th>Total CO2 Metric tons/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project #1 - Addition to Hangar 302</td>
<td>1.64</td>
<td>2.61</td>
<td>0.46</td>
<td>0.05</td>
<td>2.70</td>
<td>2.04</td>
<td>871.93</td>
</tr>
<tr>
<td>Project #2 - Addition to Hangar 320</td>
<td>1.54</td>
<td>2.44</td>
<td>0.43</td>
<td>0.05</td>
<td>2.48</td>
<td>1.90</td>
<td>817.22</td>
</tr>
<tr>
<td>Project #3 - Internal Renovations to Hangar 301</td>
<td>0.30</td>
<td>0.47</td>
<td>0.06</td>
<td>0.01</td>
<td>0.04</td>
<td>0.04</td>
<td>122.59</td>
</tr>
<tr>
<td>Project #4 - Modifications to Existing Parking Ramp and Taxiway</td>
<td>3.84</td>
<td>9.13</td>
<td>0.95</td>
<td>0.45</td>
<td>5.14</td>
<td>2.61</td>
<td>2,267.97</td>
</tr>
<tr>
<td>Project #5 - New Hydrants and Fuel Lines and Demolition of Existing Hydrants</td>
<td>0.02</td>
<td>0.03</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>11.06</td>
</tr>
<tr>
<td>Total</td>
<td>7.33</td>
<td>14.68</td>
<td>1.91</td>
<td>0.56</td>
<td>10.37</td>
<td>6.60</td>
<td>4,090.77</td>
</tr>
<tr>
<td>PSD/de minimis Threshold</td>
<td>250</td>
<td>100</td>
<td>100</td>
<td>250</td>
<td>100</td>
<td>100</td>
<td>100,000</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding.
CO = carbon monoxide; NOx = oxides of nitrogen; VOC = volatile organic compound; SOx = oxides of sulfur; PM10 = particulate matter less than or equal to 10 microns in diameter; PM2.5 = particulate matter less than or equal to 2.5 microns in diameter; CO2 = carbon dioxide; PSD = Prevention of Significant Deterioration

4.4.2.3 Summary of Impacts

The Pittsburgh ANGS is located within a non-attainment area for PM2.5, a moderate nonattainment area for the 1997 8-hour O3 standard, and is classified as a marginal nonattainment area for the 2008 8-hour O3 standard, according to 40 CFR 81.339. The Pittsburgh ANGS is therefore subject to de minimis thresholds. Impacts from proposed operational emissions would be less than significant for all criteria pollutants. Impacts from construction emissions and operational HAP emissions are negligible.

4.4.3 Safety

4.4.3.1 Ground Safety

Existing facilities at Pittsburgh ANGS for fire response and crash recovery meet KC-46A beddown requirements (Headquarters AMC and NGB 2013d).

To support the aircraft beddown at Pittsburgh ANGS, some facilities would require renovation/modification. However, no construction activities would involve any unusual or extraordinary techniques. During construction and modifications, standard construction safety procedures would be employed, and strict adherence to all applicable standard industrial safety requirements and procedures would further minimize the relatively low risk associated with these construction activities.

Proposed renovation and infrastructure improvement projects related to Alternative #4 would not impact aircraft take-off or landings or penetrate any RPZs (Headquarters AMC and NGB 2013d).
New construction and building renovation activity would not result in any greater safety risk or obstructions to navigation. Operations would fall within the same general types as those that have historically occurred at Pittsburgh IAP. For example, the KC-46A would follow established local approach and departure patterns. Therefore, flight activity and subsequent operations would not require changes to RPZs.

Under this alternative, no new facilities are proposed for Pittsburgh ANGS. Planned construction at the base comprises renovation and additions to three hangars; modification to existing parking ramp and taxiway; and demolition and installation of new fuel hydrants and lines. Therefore, none of the construction or demolition would be in conflict with the current QD arcs.

No construction activities would involve any unusual or extraordinary techniques. During construction and modifications, standard construction safety procedures would be employed, and strict adherence to all applicable standard industrial safety requirements and procedures, including AFI 13-213, *Airfield Driving* (2011), would further minimize the relatively low risk associated with these construction activities.

The proposed construction projects meet all criteria specified in the ANG Handbook 32-1084, *Facility Space Standards*. AT/FP requirements have also been addressed to the extent practicable in all projects. Projects would use AT/FP site design standards for siting of facilities, parking, walkways, and other features. Renovations would bring the facilities into compliance with UFC 4-022-01, *Security Engineering: Entry Control Facilities/Access Control Points* and UFC 4-010-01, *DoD Minimum Antiterrorism Standards for Buildings*, providing additional protection for the personnel based there.

4.4.3.2 Flight Safety

Although the KC-46A is a new aircraft, it is a military derivative of the commercial Boeing 767 aircraft. First flown commercially in 1982, more than 1,000 commercial Boeing 767 aircraft have been produced; and it is a proven commercial airliner, freighter, and tanker already in service (Boeing 2012). Mishap statistics for the commercial Boeing 767 show 14 total aircraft losses (similar to a Class A military mishap definition) during its 31 year lifetime (ASN 2013).

Although no facilities are proposed that would affect navigable airspace, Pittsburgh ANGS would comply with 14 CFR Part 77, *Objects Affecting Navigable Airspace*, as appropriate, should they be selected to host the KC-46A.

To augment airborne training missions, pilots flying the KC-46A would use simulators extensively. Simulator training includes all facets of flight operations and comprehensive
emergency procedures. The sophistication and fidelity of current simulators and related computer programs are commensurate with the advancements made in aircraft technology and are extremely realistic. These factors would minimize risk associated with mishaps due to pilot error.

Under Alternative #4, there would be an increase of approximately 33 percent in 171 ARW operations (2 percent in total Pittsburgh IAP airfield operations) compared to existing conditions. This increase in take-offs, landings, proficiency training, and other flights would result in a commensurate increase in the safety risk to aircrews and personnel.

The proposed increase in airfield flight operations would be expected to increase the opportunity for aircraft mishaps, including BASH incidents; however, the expected rate of mishaps or BASH incidents would not be expected to change from current conditions. Both the KC-135 and the commercial Boeing 767 have very low mishap rates and with a new airframe and technological improvements, the KC-46A would be expected to have a similar safety record. Current airfield safety procedures would continue to be implemented and additional airfield flight operations would adhere to established safety procedures (171 ARW 2010c).

Given the low likelihood of an aircraft accident or BASH mishap to occur in the local airfield area and even lower likelihood for civilians to be impacted, impacts to safety in the vicinity of Pittsburgh IAP as a result of Alternative #4 are expected to be negligible.

The KC-46A will have the capability to jettison fuel for emergency situations. Military policy is to avoid fuel jettisons, unless safety of flight dictates an immediate jettison, and requires senior officer approval before fuel jettison, unless under emergency situations. Records of KC-135 fuel jettison events reveal that such circumstances are rare, occurring in slightly less than two sorties per thousand (Headquarters AMC 2013). Additionally, unlike the KC-135, the KC-46A will have the capability to land fully loaded with fuel so long as adequate runway length and braking capability are available (Headquarters AMC 2013), which could potentially lessen the need to jettison fuel in certain circumstances. Based on information provided by Boeing, landing the KC-46A above maximum landing weight is not prohibited; however, it does drive costly inspection requirements. To land above maximum landing weight routinely could reduce the fatigue life of the airplane (Headquarters AMC 2013).

4.4.3.3 Summary of Impacts

There would be a 33 percent increase in actual 171 ARW airfield operations (2 percent increase in total airfield operations) at Pittsburgh IAP with a commensurate increase in mishap and BASH potential. Construction activities would involve no unusual or extraordinary techniques. During construction and modifications, standard construction safety procedures would be employed, and
strict adherence to all applicable standard industrial safety requirements and procedures would further minimize the relatively low risk associated with these construction activities. Impacts to safety would be expected to be negligible.

4.4.4 Soils and Water

4.4.4.1 Soils

Under Alternative #4, new construction would consist of five separate projects resulting in 186,395 SF (4.3 acres) of new construction footprint and 88,529 SF (2.0 acres) of new impervious surface (Table 2.3-23). These proposed construction projects for aircraft conversion would meet all criteria specified in ANG Handbook 32-1084, *Facility Space Standards*.

Proposed construction under Alternative #4 would occur on Urban land-Culleoka complex. This soil type is not rated in road or small commercial building development and may require onsite investigation and evaluation for most land use decisions to identify any potential limitations (NRCS 2013). Pursuant to the Farmland Protection Policy Act, the USAF determined that the land is not farmland subject to the Farmland Protection Policy Act; therefore, the Farmland Protection Policy Act does not apply to this alternative.

Under Alternative #4, there would be approximately 186,395 SF (4.3 acres) of temporary soil disturbance as a result of proposed construction. To minimize potential impacts to soil and water resources associated with erosion, runoff, and sedimentation during construction activity, standard construction practices as described in the 171 ARW SWPPP (171 ARW 2010a) would be implemented during and following the construction period. Such practices could include the use of well-maintained silt fences or straw wattles, minimizing surficial areas disturbed, stabilization of cut/fill slopes, minimization of earth-moving activities during wet weather, and covering of soil stockpiles, as appropriate. A site-specific and detailed SWPPP that coordinates the timing of soil disturbing activities with the installation of soil erosion and runoff controls is an effective way of controlling erosion while soil is exposed and subject to construction activity. An NOI must be filed with the state of Pennsylvania to obtain coverage under the General NPDES Permit for Stormwater Discharges Associated with Construction Activities (General Permit No. PAG-02) prior to implementation of individual projects. Construction activities subject to this permit include clearing, grading, and disturbances to the ground such as stockpiling or excavation. Impacts to earth resources would be negligible.
As a result of implementation of Alternative #4, there would be approximately 88,529 SF (2.0 acres) of new impervious surface from the proposed construction (Figure 4.4.4-1). This could result in localized increases in stormwater runoff volume and intensity, in addition to increases in total suspended particulates to nearby surface waters. However, in accordance with UFC 3-210-10, LID (as amended, 2010) and EISA Section 438, any increase in surface water runoff as a result of the proposed construction would be attenuated through the use of temporary and/or permanent drainage management features. The integration of LID design concepts incorporates site design and stormwater management to maintain the site’s pre-development runoff rates and volumes to further minimize potential adverse impacts associated with increases in impervious surface area.

Increased runoff and peak discharge volumes as a result of increases to impervious surface can be managed by appropriately designed conveyance structures (such as roadways, channels, and culverts) in accordance with site-specific engineering standards that take into consideration the influence of surface water drainage within, adjacent to, and downstream of the project. In addition, implementing features that manage surface water runoff into the design of the project would avoid or minimize conflicts with city, county, state, or federal regulations and prevent adversely affecting adjacent properties and/or the project area itself. Such measures could include:

- water harvesting and natural open space,
- installation of retention/detention basins for water recharge or for release of runoff at predetermined times to minimize peak discharges,
- the use of porous materials, such as pavers or gravel, for driveway and walkway construction, and
- directing runoff toward permeable areas, such that discharge exiting each site post-construction would be equal to or less than existing conditions.

Implementation of these measures, as necessary and appropriate, would ensure that impacts to surface water as a result of implementation of Alternative #4 would be minimal.
Figure 4.4.4-1. Surface Water Features and Proposed Construction in the Vicinity of Pittsburgh ANGS

*Legend:
- Pittsburg Air National Guard Station
- Paved Roadway/Parcels
- Existing Facility
- Surface Water
- Stormwater Management Basin
- Wetlands
- Proposed New Fuel Hydrant Line
- Existing Fuel Hydrant Line
- Proposed Auxiliary Fuel Hydrant Line
- Proposed Facility Addition
- Proposed New Fuel Hydrant Line (Project 3)
- Proposed New Fuel Hydrant Line (Project 5)
- Proposed New Fuel Hydrant Line (Project 2)
- Proposed New Fuel Hydrant Line (Project 1)
- Proposed New Fuel Hydrant Line (Project 6)
- Proposed New Fuel Hydrant Line (Project 4)
- Proposed New Fuel Hydrant Line (Project 7)
- Proposed New Fuel Hydrant Line (Project 8)

Notes: Project numbers correspond to those presented in Table 4.4.4-1. Some proposed features may not be shown.

4.4.4.3 Groundwater

As a result of Alternative #4, the increase in the amount of impervious surface (2.0 acres) would also result in a decrease in groundwater recharge. However, as noted above, any increase in surface water runoff as a result of the proposed construction would be attenuated through the use of permit-related temporary and/or permanent drainage management features such as detention/retention basins and standard construction practices as described above and in the 171 ARW SWPPP (171 ARW 2010a). The integration of water harvesting and natural open space into project design would further minimize potential adverse impacts due to increased impervious surface. The use of these features would also increase groundwater recharge through direct percolation offsetting the loss of pervious surface due to future construction. Additionally, the impervious surface area resulting from the proposed activities would not be one continuous, hardened surface. Rather, the impervious surfaces would occupy several smaller areas, which would further minimize localized impacts to groundwater recharge.

4.4.4.4 Floodplains

Proposed construction activities at the installation would not occur within the 100-year floodplain zone. As such, there would be no impacts to floodplains under this alternative.

4.4.4.5 Summary of Impacts

There would be approximately 4.3 acres of temporary soil disturbance and 2.0 acres of new impervious surface as a result of the proposed construction. To minimize potential impacts associated with erosion, runoff, and sedimentation, standard construction practices would be implemented. Proposed construction would not impact prime farmlands; therefore the Farmland Protection Policy Act does not apply to this alternative. Therefore, impacts to soil and water resources would be negligible.

4.4.5 Biological Resources

4.4.5.1 Vegetation

Construction of new facilities associated with Alternative #4 at the 171 ARW installation would occur on currently paved areas or actively managed (i.e., mowed and landscaped) areas, and would result in an increase of 88,529 SF (2.0 acres) of impervious surfaces. No native vegetation would be impacted. Impacts to the vegetation at the installation would be negligible due to the lack of sensitive vegetation in the project area.
4.4.5.2 Wildlife

Under Alternative #4, impacts to wildlife due to construction would be minor. Noise associated with construction may cause wildlife to temporarily avoid the area, including those that are protected under the MBTA. Noise associated with construction activities, as well as an increase in general industrial activity and human presence, could evoke reactions in birds. Disturbed nests in the immediate vicinity of construction activity would be susceptible to abandonment and depredation. However, bird and wildlife populations in the vicinity of the airport where project components would occur are accustomed to elevated noise associated with aircraft and general military industrial use. As a result, indirect impacts from construction noise are expected to be minimal because the ambient noise levels within the vicinity are high under existing conditions and would be unlikely to substantially increase by the relatively minor and temporary nature of the proposed construction and modifications.

Under Alternative #4, impacts to wildlife due to proposed operations would be minor. Annual operations for the KC-46A at Pittsburgh IAP would be projected to increase by approximately 33 percent over the KC-135 baseline operations (2 percent increase in total airfield operations) found on Table 2.3-21. An increase in levels of operations (e.g., sorties) may result in an increased opportunity for bird-aircraft strikes to occur, including those with migratory birds. Adherence to the existing, BASH program would minimize the risk of bird/wildlife aircraft strikes (see Section 4.4.3, Safety). The 171 ARW has developed procedures designed to minimize the occurrence of bird/wildlife aircraft strikes, and has documented detailed procedures to monitor and react to heightened risk of bird/wildlife aircraft strikes. When risk increases, limits are placed on low-altitude flight and some types of training (e.g., multiple approaches, closed pattern work) in the airport environment. Special briefings are provided to pilots whenever the potential exists for increased bird/wildlife aircraft strikes within the airspace.

4.4.5.3 Special Status Species

No federally threatened and endangered species are currently known to occur on Pittsburgh IAP and there is only a low potential for them to occur within the vicinity due to the lack of habitat. In a letter dated April 2, 2014, the USFWS Pennsylvania Field Office concurred that no federally listed threatened or endangered species are known to occur within the project area. One state listed species (Torrey’s Rush) is currently known to occur on Pittsburgh IAP; however, it would not be impacted by the proposed construction or operations. Therefore, Alternative #4 would have no effect on special status species.

4.4.5.4 Wetlands

There are no wetland areas that occur within the proposed project footprints. The wetland that occurs within the vicinity of the project areas, between the east and west aircraft parking aprons,
would not be impacted from the proposed construction. To minimize potential impacts associated with erosion, runoff, and sedimentation, standard construction practices as described in the 171 ARW SWPPP (171 ARW 2010a) would be implemented during and following the construction period. Such standard construction practices could include the use of well-maintained silt fences or straw wattles, minimizing surficial areas disturbed, stabilization of cut/fill slopes, minimization of earth-moving activities during wet weather, and covering of soil stockpiles, as appropriate. Following construction, disturbed areas not covered with impervious surface would be reestablished with appropriate vegetation and native seed mixtures and managed to minimize future erosion potential. Therefore, no significant impacts to wetlands would occur as a result of Alternative #4.

4.4.5.5 Summary of Impacts

Construction of new facilities associated with this alternative would occur primarily on currently paved or actively managed areas. Therefore impacts to vegetation would be negligible. There would be no impacts to wetlands. Impacts to wildlife from operational noise would be minor due to the 33 percent increase in 171 ARW airfield operations. This small increase in the airfield operations may also result in a slight increased opportunity for bird-aircraft strikes to occur, including those with migratory birds. No federally listed species or critical habitat and one state listed species is known to occur on Pittsburgh IAP. However, under Alternative #4 there would be no impacts to special status species.

4.4.6 Cultural Resources

Potential direct impacts to cultural resources examined in this analysis include effects to archaeological sites due to ground disturbing activities during construction or modification to buildings. Indirect impacts from an increase in personnel from 1,306 to 1,365 would be negligible as personnel would primarily be confined to the developed areas on the installation.

4.4.6.1 Archaeological Resources

The only undisturbed portion of the 171 ARW installation in the southwest portion was intensively surveyed for archaeological resources and no NRHP-eligible archaeological resources were located. The Pennsylvania SHPO concurred with the results of this archaeological survey (171 ARW 2012b, McLearen 2011). In the unlikely event that archaeological or human remains are identified during construction, all activities in the area of the discovery would cease and the Environmental Manager would contact a qualified archaeologist to evaluate the discovery. Under these conditions, there would be no adverse impacts to archaeological resources as a result of Alternative #4.
4.4.6.2 Architectural Resources

Three buildings are proposed for interior renovations or additions at the 171 ARW installation (Buildings 301, 302, and 320). None of these buildings are eligible to the NRHP. Both 301 and 302 were inventoried and evaluated for NRHP eligibility in 2011 and the SHPO concurred with the recommendation that they were not eligible for listing in the NRHP (171 ARW 2012b, MacDonald 2011). Building 320 was built in 1997 and is therefore not eligible to the NRHP because it is less than 50 years old, does not fall within the Cold War-era, and has not achieved exceptional significance (meet Criterion Consideration G) for any other reason. SHPO consultation for this EIS has provided concurrence that the proposed project has no potential to adversely affect historic properties (see Appendix B3). There would be no adverse impacts to architectural resources as a result of implementation of Alternative #4.

4.4.6.3 Traditional Resources

The 171 ARW installation contains no known traditional resources. Given the extensive development on the installation, it is unlikely that there are traditional resources located at the 171 ARW. Government-to-government consultation for this action has been conducted with each federally-recognized Tribe associated with the 171 ARW installation in recognition of their status as sovereign nations and in order to provide information regarding tribal concerns per Section 106 of the NRHP as well as information on traditional resources that may be present on or near the installation. Responses have been received from all the Tribes under consultation. On October 3, 2013 an e-mail from the Seneca Nation of Indians was received stating that they had no objection to the Proposed Action (see Toth 2013 in Appendix B2). On January 13, 2014, an e-mail from the Cayuga Nation of New York was received stating that they had no objection to the Proposed Action (see Halftown 2014 in Appendix B2). On January 17, 2014, the Onondaga Nation of New York stated that they had no objection to the Proposed Action via telephone call. On April 4, 2014, the Tonowanda Band of Seneca stated that they had no objection to the Proposed Action via telephone call. In a letter dated April 14, 2014, the Tuscarora Nation stated that they concur that the proposed project will have no effect on predetermined archaeological sites within the Area of Potential Effect. The NGB and the USAF values its relationship with tribes and will continue to seek opportunities to consult on other planning efforts or matters of known/potential interest to tribes.

4.4.6.4 Summary of Impacts

Construction activities associated with this alternative are limited to the developed areas of the installation, primarily in the areas of the aircraft hangars and airfield pavements, where no archaeological resources are known. Additionally, all undisturbed parts of the installation have been surveyed and no resources were present; the SHPO has concurred (McLearen 2011). The area is also considered to have a low potential for buried archaeological materials. None of the
buildings that would be impacted under the Proposed Action are eligible to the NRHP. The SHPO has concurred with this determination for Buildings 301 and 302 (MacDonald 2011). Building 320 is modern and does not meet any of the NRHP criteria for significance. No traditional resources are known to occur at the installation. Therefore, no impacts to cultural resources are anticipated at the 171 ARW installation under Alternative #4.

4.4.7 Land Use

The primary source of impacts to land use resulting from Alternative #4 would be from noise. As shown in Table 4.4.7-1 and Figure 4.4.7-1, areas outside of the airport boundaries currently exposed to DNLs of 65 dB to 70 dB would decrease by approximately 23 acres, overall. By zoning districts, the Commercial area affected by DNL of 65 dB to 70 dB would decrease by approximately 27 acres; Mixed Use areas would increase by approximately 2 acres; Industrial areas would increase by approximately 3 acres; and Residential and Agricultural areas would remain approximately the same. There would be no change in the areas affected by DNL of 70 dB or greater. No additional houses, churches, schools or other sensitive noise receptors are located within the 65 dB DNL off-airport noise contour areas.

Table 4.4.7-1. Change in Acres Affected by Noise Levels Above 65 dB DNL Outside the Pittsburgh IAP Boundary

<table>
<thead>
<tr>
<th>Land Use</th>
<th>65 dB to 70 dB DNL Baseline</th>
<th>Proposed</th>
<th>Change</th>
<th>70 dB DNL + Baseline</th>
<th>Proposed</th>
<th>Change</th>
<th>65 dB to 80 dB DNL Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>67.5</td>
<td>40.4</td>
<td>-27.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-27.1</td>
</tr>
<tr>
<td>Mixed Use</td>
<td>25.1</td>
<td>27.4</td>
<td>2.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.3</td>
</tr>
<tr>
<td>Industrial</td>
<td>33.1</td>
<td>35.6</td>
<td>2.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.5</td>
</tr>
<tr>
<td>Residential</td>
<td>2.9</td>
<td>2.5</td>
<td>-0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-0.4</td>
</tr>
<tr>
<td>Agricultural</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total Area</td>
<td>128.6</td>
<td>105.9</td>
<td>-22.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-22.7</td>
</tr>
</tbody>
</table>

A more detailed discussion of aircraft operations and noise can be found in Section 4.4.1, Noise.

4.4.7.1 Summary of Impacts

The number of airfield operations would decrease by 3,834 (29 percent decrease) from the currently published FAR Part 150 Noise Compatibility Program, and the acreage within the 65 dB DNL (and greater) noise contour would decrease by 79 acres. There would be a decrease of approximately 23 acres within the 65 dB DNL noise contour that are off airport-controlled property. Current land use and zoning designations would not change due to the basing of the KC-46A. This alternative would result in negligible impacts in off-airport areas exposed to noise levels above 65 dB DNL. Airport Hazard Areas would not be affected.
Figure 4.4.7-1. DNL Noise Contours and Land Use Under Alternative #4 at Pittsburgh IAP
4.4.8 Infrastructure and Transportation

4.4.8.1 Potable Water

Water consumption would be expected to increase slightly under Alternative #4 as a result of the increase in personnel; however, an increase in 23 personnel on the installation would not be expected to impact regional water supply. Additionally, the demand for water (e.g., if used to control dust) could also increase during demolition and construction phases. However, this increase would be temporary and intermittent and would not be expected to impact the regional water supply.

4.4.8.2 Wastewater

Wastewater generation would be expected to increase slightly as a result of the increase in 23 personnel on the installation. However, there have been no deficiencies identified with the existing system, and it is expected that the existing sanitary sewer system is generally adequate to serve the facilities proposed under this alternative.

4.4.8.3 Stormwater

Under Alternative #4, there would be up to 186,395 SF (4.3 acres) of temporary soil disturbance as a result of proposed construction. The proposed construction activities could temporarily impact the quality of stormwater runoff (see Section 4.4.4, Soils and Water); however, through implementation of appropriate standard construction practices, preventative maintenance, and periodic inspections and sampling to detect risk to stormwater, especially during active construction activity, no impacts would be expected to the existing stormwater drainage system as a result of the proposed construction.

In addition, there would be an increase in up to 88,529 SF (2.0 acres) of new impervious surface. The addition of new impervious surfaces would potentially increase stormwater runoff volume and peak discharge rates; however, as discussed in further detail in Section 4.4.4, Soils and Water, stormwater runoff increases would be managed such that discharge exiting each site post-construction would be equal to or less than existing conditions in accordance with UFC 3-210-10 and EISA Section 438. Implementation of these measures would ensure that impacts to the stormwater drainage system as a result of implementation of Alternative #4 would be minimal.

4.4.8.4 Electrical and Natural Gas Systems

Demand for electricity and natural gas would be expected to increase slightly as a result of the increase in personnel, and the building space and facilities to be constructed would require
additional electricity. However, any new facilities and additions associated with this alternative would be implemented with more energy efficient design standards and utility systems than are currently in place. In addition, construction projects would incorporate LEED and sustainable development concepts to achieve optimum resource efficiency, sustainability, and energy conservation. Therefore, average energy consumption would be expected to remain consistent or decrease compared to energy consumption associated with existing facilities.

Construction activity associated with Alternative #4 could result in some temporary interruption of utility services during construction. These impacts would be temporary, occurring briefly during active construction periods. In addition, the demand for energy (primarily electricity) could increase slightly during demolition and construction phases. The energy supply at the installation and in the region is adequate and would not be affected by this temporary increase in demand.

4.4.8.5 Solid Waste Management

The building space and facilities to be constructed would generate construction and demolition debris requiring landfill disposal. Construction activities would result in approximately 186,395 SF of additions and alterations to existing facilities and 88,529 SF of new building construction. Using a multiplier provided by the USEPA to determine solid waste generation, it was estimated that proposed renovations at Pittsburgh ANGS would generate 2,197,597 pounds (1,099 tons) of renovation debris requiring landfill disposal and proposed new construction at Pittsburgh ANGS would generate 384,216 pounds (192 tons) of construction debris (USEPA 2009). Therefore, the total amount of construction and demolition debris generated at Pittsburgh ANGS would be 1,291 tons.

Solid waste generated as a result of the proposed construction could result in impacts to solid waste management facilities in the area. It is unknown what landfill would be used for construction debris since the construction contractor would choose the landfill. However, the Allied Waste Imperial Landfill, which is the closest to the installation, has a permitted throughput of 649,800 tons per year (Allegheny County 2009). The 1,291 tons of proposed construction debris generated at Pittsburgh ANGS would represent 0.2 percent of the yearly capacity of the landfill. Impacts to local landfills would not be expected to exceed the permitted throughput or contribute significantly to the remaining capacity.

Off-installation contractors completing construction and demolition projects at the 171 ARW installation would be responsible for disposing of waste generated from these activities. Contractors would be required to comply with federal, state, and local regulations for the collection and disposal of municipal solid waste from the installation. Much of this material can
be recycled or reused, or otherwise diverted from landfills. EO 13514, *Federal Leadership in Environmental, Energy, and Economic Performance*, sets a target diversion rate of 50 percent for recycling and waste diversion for DoD facilities by 2015, including construction and demolition waste; compliance with EO 13514 would further minimize the increase in solid waste generation as a result of the proposed construction. All non-recyclable construction and demolition waste would be collected in a dumpster until removal. Construction and demolition waste contaminated with hazardous waste, ACM, LBP, or other undesirable components would be managed in accordance with AFI 32-7042, *Waste Management* (2009).

4.4.8.6 Transportation

Construction equipment would be driven to proposed construction areas and would be kept on-site for the duration of the respective activity. Construction workers would drive daily in their personal vehicles to and from the construction site. In general, construction traffic would result in increases in the use of on-installation roadways during construction activities; however, increases would be temporary and intermittent, occurring only during active construction periods.

The number of authorized personnel on the installation would increase by 23 under Alternative #4 (see Table 2.3-24). The increase in personnel would create a potential 23 additional one-way vehicle trips to and from the installation during morning and evening peak periods for these additional personnel. Assuming that each person makes two trips per day, the implementation of Alternative #4 would add an additional 46 trips onto the existing roadway network after the construction phase is complete. However, regional roads used to access the installation as well as those located on the installation have sufficient capacity to manage this minimal increase in traffic without substantial impacts to circulation. Therefore, impacts to transportation infrastructure would not be significant under Alternative #4.

4.4.8.7 Summary of Impacts

Impacts from this alternative would not be expected since there have been no deficiencies identified with the existing systems, and it is expected that the existing infrastructure is generally adequate to serve the facilities and increased personnel proposed under this alternative. Impacts to infrastructure resulting from construction would be negligible since any interruption of utility services or increase demand on infrastructure would be temporary and infrequent. Impacts to infrastructure would be negligible.
4.4.9 Hazardous Materials and Waste

4.4.9.1 Hazardous Materials

A HMMP has been developed for the KC-46A program. Training activities and other functions would be expected to remain similar between the KC-46A and existing KC-135 aircraft. The types of hazardous materials needed for maintenance and operation of the KC-46A would be expected to remain similar to those currently used for maintenance and operation of the KC-135 fleet. However, unlike the KC-135, the KC-46A aircraft will be free of ODSs. ODSs were typically used as part of the fire suppression systems on aircraft; ODS use and/or storage would no longer be required under Alternative #4.

The KC-46A aircraft has been designed with a focus on reduction of hazardous materials such that hazardous materials currently required for maintenance, operations, and materials on or associated with the new aircraft would be less than or equal to the existing aircraft (Boeing 2011). In addition, it is anticipated that the amount of hazardous waste generated for one KC-46A aircraft for maintenance activities would be slightly less than that generated for one KC-135 aircraft since the KC-46A has two engines as opposed to the four engines for the KC-135. Furthermore, the KC-46A is a newer aircraft and is expected to need less maintenance than the older KC-135 aircraft.

Under Alternative #4, the total number of flying hours would increase from 6,016 to 8,040 (a 34 percent increase); therefore, the throughput of petroleum substances (e.g., fuels, oils) used during operations would be expected to increase commensurately from what is currently used to maintain the KC-135 fleet (see Appendix A, Section A.9, for more details). Additionally, it is expected that short-term increases would be realized in terms of the quantity of fuel used during construction activities, because various fuels (e.g., diesel, gasoline) would be required to run earth-moving equipment and power tools and to provide electricity and lighting as conditions warrant. Procedures for hazardous material management established for the 171 ARW installation would continue to be followed in future operations associated with Alternative #4 and as required during all construction and renovation activities.

Toxic Substances

Under Alternative #4, additions to Hangars 302 and 320 are proposed, and internal renovations to Hangar 301 are proposed. According to the 1991 asbestos report, Hangars 301 and 302 were found to contain ACM in the insulation, floor tiles, and mastic. A LBP survey has not been conducted at the 171 ARW installation. However, Buildings 301 and 302 were built before 1978 and therefore may contain LBP. Any structures proposed for demolition, addition, or retrofit would be inspected for ACM and LBP according to established ANG procedures prior to any
renovation or demolition activities. All ACM would be properly removed and disposed of prior to or during demolition in accordance with 40 CFR 61.40 through 157. All LBP would be managed and disposed of in accordance with TSCA, OSHA regulations, Pennsylvania requirements (regarding site work practices for buildings with LBP), and established ANG procedures. Removal and disposal of ACM and LBP may also require local permits and inspections (depending on volume or area being removed/renovated) through the Allegheny County Health Department. Materials, especially discarded oil products, would be screened for PCB contamination prior to disposal.

4.4.9.2 Hazardous Waste Management

The type of hazardous waste streams generated by KC-46A operations would be expected to remain similar to those being generated by the existing KC-135 aircraft. Additionally, the two aircraft require the same types of hazardous materials for their maintenance and operations (e.g., fuels, oils). Under Alternative #4, the total number of flying hours for the 171 ARW would increase by approximately 34 percent; therefore, hazardous waste streams would be expected to increase commensurately (see Appendix A, Section A.9, for more details). Hazardous waste generation (e.g., used oil, used filters, oily rags, etc.) would continue to be managed in accordance with the installation’s Hazardous Waste Management Plan and all applicable federal, state, and local regulations. No changes to the installation’s large quantity generator status would be expected to occur due to the increase in hazardous waste generation from aircraft operations.

4.4.9.3 Environmental Restoration Program

In accordance with AFI32-7020, The Environmental Restoration Program, construction, modifications and/or additions to existing buildings can occur on or in proximity to existing ERP sites. Accordingly, the appropriate organizations (e.g., installation planners, ERP managers, design engineers) must consider a compatible land use based on current site conditions and the selected or projected remedial action alternatives. Construction should be sited and designed to minimize life-cycle costs to include those associated with impacts from existing contaminated sites. If the potential for uncharacterized ERP sites exist, the installation is responsible for identifying existing contamination at the proposed construction sites to avoid unknowingly locating construction projects in areas with contamination. The installation is responsible for performing necessary environmental baseline surveys, accomplishing environmental impact analysis process requirements, and for otherwise informing itself about existing site conditions and their associated cost impacts in preparation for a construction project. When warranted by the site history, environmental restoration funds may be used to accomplish RCRA facility assessments, or preliminary assessments and site inspections undertaken in accordance with the
CERCLA process, or similar site investigations in accordance with applicable state laws for suspected releases. To the extent that a construction project generates actions to address contamination, or a need to change the timing of ERP-generated actions to address contamination, the costs of such actions are not Environmental Restoration Account-eligible and shall be funded as part of the construction project. This includes the handling, mitigation, and disposal or other disposition of contamination discovered before or during the construction activity.

The removal and disposal of contamination unexpectedly encountered within the construction project footprint during the execution of a construction project will be undertaken as part of the construction project using construction project funds which may include other MILCON funds reprogrammed to a MILCON construction project. Construction contractor costs (such as direct delay costs and unabsorbed or extended overhead) incidental to discovery and removal of the contamination will be construction project funded to the extent that the government is responsible and liable for such costs.

Vapor intrusion should be evaluated when volatile chemicals are present in soil, soil gas, or groundwater that underlies existing structures or has the potential to underlie future buildings and there may be a complete human exposure pathway. Due to their physical properties, volatile chemicals can migrate through unsaturated soil and into the indoor air of buildings located near zones of subsurface contamination.

One ERP site, Site #7 overlaps with the proposed addition to Hangar 320 as well as the proposed apron expansion (Figure 4.4.9-1). This site is closed and was a POL storage area and fuel hydrant system for JP-4 fuel. Soil and groundwater sampling performed at this site did not reveal contaminants of concern above PADEP guidelines; therefore, it is not expected to pose a vapor intrusion concern. However, it is recommended that a vapor intrusion analysis/testing is completed prior to construction to investigate any potential concern. If testing indicates a vapor intrusion concern, the installation would implement practices in accordance with site-specific vapor mitigation design considerations.
Figure 4.4.9-1. ERP Sites and Proposed Construction in the Vicinity of Pittsburgh ANGS
If contaminated media (e.g., soil, vapor, groundwater) are encountered during the course of site preparation (e.g., clearing, grading) or site development (e.g., excavation for installation of building footers) for proposed construction activities, work would cease until 171 ARW Program Managers establish an appropriate course of action for the construction project to ensure that federal and state agency notification requirements are met, and to arrange for agency consultation as necessary if existing ERP sites are affected. Also, prior to construction activities, the construction contractors would be notified of the nature and extent of known contamination so that they can inform their employees in advance of on-site activities and take appropriate precautions to protect health and safety, and to prevent the spread of contamination. The construction contractors would be responsible for ensuring their workers follow appropriate health and safety requirements.

Alternative #4 would not result in an increased risk of hazardous waste releases or exposure, nor would it affect the criteria listed in Appendix A, Section A.9. Therefore, no significant impacts from hazardous materials and wastes would occur with the implementation of Alternative #4.

4.4.9.4 Summary of Impacts

There would not be an increased risk of hazardous waste releases or exposure from this alternative. Any LBP or ACM that may be found in buildings that are scheduled for construction activities would be managed per applicable USAF regulations. There would be no expected impact from ERP sites. Impacts relative to hazardous materials and wastes would be negligible.

4.4.10 Socioeconomics

Under Alternative #4, construction activities would be contained entirely within the boundaries of Pittsburgh IAP. Economic activity associated with proposed construction activities at the 171 ARW installation, such as employment and materials purchasing, would provide short-term economic benefits to the local economy. However, short-term beneficial impacts resulting from construction payrolls and materials purchased would be negligible on a regional scale.

The proposed aircraft beddown and related activities would result in a minor change in staffing requirements for the 171 ARW. Currently, the 171 ARW is authorized 1,306 personnel. Under Alternative #4, the KC-46A mission would add an additional 59 military positions (increase in 235 full-time positions and reduction of 176 traditional Guard positions) (see Table 2.3-24). Combined with their approximately 80 family members, this would represent less than 0.01 percent of Allegheny County population. Of the 80 family members, approximately 28 would be anticipated to be of school age. The students entering the local schools would be expected to be enrolled in various grades and live in different areas within Allegheny County. It is anticipated
that there is enough capacity within the schools in this county to absorb this minimal increase in school age children.

A net increase in 59 military personnel positions would amount to an increase of approximately 4.5 percent to the existing 171 ARW personnel. Total payroll associated with the 235 additional full-time personnel would amount to an estimated total annual salary increase of approximately $12 million for full-time employees. However, a portion of this (approximately $4 million) would be offset by the loss of 176 part-time guardsmen.

All 171 ARW personnel live off-installation as there is no on-installation housing. A conservative scenario would result in 80 homes purchased at the same time as personnel relocate to the area. This would represent less than 0.01 percent of the total housing units in the Allegheny County. However, not all the military personnel who would relocate would own homes, and some personnel may choose to live in other neighboring counties or states.

4.4.10.1 Summary of Impacts

Impacts to socioeconomics resulting from construction would be beneficial and negligible resulting from construction payrolls and materials purchased. In addition, impacts from proposed operations would be beneficial and minor due to the proposed increase in personnel.

4.4.11 Environmental Justice and the Protection of Children

4.4.11.1 Minority and Low-Income Populations

As presented in Table 4.4.11-1, of the roughly 12 persons (same as baseline) that would be affected by proposed DNL between 65 dB and 70 dB, none are considered to be minorities, or low-income populations. No additional minorities or low-income populations would be impacted by aircraft DNL greater 65 dB under Alternative #4. Therefore, there would be no impacts to minority or low-income populations in the vicinity of Pittsburgh IAP and there would be no disproportionate impacts to minority or low-income populations.
Table 4.4.11-1. Population within Alternative #4 Noise Contours,
Pittsburgh IAP

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>65-70</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>70-75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>75-80</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>80-85</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: 1. Total population, minority population, and number of children under the age of 18 were obtained from the 2010 census data. Low income population numbers are from the 2007-2011 ACS 5-Year Estimates.
2. The percentage of low-income persons is calculated as a percentage of all persons for whom the USCB determines poverty status, which is generally a lower number than the total population because it excludes institutionalized persons, persons in military group quarters and college dormitories, and unrelated individuals under 15 years old.

Sources: USCB 2010f and 2011f.

4.4.11.2 Protection of Children

There are no facilities on the installation where children may be encountered on a regular basis. Currently there are no Kindergarten through Grade 12 off-installation schools that are exposed to aircraft DNL between 65 dB and 70 dB. Under Alternative #4 there would be no new Kindergarten through Grade 12 schools exposed to aircraft DNL of 65 dB or above. Therefore, under Alternative #4 there would be no special health or safety risks to children.

4.4.11.3 Summary of Impacts

Given that the acreage within the 65 dB DNL noise contour would be reduced under Alternative #4, there would be no additional residential populations, including no minority or low-income populations, and no additional schools located within the vicinity Pittsburgh IAP exposed to DNL of 65 dB or above; thus, there would be no disproportionate impacts to minority or low-income populations in the vicinity of Pittsburgh IAP. In addition, there would be no special health or safety risks to children.
4.5 ALTERNATIVE #5 -- RICKENBACKER AIR NATIONAL GUARD STATION

4.5.1 Noise

In this section, noise associated with flying operations and construction activities related to Alternative #5 are considered and compared with current conditions associated with the most current approved and published baseline noise study to assess potential impacts. Details of the noise modeling methodologies used for this section can be found Appendix A, Section A.1.2.

Actual 2012 KC-135 airfield operations were identified in Table 2.3-25. This data was used in determining the proposed KC-46A airfield operations based on most current home-station sorties and airfield operations to provide a more accurate determination of the number of airfield operations for Alternative #5. Under this analysis, the proposed airfield operations are compared to the most current approved and published 2007 FAR Part 150 Noise Compatibility Program for Rickenbacker IAP.

The DNL noise contours for the KC-46A under Alternative #5 were generated using INM. Based KC-135 operations were removed and replaced with KC-46A operations using the B-767-300 and the standard flight profile data provided with INM as substitute data and applying the data to the current based KC-135 flight tracks and operational procedures (INM does not have a standard profile or noise curve data for the KC-46A). Using the standard flight profile data provided for this substitute aircraft in INM provides an accurate analysis of noise contour comparisons that would be expected with the new KC-46A. Flight profiles, flight tracks, and operational procedures currently being used by the KC-135 were used in this INM program.

4.5.1.1 Aircraft Noise

Under Alternative #5, 12 KC-46As would be based at Rickenbacker ANGS replacing the current 18 KC-135 aircraft. There would be no change in the number or type of other aircraft using the airfield. KC-46A aircrews would use the same flying procedures (e.g., ground tracks, altitude profiles) currently used by KC-135 aircrews. Aircrews associated with the KC-46A would continue to practice closed patterns, including tactical procedures in which the aircraft climbs or descends in the immediate vicinity of the airfield. Tactical training prepares aircrews for operations in forward operating locations in which flying at low-altitudes over land not controlled by friendly forces exposes the aircraft to ground-based threats. This procedure is currently being flown with the KC-135; however, most tactical procedures would be accomplished in the simulator and at the other locations away from Rickenbacker IAP.
Using the current published and approved baseline noise contours from the Rickenbacker IAP FAR Part 150 Noise Compatibility Program Update and INM data, there would be a decrease in the overall number of airfield operations with the proposed KC-46A for comparison (Table 4.5.1-1).

Under Alternative #5, the 121 ARW KC-46A aircraft would fly a total of 8,040 hours, resulting in 2,010 annual sorties of which it is expected that up to 1,286 sorties would be flown at Rickenbacker ANGS. Baseline conditions for the KC-135 are represented here as the same number of 121 ARW airfield operations published in the August 2007 Rickenbacker IAP FAR Part 150 study (CRAA 2007). Based on 1,286 annual home-station sorties with an average of 5.33 operations per sortie, there would be 6,857 annual home-station operations, or a reduction of 6,283 airfield operations annually at Rickenbacker IAP. This would decrease the average daily airfield operations from approximately 36 to 25 as shown in Table 4.5.1-1. The 121 ARW KC-46A operations would be approximately 11 percent of all aircraft operations at the airfield under the current approved FAR Part 150 Noise Compatibility Update.

Table 4.5.1-1. Changes to Rickenbacker IAP Airfield Operations with Proposed KC-46A Based on FAR Part 150 Baseline

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>121 ARW</td>
<td>13,140(^1) (35.8)</td>
<td>6,857 (25.3)</td>
<td>-6,283 (47.8%)</td>
</tr>
</tbody>
</table>

Note: 1. Operations based on currently approved FAR Part 150.

Table 4.5.1-2 provides details on the total airfield operations for Rickenbacker IAP under Alternative #5 using the current FAR Part 150 as the baseline operations. There would be a 9.4 percent decrease in the overall airfield operations from the current baseline operations. There would be approximately 4 percent of KC-46A airfield operations flown during environmental night. The total number of operations flown by all other aircraft at Rickenbacker IAP would not change from previously identified airfield activities. There would be no change to any other aircraft types or aircraft flight tracks and profiles from the baseline condition.

Table 4.5.1-2. Rickenbacker ANGS Aircraft Operations with Proposed KC-46A

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>DEPARTURES</th>
<th>ARRIVALS</th>
<th>TOTAL(^1)</th>
<th>GRAND Total(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night(^3)</td>
<td>Day</td>
<td>Night(^3)</td>
</tr>
<tr>
<td>KC-46A</td>
<td>3,428</td>
<td>0</td>
<td>3,153</td>
<td>276</td>
</tr>
<tr>
<td>Other Aircraft(^4)</td>
<td>13,870</td>
<td>13,140</td>
<td>13,505</td>
<td>13,505</td>
</tr>
<tr>
<td>Total</td>
<td>17,298</td>
<td>13,140</td>
<td>16,658</td>
<td>13,781</td>
</tr>
</tbody>
</table>

Notes: 1. Includes Closed Patterns (which count as two airfield operations).
2. Night –Between 10 p.m. and 7 a.m. for environmental night.
3. Other Based aircraft and Transient Aircraft (multiple type aircraft) including: Boeing 737, 747, and Airbus 300.
4. Operations based on currently approved FAR Part 150.
Figure 4.5.1-1 depicts Alternative #5 noise exposure area from aircraft operations after the conversion from the current 18 KC-135 aircraft to 12 KC-46A aircraft, and Figure 4.5.1-2 compares baseline noise contours with Alternative #5 contours. The aircraft operations modeled include all current based and transient aircraft as depicted in the 2007 FAR Part 150 Noise Compatibility Noise Update. Table 4.5.1-3 shows changes to the acreage of land within each noise contour under Alternative #5.

Table 4.5.1-3. Land Areas within DNL Contours at Rickenbacker IAP Affected by DNL Greater than 65 dB under Baseline and Alternative #5

<table>
<thead>
<tr>
<th>Noise Contour (dB DNL)</th>
<th>BASELINE (KC-135) TOTAL (ACRES)</th>
<th>ALTERNATIVE #5 (KC-46A) TOTAL (ACRES)</th>
<th>Change Total (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On Airport</td>
<td>Off Airport</td>
<td>Total</td>
</tr>
<tr>
<td>65-70</td>
<td>811</td>
<td>417</td>
<td>1,228</td>
</tr>
<tr>
<td>70-75</td>
<td>478</td>
<td>0</td>
<td>478</td>
</tr>
<tr>
<td>75-80</td>
<td>156</td>
<td>0</td>
<td>156</td>
</tr>
<tr>
<td>80-85</td>
<td>265</td>
<td>0</td>
<td>265</td>
</tr>
<tr>
<td>>85</td>
<td>232</td>
<td>0</td>
<td>232</td>
</tr>
<tr>
<td>Total</td>
<td>1,942</td>
<td>417</td>
<td>2,359</td>
</tr>
</tbody>
</table>

Notes: DNL = Day Night Average Sound Level; dB = decibel

Under Alternative #5, the DNL noise contours would decrease slightly from the DNL baseline contours. The reduction is the result of fewer KC-46A airfield operations and because the KC-46A is generally a quieter aircraft (5 dB quieter on landing and 1 dB louder on take-off) than the KC-135.

Overall, the number of acres contained within the 65 dB DNL and greater exposure area would decrease by approximately 99 acres, or 4 percent, and would remain primarily on airport property with approximately 345 of the acres off the airport property under Alternative #5. Information regarding the number of people residing in this area can be found in Section 4.5.11, *Environmental Justice and the Protection of Children*; and information regarding the area of residential use is located in Section 4.5.7, *Land Use*.
Figure 4.5.1-1. DNL Noise Contours Under Alternative #5 at Rickenbacker IAP

Figure 4.5.1-2. Comparison of Baseline and Alternative #5 DNL Noise Contours at Rickenbacker IAP

Rickenbacker ANGS
Percent of the Population Expected to be Highly Annoyed

The percentage of the population expected to be highly annoyed under Alternative #5 would not be expected to change from baseline conditions because there are no additional residences exposed to levels above 65 dB DNL.

Single Event Sound Analysis

Under Alternative #5, the flying profiles would not change, and the scheduled flying program would not change. As shown in Appendix A, Table A.1.2-2 provides representative SELs, indicating that the SEL for individual landings by the KC-46A would be 5 dB less while take-offs would be 1 dB more than the KC-135. Under Alternative #5, only the number of aircraft operations would change; there would be no change in where or when individual aircraft operate. Flights would be scheduled for similar time periods as currently flown during the morning and afternoons, with approximately 4 percent of flights occurring during environmental night (after 10 p.m. and before 7 a.m.).

Potential Hearing Loss

As shown in Table 4.5.1-3, there is no property off the Rickenbacker IAP that falls within the 80+ dB DNL noise contour; therefore, there would be no potential hearing loss risk associated with these areas.

4.5.1.2 Construction Noise

There would be some minor noise from construction equipment associated with construction activities that would occur intermittently during the construction period (beginning FY 2015). Typical noise levels from heavy equipment range from 69 to 84 dB at 100 feet from the source (FHWA 2006). Aviation-related activities at Rickenbacker IAP dominate the local noise environment for brief times on some days. Equipment used during the facility construction would contribute little to the general background noise levels around the airfield. Therefore, impacts from construction under Alternative #5 would be negligible.

4.5.1.3 Summary of Impacts

The number of 121 ARW airfield operations would decrease by 6,283 (48 percent decrease from the currently published FAR Part 150 Noise Compatibility Program; and a 1 percent increase in actual 2012 airfield operations), and the acreage within the 65 dB DNL (and greater) noise contour would decrease by 99 acres. There would be a decrease of 72 acres within the 65 dB DNL noise contour that are off airport-controlled property, resulting in 345 acres off airport-
controlled property that lie within the 65 dB DNL contour. There would be no potential for hearing loss off the airport and no increase in the percent of the population highly annoyed. Construction noise would be localized and temporary and would not add to the overall noise environment. Impacts from noise would be negligible.

4.5.2 Air Quality

The air quality analysis estimated the magnitude of emissions that would result from implementation of the proposed KC-46A construction and operational activities at the 121 ARW. The estimation of proposed operational emissions is based on the net change in emissions between existing aircraft operations and projected KC-46A operations.

As discussed in Appendix A.2.3, air quality impacts from the beddown of the KC-46A aircraft at Rickenbacker IAP were reviewed for significance relative to the PSD threshold for new major sources for attainment pollutants, and the General Conformity *de minimis* thresholds for nonattainment pollutants. Because the project region within Franklin County is a nonattainment area for O₃ (marginal) and PM₂.₅, the *de minimis* threshold of 100 tpy for O₃ precursors NOₓ and VOCs, and PM₂.₅, was used as an indicator of the potential significance of the emissions from the KC-46A conversion. For attainment pollutants, the PSD threshold of 250 tpy (100,000 tpy for GHGs) was used as an indicator of the potential significance of the emissions from Alternative #5.

4.5.2.1 Operational Emissions

Sources associated with operation of the proposed KC-46A beddown at Rickenbacker IAP include (1) operations and engine maintenance/testing of aircraft; (2) onsite POVs; (3) offsite POV commutes; and (4) AGE. It was assumed that other sources, including nonroad mobile equipment, mobile fuel transfer, and stationary source emissions would be unchanged. Operational data used to calculate projected KC-46A aircraft emissions were obtained from the data used in the project noise analysis. Factors used to calculate combustion emissions for the KC-46A aircraft are based on emissions data developed by Pratt and Whitney for the PW4062 engine (International Civil Aviation Organization 2013). The operational times in mode for the KC-46A engine are based on those currently used for the KC-135 aircraft (AFCEC 2013). The analysis of proposed aircraft operations is limited to operations that occur within the lowest 3,000 feet of the atmosphere, as this is the typical depth of the atmospheric mixing layer where the release of aircraft emissions would affect ground-level pollutant concentrations.

Emissions from AGE were estimated based on the methodology recommended in the *Air Emissions Guide for Air Force Mobile Sources* (AFCEC 2013). Emissions from POVs were
estimated based on the proposed personnel for the existing and proposed scenarios, using emission factors for vehicles from AFCEC 2013.

Table 4.5.2-1 summarizes the annual operational emissions that would result from KC-46A operations at Rickenbacker IAP. Table 4.5.2-1 also presents the net emissions increase associated with the beddown of the KC-46A aircraft at Rickenbacker IAP. As shown in Table 4.5.2-1, the net emissions increases are below the PSD/de minimis thresholds for all pollutants.

Table 4.5.2-1. Comparison of Baseline and Proposed
Annual Operational Emissions, 121 ARW

<table>
<thead>
<tr>
<th>Baseline</th>
<th>ANNUAL EMISSIONS, TONS/YEAR</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VOC</td>
<td>CO</td>
<td>NOx</td>
<td>SO2</td>
<td>PM10</td>
<td>PM2.5</td>
</tr>
<tr>
<td>KC-135 Aircraft Operations</td>
<td>4.63</td>
<td>68.57</td>
<td>64.35</td>
<td>6.38</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.02</td>
<td>0.15</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.11</td>
<td>1.55</td>
<td>0.43</td>
<td>0.07</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>POVs</td>
<td>4.55</td>
<td>67.35</td>
<td>3.55</td>
<td>0.05</td>
<td>0.15</td>
<td>0.07</td>
</tr>
<tr>
<td>Total</td>
<td>9.29</td>
<td>137.50</td>
<td>68.48</td>
<td>6.50</td>
<td>0.51</td>
<td>0.42</td>
</tr>
<tr>
<td>Proposed Action</td>
<td>VOC</td>
<td>CO</td>
<td>NOx</td>
<td>SO2</td>
<td>PM10</td>
<td>PM2.5</td>
</tr>
<tr>
<td>KC-46A Aircraft Operations</td>
<td>21.73</td>
<td>77.82</td>
<td>123.58</td>
<td>7.78</td>
<td>0.57</td>
<td>0.49</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.02</td>
<td>0.15</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.59</td>
<td>2.03</td>
<td>0.54</td>
<td>0.07</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>POVs</td>
<td>4.09</td>
<td>60.59</td>
<td>2.68</td>
<td>0.05</td>
<td>0.15</td>
<td>0.07</td>
</tr>
<tr>
<td>Total</td>
<td>26.43</td>
<td>140.46</td>
<td>126.95</td>
<td>7.90</td>
<td>0.73</td>
<td>0.55</td>
</tr>
<tr>
<td>Net Increase</td>
<td>17.13</td>
<td>2.96</td>
<td>58.47</td>
<td>1.40</td>
<td>0.23</td>
<td>0.15</td>
</tr>
<tr>
<td>MOB2 Net Emissions Increase</td>
<td>1.84</td>
<td>0.02</td>
<td>0.85</td>
<td>0.22</td>
<td>0.45</td>
<td>0.36</td>
</tr>
<tr>
<td>Fraction of Existing Emissions</td>
<td>100/</td>
<td>250</td>
<td>100</td>
<td>250</td>
<td>250</td>
<td>100</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding.
CO = carbon monoxide; CO2e = carbon dioxide equivalent; NOx = oxides of nitrogen; PM10 = particulate matter less than or equal to 10 microns in diameter; PM2.5 = particulate matter less than or equal to 2.5 microns in diameter; SO2 = sulfur dioxide; VOC = volatile organic compound; AGE = aerospace ground equipment; POV = privately owned vehicle; PSD = Prevention of Significant Deterioration

In addition to criteria pollutant emissions, the beddown of the KC-46A aircraft at Rickenbacker IAP would result in emissions of HAPs and GHGs. Operational activities would result in a net increase of HAPs that is below 1 ton per year.
Table 4.5.2-2 summarizes the annual operational GHG emissions that would result from KC-46A operations at Rickenbacker IAP, along with the net increase in comparison with the baseline. As shown in Table 4.5.2-2, emissions are below the PSD thresholds for GHGs.

Table 4.5.2-2. Comparison of Baseline and Proposed Annual Operational GHG Emissions, 121 ARW

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Proposed Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ANNUAL GHG EMISSIONS, METRIC TONS/YEAR</td>
<td>ANNUAL GHG EMISSIONS, METRIC TONS/YEAR</td>
</tr>
<tr>
<td></td>
<td>CO₂</td>
<td>CH₄</td>
</tr>
<tr>
<td>KC-135 Aircraft Operations</td>
<td>17,562</td>
<td>0.49</td>
</tr>
<tr>
<td>AGE</td>
<td>3,298</td>
<td>0.09</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>183</td>
<td>0.01</td>
</tr>
<tr>
<td>POVs</td>
<td>2,407</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>23,451</td>
<td>0.58</td>
</tr>
<tr>
<td>KC-46A Aircraft Operations</td>
<td>21,009</td>
<td>0.53</td>
</tr>
<tr>
<td>AGE</td>
<td>3,291</td>
<td>0.09</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>180</td>
<td>0.00</td>
</tr>
<tr>
<td>POVs</td>
<td>2,430</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>26,909</td>
<td>0.63</td>
</tr>
<tr>
<td>Net Increase</td>
<td>3,458</td>
<td>0.05</td>
</tr>
<tr>
<td>PSD Threshold</td>
<td>100,000</td>
<td>100,000</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding.

CO₂ = carbon dioxide; CH₄ = methane; N₂O = nitrous oxide; CO₂e = carbon dioxide equivalent; AGE = aerospace ground equipment; POVs = privately owned vehicle.

4.5.2.2 Construction Emissions

The KC-46A beddown at Rickenbacker IAP would require construction and renovation of existing airfield facilities, including hangars, buildings, and aprons and ramps. Air quality impacts resulting from the proposed construction activities would occur from (1) combustion emissions from heavy equipment and vehicles; and (2) fugitive dust emissions due to operation of equipment on exposed soil. Table 4.5.2-3 presents a summary of the annual construction emissions for the beddown of the KC-46A aircraft at Rickenbacker IAP. As shown in Table 4.5.2-3, emissions would be below the PSD/de minimis thresholds for all pollutants.
Table 4.5.2-3. Annual Construction Emissions Under Alternative #5

<table>
<thead>
<tr>
<th>Construction Project</th>
<th>CO</th>
<th>NOx</th>
<th>VOC</th>
<th>SOx</th>
<th>PM10</th>
<th>PM2.5</th>
<th>Total CO2 Metric tons/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project #1 - Addition and Modifications to Hangar 885</td>
<td>0.32</td>
<td>0.51</td>
<td>0.09</td>
<td>0.01</td>
<td>0.40</td>
<td>0.37</td>
<td>170.43</td>
</tr>
<tr>
<td>Project #2 - Addition to Hangar 883</td>
<td>1.39</td>
<td>2.20</td>
<td>0.39</td>
<td>0.04</td>
<td>2.17</td>
<td>1.70</td>
<td>736.69</td>
</tr>
<tr>
<td>Project #3 - Internal Renovations to Hangar 888</td>
<td>0.30</td>
<td>0.47</td>
<td>0.06</td>
<td>0.01</td>
<td>0.04</td>
<td>0.04</td>
<td>122.59</td>
</tr>
<tr>
<td>Project #4 - Modifications to Existing Parking Ramp and Taxiway</td>
<td>9.07</td>
<td>21.55</td>
<td>2.25</td>
<td>1.07</td>
<td>22.37</td>
<td>8.31</td>
<td>5,355.66</td>
</tr>
<tr>
<td>Project #5 - New Hydrants and Fuel Lines and Demolition of Existing Hydrants</td>
<td>0.05</td>
<td>0.08</td>
<td>0.01</td>
<td>0.00</td>
<td>0.02</td>
<td>0.01</td>
<td>27.82</td>
</tr>
<tr>
<td>Total</td>
<td>11.12</td>
<td>24.82</td>
<td>2.80</td>
<td>1.13</td>
<td>25.00</td>
<td>10.43</td>
<td>6,413.19</td>
</tr>
</tbody>
</table>

PSD/de minimis Threshold

<table>
<thead>
<tr>
<th>CO2</th>
<th>NOx</th>
<th>VOC</th>
<th>SOx</th>
<th>PM10</th>
<th>PM2.5</th>
<th>Total CO2 Metric tons/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>100</td>
<td>100</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>100,000</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding.

CO = carbon monoxide; NOx = oxides of nitrogen; VOC = volatile organic compound; SOx = oxides of sulfur; PM10 = particulate matter less than or equal to 10 microns in diameter; PM2.5 = particulate matter less than or equal to 2.5 microns in diameter; CO2 = carbon dioxide; PSD = Prevention of Significant Deterioration

4.5.2.3 Summary of Impacts

The Rickenbacker ANGS is located in an area of nonattainment for the O3 and PM2.5 NAAQS. While there are increases in operational criteria pollutant emissions, they are below the PSD/de minimis thresholds for all pollutants and are not significant. Operational GHG emissions are within thresholds in the PSD tailoring rule. Impacts from construction emissions and operational HAP emissions are negligible.

4.5.3 Safety

4.5.3.1 Ground Safety

Existing facilities at Rickenbacker IAP for fire response and crash recovery meet KC-46A beddown requirements (Headquarters AMC and NGB 2013b).

Providing new and renovated facilities for the 121 ARW that support operational requirements of the KC-46A, and are properly sited with adequate space and a modernized supporting infrastructure would generally enhance ground and flight safety during required operations, training, maintenance and support procedures, security functions, and other activities conducted by the 121 ARW.

Proposed renovation and infrastructure improvement projects related to Alternative #5 would not impact aircraft take-off or landings or penetrate any RPZs. New construction is not proposed, only existing building renovation; therefore, construction activity would not result in any greater safety risk or obstructions to navigation. Operations would fall within the same general types as
those that have historically occurred at Rickenbacker IAP. For example, the KC-46A would follow established local approach and departure patterns used. Therefore, flight activity and subsequent operations would not require changes to RPZs.

To support the aircraft beddown at Rickenbacker ANGS, some facilities would require renovation/modification. However, no construction activities would involve any unusual or extraordinary techniques. During construction and modifications, standard construction safety procedures would be employed, and strict adherence to all applicable standard industrial safety requirements and procedures, including AFI 13-213, *Airfield Driving* (2011), would further minimize the relatively low risk associated with these construction activities.

At present, Rickenbacker ANGS has no QD arcs and no plans to store munitions at the installation are proposed.

The proposed construction projects meet all criteria specified in the ANG Handbook 32-1084, *Facility Space Standards*. AT/FP requirements have also been addressed to the extent practicable in all projects. Projects would use AT/FP site design standards for siting of facilities, parking, walkways, and other features. Renovations would bring the facilities into compliance with UFC 4-022-01, *Security Engineering: Entry Control Facilities/Access Control Points* and UFC 4-010-01, *DoD Minimum Antiterrorism Standards for Buildings*, providing additional protection for the personnel based there.

4.5.3.2 Flight Safety

Although the KC-46A is a new aircraft, it is a military derivative of the commercial Boeing 767 aircraft. First flown commercially in 1982, more than 1,000 commercial Boeing 767 aircraft have been produced and it is a proven commercial airliner, freighter, and tanker already in service (Boeing 2012). Mishap statistics for the commercial Boeing 767 show 14 total aircraft losses (similar to a Class A military mishap definition) during its 31 year lifetime (ASN 2013).

Although no facilities are proposed that would affect navigable airspace, Rickenbacker ANGS would comply with 14 CFR Part 77, *Objects Affecting Navigable Airspace*, as appropriate, should they be selected to host the KC-46A.

To augment airborne training missions, pilots flying the KC-46A would use simulators extensively. Simulator training includes all facets of flight operations and comprehensive emergency procedures. The sophistication and fidelity of current simulators and related computer programs are commensurate with the advancements made in aircraft technology and are extremely realistic. These factors should minimize risk associated with mishaps due to pilot error.
Under Alternative #5, there would be an increase of approximately 6 percent in 121 ARW annual operations (1 percent in total Rickenbacker IAP airfield operations) compared to existing conditions. This negligible increase in take-offs, landings, proficiency training, and other flights would not result in a measurable change in the safety risk to aircrews and personnel.

The proposed change in airfield flight operations would be expected to increase the opportunity for aircraft mishaps, including BASH incidents; however, the expected rate of mishaps or BASH incidents would not be expected to change from current conditions. In addition, current airfield safety procedures discussed previously would continue to be implemented and additional airfield flight operations would adhere to established safety procedures.

Given the low likelihood for an aircraft accident or BASH mishap to occur in the local airfield area and even lower likelihood for civilians to be impacted, impacts to safety in the vicinity of Rickenbacker IAP as a result of the Proposed Action are expected to be negligible.

The KC-46A will have the capability to jettison fuel for emergency situations. Military policy is to avoid fuel jettisons, unless safety of flight dictates an immediate jettison, and requires senior officer approval before fuel jettison, unless under emergency situations. Records of KC-135 fuel jettison events reveal that such circumstances are rare, occurring in slightly less than two sorties per thousand (Headquarters AMC 2013). Additionally, unlike the KC-135, the KC-46A will have the capability to land fully loaded with fuel so long as adequate runway length and braking capability are available (Headquarters AMC 2013), which could potentially lessen the need to jettison fuel in certain circumstances. Based on information provided by Boeing, landing the KC-46A above maximum landing weight is not prohibited; however, it does drive costly inspection requirements. To land above maximum landing weight routinely could reduce the fatigue life of the airplane (Headquarters AMC 2013).

4.5.3.3 Summary of Impacts

There would be a 6 percent increase in actual 121 ARW airfield operations (1 percent increase in total airfield operations) at Rickenbacker IAP with a commensurate increase in mishap and BASH potential. Construction activities would involve no unusual or extraordinary techniques. During construction and modifications, standard construction safety procedures would be employed, and strict adherence to all applicable standard industrial safety requirements and procedures would further minimize the relatively low risk associated with these construction activities. Impacts to safety would be expected to be negligible.
4.5.4 Soils and Water

4.5.4.1 Soils

Under Alternative #5, new construction would consist of five separate projects resulting in 368,330 SF (8.5 acres) of new construction footprint and 14,660 SF (0.3 acre) of new impervious surface (Table 2.3-29). These proposed construction projects for aircraft conversion would meet all criteria specified in ANG Handbook 32-1084, *Facility Space Standards*.

Proposed construction under Alternative #5 would occur primarily on Crosby-Urban land complex (0 to 2 percent slopes), with a small amount of the new construction footprint on Kokomo-Urban land complex. Crosby-Urban land complex is not rated in road or small commercial building development and may require onsite investigation and evaluation for most land use decisions to identify any potential limitations (NRCS 2013). There is no proposed construction on any farmland; therefore, the Farmland Protection Policy Act does not apply to Alternative #5.

Under Alternative #5, there would be approximately 368,330 SF (8.5 acres) of temporary soil disturbance as a result of the proposed construction. To minimize potential impacts to soil and water resources associated with erosion, runoff, sedimentation during construction activity, and standard construction practices as described in the 121 ARW SWPPP (121 ARW 2009) would be implemented during and following the construction period. Such practices could include the use of well-maintained silt fences or straw wattles, minimizing surficial areas disturbed, stabilization of cut/fill slopes, minimization of earth-moving activities during wet weather, and covering of soil stockpiles, as appropriate.

A site-specific and detailed SWPPP that coordinates the timing of soil disturbing activities with the installation of soil erosion and runoff controls is an effective way of controlling erosion while soil is exposed and subject to construction activity. An NOI must be filed with the state of Ohio to obtain coverage under the Storm Water Discharge from Small and Large Construction Activities (General Permit No. OH000004) prior to implementation of individual projects. Construction activities subject to this permit include clearing, grading, and disturbances to the ground such as stockpiling or excavation. Implementation of these measures, as necessary and appropriate, would ensure that impacts to earth resources as a result of implementation of Alternative #5 would be minimal.

4.5.4.2 Surface Water

As a result of implementation of Alternative #5, there would be approximately 14,660 SF (0.3 acre) of new impervious surface from the proposed construction (Figure 4.5.4-1). This could
result in localized increases in stormwater runoff volume and intensity, in addition to increases in total suspended particulates to nearby surface waters. However, in accordance with UFC 3-210-10, LID (as amended, 2010) and EISA Section 438, any increase in surface water runoff as a result of the proposed construction would be attenuated through the use of temporary and/or permanent drainage management features. The integration of LID design concepts incorporates site design and stormwater management to maintain the site’s pre-development runoff rates and volumes to further minimize potential adverse impacts associated with increases in impervious surface area.

Increased runoff and peak discharge volumes as a result of increases to impervious surface can be managed by appropriately designed conveyance structures (such as roadways, channels, and culverts) in accordance with site-specific engineering standards that take into consideration the influence of surface water drainage within, adjacent to, and downstream of the project. In addition, implementing features that manage surface water runoff into the design of the project would avoid or minimize conflicts with city, county, state, or federal regulations and prevent adversely affecting adjacent properties and/or the project area itself. Such measures could include:

- water harvesting and natural open space,
- installation of retention/detention basins for water recharge or for release of runoff at predetermined times to minimize peak discharges,
- the use of porous materials, such as pavers or gravel, for driveway and walkway construction, and
- directing runoff toward permeable areas, such that discharge exiting each site post-construction would be equal to or less than existing conditions.

Implementation of these measures, as necessary and appropriate, would ensure that impacts to surface water as a result of implementation of Alternative #5 would be minimal.
4.5.4.3 Groundwater

As a result of Alternative #5, the increase in the amount of impervious surface (0.3 acre) would also result in a decrease in groundwater recharge. However, as noted above, any increase in surface water runoff as a result of the proposed construction would be attenuated through the use of permit-related temporary and/or permanent drainage management features such as detention/retention basins and standard construction practices as described in the 121 ARW SWPPP (121 ARW 2009). The integration of water harvesting and natural open space into project design would further minimize potential adverse impacts due to increased impervious surface. The use of these features would also increase groundwater recharge through direct percolation offsetting the loss of pervious surface due to future construction. Additionally, the impervious surface area resulting from the proposed activities would not be one continuous, hardened surface. Rather, the impervious surfaces would occupy several smaller areas, which would further minimize localized impacts to groundwater recharge.

4.5.4.4 Floodplains

Proposed construction activities at the installation would not occur within the 100-year floodplain zone. As such, there would be no impacts to floodplains under this alternative.

4.5.4.5 Summary of Impacts

There would be approximately 8.5 acres of temporary soil disturbance and 0.3 acre of new impervious surface as a result of the proposed construction. To minimize potential impacts associated with erosion, runoff, and sedimentation, standard construction practices would be implemented. Proposed construction would not impact prime farmlands; therefore the Farmland Protection Policy Act does not apply to this alternative. Therefore, impacts to soil and water resources would be negligible.

4.5.5 Biological Resources

4.5.5.1 Vegetation

Construction of new facilities associated with Alternative #5 at the 121 ARW installation would occur on currently paved areas or actively managed (i.e., mowed and landscaped) areas, and would result in an increase of 14,660 SF (0.3 acre) of impervious surfaces. No native vegetation would be impacted. Impacts to the vegetation at the installation would be negligible due to the lack of sensitive vegetation in the project area.
4.5.5.2 Wildlife

Under Alternative #5, impacts to wildlife due to construction would be minor. Noise associated with construction may also cause wildlife to temporarily avoid the area, including those that are protected under the MBTA and may cause them to temporarily leave the area. Noise associated with excavating, as well as an increase in general industrial activity and human presence, could evoke reactions in birds. Disturbed nests in the immediate vicinity of construction activity would be susceptible to abandonment and depredation. However, bird and wildlife populations in the vicinity of the airport where project components would occur are accustomed to elevated noise associated with aircraft and general military industrial use. As a result, indirect impacts from construction such as dust and noise are expected to be minimal because the ambient noise levels within the vicinity are high under existing conditions and would be unlikely to substantially increase by the relatively minor and temporary nature of the proposed construction and modifications.

Under Alternative #5, impacts to wildlife due to noise from proposed operations would be minor. Bird/wildlife aircraft strikes are also an inevitable hazard associated with military aircraft training. Under Alternative #5, the KC-46A would operate in the same airfield environment as the current aircraft. Annual operations for the KC-46A at Rickenbacker IAP would be projected to increase slightly by approximately 6 percent from the 2012 baseline operations (1 percent increase in total airfield operations) found in Table 2.3-27. This negligible increase in levels of operations (e.g., sorties) may result in a negligible increase in opportunity for bird/wildlife aircraft strikes to occur, including those with migratory birds. Adherence to the existing, BASH program would minimize the risk of bird/wildlife aircraft strikes (see Section 4.5.3, Safety). The 121 ARW has developed procedures designed to minimize the occurrence of bird/wildlife aircraft strikes, and has documented detailed procedures to monitor and react to heightened risk of bird/wildlife aircraft strikes. When risk increases, limits are placed on low-altitude flight and some types of training (e.g., multiple approaches, closed pattern work) in the airport environment. Special briefings are provided to pilots whenever the potential exists for increased bird/wildlife aircraft strikes within the airspace.

4.5.5.3 Special Status Species

No federally threatened and endangered species are known to occur on Rickenbacker IAP, and there is only a low potential for them to occur due to lack of habitat. Therefore, there would be no effect on federally listed species. In an email dated April 7, 2014, the USFWS has concurred with this determination (see Appendix B, Section B6). Only one state listed species, the Northern Harrier, is currently known to occur on Rickenbacker IAP, and there is only low potential for others to occur due to lack of habitat. Impacts to the Northern Harrier would be similar to those
impacts described under wildlife. Indirect impacts to the Northern Harrier from construction such as dust and noise are expected to be minimal because the ambient noise levels within the vicinity are relatively high under existing conditions and would be unlikely to substantially increase by the relatively minor and temporary nature of the proposed construction and modifications. In addition, noise from proposed operations would be minor as total airfield operations are projected to increase slightly by approximately 1 percent from baseline. This negligible increase in levels of operations (e.g., sorties) may result in a negligible increase in opportunity for bird/wildlife aircraft strikes to occur, including those with migratory birds. However, adherence to the existing BASH program would minimize the risk of bird/wildlife aircraft strikes (see Section 4.5.3, Safety). Impacts due to construction noise and from proposed operations would be minor.

4.5.5.4 Wetlands

There are no wetland areas that occur within the vicinity of the proposed project footprints. Therefore, no impacts to wetlands would occur as a result of Alternative #5.

4.5.5.5 Summary of Impacts

Construction of new facilities associated with this alternative would occur primarily on currently paved or actively managed areas. Therefore impacts to vegetation would be negligible. There would be no impacts to wetlands. Impacts to wildlife and sensitive species from operational noise would be minor due to the 6 percent increase in 121 ARW airfield operations. This small increase in the airfield operations may also result in a slight increased opportunity for bird-aircraft strikes to occur, including those with migratory birds. Impacts to state listed species would be minor. No federally listed species or critical habitat is known to occur on Rickenbacker IAP, therefore there would be no impacts to federally listed species.

4.5.6 Cultural Resources

Potential direct impacts to cultural resources examined in this analysis include effects to archaeological sites due to ground disturbing activities during construction or modification to buildings. Indirect impacts from an increase in personnel from 1,497 to 1,694 would be negligible as personnel would primarily be confined to the developed areas on the installation, which lack cultural resources.

4.5.6.1 Archaeological Resources

There is one significant archaeological resource located at the 121 ARW at Rickenbacker IAP. This is a multi-component site that is considered eligible to the NRHP. The ground disturbing
activities associated with this alternative would not occur near the archaeological resource and therefore, there would be no impacts to the site. In the unlikely event that archaeological or human remains are identified during construction, all activities in the area of the discovery would cease and the Environmental Manager would contact a qualified archaeologist to evaluate the discovery. Under these conditions, there would be no impact to archaeological resources under Alternative #5.

4.5.6.2 Architectural Resources

Two of the hangars (885 and 888) proposed for additions, modifications, and renovations are eligible to the NRHP. The Ohio SHPO concurred with this eligibility determination (121 ARW 2011d). Hangar 885 would have an addition and renovations inside to house the new aircraft and support facilities. Because these renovations would alter the exterior appearance of a structure that is considered eligible because of its design, the construction would have an adverse effect on a historic property. Modification to Hangar 888 would all be interior; however, they could have an adverse effect to this NRHP-eligible resource. Rickenbacker ANGS and the Ohio SHPO have developed a Programmatic Agreement stating that if Rickenbacker ANGS is selected to host the MOB 2 KC-46A beddown, further consultation would be conducted to minimize and mitigate adverse effects to these buildings (see Appendix B, Section B3). The third hangar with proposed changes (additions) under this alternative is Hangar 883. This structure has not been inventoried; however, it was constructed in 2000 and is therefore less than 50 years old, is not a Cold War-era resource, and is not exceptionally significant (eligible to the NRHP under Criterion Consideration G). For these reasons, it is not eligible for listing in the NRHP. The SHPO has concurred with this determination and agrees that no adverse effects to this structure would result from the proposed action.

4.5.6.3 Traditional Resources

No traditional resources have been identified at the 121 ARW installation and the highly developed nature of the installation makes it unlikely to contain any such resources. Government-to-government consultation for this action has been conducted with each federally-recognized Tribe associated with the 121 ARW installation in recognition of their status as sovereign nations, to provide information regarding tribal concerns per Section 106 of the NRHP as well as information on traditional resources that may be present on or near the installation. Five responses have been received. The Peoria Tribe of Indians of Oklahoma has sent a response stating that according to their reviews no traditional resources exist on the 121 ARW installation (see Appendix B2 and Stacy 2013). On January 17, 2014, the Shawnee Tribe stated that they had no objection to the Proposed Action via telephone call. On January 22, 2014 the Turtle Mountain Band of Chippewa Indians of North Dakota stated that they had no objection to the Proposed Action via telephone call. On February 4, 2014, the Pokagon Band of Potawatomi
Indians stated that they had no objection to the Proposed Action via telephone call. The Delaware Nation stated via telephone on April 3, 2014 that they had no objection to the Proposed Action. Letters and written correspondence to Tribes were followed up with telephone calls and emails in an effort to increase accessibility and encourage communication in the event a Tribe would have any concerns regarding the Proposed Action or land below the affected or proposed airspace areas. Correspondence sent to the tribes and follow-up efforts are located in Appendix B2. Additional efforts were made to contact non-responsive tribes without success (see Appendix B2). While the NGB and the USAF values its relationship with all tribes and will continue to consult on other planning efforts or matters of known or potential interest to tribes, Section 106 consultation on the KC-46A MOB 2 proposed alternative at Rickenbacker ANGS is now complete.

4.5.6.4 Summary of Impacts

Construction activities at Rickenbacker ANGS would be limited to the developed areas of the installation, primarily in the areas of the aircraft hangars and airfield pavements, where no archaeological resources are known. Additionally, the installation has been surveyed for archaeological resources and no NRHP-eligible resources were discovered. The Ohio SHPO has concurred with the findings of the archaeological survey (Snyder 2007). One significant archaeological resource was recorded prior to the 2007 installation-wide survey. This site is not within the proposed construction areas and would not be impacted by the Proposed Action. Two NRHP-eligible hangars (883 and 885) could be adversely impacted by construction under this alternative. Rickenbacker ANGS and the Ohio SHPO have developed a Programmatic Agreement stating that if Rickenbacker ANGS is selected to host the MOB 2 KC-46A beddown, further consultation would be conducted to minimize and mitigate adverse effects to these buildings. Therefore, with completion of Section 106 consultation, no adverse impacts are anticipated to cultural resources at the 121 ARW installation under Alternative #5.

4.5.7 Land Use

The primary source of impacts to land use resulting from Alternative #5 would be from noise. As shown in Table 4.5.7-1 and Figure 4.5.7-1, areas outside of the airport boundaries currently exposed to DNLs of 65 dB to 70 dB would decrease by 72 acres, overall. By zoning districts, Industrial areas affected by DNL of 65 dB to 70 dB would decrease by approximately 2 acres, Public and Utility areas would decrease slightly (less than 1 acre each), Agricultural areas would decrease by approximately 36 acres, and non-designated lands would decrease by approximately 33 acres. No houses, churches, schools or other sensitive noise receptors are located within the 65 dB DNL off-airport noise contour areas. A more detailed discussion of aircraft operations and noise can be found in Section 4.5.1, Noise. Therefore, Alternative #5 is compatible with current land use and zoning designations and would result in minor beneficial impacts.
Table 4.5.7-1. Change in Acres Affected by Noise Levels Above 65 dB DNL Outside the Rickenbacker IAP Boundary

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Baseline</th>
<th>65 dB to 70 dB DNL</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Proposed</td>
<td></td>
</tr>
<tr>
<td>Industrial</td>
<td>5.3</td>
<td>3.1</td>
<td>-2.2</td>
</tr>
<tr>
<td>Public Exempt</td>
<td>0.3</td>
<td>0.1</td>
<td>-0.2</td>
</tr>
<tr>
<td>Utilities</td>
<td>0.8</td>
<td>0.3</td>
<td>-0.5</td>
</tr>
<tr>
<td>Agricultural</td>
<td>342.1</td>
<td>306.1</td>
<td>-36.0</td>
</tr>
<tr>
<td>Non-designated</td>
<td>68.5</td>
<td>35.4</td>
<td>-33.1</td>
</tr>
<tr>
<td>Total Area</td>
<td>417</td>
<td>345</td>
<td>-72.0</td>
</tr>
</tbody>
</table>
Figure 4.5.7-1. DNL Noise Contours and Land Use Under Alternative #5 at Rickenbacker IAP

Source: Pickaway County 2013, Franklin County Zoning 2013, Rickenbacker IAP 2005.
4.5.7.1 Summary of Impacts

The number of airfield operations would decrease by 6,283 (48 percent decrease) from the currently published FAR Part 150 Noise Compatibility Program, and the acreage within the 65 dB DNL (and greater) noise contour would decrease by 99 acres. There would be a decrease of 72 acres within the 65 dB DNL noise contour that are off airport-controlled property, resulting in 345 acres off airport-controlled property that lie within the 65 dB contour. Current land use and zoning designations would not change due to the basing of the KC-46A. This alternative would result in negligible impacts in off-airport areas exposed to noise levels above 65 dB DNL. Airport Hazard Areas would not be affected.

4.5.8 Infrastructure and Transportation

4.5.8.1 Potable Water

Water consumption would be expected to increase slightly under Alternative #5 as a result of the increase in personnel; however, an increase in 184 personnel on the installation would not be expected to impact regional water supply. Additionally, the demand for water (e.g., if used to control dust) could also increase during demolition and construction phases. However, this increase would be temporary and intermittent and would not be expected to impact regional water supply.

4.5.8.2 Wastewater

Wastewater generation would be expected to increase slightly as a result of the increase in 184 personnel on the installation. However, there have been no deficiencies identified with the existing system, and it is expected that the existing sanitary sewer system is generally adequate to serve the facilities proposed under this alternative.

4.5.8.3 Stormwater

Under Alternative #5, there would be an up to 368,330 SF (8.5 acres) of temporary soil disturbance as a result of proposed construction. The proposed construction activities could temporarily impact the quality of stormwater runoff (see Section 4.5.4, Soils and Water); however, through implementation of appropriate standard construction practices (as described previously), preventative maintenance, and periodic inspections and sampling to detect risk to stormwater, especially during active construction activity, no impacts would be expected to the existing stormwater drainage system as a result of the proposed construction.
In addition, there would be an increase in up to 14,660 SF (0.3 acre) of new impervious surface. The addition of new impervious surfaces would potentially increase stormwater runoff volume and peak discharge rates; however, as discussed in further detail in Section 4.5.4, *Soils and Water*, stormwater runoff increases would be managed such that discharge exiting each site post-construction would be equal to or less than existing conditions in accordance with UFC 3-210-10 and EISA Section 438. Implementation of these measures would ensure that impacts to the stormwater drainage system as a result of implementation of Alternative #5 would be minimal.

4.5.8.4 Electrical and Natural Gas Systems

Demand for electricity and natural gas would be expected to increase slightly as a result of the increase in personnel, and the building space and facilities to be constructed would require additional electricity. However, any new facilities and additions associated with Alternative #5 would be implemented with more energy efficient design standards and utility systems than are currently in place. In addition, construction projects would incorporate LEED and sustainable development concepts to achieve optimum resource efficiency, sustainability, and energy conservation. Therefore, average energy consumption would be expected to remain consistent or decrease compared to energy consumption associated with existing facilities.

Construction activity associated with Alternative #5 could result in some temporary interruption of utility services during construction. These impacts would be temporary, occurring briefly during active construction periods. In addition, the demand for energy (primarily electricity) could increase slightly during demolition and construction phases. The energy supply at the installation and in the region is adequate and would not be affected by this temporary increase in demand.

4.5.8.5 Solid Waste Management

The building space and facilities to be constructed would generate construction and demolition debris requiring landfill disposal. Construction activities would result in approximately 368,330 SF of additions and alterations to existing facilities and 14,660 SF of new building construction. Using a multiplier provided by the USEPA to determine solid waste generation, it was estimated that proposed renovations at Rickenbacker IAP would generate 4,342,611 pounds (2,171 tons) of renovation debris requiring landfill disposal and proposed new construction at Rickenbacker IAP would generate 63,624 pounds (32 tons) of construction debris (USEPA 2009). Therefore, the total amount of construction and demolition debris generated at Rickenbacker IAP would be 2,203 tons.
Solid waste generated at Rickenbacker IAP as a result of the proposed construction could result in impacts to solid waste management facilities in the area. The Franklin County Landfill has a remaining life expectancy of 24 years and a permitted throughput of 1,020,659 tons per year (Solid Waste Authority of Central Ohio 2011). The 2,203 tons of proposed construction debris generated at Rickenbacker IAP would represent 0.2 percent of the yearly capacity of the landfill. Impacts to local landfills would not be expected to exceed the permitted throughput or contribute significantly to the remaining capacity.

Off-installation contractors completing construction and demolition projects at the 121 ARW installation would be responsible for disposing of waste generated from these activities. Contractors would be required to comply with federal, state, and local regulations for the collection and disposal of municipal solid waste from the installation. Much of this material can be recycled or reused, or otherwise diverted from landfills. EO 13514, Federal Leadership in Environmental, Energy, and Economic Performance, sets a target diversion rate of 50 percent for recycling and waste diversion for DoD facilities by 2015, including construction and demolition waste; compliance with EO 13514 would further minimize the increase in solid waste generation as a result of the proposed construction. All non-recyclable construction and demolition waste would be collected in a dumpster until removal. Construction and demolition waste contaminated with hazardous waste, ACM, LBP, or other undesirable components would be managed in accordance with AFI 32-7042, Waste Management (2009).

4.5.8.6 Transportation

Construction equipment would be driven to proposed construction areas and would be kept on-site for the duration of the respective activity. Construction workers would drive daily in their personal vehicles to and from the construction site. In general, construction traffic would result in increases in the use of on-installation roadways during construction activities; however, increases would be temporary and intermittent, occurring only during active construction periods.

The number of authorized personnel on the installation would increase by 184 under Alternative #5 (see Table 2.3-30). The increase in personnel would create a potential 184 additional one-way vehicle trips to and from the installation during morning and evening peak periods for these additional personnel. Assuming that each person makes two trips per day, the implementation of Alternative #5 would add an additional 368 trips onto the existing roadway network after the construction phase is complete. However, regional roads used to access the installation as well as those located on the installation have sufficient capacity to manage this increase in traffic without substantial impacts to circulation. Therefore, impacts to transportation infrastructure would not be significant under Alternative #5.
4.5.8.7 Summary of Impacts

Impacts from this alternative would not be expected since there have been no deficiencies identified with the existing systems, and it is expected that the existing infrastructure is generally adequate to serve the facilities and increased personnel proposed under this alternative. Impacts to infrastructure resulting from construction would be negligible since any interruption of utility services or increase demand on infrastructure would be temporary and infrequent. Impacts to infrastructure would be negligible.

4.5.9 Hazardous Materials and Waste

4.5.9.1 Hazardous Materials

A HMMP has been developed for the KC-46A program. Training activities and other functions would be expected to remain similar between the KC-46A and existing KC-135 aircraft. The types of hazardous materials needed for maintenance and operation of the KC-46A would be expected to remain similar to those currently used for maintenance and operation of the KC-135 fleet. However, unlike the KC-135, the KC-46A aircraft will be free of ODSs. ODSs were typically used as part of the fire suppression systems on aircraft; ODS use and/or storage would no longer be required under the Proposed Actions.

The KC-46A aircraft has been designed with a focus on reduction of hazardous materials such that hazardous materials currently required for maintenance, operations, and materials on or associated with the new aircraft would be less than or equal to the existing aircraft (Boeing 2011). In addition, it is anticipated that the amount of hazardous waste generated for one KC-46A aircraft for maintenance activities would be slightly less than that generated for one KC-135 aircraft since the KC-46A has two engines as opposed to the four engines for the KC-135. Furthermore, the KC-46A is a newer aircraft and is expected to need less maintenance than the older KC-135 aircrafts.

Under Alternative #5, the total number of flying hours for the 121 ARW would increase from 7,215 to 8,040 (an 11 percent increase); therefore, the throughput of petroleum substances (e.g., fuels, oils) used during operations would be expected to increase commensurately from what is currently used to maintain the KC-135 fleet (see Appendix A, Section A.9, for more details). Additionally, it is expected that short-term increases would be realized in terms of the quantity of fuel used during construction activities, because various fuels (e.g., diesel, gasoline) would be required to run earth moving equipment and power tools and to provide electricity and lighting as conditions warrant. Procedures for hazardous material management established for the 121
ARW installation would continue to be followed in future operations associated with Alternative #5 and as required during all construction and renovation activities.

Toxic Substances

Under Alternative #5, additions to Hangars 885 and 883 are proposed, and internal renovations to Hangar 888 are proposed. Lead abatement was conducted in 2004 at Buildings 885 and 888. According to the 1995 asbestos report, Hangars 885 and 883 were found to contain no ACM. Building 883 was built in the year 2000 and therefore it is assumed that it does not contain any LBP or ACM. Any structures proposed for demolition, addition, or retrofit would be inspected for ACM and LBP according to established ANG procedures prior to any renovation or demolition activities. All ACM would be properly removed and disposed of prior to or during demolition in accordance with 40 CFR 61.40 through 157. All LBP would be managed and disposed of in accordance with TSCA, OSHA regulations, Ohio requirements (regarding site work practices for buildings with LBP), and established ANG procedures. Materials, especially discarded oil products, would be screened for PCB contamination prior to disposal.

4.5.9.2 Hazardous Waste Management

The type of hazardous waste streams generated by KC-46A operations would be expected to remain similar to those being generated by the existing KC-135 aircraft with the exception of ODSs, which would not be required with the KC-46A. Additionally, the two aircraft require the same types of hazardous materials for their maintenance and operations (e.g., fuels, oils). Under Alternative #5, the total number of flying hours would increase approximately 11 percent; therefore, hazardous waste streams would be expected to increase commensurately (see Appendix A, Section A.9, for more details). Hazardous waste generation (e.g., used oil, used filters, oily rags, etc.) would continue to be managed in accordance with the installation’s Hazardous Waste Management Plan and all applicable federal, state, and local regulations. Additionally, no changes to the installation’s small quantity generator status would be expected to occur due to the increase in hazardous waste generation from aircraft operations.

4.5.9.3 Environmental Restoration Program

In accordance with AFI 32-7020, The Environmental Restoration Program, construction, modifications and/or additions to existing buildings can occur on or in proximity to existing ERP sites. Accordingly, the appropriate organizations (e.g., installation planners, ERP managers, design engineers) must consider a compatible land use based on current site conditions and the selected or projected remedial action alternatives. Construction should be sited and designed to minimize life-cycle costs to include those associated with impacts from existing contaminated sites. If the potential for uncharacterized ERP sites exist, the installation is responsible for
identifying existing contamination at the proposed construction sites to avoid unknowingly locating construction projects in areas with contamination. The installation is responsible for performing necessary environmental baseline surveys, accomplishing environmental impact analysis process requirements, and for otherwise informing itself about existing site conditions and their associated cost impacts in preparation for a construction project. When warranted by the site history, environmental restoration funds may be used to accomplish RCRA facility assessments, or preliminary assessments and site inspections undertaken in accordance with the CERCLA process, or similar site investigations in accordance with applicable state laws for suspected releases. To the extent that a construction project generates actions to address contamination, or a need to change the timing of ERP-generated actions to address contamination, the costs of such actions are not Environmental Restoration Account-eligible and shall be funded as part of the construction project. This includes the handling, mitigation, and disposal or other disposition of contamination discovered before or during the construction activity.

The removal and disposal of contamination unexpectedly encountered within the construction project footprint during the execution of a construction project will be undertaken as part of the construction project using construction project funds which may include other MILCON funds reprogrammed to a MILCON construction project. Construction contractor costs (such as direct delay costs and unabsorbed or extended overhead) incidental to discovery and removal of the contamination will be construction project funded to the extent that the government is responsible and liable for such costs.

Vapor intrusion should be evaluated when volatile chemicals are present in soil, soil gas, or groundwater that underlies existing structures or has the potential to underlie future buildings and there may be a complete human exposure pathway. Due to their physical properties, volatile chemicals can migrate through unsaturated soil and into the indoor air of buildings located near zones of subsurface contamination.

One ERP site, Site #46, overlaps with the proposed fuel line under Alternative #5 (Figure 4.5.9-1). This site, which is closed, was investigated as part of a jet fuel pipeline investigation. Petroleum contamination levels for this site were found to be below Bureau of Underground Storage Tank Regulation limits; therefore, it is not expected to pose a vapor intrusion concern. However, it is recommended that a vapor intrusion analysis/testing is completed prior to construction to investigate any potential concern. If testing indicates a vapor intrusion concern, the installation would implement practices in accordance with site-specific vapor mitigation design considerations.
Figure 4.5.9-1. ERP Sites and Proposed Construction in the Vicinity of Rickenbacker ANGS
If contaminated media (e.g., soil, vapor, groundwater) are encountered during the course of site preparation (e.g., clearing, grading) or site development (e.g., excavation for installation of building footers) for proposed construction activities, work would cease until 121 ARW Program Managers establish an appropriate course of action for the construction project to ensure that federal and state agency notification requirements are met, and to arrange for agency consultation as necessary if existing ERP sites are affected. Also, prior to construction activities, the construction contractors would be notified of the nature and extent of known contamination so that they can inform their employees in advance of on-site activities and take appropriate precautions to protect health and safety, and to prevent the spread of contamination. The construction contractors would be responsible for ensuring their workers follow appropriate health and safety requirements.

4.5.9.4 Summary of Impacts

There would not be an increased risk of hazardous waste releases or exposure under this alternative. Any LBP or ACM that may be found in buildings that are scheduled for construction activities would be managed per applicable USAF regulations. There would be no expected impact from ERP sites. However, if contaminated media are encountered during the course of site preparation or site development, work would cease until 121 ARW Program Managers establish an appropriate course of action for the construction project to ensure that federal and state agency notification requirements are met. Impacts relative to hazardous materials and wastes would be negligible.

4.5.10 Socioeconomics

Under Alternative #5, construction activities would be contained entirely within the boundaries of Rickenbacker IAP. Economic activity associated with proposed construction activities at the 121 ARW installation, such as employment and materials purchasing, would provide short-term economic benefits to the local economy. However, short-term beneficial impacts resulting from construction payrolls and materials purchased would be negligible on a regional scale.

The proposed aircraft beddown and related activities would result in a change in staffing requirements for the 121 ARW. Currently, the 121 ARW is authorized 1,497 personnel. Under Alternative #5, the KC-46A mission would add an additional 197 military positions (increase in 212 full-time positions and reduction of 15 traditional Guard positions) (see Table 2.3-30). Combined with their approximately 268 family members, this would represent less than 0.04 percent of Franklin County population and 0.8 percent of Pickaway County population. Of the 268 family members, approximately 112 would be anticipated to be of school age. The students entering the local schools would be expected to be enrolled in various grades and live in different schools.
areas within Pickaway and Franklin counties. It is anticipated that there is enough capacity within the schools in these counties to absorb this minimal increase in school age children.

A net increase in 197 military personnel positions would amount to an increase of approximately 13.2 percent to the existing 121 ARW personnel. Total payroll associated with the 212 proposed full-time personnel would amount to an estimated total annual salary increase of approximately $16.5 million.

All 121 ARW personnel live off-installation as there is no on-installation housing. A conservative scenario would result in 197 homes purchased at the same time as personnel relocate to the area. This would represent less than 0.04 percent of the total housing units in the Franklin County and less than 0.9 percent of Pickaway County. However, not all the military personnel who would relocate would own homes and personnel would most likely be distributed between the two counties.

4.5.10.1 Summary of Impacts

Impacts to socioeconomics resulting from construction would be beneficial and negligible resulting from construction payrolls and materials purchased. In addition, impacts from proposed operations would be beneficial and minor due to the proposed increase in personnel.

4.5.11 Environmental Justice and the Protection of Children

4.5.11.1 Minority and Low-Income Populations

Under Alternative #5, there would be no residential populations, including no minority or low-income populations, located within the vicinity of Rickenbacker IAP exposed to aircraft DNL of 65 dB or above. Therefore, there would be no disproportionate impacts to minority or low-income populations in the vicinity of Rickenbacker IAP.

4.5.11.2 Protection of Children

There are no facilities on the installation where children may be encountered on a regular basis. Currently there no schools that are exposed to DNL of 65 dB or above. Under Alternative #5 there would be no schools exposed to DNL of 65 dB or above. Therefore, under Alternative #5 there would be no special health or safety risks to children.

4.5.11.3 Summary of Impacts

Given that the acreage within the 65 dB DNL noise contour would be reduced, there would be no residential populations, including no minority or low-income populations, and no additional
schools located within the vicinity Rickenbacker IAP exposed to DNL of 65 dB or above; thus, there would be no disproportionate impacts to minority or low-income populations in the vicinity of Rickenbacker IAP. In addition, there would be no special health or safety risks to children.
4.6 **NO ACTION ALTERNATIVE**

The CEQ regulation 40 CFR § 1502.14(d) specifically requires analysis of the “No Action” alternative in all NEPA documents. Under the No Action Alternative, the proposed aircraft beddown would not occur, and the NGB would not implement the components described under any of the five Action Alternatives analyzed in the previous sections. There would be no change in based aircraft, use of the airfield or Special Use Airspace (SUA), or personnel assigned to the KC-135 aircraft squadrons and the proposed construction would not be required. Under the No Action Alternative, the NGB would continue to conduct their current mission using the existing KC-135 aircraft with multiple configurations and crews that are not trained to accomplish every mission. This lack of standardized equipment and training throughout the fleet would continue to negatively impact the ability for aircrews to support, on a large scale, multi-role missions or exploit new tactics and procedures. The continued use of the KC-135 aircraft would not meet the identified needs of the NGB or the USAF; however, this alternative is carried forward for analysis in this EIS per CEQ regulations. Impacts at each of the alternative installations as a result of the No Action Alternative are described below.

Under the No Action Alternative there would be no change in based aircraft authorized at any of the alternative installations; use of the respective airfield; construction, or assigned personnel.

- The 190 ARW would continue to fly the air refueling mission with a PAA of 12 KC-135 aircraft and 1,242 personnel.
- The 108 WG would continue to fly the air refueling mission with a PAA of 8 KC-135 aircraft and 1 BAI and 1,329 personnel.
- The 157 ARW would continue to fly the air refueling mission with a PAA of 8 KC-135 aircraft and 1 BAI and 1,382 personnel.
- The 171 ARW would continue to fly the air refueling mission with a PAA of 16 KC-135 aircraft and 1,306 personnel.
- The 121 ARW would continue to fly the air refueling mission with a PAA of 18 KC-135 aircraft and 1,497 personnel, until the 2013 NDAA is fully implemented. At that time, the 121 ARW will have a reduction of 6 KC-135 aircraft, resulting in a PAA of 12 KC-135. There would be a commensurate reduction in personnel assigned to the 121 ARW as a result of implementation of the NDAA (see Section 5.5).

4.6.1 **Noise**

Noise at each alternative airfield would remain as described in the baseline Noise section for each alternative location (Sections 3.1.1, 3.2.1, 3.3.1, 3.4.1, and 3.5.1). Each of the five
installations would retain the KC-135 aircraft and would continue to fly the aircraft in the same manner and with approximately the same number of airfield operations as described in Chapter 3. The noise environment at each of the five alternative airfields would continue to be managed through their existing AICUZ or FAR Part 150 airfield compatibility programs. Under each alternative described in the Noise sections in Chapter 4, there were varying changes in the extent of the 65 dB DNL noise contours; some of the alternatives had imperceptible positive changes (Forbes ANGS, Pittsburgh ANGS, Rickenbacker ANGS), and some had larger adverse changes (JB MDL, Pease ANGS). There would be no additional Noise impacts at any of the alternative installations under the No Action Alternative.

4.6.2 Air Quality

Air Quality at each alternative airfield would remain as described in the baseline Air Quality section for each alternative location (Sections 3.1.2, 3.2.2, 3.3.3, 3.4.2, and 3.5.2) under the No Action Alternative. Each of the five installations would retain the KC-135 aircraft and would continue to fly the aircraft in the same manner and with approximately the same number of airfield operations as described in Chapter 3. Emissions at each of the alternative installations would continue to be in compliance with their respective SIPs. There would be no additional impacts to Air Quality at each alternative installation under the No Action Alternative.

4.6.3 Safety

Both ground and flight safety at each alternative airfield would remain as described in the baseline Safety section for each alternative location (Sections 3.1.3, 3.2.3, 3.3.3, 3.4.3, and 3.5.3). Each of the five installations would retain the KC-135 aircraft and would continue to fly the aircraft in the same manner and with approximately the same number of airfield operations as described in Chapter 3. Under each alternative described in Chapter 4, there was a range in the increase of annual airfield operations, with Rickenbacker ANGS increasing by 412 annual operations up to JB MDL, which would increase by 9,268 annual operations. Under the No Action Alternative, this increase in annual airfield operations would not occur at any of the alternative installations. All aspects of both ground and flight safety would be expected to remain as described in Chapter 3. There would be no additional impacts to Safety under the No Action Alternative.

4.6.4 Soils and Water

Both Soils and Water Resources at each alternative airfield would remain as described in the baseline Soils and Water section for each alternative location (Sections 3.1.4, 3.2.4, 3.3.4, 3.4.4, and 3.5.4). Under the alternatives, surface disturbance at the alternative installations ranged
from 3.0 to 8.5 acres (Pease ANGS and Rickenbacker ANGS, respectively); and new impervious surface ranged from 0 to 2.4 acres (Pease ANGS and JB MDL, respectively). Under the No Action Alternative, none of this proposed construction would occur at any of the alternative installations, although other non-related construction activities would occur to provide the necessary facilities for the on-going mission. There would be no additional impacts to Soils and Water Resources as a result of the No Action Alternative.

4.6.5 Biological Resources

Biological Resources would remain as described in the baseline Biological Resources section for each alternative location (Sections 3.1.5, 3.2.5, 3.3.5, 3.4.5, and 3.5.5). Under the alternatives, new impervious surface ranged from 0 to 2.4 acres (Pease ANGS and JB MDL, respectively); and there was a proposed increase in annual airfield operations, with Rickenbacker ANGS increasing by 412 annual operations up to JB MDL, which would increase by 9,268 annual operations. Under the No Action Alternative, there would be no increase in annual airfield operations at any of the installations, and none of this proposed construction would occur at any of the alternative installations, although other non-related construction activities would occur to provide the necessary facilities for the on-going mission. There would be no additional impacts to Biological Resources as a result of the No Action Alternative.

4.6.6 Cultural Resources

Under the No Action Alternative, Cultural Resources at each alternative installation would remain as described in the baseline Cultural Resources section for each alternative location (Sections 3.1.6, 3.2.6, 3.3.6, 3.4.6, and 3.5.6). None of the proposed facility construction/renovations would occur at any of the installations, and thus, there would be no potential impacts to facilities that are eligible for listing on the NRHP. There would be no surface disturbance from construction activities, and thus no potential to impact unknown archaeological resources. There would be no additional impacts to Cultural Resources as a result of the No Action Alternative.

4.6.7 Land Use

Land Use at each alternative airfield would remain as described in the baseline Land Use section for each alternative location (Sections 3.1.7, 3.2.7, 3.3.7, 3.4.7, and 3.5.7). Each of the five installations would retain the KC-135 aircraft and would continue to fly the aircraft in the same manner and with approximately the same number of airfield operations as described in Chapter 3. Under each alternative described in the Land Use sections in Chapter 4, there were varying changes in the areal extent of the 65 dB DNL noise contours; some of the alternatives had imperceptible positive changes (Forbes ANGS, Pittsburgh ANGS, Rickenbacker ANGS), and
some had larger adverse changes (JB MDL, Pease ANGS), but land use within the 65 dB DNL and greater noise contours was generally considered to be compatible at all locations. There would be no additional impacts to Land Use under the No Action Alternative at any of the alternative locations.

4.6.8 Infrastructure and Transportation

Under the No Action Alternative, Infrastructure and Transportation at each alternative installation would remain as described in the baseline section for each alternative location (Sections 3.1.8, 3.2.8, 3.3.8, 3.4.8, and 3.5.8). Under the various action alternatives, there would be a range of increases in additional based personnel between 23 and 255 (Pittsburgh ANGS and JB MDL, respectively). Under the No Action Alternative, there would be no change to the based personnel at any of the alternative locations. There would be no increase in use of various utilities or roadway systems under this alternative. There would be no additional impacts to Infrastructure and Transportation under the No Action Alternative.

4.6.9 Hazardous Materials and Wastes

Under the No Action Alternative, Hazardous Materials and Wastes at each alternative installation would remain as described in the baseline section for each alternative location (Sections 3.1.9, 3.2.9, 3.3.9, 3.4.9 and 3.5.9). Each of the five installations would retain the KC-135 aircraft and would continue to fly the aircraft in the same manner and with approximately the same number of airfield operations as described in Chapter 3. Under the No Action Alternative, the throughput and management of hazardous materials and wastes would not change from baseline conditions. The benefit of eliminating ODS with the KC-46A would not be realized. There would be no additional impacts to Hazardous Materials and Wastes under the No Action Alternative.

4.6.10 Socioeconomics

Under the No Action alternative, Socioeconomics at each alternative installation would remain as described in the baseline section for each alternative location (Sections 3.1.10, 3.2.10, 3.3.10, 3.4.10, and 3.5.10). Under the various action alternatives, there would be a range of increases in additional stationed personnel between 23 and 255 (Pittsburgh ANGS and JB MDL, respectively). Under the No Action Alternative, there would be no change to the based personnel at any of the alternatives. Further, under the No Action Alternative, none of the proposed construction activities would occur, and thus the minor economic benefit of additional based personnel and construction activity would not occur at any of the alternative installations. There would be no additional impacts to Socioeconomics under the No Action Alternative.
4.6.11 Environmental Justice and the Protection of Children

Under the No Action Alternative, Environmental Justice and the Protection of Children at each alternative installation would remain as described in the baseline section for each alternative location (Sections 3.1.11, 3.2.11, 3.3.11, 3.4.11, and 3.5.11). There were no disproportionate impacts to low-income, minority, or children identified under any of the action alternatives. There would be no additional impacts as a result of the No Action Alternative.
CHAPTER 5 CUMULATIVE EFFECTS AND IRREVERSIBLE AND IRRETRIEVABLE COMMITMENT OF RESOURCES

Cumulative impacts to environmental resources result from incremental effects of proposed actions when combined with other past, present, and reasonably foreseeable future projects in the ROI. Cumulative impacts can result from individually minor, but collectively substantial, actions undertaken over a period of time by various agencies (federal, state, and local) or individuals. In accordance with NEPA, a discussion of cumulative impacts resulting from projects that are proposed (or anticipated over the foreseeable future) is required.

5.1 ALTERNATIVE #1 -- FORBES AIR NATIONAL GUARD STATION CUMULATIVE EFFECTS

5.1.1 Past, Present, and Reasonably Foreseeable Actions

Forbes Field Airport is an active, dynamic airfield where operational changes and facility upgrades occur on a frequent basis. Projects that have been identified in the ROI that have the potential to act in a cumulative manner with Alternative #1 are discussed in this section. The ROI for cumulative impacts is generally limited to Forbes Field Airport, and the immediately adjacent property because physical impacts related to the proposal are largely confined to these properties. Planning efforts in the ROI include the actions described within this EIS, as well as those other projects that are ongoing, or planned over the short term. Additional projects within the ROI are discussed below in Table 5.1.1-1.

Table 5.1.1-1. Past, Present, and Reasonably Foreseeable Actions in the ROI for Forbes ANGS

<table>
<thead>
<tr>
<th>Project Name/Descriptions</th>
<th>Approximate Square Footage (SF)</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>190 ARW Projects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KC-46A MOB 1 Basing would add 977 airfield operations per year to Forbes Field Airport</td>
<td>N/A</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Building 770: Consolidate vehicle maintenance/AGE</td>
<td>2,000</td>
<td>FY 2014</td>
</tr>
<tr>
<td>Building 665: Repair roof</td>
<td>N/A</td>
<td>FY 2014</td>
</tr>
<tr>
<td>Secondary Entry Control: Add new control point at main entry</td>
<td>80,000</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Parking ramp: replace parking ramp at the full depth</td>
<td>850,000</td>
<td>FY 2016</td>
</tr>
<tr>
<td>Building 550 Repair roof, add 78 photovoltaic panels</td>
<td>N/A</td>
<td>FY 2017</td>
</tr>
<tr>
<td>Building 200: Repair roof, add photovoltaic panels</td>
<td>80,000</td>
<td>FY 2018</td>
</tr>
<tr>
<td>Repair Building 668</td>
<td>N/A</td>
<td>FY 2018</td>
</tr>
</tbody>
</table>

Notes: SF = square feet; 190 ARW = 190th Air Refueling Wing; MOB 1 = Main Operating Base 1; FY = Fiscal Year; AGE = aerospace ground equipment
5.1.2 Cumulative Impacts

5.1.2.1 Noise

Under Alternative #1, the number of acres contained within the 65 dB DNL and greater exposure area would decrease by approximately 41 acres. There are no residential areas that underlie the noise contours under this alternative. While there are other projects listed in Table 5.1.1-1 that have the ability to add noise to the environment at Forbes Field Airport, most of these, with the exception of the potential MOB 1 KC-46A use of the airfield, are short-term construction projects that would occur in what is otherwise an industrial setting. Noise associated with the additional 977 MOB 1 annual operations would not be expected to change the noise contours to the extent that additional sensitive receptors would be impacted, or that would result in land use incompatibilities. Noise from implementation of these actions would be short term and localized to the airport environs, and would not be expected to increase the overall DNL noise contours. Cumulative impacts to the noise environment at Forbes Field Airport would be minimal.

5.1.2.2 Air Quality

The net annual emissions increases from the proposed KC-46A beddown as well as the other projects described in Table 5.1.1-1 at Forbes Field Airport (including both construction and airfield operations) would be below the CAA PSD major source thresholds as set forth in the CAA for all pollutants. Implementation of the proposed KC-46A beddown at Forbes Field Airport would contribute to less than adverse (or less than significant) cumulative impacts to air quality.

The potential effects of GHG emissions from the Proposed Action are by nature global. Substantial temperature increases attributable to global climate change could result in a variety of impacts to the people, economy, and environment. These impacts include potential impacts to ecosystems, wildlife and agriculture, increases in the incidence of wildfires, changes in precipitation levels, and rising sea levels. The impacts of global climate change would not be expected to have a substantial impact on Forbes ANGS beyond regional impacts to the area in general.

Given the global nature of climate change and the current state of the science, it is not useful at this time to attempt to link the emissions quantified for local actions to any specific climatological change or resulting environmental impact. Nonetheless, the GHG emissions from the project alternatives have been quantified to the extent feasible in this EIS for information and comparison purposes.
5.1.2.3 Safety

Providing new and renovated facilities for the 190 ARW that support operational requirements of the KC-46A, and are properly sited with adequate space and a modernized supporting infrastructure would generally enhance ground and flight safety during required operations, training, maintenance and support procedures, security functions, and other activities conducted by the 190 ARW. AT/FP requirements have also been addressed to the extent practicable in all facility construction projects. The fire and crash response capability currently provided by the 190 ARW at Forbes Field Airport is sufficient to meet all requirements. Risk of a catastrophic event occurring during construction activities described under Alternative #1 or those activities described in Table 5.1.1-1 is considered to be low, and strict adherence to all applicable occupational safety requirements would further minimize the relatively low risk associated with described construction activities. Cumulative impacts to ground or flight safety would be negligible at the airfield. Construction and repair projects identified in Table 5.1.1-1 would be beneficial to safety with pavement repairs and AT/FP enhancements.

5.1.2.4 Soils and Water

Soils

In addition to the 258,149 SF (5.9 acres) of surface disturbance that would result from the implementation of Alternative #1, additional surface area would also be disturbed in the vicinity as a result of the projects described in Table 5.1.1-1 over the next 5 years.

The Clean Water Act (CWA) considers stormwater from a construction site as a point source of pollution regulated by the NPDES permit. Therefore, those projects described in Table 5.1.1-1 larger than 1 acre would be required to have a site-specific and detailed SWPPP that coordinates the timing of soil disturbing activities with the installation of soil erosion and runoff controls in an effort to reduce the impacts to the local watershed; this is an effective way of controlling erosion while soil is exposed and subject to construction activity. Implementation of standard construction practices would be used to limit or eliminate soil movement, stabilize erosion, and control sedimentation. These standard construction practices would include the use of: velocity dissipation devices; well-maintained silt fences; minimizing surficial area disturbed; stabilization of cut/fill slopes; minimization of earth-moving activities during wet weather; and use of temporary detention ponds. Following construction, disturbed areas not covered with impervious surfaces would be reestablished with appropriate vegetation and managed to minimize future erosion potential. Given the use of engineering practices that would minimize potential erosion, cumulative impacts to earth resources would be expected to be minor.
The Farmland Protection Policy Act is intended to minimize the impact federal programs have on the unnecessary and irreversible conversion of farmland to nonagricultural uses. Provided that the projects in Table 5.1.1-1 are all within federal lands, each project would be subject to Farmland Protection Policy Act compliance. Should any of these projects have the potential to convert farmland to non-farm use, a land evaluation and site assessment would be conducted and alternative sites considered should potential adverse impacts to farmland exceed the recommended allowable level.

Water

There would be no increase in impervious surfaces as a result of implementation of Alternative #1. It is expected that any construction activities would adhere to NPDES requirements including implementation of standard construction practices described above. As such, cumulative impacts to surface water and groundwater would be expected to be minor.

5.1.2.5 Biological Resources

DNL noise contours from operations would be expected to decrease by 41 acres from baseline with the conversion to the KC-46A aircraft. Noise levels from construction would not be expected to impact wildlife in the area because they are accustomed to elevated noise levels associated with current aircraft and military operations. Annual operations for the KC-46A at Forbes Field Airport would be projected to increase by approximately 39 percent from baseline operations (17 percent increase in total airfield operations). An increase in levels of operations (e.g., sorties) may result in a slight increased opportunity for bird/wildlife aircraft strikes to occur, including those with migratory birds. No special status species are currently known to reside on Forbes Field Airport and there is only a low potential for them to occur within the vicinity due to the lack of habitat. There would be no construction-related impacts to the vegetation at the installation and in the vicinity of projects identified in Table 5.1.1-1. There are no wetland areas that occur within the vicinity of the project footprints. In general, construction activities at the 190 ARW installation and at Forbes Field Airport would primarily occur on sites that are already highly altered by man. These impacts would include the removal of some vegetation and associated wildlife habitat. However, wildlife that uses these areas is typical of urban and suburban areas. Therefore, cumulative impacts to biological resources would be minor.

5.1.2.6 Cultural Resources

The installation is considered to have no to low probability of containing archaeological resources. In the unlikely event that archaeological or human remains were identified during
proposed construction activities associated with Alternative #1 or any of the projects listed in Table 5.1.1-1, activities would immediately cease in the area of the discovery and appropriate personnel would contact a qualified archaeologist to evaluate the discovery. Under Alternative #1, only one of the buildings proposed for modification (Building 679) is eligible for listing in the NRHP. However, extensive renovations have occurred to this building that were mitigated through a Memorandum of Agreement signed in 2009. The current interior modifications would not affect this previous agreement. Additionally, the Kansas SHPO has concurred that there would be no historic properties affected with implementation of Alternative #1 (Zollner 2013). Therefore, there would be no adverse effect to a historic property. No traditional cultural resources have been identified on the installation. None of the facilities listed for renovation and/or modification listed in Table 5.1.1-1 are eligible for listing in the NRHP. Therefore, no cumulative impacts to cultural resources are anticipated.

5.1.2.7 Land Use

Under Alternative #1, acreage off airport property contained within the 65 dB DNL and greater noise contours would decrease by approximately 41 acres resulting in beneficial impacts. In general, land uses surrounding Forbes Field Airport would not be adversely affected by the activities described under Alternative #1 in concert with those described in Table 5.1.1-1. The location and function of proposed structures within the Forbes ANGS are compatible with the surrounding area. Although future development at Forbes Field Airport and adjacent areas is anticipated, development would be subject to planning and land use requirements, including those associated with the airport, counties, cities and other municipalities. Project-specific studies would be performed to determine and address any projects that would result in land use conflicts, such as encroachment airfield safety zones. If the rehabilitation of the runway in 2014 is approved, all based aircraft would need to be relocated to a different airfield during construction. Additionally, if the USAF MOB 1 bases the KC 46 at McConnell AFB, Forbes Field Airport would be used as an auxiliary field, adding an additional 977 operations per year. Cumulative impacts to land use as a result of the described activities, including impacts from noise and air quality, would be expected to be negligible.

5.1.2.8 Infrastructure and Transportation

Demand for electricity and natural gas would be expected to increase slightly as a result of the increase in personnel under Alternative #1. Further, building space and facilities to be constructed as a component of this action as well as those identified in Table 5.1.1-1 may require additional electricity. In addition, wastewater, solid waste, demand for potable water, and traffic would temporarily increase during construction, and would increase slightly in the long-term due to increase in personnel. The proposed construction and demolition activities could temporarily
affect the quality of stormwater runoff through potential increases in soil erosion. Standard construction practices would be implemented during construction and demolition to minimize runoff. Any new facilities and additions associated with these projects would be implemented with more energy efficient design standards and utility systems than are currently in place. In addition, construction projects would incorporate LEED and sustainable development concepts to achieve optimum resource efficiency, sustainability, and energy conservation. In general, cumulative impacts to installation infrastructure as a result of described activities would be expected to be positive over the long-term.

5.1.2.9 Hazardous Materials and Waste

The type of hazardous materials needed for maintenance and operation of the KC-46A would be expected to remain similar to those currently used for maintenance and operation of the KC-135 fleet, with the exception of ODSs. Under Alternative #1, the total number of flying hours for the 190 ARW would increase approximately 65 percent; therefore, throughput of petroleum substances and hazardous waste streams would be expected to increase commensurately. Furthermore, it is expected that short-term increases would be realized in terms of the quantity of fuel used during construction activities for this action as well as those listed in Table 5.1.1-1. Hazardous waste generation (e.g., used oil, used filters, oily rags, etc.) would continue to be managed in accordance with the installation’s Hazardous Waste Management Plan and all applicable federal, state, and local regulations. Additionally, no changes to the installation’s small quantity generator status would be expected to occur due to the increase in hazardous waste generation from aircraft operations. In addition, any structures listed in Table 5.1.1-1 proposed for demolition, addition, or retrofit would be inspected for ACM and LBP according to established ANG procedures prior to any renovation or demolition activities. Cumulative impacts as a result of the described activities are expected to be minor.

5.1.2.10 Socioeconomics

Economic activity associated with proposed construction activities described as a component of this alternative and those shown in Table 5.1.1-1, such as employment and materials purchasing, would provide short-term economic benefits to the local economy. Additionally, there would be a permanent increase in 194 military positions. However, short-term cumulative beneficial impacts resulting from construction payrolls and materials purchased as a result of implementation of Alternative #1 and those projects listed in Table 5.1.1-1 would be negligible on a regional scale.
5.1.2.11 Environmental Justice and the Protection of Children

Under Alternative #1, in concert with those projects listed in Table 5.1.1-1, there would be no residential populations, including no minority or low-income populations, located within the projected 65 dB DNL noise contour in the vicinity of Forbes Field Airport. There are no other projects listed in Table 5.1.1-1 that would be expected to impact environmental justice communities. Therefore, there would be no cumulative impacts to the health or safety of children.
5.2 **ALTERNATIVE #2 -- JOINT BASE MCGUIRE-DIX-LAKEHURST CUMULATIVE EFFECTS**

Cumulative impacts to environmental resources result from incremental effects of proposed actions when combined with other past, present, and reasonably foreseeable future projects in the ROI. Cumulative impacts can result from individually minor, but collectively substantial, actions undertaken over a period of time by various agencies (federal, state, and local) or individuals. In accordance with NEPA, a discussion of cumulative impacts resulting from projects that are proposed (or anticipated over the foreseeable future) is required.

5.2.1 **Past, Present, and Reasonably Foreseeable Actions**

McGuire Field is an active, dynamic airfield where operational changes and facility upgrades occur on a frequent basis. Projects that have been identified in the ROI that have the potential to act in a cumulative manner with Alternative #2 are discussed in this section. The ROI for cumulative impacts is generally limited to McGuire Field, and the immediately adjacent property because physical impacts related to the proposal are largely confined to these properties. Planning efforts in the ROI include the actions described within this EIS, as well as those other projects that are ongoing, or planned over the short term. Additional projects within the ROI are discussed below in Table 5.2.1-1.

Table 5.2.1-1. Past, Present, and Reasonably Foreseeable Actions in the ROI for JB MDL

<table>
<thead>
<tr>
<th>Project Name/Descriptions</th>
<th>Approximate Square Footage (SF)</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>108 WG Projects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demolition of Building 3326</td>
<td>940</td>
<td>FY 2015 – FY 2017</td>
</tr>
<tr>
<td>Addition to Building 3325</td>
<td>3,000</td>
<td>FY 2015 – FY 2017</td>
</tr>
<tr>
<td>JB MDL Projects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Various airfield repairs - Repair airfield shoulders, Assault Landing Zone Runway shoulders, main ramp taxiway, repair concrete apron and Alpha ramp, replace Taxiway A, B, C, D, and L edge lights, repair Runway 15/33, Repair Transportation Working Capital Fund apron.</td>
<td>Currently unknown</td>
<td>FY 2013</td>
</tr>
<tr>
<td>Construct Munitions Storage Area</td>
<td>Currently unknown</td>
<td>FY 2014 – FY 2018</td>
</tr>
<tr>
<td>Construct Physical Fitness Facility</td>
<td>Currently unknown</td>
<td>FY 2014 – FY 2018</td>
</tr>
<tr>
<td>Construct Fire Station</td>
<td>Currently unknown</td>
<td>FY 2014 – FY 2018</td>
</tr>
<tr>
<td>Construct Global Reach Development Complex</td>
<td>Currently unknown</td>
<td>FY 2014 – FY 2018</td>
</tr>
<tr>
<td>Construct Education and Professional Development Center</td>
<td>Currently unknown</td>
<td>FY 2014 – FY 2018</td>
</tr>
</tbody>
</table>
Table 5.2.1-1. Past, Present, and Reasonably Foreseeable Actions in the ROI for JB MDL

<table>
<thead>
<tr>
<th>Project Name/Descriptions</th>
<th>Approximate Square Footage (SF)</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construct Unified Security Forces Operations Facility</td>
<td>Currently unknown</td>
<td>FY 2014 – FY 2018</td>
</tr>
<tr>
<td>Addition to Combat Communications Admin Facility, Building 3514</td>
<td>Currently unknown</td>
<td>FY 2014 – FY 2018</td>
</tr>
<tr>
<td>Construct Army Aviation Support Facility</td>
<td>Currently unknown</td>
<td>FY 2014 – FY 2018</td>
</tr>
<tr>
<td>Construct Aviation Readiness Center</td>
<td>Currently unknown</td>
<td>FY 2014 – FY 2018</td>
</tr>
<tr>
<td>Construct Communications-Electronics Research, Development, and Engineering Center</td>
<td>Currently unknown</td>
<td>FY 2014 – FY 2018</td>
</tr>
</tbody>
</table>

Other Projects

- Hurricane Sandy U.S. Army Corps of Engineers disaster relief projects to repair, restore, and fortify the coastline. Four projects exceed NOx trigger level of 100 TPY.

<table>
<thead>
<tr>
<th>Approximate Square Footage (SF)</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>FY 2014 – FY 2016</td>
</tr>
</tbody>
</table>

Notes: SF = square foot; 108 WG = 108th Wing; FY = Fiscal Year; JB MDL = Joint Base McGuire-Dix-Lakehurst; N/A = Not Applicable; TPY = tons per year

5.2.2 Cumulative Impacts

5.2.2.1 Noise

Under Alternative #2, the number of acres contained within the 65 dB DNL and greater exposure area would increase by approximately 1,831 acres. Of the acreage exposed to 65 dB DNL or greater, approximately 751 would be off-airport property. While there are other projects listed in Table 5.2.1-1 that have the ability to add noise to the environment at JB MDL, most of these are short-term construction projects that would occur in what is otherwise an industrial setting. Noise from implementation of these actions would be short-term and localized to the airport environs, and would not be expected to increase the overall DNL noise contours. Cumulative impacts to the noise environment at JB MDL would be minimal.

5.2.2.2 Air Quality

The net annual emissions increases from the proposed KC-46A beddown as well as those other projects described in Table 5.2.1-1 at JB MDL (including both construction and airfield operations) would be below the CAA PSD major source thresholds and/or the General Conformity Rule *de minimis* thresholds as set forth in the CAA for all pollutants except NOx. JB MDL and the USACE have entered into a Memorandum of Agreement that would allow temporary use of a portion of the NOx SIP emissions budget for calendar years 2014 through 2016 to allow the USACE to proceed with construction projects to repair, restore, and fortify the coastline in the state of New Jersey in response to damage during Hurricane Sandy (JB MDL and USACE 2013). The USACE projects will be completed prior to implementation of Alternative
#2 at JB MDL, should that alternative be selected for the KC-46A MOB 2 beddown; therefore, the temporary use of NOx emissions within the SIP would be complete by the time the emissions associated with Alternative #2 would occur, which would be scheduled to commence in 2018.

A Conformity Determination as required under the General Conformity Rule would ensure that the selected action would conform to the requirements of the applicable SIP and would not cause or contribute to a delay in attainment consistent with 42 USC § 7506(c). The purpose of the General Conformity Rule is to demonstrate that project emissions, combined with all of the other air basin emissions, would not result in a cumulative impact and thereby delay attainment of the air quality standards. The ANG has prepared a Draft Conformity Determination that demonstrates that emissions associated with Alternative #2 are within the SIP NOx emissions budget for JB MDL. It is anticipated that the ANG will obtain an affirmative Conformity Determination prior to signing of the ROD. Thus, given that Alternative #2 will have demonstrated conformity with the SIP, cumulative impacts to air quality would not be significant.

The potential effects of GHG emissions from the Proposed Action are by nature global. Substantial temperature increases attributable to global climate change could result in a variety of impacts to the people, economy, and environment. These impacts include potential impacts to ecosystems, wildlife and agriculture, increases in the incidence of wildfires, changes in precipitation levels, and rising sea levels. The impacts of global climate change would not be expected to have a substantial impact on JB MDL beyond regional impacts to the area in general.

Given the global nature of climate change and the current state of the science, it is not useful at this time to attempt to link the emissions quantified for local actions to any specific climatological change or resulting environmental impact. Nonetheless, the GHG emissions from the project alternatives have been quantified to the extent feasible in this EIS for information and comparison purposes.

5.2.2.3 Safety

Providing new and renovated facilities for the 108 WG that support operational requirements and are properly sited with adequate space and a modernized supporting infrastructure would generally improve ground and flight safety during required operations, training, maintenance and support procedures, security functions, and other activities conducted by the 108 WG. AT/FP requirements have also been addressed to the extent practicable in all facility construction projects. A new fire station would enhance fire and crash response capability at JB MDL. Risk of a catastrophic event occurring during construction activities described under Alternative #2 or those activities described in Table 5.2.1-1 is considered to be low, and strict adherence to
all applicable occupational safety requirements would further minimize the relatively low risk associated with described construction activities. Additionally, the new munitions storage area facility at JB MDL would be sited in accordance with AFMAN 91-201 and improve munitions safety. Cumulative impacts to ground or flight safety would be negligible at the airfield. Construction and repair projects identified in Table 5.2.1-1 would be beneficial to safety with pavement repairs and AT/FP enhancements.

5.2.2.4 Soils and Water

Soils

In addition to the 204,009 SF (4.7 acres) of surface disturbance that would result from the implementation of Alternative #2, additional surface area would be disturbed in the vicinity as a result of the projects described in Table 5.2.1-1 over the next 5 years.

The CWA considers stormwater from a construction site as a point source of pollution regulated by the NPDES permit. Therefore, those projects described in Table 5.2.1-1 larger than 1 acre would be required to have a site-specific and detailed SWPPP that coordinates the timing of soil disturbing activities with the installation of soil erosion and runoff controls in an effort to reduce the impacts to the local watershed; this is an effective way of controlling erosion while soil is exposed and subject to construction activity. Implementation of standard construction practices would be used to limit or eliminate soil movement, stabilize erosion, and control sedimentation. These standard construction practices would include the use of: velocity dissipation devices; well-maintained silt fences; minimizing surficial area disturbed; stabilization of cut/fill slopes; minimization of earth-moving activities during wet weather; and use of temporary detention ponds. Following construction, disturbed areas not covered with impervious surfaces would be reestablished with appropriate vegetation and managed to minimize future erosion potential. Given the use of engineering practices that would minimize potential erosion, cumulative impacts to earth resources would be expected to be minor.

The Farmland Protection Policy Act is intended to minimize the impact federal programs have on the unnecessary and irreversible conversion of farmland to nonagricultural uses. Provided that the projects in Table 5.2.1-1 are all within federal lands, each project would be subject to Farmland Protection Policy Act compliance. Should any of these projects have the potential to convert farmland to non-farm use, a land evaluation and site assessment would be conducted and alternative sites considered should potential adverse impacts to farmland exceed the recommended allowable level.
Water

In addition to the 104,884 SF (2.4 acres) of new impervious surface that would result from Alternative #2, other increases in impervious surfaces would also occur in the vicinity as a result of the projects described in Table 5.2.1-1 over the next 5 years.

Cumulative impacts to the hydrologic cycle as a result of increasing impervious surface would be dependent on the unique conditions present at the site and its watershed. LID is a stormwater management approach that mimics nature’s ability to clean and store stormwater runoff accomplished through use of standard construction practices that infiltrate, filter, store, reuse, evaporate, and detain runoff close to its source.

Provided that the projects listed in Table 5.2.1-1 are located within federal lands, compliance with UFC 3-210-10, LID (as amended, 2010) and EISA Section 438 would ensure any increase in surface water runoff as a result of the proposed construction would be attenuated through the use of temporary and/or permanent drainage management features such that post-development runoff rates would be equal to or less than pre-development rates. Additionally, it is expected that any construction activities would adhere to NPDES requirements including implementation of standard construction practices described above. As such, cumulative impacts to water resources would be expected to be minor.

5.2.2.5 Biological Resources

DNL noise contours would be expected to increase over 1,831 acres. However, the noise levels from operations and construction would not be expected to impact wildlife in the area because they are accustomed to elevated noise levels associated with aircraft and military operations. Noise levels from construction would not be expected to impact wildlife in the area because they are accustomed to elevated noise levels associated with current aircraft and military operations. Annual operations for the 108 WG are projected to increase by approximately 111 percent from baseline operations (15 percent increase in total airfield operations). An increase in levels of operations (e.g., sorties) may result in a slight increased opportunity for bird-aircraft strikes to occur, including those with migratory birds. Construction-related impacts to the vegetation at the installation and in the vicinity of projects identified in Table 5.2.1-1 would be negligible due to the lack of sensitive vegetation in the project areas. There are no wetland areas that occur within the vicinity of the project footprints. In general, construction activities at the 108 WG installation and at JB MDL would primarily occur on sites that are already highly altered by man. These impacts would include the removal of some vegetation and associated wildlife habitat. However, wildlife that uses these areas is typical of urban and suburban areas. No federally listed species are currently known to occur on the 108 WG installation and there is only
a low potential for them to occur within the vicinity due to the lack of habitat. Six state listed species have been observed on McGuire Field. Grassland habitat located within the potential ramp expansion area could provide habitat for these species. However, to the extent possible, construction would not occur during the breeding season for grassland birds (March 15 to July 31). Cumulative impacts to biological resources would be minor.

5.2.2.6 Cultural Resources

The area of proposed construction is considered to have no to low probability of containing archaeological resources. Additionally, the Proposed Action would disturb a relatively small amount of acreage, all of which has previously been disturbed. The proposed use is consistent with the installations historical land use for over 70 years. In the unlikely event that archaeological or human remains were identified during proposed construction activities associated with Alternative #2 or any of the projects listed in Table 5.2.1-1, activities would immediately cease in the area of the discovery and the JB MDL Cultural Resource Manager would immediately be contacted for further instruction. None of the facilities listed for renovation and/or modification under Alternative #2 or those listed in Table 5.2.1-1 are eligible for listing in the NRHP. Two of the buildings (3333 and 3336) listed for renovation and/or modification under Alternative #2 are less than 20 years old. Hangar 3322 (built in 1957) was evaluated for NRHP eligibility in 2013 and the results of the inventory indicated that Hangar 3322 is not eligible (JB MDL 2013d). SHPO consultation for this EIS has provided concurrence that no historic properties would be affected under the proposed action (see Saunders 2013 in Appendix B3). No traditional cultural resources have been identified on the installation. Therefore, contingent upon evaluation of Building 3322, no cumulative impacts to cultural resources are anticipated.

5.2.2.7 Land Use

Under Alternative #2, acreage off airport property contained within the 65 dB DNL and greater noise contours would increase by approximately 751 acres. In general, land uses surrounding JB MDL would not be adversely affected by the activities described under Alternative #2 in concert with those described in Table 5.2.1-1. The location and function of proposed structures within the JB MDL are compatible with the surrounding area. Although future development at JB MDL and adjacent areas is anticipated, development would be subject to planning and land use requirements, including those associated with the counties, cities and other municipalities. Project specific studies would be performed to determine and address any projects that would result in land use conflicts, such as encroachment in and near airfield safety zones. Cumulative impacts to land use as a result of the described activities, including impacts from noise and air quality, would be expected to be negligible.
5.2.2.8 Infrastructure and Transportation

Demand for electricity and natural gas would be expected to increase slightly as a result of the increase in personnel under Alternative #2. Further, building space and facilities to be constructed as a component of this action as well as those identified in Table 5.2.1-1 may require additional electricity. In addition, wastewater, solid waste, demand for potable water, and traffic would temporarily increase during construction, and would increase slightly in the long-term due to increase in personnel. The proposed construction and demolition activities could temporarily affect the quality of stormwater runoff through potential increases in soil erosion. Standard construction practices would be implemented during construction and demolition to minimize runoff. Any new facilities and additions associated with these projects would be implemented with more energy efficient design standards and utility systems than are currently in place. In addition, construction projects would incorporate LEED and sustainable development concepts to achieve optimum resource efficiency, sustainability, and energy conservation. In general, cumulative impacts to installation infrastructure as a result of described activities would be expected to be positive over the long-term.

5.2.2.9 Hazardous Materials and Waste

The type of hazardous materials needed for maintenance and operation of the KC-46A would be expected to remain similar to those currently used for maintenance and operation of the KC-135 fleet, with the exception of ODSs. Under Alternative #2, the total number of flying hours for the 108 WG would increase approximately 118 percent; therefore, throughput of petroleum substances and hazardous waste streams would be expected to increase commensurately. Furthermore, it is expected that short-term increases would be realized in terms of the quantity of fuel used during construction activities for this action as well as those listed in Table 5.2.1-1. Hazardous waste generation (e.g., used oil, used filters, oily rags, etc.) would continue to be managed in accordance with the installation’s Hazardous Waste Management Plan and all applicable federal, state, and local regulations. Additionally, no changes to the installation’s large quantity generator status would be expected to occur due to the increase in hazardous waste generation from aircraft operations. In addition, any structures listed in Table 5.2.1-1 proposed for demolition, addition, or retrofit would be inspected for ACM and LBP according to established ANG procedures prior to any renovation or demolition activities. Cumulative impacts as a result of the described activities are expected to be minor.

5.2.2.10 Socioeconomics

Economic activity associated with proposed construction activities described as a component of this alternative and those shown in Table 5.2.1-1, such as employment and materials purchasing,
would provide short-term economic benefits to the local economy. Additionally, there would be a permanent increase of 287 military positions. However, short-term beneficial impacts resulting from construction payrolls and materials purchased as a result of implementation of Alternative #2 and those projects listed in Table 5.2.1-1 would be negligible on a regional scale.

5.2.2.11 Environmental Justice and the Protection of Children

Under Alternative #2, in concert with those projects listed in Table 5.2.1-1, roughly 128 persons (48 more than baseline) that would be affected by DNL between 65 dB and 75 dB, approximately 23 would be minority (18 percent). This is an increase of 11 people, or 3 percent, of minorities affected. The number of low-income persons affected by DNL greater than 65 dB would be approximately 6 (an increase of 2 people and less than 1 percent). Overall, the number of persons affected by DNL of 65 dB and greater would increase slightly under this alternative, and the increase in the percentage of minority and low-income persons affected would be minor.

Under Alternative #2, there would be no new Kindergarten through Grade 12 schools exposed to a DNL of 65 dB or above; however, the child development center that is currently under the 65 dB contour would be located under the 70 dB contour. There would not be disproportionate cumulative impacts to minority or low-income populations in the vicinity of JB MDL as a result of this action in concert with the current noise impacts from the airport. There are no other projects listed in Table 5.2.1-1 that would be expected to impact environmental justice communities or the health or safety of children.
5.3 ALTERNATIVE #3 -- PEASE AIR NATIONAL GUARD STATION CUMULATIVE EFFECTS

Cumulative impacts to environmental resources result from incremental effects of proposed actions when combined with other past, present, and reasonably foreseeable future projects in the ROI. Cumulative impacts can result from individually minor, but collectively substantial, actions undertaken over a period of time by various agencies (federal, state, and local) or individuals. In accordance with NEPA, a discussion of cumulative impacts resulting from projects that are proposed (or anticipated over the foreseeable future) is required.

5.3.1 Past, Present, and Reasonably Foreseeable Actions

Portsmouth IAP is an active, dynamic airfield where operational changes and facility upgrades occur on a frequent basis. Projects that have been identified in the ROI that have the potential to act in a cumulative manner with Alternative #3 are discussed in this section. The ROI for cumulative impacts is generally limited to Portsmouth IAP and the immediately adjacent property because physical impacts related to the proposal are largely confined to these properties. Planning efforts in the ROI include the actions described within this EIS, as well as those other projects that are ongoing, or planned over the short term. Additional projects within the ROI are discussed below in Table 5.3.1-1.

Table 5.3.1-1. Past, Present, and Reasonably Foreseeable Actions in the ROI for Pease ANGS

<table>
<thead>
<tr>
<th>Project Name/Descriptions</th>
<th>Approximate Square Footage (SF)</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>157 ARW Projects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airfield Pavements: Repair and upgrade pavement areas</td>
<td>61,281</td>
<td>FY 2014 – FY 2015</td>
</tr>
<tr>
<td>Building 252: Repair roof</td>
<td>26,200</td>
<td>FY 2014 – FY 2015</td>
</tr>
<tr>
<td>Parking Lots: Repair Installation-Wide (Crack Seal/Seal Coat)</td>
<td>270,000</td>
<td>FY 2014 – FY 2015</td>
</tr>
<tr>
<td>Bulk Fuel Roads: Repair and upgrade asphalt</td>
<td>57,654</td>
<td>FY 2014 – FY 2015</td>
</tr>
<tr>
<td>Building 257: Renovate for Security Forces</td>
<td>14,000</td>
<td>FY 2014 – FY 2015</td>
</tr>
<tr>
<td>Building 151: Build addition to support medical facilities</td>
<td>12,126</td>
<td>FY 2016 – FY 2018</td>
</tr>
<tr>
<td>Building 244: Demolish for Security Forces Facility</td>
<td>24,047</td>
<td>FY 2016 – FY 2018</td>
</tr>
<tr>
<td>Non-Organizational Parking: Replace to conform to AT/FP standards</td>
<td>150,021</td>
<td>FY 2016 – FY 2018</td>
</tr>
<tr>
<td>Building 152: Demolish for proposed expansion of facilities</td>
<td>14,486</td>
<td>FY 2016 – FY 2018</td>
</tr>
<tr>
<td>Building 244: Demolish for Security Forces Facility</td>
<td>24,047</td>
<td>FY 2016 – FY 2018</td>
</tr>
<tr>
<td>Parking Apron: Upgrade and add Hydrant, including interstitial monitoring and containment</td>
<td>198,000</td>
<td>FY 2016 – FY 2018</td>
</tr>
<tr>
<td>Aircraft Parking Apron: Repair as Phase V for Multi-Hangar construction</td>
<td>296,766</td>
<td>FY 2016 – FY 2018</td>
</tr>
</tbody>
</table>

Notes: SF = square foot; 157 ARW = 157th Air Refueling Wing; FY = Fiscal Year
5.3.2 Cumulative Impacts

5.3.2.1 Noise

Under Alternative #3, the number of acres contained within the 65 dB DNL and greater exposure area would increase by approximately 135 acres. Of the acreage exposed to 65 dB DNL or greater, approximately 4 would be off the airport property. There are no residential areas that underlie the noise contours under this alternative. While there are other projects listed in Table 5.3.1-1 that have the ability to add noise to the environment at Portsmouth IAP, most of these are short-term construction projects that would occur in what is otherwise an industrial setting. Noise from implementation of these actions would be short term and localized to the airport environs, and would not be expected to increase the overall DNL noise contours. Cumulative impacts to the noise environment at Portsmouth IAP would be minimal.

5.3.2.2 Air Quality

The net annual emissions increases from the proposed KC-46A beddown as well as those other projects described in Table 5.3.1-1 at Pease ANGS (including both construction and airfield operations) would be below the CAA PSD major source thresholds and/or the General Conformity Rule de minimis thresholds as set forth in the CAA for all pollutants. Therefore, cumulative impacts to air quality would not be significant.

The potential effects of GHG emissions from the Proposed Action are by nature global. Substantial temperature increases attributable to global climate change could result in a variety of impacts to the people, economy, and environment. These impacts include potential impacts to ecosystems, wildlife and agriculture, increases in the incidence of wildfires, changes in precipitation levels, and rising sea levels. The impacts of global climate change would not be expected to have a substantial impact on Pease ANGS beyond regional impacts to the area in general.

Given the global nature of climate change and the current state of the science, it is not useful at this time to attempt to link the emissions quantified for local actions to any specific climatological change or resulting environmental impact. Nonetheless, the GHG emissions from the project alternatives have been quantified to the extent feasible in this EIS for information and comparison purposes.

5.3.2.3 Safety

Providing new and renovated facilities for the 157 ARW that support operational requirements of the KC-46A, and are properly sited with adequate space and a modernized supporting
infrastructure would generally enhance ground and flight safety during required operations, training, maintenance and support procedures, security functions, and other activities conducted by the 157 ARW. AT/FP requirements have also been addressed to the extent practicable in all facility construction projects. The fire and crash response capability currently provided by the 157 ARW at Portsmouth IAP is sufficient to meet all requirements. Risk of a catastrophic event occurring during construction activities described under Alternative #3 or those activities described in Table 5.3.1-1 is considered to be low, and strict adherence to all applicable occupational safety requirements would further minimize the relatively low risk associated with described construction activities. Cumulative impacts to ground or flight safety would be negligible at the airfield. Construction and repair projects identified in Table 5.3.1-1 would be beneficial to safety with pavement repairs and AT/FP enhancements.

5.3.2.4 Soils and Water

Soils

In addition to the 130,966 SF (3.0 acres) of surface disturbance that would result from implementation of Alternative #3, additional surface area would be disturbed in the vicinity as a result of the projects described in Table 5.3.1-1 over the next 5 years.

The CWA considers stormwater from a construction site as a point source of pollution regulated by the NPDES permit. Therefore, those projects described in Table 5.3.1-1 larger than 1 acre would be required to have a site-specific and detailed SWPPP that coordinates the timing of soil disturbing activities with the installation of soil erosion and runoff controls in an effort to reduce the impacts to the local watershed; this is an effective way of controlling erosion while soil is exposed and subject to construction activity. Implementation of standard construction practices would be used to limit or eliminate soil movement, stabilize erosion, and control sedimentation. These standard construction practices would include the use of: velocity dissipation devices; well-maintained silt fences; minimizing surficial area disturbed; stabilization of cut/fill slopes; minimization of earth-moving activities during wet weather; and use of temporary detention ponds. Following construction, disturbed areas not covered with impervious surfaces would be reestablished with appropriate vegetation and managed to minimize future erosion potential. Given the use of engineering practices that would minimize potential erosion, cumulative impacts to earth resources would be expected to be minor.
Water

In addition to the 23,617 SF (0.5 acre) of new impervious surface that would result from Alternative #3, other increases in impervious surfaces would also occur in the vicinity as a result of the projects described in Table 5.3.1-1 over the next 5 years.

Cumulative impacts to the hydrologic cycle as a result of increasing impervious surface would be dependent on the unique conditions present at the site and its watershed. LID is a stormwater management approach that mimics nature’s ability to clean and store stormwater runoff accomplished through use of standard construction practices that infiltrate, filter, store, reuse, evaporate, and detain runoff close to its source.

Provided that the projects listed in Table 5.3.1-1 are located within Federal lands, compliance with UFC 3-210-10, LID (as amended, 2010) and EISA Section 438 would ensure any increase in surface water runoff as a result of the proposed construction would be attenuated through the use of temporary and/or permanent drainage management features such that post-development runoff rates would be equal to or less than pre-development rates. Additionally, it is expected that any construction activities would adhere to NPDES requirements including implementation of standard construction practices described above. As such, cumulative impacts to water resources would be expected to be minor.

5.3.2.5 Biological Resources

Noise contours would be expected to increase by 135 acres from baseline with the conversion to the KC-46A aircraft. However, these noise levels from operations and construction would not be expected to impact wildlife in the area because they are accustomed to elevated noise levels associated with current aircraft and military operations. Annual operations for the 157 ARW at Portsmouth IAP are projected to increase by approximately 44 percent from baseline operations (7 percent increase in total airfield operations). An increase in levels of operations (e.g., sorties) may result in a slight increased opportunity for bird-aircraft strikes to occur, including those with migratory birds. No federally threatened and endangered species are currently known to occur on Portsmouth IAP; however, eight state listed species are currently known to occur on Portsmouth IAP. Construction-related impacts to the vegetation at the installation and in the vicinity of projects identified in Table 5.3.1-1 would be negligible due to the lack of sensitive vegetation in the project areas. There are no wetland areas that occur within the vicinity of the project footprints. In general, construction activities at the 157 ARW installation and at Portsmouth IAP would primarily occur on sites that are already highly altered by man. These impacts would include the removal of some vegetation and associated wildlife habitat. However,
wildlife that uses these areas is typical of urban and suburban areas. Cumulative impacts to biological resources would be minor.

5.3.2.6 Cultural Resources

The installation is considered to have no to low probability of containing archaeological resources. In the unlikely event that archaeological or human remains were identified during proposed construction activities associated with Alternative #3 or any of the projects listed in Table 5.3.1-1, activities would immediately cease in the area of the discovery and appropriate personnel would contact a qualified archaeologist to evaluate the discovery. None of the facilities listed for renovation and/or modification under Alternative #3 or those listed in Table 5.3.1-1 are eligible for listing in the NRHP. The SHPO has concurred with a “no historic properties affected” determination (Muzzey 2013). No traditional cultural resources have been identified on the installation. Therefore, no cumulative impacts to cultural resources are anticipated.

5.3.2.7 Land Use

Under Alternative #3, acreage off airport property contained within the 65 dBA DNL and greater noise contours would increase by approximately 135 acres. In general, land uses surrounding Portsmouth IAP would not be adversely affected by the activities described under Alternative #3 in concert with those described in Table 5.3.1-1. The location and function of proposed structures within the Pease ANGS are compatible with the surrounding area. No future development at Portsmouth IAP and adjacent areas has been identified; however, any future development would be subject to planning and land use requirements, including those associated with the airport, counties, cities and other municipalities. Project-specific studies would be performed to determine and address any projects that would result in land use conflicts, such as encroachment in and near airfield safety zones. Cumulative impacts to land use as a result of the described activities, including impacts from noise and air quality, would be expected to be negligible.

5.3.2.8 Infrastructure and Transportation

Demand for electricity and natural gas would be expected to increase slightly as a result of the increase in personnel under Alternative #3. Further, building space and facilities to be constructed as a component of this action as well as those identified in Table 5.3.1-1 may require additional electricity. In addition, wastewater, solid waste, demand for potable water, and traffic would temporarily increase during construction, and would increase slightly in the long-term due to increase in personnel. The proposed construction and demolition activities could temporarily
affect the quality of stormwater runoff through potential increases in soil erosion. Standard construction practices would be implemented during construction and demolition to minimize runoff. Any new facilities and additions associated with these projects would be implemented with more energy efficient design standards and utility systems than are currently in place. In addition, construction projects would incorporate LEED and sustainable development concepts to achieve optimum resource efficiency, sustainability, and energy conservation. In general, cumulative impacts to installation infrastructure as a result of described activities would be expected to be positive over the long-term.

5.3.2.9 Hazardous Materials and Waste

The type of hazardous materials needed for maintenance and operation of the KC-46A would be expected to remain similar to those currently used for maintenance and operation of the KC-135 fleet with the exception of ODSs. Under Alternative #3, the total number of flying hours for the 157 ARW would increase approximately 29 percent; therefore, throughput of petroleum substances and hazardous waste streams would be expected to increase commensurately. Furthermore, it is expected that short-term increases would be realized in terms of the quantity of fuel used during construction activities for this action as well as those listed in Table 5.3.1-1. Hazardous waste generation (e.g., used oil, used filters, oily rags, etc.) would continue to be managed in accordance with the installation’s Hazardous Waste Management Plan and all applicable federal, state, and local regulations. Additionally, no changes to the installation’s small quantity generator status would be expected to occur due to the increase in hazardous waste generation from aircraft operations. In addition, any structures listed in Table 5.3.1-1 proposed for demolition, addition, or retrofit would be inspected for ACM and LBP according to established ANG procedures prior to any renovation or demolition activities. Cumulative impacts as a result of the described activities are expected to be minor.

5.3.2.10 Socioeconomics

Economic activity associated with proposed construction activities described as a component of this alternative and those shown in Table 5.3.1-1, such as employment and materials purchasing, would provide short-term economic benefits to the local economy. Additionally, there would be a permanent increase of 171 military positions. However, short-term beneficial impacts resulting from construction payrolls and materials purchased as a result of implementation of Alternative #3 and those projects listed in Table 5.3.1-1 would be negligible on a regional scale.

5.3.2.11 Environmental Justice and the Protection of Children

Under Alternative #3 in concert with those projects listed in Table 5.3.1-1, there would be no residential populations, including no minority or low-income populations, located within the
projected 65 dB DNL noise contour in the vicinity of Portsmouth IAP. There are no other projects listed in Table 5.3.1-1 that would be expected to impact environmental justice communities. Therefore, there would be no cumulative impacts to the health or safety of children.
5.4 **ALTERNATIVE #4 -- PITTSBURGH AIR NATIONAL GUARD STATION CUMULATIVE EFFECTS**

Cumulative impacts to environmental resources result from incremental effects of proposed actions when combined with other past, present, and reasonably foreseeable future projects in the ROI. Cumulative impacts can result from individually minor, but collectively substantial, actions undertaken over a period of time by various agencies (federal, state, and local) or individuals. In accordance with NEPA, a discussion of cumulative impacts resulting from projects that are proposed (or anticipated over the foreseeable future) is required.

5.4.1 **Past, Present, and Reasonably Foreseeable Actions**

Pittsburgh IAP is an active, dynamic airfield where operational changes and facility upgrades occur on a frequent basis. Projects that have been identified in the ROI that have the potential to act in a cumulative manner with Alternative #4 are discussed in this section. The ROI for cumulative impacts is generally limited to Pittsburgh IAP, and the immediately adjacent property because physical impacts related to the proposal are largely confined to these properties. Planning efforts in the ROI include the actions described within this EIS, as well as those other projects that are ongoing, or planned over the short term. Additional projects within the ROI are discussed below in Table 5.4.1-1.

Table 5.4.1-1. Past, Present, and Reasonably Foreseeable Actions in the ROI for Pittsburgh ANGS

<table>
<thead>
<tr>
<th>Project Name/Descriptions</th>
<th>Approximate Square Footage (SF)</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>171 ARW Projects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interior renovations of Buildings 310 (Jet Engine Shop and AGE), 316</td>
<td>NA</td>
<td>FY 2013</td>
</tr>
<tr>
<td>(non-powered AGE Corrosion Control and Nondestructive Inspection), and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>307 (Small Air Terminal Facility)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construct new security forces and physical fitness facility.</td>
<td>8,000</td>
<td>Within the next 5 years.</td>
</tr>
<tr>
<td>Interior renovations of Building 300 (Medical, dining hall, and operations and training), Hangars 301 and 302 (for various uses), and 110 and 120 (supply consolidation).</td>
<td>Currently unknown</td>
<td>Within the next 5 years.</td>
</tr>
<tr>
<td>Expand Building 206: Special Operations Weather Team</td>
<td>5,655</td>
<td>Within the next 5 years.</td>
</tr>
<tr>
<td>Expand Building 107 for small air terminal.</td>
<td>12,800</td>
<td>Within the next 5 years.</td>
</tr>
<tr>
<td>Construct new AT/FP commercial vehicle inspection facility.</td>
<td>N A</td>
<td>Within the next 5 years.</td>
</tr>
<tr>
<td>Phase 1: Demolition of current parking areas (108 parking spaces) and construction of new parking (107 parking spaces) for AT/FP compliance.</td>
<td>Currently unknown</td>
<td>Completed within the last few years.</td>
</tr>
<tr>
<td>Phase 2: Demolition of current parking areas (206 parking spaces) and construction of new parking (230 parking spaces) for AT/FP compliance.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5.4.1-1. Past, Present, and Reasonably Foreseeable Actions in the ROI for Pittsburgh ANGS

<table>
<thead>
<tr>
<th>Project Name/Descriptions</th>
<th>Approximate Square Footage (SF)</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition of Buildings 102 (Reserve Forces Training, Physical Fitness), 103 (Security Forces, Nondestructive Inspection Shop), and 105 (Base Exchange).</td>
<td>18,292</td>
<td>Within the next 5 years.</td>
</tr>
<tr>
<td>Plan identified renovate Building 304 and move the Fire Station to this building.</td>
<td>N/A</td>
<td>Within the next 5 years.</td>
</tr>
<tr>
<td>Construct Deployment Processing Center and Relocate Munitions Storage Area.</td>
<td>8,000</td>
<td>Within the next 5 years.</td>
</tr>
<tr>
<td>Construct New Simulator Facility</td>
<td>6,600</td>
<td>Within the next 5 years.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>911th Airlift Wing Pittsburgh IAP Air Reserve Station</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisition by lease of a 26-acre parcel at the Pittsburgh IAP known as the “T-Ramp” owned by ACAA. The 911th Airlift Wing has been using the T-Ramp property since 1993 under a Memorandum of Agreement to provide space for the 911th Airlift Wing to relocate C-130 aircraft for parking during construction activity.</td>
</tr>
</tbody>
</table>

Pittsburgh IAP

U.S. Airways pulled its hub out of Pittsburgh IAP in 2004, dropping passenger traffic by over 8 million, significantly reducing airfield operations and eliminating approximately 7,000 jobs.	NA	FY 2004
Drilling of Marcellus Shale oil and natural gas well sites on Pittsburgh IAP property.	NA	Within the next 5 years.
Two non-aviation buildings being constructed west of highway off airport property.	NA	In progress

Notes: SF = square foot; 171 ARW = 171st Air Refueling Wing; AGE = aerospace ground equipment; FY = Fiscal Year; AT/FP = anti-terrorism/force protection; IAP = International Airport; ACAA = Allegheny County Airport Authority

5.4.2 Cumulative Impacts

5.4.2.1 Noise

Under Alternative #4, the number of acres contained within the 65 dB DNL and greater exposure area would decrease by approximately 79 acres. Of the acreage exposed to 65 dB DNL or greater, approximately 23 would be off-airport property. Residential use areas that underlie the noise contours would be slightly reduced under Alternative #4. While there are other projects listed in Table 5.4.1-1 that have the ability to add noise to the environment at Pittsburgh IAP, most of these are short-term construction projects that would occur in what is otherwise an industrial setting. Noise from implementation of these actions would be short-term and localized to the airport environs, and would not be expected to increase the overall DNL noise contours. Cumulative impacts to the noise environment at Pittsburgh IAP would be minimal.
5.4.2.2 Air Quality

The net annual emissions increases from the proposed KC-46A beddown as well as those other projects described in Table 5.4.1-1 at Pittsburgh ANGS (including both construction and airfield operations) would be below the CAA PSD major source thresholds and/or the General Conformity Rule de minimis thresholds as set forth in the CAA for all pollutants. Therefore, cumulative impacts to air quality would not be significant.

The potential effects of GHG emissions from the Proposed Action are by nature global. Substantial temperature increases attributable to global climate change could result in a variety of impacts to the people, economy, and environment. These impacts include potential impacts to ecosystems, wildlife and agriculture, increases in the incidence of wildfires, changes in precipitation levels, and rising sea levels. The impacts of global climate change would not be expected to have a substantial impact on Pittsburgh ANGS beyond regional impacts to the area in general.

Given the global nature of climate change and the current state of the science, it is not useful at this time to attempt to link the emissions quantified for local actions to any specific climatological change or resulting environmental impact. Nonetheless, the GHG emissions from the project alternatives have been quantified to the extent feasible in this EIS for information and comparison purposes.

5.4.2.3 Safety

Providing new and renovated facilities for the 171 ARW that support operational requirements of the KC-46A, and are properly sited with adequate space and a modernized supporting infrastructure would generally enhance ground and flight safety during required operations, training, maintenance and support procedures, security functions, and other activities conducted by the 171 ARW. AT/FP requirements have also been addressed to the extent practicable in all facility construction projects. Additional beneficial impacts would occur from a new AT/FP commercial vehicle inspection facility and parking. The fire and crash response capability currently provided by the 171 ARW at Pittsburgh IAP is sufficient to meet all requirements. Risk of a catastrophic event occurring during construction activities described under Alternative #4 or those activities described in Table 5.4.1-1 is considered to be low, and strict adherence to all applicable occupational safety requirements would further minimize the relatively low risk associated with described construction activities. Cumulative impacts to ground or flight safety would be negligible at the airfield. Construction and repair projects identified in Table 5.4.1-1 would be beneficial to safety with pavement repairs and AT/FP enhancements. No adverse impacts to ground safety are anticipated at the airfield. There would be a large decrease in
The accident and mishap potential associated with aircraft operations. Cumulative impacts to safety would be negligible.

5.4.2.4 Soils and Water

Soils

In addition to the 186,395 SF (4.3 acres) of surface disturbance that would result from implementation of Alternative #4, additional surface area would be disturbed in the vicinity as a result of the projects described in Table 5.4.1-1 over the next 5 years.

The CWA considers stormwater from a construction site as a point source of pollution regulated by the NPDES permit. Therefore, those projects described in Table 5.4.1-1 larger than 1 acre would be required to have a site-specific and detailed SWPPP that coordinates the timing of soil disturbing activities with the installation of soil erosion and runoff controls in an effort to reduce the impacts to the local watershed; this is an effective way of controlling erosion while soil is exposed and subject to construction activity. Implementation of construction standard construction practices would be used to limit or eliminate soil movement, stabilize erosion, and control sedimentation. These standard construction practices would include the use of: velocity dissipation devices; well-maintained silt fences; minimizing surficial area disturbed; stabilization of cut/fill slopes; minimization of earth-moving activities during wet weather; and use of temporary detention ponds. Following construction, disturbed areas not covered with impervious surfaces would be reestablished with appropriate vegetation and managed to minimize future erosion potential. Given the use of engineering practices that would minimize potential erosion, cumulative impacts to earth resources would be expected to be minor.

Water

In addition to the 88,529 SF (2.0 acres) of new impervious surface that would result from Alternative #4, other increases in impervious surfaces would also occur in the vicinity as a result of the projects described in Table 5.4.1-1 over the next 5 years.

Cumulative impacts to the hydrologic cycle as a result of increasing impervious surface would be dependent on the unique conditions present at the site and its watershed. LID is a stormwater management approach that mimics nature’s ability to clean and store stormwater runoff accomplished through use of standard construction practices that infiltrate, filter, store, reuse, evaporate, and detain runoff close to its source.
Provided that the projects listed in Table 5.4.1-1 are located within federal lands, compliance with UFC 3-210-10, LID (as amended, 2010) and EISA Section 438 would ensure any increase in surface water runoff as a result of the proposed construction would be attenuated through the use of temporary and/or permanent drainage management features such that post-development runoff rates would be equal to or less than pre-development rates. Additionally, it is expected that any construction activities would adhere to NPDES requirements including implementation of standard construction practices described above. As such, cumulative impacts to water resources would be expected to be minor.

5.4.2.5 Biological Resources

Noise levels from construction would not be expected to impact wildlife in the area because they are accustomed to elevated noise levels associated with current aircraft and military operations. Annual operations for the 171 ARW at Pittsburgh IAP would be projected to increase by approximately 33 percent from baseline operations. An increase in levels of operations (e.g., sorties) may result in a slight increased opportunity for bird/wildlife aircraft strikes to occur, including those with migratory birds. No federally threatened and endangered species are currently known to occur on Pittsburgh IAP. One state listed species is currently known to occur on Pittsburgh IAP. Construction-related impacts to the vegetation at the installation and in the vicinity of projects identified in Table 5.4.1-1 would be negligible due to the lack of sensitive vegetation in the project areas. There are no wetland areas that occur within the vicinity of the project footprints. In general, construction activities at the 171 ARW installation and at Pittsburgh IAP would primarily occur on sites that are already highly altered by man. These impacts would include the removal of some vegetation and associated wildlife habitat. However, wildlife that uses these areas is typical of urban and suburban areas. Cumulative impacts to biological resources would be minor.

5.4.2.6 Cultural Resources

The installation is considered to have no to low probability of containing archaeological resources. In the unlikely event that archaeological or human remains were identified during proposed construction activities associated with Alternative #4 or any of the projects listed in Table 5.4.1-1, activities would immediately cease in the area of the discovery and appropriate personnel would contact a qualified archaeologist to evaluate the discovery. None of the facilities listed for renovation and/or modification under Alternative #4 or those listed in Table 5.4.1-1 are eligible for listing in the NRHP. The SHPO has concurred that two of the buildings listed for renovation and/or modification under Alternative #4 are not eligible to the NRHP (see MacDonald 2011 in Appendix B4). The third building is less than 15 years old and not a resource of exceptional significance (eligible under Criterion Consideration G); therefore, it is
not eligible to the NRHP. No traditional cultural resources have been identified on the installation. Therefore, no cumulative impacts to cultural resources are anticipated.

5.4.2.7 Land Use

Under Alternative #4, acreage off airport property contained within the 65 dB DNL and greater noise contours would decrease by approximately 23 acres resulting in beneficial impacts. In general, land uses surrounding Pittsburgh IAP would not be adversely affected by the activities described under Alternative #4 in concert with those described in Table 5.4.1-1. The location and function of proposed structures within the Pittsburgh ANGS are compatible with the surrounding area. Although future development at Pittsburgh IAP and adjacent areas is anticipated, development would be subject to planning and land use requirements, including those associated with the airport, counties, cities and other municipalities. Project specific studies would be performed to determine and address any projects that would result in land use conflicts, such as encroachment to airfield safety zones. Cumulative impacts to land use as a result of the described activities, including impacts from noise and air quality, would be expected to be negligible.

5.4.2.8 Infrastructure and Transportation

Demand for electricity and natural gas would be expected to increase slightly as a result of the increase in personnel under Alternative #4. Further, building space and facilities to be constructed as a component of this action as well as those identified in Table 5.4.1-1 may require additional electricity. In addition, wastewater, solid waste, demand for potable water, and traffic would temporarily increase during construction, and would increase slightly in the long-term due to increase in personnel. The proposed construction and demolition activities could temporarily affect the quality of stormwater runoff through potential increases in soil erosion. Standard construction practices would be implemented during construction and demolition to minimize runoff. Any new facilities and additions associated with these projects would be implemented with more energy efficient design standards and utility systems than are currently in place. In addition, construction projects would incorporate LEED and sustainable development concepts to achieve optimum resource efficiency, sustainability, and energy conservation. In general, cumulative impacts to installation infrastructure as a result of described activities would be expected to be positive over the long-term.

5.4.2.9 Hazardous Materials and Waste

The type of hazardous materials needed for maintenance and operation of the KC-46A would be expected to remain similar to those currently used for maintenance and operation of the KC-135
fleet with the exception of ODSs. Under Alternative #4, the total number of flying hours for the
171 ARW would increase approximately 34 percent; therefore, throughput of petroleum
substances and hazardous waste streams would be expected to increase commensurately.
Furthermore, it is expected that short-term increases would be realized in terms of the quantity of
fuel used during construction activities for this action as well as those listed in Table 5.4.1-1.
Hazardous waste generation (e.g., used oil, used filters, oily rags, etc.) would continue to be
managed in accordance with the installation’s Hazardous Waste Management Plan and all
applicable federal, state, and local regulations. No changes to the installation’s large quantity
generator status would be expected to occur due to the increase in hazardous waste generation
from aircraft operations. In addition, any structures listed in Table 5.4.1-1 proposed for
demolition, addition, or retrofit would be inspected for ACM and LBP according to established
ANG procedures prior to any renovation or demolition activities. None of the ERP sites overlap
the proposed construction projects under Alternative #4. Cumulative impacts as a result of the
described activities are expected to be minor.

5.4.2.10 Socioeconomics

Economic activity associated with proposed construction activities described as a component of
this alternative and those shown in Table 5.4.1-1, such as employment and materials purchasing,
would provide short-term economic benefits to the local economy. However, short-term
beneficial impacts resulting from construction payrolls and materials purchased as a result of
implementation of Alternative #4 and those projects listed in Table 5.4.1-1 would be negligible
on a regional scale.

5.4.2.11 Environmental Justice and the Protection of Children

Under Alternative #4, of the roughly 12 persons that would continue to be affected by DNL
above 65 dB DNL, none are considered to be minorities or low-income populations. No
additional minorities or low-income populations would be impacted by aircraft DNL greater than
65 dB under Alternative #4. There would not be disproportionate cumulative impacts to
minority or low-income populations in the vicinity of Pittsburgh IAP as a result of this action in
concert with the projects listed in Table 5.4.1-1. Therefore, there would be no cumulative
impacts to the health or safety of children.
5.5 ALTERNATIVE #5 -- RICKENBACKER AIR NATIONAL GUARD STATION
CUMULATIVE EFFECTS

Cumulative impacts to environmental resources result from incremental effects of proposed actions when combined with other past, present, and reasonably foreseeable future projects in the ROI. Cumulative impacts can result from individually minor, but collectively substantial, actions undertaken over a period of time by various agencies (federal, state, and local) or individuals. In accordance with NEPA, a discussion of cumulative impacts resulting from projects that are proposed (or anticipated over the foreseeable future) is required.

5.5.1 Past, Present, and Reasonably Foreseeable Actions

Rickenbacker IAP is an active, dynamic airfield where operational changes and facility upgrades occur on a frequent basis. Projects that have been identified in the ROI that have the potential to act in a cumulative manner with Alternative #5 are discussed in this section. The ROI for cumulative impacts is generally limited to Rickenbacker IAP, and the immediately adjacent property because physical impacts related to the proposal are largely confined to these properties. Planning efforts in the ROI include the actions described within this EIS, as well as those other projects that are ongoing, or planned over the short term. Additional projects within the ROI are discussed below in Table 5.5.1-1.

Table 5.5.1-1. Past, Present, and Reasonably Foreseeable Actions in the ROI for Rickenbacker ANGS

<table>
<thead>
<tr>
<th>Project Name/Descriptions</th>
<th>Approximate Square Footage (SF)</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under the NDAA Implementation Plan, Rickenbacker ANGS will lose 6 KC-135s in FY 2013.</td>
<td>NA</td>
<td>In progress – FY 2013</td>
</tr>
<tr>
<td>New main entrance and guard house: Construction of a new Main Entrance to include 100 percent inspection area, vehicle turn-around, truck inspection canopy, and guardhouse. This includes 32,000 SF of new impervious surface.</td>
<td>47,030</td>
<td>Completed within the last few years</td>
</tr>
<tr>
<td>Repair Aircraft Ramp: Seal existing concrete joints, repair storm drain, mill asphalt; remove concrete pavement, pour new asphalt pavement with base, pour new concrete pavement for aircraft parking.</td>
<td>1,336,630</td>
<td>In progress – FY 2014</td>
</tr>
<tr>
<td>New Small Arms Indoor Range System: New Small Arms Range, range supplies and equipment storage. This includes 14,400 SF of new impervious surface.</td>
<td>18,400</td>
<td>Within the next 5 years</td>
</tr>
<tr>
<td>New Composite Reserve Forces Operations and Training and Medical Training/Administration Facility: Mission Support Group/Mission Support Flight, Medical Administration, Medical Training. This includes 68,220 SF of new impervious surface.</td>
<td>176,220</td>
<td>Within the next 5 years</td>
</tr>
</tbody>
</table>
Table 5.5.1-1. Past, Present, and Reasonably Foreseeable Actions in the ROI for Rickenbacker ANGS

<table>
<thead>
<tr>
<th>Project Name/Descriptions</th>
<th>Approximate Square Footage (SF)</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Civil Engineering Pavements and Grounds and Central Hazardous Waste Facility: Pavements and Grounds Facility, Central Hazardous Waste Accumulation Point. This includes 8,000 SF of new impervious surface.</td>
<td>22,850</td>
<td>Within the next 5 years</td>
</tr>
<tr>
<td>Repair Base Asphalt Pavements</td>
<td>234,000</td>
<td>Completed within the last few years</td>
</tr>
<tr>
<td>Renovate/Repair Building 872: Renovate Building 872 office areas, install Exterior Insulation and Finish System, new windows, and repair lintels and sills in warehouse.</td>
<td>0</td>
<td>Completed within the last few years</td>
</tr>
<tr>
<td>Replace Existing Water Lines: Replace water pipes and valves, install new smart water meters.</td>
<td>280,830</td>
<td>Within the next 5 years</td>
</tr>
</tbody>
</table>

Rickenbacker IAP

<table>
<thead>
<tr>
<th>Project Name/Descriptions</th>
<th>Approximate Square Footage (SF)</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rickenbacker Parkway Phase 1 and 2A: Construction of a median-divided four-lane curb and gutter asphalt roadway. Total length was approximately 3.3 miles along the west side of the airport. Phase 1 was completed in 2006 (Phase 1A) and 2007 (Phase 1B). Phase 2A was completed 2012.</td>
<td>NA</td>
<td>Completed within the last seven years</td>
</tr>
<tr>
<td>Rickenbacker Parkway Phase 2B: Extension of the median-divided four-lane curb and gutter asphalt roadway to the north side of the airport up to and including improvements (primarily lane widening) to SR 317 and Alum Creek Drive. Project is out to bid now and will be constructed 2013 through 2014.</td>
<td>NA</td>
<td>Within next few years.</td>
</tr>
<tr>
<td>Groveport Road Reconfiguration Phase 1 and Phase 2: Phase 1 included the primarily lane widening at the intersection of Groveport Road and Alum Creek Drive just south of Interstate 270 intersection. Completed in 2012. Phase 2 includes a new bridge and roundabouts to reconfigure vehicular traffic flow at the intersection of Groveport Road and Alum Creek Drive. Project is under construction and will be complete in 2013.</td>
<td>NA</td>
<td>Completed in 2012/To be completed in 2013</td>
</tr>
<tr>
<td>East-West Connector (Pickaway County south of airport) Phase 1A and 1B: Phase 1A includes the reconstruction and widening (to 3 lanes) of Duvall Road from SR 23 over to Ashville Pike, including a bridge over the existing railroad tracks. Phase 1B includes the reconstruction and widening (to 3 lanes) of Ashville Pike from Duvall Road up to Rickenbacker Parkway. Project is being bid and construction will start summer 2013 and be complete in 2014.</td>
<td>NA</td>
<td>To be completed in 2014</td>
</tr>
</tbody>
</table>

Notes: SF = square foot; 121 ARW = 121st Air Refueling Wing; NDAA = National Defense Authorization Act; ANG = Air National Guard Station; FY = Fiscal Year; IAP = International Airport; SR = State Route

5.5.2 Cumulative Impacts

5.5.2.1 Noise

Under Alternative #5, the number of acres contained within the 65 dB DNL and greater exposure area would decrease slightly by approximately 99 acres, including a reduction of approximately 72 acres of off-airport property. There are no residential areas that underlie the noise contours under this alternative. While there are other projects listed in Table 5.5.1-1 that have the ability to add noise to the environment at Rickenbacker IAP, most of these are short-term construction
projects that would occur in what is otherwise an industrial setting other than the reduction of aircraft assigned to the 121 ARW which would cause further reduction in noise contours. Noise from implementation of these actions would be localized to the airport environs, and would not be expected to increase the overall noise contours. Cumulative impacts to the noise environment at Rickenbacker IAP would not be significant.

5.5.2.2 Air Quality

The net annual emissions increases from the proposed KC-46A beddown as well as those other projects described in Table 5.5.1-1 at Rickenbacker ANGS (including both construction and airfield operations) would be below the CAA PSD major source thresholds and/or the General Conformity Rule de minimis thresholds as set forth in the CAA for all pollutants. Due to the projected loss of aircraft in FY 2013, this would further reduce emissions. It is not anticipated that any of the projects identified in Table 5.5.1-1 would impact air quality.

The potential effects of GHG emissions from the Proposed Action are by nature global. Substantial temperature increases attributable to global climate change could result in a variety of impacts to the people, economy, and environment. These impacts include potential impacts to ecosystems, wildlife and agriculture, increases in the incidence of wildfires, changes in precipitation levels, and rising sea levels. The impacts of global climate change would not be expected to have a substantial impact on Rickenbacker ANGS beyond regional impacts to the area in general.

Given the global nature of climate change and the current state of the science, it is not useful at this time to attempt to link the emissions quantified for local actions to any specific climatological change or resulting environmental impact. Nonetheless, the GHG emissions from the project alternatives have been quantified to the extent feasible in this EIS for information and comparison purposes.

5.5.2.3 Safety

Providing new and renovated facilities for the 121 ARW that support operational requirements of the KC-46A, and are properly sited with adequate space and a modernized supporting infrastructure would generally enhance ground and flight safety during required operations, training, maintenance and support procedures, security functions, and other activities conducted by the 121 ARW. AT/FP requirements have also been addressed to the extent practicable in all facility construction projects. The fire and crash response capability currently provided by the 121 ARW at Rickenbacker IAP is sufficient to meet all requirements. Risk of a catastrophic event occurring during construction activities described under Alternative #5 or those activities
described in Table 5.5.1-1 is considered to be low, and strict adherence to all applicable occupational safety requirements would further minimize the relatively low risk associated with described construction activities. PAA reduction under the 2013 NDAA would further reduce safety concerns. Cumulative impacts to ground or flight safety would be negligible at the airfield. Construction and repair projects identified in Table 5.5.1-1 would be beneficial to safety with pavement repairs and AT/FP enhancements.

5.5.2.4 Soils and Water

Soils

In addition to the 368,330 SF (8.5 acres) of surface disturbance that would result from implementation of Alternative #5, additional surface area would be disturbed in the vicinity as a result of the projects described in Table 5.5.1-1 over the next 5 years.

The CWA considers stormwater from a construction site as a point source of pollution regulated by the NPDES permit. Therefore, those projects described in Table 5.5.1-1 larger than 1 acre would be required to have a site-specific and detailed SWPPP that coordinates the timing of soil disturbing activities with the installation of soil erosion and runoff controls in an effort to reduce the impacts to the local watershed; this is an effective way of controlling erosion while soil is exposed and subject to construction activity. Implementation of standard construction practices would be used to limit or eliminate soil movement, stabilize erosion, and control sedimentation. These standard construction practices would include the use of: velocity dissipation devices; well-maintained silt fences; minimizing surficial area disturbed; stabilization of cut/fill slopes; minimization of earth-moving activities during wet weather; and use of temporary detention ponds. Following construction, disturbed areas not covered with impervious surfaces would be reestablished with appropriate vegetation and managed to minimize future erosion potential. Given the use of engineering practices that would minimize potential erosion, cumulative impacts to earth resources would be expected to be minor.

Water

In addition to the 14,660 SF (0.3 acre) of new impervious surface that would result from Alternative #5, other increases in impervious surfaces would also occur in the vicinity as a result of the projects described in Table 5.5.1-1 over the next 5 years.

Cumulative impacts to the hydrologic cycle as a result of increasing impervious surface would be dependent on the unique conditions present at the site and its watershed. LID is a stormwater management approach that mimics nature’s ability to clean and store stormwater runoff.
accomplished through use of standard construction practices that infiltrate, filter, store, reuse, evaporate, and detain runoff close to its source.

Provided that the projects listed in Table 5.5.1-1 are located within federal lands, compliance with UFC 3-210-10, LID (as amended, 2010) and EISA Section 438 would ensure any increase in surface water runoff as a result of the proposed construction would be attenuated through the use of temporary and/or permanent drainage management features such that post-development runoff rates would be equal to or less than pre-development rates. Additionally, it is expected that any construction activities would adhere to NPDES requirements including implementation of standard construction practices described above. As such, cumulative impacts to water resources would be expected to be minor.

5.5.2.5 Biological Resources

Noise from temporary construction would not be expected to impact wildlife in the area because they are accustomed to elevated noise levels associated with current aircraft and military operations. Annual operations for the KC-46A at Rickenbacker IAP are projected to increase by approximately 6 percent from baseline operations. An increase in levels of operations (e.g., sorties) may result in a slight increased opportunity for bird/wildlife aircraft strikes to occur, including those with migratory birds. No federally threatened and endangered species and one state listed species are currently known to occur on Rickenbacker IAP. Construction-related impacts to the vegetation at the installation and in the vicinity of projects identified in Table 5.5.1-1 would be negligible due to the lack of sensitive vegetation in the project areas. There are no wetland areas that occur within the vicinity of the project footprints. In general, construction activities at the 121 ARW installation and at Rickenbacker IAP would primarily occur on sites that are already highly altered by man. These impacts would include the removal of some vegetation and associated wildlife habitat. However, wildlife that uses these areas is typical of urban and suburban areas. Cumulative impacts to biological resources would be minor.

5.5.2.6 Cultural Resources

The installation is considered to have no to low probability of containing archaeological resources. In the unlikely event that archaeological or human remains were identified during proposed construction activities associated with Alternative #5 or any of the projects listed in Table 5.5.1-1, activities would immediately cease in the area of the discovery and appropriate personnel would contact a qualified archaeologist to evaluate the discovery. Under the Proposed Action, two of the buildings proposed for modification are eligible for listing in the NRHP (Hangar 885 and 888) (Snyder 2007). Hangar 885 would have an addition and renovations inside to house the new aircraft and support facilities. Because these renovations would alter the
exterior appearance of a structure that is considered eligible because of its design, the
construction would have an adverse effect on a historic property. Modifications to Hangar 888
would all be interior and are not expected to have an adverse effect on this NRHP-eligible
resource. Rickenbacker ANGS and the Ohio SHPO have developed a Programmatic Agreement
stating that if Rickenbacker ANGS is selected to host the MOB 2 KC-46 beddown, further
consultation would be conducted to minimize and mitigate adverse effects to these buildings (see
Appendix B, Section B3). No traditional cultural resources have been identified on the
installation. Cumulative impacts to cultural resources are anticipated to be minor.

5.5.2.7 Land Use

Under Alternative #5, acreage off airport property contained within the 65 dB DNL and greater
noise contours would decrease by approximately 72 acres resulting in beneficial impacts. In
general, land uses surrounding Rickenbacker IAP would not be adversely affected by the
activities described under Alternative #5 in concert with those described in Table 5.5.1-1. The
location and function of proposed structures within the Rickenbacker ANGS are compatible with
the surrounding area. Although future development at Rickenbacker IAP and adjacent areas is
anticipated, development would be subject to planning and land use requirements, including
those associated with the airport, counties, cities and other municipalities. Project-specific
studies would be performed to determine and address any projects that would result in land use
conflicts, such encroachment airfield safety zones. Cumulative impacts to land use as a result of
the described activities, including impacts from noise and air quality, would be expected to be
negligible.

5.5.2.8 Infrastructure and Transportation

Demand for electricity and natural gas would be commensurate with the impacts from the loss of
six aircraft and the increase in personnel under Alternative #5. Further, building space and
facilities to be constructed as a component of this action, as well as those identified in Table
5.5.1-1, may require additional electricity. In addition, wastewater, solid waste, demand for
potable water, and traffic would temporarily increase during construction, and would increase
slightly in the long-term due to increase in personnel. The proposed construction and demolition
activities could temporarily affect the quality of stormwater runoff through potential increases in
soil erosion. Standard construction practices would be implemented during construction and
demolition to minimize runoff. Any new facilities and additions associated with these projects
would be implemented with more energy efficient design standards and utility systems than are
currently in place. In addition, construction projects would incorporate LEED and sustainable
development concepts to achieve optimum resource efficiency, sustainability, and energy
conservation. In general, cumulative impacts to installation infrastructure as a result of described activities would be expected to be positive over the long-term.

5.5.2.9 Hazardous Materials and Waste

The type of hazardous materials needed for maintenance and operation of the KC-46A would be expected to remain similar to those currently used for maintenance and operation of the KC-135 fleet, with the exception of ODSs. Under Alternative #5, the total number of flying hours for the 121 ARW would increase approximately 11 percent; therefore, throughput of petroleum substances and hazardous waste streams would be expected to increase commensurately. Furthermore, it is expected that short-term increases would be realized in terms of the quantity of fuel used during construction activities for this action as well as those listed in Table 5.5.1-1. Hazardous waste generation (e.g., used oil, used filters, oily rags, etc.) would continue to be managed in accordance with the installation’s Hazardous Waste Management Plan and all applicable federal, state, and local regulations. Additionally, no changes to the installation’s small quantity generator status would be expected to occur due to the increase in hazardous waste generation from aircraft operations. In addition, any structures listed in Table 5.5.1-1 proposed for demolition, addition, or retrofit would be inspected for ACM and LBP according to established ANG procedures prior to any renovation or demolition activities. Cumulative impacts as a result of the described activities are expected to be minor.

5.5.2.10 Socioeconomics

Economic activity associated with proposed construction activities described as a component of this alternative and those shown in Table 5.5.1-1, such as employment and materials purchasing, would provide short-term economic benefits to the local economy. Under the NDAA Implementation Plan, the 121 ARW will lose six KC-135 aircraft, including a reduction in personnel. As a result, cumulative impacts under Alternative #5 would mean a greater increase in personnel than projected, and therefore a greater increase in total annual salary for the full-time employees based on those changes. Short-term beneficial impacts resulting from construction payrolls and materials purchased as a result of implementation of Alternative #5 and those projects listed in Table 5.5.1-1 would be negligible on a regional scale.

5.5.2.11 Environmental Justice and the Protection of Children

Under Alternative #5, in concert with those projects listed in Table 5.5.1-1, there would be no residential populations, including no minority or low-income populations, located within the projected 65 dB DNL noise contour in the vicinity of Rickenbacker IAP. There are no other projects listed in Table 5.5.1-1 that would be expected to impact environmental justice
communities. Under Alternative #5 there would be no schools exposed to aircraft DNL of 65 dB or above. Therefore, there would be no cumulative impacts to the health or safety of children.

5.6 **Irreversible and Irretrievable Commitment of Resources for All Alternatives**

NEPA CEQ regulations require environmental analyses to identify “...any irreversible and irretrievable commitments of resources that would be involved in the Proposed Action should it be implemented” (40 CFR Section 1502.16). Irreversible and irretrievable resource commitments are related to the use of nonrenewable resources and the effects the uses of these resources have on future generations. Irreversible effects primarily result from the use or destruction of a specific resource (e.g., energy and minerals) that cannot be replaced within a reasonable time frame. Building construction material such as gravel and gasoline usage for construction equipment would constitute the consumption of non-renewable resources. Irretrievable resource commitments also involve the loss in value of an affected resource that cannot be restored as a result of the action.

The primary irretrievable impacts of implementation of the Proposed Action for any of the alternatives would involve the use of energy, labor, materials and funds, and the conversion of some lands from an undeveloped condition through the construction of buildings and facilities on the installation. Irretrievable impacts would occur as a result of construction, facility operation, and maintenance activities. Direct losses of biological productivity and the use of natural resources from these impacts would be inconsequential.
CHAPTER 6 REFERENCES

______. 2013b. Email communications between Maj Matt Brito, 108 ARW/OSF/DOT and Mr. Wear on March 26, 2013.

______. 2013c. Personal communication from Lt Robert Mendez via e-mail regarding hazardous waste and materials, housing, and socioeconomic information. July 10.

______. 2013d. Personal communication from Charles Beam via e-mail regarding hazardous waste and materials, housing, and socioeconomic information. July 24.

121st Air Refueling Wing (121 ARW). 2006. Final Environmental Baseline Survey. 121st Air Refueling Wing, Ohio National Guard, Columbus, Ohio. October.

______. 2010. Final Environmental Assessment, Proposed Construction for the 121st Air Refueling Wing, Ohio Air National Guard, Rickenbacker International Airport, Columbus, Ohio. October.

______. 2011a. Final 2009 Air Emissions Inventory, 121st ARW, Ohio National Guard, Columbus, Ohio. June.

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS

Chapter 6 – References

6-3

190th Air Refueling Wing (190 ARW). 2008a. Final 2006 Air Emissions Inventory, 190th Air Refueling Wing, Kansas Air National Guard, Topeka, Kansas. April.

190th Air Refueling Wing (190 ARW). 2008c. GIS for installation features.

190th Air Refueling Wing (190 ARW). 2012c. Oil and Hazardous Substances Spill Prevention and Response Plan, Kansas Air National Guard, 190th Air Refueling Wing, Forbes Field, Topeka, Kansas

190th Air Refueling Wing (190 ARW). 2013b. Email from 2dLt Jarrod Brunkow regarding Forbes ANGS utility usage. April 24.

Air National Guard Readiness Center, 190th Air Refueling Wing (190 ARW), and Kansas State Historic Preservation Officer. 2009. Memorandum of Agreement Among the Air National Guard Readiness Center, 190th Air Refueling Wing, Kansas Air National Guard and Kansas State Historic Preservation Officer Pursuant to 36 CFR 800.6(c) Regarding modifications and changes to Building 679 Squad Operations, Forbes Field Air National Guard Base, Topeka, Kansas. August.

Final – June 2014

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS

Chapter 6 – References

Burlington County Zoning. 2010. GIS for land use provided by Merrilee Torres.

Buzzard, Lt Col David. 2013. Meeting with Safety Officer Lt Col David Buzzard, February.

Center for Workforce Information and Analysis. 2012. Allegheny County Top 50 Employers, 3rd Quarter 2012 Initial Data.

City of Columbus. n.d. Southerly Wastewater Treatment Plant Process. City of Columbus Department of Public Utilities Division of Sewerage and Drainage.

______. 2012b. Water and Sewer Rate Study. Presentation for a Public Informational Meeting. December.

______. 2013a. City of Topeka Public Works, Office of Utilities & Transportation, A Tour of Topeka’s Water Treatment Facility.

Delaware River Basin Commission. 2013. Delaware River Basin Commission, Basin Information. URL: www.state.nj.us/drbc/basin/

Department of Military and Veterans Affairs. 2007. Phase I Environmental Site Assessment, CSMS West, Pittsburgh International Airport, Moon Township, Allegheny County, Pennsylvania. 9 January.

Duryee, Adrienne. 2013. Comments on Interim Draft #1 Main Operating Base 2 KC-46A Beddown at Alternative Air National Guard Installations EIS.

Findlay Township Zoning. 2012. GIS for land use.

Franklin County Zoning. 2013. GIS for land use.

Franklin County Department of Sanitary Engineering. 2010. Franklin County Water Quality Report, Rickenbacker Water.

Gwiner, Philip. 2013. Personal communications with Mr. Gwiner and Mr. Wear, Cardno TEC, Inc.

Halftown, Clint. 2014. E-mail from Clint Halftown, Cayuga Nation to National Guard Bureau regarding Replacement of KC-135 Fleet with KC-46A Fleet. 11 January.

Headquarters Air Mobility Command (AMC) and National Guard Bureau (NGB). 2013a. Main Operating Base #2 KC-46A Beddown, Pease ANGS, NH. 11-15 February.

——. 2013b. Main Operating Base #2 KC-46A Beddown, Rickenbacker ANGS, OH. 28 January – 1 February.

______. 2013d. Main Operating Base #2 KC-46A Beddown, Pittsburgh ANGS, PA. 4-8 February.

High Plains Regional Climate Center. 2013. Climate Data for Topeka, Kansas.

Johnson, Eric. 2013. E-mail from Eric Johnson, Metropolitan Topeka Airport Authority to 190 CES/CC, Subject: KC-46 EIS answers.

______. 2013a. Air Installation Compatible Use Zone Study. February.

Kansas Army National Guard. 2010. Kansas Army National Guard, Preconstruction Site Assessment for Topeka Forbes Field, Army Aviation Support Facility No. 1, Kansas Adjutant General’s Department, Forbes Field, Topeka, Kansas.

Midwest Regional Climate Center. 2013. Climate Data for Columbus, Ohio.

Moon Township Zoning. 2013. GIS for land use provided by Lora Dombrowski.

Muzzey, Elizabeth. 2009. Letter from Elizabeth Muzzey, Director/State Historic Preservation Officer to David Nylund, Environmental Manager, NHANG regarding Review of Draft Final Cultural Resources Survey (CRS), Historic District Area Form Pease AFB, Pease ANGB, NH. 19 February.

_____. 2013. Concurrence response to letter sent from Robert Dogan, National Guard Bureau. 30 September.
National Guard Bureau (NGB). 2008. Cultural Resources Survey of the 121st Air Refueling Wing, Ohio Air National Guard, Rickenbacker International Airport, Columbus, Franklin County, Ohio

_____. 2013a. GIS information provided by Chris Stanton. March.

_____. 2013b. GIS information provided by Jonathan Patno. March.

National Wetlands Inventory. 2013. Geospatial wetlands data.

_____. 2012a. GIS for water resources.

Ohio Air National Guard (OH ANG). 2006. Wetlands and Other Waters Delineation Project, 121st Air Refueling Wing, Ohio National Guard. Rickenbacker International Airport, Columbus, Ohio. February.

Pease Air National Guard Station (ANGS). 2013. Project Kickoff Meeting and Site Visit Notes. 5-6 March.

Pease International Tradeport. 2013. INM Noise Files from 2007 Construction Environmental Assessment, Updated.

Pickaway County. 2013. GIS for land use provided by Susan Liggins.

Plumsted Township Zoning. 2013. GIS for land use.

Saunders, Daniel. 2013. Concurrence response to letter sent from Robert Dogan, National Guard Bureau. 3 October.

Shawnee County Zoning. 2007. GIS for land use provided by Nick Callaghan.

Smith, Andy. 2013a. Comments on Preliminary Draft Main Operating Base 2 KC-46A Beddown at Alternative Air National Guard Installations EIS.

_____ . 2013b. E-mail regarding recycling statistics and landfill used by the 157 ARW. 31 October.

Snyder, David. 2007. Letter from David Snyder, Ph.D., Archaeology Reviews Manager Resource Protection and Review to Matt Nowakowski, National Guard Bureau regarding 121 ARW Ohio ANG, Rickenbacker IAP, Draft Final Cultural Resources Survey, Hamilton Township, Franklin County, Ohio.

St. Louis, Christina. 2009. Letter to Mr. David Nylund, New Hampshire Air National Guard from Ms. Christina St. Louis of the New Hampshire Division of Historical Resources regarding determination of National Register eligibility for Pease International Tradeport. February 5.

Stacy, Cynthia. 2013. Letter from Cynthia Stacy, Peoria Tribe of Indians of Oklahoma to William P. Albro, Associate Director, Installations and Mission Support, National Guard Bureau regarding KC-46A Beddown at Possible Location of Rickenbacker ANGS, Ohio (MOB 2). 2 October.

Toth, Jay. 2013. E-mail from Jay Toth, Seneca Nation Tribal Archeologist to Lt Col John Tower stating Seneca HP has no issue regarding the EIS for the MOBs. 3 October.

______. 2013b. Comments on Interim Draft #1 Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS.

______. 2000a. Profile of General Demographic Characteristics for the state of Kansas, Shawnee County, and the City of Topeka.
Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS

Chapter 6 – References

6-15

______. 2000b. Profile of General Demographic Characteristics for the state of New Jersey, Burlington County, Ocean County, New Hanover Township, North Hanover Township, Pemberton Township, Plumsted Township, and Wrightstown Borough.

______. 2000c. Profile of General Demographic Characteristics for the state of New Hampshire, Rockingham County, Town of Newington, and Portsmouth.

______. 2000d. Profile of General Demographic Characteristics for the state of Pennsylvania, Allegheny County, Findlay Township, and Moon Township.

______. 2000e. Profile of General Demographic Characteristics for the state of Ohio, Franklin County, Pickaway County, Groveport Village, Lockbourne Village, Hamilton Township, Harrison Township, and Madison Township.

______. 2010a. Profile of General Demographic Characteristics for the state of Kansas, Shawnee County, and the City of Topeka.

______. 2010b. Profile of General Demographic Characteristics for the state of New Jersey, Burlington County, Ocean County, New Hanover Township, North Hanover Township, Pemberton Township, Plumsted Township, and Wrightstown Borough.

______. 2010c. GIS data obtained from 2010 Census TIGER/Line Shape Files and American Factfinder for minority populations in Burlington and Ocean counties.

______. 2010d. Profile of General Demographic Characteristics for the state of New Hampshire, Rockingham County, Town of Newington, and Portsmouth.

______. 2010e. Profile of General Demographic Characteristics for the state of Pennsylvania, Allegheny County, Findlay Township, and Moon Township.

______. 2010f. GIS data obtained from 2010 Census TIGER/Line Shape Files and American Factfinder for minority populations in Allegheny County.

______. 2010g. Profile of General Demographic Characteristics for the state of Ohio, Franklin County, Pickaway County, Groveport Village, Lockbourne Village, Hamilton Township, Harrison Township, and Madison Township.

______. 2011a. 2007-2011 American Community Survey 5-Year Estimates for Selected Economic Characteristics for the state of Kansas, Shawnee County, and the City of Topeka.

______. 2011c. GIS obtained from 2007 through 2011 5-year American Community Survey for low-income populations in Burlington and Ocean counties.

_____. 2011e. 2007-2011 American Community Survey 5-Year Estimates for Selected Economic Characteristics for the state of Pennsylvania, Moon Township, Findlay Township, and Allegheny County.

_____. 2011f. GIS obtained from 2007 through 2011 5-year American Community Survey for low-income populations in Allegheny County.

_____. 2011g. 2007-2011 American Community Survey 5-Year Estimates for Selected Economic Characteristics for the state of Ohio, Franklin County, Pickaway County, Groveport Village, Lockbourne Village, Hamilton Township, Harrison Township, and Madison Township.

Zollner, Patrick. 2008. Letter from Patrick Zollner, Director, Cultural Resources Division, Deputy State Historic Preservation Officer to Marjorie Nowick, Project Manager, Engineering-Environmental Management (e2M), Englewood, Colorado regarding Cultural Resources Survey of Forbes Field Air National Guard Base, Shawnee County.

______. 2013. Letter from Patrick Zollner, Kansas Historical Society to Anne Rowe, National Guard Bureau regarding KC-46A Mob 2 Forbes Field Topeka – Shawnee County. 17 September.
[This page intentionally left blank.]
CHAPTER 7 PERSONS AND AGENCIES CONTACTED

FORBES ANGS

Barrett, John, Chairman, Citizen Potawatomi Nation, Shawnee, OK 74801
Blanchard, George, Governor, Absentee Shawnee Tribe of Oklahoma, Shawnee, OK 74801
Brownback, The Honorable Sam, Office of the Governor, Topeka, KS 66612-1590
Buhler, Shelly, Chair, Shawnee County Commissioner, District 1, Topeka, KS 66603
Bunten, The Honorable Bill, Mayor of Topeka, Topeka, KS 66603-3914
Chinn, Jennie, State Historic Preservation Officer, Kansas State Historical Society, Cultural Resources Division, Topeka, KS 66615-1099
City of Topeka Planning, Topeka, KS 66607
Director of Aviation, Kansas Department of Transportation, Topeka, KS 66603-3754
Ellis, Henryetta, THPO, Absentee Shawnee Tribe of Oklahoma, Shawnee, OK 74801
Federal Aviation Administration, Central Region, Kansas City, MO 64106-2641
Gordon, The Honorable Lana, Kansas House of Representatives, Topeka, KS 66614
Holton, Kerry, President, Delaware Nation, Anadarko, OK 73005
Hunter, Dr. Andrea A., THPO, Osage Nation of Oklahoma, Pawhuska, OK 74056
Jenkins, The Honorable Lynn, House of Representatives, Washington, DC 20515
Johnson, Eric, Metropolitan Topeka Airport Authority, Forbes Field, Topeka, KS 66619
Kansas Department of Wildlife and Parks, Region 2, Topeka, KS 66606
Mitchell, John, Kansas Department of Health and Environment, Division of Environment, Topeka, KS 66612-1367
Moran, The Honorable Jerry, U.S. Senate, Washington, DC 20510
Mosteller, Kelli, THPO, Citizen Potawatomi Nation, Shawnee, OK 74801
Munroe, Guy, Chairman, Kaw Nation, Kaw City, OK 74641
Obermeyer, Dr. Brice, Delaware Nation, Emporia, KS 66801
Ortiz, Steve, Council Chair, Prairie Band Potawatomi Tribe, Mayetta, KS 66509

Redeagle, Mr. John D., Principal Chief, Osage Nation of Oklahoma, Pawhuska, OK 74056

Roberts, The Honorable Pat, U.S. Senate, Washington, DC 20510

Schmidt, The Honorable Vicki, Kansas Senate, Topeka, KS 66610-1632

Shawnee County Planning Department, Topeka, KS 66618

Standing, Leslie, President, Wichita and Affiliated Tribes, Anadarko, OK 73005

Summerlin, Joe, NEPA Reviewer, U.S. Environmental Protection Agency, Region 7, Lenexa, KS 66219

U.S. Fish and Wildlife Service, Kansas Ecological Services Field Office, Manhattan, KS 66502-2801

Wallace, Glenna, Chief, Eastern Shawnee Tribe of Oklahoma, Wyandotte, OK 74370

Wolgast, Larry, Councilperson, Topeka City Council District #5, Topeka, KS 66611

JB MDL

Christie, The Honorable Chris, Office of the Governor, Trenton, NJ 08625

Clifton, The Honorable Robert, New Jersey Assembly, Millstone, NJ 08535

Coordinator, Regional Planning, Burlington County, Mount Holly, NJ 08060

Dancer, The Honorable Ronald, New Jersey Assembly, Cream Ridge, NJ 08514

Davis, Eric, Supervisor, U.S. Fish and Wildlife Service, New Jersey Ecological Services Field Office, Pleasantville, NJ 08232

Deman, Ernie, Supervising Environmental Specialist, New Jersey Pinelands Commission, New Lisbon, NJ 08064

Durr, The Honorable Jim, Mayor of North Hanover Township, Jacobstown, NJ 08562

Environmental Review Coordinator, U.S. Environmental Protection Agency, Region 2, New York, NY 10007-1866

Foster, Ruth W., New Jersey Department of Environmental Protection, Office of Permit Coordination and Environmental Review, Trenton, NJ 08625

Francioli, The Honorable Ronald, Mayor of New Hanover Township, Whippany, NJ 07981

Fressola, The Honorable Mike, Mayor of Manchester Township, Manchester, NJ 08759
Gould, Mark, Chairperson, Nanticoke-Lenni-Lenape Indians of New Jersey, Bridgeton, NJ 08302

Harper, The Honorable Thomas, Mayor of Wrightstown, Wrightstown, NJ 08562

Hawkins, Joanne Bundy, Powhatan-Renape Nation, Rankokus Indian Reservation, Rancocas, NJ 08073

Holton, Kerry, President, Delaware Nation, Anadarko, OK 73005

Lautenberg, The Honorable Frank, U.S. Senate, Washington, DC 20510

Leutwyler, The Honorable David, Mayor of Plumsted Township, New Egypt, NJ 08533

McDaniel, The Honorable Denis, Mayor of Springfield Township, Jobstown, NJ 08041

Menendez, The Honorable Robert, U.S. Senate, Washington, DC 20510

New Jersey Division of Fish and Wildlife, Endangered and Nongame Species Program, Department of Environmental Protection, Trenton, NJ 08625-420

Patriarca, The Honorable David, Mayor of Pemberton Township, Pemberton, NJ 08068-1539

Perry, Dwaine, Chief, Ramapough Mountain Indians, Mahwah, NJ 07430

Phifer, Ph.D., Paul, Assistant Regional Director, Ecological Services, U.S. Fish and Wildlife Service, Region 5, Hadley, MA 01035-9589

Reina, The Honorable Michael, Mayor of Jackson Township, Jackson, NJ 08527

Robbie, Mary Pat, Director, Resource Conservation, Burlington County, Mount Holly, NJ 08060

Runyun, The Honorable Jon, House of Representatives, Washington, DC 20515

Saunders, Daniel, Administrator and Deputy State Historic Preservation Officer, New Jersey Department of Environmental Protection, Historic Preservation Office, Trenton, NJ 08625-420

Smith, The Honorable Chris, House of Representatives, Washington, DC 20515

Stull, Wayne, Trust Board Chairman, Delaware Tribe of Indians, Bartlesville, OK 74006

Thompson, The Honorable Samuel, New Jersey Senate, Old Bridge, NJ 08857

Vele, Kimberly, President, Stockbridge-Munsee Community, Bowler, WI 54416
White, Sherry, THPO, Stockbridge-Munsee Community, Bowler, WI 54416

PEASE ANGS

Ayotte, The Honorable Kelly, U.S. Senate, Washington, DC 20510

Clark, The Honorable Martha, New Hampshire Senate, Concord, NH 03301

Drew, Timothy, New Hampshire Department of Environmental Services, Concord, NH 03302

Francis, Kirk, Tribal Chief, Penobscot Indian Nation, Indian Island, ME 04668

Hassan, The Honorable Maggie, Office of the Governor, Concord, NH 03301

Historic Preservation Officer, New Hampshire Division of Historical Resources, Concord, NH 03301

New Hampshire Coastal Program, Department of Environmental Services, Portsmouth, NH 03801

New Hampshire Department of Environmental Services, Wetlands Bureau, Concord, NH 03302

New Hampshire Department of Transportation, Bureau of Environment, Concord, NH 03302

New Hampshire Fish and Game Department, Concord, NH 03301

New Hampshire Office of Energy and Planning, Concord, NH 03301

New Hampshire State Port Authority, Portsmouth, NH 03801

Newsom, Bonnie, THPO, Penobscot Indian Nation, Indian Island, ME 04468

Northeast Coordinator, U.S. Fish and Wildlife Service Region V, Hadley, MA 01035

Portsmouth City Hall, Community Development Department, Portsmouth, NH 03801

Scarlotto, The Honorable Joe, New Hampshire Representative, Portsmouth, NH 03801-4126

Shaheen, The Honorable Jeanne, U.S. Senate, Washington, DC 20510

Shea-Porter, The Honorable Carol, House of Representatives, Washington, DC 20515

Spear, The Honorable Eric, Mayor of Portsmouth, Portsmouth, NH 03801

Stowell, Maria, Pease Development Authority, Portsmouth, NH 03801

Town of Newington Planning Department, Newington, NH 03801

U.S. Environmental Protection Agency, Region 1, Boston, MA 02109-3912
PITTSBURGH ANGS

Belotti, Rich, Director, Planning & Environmental Affairs, Pittsburgh International Airport, Pittsburgh, PA 15231-0370

Caruso, Christopher, Planning Administrator, Township of Findlay, Clinton, PA 15026

Casey, Jr., The Honorable Robert, U.S. Senate, Washington, DC 20510

Celeste, The Honorable Anthony, Mayor of Coraopolis, Coraopolis, PA 15108

Corbett, The Honorable Tom, Office of the Governor, Pittsburgh, PA 15222

Etzel, Sandra, Allegheny County Health Department, Air Quality Program, Pittsburgh, PA 15201

Frankel, Kathy, Natural Resource Program Supervisor, Pennsylvania Department of Conservation and Natural Resources, Pittsburgh, PA 15222-2420

Hans, Scott A., Chief, Regulatory Branch, U.S. Army Corps of Engineers, Pittsburgh, PA 15222-4186

Henry, Leo, Chief, Tuscarora Nation of New York, Lewiston, NY 14092

Hill, Roger, Chief, Tonawanda Band of Seneca, Basom, NY 14013

Jameson, Jr., Bud, Commander, 316th Expeditionary Sustainment Command, Coraopolis, PA 15108-2550

Maybee, Melinda, Nation Representative, Cayuga Nation of New York, Seneca Falls, NY 13148

McDonald, Susan, Environmental Specialist, Federal Aviation Administration, Harrisburg Airports District Office, Camp Hill, PA 17011

McLearen, Doug and Kira Heinrich, Archaeology & Protection Division, Pennsylvania Historical and Museum Commission - Bureau for Historic Preservation, Harrisburg, PA 17120

Murphy, The Honorable Tim, House of Representatives, Washington, DC 20515

Mustio, The Honorable Mark, Pennsylvania House of Representatives, Moon Township, PA 15108

Penrod, Bradley D., President and Chief Strategy Officer, Allegheny County Department of Aviation, Pittsburgh, PA 15231-0370
Peters, Craig, Commander, 911th Air Wing, U.S. Air Force Reserve, Coraopolis, PA 15108-2983

Porter, Robert Odawi, President, Seneca Nation of Indians, Irving, NY 14081

Powless, Irving, Chief, Onondaga Nation of New York, Nedrow, NY 13120

Rudnick, Barbara, NEPA Team Leader, U.S. Environmental Protection Agency, Region 3, Office of Environmental Programs (3EA30), Environmental Assessment and Innovation Division, Philadelphia, PA 19103-2029

Sitio, Lou, Assistant Chief of Public Affairs, U.S. Army Corps of Engineers, North Atlantic Division, Brooklyn, NY 11252

Smith, The Honorable Matt, Pennsylvania Senate, Harrisburg, PA 17120-3037

Toomey, The Honorable Patrick, U.S. Senate, Washington, DC 20510

Watt, Lana, THPO, Seneca Nation of Indians, Salamanca, NY 14779

Ziegler, Jeffrey, Assistant Township Manager, Moon Township Administration Office, Moon Township, PA 15108

RICKENBACKER ANGS

áá Cooká, Ethel E., Chief, Ottawa Tribe of Oklahoma, Miami, OK 74355

Adkins, Lisa, Program Coordinator, Ohio Historic Preservation Office, Columbus, OH 43211-2474

Ankrom, John, Service Director, City of Circleville Planning and Zoning Commission, Circleville, OH 43113

Bacon, The Honorable Kevin, Ohio Senate, Columbus, OH 43215

Barrett, John, Chairman, Citizen Potawatomi Nation, Shawnee, OK 74801

Bishoff, The Honorable Heather, Ohio House of Representatives, Columbus, OH 43215

Brown, Lee, Planning Administrator, Franklin County Economic Development & Planning Department, Columbus, OH 43215

Brown, The Honorable Sherrod, U.S. Senate, Washington, DC 20510

Carter, Ron, Ohio Department of Natural Resources, Division of Wildlife, Columbus, OH 43229-6693

Clemons, Sherri, THPO, Wyandotte Nation, Wyandotte, OK 74370
Coleman, The Honorable Michael, Mayor of Columbus, Columbus, OH 43215
Columbus Health Department, Columbus, OH 43215
Delaney, Katie, Federal Aviation Administration, Romulus, MI 48174
Director of Planning, Columbus Regional Airport Authority, Columbus, OH 43219
Ferris, Kade, THPO, Turtle Mountain Band of Chippewa Indians of North Dakota, Belcourt, ND 58316
Frank, Harold, Chairman, Forest County Potawatomi Community, Crandon, WI 54520
Friend, Billy, Chief, Wyandotte Nation, Wyandotte, OK 74370
Froman, John P., Chief, Peoria Tribe of Indians of Oklahoma, Miami, OK 74355
Gamble, Thomas, Chairperson, Miami Tribe of Oklahoma, Miami, OK 74355-1326
Garver, Dan, District Conservationist, Ohio Natural Resource Conservation Service, Circleville, OH 43113-9575
General Manager, Columbus Regional Airport Authority, Rickenbacker International Airport, Administrative Offices, Columbus, OH 43217
Hayes, Jody, Tribe Administrator, Shawnee Tribe, Miami, OK 74355
Holton, Kerry, President, Delaware Nation, Anadarko, OK 73005
Kasich, The Honorable John, Office of the Governor, Columbus, OH 43215-6117
Knapp, Mary, Field Supervisor, Fish and Wildlife Service, Columbus, OH 43230-8355
Meshigaud, Kenneth, Chairperson, Hannahville Indian Community, Wilson, MI 49896-9728
Mosteller, Kelli, THPO, Citizen Potawatomi Nation, Shawnee, OK 74801
Obermeyer, Dr. Brice, Delaware Nation, Emporia, KS 66801
Ohio Department of Health, Columbus, OH 43215
Ohio Department of Natural Resources, Division of Geological Survey, Columbus, OH 43229-6693
Ohio Department of Natural Resources, Division of Soil & Water, Columbus, OH 43229-6693
Ohio Department of Transportation, District 6, Delaware, OH 43015
Ohio Environmental Protection Agency, Columbus, OH 43215
Ortiz, Steve, Chairperson, Prairie Band of Potawatomi Nation, Mayetta, KS 66509

Pickaway County Office of Development and Planning, Circleville, OH 43113

Portman, The Honorable Rob, U.S. Senate, Washington, DC 20510

Spagna, Teresa, U.S. Army Corps of Engineers, Huntington District, Huntington, WV 25701-2070

Sparkman, Ron, Chairperson, Shawnee Tribe, Miami, OK 74355

St. Claire, Merle, Chairman, Turtle Mountain Band of Chippewa Indians of North Dakota, Belcourt, ND 58316

Stivers, The Honorable Steve, House of Representatives, Washington, DC 20515

Strack, George, THPO, Miami Tribe of Oklahoma, Miami, OK 74355

Wallace, Glenna, Chief, Eastern Shawnee Tribe of Oklahoma, Seneca, MO 64865

Wesaw, Matthew J., Chairman, Pokagon Band of Potawatomi Indians, Dowagiac, MI 49047

Zimmerman, Mike, THPO, Pokagon Band of Potawatomi Indians, Dowagiac, MI 49047
CHAPTER 8 LIST OF PREPARERS

Kate L. Bartz, Project Manager, Cardno TEC, Inc.
M.S., Landscape Architecture and Environmental Planning, 1994
B.S., Environmental Studies, 1987
Years of Experience: 27

Peer Amble, Cardno TEC, Inc.
B.A., Physical Geography, 1988
Years of Experience: 23

Linda DeVine, Cardno TEC, Inc.
A.S., Physical Science, 2001
Undergraduate Studies, Environmental Science, Christopher Newport University
Years of Experience: 29

Cathy Doan, Cardno TEC, Inc.
B.S., English, 1980
M.A., Human Resources Development, 1985
Years of Experience: 16

Jason Harshman, Cardno TEC, Inc.
B.A., Geography, 2006
Years of Experience: 9

Amanda Kreider, Cardno TEC, Inc.
M.S., Fire Ecology, 2002
B.S., Wildlife Ecology, 1998
Years of Experience: 12

Edie Mertz, Cardno TEC, Inc.
A.A. General Education, 1994
Years of Experience: 23

Kelly Mitchell, Cardno TEC, Inc.
B.S., Anthropology, 1994
M.A., History, 2006
Years of Experience: 16

Susan Ratliff, Cardno TEC, Inc.
Years of Experience: 23
Teresa Rudolph, Cardno TEC, Inc.
 B.A., Anthropology, 1975
 M.A., Anthropology, 1981
 Years of Experience: 32

Tamara Shapiro, Cardno TEC, Inc.
 B.A., English, 1989
 Years of Experience: 13

Deirdre Stites
 A.A., A.S., Geology, 1981
 Years of Experience: 34

Valorie Thompson, Scientific Resources Associated
 Ph.D., Chemical Engineering
 B.S., Chemistry
 Years of Experience: 28

Bill Wear, Cardno TEC, Inc.
 M.A., Public Administration, 1979
 B.A., Business Administration/Economics, 1969
 Years of Experience: 44

Vanessa Williford, Cardno TEC, Inc.
 B.S., Resource and Environmental Studies, 2002
 Years of Experience: 11

Kimberly Wilson, Cardno TEC, Inc.
 Years of Experience: 28
INDEX

Accident Potential Zone (APZ), 2-6, 3-10, 3-37, 3-46, 3-66, 3-93, 3-119, 4-39, GLOSS-1

Air Installation Compatible Use Zone (AICUZ), ES-10, ES-20, 2-58, 2-68, 3-28, 3-46, 4-156, GLOSS-1

AP/1B, ES-8, 2-4, GLOSS-2

Area of Concern (AOC), 3-105, 3-132

Asbestos-Containing Material (ACM), ES-19, ES-20, 2-67, 2-68, 3-23, 3-50, 3-78, 3-104, 3-131, 4-22, 4-24, 4-26, 4-54, 4-56, 4-58, 4-85, 4-87, 4-90, 4-115, 4-116, 4-120, 4-147, 4-149, 4-152, 5-6, 5-14, 5-21, 5-29, 5-36

Bird/Wildlife Aircraft Strike Hazard (BASH), ES-12, ES-20, 2-60, 2-68, 3-11, 3-12, 3-37, 3-38, 3-66, 3-67, 3-93, 3-94, 3-119, 3-120, 4-11, 4-12, 4-16, 4-40, 4-41, 4-46, 4-73, 4-78, 4-103, 4-108, 4-134, 4-139, 4-140, 6-2, 6-3, 6-4, 6-5, 6-9, GLOSS-2

Boeing Michigan Aerospace Research Center (BOMARC), 3-45

Boom/Probe and Drogue Refueling, ES-3, 1-4, GLOSS-2

Central Accumulation Point (CAP), 3-23, 3-51, 3-79, 3-104, 3-132

Command and Control (C2), 1-4, 1-5, 1-6, 1-8, 2-2

Command, Control, Communications, and Computers (C4), ES-3, 1-4

Conformity Determination, ES-11, 2-59, 2-69, 4-36, 4-38, 5-10, GLOSS-3

Construction Emissions, ES-11, 2-59, 4-8, 4-9, 4-37, 4-38, 4-70, 4-71, 4-100, 4-101, 4-131, 4-132

Consultation, 1-11, 3-46, 4-17, 4-26, 4-48, 4-58, 4-80, 4-81, 4-88, 4-110, 4-120, 4-141, 4-152, 5-13

Council on Environmental Quality (CEQ), ES-8, 1-3, 1-9, 2-55, 2-69, 3-1, 4-155, 5-37, 6-6, GLOSS-3

de minimis, ES-11, 2-59, 2-69, 3-33, 3-61, 3-88, 3-114, 4-6, 4-35, 4-36, 4-37, 4-38, 4-68, 4-69, 4-70, 4-71, 4-98, 4-99, 4-100, 4-101, 4-129, 4-130, 4-131, 4-132, 5-9, 5-17, 5-25, 5-32

Defense Logistics Agency (DLA), 3-51

Disproportionate, ES-20, 2-68, 4-29, 4-61, 4-62, 4-91, 4-121, 4-122, 4-153, 4-154, 4-159, 5-15, 5-29

Endangered, 3-44, 3-125, 4-79, 4-108, 4-139, 5-19, 5-27, 5-34, GLOSS-3, GLOSS-6

Energy Independence and Security Act (EISA), 4-13, 4-42, 4-53, 4-75, 4-84, 4-105, 4-113, 4-136, 4-146, 5-12, 5-19, 5-27, 5-34

Environmental Restoration Program (ERP), ES-18, ES-20, 2-66, 2-68, 3-24, 3-45, 3-51, 3-79, 3-105, 3-132, 4-26, 4-58, 4-88, 4-90, 4-118, 4-120, 4-150, 4-152, 5-29

Federal Aviation Administration (FAA), ES-6, 1-7, 2-9, 2-57, 3-1, 3-11, 3-57, 3-66, 3-84, 3-93, 3-110, 3-119, 4-2, 4-11, 4-81, 6-7, 6-12, 6-13

Federal Aviation Regulation (FAR), ES-6, ES-10, ES-15, ES-20, 2-57, 2-58, 2-64, 2-68, 3-1, 3-57, 3-84, 3-85, 3-86, 3-110, 3-111, 4-93, 4-94, 4-97, 4-111, 4-123, 4-124, 4-125, 4-128, 4-145, 4-156, 6-5, 6-6

Federal Highway Administration (FHWA), 4-6, 4-34, 4-67, 4-97, 4-128, 6-8

Federal Interagency Committee on Urban Noise (FICUN), 3-127, 4-52, 4-81

Federal Register, ES-1, 1-10, 1-12

Floodplains, 3-16, 3-42, 3-72, 3-95, 3-98, 3-124, 4-15, 4-44, 4-77, 4-107, 4-138

Green House Gas (GHG), 4-8, 4-9, 4-37, 4-38, 4-69, 4-70, 4-71, 4-99, 4-100, 4-131, 4-132, 5-2, 5-10, 5-17, 5-25, 5-32

Groundwater, 3-14, 3-16, 3-24, 3-42, 3-51, 3-71, 3-76, 3-79, 3-98, 3-102, 3-105, 3-122, 3-129, 3-132, 4-13, 4-26, 4-44, 4-58, 4-77, 4-88, 4-107, 4-118, 4-138, 4-152, 5-4

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS

Index

IDX-1
Hazardous Air Pollutant (HAP), ES-11, ES-20, 2-59, 2-68, 3-9, 3-35, 3-64, 3-92, 3-117, 4-9, 4-38, 4-71, 4-101, 4-132
Integrated Noise Model (INM), 3-1, 3-57, 3-84, 3-110, 4-63, 4-92, 4-123, 4-124, 6-12, 6-13, GLOSS-4
Lead-Based Paint (LBP), ES-19, ES-20, 2-67, 2-68, 3-23, 3-50, 3-78, 3-104, 3-131, 4-22, 4-24, 4-26, 4-54, 4-56, 4-58, 4-85, 4-87, 4-90, 4-115, 4-116, 4-120, 4-147, 4-149, 4-152, 5-6, 5-14, 5-21, 5-29, 5-36
Leadership in Energy and Environmental Design (LEED), 2-14, 2-23, 2-31, 2-44, 2-51, 4-21, 4-53, 4-84, 4-114, 4-146, 5-6, 5-14, 5-21, 5-28, 5-35
Low Impact Development (LID), 4-13, 4-42, 4-75, 4-105, 4-136, 5-12, 5-19, 5-26, 5-27, 5-33, 5-34
Low-Income, ES-20, 2-68, 3-27, 3-54, 3-55, 3-56, 3-82, 3-108, 3-109, 3-135, 3-136, 4-29, 4-61, 4-62, 4-91, 4-121, 4-122, 4-153, 4-159, 5-7, 5-15, 5-21, 5-29, 5-36, 6-15, 6-16, GLOSS-3
Migratory Bird Treaty Act (MBTA), 3-16, 3-43, 3-72, 3-99, 3-124, 4-15, 4-45, 4-78, 4-108, 4-139
Military Operations Area (MOA), 2-11, 2-30, 2-41, 2-50, 3-121, GLOSS-4, GLOSS-6
Minority, ES-20, 2-68, 3-27, 3-54, 3-55, 3-56, 3-82, 3-108, 3-109, 3-135, 3-136, 4-29, 4-61, 4-62, 4-91, 4-121, 4-122, 4-153, 4-159, 5-7, 5-15, 5-21, 5-29, 5-36, 6-15, GLOSS-3
National Ambient Air Quality Standards (NAAQS), ES-11, 2-59, 2-68, 3-5, 3-8, 3-31, 3-33, 3-34, 3-60, 3-63, 3-88, 3-91, 3-114, 3-117, 4-6, 4-132, GLOSS-4
National Defense Authorization Act (NDAA), 1-3, 4-155, 5-30, 5-31, 5-33, 5-36
National Environmental Policy Act (NEPA), ES-4, ES-7, ES-8, ES-9, 1-3, 1-9, 1-10, 1-11, 1-12, 2-2, 2-4, 2-9, 2-18, 2-28, 2-37, 2-48, 2-55, 3-1, 3-93, 4-155, 5-1, 5-8, 5-16, 5-23, 5-30, 5-37, 6-6, 7-2, 7-6, GLOSS-4
National Pollutant Discharge Elimination System (NPDES), 3-71, 4-74, 4-104, 5-3, 5-4, 5-11, 5-12, 5-18, 5-19, 5-26, 5-27, 5-33, 5-34
National Register of Historic Places (NRHP), ES-14, ES-20, 2-62, 2-68, 2-69, 3-17, 3-45, 3-73, 3-100, 3-126, 4-17, 4-18, 4-47, 4-48, 4-49, 4-80, 4-81, 4-109, 4-110, 4-111, 4-140, 4-141, 4-142, 4-157, 5-5, 5-13, 5-20, 5-27, 5-34
Natural Resources Conservation Service (NRCS), 3-13, 3-39, 3-40, 3-68, 3-69, 3-95, 3-96, 3-121, 4-12, 4-41, 4-74, 4-104, 4-135, 6-11
Night Vision Imaging System (NVIS), ES-3, 1-4, 1-6, 1-7
NOISEMAP, 3-1, 3-2, 3-28, 4-1, 4-30, 6-8, GLOSS-5
Notice of Availability (NOA), ES-1, 1-12
Occupational Safety and Health Administration (OSHA), 4-24, 4-56, 4-87, 4-117, 4-149
Operational Emissions, ES-11, 2-59, 2-69, 4-6, 4-6, 4-7, 4-35, 4-36, 4-38, 4-68, 4-69, 4-98, 4-99, 4-101, 4-129, 4-130
Prevention of Significant Deterioration (PSD), ES-11, ES-20, 2-59, 2-68, 4-6, 4-7, 4-8, 4-9, 4-35, 4-36, 4-37, 4-38, 4-68, 4-69, 4-70, 4-71, 4-98, 4-99, 4-100, 4-101, 4-129, 4-130, 4-131, 4-132, 5-2, 5-9, 5-17, 5-25, 5-32
Public Involvement, 1-10
Public Scoping, ES-1
Record of Decision (ROD), 1-12, 2-69, 2-70
Runway Protection Zone (RPZ), 3-10, 3-11, 3-19, 3-37, 3-66, 3-74, 3-93, 3-100, 3-119, 3-127, 4-9, 4-71, 4-101, 4-132
Satellite Accumulation Point (SAP), 3-23, 3-51, 3-78, 3-79, 3-104, 3-132
Secretary of the Air Force, ES-1, ES-4, 1-1, 1-12, 2-4, 2-5, 2-6
Selection Criteria, ES-4, 2-4
Special Status, ES-13, 1-13, 2-61, 3-17, 3-44, 3-73, 3-99, 3-125, 4-16, 4-46, 4-79, 4-108, 4-109, 4-139, 5-4, GLOSS-6
Special Use Airspace (SUA), ES-9, 2-55, 4-155
State Historic Preservation Office(r) (SHPO), ES-14, ES-20, 2-62, 2-68, 2-69, 3-17, 3-18, 3-45, 3-73, 3-100, 3-126, 4-17, 4-18, 4-48, 4-49, 4-80, 4-81, 4-109, 4-110, 4-141, 4-142, 5-5, 5-13, 5-20, 5-27, GLOSS-6
State Implementation Plan (SIP), ES-11, ES-20, 2-6, 2-59, 2-68, 2-69, 4-156, 5-10
Stormwater, 3-14, 3-21, 3-24, 3-42, 3-47, 3-51, 3-71, 3-76, 3-79, 3-98, 3-102, 3-104, 3-122, 3-129, 3-132, 4-13, 4-21, 4-42, 4-53, 4-75, 4-83, 4-84, 4-104, 4-105, 4-113, 4-136, 4-145, 4-146, 5-3, 5-6, 5-11, 5-12, 5-14, 5-18, 5-19, 5-21, 5-26, 5-28, 5-33, 5-35, 6-1, 6-12, 6-14
Stratotanker, ES-1, 1-3, 1-6
Threatened, 3-44, 3-99, 4-79, 4-108, 4-139, 5-19, 5-27, 5-34, GLOSS-6
United States Army Corps of Engineers (USACE), 3-42

United States Department of Agriculture (USDA), 3-13, 3-39, 3-67, 3-68, 3-95, 3-121, 6-5, 6-16
United States Environmental Protection Agency (USEPA), 3-6, 3-7, 3-8, 3-9, 3-14, 3-23, 3-32, 3-33, 3-34, 3-35, 3-40, 3-42, 3-51, 3-61, 3-62, 3-63, 3-64, 3-69, 3-71, 3-78, 3-88, 3-89, 3-90, 3-91, 3-98, 3-104, 3-114, 3-115, 3-116, 3-117, 3-121, 3-122, 3-131, 4-22, 4-54, 4-74, 4-84, 4-114, 4-146, 6-16
United States Fish and Wildlife Service (USFWS), 3-17, 3-74, 3-125, 6-17, GLOSS-6
United States Geological Survey (USGS), 3-42, 3-71, 3-98, 3-122, 6-17
Wetland, ES-13, 2-61, 3-17, 3-43, 3-44, 3-73, 3-74, 3-99, 3-125, 4-16, 4-46, 4-47, 4-79, 4-108, 4-109, 4-140, 5-4, 5-12, 5-19, 5-27, 5-34, 6-11, 6-17, GLOSS-7
Wildlife, ES-13, 2-61, 3-11, 3-12, 3-16, 3-38, 3-43, 3-67, 3-72, 3-94, 3-99, 3-120, 3-124, 4-11, 4-15, 4-16, 4-45, 4-47, 4-78, 4-79, 4-108, 4-109, 4-139, 4-140, 5-4, 5-12, 5-19, 5-27, 5-34, GLOSS-2, GLOSS-3, GLOSS-6
LIST OF REPOSITORIES

Topeka and Shawnee County Public Library
1515 SW 10th St
Topeka, KS 66604

Carbondale City Library
235 Main St
Carbondale, KS 66414

Burlington County Library
5 Pioneer Blvd
Westampton, NJ 08060

Pemberton Community Library
16 Broadway
Browns Mills, NJ 08015
609-893-8262

Mr. Scott Campbell
Langdon Public Library
328 Nimble Hill Rd
Newington, NH 03801

Mr. Michael Huxtable
Portsmouth Public Library
175 Parrott Ave
Portsmouth, NH 03801

Moon Township Public Library
1700 Beaver Grade Rd
Moon Township, PA 15108

Robert Morris University Library
6001 University Blvd
Moon Township, PA 15108

Metropolitan Library
South High Branch
3540 S. High Street
Columbus, OH 43207
GLOSSARY

Above Ground Level (AGL): Altitude expressed in feet measured above the ground surface.

Accident Potential Zone (APZ): An area defined near a runway where accidents are likely to occur if they occur. APZs are normally 3,000 feet wide and extend 15,000 feet from the end of the runway but can curve with the flight tracks.

Air Refueling Tracks: Published linear routes identified on air navigation charts that define the flight path used by aircraft when refueling other aircraft. For fixed wing aircraft, this generally occurs above 10,000 feet above mean sea level.

Air Force Instruction (AFI): AFI s implementing United States laws and regulations, and providing policy for United States Air Force personnel and activities.

Air Installation Compatible Use Zone (AICUZ): A land-use-planning program, used by the military, to protect the health, safety, and welfare of those living near military airfields while preserving the defense flying mission. AICUZ presents noise zones and Accident Potential Zones for military airfields and recommendations for compatible land use.

Air Mobility Command (AMC): AMC, a major command with headquarters at Scott Air Force Base, Illinois, was created June 1, 1992. AMC provides America’s Global Reach. This rapid, flexible, and responsive air mobility promotes stability in regions by keeping America's capability and character highly visible.

Air National Guard (ANG): The ANG is administered by the National Guard Bureau, a joint bureau of the departments of the Army and United States Air Force, located in the Pentagon, Washington, D.C. It is one of the seven Reserve components of the United States armed forces that augments the active components in the performance of their missions.

Air Quality Control Region (AQCR): An administrative unit for monitoring and controlling air quality in a specific region.

Air Traffic Control Assigned Airspace (ATCAA): Airspace of defined vertical and lateral limits, assigned by Air Traffic Control, for the purpose of providing air traffic separation between the specified activities being conducted within the assigned airspace and other Instrument Flight Rule air traffic.

Anchors: Air refueling tracks that go in a race-track shape (i.e., loop).
AP/1B: AP/1B provides textual and graphic descriptions and operating instructions for all military training routes (instrument route, visual route, slow route) and refueling tracks/anchors. Complete and more comprehensive information relative to policy and procedures for instrument routes and visual routes is published in Federal Aviation Administration Handbook 7610.4 (Special Military Operation) which is agreed to by the Department of Defense and therefore directive for all military flight operations. AP/1B is the official source of route data for military users.

Area-Wide Emission Sources: Area-wide sources of pollution are those where the emissions are spread over a wide area, such as consumer products, fireplaces, road dust, and farming operations.

Average Annual Flying Day: Average Annual Flying Day represents the average number of aircraft operations flown on a typical flying day based on airport activity and operational data which indicates, on an annual average-daily basis, the number of aircraft, by type of aircraft. An average annual day is a user-defined best representation of the typical long-term average conditions for an airport (typically based on 365 flying days per year). The average conditions include the number and type of operations, routing structure, runway configuration, aircraft weight, temperature and wind.

Average Sortie Duration (ASD): A flying wing’s total number of flying hours divided by the number of sorties that must be flown.

Backup Aerospace Vehicle Inventory (BAI): BAI includes aircraft used as substitutes for Primary Aerospace Vehicles Authorized undergoing maintenance or otherwise unable to fly.

Beddown: The permanent basing of aircraft at a new installation.

Bird/Wildlife-Aircraft Strike Hazard (BASH): A United States Air Force program to reduce the possibilities of bird or wildlife collisions with aircraft.

Boom/Probe and Drogue Refueling: Probe and drogue refueling employs a flexible hose that trails from the tanker aircraft. The drogue is a fitting resembling a windsock, and is attached with a valve to a flexible hose.

Clean Air Act (CAA): This Act empowered the United States Environmental Protection Agency to establish standards for common pollutants that represent the maximum levels of background pollution that are considered safe, with an adequate margin of safety to protect public health and safety.
Council on Environmental Quality (CEQ): The Council is within the Executive Office of the President and is composed of three members appointed by the President, subject to approval by the Senate. Members are to be conscious of and responsive to the scientific, economic, social, esthetic, and cultural needs of the nation; and to formulate and recommend national policies to promote the improvement of quality of the environment.

Day-Night Average Sound Level (DNL): Day-Night Average Sound Level is a noise metric combining the levels and durations of noise events and the number of events over an extended time period. It is a cumulative average computed over a 24-hour period to represent total noise exposure. DNL also accounts for more intrusive nighttime noise, adding a 10 decibel penalty for sounds after 10:00 p.m. and before 7:00 a.m. DNL is the Federal Aviation Administration’s primary noise metric. Federal Aviation Administration Order 1050.1E defines DNL as the yearly day/night average sound level.

Decibel (dB): A sound measurement unit.

De Minimis Threshold: The minimum threshold for which a conformity determination must be performed, for various criteria pollutants in various areas.

Endangered Species Act (ESA): The Endangered Species Act of 1973 defined the term “endangered species” to mean any species (including any subspecies of fish or wildlife or plants, and any distinct population segment of any species or vertebrate fish or wildlife which interbreeds when mature) that is in danger of extinction throughout all or a significant portion of its range.

Environmental Justice: Pursuant to Executive Order 12898, Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations, review must be made as to whether a federal program, policy, or action presents a disproportionately high and adverse human health or environmental effect on minority and/or low-income populations.

Environmental Night: The period between 10 p.m. and 7 a.m. when 10 decibels is added to aircraft noise levels due to increased sensitivity to noise at night.

Flight Level (FL): A level of constant atmospheric pressure related to a reference datum of 29.92 inches of mercury. Each is stated in three digits that represent hundreds of feet. For example, FL 250 represents a barometric altimeter indication of 25,000 feet; FL 255, an indication of 25,500 feet.

Instrument Flight Rule (IFR): A standard set of rules that all pilots, civilian and military, must follow when operating under flight conditions that are more stringent than Visual Flight Rule. These conditions include operating an aircraft in reduced visibility, operating above certain
altitudes prescribed by Federal Aviation Administration regulations, and operating in some locations like major civilian airports. Air traffic control agencies ensure separation of all aircraft operating under IFR.

Integrated Noise Model (INM): The INM is the preferred model typically used for Federal Aviation Regulations Part 150 noise compatibility planning and for Federal Aviation Administration Order 1050 environmental assessments and environmental impact statements. INM is a computer model that evaluates aircraft noise impacts in the vicinity of airports. It is developed based on the algorithm and framework from SAE AIR 1845 standard, which used Noise-Power-Distance data to estimate noise accounting for specific operation mode, thrust setting, and source-receiver geometry, acoustic directivity and other environmental factors. The INM can output either noise contours for an area or noise level at pre-selected locations. The noise output can be either exposure-based, maximum-level-based, or time-based.

Loess: An unstratified, usually buff to yellowish brown, loamy deposit believed to be chiefly deposited by the wind.

Main Operating Base: A permanently manned, well-protected base with robust infrastructure. Main operating bases are characterized by command and control structures, enduring family support facilities, and strengthened force protection measures.

Mean Sea Level (MSL): Altitude or elevation expressed in feet referenced to the average elevation of the sea. For example, a field elevation of 26 feet above mean sea level would be expressed as “26 feet MSL” and an aircraft altitude of 1,200 feet above mean sea level would be expressed as “1,200 feet MSL.”

Military Operations Area (MOA): A MOA is airspace designated outside of Class A airspace (i.e., below 18,000 feet mean sea level) to separate or segregate certain non-hazardous military activities from Instrument Flight Rule (IFR) traffic and to identify for Visual Flight Rule (VFR) traffic where these activities are conducted.

Mobile Sources: Mobile sources include cars and light trucks, heavy trucks and buses, nonroad engines, equipment, and vehicles.

National Ambient Air Quality Standards (NAAQS): NAAQS are established by the United States Environmental Protection Agency for criteria pollutants that represent the maximum levels of background pollution that are considered safe, with an adequate margin of safety, to protect public health and safety.

National Environmental Policy Act (NEPA): The National Environmental Policy Act of 1969 directs federal agencies to take environmental factors into consideration in their decisions.
National Guard Bureau (NGB): The NGB, both a staff and operating agency, administers the federal functions of the Army and the Air National Guard. As a staff agency, the National Guard Bureau participates with the Army and Air staffs in developing and coordinating programs that directly affect the National Guard. As an operating agency, the National Guard Bureau formulates and administers the programs for training, development, and maintenance of the Army National Guard and Air National Guard and acts as the channel of communication between the Army, Air Force, and the 54 states and territories where National Guard units are located.

National Historic Preservation Act (NHPA): The NHPA of 1966, as amended, established a program for the preservation of historic properties throughout the United States.

Nautical Mile: A distance unit equal to 1.14 statute miles.

NOISEMAP: NOISEMAP is a group of computer programs developed over a number of years by the U.S. Air Force for prediction of noise exposures in the vicinity of a military installation. NOISEMAP is the primary computer model used by Department of Defense for evaluating military fixed-wing aircraft noise. It contains a suite of computer programs for prediction of noise exposure from aircraft flight, maintenance, and ground runup operations. NOISEMAP output includes noise contours, noise levels at preselected locations, and other supplemental metrics to assist users in analyzing impacts resulting from aircraft noise in the airfield environment.

Operation: An operation can apply to both airfield and airspace activities. At an airfield, an operation consists of a single action such as a take-off, or a landing (i.e., two operations). For airspace and ranges, an operation consists of the use of one airspace unit (e.g., Military Operations Area, Air Refueling Track) by one aircraft. Each time a single aircraft flies into a different airspace unit, one operation is counted. During a single sortie, an aircraft could fly in several airspace units, and conduct a number of operations; therefore, the number of operations exceeds the number of sorties.

Prime Farmland: Prime farmlands are designations assigned by the U.S. Department of Agriculture. Prime farmland is land that has the best combination of physical and chemical characteristics for producing food, feed, forage, fiber, and oilseed crops. The land is also used as cropland, pastureland, rangeland, forest land, or other land, but cannot be used as urban built-up land or water.

Power Setting: The power or thrust output of an engine in terms of kilonewtons thrust for turbojet and turbofan engines or shaft power in terms of kilowatts for turboprop engines.
Primary Aerospace Vehicles Authorized (PAA): PAA consists of the aircraft authorized and assigned to perform an Air National Guard wing’s missions.

Scoping: A process of identifying the main issues of concern at an early stage in planning, in order to discover any alternatives and aid in site selection.

Sortie: A sortie refers to a single military aircraft from take-off through final landing, and everything that might be conducted during that flying mission. A sortie will always include more than one operation.

Sortie Operation: A sortie operation is counted each time a single aircraft enters Special Activity Airspace such as an Air Refueling Route or Military Operations Area (MOA).

Sound Exposure Level (SEL): SEL accounts for both the maximum sound level and the length of time a sound lasts. It provides a measure of the total sound exposure for an entire event. Federal Aviation Administration Order 1050.1E defines SEL as a single event metric that takes into account both the noise level and duration of the event and referenced to a standard duration of one second.

Special Status Species: Special Status Species are defined as those plant and animal species listed as endangered, threatened, and species proposed for listing by the United States Fish and Wildlife Service (USFWS) under the Endangered Species Act (ESA), and by state agencies. The federal ESA protects federally listed endangered and threatened plant and animal species. Critical habitat is a term defined and used in the ESA. It is a specific geographic area(s) that contains features essential for the conservation of a threatened or endangered species and that may require special management and protection. Federally identified candidate species (species proposed for listing) are not protected under law; however, these species could become listed, and therefore, protected at any time. Their consideration early in the planning process may avoid future conflicts that could otherwise occur. Additionally, the corresponding state regulatory agencies (Kansas Department of Wildlife, Parks and Tourism; New Jersey Division of Fish and Wildlife; New Hampshire Fish and Game; Pennsylvania Department of Conservation and Natural Resources; and Ohio Department of Natural Resources) protect state-listed plant and animal species through State fish and wildlife and administrative codes.

State Historic Preservation Office (SHPO): State department responsible for assigning protected status for cultural and historic resources.

Stationary Sources: A place or object from which pollutants are released and which does not move around. Stationary sources include power plants, gas stations, incinerators, houses, etc.
Traditional/Cultural Resource: Cultural and traditional resources are any prehistoric or historic district, site or building, structure, or object considered important to a culture, subculture, or community for scientific, traditional, religious, or other purposes.

Visual Flight Rule (VFR): A standard set of rules that all pilots, both civilian and military, must follow when not operating under Instrument Flight Rule. These rules require that pilots remain clear of clouds and avoid other aircraft. See Instrument Flight Rule.

Warning Areas: A warning area is airspace of defined dimensions, extending from 3 nautical miles outward from the coast of the United States, containing activity that may be hazardous to non-participating aircraft. The purpose of such areas is to warn non-participating pilots of the potential danger. A warning area may be located over domestic or international waters or both. The airspace is designated with a “W” followed by a number (e.g., W-237).

Wetland, Jurisdictional: A jurisdictional wetland is a wetland that meets all three United States Army Corps of Engineers’ criterion for jurisdictional status: appropriate hydrologic regime, hydric soils, and facultative to obligate wetland plant communities under normal growing conditions.
a. **Responsible and Cooperating Agencies:** United States Air Force, National Guard Bureau (Responsible Agencies); there are no Cooperating Agencies.

b. **Title of Action:** Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations Environmental Impact Statement

c. **Comments and Inquiries:** Anne Rowe, NGB/A7AM, 3501 Fetchet Avenue, Joint Base Andrews MD 20762-5157, (240) 612-8859.

d. **Designation:** Final Environmental Impact Statement (EIS)

e. **Abstract:** This Final EIS has been prepared in accordance with the National Environmental Policy Act (NEPA). The public and agency scoping process resulted in the analysis of the following environmental resources: noise, air quality, safety, soils and water, biological resources, cultural resources, land use, infrastructure and transportation, hazardous materials and wastes, socioeconomics, and environmental justice and the protection of children. The Secretary of the Air Force proposes to beddown KC-46A aircraft for MOB 2 at one of five alternative locations. The goal of KC-46A basing and fielding is to continue to provide optimum Combatant Commander support and to efficiently meet regional and global receiver demands while replacing the KC-135 fleet. This action would involve the beddown of one KC-46A squadron consisting of 12 Primary Aerospace Vehicles Authorized (PAA), and establishing a KC-46A Main Operating Base (MOB). Concurrent with the beddown of the 12 KC-46A, 12 existing KC-135 aircraft would be retired out of the Air National Guard (ANG) fleet. The existing KC-135 aircraft at the selected installation would either be relocated to another installation and/or retired out of the United States Air Force (USAF) inventory, depending on the age and maintenance status of each aircraft. Separate documentation would be prepared if the KC-135 aircraft are relocated to another installation. The beddown of the MOB 2 KC-46A would follow the Total Force Integration (TFI) concept that was enacted into law through the passage of the 2008 Defense Authorization Act, pairing two USAF component units (host and associate) together to operate as one. In support of TFI, an active duty associate unit would be integrated with ANG personnel and equipment under any of the action alternatives, enabling joint training and execution of missions using ANG-assigned aircraft. The ANG host unit would be assigned principal responsibility of the physical resources for mission accomplishment (aircraft, equipment, facilities) and the active duty associate unit would share those resources. Five alternative ANG locations were selected for this beddown:

- Forbes Air National Guard Station (ANGS), Kansas;
- Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey;
- Pease ANGS, New Hampshire;
- Pittsburgh ANGS, Pennsylvania; and,
- Rickenbacker ANGS, Ohio.

The USAF has identified Pease ANGS as the preferred alternative.
TABLE OF CONTENTS

VOLUME I

ACRONYMS AND ABBREVIATIONS... xix

EXECUTIVE SUMMARY .. ES-1

CHAPTER 1 PURPOSE AND NEED FOR THE PROPOSED ACTION .. 1-1

1.1 INTRODUCTION .. 1-1

1.2 PURPOSE AND NEED FOR THE PROPOSED ACTION ... 1-3
 1.2.1 Purpose of Action.. 1-3
 1.2.2 Need for Action... 1-5

1.3 BACKGROUND OF THE KC-46A ... 1-5
 1.3.1 Aircraft Characteristics... 1-5
 1.3.2 Aircraft Characteristics of the KC-135 .. 1-6
 1.3.3 Aircraft Characteristics of the KC-46A.. 1-7
 1.3.4 Training Requirements.. 1-8

1.4 THE ENVIRONMENTAL IMPACT ANALYSIS PROCESS ... 1-9

1.5 PUBLIC INVOLVEMENT/ENVIRONMENTAL COORDINATION .. 1-10

1.6 LEAD AND COOPERATING AGENCIES .. 1-13

1.7 ORGANIZATION OF THIS ENVIRONMENTAL IMPACT STATEMENT ... 1-13

CHAPTER 2 DESCRIPTION OF THE PROPOSED ACTION AND ALTERNATIVES 2-1

2.1 PROPOSED ACTION ... 2-1
 2.1.1 Overview of the Proposed Action.. 2-1
 2.1.2 Requirements of the Proposed Action .. 2-1
 2.1.2.1 Aircraft Beddown/Transition .. 2-1
 2.1.2.2 Facility and Infrastructure Requirements ... 2-2
 2.1.2.3 Personnel Changes ... 2-3
 2.1.2.4 KC-46A Operations ... 2-3

2.2 NARROWING PROCESS FOR ALTERNATIVE BASES .. 2-4

2.3 ACTION ALTERNATIVES CARRIED FORWARD .. 2-7
 2.3.1 Alternative #1 – Forbes Air National Guard Station ... 2-7
 2.3.1.1 Background .. 2-7
 2.3.1.2 Mission .. 2-7
 2.3.1.3 Aircraft Conversion .. 2-9
 2.3.1.4 Airfield Operations ... 2-9
 2.3.1.5 Airspace Operations .. 2-10
 2.3.1.6 Construction Required ... 2-12
 2.3.1.7 Personnel Changes ... 2-16

 2.3.2 Alternative #2 – Joint Base McGuire-Dix-Lakehurst .. 2-16
 2.3.2.1 Background .. 2-16
 2.3.2.2 Mission .. 2-18
 2.3.2.3 Aircraft Conversion .. 2-18
 2.3.2.4 Airfield Operations .. 2-18
CHAPTER 3 EXISTING CONDITIONS ... 3-1

3.1 FORBES AIR NATIONAL GUARD STATION ... 3-1
 3.1.1 Noise .. 3-1
 3.1.1.1 Baseline Operations ... 3-2
 3.1.1.2 Runway and Flight Profiles ... 3-3
 3.1.1.3 Existing Noise Environment ... 3-3
 3.1.1.4 Forbes Field Airport Noise Abatement Procedures 3-5
 3.1.1.5 Forbes Air National Guard Station Noise Complaint Procedures 3-5
 3.1.2 Air Quality .. 3-5
 3.1.2.1 Regulatory Setting ... 3-5
 3.1.2.2 Climate and Meteorology ... 3-7
 3.1.2.3 Regional and Local Air Pollutant Sources ... 3-7
 3.1.2.4 Baseline Air Quality .. 3-8
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.2.5 190th Air Refueling Wing Emissions</td>
<td>3-9</td>
</tr>
<tr>
<td>3.1.3 Safety</td>
<td>3-10</td>
</tr>
<tr>
<td>3.1.3.1 Ground Safety</td>
<td>3-11</td>
</tr>
<tr>
<td>3.1.3.2 Flight Safety</td>
<td>3-12</td>
</tr>
<tr>
<td>3.1.4 Soils and Water</td>
<td>3-13</td>
</tr>
<tr>
<td>3.1.4.1 Soils</td>
<td>3-13</td>
</tr>
<tr>
<td>3.1.4.2 Surface Water</td>
<td>3-14</td>
</tr>
<tr>
<td>3.1.4.3 Groundwater</td>
<td>3-14</td>
</tr>
<tr>
<td>3.1.4.4 Floodplains</td>
<td>3-16</td>
</tr>
<tr>
<td>3.1.5 Biological Resources</td>
<td>3-16</td>
</tr>
<tr>
<td>3.1.5.1 Vegetation</td>
<td>3-16</td>
</tr>
<tr>
<td>3.1.5.2 Wildlife</td>
<td>3-16</td>
</tr>
<tr>
<td>3.1.5.3 Special Status Species</td>
<td>3-17</td>
</tr>
<tr>
<td>3.1.5.4 Wetlands</td>
<td>3-17</td>
</tr>
<tr>
<td>3.1.6 Cultural Resources</td>
<td>3-17</td>
</tr>
<tr>
<td>3.1.6.1 Archaeological Resources</td>
<td>3-17</td>
</tr>
<tr>
<td>3.1.6.2 Architectural Resources</td>
<td>3-17</td>
</tr>
<tr>
<td>3.1.6.3 Traditional Resources</td>
<td>3-18</td>
</tr>
<tr>
<td>3.1.7 Land Use</td>
<td>3-18</td>
</tr>
<tr>
<td>3.1.8 Infrastructure and Transportation</td>
<td>3-21</td>
</tr>
<tr>
<td>3.1.8.1 Potable Water System</td>
<td>3-21</td>
</tr>
<tr>
<td>3.1.8.2 Wastewater</td>
<td>3-21</td>
</tr>
<tr>
<td>3.1.8.3 Stormwater</td>
<td>3-21</td>
</tr>
<tr>
<td>3.1.8.4 Electrical and Natural Gas Systems</td>
<td>3-21</td>
</tr>
<tr>
<td>3.1.8.5 Solid Waste Management</td>
<td>3-22</td>
</tr>
<tr>
<td>3.1.8.6 Transportation</td>
<td>3-22</td>
</tr>
<tr>
<td>3.1.9 Hazardous Materials and Waste</td>
<td>3-22</td>
</tr>
<tr>
<td>3.1.9.1 Hazardous Materials</td>
<td>3-22</td>
</tr>
<tr>
<td>3.1.9.2 Hazardous Waste Management</td>
<td>3-23</td>
</tr>
<tr>
<td>3.1.9.3 Environmental Restoration Program</td>
<td>3-24</td>
</tr>
<tr>
<td>3.1.10 Socioeconomics</td>
<td>3-24</td>
</tr>
<tr>
<td>3.1.10.1 Population and Employment</td>
<td>3-24</td>
</tr>
<tr>
<td>3.1.10.2 Schools</td>
<td>3-26</td>
</tr>
<tr>
<td>3.1.10.3 Housing</td>
<td>3-26</td>
</tr>
<tr>
<td>3.1.11 Environmental Justice and the Protection of Children</td>
<td>3-27</td>
</tr>
<tr>
<td>3.1.11.1 Minority and Low-Income Populations</td>
<td>3-27</td>
</tr>
<tr>
<td>3.1.11.2 Protection of Children</td>
<td>3-27</td>
</tr>
<tr>
<td>3.2 Joint Base McGuire-Dix-Lakehurst</td>
<td>3-28</td>
</tr>
<tr>
<td>3.2.1 Noise</td>
<td>3-28</td>
</tr>
<tr>
<td>3.2.1.1 Baseline Operations</td>
<td>3-28</td>
</tr>
<tr>
<td>3.2.1.2 Runway and Flight Profiles</td>
<td>3-29</td>
</tr>
<tr>
<td>3.2.1.3 Existing Noise Environment</td>
<td>3-29</td>
</tr>
<tr>
<td>3.2.1.4 Joint Base McGuire-Dix-Lakehurst Noise Abatement Procedures</td>
<td>3-31</td>
</tr>
<tr>
<td>3.2.1.5 Joint Base McGuire-Dix-Lakehurst Noise Complaints Procedures</td>
<td>3-31</td>
</tr>
</tbody>
</table>
3.2.2 Air Quality .. 3-31
 3.2.2.1 Regulatory Setting .. 3-31
 3.2.2.2 Climate and Meteorology .. 3-33
 3.2.2.3 Regional and Local Air Pollutant Sources .. 3-34
 3.2.2.4 Baseline Air Quality .. 3-34
 3.2.2.5 108th Wing Emissions .. 3-35
3.2.3 Safety .. 3-37
 3.2.3.1 Ground Safety ... 3-37
 3.2.3.2 Flight Safety .. 3-38
3.2.4 Soils and Water .. 3-39
 3.2.4.1 Soils ... 3-39
 3.2.4.2 Surface Water .. 3-40
 3.2.4.3 Groundwater ... 3-42
 3.2.4.4 Floodplains .. 3-42
3.2.5 Biological Resources ... 3-43
 3.2.5.1 Vegetation .. 3-43
 3.2.5.2 Wildlife .. 3-43
 3.2.5.3 Special Status Species .. 3-44
 3.2.5.4 Wetlands .. 3-44
3.2.6 Cultural Resources ... 3-45
 3.2.6.1 Archaeological Resources .. 3-45
 3.2.6.2 Architectural Resources .. 3-45
 3.2.6.3 Traditional Resources .. 3-46
3.2.7 Land Use ... 3-46
3.2.8 Infrastructure and Transportation ... 3-47
 3.2.8.1 Potable Water System .. 3-47
 3.2.8.2 Wastewater .. 3-47
 3.2.8.3 Stormwater .. 3-47
 3.2.8.4 Electrical and Natural Gas Systems ... 3-49
 3.2.8.5 Solid Waste Management .. 3-49
 3.2.8.6 Transportation ... 3-49
3.2.9 Hazardous Materials and Waste ... 3-50
 3.2.9.1 Hazardous Materials .. 3-50
 3.2.9.2 Hazardous Waste Management ... 3-50
 3.2.9.3 Environmental Restoration Program .. 3-51
3.2.10 Socioeconomics ... 3-53
 3.2.10.1 Population and Employment .. 3-53
 3.2.10.2 Schools ... 3-54
 3.2.10.3 Housing ... 3-54
3.2.11 Environmental Justice and the Protection of Children 3-54
 3.2.11.1 Minority and Low-Income Populations .. 3-54
 3.2.11.2 Protection of Children ... 3-56
3.3 PEASE AIR NATIONAL GUARD STATION .. 3-57
 3.3.1 Noise .. 3-57
 3.3.1.1 Baseline Operations ... 3-57
 3.3.1.2 Runway and Flight Profiles .. 3-58
3.3.1.3 Existing Noise Environment ... 3-58
3.3.1.4 Portsmouth International Airport Noise Abatement
Procedures ... 3-60
3.3.1.5 Pease Air National Guard Station Noise Complaints
Procedures ... 3-60
3.3.2 Air Quality ... 3-60
3.3.2.1 Regulatory Setting ... 3-60
3.3.2.2 Climate and Meteorology ... 3-62
3.3.2.3 Regional and Local Air Pollutant Sources .. 3-62
3.3.2.4 Baseline Air Quality ... 3-63
3.3.2.5 157th Air Refueling Wing Emissions .. 3-64
3.3.3 Safety ... 3-66
3.3.3.1 Ground Safety .. 3-66
3.3.3.2 Flight Safety ... 3-67
3.3.4 Soils and Water .. 3-68
3.3.4.1 Soils ... 3-68
3.3.4.2 Surface Water ... 3-69
3.3.4.3 Groundwater .. 3-71
3.3.4.4 Floodplains ... 3-72
3.3.5 Biological Resources ... 3-72
3.3.5.1 Vegetation ... 3-72
3.3.5.2 Wildlife ... 3-72
3.3.5.3 Special Status Species .. 3-73
3.3.5.4 Wetlands .. 3-73
3.3.6 Cultural Resources ... 3-73
3.3.6.1 Archaeological Resources ... 3-73
3.3.6.2 Architectural Resources .. 3-73
3.3.6.3 Traditional Resources ... 3-73
3.3.7 Land Use .. 3-74
3.3.8 Infrastructure and Transportation ... 3-76
3.3.8.1 Potable Water System .. 3-76
3.3.8.2 Wastewater ... 3-76
3.3.8.3 Stormwater ... 3-76
3.3.8.4 Electrical and Natural Gas Systems ... 3-76
3.3.8.5 Solid Waste Management ... 3-77
3.3.8.6 Transportation .. 3-77
3.3.9 Hazardous Materials and Waste ... 3-77
3.3.9.1 Hazardous Materials ... 3-77
3.3.9.2 Hazardous Waste Management ... 3-78
3.3.9.3 Environmental Restoration Program .. 3-79
3.3.10 Socioeconomics ... 3-81
3.3.10.1 Population and Employment .. 3-81
3.3.10.2 Schools .. 3-82
3.3.10.3 Housing .. 3-82
3.3.11 Environmental Justice and the Protection of Children 3-82
3.3.11.1 Minority and Low-Income Populations .. 3-82
3.4 PITTSBURGH AIR NATIONAL GUARD STATION ... 3-84

3.4.1 Noise .. 3-84
 3.4.1.1 Baseline Operations .. 3-84
 3.4.1.2 Runway and Flight Profiles ... 3-85
 3.4.1.3 Existing Noise Environment ... 3-86
 3.4.1.4 Pittsburgh International Airport Noise Abatement Procedures ... 3-86
 3.4.1.5 Pittsburgh International Airport Noise Complaints Procedures ... 3-86

3.4.2 Air Quality ... 3-88
 3.4.2.1 Regulatory Setting ... 3-88
 3.4.2.2 Climate and Meteorology .. 3-89
 3.4.2.3 Regional and Local Air Pollutant Sources 3-90
 3.4.2.4 Baseline Air Quality ... 3-90
 3.4.2.5 171st Air Refueling Wing Emissions 3-91

3.4.3 Safety ... 3-93
 3.4.3.1 Ground Safety ... 3-93
 3.4.3.2 Flight Safety .. 3-94

3.4.4 Soils and Water .. 3-95
 3.4.4.1 Soils ... 3-95
 3.4.4.2 Surface Water .. 3-96
 3.4.4.3 Groundwater .. 3-98
 3.4.4.4 Floodplains .. 3-98

3.4.5 Biological Resources ... 3-98
 3.4.5.1 Vegetation ... 3-98
 3.4.5.2 Wildlife ... 3-99
 3.4.5.3 Special Status Species ... 3-99
 3.4.5.4 Wetlands .. 3-99

3.4.6 Cultural Resources ... 3-100
 3.4.6.1 Archaeological Resources ... 3-100
 3.4.6.2 Architectural Resources .. 3-100
 3.4.6.3 Traditional Resources ... 3-100

3.4.7 Land Use .. 3-100

3.4.8 Infrastructure and Transportation .. 3-102
 3.4.8.1 Potable Water System ... 3-102
 3.4.8.2 Wastewater .. 3-102
 3.4.8.3 Stormwater .. 3-102
 3.4.8.4 Electrical and Natural Gas Systems 3-102
 3.4.8.5 Solid Waste Management ... 3-103
 3.4.8.6 Transportation ... 3-103

3.4.9 Hazardous Materials and Waste ... 3-103
 3.4.9.1 Hazardous Materials.. 3-103
 3.4.9.2 Hazardous Waste Management ... 3-104
 3.4.9.3 Environmental Restoration Program 3-105

3.4.10 Socioeconomics ... 3-107
3.4.10.1 Population and Employment ... 3-107
3.4.10.2 Schools .. 3-108
3.4.10.3 Housing .. 3-108
3.4.11 Environmental Justice and the Protection of Children 3-108
 3.4.11.1 Minority and Low-Income Populations 3-108
 3.4.11.2 Protection of Children .. 3-109
3.5 RICKENBACKER AIR NATIONAL GUARD STATION 3-110
 3.5.1 Noise .. 3-110
 3.5.1.1 Baseline Operations .. 3-110
 3.5.1.2 Runway and Flight Profiles ... 3-111
 3.5.1.3 Existing Noise Environment ... 3-111
 3.5.1.4 Rickenbacker International Airport Noise Abatement
 Procedures ... 3-113
 3.5.1.5 Rickenbacker International Airport Noise Complaints
 Procedures ... 3-113
 3.5.2 Air Quality .. 3-114
 3.5.2.1 Regulatory Setting .. 3-114
 3.5.2.2 Climate and Meteorology .. 3-115
 3.5.2.3 Regional and Local Air Pollutant Sources 3-116
 3.5.2.4 Baseline Air Quality .. 3-116
 3.5.2.5 121st Air Refueling Wing Emissions 3-117
 3.5.3 Safety .. 3-119
 3.5.3.1 Ground Safety ... 3-119
 3.5.3.2 Flight Safety .. 3-120
 3.5.4 Soils and Water ... 3-121
 3.5.4.1 Soils ... 3-121
 3.5.4.2 Surface Water ... 3-121
 3.5.4.3 Groundwater ... 3-122
 3.5.4.4 Floodplains ... 3-124
 3.5.5 Biological Resources ... 3-124
 3.5.5.1 Vegetation ... 3-124
 3.5.5.2 Wildlife ... 3-124
 3.5.5.3 Special Status Species .. 3-125
 3.5.5.4 Wetlands ... 3-125
 3.5.6 Cultural Resources ... 3-126
 3.5.6.1 Archaeological Resources ... 3-126
 3.5.6.2 Architectural Resources .. 3-126
 3.5.6.3 Traditional Resources ... 3-126
 3.5.7 Land Use ... 3-127
 3.5.8 Infrastructure and Transportation .. 3-129
 3.5.8.1 Potable Water System .. 3-129
 3.5.8.2 Wastewater ... 3-129
 3.5.8.3 Stormwater ... 3-129
 3.5.8.4 Electrical and Natural Gas Systems 3-129
 3.5.8.5 Solid Waste Management .. 3-130
 3.5.8.6 Transportation .. 3-130
3.5.9 Hazardous Materials and Waste ... 3-130
 3.5.9.1 Hazardous Materials .. 3-130
 3.5.9.2 Hazardous Waste Management .. 3-131
 3.5.9.3 Environmental Restoration Program .. 3-132
3.5.10 Socioeconomics .. 3-134
 3.5.10.1 Population and Employment .. 3-134
 3.5.10.2 Schools .. 3-135
 3.5.10.3 Housing ... 3-135
3.5.11 Environmental Justice and the Protection of Children 3-135
 3.5.11.1 Minority and Low-Income Populations 3-135
 3.5.11.2 Protection of Children .. 3-136

CHAPTER 4 ENVIRONMENTAL CONSEQUENCES ... 4-1

4.1 ALTERNATIVE #1 -- FORBES AIR NATIONAL GUARD STATION 4-1
 4.1.1 Noise .. 4-1
 4.1.1.1 Aircraft Noise .. 4-1
 4.1.1.2 Construction Noise .. 4-6
 4.1.1.3 Summary of Impacts .. 4-6
 4.1.2 Air Quality ... 4-6
 4.1.2.1 Operational Emissions .. 4-6
 4.1.2.2 Construction Emissions ... 4-8
 4.1.2.3 Summary of Impacts .. 4-9
 4.1.3 Safety .. 4-9
 4.1.3.1 Ground Safety .. 4-9
 4.1.3.2 Flight Safety .. 4-10
 4.1.3.3 Summary of Impacts .. 4-12
 4.1.4 Soils and Water .. 4-12
 4.1.4.1 Soils .. 4-12
 4.1.4.2 Surface Water .. 4-13
 4.1.4.3 Groundwater .. 4-13
 4.1.4.4 Floodplains .. 4-15
 4.1.4.5 Summary of Impacts .. 4-15
 4.1.5 Biological Resources .. 4-15
 4.1.5.1 Vegetation .. 4-15
 4.1.5.2 Wildlife ... 4-15
 4.1.5.3 Special Status Species .. 4-16
 4.1.5.4 Wetlands ... 4-16
 4.1.5.5 Summary of Impacts .. 4-16
 4.1.6 Cultural Resources .. 4-17
 4.1.6.1 Archaeological Resources .. 4-17
 4.1.6.2 Architectural Resources .. 4-17
 4.1.6.3 Traditional Resources ... 4-17
 4.1.6.4 Summary of Impacts ... 4-18
 4.1.7 Land Use ... 4-18
 4.1.7.1 Summary of Impacts .. 4-19
 4.1.8 Infrastructure and Transportation ... 4-21
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.8.1</td>
<td>Potable Water</td>
<td>4-21</td>
</tr>
<tr>
<td>4.1.8.2</td>
<td>Wastewater</td>
<td>4-21</td>
</tr>
<tr>
<td>4.1.8.3</td>
<td>Stormwater</td>
<td>4-21</td>
</tr>
<tr>
<td>4.1.8.4</td>
<td>Electrical and Natural Gas Systems</td>
<td>4-21</td>
</tr>
<tr>
<td>4.1.8.5</td>
<td>Solid Waste Management</td>
<td>4-22</td>
</tr>
<tr>
<td>4.1.8.6</td>
<td>Transportation</td>
<td>4-23</td>
</tr>
<tr>
<td>4.1.8.7</td>
<td>Summary of Impacts</td>
<td>4-23</td>
</tr>
<tr>
<td>4.1.9</td>
<td>Hazardous Materials and Waste</td>
<td>4-23</td>
</tr>
<tr>
<td>4.1.9.1</td>
<td>Hazardous Materials</td>
<td>4-23</td>
</tr>
<tr>
<td>4.1.9.2</td>
<td>Hazardous Waste Management</td>
<td>4-24</td>
</tr>
<tr>
<td>4.1.9.3</td>
<td>Environmental Restoration Program</td>
<td>4-25</td>
</tr>
<tr>
<td>4.1.9.4</td>
<td>Summary of Impacts</td>
<td>4-26</td>
</tr>
<tr>
<td>4.1.10</td>
<td>Socioeconomics</td>
<td>4-28</td>
</tr>
<tr>
<td>4.1.10.1</td>
<td>Summary of Impacts</td>
<td>4-28</td>
</tr>
<tr>
<td>4.1.11</td>
<td>Environmental Justice and the Protection of Children</td>
<td>4-29</td>
</tr>
<tr>
<td>4.1.11.1</td>
<td>Minority and Low-Income Populations</td>
<td>4-29</td>
</tr>
<tr>
<td>4.1.11.2</td>
<td>Protection of Children</td>
<td>4-29</td>
</tr>
<tr>
<td>4.1.11.3</td>
<td>Summary of Impacts</td>
<td>4-29</td>
</tr>
<tr>
<td>4.2</td>
<td>ALTERNATIVE #2 -- JOINT BASE MCGUIRE-DIX-LAKEHURST</td>
<td>4-30</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Noise</td>
<td>4-30</td>
</tr>
<tr>
<td>4.2.1.1</td>
<td>Aircraft Noise</td>
<td>4-30</td>
</tr>
<tr>
<td>4.2.1.2</td>
<td>Construction Noise</td>
<td>4-34</td>
</tr>
<tr>
<td>4.2.1.3</td>
<td>Summary of Impacts</td>
<td>4-35</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Air Quality</td>
<td>4-35</td>
</tr>
<tr>
<td>4.2.2.1</td>
<td>Operational Emissions</td>
<td>4-35</td>
</tr>
<tr>
<td>4.2.2.2</td>
<td>Construction Emissions</td>
<td>4-37</td>
</tr>
<tr>
<td>4.2.2.3</td>
<td>Summary of Impacts</td>
<td>4-38</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Safety</td>
<td>4-38</td>
</tr>
<tr>
<td>4.2.3.1</td>
<td>Ground Safety</td>
<td>4-38</td>
</tr>
<tr>
<td>4.2.3.2</td>
<td>Flight Safety</td>
<td>4-39</td>
</tr>
<tr>
<td>4.2.3.3</td>
<td>Summary of Impacts</td>
<td>4-41</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Soils and Water</td>
<td>4-41</td>
</tr>
<tr>
<td>4.2.4.1</td>
<td>Soils</td>
<td>4-41</td>
</tr>
<tr>
<td>4.2.4.2</td>
<td>Surface Water</td>
<td>4-42</td>
</tr>
<tr>
<td>4.2.4.3</td>
<td>Groundwater</td>
<td>4-44</td>
</tr>
<tr>
<td>4.2.4.4</td>
<td>Floodplains</td>
<td>4-44</td>
</tr>
<tr>
<td>4.2.4.5</td>
<td>Summary of Impacts</td>
<td>4-44</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Biological Resources</td>
<td>4-45</td>
</tr>
<tr>
<td>4.2.5.1</td>
<td>Vegetation</td>
<td>4-45</td>
</tr>
<tr>
<td>4.2.5.2</td>
<td>Wildlife</td>
<td>4-45</td>
</tr>
<tr>
<td>4.2.5.3</td>
<td>Special Status Species</td>
<td>4-46</td>
</tr>
<tr>
<td>4.2.5.4</td>
<td>Wetlands</td>
<td>4-46</td>
</tr>
<tr>
<td>4.2.5.5</td>
<td>Summary of Impacts</td>
<td>4-47</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Cultural Resources</td>
<td>4-47</td>
</tr>
<tr>
<td>4.2.6.1</td>
<td>Archaeological Resources</td>
<td>4-47</td>
</tr>
<tr>
<td>4.2.6.2</td>
<td>Architectural Resources</td>
<td>4-48</td>
</tr>
</tbody>
</table>
4.2.6.3 Traditional Resources ... 4-48
4.2.6.4 Summary of Impacts ... 4-48
4.2.7 Land Use .. 4-49
4.2.7.1 Summary of Impacts ... 4-52
4.2.8 Infrastructure and Transportation .. 4-52
4.2.8.1 Potable Water .. 4-52
4.2.8.2 Wastewater .. 4-52
4.2.8.3 Stormwater .. 4-53
4.2.8.4 Electrical and Natural Gas Systems 4-53
4.2.8.5 Solid Waste Management ... 4-54
4.2.8.6 Transportation ... 4-54
4.2.8.7 Summary of Impacts ... 4-55
4.2.9 Hazardous Materials and Waste... 4-55
4.2.9.1 Hazardous Materials.. 4-55
4.2.9.2 Hazardous Waste Management ... 4-56
4.2.9.3 Environmental Restoration Program 4-57
4.2.9.4 Summary of Impacts ... 4-58
4.2.10 Socioeconomics ... 4-60
4.2.10.1 Summary of Impacts ... 4-61
4.2.11 Environmental Justice and the Protection of Children 4-61
4.2.11.1 Minority and Low-Income Populations 4-61
4.2.11.2 Protection of Children ... 4-61
4.2.11.3 Summary of Impacts ... 4-62
4.3 ALTERNATIVE #3 -- PEASE AIR NATIONAL GUARD STATION 4-63
4.3.1 Noise .. 4-63
4.3.1.1 Aircraft Noise .. 4-63
4.3.1.2 Construction Noise .. 4-67
4.3.1.3 Summary of Impacts ... 4-68
4.3.2 Air Quality ... 4-68
4.3.2.1 Operational Emissions .. 4-68
4.3.2.2 Construction Emissions ... 4-70
4.3.2.3 Summary of Impacts ... 4-71
4.3.3 Safety ... 4-71
4.3.3.1 Ground Safety ... 4-71
4.3.3.2 Flight Safety .. 4-72
4.3.3.3 Summary of Impacts ... 4-73
4.3.4 Soils and Water .. 4-74
4.3.4.1 Soils ... 4-74
4.3.4.2 Surface Water .. 4-75
4.3.4.3 Groundwater .. 4-77
4.3.4.4 Floodplains .. 4-77
4.3.4.5 Summary of Impacts ... 4-77
4.3.5 Biological Resources ... 4-77
4.3.5.1 Vegetation ... 4-77
4.3.5.2 Wildlife ... 4-78
4.3.5.3 Special Status Species ... 4-79

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS

Table of Contents
4.3.5.4 Wetlands .. 4-79
4.3.5.5 Summary of Impacts .. 4-79
4.3.6 Cultural Resources .. 4-80
4.3.6.1 Archaeological Resources 4-80
4.3.6.2 Architectural Resources 4-80
4.3.6.3 Traditional Resources .. 4-80
4.3.6.4 Summary of Impacts .. 4-81
4.3.7 Land Use .. 4-81
4.3.7.1 Summary of Impacts .. 4-83
4.3.8 Infrastructure and Transportation 4-83
4.3.8.1 Potable Water .. 4-83
4.3.8.2 Wastewater ... 4-83
4.3.8.3 Stormwater ... 4-83
4.3.8.4 Electrical and Natural Gas Systems 4-84
4.3.8.5 Solid Waste Management 4-84
4.3.8.6 Transportation ... 4-85
4.3.8.7 Summary of Impacts .. 4-86
4.3.9 Hazardous Materials and Waste 4-86
4.3.9.1 Hazardous Materials .. 4-86
4.3.9.2 Hazardous Waste Management 4-87
4.3.9.3 Environmental Restoration Program 4-87
4.3.9.4 Summary of Impacts .. 4-90
4.3.10 Socioeconomics ... 4-90
4.3.10.1 Summary of Impacts .. 4-91
4.3.11 Environmental Justice and the Protection of Children 4-91
4.3.11.1 Minority and Low-Income Populations 4-91
4.3.11.2 Protection of Children 4-91
4.3.11.3 Summary of Impacts .. 4-91
4.4 ALTERNATIVE #4 -- PITTSBURGH AIR NATIONAL GUARD STATION 4-92
4.4.1 Noise ... 4-92
4.4.1.1 Aircraft Noise .. 4-92
4.4.1.2 Construction Noise .. 4-97
4.4.1.3 Summary of Impacts .. 4-97
4.4.2 Air Quality .. 4-98
4.4.2.1 Operational Emissions 4-98
4.4.2.2 Construction Emissions 4-100
4.4.2.3 Summary of Impacts .. 4-101
4.4.3 Safety ... 4-101
4.4.3.1 Ground Safety ... 4-101
4.4.3.2 Flight Safety .. 4-102
4.4.3.3 Summary of Impacts .. 4-103
4.4.4 Soils and Water ... 4-104
4.4.4.1 Soils .. 4-104
4.4.4.2 Surface Water .. 4-105
4.4.4.3 Groundwater .. 4-107
4.4.4.4 Floodplains ... 4-107
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.4.5</td>
<td>Summary of Impacts</td>
</tr>
<tr>
<td>4.4.5</td>
<td>Biological Resources</td>
</tr>
<tr>
<td>4.4.5.1</td>
<td>Vegetation</td>
</tr>
<tr>
<td>4.4.5.2</td>
<td>Wildlife</td>
</tr>
<tr>
<td>4.4.5.3</td>
<td>Special Status Species</td>
</tr>
<tr>
<td>4.4.5.4</td>
<td>Wetlands</td>
</tr>
<tr>
<td>4.4.5.5</td>
<td>Summary of Impacts</td>
</tr>
<tr>
<td>4.4.6</td>
<td>Cultural Resources</td>
</tr>
<tr>
<td>4.4.6.1</td>
<td>Archaeological Resources</td>
</tr>
<tr>
<td>4.4.6.2</td>
<td>Architectural Resources</td>
</tr>
<tr>
<td>4.4.6.3</td>
<td>Traditional Resources</td>
</tr>
<tr>
<td>4.4.6.4</td>
<td>Summary of Impacts</td>
</tr>
<tr>
<td>4.4.7</td>
<td>Land Use</td>
</tr>
<tr>
<td>4.4.7.1</td>
<td>Summary of Impacts</td>
</tr>
<tr>
<td>4.4.8</td>
<td>Infrastructure and Transportation</td>
</tr>
<tr>
<td>4.4.8.1</td>
<td>Potable Water</td>
</tr>
<tr>
<td>4.4.8.2</td>
<td>Wastewater</td>
</tr>
<tr>
<td>4.4.8.3</td>
<td>Stormwater</td>
</tr>
<tr>
<td>4.4.8.4</td>
<td>Electrical and Natural Gas Systems</td>
</tr>
<tr>
<td>4.4.8.5</td>
<td>Solid Waste Management</td>
</tr>
<tr>
<td>4.4.8.6</td>
<td>Transportation</td>
</tr>
<tr>
<td>4.4.8.7</td>
<td>Summary of Impacts</td>
</tr>
<tr>
<td>4.4.9</td>
<td>Hazardous Materials and Waste</td>
</tr>
<tr>
<td>4.4.9.1</td>
<td>Hazardous Materials</td>
</tr>
<tr>
<td>4.4.9.2</td>
<td>Hazardous Waste Management</td>
</tr>
<tr>
<td>4.4.9.3</td>
<td>Environmental Restoration Program</td>
</tr>
<tr>
<td>4.4.9.4</td>
<td>Summary of Impacts</td>
</tr>
<tr>
<td>4.4.10</td>
<td>Socioeconomics</td>
</tr>
<tr>
<td>4.4.10.1</td>
<td>Summary of Impacts</td>
</tr>
<tr>
<td>4.4.11</td>
<td>Environmental Justice and the Protection of Children</td>
</tr>
<tr>
<td>4.4.11.1</td>
<td>Minority and Low-Income Populations</td>
</tr>
<tr>
<td>4.4.11.2</td>
<td>Protection of Children</td>
</tr>
<tr>
<td>4.4.11.3</td>
<td>Summary of Impacts</td>
</tr>
<tr>
<td>4.5</td>
<td>Alternative #5 -- Rickenbacker Air National Guard Station</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Noise</td>
</tr>
<tr>
<td>4.5.1.1</td>
<td>Aircraft Noise</td>
</tr>
<tr>
<td>4.5.1.2</td>
<td>Construction Noise</td>
</tr>
<tr>
<td>4.5.1.3</td>
<td>Summary of Impacts</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Air Quality</td>
</tr>
<tr>
<td>4.5.2.1</td>
<td>Operational Emissions</td>
</tr>
<tr>
<td>4.5.2.2</td>
<td>Construction Emissions</td>
</tr>
<tr>
<td>4.5.2.3</td>
<td>Summary of Impacts</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Safety</td>
</tr>
<tr>
<td>4.5.3.1</td>
<td>Ground Safety</td>
</tr>
<tr>
<td>4.5.3.2</td>
<td>Flight Safety</td>
</tr>
<tr>
<td>4.5.3.3</td>
<td>Summary of Impacts</td>
</tr>
</tbody>
</table>
CHAPTER 5 CUMULATIVE EFFECTS AND IRREVERSIBLE AND IRRETRIEVABLE COMMITMENT OF RESOURCES 5-1

5.1 ALTERNATIVE #1 -- FORBES AIR NATIONAL GUARD STATION CUMULATIVE EFFECTS .. 5-1
 5.1.1 Past, Present, and Reasonably Foreseeable Actions .. 5-1
 5.1.2 Cumulative Impacts ... 5-2
 5.1.2.1 Noise .. 5-2
 5.1.2.2 Air Quality .. 5-2
 5.1.2.3 Safety .. 5-3
 5.1.2.4 Soils and Water .. 5-3
 5.1.2.5 Biological Resources .. 5-4
 5.1.2.6 Cultural Resources ... 5-4
 5.1.2.7 Land Use ... 5-5
 5.1.2.8 Infrastructure and Transportation .. 5-5
 5.1.2.9 Hazardous Materials and Waste .. 5-6
 5.1.2.10 Socioeconomics .. 5-6
 5.1.2.11 Environmental Justice and the Protection of Children 5-7

5.2 ALTERNATIVE #2 -- JOINT BASE MCGUIRE-DIX-LAKEHURST CUMULATIVE EFFECTS .. 5-8
 5.2.1 Past, Present, and Reasonably Foreseeable Actions .. 5-8
 5.2.2 Cumulative Impacts ... 5-9
 5.2.2.1 Noise .. 5-9
 5.2.2.2 Air Quality .. 5-9
 5.2.2.3 Safety .. 5-10
 5.2.2.4 Soils and Water .. 5-11
 5.2.2.5 Biological Resources .. 5-12
 5.2.2.6 Cultural Resources ... 5-13
 5.2.2.7 Land Use ... 5-13
 5.2.2.8 Infrastructure and Transportation .. 5-14
 5.2.2.9 Hazardous Materials and Waste .. 5-14
 5.2.2.10 Socioeconomics .. 5-14
 5.2.2.11 Environmental Justice and the Protection of Children 5-15

5.3 ALTERNATIVE #3 -- PEASE AIR NATIONAL GUARD STATION CUMULATIVE EFFECTS .. 5-16
 5.3.1 Past, Present, and Reasonably Foreseeable Actions .. 5-16
 5.3.2 Cumulative Impacts ... 5-17
 5.3.2.1 Noise .. 5-17
 5.3.2.2 Air Quality .. 5-17
 5.3.2.3 Safety .. 5-17
 5.3.2.4 Soils and Water .. 5-18
 5.3.2.5 Biological Resources .. 5-19
TABLES

ES-1 Summary of Alternatives (Current/Proposed) ... ES-6
ES-2 Summary of Impacts .. ES-10
1.3-1 Comparison of KC-135 and KC-46A .. 1-5
2.3-1 Current 190 ARW KC-135 Operations at Forbes Field Airport 2-9
2.3-2 Proposed 190 ARW KC-46A Operations at Forbes Field Airport 2-10
2.3-3 Changes to 190 ARW Airfield Operations with Proposed KC-46A Aircraft 2-10
2.3-4 Current and Proposed Local Air Refueling Airspace Used by the 190 ARW 2-11
2.3-5 Proposed 190 ARW Construction Projects at Forbes Field Airport 2-12
2.3-6 Comparison of Currently Authorized and Proposed 190 ARW Personnel 2-16
2.3-7 Current 108 WG KC-135 Operations at McGuire Field .. 2-19
2.3-8 Proposed 108 WG KC-46A Operations at McGuire Field .. 2-19
2.3-9 Changes to 108 WG Airfield Operations with Proposed KC-46A Aircraft 2-19
2.3-10 Current and Proposed Local Air Refueling Airspace Used by the 108 WG 2-20
2.3-11 Proposed 108 WG Construction Projects at McGuire Field 2-21
2.3-12 Comparison of Currently Authorized and Proposed 108 WG Personnel 2-26
2.3-13 Current 157 ARW Operations at Portsmouth IAP .. 2-29
2.3-14 Proposed 157 ARW KC-46A Operations at Portsmouth IAP 2-29
2.3-15 Changes to 157 ARW Airfield Operations with Proposed KC-46A Aircraft 2-29
2.3-16 Current and Proposed Local Air Refueling Airspace Used by the 157 ARW 2-30
2.3-17 Proposed 157 ARW Construction Projects at Portsmouth IAP 2-32
2.3-18 Comparison of Currently Authorized and Proposed 157 ARW Personnel 2-36
2.3-19 Current 171 ARW KC-135 Aircraft Operations at Pittsburgh IAP 2-39
2.3-20 Proposed 171 ARW KC-46A Operations at Pittsburgh IAP 2-39
2.3-21 Changes to 171 ARW Airfield Operations with Proposed KC-46A Aircraft 2-39
2.3-22 Current and Proposed Local Air Refueling Airspace Used by the 171 ARW 2-41
2.3-23 Proposed 171 ARW Construction Projects at Pittsburgh IAP 2-42
2.3-24 Comparison of Currently Authorized and Proposed 171 ARW Personnel 2-46
2.3-25 Current 121 ARW KC-135 Operations at Rickenbacker IAP 2-48
2.3-26 Proposed 121 ARW KC-46A Aircraft Operations at Rickenbacker IAP 2-49
2.3-27 Changes to 121 ARW Airfield Operations with Proposed KC-46A Aircraft 2-49
2.3-28 Current and Proposed Local Air Refueling Airspace Used by the 121 ARW 2-50
2.3-29 Proposed 121 ARW Construction Projects at Rickenbacker IAP 2-51
2.3-30 Comparison of Currently Authorized and Proposed 121 ARW Personnel 2-55
2.6-1 Summary of Alternatives (Current/Proposed) .. 2-57
2.6-2 Summary of Impacts .. 2-58
3.1.1-1 Current Forbes Field Airport Annual Aircraft Operations 3-2
3.1.1-2 Acres within Baseline Noise Contours, Forbes Field Airport 3-3
3.1.2-1 Ambient Air Quality Standards .. 3-6
3.1.2-2 Regional Emissions for Shawnee County, Kansas .. 3-8
3.1.2-3 Ambient Air Monitoring Data for Topeka and Kansas City, Kansas 3-9
3.1.2-4 190 ARW Baseline Emissions at Forbes ANGS .. 3-10
3.1.9-1 ERP Sites within the 190 ARW Installation .. 3-24
3.1.10-1 Population Growth within the Vicinity of Forbes ANGS 3-26
3.1.10-2 Employment Data (2011) within the Vicinity of Forbes ANGS 3-26

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS
3.1.11-1 Population within the Vicinity of Forbes ANGS .. 3-27
3.2.1-1 Current McGuire Field Annual Aircraft Operations ... 3-29
3.2.1-2 Acres within Baseline Noise Contours, McGuire Field .. 3-29
3.2.2-1 Ambient Air Quality Standards ... 3-32
3.2.2-2 Regional Emissions for Burlington and Ocean Counties, New Jersey .. 3-34
3.2.2-3 Ambient Air Monitoring Data for the JB MDL Area .. 3-35
3.2.2-4 108 WG Baseline Emissions at JB MDL .. 3-36
3.2.9-1 ERP Sites within the 108 WG Installation ... 3-51
3.2.10-1 Population Growth within the Vicinity of JB MDL ... 3-53
3.2.10-2 Employment Data (2011) within the Vicinity of JB MDL .. 3-54
3.2.11-1 Population within the Vicinity of JB MDL ... 3-55
3.2.11-2 Population within Baseline Noise Contours, JB MDL ... 3-55
3.3.1-1 Current Portsmouth IAP Annual Aircraft Operations ... 3-58
3.3.1-2 Acres within Baseline Noise Contours, Portsmouth IAP ... 3-58
3.3.2-1 Ambient Air Quality Standards ... 3-61
3.3.2-2 Regional Emissions for Rockingham County, New Hampshire .. 3-63
3.3.2-3 Ambient Air Monitoring Data for the Portsmouth Area .. 3-64
3.3.2-4 157 ARW Baseline Emissions at Pease ANGS ... 3-65
3.3.9-1 ERP Sites within the 157 ARW Installation .. 3-79
3.3.10-1 Population Growth within the Vicinity of Pease ANGS .. 3-81
3.3.10-2 Employment Data (2011) within the Vicinity of Pease ANGS .. 3-81
3.3.11-1 Population within the Vicinity of Pease ANGS ... 3-82
3.4.1-1 Current Pittsburgh IAP Annual Aircraft Operations FAR Part 150 ... 3-85
3.4.1-2 Acres within Baseline Noise Contours, Pittsburgh IAP ... 3-86
3.4.2-1 Ambient Air Quality Standards ... 3-89
3.4.2-2 Regional Emissions for Allegheny County, Pennsylvania ... 3-90
3.4.2-3 Ambient Air Monitoring Data for the Pittsburgh Area ... 3-91
3.4.2-4 171 ARW Baseline Emissions at Pittsburgh ANGS .. 3-92
3.4.9-1 ERP Sites within the 171 ARW Installation .. 3-105
3.4.10-1 Population Growth within the Vicinity of Pittsburgh ANGS .. 3-107
3.4.10-2 Employment Data (2011) within the Vicinity of Pittsburgh ANGS ... 3-107
3.4.11-1 Population within the Vicinity of Pittsburgh ANGS .. 3-108
3.4.11-2 Population within Baseline Noise Contours, Pittsburgh ANGS .. 3-109
3.5.1-1 Current Rickenbacker IAP Annual Aircraft Operations FAR Part 150 .. 3-111
3.5.1-2 Acres within Baseline Noise Contours, Rickenbacker IAP .. 3-113
3.5.2-1 Ambient Air Quality Standards ... 3-115
3.5.2-2 Regional Emissions for Franklin County, Ohio .. 3-116
3.5.2-3 Ambient Air Monitoring Data for the Columbus Area ... 3-117
3.5.2-4 121 ARW Baseline Emissions at Rickenbacker ANGS ... 3-118
3.5.9-1 ERP Sites within the 121 ARW Installation .. 3-132
3.5.10-1 Population Growth within the Vicinity of Rickenbacker ANGS .. 3-134
3.5.10-2 Employment Data (2011) within the Vicinity of Rickenbacker ANGS .. 3-135
3.5.11-1 Population within the Vicinity of Rickenbacker ANGS ... 3-136
4.1.1-1 Forbes Field Airport Annual Aircraft Operations with Proposed KC-46A 4-2
4.1.1-2 Land Areas within DNL Contours at Forbes Field Airport Affected by DNL Greater than 65 dB under Baseline and Alternative #1 ... 4-2
<table>
<thead>
<tr>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.2-1</td>
</tr>
<tr>
<td>4.1.2-2</td>
</tr>
<tr>
<td>4.1.2-3</td>
</tr>
<tr>
<td>4.1.7-1</td>
</tr>
<tr>
<td>4.2.1-1</td>
</tr>
<tr>
<td>4.2.1-2</td>
</tr>
<tr>
<td>4.2.2-1</td>
</tr>
<tr>
<td>4.2.2-2</td>
</tr>
<tr>
<td>4.2.2-3</td>
</tr>
<tr>
<td>4.2.7-1</td>
</tr>
<tr>
<td>4.2.11-1</td>
</tr>
<tr>
<td>4.3.1-1</td>
</tr>
<tr>
<td>4.3.1-2</td>
</tr>
<tr>
<td>4.3.2-1</td>
</tr>
<tr>
<td>4.3.2-2</td>
</tr>
<tr>
<td>4.3.2-3</td>
</tr>
<tr>
<td>4.3.7-1</td>
</tr>
<tr>
<td>4.4.1-1</td>
</tr>
<tr>
<td>4.4.1-2</td>
</tr>
<tr>
<td>4.4.1-3</td>
</tr>
<tr>
<td>4.4.2-1</td>
</tr>
<tr>
<td>4.4.2-2</td>
</tr>
<tr>
<td>4.4.2-3</td>
</tr>
<tr>
<td>4.4.7-1</td>
</tr>
<tr>
<td>4.4.11-1</td>
</tr>
<tr>
<td>4.5.1-1</td>
</tr>
<tr>
<td>4.5.1-2</td>
</tr>
<tr>
<td>4.5.1-3</td>
</tr>
</tbody>
</table>
4.5.2-1 Comparison of Baseline and Proposed Annual Operational Emissions, 121 ARW ... 4-130
4.5.2-2 Comparison of Baseline and Proposed Annual Operational GHG Emissions, 121 ARW ... 4-131
4.5.2-3 Annual Construction Emissions Under Alternative #5 .. 4-132
4.5.7-1 Change in Acres Affected by Noise Levels Above 65 dB DNL Outside the Rickenbacker IAP Boundary ... 4-143
5.1.1-1 Past, Present, and Reasonably Foreseeable Actions in the ROI for Forbes ANGS... 5-1
5.2.1-1 Past, Present, and Reasonably Foreseeable Actions in the ROI for JB MDL 5-8
5.3.1-1 Past, Present, and Reasonably Foreseeable Actions in the ROI for Pease ANGS ... 5-16
5.4.1-1 Past, Present, and Reasonably Foreseeable Actions in the ROI for Pittsburgh ANGS ... 5-23
5.5.1-1 Past, Present, and Reasonably Foreseeable Actions in the ROI for Rickenbacker ANGS .. 5-30

FIGURES
ES-1 Alternative Locations for the KC-46A ANG Beddown ..ES-2
1.1-1 Alternative Locations for the KC-46A ANG Beddown ... 1-2
2.3-1 Regional Location Forbes ANGS ... 2-8
2.3-2 Construction Associated with Alternative #1, Forbes ANGS 2-13
2.3-3 Regional Location, JB MDL .. 2-17
2.3-4 Construction Associated with Alternative #2, JB MDL ... 2-22
2.3-5 Regional Location Pease ANGS .. 2-27
2.3-6 Construction Associated with Alternative #3, Pease ANGS 2-33
2.3-7 Regional Location, Pittsburgh ANGS .. 2-38
2.3-8 Construction Associated with Alternative #4, Pittsburgh ANGS 2-43
2.3-9 Regional Location Rickenbacker ANGS .. 2-47
2.3-10 Construction Associated with Alternative #5, Rickenbacker ANGS 2-52
3.1.1-1 Baseline DNL Noise Contours for Forbes Field Airport 3-4
3.1.4-1 Surface Water Features in the Vicinity of Forbes ANGS 3-15
3.1.7-1 DNL Noise Contours and Land Use at Forbes Field Airport 3-20
3.1.9-1 Environmental Restoration Program Sites at the 190 ARW Installation, Forbes Field Airport .. 3-25
3.2.1-1 Baseline DNL Noise Contours for McGuire Field ... 3-30
3.2.4-1 Surface Water Features and Wetlands in the Vicinity of McGuire Field 3-41
3.2.7-1 DNL Noise Contours and Land Use at McGuire Field .. 3-48
3.2.9-1 Environmental Restoration Program Sites at the 108 WG Installation, JB MDL .. 3-52
3.3.1-1 Baseline DNL Noise Contours for Portsmouth IAP .. 3-59
3.3.4-1 Surface Water Features and Wetlands in the Vicinity of Pease ANGS 3-70
3.3.7-1 DNL Noise Contours and Land Use at Portsmouth IAP 3-75
3.3.9-1 ERP Sites at the 157 ARW Installation, Portsmouth IAP 3-80
3.4.1-1 Baseline DNL Noise Contours for Pittsburgh IAP ... 3-87
3.4.4-1 Surface Water Features and Wetlands in the Vicinity of Pittsburgh ANGS 3-97
3.4.7-1 DNL Noise Contours and Land Use at Pittsburgh IAP ... 3-101
3.4.9-1 ERP Sites at the 171 ARW Installation, Pittsburgh IAP ... 3-106
3.5.1-1 Baseline DNL Noise Contours for Rickenbacker IAP .. 3-112
3.5.4-1 Surface Water Features and Wetlands in the Vicinity of Rickenbacker ANGS 3-123
3.5.7-1 DNL Noise Contours and Land Use at Rickenbacker IAP ... 3-128
3.5.9-1 ERP Sites at the 171 ARW Installation, Rickenbacker IAP 3-133
4.1.1-1 DNL Noise Contours Under Alternative #1 at Forbes Field Airport........................ 4-3
4.1.2-2 Comparison of Baseline and Alternative #1 DNL Noise Contours at Forbes Field
Airport.. 4-4
4.1.4-1 Surface Water Features and Proposed Construction in the Vicinity of
Forbes ANGS.. 4-14
4.1.7-1 DNL Noise Contours and Land Use Under Alternative #1 at
Forbes Field Airport.. 4-20
4.1.9-1 ERP Sites and Proposed Construction in the Vicinity of Forbes ANGS..................... 4-27
4.2.1-1 DNL Noise Contours Under Alternative #2 at McGuire Field................................. 4-32
4.2.2-2 Comparison of Baseline and Alternative #2 DNL Noise Contours at
McGuire Field... 4-33
4.2.4-1 Surface Water Features and Proposed Construction in the Vicinity of
McGuire Field... 4-43
4.2.7-1 DNL Noise Contours and Land Use Under Alternative #2 at McGuire Field........... 4-51
4.2.9-1 ERP Sites and Proposed Construction in the Vicinity of McGuire Field.................. 4-59
4.3.1-1 DNL Noise Contours Under Alternative #3 at Portsmouth IAP.............................. 4-65
4.3.2-2 Comparison of Baseline and Alternative #3 DNL Noise Contours at
Portsmouth IAP.. 4-66
4.3.4-1 Surface Water Features and Proposed Construction in the Vicinity of
Pease ANGS.. 4-76
4.3.7-1 DNL Noise Contours and Land Use Under Alternative #3 at Portsmouth IAP 4-82
4.3.9-1 ERP Sites and Proposed Construction in the Vicinity of Pease ANGS....................... 4-89
4.4.1-1 DNL Noise Contours Under Alternative #4 at Pittsburgh IAP................................. 4-95
4.4.2-2 Comparison of Baseline and Alternative #4 DNL Noise Contours for
Pittsburgh IAP... 4-96
4.4.4-1 Surface Water Features and Proposed Construction in the Vicinity of
Pittsburgh ANGS.. 4-106
4.4.7-1 DNL Noise Contours and Land Use Under Alternative #4 at Pittsburgh IAP 4-112
4.4.9-1 ERP Sites and Proposed Construction in the Vicinity of Pittsburgh ANGS 4-119
4.5.1-1 DNL Noise Contours Under Alternative #5 at Rickenbacker IAP............................. 4-126
4.5.2-2 Comparison of Baseline and Alternative #5 DNL Noise Contours at
Rickenbacker IAP.. 4-127
4.5.4-1 Surface Water Features and Proposed Construction in the Vicinity of
Rickenbacker ANGS.. 4-137
4.5.7-1 DNL Noise Contours and Land Use Under Alternative #5 at
Rickenbacker IAP.. 4-144
4.5.9-1 ERP Sites and Proposed Construction in the Vicinity of Rickenbacker ANGS 4-151
Appendices are included on CD-ROM on the inside back cover of this document.

APPENDIX A RESOURCE DEFINITIONS AND METHODOLOGIES
APPENDIX B CORRESPONDENCE
APPENDIX C BACKGROUND INFORMATION FOR THE NOISE ANALYSIS
APPENDIX D AIR QUALITY
APPENDIX E SPECIAL STATUS SPECIES LISTS
APPENDIX F FINAL GENERAL CONFORMITY DETERMINATION FOR KC-46A ALTERNATIVE BEDDOWN LOCATION
ACRONYMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Acronym</th>
</tr>
</thead>
<tbody>
<tr>
<td>ºC</td>
<td>degree Celsius</td>
<td>CO₂</td>
</tr>
<tr>
<td>ºF</td>
<td>degree Fahrenheit</td>
<td>CO₂e</td>
</tr>
<tr>
<td>µg/m³</td>
<td>micrograms per cubic meter</td>
<td>CONTUS</td>
</tr>
<tr>
<td>64 ARS</td>
<td>64th Air Refueling Squadron</td>
<td>CRAA</td>
</tr>
<tr>
<td>108 WG</td>
<td>108th Wing</td>
<td>CWA</td>
</tr>
<tr>
<td>121 ARW</td>
<td>121st Air Refueling Wing</td>
<td>CY</td>
</tr>
<tr>
<td>157 ARW</td>
<td>157th Air Refueling Wing</td>
<td>CZ</td>
</tr>
<tr>
<td>171 ARW</td>
<td>171st Air Refueling Wing</td>
<td>dB</td>
</tr>
<tr>
<td>190 ARW</td>
<td>190th Air Refueling Wing</td>
<td>DERP</td>
</tr>
<tr>
<td>AAD</td>
<td>Average Annual Day</td>
<td>DLA</td>
</tr>
<tr>
<td>AAQS</td>
<td>Ambient Air Quality Standards</td>
<td>DNL</td>
</tr>
<tr>
<td>ACAA</td>
<td>Allegheny County Airport Authority</td>
<td>DoD</td>
</tr>
<tr>
<td>ACM</td>
<td>asbestos-containing material</td>
<td>EIS</td>
</tr>
<tr>
<td>ACS</td>
<td>American Community Survey</td>
<td>EISA</td>
</tr>
<tr>
<td>AFB</td>
<td>Air Force Base</td>
<td>EO</td>
</tr>
<tr>
<td>AFCEC</td>
<td>Air Force Civil Engineer Center</td>
<td>ERP</td>
</tr>
<tr>
<td>AFICI</td>
<td>Air Force Instruction</td>
<td>ERS</td>
</tr>
<tr>
<td>AFMAN</td>
<td>Air Force Manual</td>
<td>FARR</td>
</tr>
<tr>
<td>AFOSH</td>
<td>Air Force Occupational Safety and Health</td>
<td>FEMA</td>
</tr>
<tr>
<td>AFSEC</td>
<td>Air Force Safety Center</td>
<td>FL</td>
</tr>
<tr>
<td>AGE</td>
<td>Aerospace Ground Equipment</td>
<td>FHWA</td>
</tr>
<tr>
<td>AGL</td>
<td>above ground level</td>
<td>FICUN</td>
</tr>
<tr>
<td>AICUZ</td>
<td>Air Installation Compatible Use Zone</td>
<td>I-</td>
</tr>
<tr>
<td>AMC</td>
<td>Air Mobility Command</td>
<td>Interstate</td>
</tr>
<tr>
<td>ANG</td>
<td>Air National Guard</td>
<td>IAP</td>
</tr>
<tr>
<td>ANGS</td>
<td>Air National Guard Station</td>
<td>IFR</td>
</tr>
<tr>
<td>AOC</td>
<td>Area of Concern</td>
<td>INM</td>
</tr>
<tr>
<td>APZ</td>
<td>Accident Potential Zone</td>
<td>KIAS</td>
</tr>
<tr>
<td>ARFF</td>
<td>Aircraft Rescue and Fire Fighting</td>
<td>JB MDL</td>
</tr>
<tr>
<td>ARO</td>
<td>Air Refueling Operator</td>
<td>JS ANG</td>
</tr>
<tr>
<td>ASD</td>
<td>Average Sortie Duration</td>
<td>LBP</td>
</tr>
<tr>
<td>ASN</td>
<td>Aviation Safety Network</td>
<td>LEED</td>
</tr>
<tr>
<td>AST</td>
<td>aboveground storage tank</td>
<td>LID</td>
</tr>
<tr>
<td>AT/FP</td>
<td>Anti-Terrorism/Force Protection</td>
<td>MBTA</td>
</tr>
<tr>
<td>ATADS</td>
<td>Air Traffic Activity Data System</td>
<td>MILCON</td>
</tr>
<tr>
<td>ATCAA</td>
<td>Air Traffic Control Assigned Airspace</td>
<td>MOA</td>
</tr>
<tr>
<td>BAI</td>
<td>Backup Aerospace Vehicle Inventory</td>
<td>MOB</td>
</tr>
<tr>
<td>BASH</td>
<td>Bird/Wildlife Aircraft Strike Hazard</td>
<td>MOB 1</td>
</tr>
<tr>
<td>BOMARC</td>
<td>Boeing Michigan Aerospace Research Center</td>
<td>MOB 2</td>
</tr>
<tr>
<td>C2</td>
<td>Command and Control</td>
<td>MSL</td>
</tr>
<tr>
<td>C4</td>
<td>Command, Control, Communications, and Computers</td>
<td>MTAA</td>
</tr>
<tr>
<td>CAA</td>
<td>Clean Air Act</td>
<td>N₂O</td>
</tr>
<tr>
<td>CAP</td>
<td>Central Accumulation Point</td>
<td></td>
</tr>
<tr>
<td>CEQ</td>
<td>Council on Environmental Quality</td>
<td></td>
</tr>
<tr>
<td>CERCLA</td>
<td>Comprehensive Environmental Response, Compensation, and Liability Act</td>
<td></td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
<td></td>
</tr>
<tr>
<td>CH₄</td>
<td>methane</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>carbon monoxide</td>
<td></td>
</tr>
</tbody>
</table>
NAAQS National Ambient Air Quality Standards
NDAA National Defense Authorization Act
NEPA National Environmental Policy Act
NGB National Guard Bureau
NGB/A7AN National Guard Bureau, Asset Management Division, Natural Infrastructure Management Branch
NH ANG New Hampshire Air National Guard
NHPA National Historic Preservation Act
NIOSH National Institute for Occupational Safety and Health
NIPTS Noise-Induced Permanent Threshold Shift
NJ ANG New Jersey Air National Guard
nm nautical mile
NO2 nitrogen dioxide
NOA Notice of Availability
NOI Notice of Intent
NOx oxides of nitrogen
NPDES National Pollutant Discharge Elimination System
NRCS Natural Resources Conservation Service
NRHP National Register of Historic Places
NVIS Night Vision Imaging System
O3 ozone
OH ANG Ohio Air National Guard
OSHA Occupational Safety and Health Administration
OWS oil/water separator
PA ANG Pennsylvania Air National Guard
PAA Primary Aerospace Vehicles Authorized
PADEP Pennsylvania Department of Environmental Protection
Pb lead
PCB polychlorinated biphenyl
PDA Pease Development Authority
PM2.5 particulate matter less than or equal to 2.5 microns in diameter
PM10 particulate matter less than or equal to 10 microns in diameter
POL petroleum, oil, and lubricant
POV privately owned vehicle
ppm parts per million
PSD Prevention of Significant Deterioration
PUD Planned Unit Development
QD quantity-distance
RCRA Resource Conservation and Recovery Act
ROD Record of Decision
ROI Region of Influence
RPZ Runway Protection Zone
SAP satellite accumulation point
SEL Sound Exposure Level
SF square foot/feet
SHPO State Historic Preservation Office(r)
SIP State Implementation Plan
SO2 sulfur dioxide
SR State Route
SUA Special Use Airspace
SWPPP Stormwater Pollution Prevention Plan
TFI Total Force Integration
tpy tons per year
U.S. United States
UFC Unified Facilities Criteria
USACE United States Army Corps of Engineers
USAF United States Air Force
USC United States Code
USDA United States Department of Agriculture
USEPA United States Environmental Protection Agency
USFWS United States Fish and Wildlife Service
USGS United States Geological Survey
UST underground storage tank
UTBNI Up to But Not Including
VFR Visual Flight Rule
VOC volatile organic compound
EXECUTIVE SUMMARY

This Environmental Impact Statement (EIS) analyzes the potential environmental impacts associated with the beddown the KC-46A at the Second Main Operating Base (MOB 2), which will be led by an Air National Guard (ANG) unit. The Secretary of the Air Force proposes to replace existing KC-135s with the KC-46A aircraft for MOB 2 at one of five alternative locations. The five alternative ANG locations (Figure ES-1) selected for this beddown include:

- Forbes Air National Guard Station (ANGS), Kansas;
- Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey;
- Pease ANGS, New Hampshire;
- Pittsburgh ANGS, Pennsylvania; and,
- Rickenbacker ANGS, Ohio.

The official public scoping period for this proposal was initiated when the Notice of Intent (NOI) to prepare the EIS was published in the Federal Register on May 17, 2013 and ended on July 5, 2013. The Notice of Availability (NOA) for the Draft EIS was published in the Federal Register on February 7, which initiated a 45-day public comment period on the Draft EIS that ended on March 24, 2014. All comments received on the Draft EIS have been fully considered and addressed in the Final EIS, as appropriate. Comments received are reflected in Appendix B, Section 6, pages B6-223 to B6-387. Only substantive comments were responded to in the Government Responses to Comments, Appendix B, Section 6, pages B6-202 to B6-222.

PURPOSE AND NEED

Air refueling is the backbone of the United States’ (U.S.) ability to project global reach and combat power. Air refueling aircraft, also known as “tankers,” are a joint asset, serving our sister services and U.S. allies who rely on the range and flexibility of tankers to strengthen their contribution to the coalition fight. Without a robust air refueling capability, U.S. forces would be limited in their ability to provide global reach. The original mission of the current United States Air Force (USAF) air refueling aircraft, the KC-135 Stratotanker, was primarily to refuel strategic bomber aircraft while in flight, which enhances the ability of aircraft to provide sustained mission capability without landing to refuel. Through the course of the KC-135’s service life, structural and functional modifications have added capabilities to select aircraft. The result is a fleet of aircraft with multiple configurations and crews that may not be trained to accomplish every mission for which the aircraft is capable. This lack of standardized equipment and training throughout the fleet limits the ability for KC-135s to support, on a large scale, multi-role missions or exploit new tactics and procedures. The following are examples of capabilities that the current KC-135 fleet lacks:
Figure ES-1. Alternative Locations for the KC-46A ANG Beddown
• Multi-Point Refueling. Simultaneous refueling of two probe-equipped receiver aircraft from the same tanker is limited to 20 sets of wing-mounted refueling pods installed on the aircraft for the fleet of tankers.

• Boom/Probe and Drogue Refueling. With the exception of the refueling pod equipped aircraft, the KC-135 fleet does not have capability to perform boom and probe/drogue refueling on the same sortie\(^1\).

• Receiver capabilities. Only eight KC-135s have air refueling receptacles, which means that only eight of the KC-135 aircraft in the fleet can receive fuel in flight. This restricts force extension and limits persistence over the battlefield. It also results in inefficient use of valuable, but limited air refueling assets and limits flexibility within the maintenance schedule.

• Night Vision Imaging System (NVIS). The KC-135 fleet currently lacks a standard NVIS for tanker cockpits and boom operator positions. Additionally, exterior lighting is not currently NVIS-compatible, which prohibits air refueling in tactical NVIS (low vision) conditions. This limits the ability to perform covert air refueling operations at night, and degrades effectiveness of special operations support.

• Command, Control, Communications, and Computers (C4). KC-135s lack robust connectivity to command and control agencies. No secure tactical datalink exists and these aircraft have limited C4 connectivity to other combat, combat support, and mobility aircraft.

• Defensive Protection. KC-135s currently do not have any aircraft defensive systems.

The purpose of this action is to ensure that the National Guard Bureau (NGB) will have air refueling support for both conventional global strike and nuclear deterrence operations into the future. The purpose of the KC-46A is to support air superiority through air refueling of fighter, bomber, attack, special operations, Command and Control, Intelligence, Surveillance and Reconnaissance, and transport aircraft; and to support employment of combat units deploying to areas of operations. Finally, the KC-46A will also support the Command and Control core function as a communications “gateway” when equipped with a roll-on gateway system to provide connectivity between tactical network partners in theater.

The NGB requires a refueling aircraft that will be equipped with major technological improvements designed to enhance operations and increase mission effectiveness. The KC-46A is the USAF’s newest air refueling aircraft that meets this need. NGB requires a location to beddown the KC-46A aircraft in support of MOB 2. The base would support the beddown and

\(^1\) Probe and drogue refueling employs a flexible hose that trails from the tanker aircraft. The drogue is a fitting resembling a windsock, and is attached with a valve to a flexible hose.
training of crewmembers and personnel in the operation and maintenance of the KC-46A aircraft in an appropriate geographic location that can provide sufficient airfield, facilities, infrastructure, and airspace to support the KC-46A training and operations.

NARROWING PROCESS FOR ALTERNATIVE BASES

As previously described, the NGB is programmed to beddown one squadron of 12 Primary Aerospace Vehicles Authorized (PAA) KC-46A aircraft at one of five alternative locations. Identification and analysis of alternatives is one of the core elements of the environmental process under the National Environmental Policy Act (NEPA) and the USAF’s implementing regulations. The NGB may expressly eliminate alternatives from detailed analysis based on reasonable selection standards (32 Code of Federal Regulations [CFR] 989.8(c)). Based on extensive analysis by the USAF operations community, a siting study was conducted to determine the specific requirements for beddown of the KC-46A aircraft and to identify potential military installations where this beddown could occur. Following this study, the Secretary of the Air Force and the Chief of Staff of the Air Force approved selection criteria for the KC-46A beddown.

The approved criteria were used to screen the enterprise of 83 candidate installations to identify those installations’ capacity to successfully support the MOB 2 mission. The objective criteria included mission, capacity, environmental considerations, and cost.

The Secretary of the Air Force considered the objective screening results as well as qualitative operational factors in determining the alternative installations for the KC-46A MOB 2 mission. These military judgment factors included:

- Plans and Guidance
- Global and Regional Coverage
- Combatant Commander Support
- Total Force
- Beddown Timing
- Force Structure
- Training Requirements and Efficiencies
- Logistic Supportability
- Resources/Budgeting
The Strategic Basing Process described above resulted in the identification of five alternative bases for consideration.

- Forbes ANGS, Kansas
- JB MDL, New Jersey
- Pease ANGS, New Hampshire
- Pittsburgh ANGS, Pennsylvania
- Rickenbacker ANGS, Ohio

PROPOSED ACTION AND ALTERNATIVES

Overview of the Proposed Action

The USAF has a requirement to provide refueling aircraft that will be equipped with major technological improvements designed to enhance operations and increase mission effectiveness. The NGB proposes to beddown one squadron of 12 KC-46A aircraft at one of five alternative locations: Forbes ANGS, Kansas; JB MDL, New Jersey; Pease ANGS, New Hampshire; Pittsburgh ANGS, Pennsylvania; or Rickenbacker ANGS, Ohio. Additionally, one active duty associate unit would be integrated with ANG personnel and equipment, enabling joint training and execution of missions using ANG-assigned aircraft. Furthermore, the NGB would implement construction projects associated with the aircraft beddown at the selected installation. Concurrent with the beddown of the KC-46A, the existing KC-135 aircraft at the selected installation would either be relocated to another installation and/or retired out of the USAF inventory.

As a result of the Proposed Action, there would be a change to the type of aircraft based at the selected installation; a change to the mix of aircraft using the associated airspace; changes to staffing and manpower at the selected location; changes to the number of airfield operations; as well as minor required construction, building renovation, and facility demolition. There would be no new or modified airspace required to support this action. The proposed beddown is estimated to begin in Fiscal Year (FY) 2018 for the NGB, and construction is estimated to begin FY 2015. Although proposed construction is necessary for the long-term viability of the beddown, aircraft operations with the KC-46A could begin prior to implementation of the construction. Table ES-1 summarizes the major components of each alternative.
Table ES-1. Summary of Alternatives (Current/Proposed)

<table>
<thead>
<tr>
<th>Refueler Aircraft Type</th>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Refueler Aircraft (PAA)</td>
<td>12 / 12</td>
<td>8 / 12</td>
<td>8 / 12</td>
<td>16 / 12</td>
<td>18 / 12</td>
<td>Same as current</td>
</tr>
<tr>
<td>ARW Refueler Flying Hours</td>
<td>4,868 / 8,040</td>
<td>3,687 / 8,040</td>
<td>6,219 / 8,040</td>
<td>6,016 / 8,040</td>
<td>7,215 / 8,040</td>
<td>Same as current</td>
</tr>
<tr>
<td>Annual Sorties</td>
<td>1,478 / 2,010</td>
<td>1,112 / 2,010</td>
<td>1,382 / 2,010</td>
<td>1,569 / 2,010</td>
<td>2,014 / 2,010</td>
<td>Same as current</td>
</tr>
<tr>
<td>% Home-Station Operations</td>
<td>64% / 64%</td>
<td>75% / 75%</td>
<td>44% / 44%</td>
<td>59% / 59%</td>
<td>64% / 64%</td>
<td>Same as current</td>
</tr>
<tr>
<td>Home-Station Sorties</td>
<td>946 / 1,286</td>
<td>834 / 1,508</td>
<td>614 / 884</td>
<td>926 / 1,186</td>
<td>1,289 / 1,286</td>
<td>Same as current</td>
</tr>
<tr>
<td>Annual Airfield Operations Home-Station -- ANG</td>
<td>10,452 / 14,562</td>
<td>8,340 / 17,608</td>
<td>6,140 / 8,840</td>
<td>6,943 / 9,226</td>
<td>6,445 / 6,857</td>
<td>Same as current</td>
</tr>
<tr>
<td>Total Actual Airfield Operations (including ANG) based on 2012 FAA/Tower reports</td>
<td>24,630 / 28,740</td>
<td>62,686 / 71,875</td>
<td>37,410 / 40,110</td>
<td>139,217 / 141,500</td>
<td>39,436 / 39,848</td>
<td>Same as current</td>
</tr>
<tr>
<td>Total FAR Part 150 (Baseline 2006/2007) Approved Operations (including ANG)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>321,436 / 317,602</td>
<td>67,160 / 60,877</td>
<td>Same as current</td>
</tr>
<tr>
<td>Construction -- new</td>
<td>Hangar modifications; new fuel hydrants; new simulator building; ramp/taxiway modifications</td>
<td>Hangar modifications; building additions; new fuel hydrants; ramp/taxiway modifications</td>
<td>Hangar modifications; new fuel hydrants; ramp/taxiway modifications</td>
<td>Hangar modifications; new fuel hydrants; ramp/taxiway modifications</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Construction -- renovations</td>
<td>Internal building renovations</td>
<td>Internal hangar renovations</td>
<td>Internal building renovations</td>
<td>Internal hangar renovations</td>
<td>Internal hangar renovations</td>
<td>None</td>
</tr>
<tr>
<td>Proposed Personnel Change (ANG and active duty)</td>
<td>+194</td>
<td>+287</td>
<td>+171</td>
<td>+59</td>
<td>+197</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes: 1. 2006 Part 150 Study data 2. 2007 Part 150 Study data ANGS = Air National Guard Station; JB MDL = Joint Base McGuire-Dix-Lakehurst; PAA = Primary Aerospace Vehicles Authorized; ARW = Air Refueling Wing; ANG = Air National Guard; FAR = Federal Aviation Regulations

Requirements of the Proposed Action

Aircraft Beddown/Transition

The KC-46A is planned to eventually replace existing USAF KC-135s. The NGB proposes to begin this process by replacing the aircraft at the selected location with 12 KC-46A operational aircraft (regardless of how many aircraft are currently at the alternative location). It is estimated that the 12 KC-46A aircraft would be beddown at the selected location beginning in FY 2018. The existing KC-135 aircraft at the selected location would either be relocated to another installation and/or would be retired out of the USAF inventory. The relocation/retirement actions would be evaluated under NEPA, as appropriate.

Facility and Infrastructure Requirements

While basing the KC-46A would require certain facilities and infrastructure to support necessary training and operational requirements, utilizing existing infrastructure to the maximum extent feasible comprises a fundamental basis of the Proposed Action. Where existing facilities and infrastructure cannot meet the needs of the Proposed Action, the NGB would implement construction of necessary new and/or renovated infrastructure and facilities at the selected alternative installation. The type of construction needed would vary by installation (Table ES-1).

Personnel Changes

The KC-46A would provide substantial expanded capabilities with only minor overall changes in military personnel; however, the mission would require basing sufficient and appropriate personnel to operate and maintain the Wing and to provide necessary support services. In addition, there would be an active duty associate unit based with the selected MOB 2 alternative installation. The change in number of personnel would vary by installation (Table ES-1).

KC-46A Operations

Under the Proposed Action, the 12 PAA KC-46A aircraft would fly 670 hours per aircraft, per year, for a total of 8,040 hours annually. Because this is a new aircraft flying with a combination of ANG and associate active duty personnel, a uniform distribution of flying hours was assumed for each alternative. This is considered a conservative estimate and any deviation from this would likely be fewer hours flown. Thus, with an estimated average sortie duration (ASD) of 4.0 hours, the KC-46A aircraft would fly 2,010 sorties annually. The 2,010 annual sorties would be flown at a combination of the unit’s home-station as well as off-station airfields, where they are able to train in a different setting than their home-station. Each of the five alternative installations currently fly a different number of airfield operations per sortie, as well as a different percent of home-station/off-station operations. In developing the analysis for each
installation, the installations’ unique ratio of airfield operations was assumed to remain the same into the future, as were the percent of home-station/off-station operations. This resulted in a range of home-station airfield operations across the five action alternatives. Further, it is recognized that there is a recent trend toward an increasing use of flight simulators, which can reduce the number of hours flown. However, without a clear definition in the use of the simulator as opposed to actual airfield operations, the full 8,040 flying hour program has been analyzed for each action alternative. No changes are proposed to airfield departure/arrival patterns and tracks, flight profiles, and use of runways from those that are currently performed with the KC-135 at each MOB 2 location. Any existing noise abatement procedures would continue to be followed.

Under the Proposed Action, there would be some increases in the frequency of use and number of operations conducted in the airspace currently used by the KC-135, depending on the increase of sorties over the current baseline at each alternative installation. The KC-46A would use the same airspace currently used by the selected installation, with no new airspace required to support the mission. The types of airspace used would consist of published air refueling tracks, Anchors, Warning Areas, and Military Operations Areas (MOAs). These are found in the Department of Defense (DoD) AP/1B, Flight Information Publication, and Area Planning documents. All air refueling is accomplished above 10,000 feet mean sea level (MSL), although some MOAs are approved for lower altitude flight for training not involving air refueling. While a large percentage of air refueling occurs close to the home-station airfield, KC-135 aircraft refuel in other refueling tracks and Warning Areas located throughout the U.S. Under the Proposed Action, the KC-46A would use the airspace in the same manner as the KC-135 aircraft. It is anticipated that the KC-46A would operate in existing airspace and conduct flight operations similar to the existing KC-135 aircraft; therefore, detailed analysis of airspace has not been conducted in this EIS.

Identification of the Preferred Alternative

The USAF has identified Pease ANGS as the preferred alternative for the MOB 2 KC-46A beddown. The USAF selected Pease ANGS based on an operational analysis, results of site surveys, and military judgment factors.

No Action Alternative

The Council on Environmental Quality (CEQ) regulation 40 CFR § 1502.14(d) specifically requires analysis of the “No Action” alternative in all NEPA documents. Under the No Action Alternative, the proposed aircraft beddown would not occur, and the NGB would not implement the components described above under the five Action Alternatives. There would be no change in based aircraft; use of the airfield at the proposed locations; or use of Special Use Airspace
(SUA), construction, or personnel assigned to the KC-46A aircraft squadron. Under the No Action Alternative, the NGB would continue to conduct their current mission using the existing KC-135 aircraft with multiple configurations and crews that are not trained to accomplish every mission. This lack of standardized equipment and training throughout the fleet would continue to negatively impact the ability for KC-135 aircrews to support, on a large scale, multi-role missions or exploit new tactics and procedures. The continued use of the KC-135 aircraft would not meet the identified needs of the NGB or the USAF; however, this alternative is carried forward for analysis in this EIS per CEQ regulations, and as a baseline from which to compare the potential impacts of the Proposed Action and alternatives.

Environmental Consequences

NEPA requires focused analysis on environmental resources and impact topics potentially affected by the Proposed Action or its alternatives. Based on the potential for the Proposed Action to affect the environment at and surrounding the five alternative locations, as well as public and agency concerns, several specific environmental resources were evaluated in detail in this EIS. The potential consequences of each alternative on these resources were evaluated and are summarized in Table ES-2.
Table ES-2. Summary of Impacts

<table>
<thead>
<tr>
<th></th>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise</td>
<td>Airfield operations would increase by 4,110 (39 percent increase in 190 ARW operations, 17 percent increase in total airfield operations). Acreage within the 65 dB DNL (and greater) noise contour would decrease by 41 acres. Impacts from noise would be negligible.</td>
<td>Airfield operations would increase by 9,268 (111 percent increase in 108 WG operations, 15 percent increase in total airfield operations). Acreage within the 65 dB DNL (and greater) noise contour would increase by 1,831 acres. Impacts from noise would be negligible.</td>
<td>Airfield operations would increase by 2,700 (44 percent increase in 157 ARW operations, 7 percent increase in total airfield operations). Acreage within the 65 dB DNL (and greater) noise contour would increase by 135 acres. Impacts from noise would be negligible.</td>
<td>Airfield operations would decrease by 3,834 (29 percent decrease from the currently published baseline FAR Part 150 Noise Compatibility Program [2006]; and a 2 percent increase in actual 2012 airfield operations). Acreage within the 65 dB DNL (and greater) noise contour would decrease by 79 acres. Impacts from noise would be negligible.</td>
<td>Airfield operations would decrease by 6,283 (48 percent decrease from the currently published baseline FAR Part 150 Noise Compatibility Program [2007]; and a 1 percent increase in actual 2012 airfield operations). Acreage within the 65 dB DNL (and greater) noise contour would decrease by 99 acres. Impacts from noise would be negligible.</td>
<td>Each of the five installations would retain the KC-135 aircraft and would continue to fly the aircraft in the same manner and with approximately the same number of airfield operations as they currently do. The noise environment at each of the five alternative airfields would continue to be managed through their existing AICUZ or FAR Part 150 airfield compatibility programs. There would be no additional Noise impacts at any of the alternative installations under the No Action Alternative.</td>
</tr>
</tbody>
</table>

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS

ES-10

Executive Summary
Table ES-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forbes ANGS is located in an attainment area for all criteria pollutants. While there would be increases in operational criteria pollutant emissions, they would be below the PSD threshold, and would not be significant. Impacts from construction emissions and operational HAP emissions would be negligible.</td>
<td>The 108 WG installation is in a nonattainment area for O3 (marginal nonattainment) and maintenance area for PM2.5 and CO, and is therefore subject to de minimis thresholds. Impacts from proposed operational emissions would be less than significant for all criteria pollutants. Impacts from construction emissions and operational HAP emissions are negligible.</td>
<td>The Pease ANGS installation is in a maintenance area for O3, and is therefore subject to de minimis thresholds. Impacts from proposed operational emissions would be less than significant for all criteria pollutants. Impacts from construction emissions and operational HAP emissions are negligible.</td>
<td>The Pittsburgh ANGS is located within a non-attainment area for PM2.5, a moderate nonattainment area for the 1997 8-hour O3 standard, and is classified as a marginal nonattainment area for the 2008 8-hour O3 standard, according to 40 CFR 81.339. The Pittsburgh ANGS is therefore subject to de minimis thresholds. Impacts from proposed operational emissions would be less than significant for all criteria pollutants. Impacts from construction emissions and operational HAP emissions are negligible.</td>
<td>The Rickenbacker ANGS is located in a nonattainment area for the O3 and PM2.5 NAAQS. While there are increases in operational criteria pollutant emissions, they are below the PSD/de minimis thresholds for all pollutants and are not significant. Impacts from construction emissions and operational HAP emissions are negligible.</td>
<td>Air Quality at each alternative airfield would remain as it currently is. Each of the five installations would retain the KC-135 aircraft and would continue to fly the aircraft in the same manner and with approximately the same number of airfield operations as they currently do. Emissions at each of the alternative installations would continue to be in compliance with their respective SIPs. There would be no additional impacts to Air Quality at each alternative installation under the No Action Alternative.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table ES-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>There would be a 39 percent increase in actual 190 ARW airfield operations (17 percent increase in total airfield operations) at Forbes Field Airport with commensurate increase in mishap and BASH potential.</td>
<td>There would be a 111 percent increase in actual 108 WG airfield operations (15 percent increase in total airfield operations) at JB MDL with a commensurate increase in mishap and BASH potential.</td>
<td>There would be a 44 percent increase in actual 157 ARW airfield operations (7 percent increase in total airfield operations) at Portsmouth IAP with a commensurate increase in mishap and BASH potential.</td>
<td>There would be a 33 percent increase in actual 2012 171 ARW airfield operations (2 percent increase in total airfield operations) at Pittsburgh IAP with a commensurate increase in mishap and BASH potential.</td>
<td>There would be a 6 percent increase over the actual 2012 121 ARW airfield operations (1 percent increase in total airfield operations) at Rickenbacker IAP with a commensurate increase in mishap and BASH potential.</td>
<td>Both ground and flight safety at each alternative airfield would remain as they currently are. Each of the five installations would retain the KC-135 aircraft and would continue to fly the aircraft in the same manner and with approximately the same number of airfield operations as they currently do. There would be no additional impacts to Safety under the No Action Alternative.</td>
</tr>
</tbody>
</table>

Construction activities would involve no unusual or extraordinary techniques. During construction, standard construction safety procedures would be employed, and strict adherence to all applicable standard industrial safety requirements and procedures would further minimize the relatively low risk associated with these construction activities. Impacts to safety would be expected to be negligible.

Soils and Water

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>There would be approximately 5.9 acres of temporary soil disturbance and no new impervious surface as a result of the proposed construction.</td>
<td>There would be approximately 4.7 acres of temporary soil disturbance and 2.4 acres of new impervious surface as a result of the proposed construction.</td>
<td>There would be approximately 3.0 acres of temporary soil disturbance and 0.5 acres of new impervious surface as a result of the proposed construction.</td>
<td>There would be approximately 4.3 acres of temporary soil disturbance and 2.0 acres of new impervious surface as a result of the proposed construction.</td>
<td>There would be approximately 8.5 acres of temporary soil disturbance and 0.3 acres of new impervious surface as a result of the proposed construction.</td>
<td>Soils and Water Resources at each alternative airfield would remain as they currently are. There would be no additional impacts to Soils and Water Resources as a result of the No Action alternative.</td>
</tr>
</tbody>
</table>

To minimize potential impacts associated with erosion, runoff, and sedimentation, standard construction practices would be implemented. In addition, as the construction is for national defense purposes and the surrounding land is already in urban development, the Farmland Protection Policy Act does not apply to this alternative. Therefore, impacts to soil and water resources would be negligible.

To minimize potential impacts associated with erosion, runoff, and sedimentation, standard construction practices would be implemented. Proposed construction would not impact prime farmlands; therefore, the Farmland Protection Policy Act does not apply to this alternative. As a result, impacts to soil and water resources would be negligible.
Table ES-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No impacts to vegetation and wetlands.</td>
<td>Impacts to vegetation would be minor.</td>
<td>There would be no change to Biological Resources under this alternative.</td>
</tr>
<tr>
<td>Impacts to wildlife species from operational noise would be imperceptibly beneficial due to the slight decrease in noise.</td>
<td>No impacts to wetlands.</td>
<td>No impacts to wetlands.</td>
<td>No impacts to wetlands.</td>
<td>No impacts to wetlands.</td>
<td>There would be no additional impacts to Biological Resources as a result of the No Action Alternative.</td>
</tr>
<tr>
<td>39 percent increase in 190 ARW (17 percent increase in total) airfield operations may result in a slight increased opportunity for bird/wildlife aircraft strikes to occur, including those with migratory birds.</td>
<td>Impacts to wildlife species from operational noise would be expected to be minor due to the slight increase in noise and the temporary nature of construction.</td>
<td>Impacts to wildlife species from operational noise would be expected to be minor due to the slight increase in noise and the temporary nature of construction.</td>
<td>Impacts to wildlife species from operational noise would be minor due to the slight increase in noise and the temporary nature of construction.</td>
<td>Impacts to wildlife species from operational noise would be minor due to the 33 percent increase in 171 ARW airfield operations. This small increase in the airfield operations may also result in a slight increased opportunity for bird/wildlife aircraft strikes to occur, including those with migratory birds.</td>
<td></td>
</tr>
<tr>
<td>111 percent increase in 108 WG (15 percent increase in total) airfield operations may result in a slight increased opportunity for bird/wildlife aircraft strikes to occur, including those with migratory birds.</td>
<td>No federally listed species or critical habitat is known to occur on McGuire Field. Six state listed species are known to occur on McGuire Field. There would be no impacts to federally listed and impacts to state listed species would be minor.</td>
<td>No federally listed species or critical habitat is known to occur on McGuire Field. Six state listed species are known to occur on McGuire Field. There would be no impacts to federally listed and impacts to state listed species would be minor.</td>
<td>No federally listed species or critical habitat is known to occur on Pittsburgh IAP; therefore, there would be no impacts to federally listed species. There would be no impacts to state listed species.</td>
<td>No federally listed species or critical habitat is known to occur on Rickenbacker IAP; therefore, there would be no impacts to federally listed species.</td>
<td></td>
</tr>
<tr>
<td>No special status species or critical habitat is known to occur on Forbes Field Airport; therefore, there would be no impacts to these species.</td>
<td>No special status species or critical habitat is known to occur on McGuire Field. Six state listed species are known to occur on McGuire Field. There would be no impacts to federally listed and impacts to state listed species would be minor.</td>
<td>No special status species or critical habitat is known to occur on McGuire Field. Six state listed species are known to occur on McGuire Field. There would be no impacts to federally listed and impacts to state listed species would be minor.</td>
<td>No special status species or critical habitat is known to occur on Pittsburgh IAP; therefore, there would be no impacts to federally listed species. There would be no impacts to state listed species.</td>
<td>No special status species or critical habitat is known to occur on Rickenbacker IAP; therefore, there would be no impacts to federally listed species.</td>
<td></td>
</tr>
</tbody>
</table>
Additional efforts were made to contact non-responsive tribes without success. While the NGB and the USAF values its relationship with all tribes and will continue to consult on other planning efforts, the Kansas SHPO has concurred with these findings. The installation has been intensively surveyed and no known traditional resources are known to occur. Two responses have been received from the Kaw Nation and the Wichita and Affiliated Tribes stating that they have no objection to the Proposed Action. Additional efforts were made to contact non-responsive tribes without success. While the NGB and the USAF values its relationship with all tribes and will continue to consult on other planning efforts, the Kansas SHPO has concurred with these findings. The installation has been intensively surveyed and no known traditional resources are known to occur. Two responses have been received from the Kaw Nation and the Wichita and Affiliated Tribes stating that they have no objection to the Proposed Action.

Table ES-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Cultural Resources</th>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction activities associated with this alternative would be limited to the developed areas of the installation, primarily in the areas of the aircraft hangars and airfield pavements. Minor interior modifications to Building 679 would not affect the NRHP-eligibility of the building. The Kansas SHPO has concurred with these findings. The installation has been intensively surveyed and no known traditional resources are known to occur. Two responses have been received from the Kaw Nation and the Wichita and Affiliated Tribes stating that they have no objection to the Proposed Action. Additional efforts were made to contact non-responsive tribes without success. While the NGB and the USAF values its relationship with all tribes and will continue to consult on other planning efforts</td>
<td>Construction activities associated with this alternative would be primarily limited to the developed areas of the installation in the areas of the aircraft hangars and airfield pavements. A small amount of construction (0.15 acre) would occur in forested area near this developed area. Based on previous archaeological surveys at McGuire Field, the area of proposed construction does not contain any known NRHP-eligible sites or traditional resources. Construction activities associated with this alternative would be limited to the developed areas of the installation, primarily in the areas of the aircraft hangars and airfield pavements. The New Hampshire SHPO has concurred with these findings. The Penobscot Indian Nation is the only federally-recognized tribal entity affiliated with Pease ANGS, and has responded stating that they have no issues with the Proposed Action. No impacts to cultural impacts would be expected to occur.</td>
<td>Based on previous archaeological surveys on the installation, the area of proposed construction does not contain any known NRHP-eligible sites or traditional resources. Construction activities associated with this alternative would be limited to the developed areas of the installation, primarily in the areas of the aircraft hangars and airfield pavements. The New Hampshire SHPO has concurred with these findings. The Penobscot Indian Nation is the only federally-recognized tribal entity affiliated with Pease ANGS, and has responded stating that they have no issues with the Proposed Action. No impacts to cultural impacts would be expected to occur.</td>
<td>The installation contains no known traditional resources. Given the extensive development on the installation, it is unlikely that there are traditional resources located at the Pittsburgh ANGS. Construction activities associated with this alternative are limited to the developed areas of the installation, primarily in the areas of the aircraft hangars and airfield pavements. The installation has been intensively surveyed for cultural resources and no known traditional resources are known to occur. Correspondence has been received from all tribes consulted including the Seneca Nation of Indians, the Cayuga Nation of New York, the Tonawanda Band of Seneca, Tuscarora Nation of New York, and the Onondaga Nation of New York stating that they have no objection to the Proposed Action</td>
<td>Construction activities at Rickenbacker ANGS would be limited to the developed areas of the installation, primarily in the areas of the aircraft hangars and airfield pavements. The installation has been intensively surveyed for cultural resources and no known traditional resources are known to occur. Correspondence has been received from all tribes consulted including the Seneca Nation of Indians, the Cayuga Nation of New York, the Tonawanda Band of Seneca, Tuscarora Nation of New York, and the Onondaga Nation of New York stating that they have no objection to the Proposed Action</td>
<td>Under the No Action Alternative, Cultural Resources at each alternative installation would remain as they currently are. None of the proposed facility construction/renovations would occur at any of the installations, and thus, there would be no potential impacts to facilities that are eligible for listing on the NRHP. There would be no surface disturbance from construction activities, and thus no potential to impact unknown archaeological resources. There would be no additional impacts to Cultural Resources as a result of the No Action Alternative.</td>
<td></td>
</tr>
</tbody>
</table>

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS

ES-14

Executive Summary
or matters of known or potential interest to tribes, Section 106 consultation on the KC-46A MOB 2 proposed alternative at Forbes ANGS is now complete.

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>affected under the proposed action.</td>
<td></td>
<td></td>
<td>adverse effects to these buildings.</td>
<td>Correspondence has been received from the Peoria Tribe of Indians, the Pokagon Band of Potawatomi Indians, the Turtle Mountain Band of Chippewa Indians of North Dakota, the Delaware Nation, and the Shawnee Tribe who indicated that they had no objection to the proposed project. Additional efforts were made to contact non-responsive tribes without success. While the NGB and the USAF values its relationship with all tribes and will continue to consult on other planning efforts or matters of known or potential interest to tribes, Section 106 consultation on the KC-46A MOB 2 proposed alternative at Rickenbacker ANGS is now complete.</td>
</tr>
</tbody>
</table>

Land Use

| Total annual airfield operations would increase by 4,110 (17 percent). | Total annual airfield operations would increase by 9,268 (15 percent). | Total annual airfield operations would increase by 2,700 (44 percent). | Airfield operations would decrease by 3,834 (29 percent decrease) from the currently | The number of airfield operations would decrease by 6,283 (48 percent decrease) from the | Land Use at each alternative airfield would remain as it currently is. Each of the five installations would retain the |
Table ES-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acreage within the 65 dB DNL (and greater) noise contour would decrease by 41 acres (55 acres off airport-controlled property). Current land use and zoning designations would not change due to the basing of the KC-46A. This alternative would be compatible with current land use and zoning designations and would result in imperceptibly beneficial impacts by reducing the off-airport areas currently exposed to a DNL between 65 dB and 70 dB. Airport Hazard Areas would not be affected.</td>
<td>Acreage within the 65 dB DNL (and greater) noise contour off DoD-controlled property would increase by 419 acres. An additional 8 acres of residential use areas would be exposed to greater than 65 dB DNL. Current land use and zoning designations would not change due to the basing of the KC-46A. This alternative would result in minor adverse impacts due to an increase in off-airport areas (including residential areas) exposed to a DNL between 65 dB and 75 dB. Airport Hazard Areas would not be affected.</td>
<td>Acreage within the 65 dB DNL (and greater) noise contour would increase by 135 acres. Of this increase in acreage, 4 acres would be off airport-controlled property. Current land use and zoning designations would not change due to the basing of the KC-46A. This alternative would result in negligible impacts due to an increase in off-airport areas exposed to a DNL above 65 dB. Airport Hazard Areas would not be affected.</td>
<td>published FAR Part 150 Noise Compatibility Program (2006), and the acreage within the 65 dB DNL (and greater) noise contour would decrease by 79 acres. There would be a decrease of approximately 23 acres within the 65 dB DNL noise contour that are off airport-controlled property. Current land use and zoning designations would not change due to the basing of the KC-46A. This alternative would result in negligible impacts in off-airport areas exposed to a DNL above 65 dB. Airport Hazard Areas would not be affected.</td>
<td>currently published FAR Part 150 Noise Compatibility Program (2007), and the acreage within the 65 dB DNL (and greater) noise contour would decrease by 99 acres. Decrease of 72 acres within the 65 dB DNL noise contour that are off airport-controlled property, resulting in 345 acres off airport-controlled property that lie within the 65 dB contour. Current land use and zoning designations would not change due to the basing of the KC-46A. This alternative would result in negligible impacts in off-airport areas exposed to a DNL above 65 dB. Airport Hazard Areas would not be affected.</td>
<td>KC-135 aircraft and would continue to fly the aircraft in the same manner and with approximately the same number of airfield operations as they currently do. There would be no additional impacts to Land Use under the No Action Alternative at any of the alternative locations.</td>
</tr>
</tbody>
</table>
Table ES-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure and Transportation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impacts from this alternative would not be expected since there have been no deficiencies identified with the existing systems, and it is expected that the existing infrastructure is generally adequate to serve the facilities and increased personnel proposed under this alternative. Impacts to infrastructure resulting from construction would be negligible since any interruption of utility services or increased demand on infrastructure would be temporary and infrequent. Impacts to infrastructure would be negligible.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Infrastructure and Transportation at each alternative installation would remain as they currently are. There would be no change to the based personnel at any of the alternative locations. There would be no increase in use of various utilities or roadway systems under this alternative. There would be no additional impacts under the No Action Alternative.</td>
</tr>
</tbody>
</table>
Table ES-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous Materials and Waste</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>There would be no expected impact from ERP sites, as the ERP site that overlaps proposed construction is closed. However, if contaminated media were encountered during the course of site preparation or site development, work would cease until 190 ARW Program Managers establish an appropriate course of action for the construction project to ensure that federal and state agency notification requirements are met. Impacts relative to hazardous materials and wastes would be negligible.</td>
<td>One of the ERP Sites, SS-39, overlaps with a portion of the existing fuel hydrants that would be capped, as well as the proposed addition to Hangar 3336. Remedial investigation is on-going with this site. It is recommended that a vapor intrusion analysis/testing is completed prior to construction to investigate any potential concern. If testing indicates a vapor intrusion concern, the installation would implement practices in accordance with site-specific vapor mitigation design considerations. If contaminated media were encountered during the course of site preparation or site development, work would cease until 108 WG Program Managers establish an appropriate course of action for the construction project to ensure that federal and state agency notification requirements are met. Impacts relative to hazardous materials and wastes would be negligible.</td>
<td>There would be no expected impact from ERP sites. Impacts relative to hazardous materials and wastes would be negligible.</td>
<td>There would be no expected impact from ERP sites, as the ERP site that overlaps proposed construction is closed. However, if contaminated media were encountered during the course of site preparation or site development, work would cease until 171 ARW Program Managers establish an appropriate course of action for the construction project to ensure that federal and state agency notification requirements are met. Impacts relative to hazardous materials and wastes would be negligible.</td>
<td>Hazardous Materials and Wastes at each alternative installation would remain as described in the baseline section for each alternative location. The benefit of eliminating ozone depleting substances with the KC-46A would not be realized. The throughput and management of hazardous materials and wastes would not change from baseline conditions. There would be no additional impacts to Hazardous Materials and Wastes under the No Action Alternative.</td>
<td></td>
</tr>
</tbody>
</table>

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS

ES-18
Table ES-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>There would not be an increased risk of hazardous waste releases or exposure from this alternative. The types of hazardous materials needed for maintenance and operation of the KC-46A would be expected to remain similar to those currently used for maintenance and operation of the KC-135 fleet. Any LBP or ACM that may be found in buildings that are scheduled for construction activities would be managed per applicable USAF regulations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Socioeconomics

Impacts to socioeconomics resulting from construction would be beneficial and negligible resulting from construction payrolls and materials purchased. In addition, impacts from proposed operations would be beneficial and minor due to the proposed increase in personnel.

Socioeconomics at each alternative installation would remain as described in the baseline section for each alternative. The minor economic benefit of additional based personnel and construction activity would not occur at any of the alternative installations. There would be no additional impacts to Socioeconomics under the No Action Alternative.
Table ES-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Environmental Justice and the Protection of Children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forbes ANGS</td>
</tr>
<tr>
<td>There would be no residential populations, including no minority or low-income populations, and no additional schools located within the vicinity of Forbes Field Airport exposed to a DNL of 65 dB or above.</td>
</tr>
<tr>
<td>There would be no disproportionate impacts to minority or low-income populations. There would be no special health or safety risks to children.</td>
</tr>
</tbody>
</table>

Notes: 190 ARW = 190th Air Refueling Wing; dB = decibel; DNL = Day-Night Average Sound Level; DoD = Department of Defense; 108 WG = 108th Wing; 157 ARW = 157th Air Refueling Wing; FAR = Federal Aviation Regulations; AICUZ = Air Installation Compatible Use Zone; ANGS = Air National Guard Station; PSD = Prevention of Significant Deterioration; HAP = hazardous air pollutant; O₃ = ozone; PM₂.₅ = particulate matter less than or equal to 2.5 microns in diameter; CO = carbon monoxide; NOₓ = oxides of nitrogen; tpy = tons per year; CFR = Code of Federal Regulations; SIP = State Implementation Plan; BASH = Bird/Wildlife Aircraft Strike Hazard; JB MDL = Joint Base McGuire-Dix-Lakehurst; IAP = International Airport; 171 ARW = 171st Air Refueling Wing; 121 ARW = 121st Air Refueling Wing; NRHP = National Register of Historic Places; SHPO = State Historic Preservation Office; ERP = Environmental Restoration Program; LBP = lead-based paint; ACM = asbestos-containing material; USAF = United States Air Force.
CHAPTER 1
PURPOSE AND NEED FOR THE PROPOSED ACTION

1.1 INTRODUCTION

The United States Air Force (USAF) plans to replace existing KC-135s with the KC-46A, which will be a new aircraft to the USAF’s fleet. As such, the USAF plans to identify locations for the beddown of a formal training unit (FTU) and the first main operating base (MOB 1), which will both be led by active duty units. The USAF will also beddown the KC-46A at the Second Main Operating Base (MOB 2), which will be led by an Air National Guard (ANG) unit. The FTU alternative installations are Altus Air Force Base (AFB), Oklahoma and McConnell AFB, Kansas. The MOB 1 alternative installations include both Altus and McConnell AFBs, in addition to Fairchild AFB, Washington; and Grand Forks AFB, North Dakota. This particular document will analyze the potential environmental impacts associated with the MOB 2 beddown only, and will further reference the proposed FTU and MOB 1 beddowns only as necessary in the context of the proposed MOB 2 beddown. A separate Environmental Impact Statement (EIS) is currently being prepared for the FTU and MOB 1 beddowns.

The Secretary of the Air Force proposes to beddown KC-46A aircraft for MOB 2 at one of five alternative locations. The goal of KC-46A basing and fielding is to continue to provide optimum Combatant Commander support and to efficiently meet regional and global receiver demands while replacing existing KC-135s. This action would involve the beddown of one KC-46A squadron consisting of 12 Primary Aerospace Vehicles Authorized (PAA), and establishing a KC-46A Main Operating Base (MOB). Five alternative ANG locations (Figure 1.1-1) were selected for this beddown based on criteria identified in Section 2.2:

- Forbes Air National Guard Station (ANGS), Kansas;
- Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey;
- Pease ANGS, New Hampshire;
- Pittsburgh ANGS, Pennsylvania; and,
- Rickenbacker ANGS, Ohio.
Figure 1.1-1. Alternative Locations for the KC-46A ANG Beddown
Concurrent with the beddown of the 12 KC-46A, 12 existing KC-135 aircraft would be retired out of the USAF fleet. The existing KC-135 aircraft at the selected installation would either be relocated to another installation and/or retired out of the USAF inventory, depending on the age and maintenance status of each aircraft. Separate documentation would be prepared if the KC-135 aircraft are relocated to another installation. The beddown of the MOB 2 KC-46A would follow the Total Force Integration (TFI) concept that was enacted into law through the passage of the 2008 National Defense Authorization Act (NDAA), pairing two USAF component units (host and associate) together to operate as one. TFI supports USAF transformation by developing, promoting, and implementing new and creative organizational constructs and by advocating changes in personnel policy that enhance the integration of active, reserve, and civilian work forces. In support of TFI, an active duty associate unit would be integrated with ANG personnel and equipment under any of the action alternatives, enabling joint training and execution of missions using ANG-assigned aircraft. The ANG host unit would be assigned principal responsibility of the physical resources for mission accomplishment (aircraft, equipment, facilities) and the active duty associate unit would share those resources.

In accordance with the National Environmental Policy Act (NEPA) of 1969 (42 United States Code [USC] 4321-4347), Council on Environmental Quality (CEQ) Regulations for Implementing the Procedural Provisions of NEPA (40 Code of Federal Regulations [CFR] Parts 1500-1508), and Air Force Instruction (AFI) 32-7061 as promulgated at 32 CFR Part 989 et seq., Environmental Impact Analysis Process, the National Guard Bureau (NGB) has prepared this EIS, that considers the potential consequences to the human and natural environment that may result from implementation of this action.

1.2 PURPOSE AND NEED FOR THE PROPOSED ACTION

1.2.1 Purpose of Action

Air refueling is the backbone of the United States’ (U.S.) ability to project global reach and combat power. Air refueling aircraft, also known as “tankers,” are a joint asset, serving our sister services and U.S. allies who rely on the range and flexibility of tankers to strengthen their contribution to the coalition fight. Without a robust air refueling capability, U.S. forces would be limited in their ability to provide global reach. The original mission of the current USAF air refueling aircraft, the KC-135 Stratotanker, was primarily to refuel strategic bomber aircraft while in flight, which enhances the ability of aircraft to provide sustained mission capability without landing to refuel. Through the course of the KC-135’s service life, structural and functional modifications have added capabilities to select aircraft. The result is a fleet of aircraft with multiple configurations and crews that may not be trained to accomplish every mission for which the aircraft is capable. This lack of standardized equipment and training throughout the fleet limits the ability for KC-135s to support, on a large scale, multi-role missions or exploit
new tactics and procedures. The following are examples of capabilities that the current KC-135 fleet lacks.

- **Multi-Point Refueling.** Simultaneous refueling of two probe-equipped receiver aircraft from the same tanker is limited to 20 sets of wing-mounted refueling pods installed on the aircraft for the fleet of tankers.

- **Boom/Probe and Drogue Refueling.** With the exception of the refueling pod equipped aircraft, the KC-135 fleet does not have capability to perform boom and probe/drogue refueling on the same sortie\(^1\).

- **Receiver capabilities.** Only eight KC-135s have air refueling receptacles, which means that only eight of the KC-135 aircraft in the fleet can receive fuel in flight. This restricts force extension and limits persistence over the battlefield. It also results in inefficient use of valuable, but limited air refueling assets and limits flexibility within the maintenance schedule.

- **Night Vision Imaging System (NVIS).** The KC-135 fleet currently lacks a standard NVIS for tanker cockpits and boom operator positions. Additionally, exterior lighting is not currently NVIS-compatible, which prohibits air refueling in tactical NVIS (low vision) conditions. This limits the ability to perform covert air refueling operations at night, and degrades effectiveness of special operations support.

- **Command, Control, Communications, and Computers (C4).** KC-135s lack robust connectivity to command and control agencies. No secure tactical datalink exists and these aircraft have limited C4 connectivity to other combat, combat support, and mobility aircraft.

- **Defensive Protection.** KC-135s currently are not normally equipped with aircraft defensive systems, which limits aircraft from operating in anything other than a low-threat environment.

The purpose of this action is to ensure that the NGB will have air refueling support for both conventional global strike and nuclear deterrence operations into the future. The purpose of the KC-46A is to support air superiority through air refueling of fighter, bomber, attack, special operations, Command and Control, Intelligence, Surveillance and Reconnaissance, and transport aircraft; and to support employment of combat units deploying to areas of operations. Finally, the KC-46A will also support the Command and Control (C2) core function as a communications “gateway” when equipped with a roll-on gateway system to provide connectivity between tactical network partners in theater.

\(^1\) Probe and drogue refueling employs a flexible hose that trails from the tanker aircraft. The drogue is a fitting resembling a windsock, and is attached with a valve to a flexible hose.
1.2.2 Need for Action

In support of the USAF worldwide operations and as part of the TFI, the NGB requires a refueling aircraft that will be equipped with major technological improvements designed to enhance operations and increase mission effectiveness. The KC-46A is the USAF’s newest air refueling aircraft that meets this need. NGB requires a location to beddown the KC-46A aircraft in support of MOB 2. The base will support the beddown and training of crewmembers and personnel in the operation and maintenance of the KC-46A aircraft in an appropriate geographic location that can provide sufficient airfield, facilities, infrastructure, and airspace to support the KC-46A training and operations.

1.3 BACKGROUND OF THE KC-46A

1.3.1 Aircraft Characteristics

This section compares the aircraft characteristics of the KC-46A and the existing KC-135. Some key specifications of the KC-135 and the KC-46A are compared in Table 1.3-1

<table>
<thead>
<tr>
<th>Specification</th>
<th>KC-135</th>
<th>KC-46A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>136 feet, 3 inches</td>
<td>165 feet, 6 inches</td>
</tr>
<tr>
<td>Height</td>
<td>41 feet, 8 inches</td>
<td>52 feet, 10 inches</td>
</tr>
<tr>
<td>Wingspan</td>
<td>130 feet, 10 inches</td>
<td>156 feet, 1 inch</td>
</tr>
<tr>
<td>Power Plant</td>
<td>4 F108 CF-100</td>
<td>2 Pratt Whitney 4062</td>
</tr>
<tr>
<td>Takeoff Thrust</td>
<td>21,634 pounds per engine</td>
<td>62,000 pounds per engine</td>
</tr>
<tr>
<td>Speed</td>
<td>530 miles per hour (mph) at 30,000 feet</td>
<td>530 mph at 30,000 feet</td>
</tr>
<tr>
<td>Ceiling</td>
<td>50,000 feet</td>
<td>40,100 feet</td>
</tr>
<tr>
<td>Maximum Take-off Weight</td>
<td>322,500 pounds</td>
<td>415,000 pounds</td>
</tr>
<tr>
<td>Maximum Fuel Capacity</td>
<td>200,000 pounds</td>
<td>212,000 pounds</td>
</tr>
<tr>
<td>Pallets/Palletized Cargo Weight Capacity</td>
<td>6/36,000 pounds</td>
<td>18/65,000 pounds</td>
</tr>
<tr>
<td>Crew</td>
<td>3 crewmembers</td>
<td>3 crewmembers</td>
</tr>
<tr>
<td>Receiver Fuel Transfer</td>
<td>Very limited</td>
<td>Yes</td>
</tr>
<tr>
<td>Fuel Jettison</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Night Vision Imaging System</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Multi-point Refueling</td>
<td>Very limited</td>
<td>Yes</td>
</tr>
<tr>
<td>C2 Network</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Defensive Protection</td>
<td>Very limited</td>
<td>Yes</td>
</tr>
<tr>
<td>Aeromedical Evacuation</td>
<td>Limited</td>
<td>Yes</td>
</tr>
</tbody>
</table>
1.3.2 Aircraft Characteristics of the KC-135

The KC-135 Stratotanker was developed in 1954 as the USAF’s first jet-powered refueling tanker to replace the KC-97 Stratotanker and is derived from a commercial Boeing 367-80 commercial passenger plane. Between 1956 and 1966, 820 KC-135 aircraft of many different variations were built. Over the last 50 years, the KC-135 fleet has undergone substantial modifications to add capability. The KC-135 was originally developed to refuel strategic bombers. It was used in the Vietnam War and in all conflicts up to and including Operation Enduring Freedom in Afghanistan. For this EIS, all KC-135 models, including the current R model, are referred to as KC-135. Originally, all KC-135s were equipped with four Pratt & Whitney J-57-P-59W turbojet engines capable of producing approximately 13,000 pounds of thrust each. The current R models were upgraded to use the CFM56-2B1 (Military designation F108-CF-100) turbofan engines, which are capable of generating approximately 21,634 pounds of thrust per engine. The KC-135 has a maximum take-off weight of more than 322,500 pounds and the ability to off-load in excess of 150,000 pounds of fuel. In addition, the KC-135 is capable of transporting up to 36,000 pounds of palletized cargo and/or ambulatory patients during aeromedical evacuations. A cargo deck above the refueling system can hold a mixed load of passengers and cargo depending on the fuel storage configuration. The KC-135 pumps fuel through the flying boom, but some aircraft have been specially fitted with wing pods to allow a multi-point aerial refueling drogue system. As noted previously, the aircraft is limited by not possessing the capability for receiver fuel transfer, NVIS, defensive protection, and C2 capabilities.
1.3.3 Aircraft Characteristics of the KC-46A

The KC-46A is derived from a commercial Boeing 767-200ER series aircraft and will be powered by two Pratt & Whitney 4062 engines with thrust reversers removed. Each engine will have the capability to provide approximately 62,000 pounds of thrust. The aircraft will be Federal Aviation Administration (FAA)-certified for worldwide operations. The KC-46A is a fully provisioned version of the Boeing 767-2C, FAA Amended Type Certified aircraft. It is required to meet the FAA Part 36 Stage 4 (most restrictive commercial aircraft noise level standard) and the International Congress of Aeronautical Organizations, Committee of Environmental Protection 6 air contaminant emission limits. Three crewmembers, (pilot, copilot, and boom operator) will operate the aircraft with permanent seating for an additional 12 aircrew members. With new technology and a maximum fuel capacity expected to be over 212,000 pounds, the KC-46A is capable of accomplishing all current Air Mobility Command (AMC) refueling missions.

The KC-46A will be able to refuel any certified fixed-wing receiver-capable aircraft on any mission both day and night. The aircraft will be equipped with a modernized KC-10 refueling boom integrated with proven fly-by-wire control system and will have the ability to deliver fuel through a centerline hose and drogue system, which adds additional mission capability independent of the boom system.

This aircraft will be capable of accomplishing multi-role missions. By trading fuel for cargo, it will be able to carry up to 18 standard cargo pallets with a total palletized cargo payload of up to 65,000 pounds. With a far greater cargo area contour than the KC-135, KC-46A centerline pallet positions 1 through 8 can be built to carry full height (96-inch-high) cargo without the need for contouring, compared to KC-135 pallets, which are typically restricted to 65-inch-high cargo and must be contoured on the right-hand side starting at 50 inches off the top pallet surface. In normal operations, the KC-46A can be configured to carry 58 passengers and will be capable of providing urgent Aeromedical Evacuation, transporting up to 50 medical patients (24 litters/26 ambulatory).

Additional features include a flush-mounted air refueling receptacle, wing air refueling pods capability, boom air refueling camera and computer control systems, defensive and communication systems, NVIS/covert lighting, and military radio/navigation receivers. The boom operator will control the refueling systems from the crew compartment via the Air
Refueling Operating Station. A series of cameras mounted on the tanker’s fuselage provide a 185-degree field of view under day and night lighting conditions. Imaging may be captured in three-dimensional or two-dimensional high-definition video. Fuel is automatically transferred within the aircraft to maintain center of gravity in all axes. The flow of fuel in, out, and within the aircraft can be manually or automatically controlled by the aircraft and can be manually controlled by the aircrew via control display units at the appropriate duty station.

In addition to fuel and cargo transport, each KC-46A aircraft will possess a secure airborne communications capability, which will provide beyond-the-line-of-sight messaging and line-of-sight tactical datalink multi-modal communications via secure networks. Hosting a suite of network-centric communications equipment, the KC-46A will function with most current C2 systems. The KC-46A will also support the C2 core function as a communications “gateway” when equipped with a roll-on gateway system to provide connectivity between tactical network partners in theater.

This aircraft will have self-defense and protection (both active and passive) capabilities and the necessary operational environment awareness to mitigate threats, but will not be operated in areas of high threats without requesting suppression of enemy air defenses and air support. This aircraft is capable of ferrying fuel into semi-austere airfields. By following Forward Area Refueling Point procedures, the aircraft can off-load fuel into fuel pits, bladders, trucks, or other aircraft, with or without the engines running, without the need for special equipment. The aircraft will be able to operate at certain night vision goggle and/or defensive system-required airfields with a minimum of 7,000 feet of paved runway available for take-off/landing.

The aircraft will be capable of operating in day-night and adverse weather conditions over vast distances to enable deployment, employment, sustainment, and redeployment of U.S., joint, allied, and coalition forces.

1.3.4 Training Requirements

KC-46A aircrews at the selected MOB 2 installation would complete operational sorties as part of their global reach missions and local training sorties to maintain proficiency in the aircraft. Training requirements for the KC-46A aircraft would be similar to those depicted for the KC-135 flight crews, which are detailed in AFI 11-2KC-135 Vol I (2012). An AFI 11-2KC-46 Vol. 1 is currently being developed to provide each flight crew member the minimum semi-annual and annual flying training requirements to qualify and maintain proficiency/currency (allowing for unsupervised flight) for the KC-46A and will provide the same minimum requirements for training.
Flight training, including air refueling and training in the flight simulator, is designed to provide basic and continuation aircrew training needs. A typical KC-46A proficiency training sortie would be very similar to a KC-135 training sortie and would include a departure from the installation, climb to altitude for air refueling training in appropriate airspace, return to the home installation for additional closed pattern training before landing for the sortie termination. Proficiency training sorties to fulfill the requirements of the AFI above typically depart from and return to the home installation on the same day. A global reach mission typically departs the home installation, returns on a later day, and accomplishes training as a by-product of the operational mission. Although some in-flight training and certification would occur, the majority of KC-46A system continuation training would be completed in simulators.

1.4 THE ENVIRONMENTAL IMPACT ANALYSIS PROCESS

In accordance with NEPA of 1969 (42 USC 4321-4347), CEQ Regulations for Implementing the Procedural Provisions of NEPA (40 CFR Parts 1500-1508), and AFI 32-7061 as promulgated at 32 CFR Part 989 et seq., Environmental Impact Analysis Process, the NGB and USAF have prepared this EIS, which considers the potential consequences to the human and natural environment that may result from implementation of these activities.

NEPA requires federal agencies to take into consideration the potential environmental consequences of proposed actions in their decision-making process. The intent of NEPA is to protect, restore, and enhance the environment through well-informed federal decisions. The CEQ was established under NEPA to implement and oversee federal policy in this process. The CEQ subsequently issued the Regulations for Implementing the Procedural Provisions of NEPA (40 CFR Parts 1500-1508) (CEQ 1978).

The activities addressed within this document constitute a major federal action and therefore must be assessed in accordance with NEPA. To comply with NEPA, as well as other pertinent environmental requirements, the decision-making process for the Proposed Action includes the development of this EIS to address the environmental issues related to the proposed activities.
1.5 **PUBLIC INVOLVEMENT/ENVIRONMENTAL COORDINATION**

This EIS was prepared in compliance with all applicable local, state, and federal environmental regulations. An EIS is prepared as a tool for compiling information for a proposal and provides a full and fair discussion of environmental impacts to the natural and human environment. Reasonable alternatives to the Proposed Action, including the No Action Alternative are also evaluated in an EIS. The USAF has evaluated all reasonable alternatives to ensure that an informed decision is made after review and consideration of the potential environmental consequences.

Compliance with NEPA guidance for preparation of an EIS involves several critical steps summarized below.

1. *Announce that an EIS will be prepared.* For this EIS, a Notice of Intent (NOI) was published in the *Federal Register* on May 17, 2013.

2. *Conduct scoping.* This is the first major step in identifying the relevant issues to be analyzed in detail, and to eliminate issues that are not relevant. Scoping for this EIS occurred between May 17 and July 5, 2013. Throughout the scoping period, the NGB actively solicited public comments on the proposal. Information related to the proposal has been disseminated to the public through several avenues, including newspaper advertisements, public service announcements, a project website (www.angkc46aeis.com), and periodic fact sheets.

Executive Order (EO) 12372, *Intergovernmental Review of Federal Programs,* requires intergovernmental notifications prior to making any detailed statement of environmental impacts. Through the process of Interagency and Intergovernmental Coordination for Environmental Planning, the proponent must notify concerned federal, state, and local agencies and allow them sufficient time to evaluate potential environmental impacts of a Proposed Action. Comments from these agencies are subsequently incorporated into the environmental impact analysis process. Letters requesting input have been distributed to federal, state, and local agencies and are a part of the official project record. Appendix B
provides a list of relevant federal, state, and local agencies as well as sample notification letters, and comments received during the scoping period.

On November 27, 1999, the Department of Defense (DoD) promulgated its Annotated American Indian and Alaska Native Policy, which emphasizes the importance of respecting and consulting with tribal governments on a government-to-government basis. This Policy requires an assessment, through consultation, of the effect of proposed DoD actions that may have the potential to significantly affect protected tribal resources, tribal rights, and Indian lands before decisions are made by the respective services (DoD American Indian/Alaska Native Policy), as does DoD Instruction 4710.02, Interaction with Federally Recognized Tribes (September 14, 2006). In addition, coordination with federally recognized Native American tribes must occur in accordance with EO 13175, Consultation and Coordination with Indian Tribal Governments. Section 106 consultation and government-to-government consultation for this project continued throughout the duration of EIS preparation. NGB has initiated government-to-government consultation with federally-recognized tribes that are historically, culturally, and linguistically affiliated with the area in recognition of the tribes’ sovereignty as nations. This consultation also provides additional information and is used for Section 106 consultation (see Appendix B for example letters and responses received from tribes).

Concerns and comments identified during the scoping process have been included in the analyses, as appropriate. Scoping meetings were held in New Egypt, New Jersey and Moon Township, Pennsylvania on June 4; Portsmouth, New Hampshire and Columbus, Ohio on June 6; and Topeka, Kansas on June 20, 2013. During the scoping meetings, the NGB presented details about the proposal, the NEPA process, and provided an opportunity for public and agency involvement. In addition to receiving verbal and written comments at the scoping meeting, the NGB has also accepted written comments from the public and agencies through U.S. mail, website, and email. The majority of the comments received during the official comment submittal period (17 May to 5 July 2013) were in support of the KC-46A beddown at each specific location. However, there were some concerns regarding noise impacts and aircraft emissions. To the extent possible, scoping comments have been used to shape the analysis and focus the issues in this EIS.

3. **Prepare a Draft EIS.** The Draft EIS is a comprehensive document for public and agency review. The Draft EIS describes the purpose and need of the Proposed Action and alternatives; presents the existing conditions in the region potentially affected; and provides analysis of the environmental consequences of the Proposed Action and
alternatives, including the No Action Alternative. The Draft EIS was distributed to agencies, regional libraries, and members of the public who requested copies.

4. **Public/Agency Review.** There was a 45-day public comment period following the Notice of Availability (NOA) for the Draft EIS, which was published in the *Federal Register* on February 7, 2014. This initiated the public comment period, and public hearings were held at each alternative location. During the public hearings, the NGB presented details about the proposal, the NEPA process, and provided attendees an opportunity to provide written and/or oral comments. In addition to receiving verbal and written comments at the hearings, the NGB also accepted written comments from the public and agencies through U.S. mail, website, and email. All substantive comments received during the public comment period have been fully considered and addressed in the Final EIS, as appropriate. Written comments submitted at the public hearing and those received via other means were given equal consideration in the preparation of the Final EIS.

Generally, substantive comments are regarded as those comments that challenge the analysis, methodologies, or information in the Draft EIS as being factually inaccurate or analytically inadequate; that identify impacts not analyzed or develop and evaluate reasonable alternatives or feasible mitigations not considered by the agency; or that offer specific information that may have a bearing on the decision, such as differences in interpretations of significance or of scientific or technical conclusions. Non-substantive comments, which do not require an agency response, are generally considered those comments that express a conclusion, an opinion, or a vote for or against the proposal itself, or some aspect of it; that state a position for or against a particular alternative; or that otherwise state a personal preference or opinion.

5. **Prepare a Final EIS.** The Final EIS has been prepared following the public comment period and includes all written comments and verbal testimony from public and agency reviewers during the public hearing and the comment period. The Final EIS has been revised to reflect public and agency comments, the proponent’s responses, and additional information received from reviewers. The Final EIS provides the decision-maker with a comprehensive review of the potential environmental consequences of selecting any of the alternatives carried forward for detailed analysis. A NOA will be published in the *Federal Register* to announce availability of the Final EIS.

6. **Issue a Record of Decision.** The final step in the NEPA process is approval of the Record of Decision (ROD). After the NOA is published in the *Federal Register*, there is a 30-day waiting period before the ROD is signed. The ROD will identify the action that has been selected by the Secretary of the Air Force and what management actions or other
measures would be carried out to reduce, where possible, adverse impacts to the environment.

1.6 LEAD AND COOPERATING AGENCIES

The role of a federal agency in the NEPA process depends on the agency’s expertise and relationship to the proposed undertaking. The agency carrying out the proposed action is responsible for complying with the requirements of NEPA. In some cases, there may be more than one federal agency involved in an undertaking. In this situation, a lead agency is designated to supervise preparation of the environmental analysis. Federal agencies, together with state, tribal, or local agencies, may act as joint lead agencies. The NGB and USAF are the proponents for this proposal and are the responsible agencies for preparation of the EIS. As defined in 40 CFR § 1508.5, a cooperating agency is “any Federal agency other than a lead agency that has jurisdiction by law or special expertise with respect to any environmental impact involved in a proposal (or a reasonable alternative) for legislation or other major Federal action significantly affecting the quality of the human environment. A state or local agency of similar qualifications, or when the effects are on a reservation, an Indian Tribe may, by agreement with the lead agency, become a cooperating agency.” No cooperating agencies have been identified for this EIS.

1.7 ORGANIZATION OF THIS ENVIRONMENTAL IMPACT STATEMENT

Chapter 2 describes the Proposed Action and reasonable alternatives, including the No Action Alternative, and the alternative selection process. Chapter 3 is organized by each of the five alternative bases and presents the environmental baseline conditions at each base. Chapter 4 is also organized by each of the five action alternatives as well as the No Action alternative, and presents the potential environmental impacts associated with implementation of any of the alternatives. Chapter 5 identifies past, present, and reasonably foreseeable projects within the regional context of each of the five alternative locations, and describes potential cumulative impacts of the Proposed Action in combination with these other regional actions at each alternative base. Chapter 6 lists the references cited in the document. Chapter 7 lists those agencies, organizations, and persons that were contacted during the preparation of this EIS. Chapter 8 contains the list of preparers and contributors. In addition to the main text, the following appendices are included in this document: Appendix A, Resource Definitions and Methodologies; Appendix B, Correspondence; Appendix C, Background Information for the Noise Analysis; Appendix D, Air Quality; and Appendix E, Special Status Species Lists.
[This page intentionally left blank.]
CHAPTER 2
DESCRIPTION OF THE PROPOSED ACTION AND ALTERNATIVES

2.1 PROPOSED ACTION

2.1.1 Overview of the Proposed Action

The USAF has a requirement to provide refueling aircraft that will be equipped with major technological improvements designed to enhance operations and increase mission effectiveness. The NGB proposes to beddown one squadron of 12 KC-46A aircraft at one of five alternative locations: Forbes ANGS, Kansas; JB MDL, New Jersey; Pease ANGS, New Hampshire; Pittsburgh ANGS, Pennsylvania; or Rickenbacker ANGS, Ohio. Additionally, one active duty associate unit would be integrated with ANG personnel and equipment, enabling joint training and execution of missions using ANG-assigned aircraft. Furthermore, the NGB would implement construction projects associated with the aircraft beddown at the selected installation. Concurrent with the beddown of the KC-46A, the existing KC-135 aircraft at the selected installation would either be relocated to another installation and/or retired out of the USAF inventory.

As a result of the Proposed Action, there would be a change to the type of aircraft based at the selected installation; a change to the mix of aircraft using the associated airspace; changes to staffing and manpower at the selected location; changes to the number of airfield operations; as well as minor required construction, building renovation, and facility demolition. There would be no new or modified airspace required to support this action. The proposed beddown is estimated to begin in FY 2018 for the NGB, and construction is estimated to begin in FY 2015. Although proposed construction is necessary for the long-term viability of the beddown, aircraft operations with the KC-46A could begin prior to implementation of the construction.

2.1.2 Requirements of the Proposed Action

2.1.2.1 Aircraft Beddown/Transition

The KC-46A is planned to eventually replace existing USAF KC-135s. The NGB proposes to begin this process by replacing the aircraft at the selected location with 12 KC-46A operational aircraft (regardless of how many aircraft are currently at the alternative location). It is estimated that the 12 KC-46A aircraft would be beddown at the selected location beginning in FY 2018. The existing KC-135 aircraft at the selected location would either be relocated to another
installation and/or would be retired out of the USAF inventory. The relocation/retirement actions would be evaluated under NEPA, as appropriate.

2.1.2.2 Facility and Infrastructure Requirements

While basing the KC-46A would require certain facilities and infrastructure to support necessary training and operational requirements, utilizing existing infrastructure to the maximum extent feasible comprises a fundamental basis of the Proposed Action. Where existing facilities and infrastructure cannot meet the needs of the Proposed Action, the NGB would implement construction of necessary new and/or renovated infrastructure and facilities at the selected alternative installation. The type of construction needed would vary by installation and is detailed further in each respective installation Sections 2.3.1 through 2.3.5.

Facility requirements include:

- **Squadron Operations Facility** – Necessary for daily operational activities.
- **Flight Simulator/Boom Operator Training Facility** - Major aircrew training devices required for a 12 PAA KC-46A aircrew continuation training program include one Flight Simulator, one Boom Operator Trainer, and a Fuselage Trainer.
- **Academic Training Facility (ANG uses Reserve Forces general purpose training areas)** - Space is necessary to provide space for classroom training and brief/debrief areas.
- **Aircrew Flight Equipment Facility (ANG incorporates this facility with Squadron Operations)** – Aircraft equipment and mobility bins are best suited to be located at or near a flightline entry control point.
- **Vehicle Operations Administration and Maintenance Shop**
- **Command Post** – an adequate operational, administrative, and training office space with the ability to discuss up to and including Top Secret, and perform daily and contingency C2 duties.
- **Maintenance Hangar**
- **Corrosion Control/Wash Rack Facility**
- **Fuel System Maintenance Hangar**
- **Parking Ramp for a minimum of eight KC-46A parking spots**
- **Aircraft General Purpose Shops**
- **Maintenance Training Facility**
- **Aerospace Ground Equipment (AGE) Shop**
- **Supply Warehousing**
- **Aerial Port Cargo Facility/Processing yard**
2.1.2.3 Personnel Changes

The KC-46A would provide substantial expanded capabilities with only minor overall changes in military personnel; however, the mission would require basing sufficient and appropriate personnel to operate and maintain the Wing and to provide necessary support services. In addition, there would be an active duty associate unit based with the selected MOB 2 alternative installation. The number of personnel would vary by installation and is detailed further in each respective installation Sections 2.3.1 through 2.3.5.

2.1.2.4 KC-46A Operations

Under the Proposed Action, the 12 PAA KC-46A aircraft would fly 670 hours per aircraft, per year, for a total of 8,040 hours annually. Because this is a new aircraft flying with a combination of ANG and associate active duty personnel, a uniform distribution of flying hours was assumed for each alternative. This is considered a conservative estimate and any deviation from this would likely be fewer hours flown. Thus, with an average sortie duration (ASD) of 4.0 hours, the KC-46A aircraft would fly 2,010 sorties annually. The 2,010 annual sorties would be flown at a combination of the unit’s home-station as well as off-station airfields, where they are able to train in a different setting than their home-station. As discussed in Section 2.3, each of the five alternative installations currently fly a different number of airfield operations per sortie, as well as a different percent of home-station/off-station operations. In developing the analysis for each installation, the installations’ unique ratio of airfield operations was assumed to remain the same into the future, as were the percent of home-station/off-station operations. This resulted in a range of home-station airfield operations across the five action alternatives. Further, it is recognized that there is a recent trend toward an increasing use of flight simulators, which can reduce the number of hours flown. However, without a clear definition in the use of the simulator as opposed to actual airfield operations, the full 8,040 flying hour program has been analyzed for each action alternative. No changes are proposed to airfield departure/arrival patterns and tracks, flight profiles, and use of runways from those that are currently performed with the KC-135 at each MOB 2 location. Any existing noise abatement procedures would continue to be followed.

Common Operational Terms

Sortie: refers to a single military aircraft from take-off through final landing, and everything that might be conducted during that flying mission. A sortie will always include more than one operation.

Operation: this term can apply to both airfield and airspace activities. At an airfield, an operation consists of a single action such as a take-off, or a landing (i.e., two operations). For airspace and ranges, an operation consists of the use of one airspace unit (e.g., Military Operations Area [MOA], Air Refueling Track) by one aircraft. Each time a single aircraft flies into a different airspace unit, one operation is counted. During a single sortie, an aircraft could fly in several airspace units, and conduct a number of operations; therefore, the number of operations exceeds the number of sorties.
Under the Proposed Action, there would be some increases in the frequency of use and number of operations conducted in the airspace currently used by the KC-135, depending on the increase of sorties over the current baseline at each alternative installation (described in more detail in Sections 2.3.1 through 2.3.5). The KC-46A would use the same airspace currently used by the selected installation, with no new airspace required to support the mission. The types of airspace used would consist of published air refueling tracks, Anchors, Warning Areas, and Military Operations Areas (MOAs). These are found in the Department of Defense (DoD) AP/1B, Flight Information Publication, and Area Planning documents. All air refueling is accomplished above 10,000 feet mean sea level (MSL), although some MOAs are approved for lower altitude flight for training not involving air refueling. While a large percentage of air refueling occurs close to the home-station airfield, KC-135 aircraft refuel in other refueling tracks and Warning Areas located throughout the U.S. Under the Proposed Action, the KC-46A would use the airspace in the same manner as the KC-135 aircraft. It is anticipated that the KC-46A would operate in existing airspace and conduct flight operations similar to the existing KC-135 aircraft; therefore, detailed analysis of airspace will not be conducted in this EIS.

2.2 **NARROWING PROCESS FOR ALTERNATIVE BASES**

As previously described, the NGB is programmed to beddown one squadron of 12 PAA KC-46A aircraft at one of five alternative locations. Identification and analysis of alternatives is one of the core elements of the environmental process under NEPA and the USAF’s implementing regulations. The NGB may expressly eliminate alternatives from detailed analysis based on reasonable selection standards (32 CFR 989.8(c)). Based on extensive analysis by the USAF operations community, a siting study was conducted to determine the specific requirements for beddown of the KC-46A aircraft and to identify potential military installations where this beddown could occur. Following this study, the Secretary of the Air Force and the Chief of Staff of the Air Force approved selection criteria for the KC-46A beddown.

Air Refueling Airspace Terms

- **Air refueling tracks:** Published linear routes identified on air navigation charts that define the flight path used by aircraft when refueling other aircraft. For fixed wing aircraft, this generally occurs above 10,000 feet MSL.
- **Anchors:** Air refueling tracks that go in a race-track shape (i.e., loop).
- **Warning Areas:** A warning area is airspace of defined dimensions, extending from 3 nautical miles outward from the coast of the United States, containing activity that may be hazardous to non-participating aircraft. The purpose of such areas is to warn non-participating pilots of the potential danger. A warning area may be located over domestic or international waters or both. The airspace is designated with a “W” followed by a number (e.g., W-237).
- **Military Operations Area (MOA):** Airspace below 18,000 feet mean sea level (MSL) established to separate military activities from Instrument Flight Rule (IFR) traffic and to identify where these activities are conducted for the benefit of pilots using Visual Flight Rule (VFR).
In general, the USAF uses the Strategic Basing process outlined in AFI 10-503 (2010) to select locations to beddown USAF missions. The process begins by identifying all the installations that could reasonably support a given mission. This enterprise of installations is then evaluated using objective criteria to screen the top candidate installations. Major Command-led site surveys are then conducted at each alternative location to determine if the installation could reasonably support the mission in question. The Strategic Basing Executive Steering Group oversees the process and reports findings directly to the Secretary of the Air Force and Chief of Staff of the Air Force. This process was mandated by the Secretary of the Air Force to ensure basing decisions were made using a deliberate, standardized, and repeatable process. The KC-46A basing decision followed this general basing process.

In September 2011, Air Mobility Command (AMC) presented to the Secretary of the Air Force the Lead Command Intent for the KC-46A. This Lead Command Intent described the proposed basing action tenets, force structure mix, basing timelines, other critical information, and will ultimately be used to shape and inform decisions made throughout the USAF Strategic Basing Process. The following planning conventions were derived from the Lead Command Intent:

1. Identify the number of KC-46A aircraft scheduled to be delivered between 2014 and 2018. This time period corresponded to the DoD Future Years Defense Program, which is the program and financial plan approved by the Secretary of Defense, and provides a basis for USAF planning. Planning beyond this time period is speculative due to the uncertainty of funding availability.

2. Identify the number of KC-46A aircraft to be allocated to operations based on then-current national strategic considerations.

3. Determine the number of bases capable of supporting one squadron of up to 12 PAA. PAA are those aircraft assigned to meet the primary aircraft authorization and reflect the number of aircraft flown by a unit in performance of its mission.

4. Recognize additional factors of Plans and Guidance and Global Positioning, which include strategic considerations but do not provide meaningful distinction among bases for USAF training within the U.S. and its territories. An additional Logistics Supportability factor equates to Boeing’s support capacity set forth in its contract with the USAF. This factor does not distinguish among bases and is not included in the identification of reasonable MOB 2 beddown alternatives.

Consideration of the planning conventions above led to an initial screening of all ANG installations against the following standards for the MOB 2: 1) A runway of at least 7,000 feet in length, 2) the presence of an ANG Wing on the installation, and 3) the installation had to be located in the continental United States (CONUS). The initial screening yielded a defined enterprise of 83 candidate installations to be evaluated for the MOB 2 beddown. In 2012, AMC presented objective screening criteria to the Strategic Basing Executive Steering Group to be used in the identification of bases for the beddown of the KC-46A. The approved criteria were
used to screen the enterprise of 83 candidate installations to identify those installations’ capacity to successfully support the MOB 2 mission. The objective criteria included mission, capacity, environmental considerations, and cost and are described in more detail below:

Ability to meet the mission requirements. Under this criterion, the candidate location must be within reasonable proximity to refueling receiver demand, airfield and airspace availability, fuel system capabilities, and must have the potential to establish an association with an active duty unit.

Capacity. The candidate location must have hangar capacity; runway length and weight bearing capacity; ramp space; base operation support capacity; squadron operations facilities with aircraft maintenance units; aircrew, maintenance, and fuselage training capabilities; and the necessary communications infrastructure.

Environmental Constraints. The candidate location must be able to demonstrate conformity with the respective State Implementation Plan (SIP), meet the local community’s adoption of zoning or other land use controls to reduce encroachment and preserve the base’s flying operations, waivers or absence of incompatible development in the clear zone (CZ) and/or accident potential zone (APZ), and have an absence or limited amount of incompatible development within noise contours above 65-decibel (dB) Day-Night Average Sound Level (DNL).

Cost. Given budgetary constraints, it was important for the USAF to select candidate bases that have a favorable area construction factor based on DoD Facilities Pricing Guide, dated June 2007 (DoD 2007), as updated by the June 2009 draft Office of the Secretary of Defense Pricing Guide (DoD 2009a).

The Secretary of the Air Force considered the objective screening results as well as qualitative operational factors in determining the alternative installations for the KC-46A MOB 2 mission. These military judgment factors included:

- Plans and Guidance
- Global and Regional Coverage
- Combatant Commander Support
- Total Force
- Beddown Timing
- Force Structure
- Training Requirements and Efficiencies
- Logistic Supportability
- Resources/Budgeting
The Strategic Basing Process described above resulted in the identification of five alternative bases for consideration.

- Forbes ANGS, Kansas
- JB MDL, New Jersey
- Pease ANGS, New Hampshire
- Pittsburgh ANGS, Pennsylvania
- Rickenbacker ANGS, Ohio

2.3 **ACTION ALTERNATIVES CARRIED FORWARD**

This section describes the specific requirements of the beddown of one squadron of 12 KC-46A aircraft at each of the five alternative installations.

2.3.1 **Alternative #1 – Forbes Air National Guard Station**

2.3.1.1 Background

Forbes ANGS, home of the 190th Air Refueling Wing (190 ARW) of the Kansas Air National Guard (KS ANG), is located approximately 5 miles south of Topeka in Shawnee County, Kansas (Figure 2.3-1). The 190 ARW base is situated on the northwest side of Forbes Field Airport, a municipal airport owned and operated by Metropolitan Topeka Airport Authority (MTAA). The 190 ARW holds a lease with the Forbes Field Airport for the installation property with a termination date of 2057. The installation occupies approximately 216 acres.

2.3.1.2 Mission

The 190 ARW of the KS ANG is a tenant at Forbes Field Airport in Topeka, Kansas. The 190 ARW is tasked with providing air-to-air refueling and airlift capabilities for DoD assets worldwide. The 190 ARW also supports state emergency missions. The 190 ARW currently flies and maintains 12 KC-135 refueler aircraft to support its air refueling mission. The primary support operations performed at the 190 ARW include aircraft fueling, aircraft deicing, aircraft maintenance, aerospace support equipment maintenance, ground vehicle maintenance, fueling of ground vehicles, and facilities maintenance. These operations involve activities such as corrosion control, non-destructive inspection, fuel cell maintenance, engine maintenance, hydraulics, and wheel and tire maintenance.
Figure 2.3-1.
Regional Location
Forbes ANGS
2.3.1.3 Aircraft Conversion

Under Alternative #1, the 190 ARW would convert from 12 KC-135 PAA and no KC-135 Backup Aerospace Vehicle Inventory (BAI) to 12 KC-46A PAA. Concurrent with the beddown of the 12 KC-46A PAA at Forbes ANGS, the existing KC-135 aircraft would either be relocated to other installations or retired out of the USAF inventory, depending on the life-cycle status of each particular aircraft. Separate NEPA documentation would be prepared for any of the aircraft relocated to other installations.

2.3.1.4 Airfield Operations

Forbes Field Airport has two runways; Runway 13/31 is 12,802 feet long and 200 feet wide and Runway 03/21 is 7,001 feet long and 150 feet wide (AirNav 2013a).

The 190 ARW currently flies 1,478 sorties annually. According to the unit’s scheduling data and airport traffic counts, 946 of these sorties were flown from Forbes Field Airport, or 64 percent of the total annual sorties flown. The remaining sorties were flown from other airfields in the U.S. and/or overseas in support of operational missions. Actual airfield operational data collected for 2012 indicates that the 190 ARW accounted for 10,452 airfield operations, with an average of 11 airfield operations per sortie (Table 2.3-1).

Table 2.3-1. Current 190 ARW KC-135 Operations at Forbes Field Airport

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>DEPARTURES</th>
<th>ARRIVALS</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night¹</td>
<td>Day</td>
</tr>
<tr>
<td>KC-135</td>
<td>4,541</td>
<td>685</td>
<td>4,390</td>
</tr>
</tbody>
</table>

Notes: 1. Night –Between 10 p.m. and 7 a.m. for environmental night.

Source: FAA 2012a.

Following the aircraft beddown under Alternative #1, the KC-46A aircraft would fly a total of 8,040 hours annually, with an ASD of 4.0 hours. This would result in 2,010 sorties annually, 64 percent of which would be performed at the home-station (Forbes ANGS). Thus, it is expected that up to 1,286 sorties would be flown at Forbes Field Airport annually under this alternative. This would be an increase of 36 percent over the 946 home-station sorties identified in 2012 (it is assumed that the same percentage of the sorties found under current baseline conditions would be flown at Forbes ANGS under this alternative). Based on 1,286 annual home-station sorties and an average of 11.32 operations per sortie, there would be 14,562 annual home-station operations, or an additional 4,110 airfield operations annually at Forbes Field Airport (Table 2.3-2). This would increase the average daily airfield operations from 40.2 to 56.0 (Table 2.3-3). There would be no changes expected to departure/arrival patterns and tracks, flight profiles, and use of runways. Current noise abatement procedures would continue to be followed (see Section 4.1.1, Noise).
Table 2.3-2. Proposed 190 ARW KC-46A Operations at Forbes Field Airport

Aircraft	DEPARTURES	ARRIVALS	TOTAL	Grand Total
	Day	Night¹	Day	Night²
KC-46A	6,322	959	6,118	1,163

Notes: 1. Includes Closed Patterns (which count as two airfield operations).
2. Night – Between 10 p.m. and 7 a.m. for environmental night.

Table 2.3-3. Changes to 190 ARW Airfield Operations with Proposed KC-46A Aircraft¹

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>190 ARW</td>
<td>10,452 (40.2)</td>
<td>14,562 (56.0)</td>
<td>4,110 (39.3%)</td>
</tr>
</tbody>
</table>

Note: 1. Yearly operations for Forbes are based on a 5-day flying week, or 260 days/year.

2.3.1.5 Airspace Operations

The 190 ARW conducts air refueling for both training and contingency missions for receiver aircraft. Primary air refueling tracks used by the 190 ARW are described in Table 2.3-4. Under Alternative #1, there would be a change to the frequency of use due to the proposed increase in the sorties. The KC-46A will also have a requirement for training as a receiver aircraft (on-loading fuel) and would use the existing air refueling tracks as a receiver in addition to the normal use as a refueling aircraft (off-loading fuel). However, the minutes in the airspace for each sortie and the operational training conducted would not be expected to change in any of the airspace described.
Table 2.3-4. Current and Proposed Local Air Refueling Airspace Used by the 190 ARW\(^1\)

<table>
<thead>
<tr>
<th>Airspace Unit</th>
<th>Altitude Floor and Ceiling</th>
<th>Current Aircraft Proposed Aircraft</th>
<th>Minutes in Airspace for Each Sortie</th>
<th>Average KIAS(^2)</th>
<th>ANNUAL SORTIE OPERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Current Sortie Operations</td>
<td>Proposed Sortie Operations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR 116</td>
<td>12,000-FL220</td>
<td>KC-135</td>
<td>55</td>
<td>275</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KC-46A</td>
<td></td>
<td></td>
<td>136</td>
</tr>
<tr>
<td>AR 330</td>
<td>FL190-FL220</td>
<td>KC-135</td>
<td>55</td>
<td>275</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KC-46A</td>
<td></td>
<td></td>
<td>136</td>
</tr>
<tr>
<td>AR 406H</td>
<td>FL 260-290</td>
<td>KC-135</td>
<td>55</td>
<td>275</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KC-46A</td>
<td></td>
<td></td>
<td>136</td>
</tr>
<tr>
<td>AR 406L</td>
<td>FL200-FL220</td>
<td>KC-135</td>
<td>55</td>
<td>275</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KC-46A</td>
<td></td>
<td></td>
<td>136</td>
</tr>
<tr>
<td>AR 406H</td>
<td>FL260-FL280</td>
<td>KC-135</td>
<td>55</td>
<td>275</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KC-46A</td>
<td></td>
<td></td>
<td>136</td>
</tr>
<tr>
<td>AR 110</td>
<td>FL240-FL270</td>
<td>KC-135</td>
<td>55</td>
<td>275</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KC-46A</td>
<td></td>
<td></td>
<td>136</td>
</tr>
<tr>
<td>112</td>
<td>FL240-FL310</td>
<td>KC-135</td>
<td>55</td>
<td>275</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KC-46A</td>
<td></td>
<td></td>
<td>136</td>
</tr>
<tr>
<td>AR 105</td>
<td>FL190-FL330</td>
<td>KC-135</td>
<td>55</td>
<td>275</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KC-46A</td>
<td></td>
<td></td>
<td>136</td>
</tr>
<tr>
<td>Eureka MOA</td>
<td>R 5502 6,000 feet MSL UTBNI FL 180</td>
<td>KC-135</td>
<td>30</td>
<td>315</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KC-46A</td>
<td></td>
<td></td>
<td>136</td>
</tr>
<tr>
<td>Bison MOA</td>
<td>1,000 feet MSL UTBNI FL180</td>
<td>KC-135</td>
<td>30</td>
<td>315</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KC-46A</td>
<td></td>
<td></td>
<td>136</td>
</tr>
<tr>
<td>Truman MOA</td>
<td>5,000 feet MSL UTBNI FL180</td>
<td>KC-135</td>
<td>30</td>
<td>315</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KC-46A</td>
<td></td>
<td></td>
<td>136</td>
</tr>
<tr>
<td>HOG HI MOA</td>
<td>6,000 feet MSL UTBNI FL180</td>
<td>KC-135</td>
<td>30</td>
<td>315</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KC-46A</td>
<td></td>
<td></td>
<td>136</td>
</tr>
</tbody>
</table>

Notes:
1. This table only shows KC-135 and KC-46A aircraft that are or would be flown by the 190 ARW in this airspace. Additional aircraft flown by other units that use this airspace are not shown.
2. Annual sortie operations are the number of times air refueling track/MOA is scheduled to be used by unit. KIAS = knots indicated airspeed; FL = Flight Level; MOA = military operations area; UTBNI = up to, but not including; MSL = mean sea level.
2.3.1.6 Construction Required

Under Alternative #1, 12 KC-46A PAA aircraft would be beddown at the 190 ARW installation at Forbes Field Airport, Kansas; the 190 ARW would also implement construction projects for that conversion (Table 2.3-5). The proposed construction projects would comply with standards set forth in ANG Handbook 32-1084, *Facility Space Standards* (November 2012). Anti-Terrorism/Force Protection (AT/FP) requirements also would be incorporated. Proposed facilities would be sited approximately as shown in Figure 2.3-2. The precise layout and design of proposed facilities is in the early planning stages; therefore, exact locations and layouts are not finalized. Should locations and final layout of the facilities differ substantially from those anticipated and depicted herein, further environmental analysis would be required. Each of these projects is described in more detail in the following sections.

Table 2.3-5. Proposed 190 ARW Construction Projects at Forbes Field Airport

<table>
<thead>
<tr>
<th>Project Description</th>
<th>Total New Construction Footprint (SF)</th>
<th>New Impervious Surface (SF)</th>
<th>Estimated Year of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project #1 (Option 1) – Addition to Hangar 662</td>
<td>11,657</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would include the construction of two additions totaling 11,657 SF to Hangar 662 in order to provide an adequately sized hangar for the new KC-46A aircraft, Fuel Cell Hangar, Maintenance Hangar, Weapons System Trainer, and Boom Operator Trainer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #1 (Option 2) – Addition to Hangar 662</td>
<td>5,847</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would involve a 5,847 SF addition to include a Maintenance Hangar, Weapons System Trainer, and Boom Operator Trainer, and Fuselage Trainer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #2 (Option 1) – Internal Renovations to Hangar 665</td>
<td>0</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Renovate the building interior to include a Fuselage Trainer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #2 (Option 2) – Addition to Hangar 665</td>
<td>18,985</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would include a 18,985 SF addition to the Fuel Cell Hangar in order to provide an adequately sized hangar for the new KC-46A aircraft.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #3 – Internal Renovations to Building 679</td>
<td>0</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would reallocate space within the building for aircrew flight equipment. No modifications would be necessary for squadron operation, base operations, and command post.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #4 (Option 1 and 2) – Pave Apron /Hydrants and Airfield Hold Ramp</td>
<td>184,820</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would include the repair of pavement over the hydrant system and apron pavement between the hangars (184,820 SF).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #4 (Option 2) – Pave Apron /Hydrants and Airfield Hold Ramp</td>
<td>227,507</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would include repavement of approximately 42,687 SF of the airfield hold ramp off the second runway as well as the 184,820 SF addition described above.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>258,149</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Two options are possible for the modifications to these projects. Only one of these options would be implemented.
2. The total construction footprint includes only the project option that has the greatest footprint of each of the options so as to represent the most conservative (highest amount) facility footprint given the multiple options possible.
SF= square feet; FY = fiscal year
Figure 2.3-2. Construction Associated with Alternative #1, Forbes ANGS
Implementation of the KC-46A aircraft beddown would require the 190 ARW to ensure its installation has properly sized and adequately configured facilities to support 12 KC-46A aircraft. The Forbes ANGS location was deemed to have an acceptable level of facilities to support this beddown and has facilities that currently meet the majority of the requirements identified in Section 2.1.2.2. However, some functional areas require modification. Two construction scenarios are under consideration. Under Option 1, two buildings would be renovated to accommodate the KC-46A maintenance, fuel cell, Weapons System Trainer, Boom Operator Trainer, and Fuselage Trainer. Minor adaptations would be made to a third building to accommodate aircrew flight equipment. This option assumes Sustainment, Restoration, and Modernization execution of pre-existing ramp and primary runway repairs. No changes to fuel hydrants and fuel lines would be required on the parking apron under this option. Under Option 2, two buildings would be renovated: Hangar 662, the Maintenance Hangar, would be modified to house the Maintenance Hangar, Weapons System Trainer, Boom Operator Trainer, and the Fuselage Trainer. Hangar 665, the Fuel Cell Hangar, would be modified to house the Fuel Cell Hangar. Concrete pavements directly over the existing hydrant systems would be repaired and the ramp would be re-striped. Pavement would be added to the airfield hold ramp off the second runway. The hydrant system would be maintained in its current state.

The projects described would incorporate Leadership in Energy and Environmental Design (LEED) and sustainable development concepts. This would achieve optimum resource efficiency, constructability, sustainability, and energy conservation, while minimizing adverse impacts to the built and natural environments through all phases of their life cycle. This may result in primary facility costs exceeding DoD costing standards, but the initial investment in higher acquisition cost would be offset with lower life cycle costs. This is consistent with the requirements of the Energy Policy Act of 2005, 10 USC 2802, EO 13423, and other applicable laws and EOs.

Addition to Hangar 662

A minimum of one Fuel Cell Hangar is required to support the maintenance and operations of KC-46A. Additionally, a minimum of one Maintenance Hangar is required to support the maintenance and operations of KC-46A. Hangars provide an environmentally controlled area to perform maintenance on vital components of the aircraft system. The KC-46A is a military derivative of a commercial Boeing 767 aircraft and has a slightly larger footprint than the KC-135, thus requiring slightly larger hangars. Hangar 662 would be modified to meet KC-46A requirements. One of two options could occur.
to satisfy these requirements. Option 1 would house the maintenance shops and safety systems required to perform fuel systems maintenance including pressure checks and inspections. Aircraft hangar space for on-aircraft open fuel cell maintenance would be provided. Interior modifications also would be made to house the KC-46A Weapons System Trainer and Boom Operator Trainer. Option 1 would include the construction of two additions totaling 11,657 square feet (SF). Option 2 would provide space for a Maintenance Hangar, Weapons System Trainer, Boom Operator Trainer, and the Fuselage Trainer. Option 2 would include the construction of a 5,847 SF addition.

Modify Hangar 665

Space would be required for housing the various KC-46A simulators and maintenance functions. One of two options could occur to satisfy this requirement. Option 1 includes internal renovations to Hangar 665 to house the KC-46A Fuselage Trainer. Option 2 includes internal renovations and the construction of an 18,985 SF addition to Hangar 665 to accommodate aircraft fuel cell maintenance.

Modify Building 679

Building 679 was recently renovated; however, areas within the building would need minor interior modifications to house Aircrew Flight Equipment.

Pave Aprons/Hydrant Areas and Airfield Hold Area

The pavement conditions, such as thickness and strength of the hydrant and aircraft apron areas, are important factors in avoiding damage to the KC-46A and/or to the airfield pavement. One of two options could occur under Alternative #1 to satisfy the pavement requirements. Under both Option 1 and Option 2, this project would replace the concrete over the hydrant system and apron areas in the quad; the concrete in these areas currently is rated as in ‘poor’ condition. Under Option 2, a 42,687 SF area of the Airfield Hold Area would also be repaved. Under both options, this project would add pavement to the airfield hold ramp off the secondary runway.
2.3.1.7 Personnel Changes

The 190 ARW currently is authorized 1,242 personnel (Table 2.3-6). Under this alternative, the KC-46A mission would add an additional 194 military positions to the authorized manning requirement at Forbes ANGS (approximately a 16 percent increase in total personnel). Changes to authorized personnel under this alternative are shown in Table 2.3-6.

<table>
<thead>
<tr>
<th>Personnel</th>
<th>Authorized</th>
<th>Proposed</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Associate (USAF)</td>
<td>0</td>
<td>199</td>
<td>199</td>
</tr>
<tr>
<td>Active Guard and Reserve</td>
<td>78</td>
<td>78</td>
<td>0</td>
</tr>
<tr>
<td>Dual Status Technician (Guard civilians, federal)</td>
<td>297</td>
<td>310</td>
<td>13</td>
</tr>
<tr>
<td>Non-Dual Status (DoD civilians, Air Traffic Control)</td>
<td>28</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>Subtotal</td>
<td>403</td>
<td>615</td>
<td>212</td>
</tr>
<tr>
<td>Part Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drill Status Guardsmen</td>
<td>839</td>
<td>821</td>
<td>-18</td>
</tr>
<tr>
<td>Total Personnel Assignments^2</td>
<td>1,242</td>
<td>1,436</td>
<td>194</td>
</tr>
<tr>
<td>Total Personnel On Base</td>
<td>945</td>
<td>1,126</td>
<td>181</td>
</tr>
</tbody>
</table>

Note: 1. Total personnel on base is the sum of all categories minus the number of people with two assignments.
2. Some personnel work off-site but are assigned to the unit.

2.3.2 Alternative #2 – Joint Base McGuire-Dix-Lakehurst

2.3.2.1 Background

JB MDL, home of the 108th Wing (108 WG) of the New Jersey Air National Guard (NJ ANG), is located in central New Jersey, spanning more than 20 miles with more than 42,000 contiguous acres (see Figure 2.3-3). The base is located 18 miles southeast of Trenton, 45 miles east of Philadelphia, 50 miles south of New York City, and 14 miles inland from the Atlantic Ocean. JB MDL is located in Ocean and Burlington Counties. The 108 WG installation is situated on the northwest side of McGuire Field within JB MDL. The 108 WG holds an indefinite lease with JB MDL for the installation property. Within Chapters 3 and 4, various resources discuss either JB MDL or McGuire Field, based on the region of influence (ROI) for each particular resource.
Figure 2.3-3. Regional Location, JB MDL
2.3.2.2 Mission

The mission of the 108 WG is to provide support for federal, state, and community interests by providing timely worldwide air refueling, airlift, and support forces; protecting life and property; and preserving peace, order, and public safety. The 108 WG currently flies and maintains eight KC-135 refueler aircraft to support its air refueling mission. The primary support operations performed at the 108 WG include aircraft fueling, aircraft deicing, aircraft maintenance, aerospace support equipment maintenance, ground vehicle maintenance, fueling of ground vehicles, and facilities maintenance. These operations involve activities such as corrosion control, non-destructive inspection, fuel cell maintenance, engine maintenance, hydraulics, and wheel and tire maintenance.

2.3.2.3 Aircraft Conversion

Under Alternative #2, the 108 WG would convert from 8 KC-135 PAA and 1 KC-135 BAI to 12 KC-46A PAA. Concurrent with the beddown of the 12 KC-46A PAA at JB MDL, the existing KC-135 aircraft would either be relocated to other installations or retired out of the USAF inventory, depending on the life-cycle status of each particular aircraft. Separate NEPA documentation would be prepared for any of the aircraft relocated to other installations.

2.3.2.4 Airfield Operations

McGuire Field has two runways; Runway 06/24 is 10,014 feet long and 150 feet wide and Runway 18/36 is 150 feet wide and 7,126 feet long (JB MDL 2013a).

The 108 WG currently flies 1,112 sorties annually. According to the unit’s scheduling data and Air Traffic Control counts, 834 of these sorties were flown from McGuire Field, or 75 percent of the total annual sorties flown (108 WG 2013a). The remaining sorties were flown from other airfields in the U.S. and/or overseas in support of operational missions. Actual airfield operational data collected from 2012 indicates that the 108 WG accounted for 8,340 annual operations with an average of 10 operations per sortie (Table 2.3-7) (108 WG 2013a).
Table 2.3-7. Current 108 WG KC-135 Operations at McGuire Field

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>DEPARTURES</th>
<th>ARRIVALS</th>
<th>TOTAL</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night</td>
<td>Day</td>
<td>Night</td>
</tr>
<tr>
<td>KC-135</td>
<td>3,346</td>
<td>815</td>
<td>3,325</td>
<td>854</td>
</tr>
</tbody>
</table>

Notes: 1. Includes Closed Patterns (which count as two airfield operations).
2. Night – Between 10 p.m. and 7 a.m. for environmental night.

Source: 108 WG 2013a.

Following the aircraft beddown under Alternative #2, the KC-46A aircraft would fly a total of 8,040 hours, with an ASD of 4.0 hours. This would result in 2,010 annual sorties, 75 percent of which would be performed at the home-station (McGuire Field). Thus, it is expected that up to 1,508 sorties would be flown at McGuire Field. This would be an increase of 81 percent over the baseline 834 sorties identified in the McGuire Field Noise Study (it is assumed that the same percentage of the sorties found under current baseline conditions would be flown at McGuire Field under this alternative) (JB MDL 2013a). Based on 1,508 annual home-station sorties and an average of 11.68 operations per sortie, there would be 17,608 annual home-station operations, or an additional 9,268 airfield operations annually at McGuire Field (Table 2.3-8). This would increase the average daily airfield operations from 22.9 to 48.2 (Table 2.3-9). There would be no changes expected to departure/arrival patterns and tracks, and use of runways. Current noise abatement procedures would continue to be followed (see Section 4.2.1, Noise).

Table 2.3-8. Proposed 108 WG KC-46A Operations at McGuire Field

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>DEPARTURES</th>
<th>ARRIVALS</th>
<th>TOTAL</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night</td>
<td>Day</td>
<td>Night</td>
</tr>
<tr>
<td>KC-46A</td>
<td>8,047</td>
<td>764</td>
<td>7,863</td>
<td>934</td>
</tr>
</tbody>
</table>

Notes: 1. Includes Closed Patterns (which count as two airfield operations).
2. Night – Between 10 p.m. and 7 a.m. for environmental night.

Table 2.3-9. Changes to 108 WG Airfield Operations with Proposed KC-46A Aircraft

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>108 WG</td>
<td>8,340 (22.9)</td>
<td>17,608 (48.2)</td>
<td>9,268 (111.1%)</td>
</tr>
</tbody>
</table>

2.3.2.5 Airspace Operations

The 108 WG conducts air refueling for both training and contingency missions for the receiver aircraft. Primary air refueling tracks used by the 108 WG are described in Table 2.3-10. Under Alternative #2, there would be an increase to the frequency of use of the associated airspace due to the proposed increase in the number of sorties conducted annually. The KC-46A will also
have a requirement for training as a receiver aircraft (on-loading fuel) and would use the existing air refueling tracks as a receiver in addition to the normal use as a refueling aircraft (off-loading fuel). Currently, approximately 80 percent of the sorties flown from McGuire Field conduct air refueling training using the tracks found in Table 2.3-10. There would be an increase of 5,400 air refueling operations spread over the existing air refueling tracks currently used by the 108 WG. The increase would range from a maximum annual increase of 88 air refueling operations on the AR 777 track, to the smallest increase of 4 air refueling operations on AR 633. The refueling tracks identified in Table 2.3-10 are the most commonly used with a wide variety of other tracks being used less frequently.

Table 2.3-10. Current and Proposed Local Air Refueling Airspace Used by the 108 WG

<table>
<thead>
<tr>
<th>Airspace Unit Altitude Floor and Ceiling</th>
<th>Current Aircraft Proposed Aircraft</th>
<th>Minutes in Airspace for Each Sortie</th>
<th>Average KIAS</th>
<th>Annual Sortie Operations Current</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>W107 A-Unlimited FL210-FL280</td>
<td>KC-135 KC-46A</td>
<td>60</td>
<td>315</td>
<td>70</td>
<td>127</td>
</tr>
<tr>
<td>AR 777 FL190-FL220</td>
<td>KC-135 KC-46A</td>
<td>80</td>
<td>275</td>
<td>109</td>
<td>197</td>
</tr>
<tr>
<td>AR 220/218 FL190-FL220</td>
<td>KC-135 KC-46A</td>
<td>75</td>
<td>275</td>
<td>20</td>
<td>36</td>
</tr>
<tr>
<td>AR 631/609 FL200-FL260</td>
<td>KC-135 KC-46A</td>
<td>75</td>
<td>265</td>
<td>48</td>
<td>87</td>
</tr>
<tr>
<td>AR 636 FL200-FL290</td>
<td>KC-135 KC-46A</td>
<td>75</td>
<td>300</td>
<td>25</td>
<td>45</td>
</tr>
<tr>
<td>AR 207 SW/NE FL180-FL280</td>
<td>KC-135 KC-46A</td>
<td>90</td>
<td>265</td>
<td>17</td>
<td>31</td>
</tr>
<tr>
<td>AR 202 S/AN FL250-FL280</td>
<td>KC-135 KC-46A</td>
<td>75</td>
<td>265</td>
<td>15</td>
<td>27</td>
</tr>
<tr>
<td>AR 328 FL180-FL230</td>
<td>KC-135 KC-46A</td>
<td>90</td>
<td>275</td>
<td>16</td>
<td>29</td>
</tr>
<tr>
<td>AR 633 FL180-FL230</td>
<td>KC-135 KC-46A</td>
<td>70</td>
<td>275</td>
<td>5</td>
<td>9</td>
</tr>
</tbody>
</table>

Notes: 1. This table only shows KC-135 and KC-46A aircraft that are or would be flown by the 108 ARW in this airspace. Additional aircraft flown by other units that use this airspace are not shown.
2. W-Warning Area Floor is the surface but no refuelings occur below 10,000 feet MSL.
3. FL Altitude is Mean Sea Level.
KIAS = knots indicated airspeed; FL = Flight Level

Source: 108 WG 2013b.

2.3.2.6 Construction Required

Under Alternative #2, 12 KC-46A PAA aircraft would be beddown at the 108 WG installation at JB MDL; the 108 WG would also implement minor construction projects for that conversion (Table 2.3-11). The proposed construction projects would comply with standards set forth in ANG Handbook 32-1084, Facility Space Standards (November 2012). AT/FP requirements would also be addressed to the extent practicable. Proposed facilities would be sited approximately as shown in Figure 2.3-4. The precise layout and design of proposed facilities is in the early planning stages, and therefore, exact locations and layouts are not finalized. Should
locations and final layout of the facilities differ substantially from those anticipated and depicted herein, further environmental analysis would be required. Each of these projects is described in more detail in the following sections.

Table 2.3-11. Proposed 108 WG Construction Projects at McGuire Field

<table>
<thead>
<tr>
<th>Project Description</th>
<th>Total New Construction Footprint (SF)</th>
<th>New Impervious Surface (SF)</th>
<th>Estimated Year of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project #1 – Addition to Hangar 3333</td>
<td>17,892</td>
<td>4,728</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would involve the addition of a 17,892 SF addition to the existing Maintenance Hangar 3333 to provide an adequately sized hangar for the new KC-46A aircraft.</td>
<td>17,892</td>
<td>4,728</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Project #2 – Addition to Hangar 3336</td>
<td>18,206</td>
<td>5,137</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would involve the addition of an 18,206 SF addition to the existing Fuel Cell Hangar 3336 to provide an adequately sized hangar for the new KC-46A aircraft.</td>
<td>18,206</td>
<td>5,137</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Project #3 – Internal Renovations to Hangar 3322</td>
<td>0</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would include internal renovations only to provide sufficient space to house the KC-46A Fuselage Trainer Simulator.</td>
<td>0</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Project #4 – New Simulator Building</td>
<td>6,700</td>
<td>6,700</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would include the construction of a new 6,700 SF simulator building to house the Weapons System Trainer and the Boom Operator Trainer.</td>
<td>6,700</td>
<td>6,700</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Project #5 (Option 1) – Modifications to Existing Parking Ramp and Taxiway</td>
<td>160,074</td>
<td>88,319</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would include the addition of concrete and asphalt to the existing parking ramp and renovation of a small portion of the taxiway. The construction footprint for this project would total approximately 160,074 SF.</td>
<td>160,074</td>
<td>88,319</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Project #5 (Option 2) – Modifications to Existing Parking Ramp and Taxiway</td>
<td>14,091</td>
<td>12,029</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would include the addition of 12,029 SF of concrete and asphalt to the existing parking ramp as well as renovation of approximately 2,062 SF of existing taxiway surfaces.</td>
<td>14,091</td>
<td>12,029</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Project #6 – New Hydrants and Fuel Lines and Demolition of Existing Hydrants</td>
<td>1,137</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would include the addition of eight new fuel hydrants as well as new fuel lines to these hydrants. Approximately 1,137 SF of disturbance would occur as a result of the new hydrants and fuel lines.</td>
<td>1,137</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Total</td>
<td>204,009</td>
<td>104,884</td>
<td></td>
</tr>
</tbody>
</table>

Notes: 1. Two options are possible for the modifications to the existing parking ramp and taxiway. Only one of these options would be implemented.
2. The total construction footprint includes only the project option that has the greatest footprint of each of the options so as to represent the most conservative (highest amount) facility footprint given the multiple options possible.
SF = square foot; FY = fiscal year
Figure 2.3-4. Construction Associated with Alternative #2, JB MDL
Implementation of the KC-46A aircraft beddown would require the 108 WG to ensure their installation has properly sized and adequately configured facilities to support 12 KC-46A aircraft. Although the JB MDL location was deemed to have an acceptable level of facilities to support this beddown, and has facilities that currently meet the majority of the requirements laid out in Section 2.1.2.2, there remain some functional areas that would require modification. Proposed construction includes: addition to Hangar 3333, addition to Hangar 3336, internal renovations of Hangar 3332, construction of a new simulator building, modification to existing ramp and taxiway, and addition and demolition of hydrants and fuel lines on the parking apron.

The projects described below would incorporate LEED and sustainable development concepts, so as to achieve optimum resource efficiency, constructability, sustainability, and energy conservation, while minimizing adverse impacts to the built and natural environments through all phases of their life cycle. This may result in primary facility costs exceeding DoD costing standards, but the initial investment in higher acquisition cost would be rewarded with lower life cycle costs. This is consistent with the requirements of the Energy Policy Act of 2005, 10 USC 2802, EO 13423, and other applicable laws and EOs.

Addition to Hangar 3333

A minimum of one Maintenance Hangar is required to support the maintenance and operations of the KC-46A. Hangars provide an environmentally controlled area to perform maintenance. The hangar bays require enough space to use the support equipment such as stands and carts to perform maintenance functions. The hangars would house the maintenance shops, tool cribs, and personnel. The KC-46A is a military derivative of a commercial Boeing 767 aircraft and has a slightly larger footprint than the KC-135. Therefore, a 17,892 SF addition to Hangar 3333 would need to be added to accommodate the larger aircraft inside the maintenance hangar. Following the construction, there would be an increase of approximately 4,728 SF of impervious surface as a result of this project.
Addition to Hangar 3336

A minimum of one Fuel Systems Maintenance Hangar is required to support the maintenance and operations of the KC-46A aircraft. The Fuel Systems Maintenance Hangar provides space for covered aircraft maintenance, shop and administrative functions, and contains utilities and safety systems required to perform fuel systems maintenance to include pressure checks and inspections. Aircraft hangar space is required for on-aircraft open fuel cell maintenance. The KC-46A is a military derivative of a commercial Boeing 767 aircraft and has a slightly larger footprint than the KC-135. Therefore, an 18,206 SF addition to Hangar 3336 would be required to accommodate the larger aircraft inside the maintenance hangar. Following the construction, there would be an increase of approximately 5,137 SF of impervious surface as a result of this project.

Internal Renovations to Hangar 3322

Internal renovations to Hangar 3322 would be implemented to house the KC-46A Fuselage Trainer Simulator.

New Simulator Building

A new 6,700 SF building would be constructed west of Building 3390 to house the Weapons System Trainer and the Boom Operator Trainer. Following the construction, there would be an increase of approximately 6,700 SF of impervious surface as a result of this project.
Modifications to Existing Parking Ramp

The proposed beddown of 12 PAA KC-46A aircraft requires a minimum of 8 KC-46A parking spots with a fuel hydrant at each location. Additional concrete would be added to the parking ramp and taxiway at JB MDL in order to increase the size of the parking ramp to accommodate the larger KC-46A aircraft. Two options are possible for the modifications to the existing parking ramp. Only one of these options would be implemented.

1. The first option is to add additional pavement to the northeast side of the apron to increase width for taxiing; add pavement to the southeast side for taxiing; and add pavement to the south side for engine run-ups. This would allow for a 50-foot wing clearance for taxiing. In addition, this option would include the renovation of approximately 2,062 SF of the existing taxiway. This project would include a total of 160,074 SF of new pavement. Following the construction, there would be an increase of approximately 88,319 SF of impervious surface as a result of this project.

2. The second option would include a 12,029 SF addition of a small pavement area on the southeast side of the apron as well as the renovation of approximately 2,062 SF of the existing taxiway. Under this option, a waiver would be required since the wing tip clearance would be reduced to only 25 feet instead of 50 feet. The total SF of disturbance would be approximately 14,091 SF. Following the construction, there would be an increase of approximately 12,029 SF of impervious surface as a result of this project.

New Hydrants and Fuel Lines and Demolition of Existing Hydrants

The proposed beddown of 12 PAA KC-46A aircraft requires a minimum of 8 KC-46A parking spots with a fuel hydrant at each location. A fuel hydrant system provides all the equipment and controls to provide clean fuel to fueling points in the aircraft parking apron. The system reduces the amount of physical movement of fuel around an airfield. To fuel an aircraft, one R-12 fueling truck is needed instead of several. Under Alternative #2, eight new fuel hydrants would be added to the existing parking ramp as well as new fuel lines to one of these hydrants. Approximately 1,137 SF of disturbance would occur as a result of the new hydrants and fuel lines.
2.3.2.7 Personnel Changes

The 108 WG currently is authorized 1,329 personnel. Under Alternative #2, the KC-46A mission would add an additional 287 military positions to the authorized manning requirement (approximately a 22 percent increase in total personnel). Changes to authorized personnel under this alternative are shown in Table 2.3-12.

Table 2.3-12. Comparison of Currently Authorized and Proposed 108 WG Personnel

<table>
<thead>
<tr>
<th>Personnel</th>
<th>Authorized</th>
<th>Proposed</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Associate (USAF)</td>
<td>0</td>
<td>199</td>
<td>199</td>
</tr>
<tr>
<td>Active Guard and Reserve</td>
<td>138</td>
<td>138</td>
<td>0</td>
</tr>
<tr>
<td>Dual Status Technician (Guard civilians, federal)</td>
<td>278</td>
<td>310</td>
<td>32</td>
</tr>
<tr>
<td>Non-Dual Status (DoD civilians, Air Traffic Control)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Subtotal</td>
<td>416</td>
<td>647</td>
<td>231</td>
</tr>
<tr>
<td>Part Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drill Status Guardsmen</td>
<td>913</td>
<td>969</td>
<td>56</td>
</tr>
<tr>
<td>Total Personnel Assignments</td>
<td>1,329</td>
<td>1,616</td>
<td>287</td>
</tr>
<tr>
<td>Total Personnel On Base</td>
<td>1,051</td>
<td>1,306</td>
<td>255</td>
</tr>
</tbody>
</table>

Note: 1. Total personnel on base is the sum of all categories minus the number of people with two assignments.
2. Some personnel work off-site but are assigned to the unit.

2.3.3 Alternative #3 – Pease Air National Guard Station

2.3.3.1 Background

Pease ANGS, home of the 157th Air Refueling Wing (157 ARW) of the New Hampshire Air National Guard (NH ANG), is located in Portsmouth and Newington, New Hampshire, approximately 55 miles north of Boston, Massachusetts (Figure 2.3-5). The 157 ARW base is situated on the northeast side of the Portsmouth International Airport (IAP) at Pease, which is owned and operated by Pease Development Authority (PDA). The 157 ARW holds an indefinite lease for the installation property. The 157 ARW installation occupies approximately 220 acres.
Figure 2.3-5.
Regional Location
Pease ANGS
2.3.3.2 Mission

The primary mission of the 157 ARW is to provide worldwide support with the KC-135 air refueling tanker aircraft and to staff, equip, and train combat flying and combat support units to augment the USAF. In addition, the 157 ARW provides both homeland defense and assistance with state emergencies and natural disasters to protect life and property, and to preserve peace, order, and public safety. The major support operations performed at the installation include aircraft fueling, aircraft deicing, aircraft maintenance, AGE maintenance, ground vehicle maintenance, fueling of ground vehicles, and facilities maintenance. Pease ANGS also hosts the 64th Air Refueling Squadron (64 ARS), which stood up at Pease on October 2, 2009. The 64 ARS is administratively assigned to McConnell AFB’s 22nd Operations Group but is located with, and gets operational direction from, its host unit, the 157 ARW at Pease. This partnership is part of the USAF’s TFI effort to increase efficiency by combining active-duty, Guard, and Reserve resources. Aircrew, maintenance, and support personnel assigned to the 64 ARS work alongside Guardsmen flying and maintaining the 157 ARW’s aircraft to accomplish the Wing’s refueling missions. As of February 2013, 129 active associate personnel were authorized at Pease. It is the first active-duty USAF unit to return to the ANG Base since 1991, when Pease AFB, then an active-duty installation, closed.

Additionally, the installation has a Medical Training Group and operational command of the 260th Air Traffic Control Squadron, which operates the air traffic control tower for the airport (157 ARW 2008a).

2.3.3.3 Aircraft Conversion

Under Alternative #3, the 157 ARW would convert from 8 PAA KC-135 and 1 KC-135 BAI aircraft to 12 KC-46A PAA. Concurrent with the beddown of the 12 KC-46A PAA at Pease ANGS, the existing KC-135 aircraft would either be relocated to other installations or retired out of the USAF inventory, depending on the life-cycle status of each particular aircraft. Separate NEPA documentation would be prepared for any of the aircraft relocated to other installations.

2.3.3.4 Airfield Operations

Portsmouth IAP has one grooved concrete and asphalt runway, Runway 16/34, which is approximately 11,321 feet long and 150 feet wide (SkyVector 2013a).

The 157 ARW currently flies 1,382 sorties annually. According to the unit’s scheduling data and airport traffic counts, 614 were flown from Portsmouth IAP, or 44 percent of the annual sorties flown. The remaining sorties were flown from other airfields in the U.S. and/or overseas in support of operational missions. Actual airfield data indicates that the 157 ARW accounted for 6,140 annual operations with an average of 10.0 operations per sortie (Table 2.3-13).
Table 2.3-13. Current 157 ARW Operations at Portsmouth IAP

| Aircraft | Departures | | | | | Arrivals | | | | | | Total | | | | | | Grand Total |
|----------|------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| | Day | Night¹ | | | | |
| KC-135² | 2,939 | 131 | | 2,939 | 131 | | 5,878 | 262 | | 6,140 | | | | | |

Notes: 1. Night – Between 10 p.m. and 7 a.m. for environmental night.
2. Based on KC-135 data provided by 157 ARW/CC.

Source: 157 ARW 2013a.

Following the aircraft beddown under Alternative #3, the KC-46A aircraft would fly a total of 8,040 hours annually, with an ASD of 4.0 hours. This would result in 2,010 sorties, 44 percent of which would be performed at the home-station (Pease ANGS). Thus, 884 sorties would be flown at Pease ANGS annually under this alternative. This would be an increase of 44.0 percent over the baseline 614 annual sorties currently flown from Pease ANGS (it is assumed the same percentage of sorties would be flown away from Pease ANGS under this alternative as under the current baseline conditions). Based on 884 annual home-station sorties and an average of 10.0 operations per sortie, there would be 8,840 annual home-station operations, or an additional 2,700 airfield operations annually at Portsmouth IAP (Table 2.3-14). This would increase the average daily airfield operations from 16.8 to 24.2 (Table 2.3-15). There would be no changes expected to departure/arrival patterns and tracks, flight profiles, and use of runways. Current noise abatement procedures would continue to be followed (see Section 4.3.1, Noise).

Table 2.3-14. Proposed 157 ARW KC-46A Operations at Portsmouth IAP

| Aircraft | Departures | | | | | Arrivals | | | | | | Total¹ | | | | | | Grand Total¹ |
|----------|------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| | Day | Night¹ | | | | |
| KC-46A | 4,231 | 189 | | 4,231 | 189 | | 8,462 | 376 | | 8,840 | | | | | |

Notes: 1. Includes Closed Patterns (which count as two airfield operations).
2. Night – Between 10 p.m. and 7 a.m. for environmental night.

Table 2.3-15. Changes to 157 ARW Airfield Operations with Proposed KC-46A Aircraft

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>157 ARW</td>
<td>6,140 (16.8)</td>
<td>8,840 (24.2)</td>
<td>2,700 (44.0)</td>
</tr>
</tbody>
</table>

2.3.3.5 Airspace Operations

The 157 ARW conducts air refueling for both training and contingency missions for receiver aircraft. Primary air refueling tracks used by the 157 ARW are described in Table 2.3-16. Under Alternative #3, there would be a slight change to the frequency of use of the airspace due to the proposed increase in the sorties. The KC-46A will also have a requirement for training as a receiver aircraft (on-loading fuel) and will use the existing air refueling tracks as a receiver in
addition to the normal use as a refueling aircraft (off-loading fuel). However, the minutes in the airspace for each sortie, and the operational training conducted would not be expected to change in any of the airspace described.

Table 2.3-16. Current and Proposed Local Air Refueling Airspace Used by the 157 ARW¹

<table>
<thead>
<tr>
<th>Airspace Unit</th>
<th>Current Aircraft Proposed Aircraft</th>
<th>Minutes in Airspace for Each Sortie</th>
<th>Average KIAS</th>
<th>Annual Sortie Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR 020</td>
<td>KC-135</td>
<td>60</td>
<td>275</td>
<td>154</td>
</tr>
<tr>
<td>FL 190</td>
<td>KC-46A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR 777</td>
<td>KC-135</td>
<td>60</td>
<td>275</td>
<td>165</td>
</tr>
<tr>
<td>FL 210-FL 280</td>
<td>KC-46A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR 062</td>
<td>KC-135</td>
<td>60</td>
<td>275</td>
<td>78</td>
</tr>
<tr>
<td>FL 210-FL 280</td>
<td>KC-46A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR 107</td>
<td>KC-135</td>
<td>60</td>
<td>275</td>
<td>56</td>
</tr>
<tr>
<td>14,000 MSL – FL 230</td>
<td>KC-46A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AR 631</td>
<td>KC-135</td>
<td>60</td>
<td>275</td>
<td>198</td>
</tr>
<tr>
<td>FL 200-FL 260</td>
<td>KC-46A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W 102</td>
<td>KC-135</td>
<td>30</td>
<td>300</td>
<td>3</td>
</tr>
<tr>
<td>Above 17,000 MSL to</td>
<td>KC-46A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL 600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W 105</td>
<td>KC-135</td>
<td>30</td>
<td>300</td>
<td>16</td>
</tr>
<tr>
<td>SFC to FL 500</td>
<td>KC-46A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W 107</td>
<td>KC-135</td>
<td>30</td>
<td>315</td>
<td>19</td>
</tr>
<tr>
<td>Surface to Unlimited</td>
<td>KC-46A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W 122</td>
<td>KC-135</td>
<td>30</td>
<td>315</td>
<td>2</td>
</tr>
<tr>
<td>FL 190-FL 220</td>
<td>KC-46A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W 386</td>
<td>KC-135</td>
<td>30</td>
<td>315</td>
<td>3</td>
</tr>
<tr>
<td>Surface to Unlimited</td>
<td>KC-46A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kiwi MOA</td>
<td>KC-135</td>
<td>30</td>
<td>300</td>
<td>14</td>
</tr>
<tr>
<td>FL 190-FL 230</td>
<td>KC-46A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duke</td>
<td>KC-135</td>
<td>30</td>
<td>300</td>
<td>9</td>
</tr>
<tr>
<td>Surface to 8,000 MSL</td>
<td>KC-46A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Falcon MOA</td>
<td>KC-135</td>
<td>30</td>
<td>300</td>
<td>3</td>
</tr>
<tr>
<td>FL 200-FL 260</td>
<td>KC-46A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yankee 1²</td>
<td>KC-135</td>
<td>30</td>
<td>300</td>
<td>5</td>
</tr>
<tr>
<td>9,000 feet MSL UTBNI</td>
<td>KC-46A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL 180</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: 1. This table only shows KC-135 and KC-46A aircraft that are or would be flown by the 157 ARW in this airspace. Additional aircraft flown by other units that use this airspace are not shown.
2. MOA Floor is 9,000 feet MSL but no refueling occurs below 10,000 feet MSL.
KIAS = knots indicated airspeed; MSL = mean sea level; FL = Flight Level; MOA = military operations area; UTBNI = up to, but not including.

Source: 157 ARW 2013a.
2.3.3.6 Construction Required

Under Alternative #3, the 157 ARW would implement construction projects for the conversion to 12 KC-46A PAA (Table 2.3-17). The proposed construction projects would comply with standards set forth in ANG Handbook 32-1084, *Facility Space Standards* (November 2012). AT/FP requirements also would be incorporated. Proposed facilities would be sited approximately as shown in Figure 2.3-6. The precise layout and design of proposed facilities is in the early planning stages; therefore, exact locations and layouts are not finalized. Should locations and final layout of the facilities differ substantially from those anticipated and depicted herein, further environmental analysis would be required. Each of these projects is described in more detail in the following sections.

Implementation of the KC-46A aircraft beddown would require the 157 ARW to ensure its installation has properly sized and adequately configured facilities to support 12 KC-46A aircraft. The Pease ANGS location was deemed to have an acceptable level of facilities to support this beddown and has facilities that currently meet the majority of the requirements laid out in Section 2.1.2.2. However, some functional areas require modification. Proposed construction includes: renovation and additions to Buildings/Hangars 156, 264, 166, 251, 253, and 254; construction and upgrade of the taxiway; and demolition and installation of new fuel hydrants and fuel lines on the parking apron.

Construction projects would incorporate LEED and sustainable development concepts. This would achieve optimum resource efficiency, constructability, sustainability, and energy conservation, while minimizing adverse impacts to the built and natural environments through all phases of the project’s life cycle. While implementation of LEED standards may result in primary facility costs that exceed DoD costing standards, the initial investment in higher acquisition cost would be offset with lower life cycle costs. LEED certified construction is consistent with the requirements of the Energy Policy Act of 2005, 10 USC 2802, EO 13423, and other applicable laws and EOs.
Table 2.3-17. Proposed 157 ARW Construction Projects at Portsmouth IAP

<table>
<thead>
<tr>
<th>Project Description</th>
<th>Total New Construction Footprint (SF)</th>
<th>New Impervious Surface (SF)</th>
<th>Estimated Year of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project #1 (Option 1) – Renovation/Addition to Building 156¹</td>
<td>750</td>
<td>750</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Remove KC-135 Weapons System Trainer and reuse main bay for the KC-46A Weapons System Trainer; upgrade facilities to support storage in the simulator bays; and construct addition to the ground floor to house the Boom Operator Trainer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #1 (Option 2) – Renovation/Addition to Building 264¹</td>
<td>11,600</td>
<td>11,600</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would construct an 11,600 SF addition to Building 264 to house the KC-46A Weapons System Trainer Bay, KC-46A Boom Operator Trainer Bay, and Computer Server Room.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #2 - Addition to Building 166</td>
<td>1,100</td>
<td>1,100</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Add refueler vehicle parking spaces and driveway.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #3 – Internal Renovations to Hangar 251</td>
<td>0</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Renovate mezzanines for administrative space and alter hangar bay for deployment processing/fuselage trainer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #4 (Option 1)– Addition/Alteration to Hangar 253¹</td>
<td>18,985</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Remove existing hangar door and construct hangar addition; reconfigure interior for Fuel Cell Hangar, storage and maintenance, and corrosion control shops.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #4 (Option 2)– Demolition/Addition/Alteration to Hangar 253¹</td>
<td>36,026</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Demolish building and rebuild double hangar with Hangar 254.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #5– Demolition/Addition/Alteration to Hangar 254</td>
<td>18,530</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Construct new tail addition and reconfigure interior for KC-46A.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #6 – Alter Aircraft Taxiway</td>
<td>11,745</td>
<td>10,917</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Construct a concrete taxiway (6,843 SF), an asphalt shoulder (4,074 SF), and upgrade concrete taxiway (828 SF).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #7 – Demolition/Modify/Install Aprons and Hydrants</td>
<td>2,890</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would reuse existing hydrants in the north and south loops; add interstitial monitoring and secondary containment; and relocate parking.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #8 – Repave Quad Apron</td>
<td>49,075</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Repave surfaces used to tow aircraft in and out of the hangar and fuel cell, but not the entire facility.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>130,966</td>
<td>23,617</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Two options are possible for the modifications to these projects. Only one of these options would be implemented.
2. The total construction footprint includes only the project option that has the greatest footprint of each of the options so as to represent the most conservative (highest amount) facility footprint given the multiple options possible.
SF = square feet; FY = fiscal year
Alteration or Addition to Building 156 for Weapons System Trainer and Boom Operator Trainer

The KC-46A beddown would require the construction of a new KC-46A Weapons System Trainer and Boom Operator Trainer to train flight crews. One of two options could occur under Alternative #3 to satisfy this requirement. Option 1 would remove the KC-135 Weapons System Trainer in Building 156 and reuse the main bay for the KC-46A Weapons System Trainer. In addition, under Option 1, a 750 SF addition to Building 156 would be constructed to house the KC-46A Boom Operator Trainer. Option 2 would leave the KC-135 Weapons System Trainer in Building 156 and construct an 11,600 SF addition to the new Squadron Operations Building, Building 264 (currently under construction), to house the Weapons System Trainer, the KC-46A Boom Operator Trainer, and supporting Computer Server Room.

Additions to Building 166 Refueler Parking Area

Alteration of this facility is required to provide a facility large enough to house assigned R-11, R-12, and C-300 refueling vehicles. To accommodate refueling vehicles, covered parking spaces would be added, and a new driveway would be built (adjacent to Building 166). Following the construction, there would be an increase of approximately 1,100 SF of impervious surface as a result of this project.

Internal Renovations to Hangar 251

The Mezzanine within Hangar 251 would be renovated for KC-46A administrative space and the hangar bay would be altered to accommodate the Fuselage Trainer and Deployment Processing Center. In addition, the utilities for aircraft power and potable water would be upgraded.

Addition to Hangar 253 and Hangar 254

The hangar bays require enough space to use the support equipment such as stands and carts to perform KC-46A maintenance functions. The hangars would house the maintenance shops, tool cribs, and personnel. The KC-46A is a military derivative of a commercial Boeing 767 aircraft and has a slightly larger footprint than the KC-135, thus requiring slightly larger hangars. Hangar 254 and Hangar 253 require modifications to meet KC-46A requirements. One of two options could occur under Alternative #3 to satisfy these requirements.
Under Option 1, an 18,985 SF addition would be added to the hangar, while existing maintenance shops would be reused, and a 2-hour firewall would be added. A high-bay tail addition and door would be added to the south side of this hangar. Also, mid-bay areas for Wing Air Refueling Pod storage and maintenance with overhead cranes, and corrosion control would be built. Mezzanines would be renovated for administrative use. Under Option 2, both Hangar 253 and the hangar space in Hangar 254 would be demolished. A new 36,026 SF double hangar would be built incorporating the existing Hangar 253 shops in Hangar 254.

Addition to Hangar 254

The existing dormer would be demolished and a new 18,530 SF dormer would be added to the hangar to accommodate the KC-46A. The existing roofs would also be replaced. Excess space in the existing jet engine shop would be used to store aircraft support equipment. The existing maintenance shops would be reused.

Alter Aircraft Taxiway

Alteration of the existing taxiway would be required at Pease ANGS to enable the KC-46A aircraft to access the maintenance hangars. The existing taxiway from the main apron to the hangar area is configured for towing of KC-135 aircraft to the existing hangars. Construction of tail additions combined with the larger dimensions of the KC-46A would not allow the existing taxiway to be reused as-is. In addition, the taxiways would need to be wide enough to support the turning radii of the KC-46A. Under Alternative #3, 828 SF of concrete taxiway would be upgraded, and 6,843 SF concrete taxiway and 4,074 SF asphalt shoulder would be constructed to the quad area to accommodate the aircraft. Following the construction, there would be an increase of approximately 10,917 SF of impervious surface as a result of this project.
New Hydrants and Demolition of Existing Hydrants

The beddown of 12 PAA KC-46A aircraft requires a minimum of 8 KC-46A parking spots with a fuel hydrant at each location. A fuel hydrant system provides all the equipment and controls to provide clean fuel to fueling points in the aircraft parking apron. The system reduces the amount of physical movement of fuel around an airfield. One of two options could occur under Alternative #3 to satisfy this requirement. Option 1 would reuse six of the seven existing hydrants in North Loop and would cap one hydrant under the proposed parking area. In the South Loop, interstitial monitoring and secondary containment would be added; only two hydrants would be used in this area. Under Option 2, the old piping would be demolished and new piping installed; valves and pits would be installed in Rows 4 and 5. Eight existing hydrant valve pits would be used. Approximately 2,890 SF of disturbance would occur as a result of the new hydrants and fuel lines.

Quad Apron

This project would repave surfaces used to tow aircraft in and out of the hangar and fuel cell. The quad apron is currently degrading and is in need of renovations for KC-46A operations. Under Alternative #3, 49,075 SF of surface area used to tow aircraft in and out of the hangar and fuel cell would be repaved.

2.3.3.7 Personnel Changes

The 157 ARW currently is authorized 1,382 personnel (Table 2.3-18). Under Alternative #3, the KC-46A mission would add an additional 171 military positions to the authorized manning requirement (approximately a 12 percent increase in total personnel). Changes to authorized personnel under this alternative are shown in Table 2.3-18.

Table 2.3-18. Comparison of Currently Authorized and Proposed 157 ARW Personnel

<table>
<thead>
<tr>
<th>Personnel</th>
<th>Authorized</th>
<th>Proposed</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Associate (USAF)</td>
<td>127</td>
<td>199</td>
<td>72</td>
</tr>
<tr>
<td>Active Guard and Reserve</td>
<td>120</td>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>Dual Status Technician (Guard civilians, federal)</td>
<td>283</td>
<td>326</td>
<td>43</td>
</tr>
<tr>
<td>Non-Dual Status (DoD civilians, Air Traffic Control)</td>
<td>9</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Subtotal</td>
<td>539</td>
<td>654</td>
<td>115</td>
</tr>
<tr>
<td>Part Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drill Status Guardsmen</td>
<td>843</td>
<td>899</td>
<td>56</td>
</tr>
<tr>
<td>Total Personnel Assignments</td>
<td>1,382</td>
<td>1,553</td>
<td>171</td>
</tr>
<tr>
<td>Total Personnel On Base</td>
<td>1,099</td>
<td>1,227</td>
<td>128</td>
</tr>
</tbody>
</table>

Note: 1. Total personnel on base is the sum of all categories minus the number of people with two assignments.
2. Some personnel work off-site but are assigned to the unit.
2.3.4 Alternative #4 – Pittsburgh Air National Guard Station

2.3.4.1 Background

Pittsburgh ANGS, home of the 171st Air Refueling Wing (171 ARW) of the Pennsylvania Air National Guard (PA ANG), is located approximately 12 miles northwest of Pittsburgh, Pennsylvania in Allegheny County (Figure 2.3-7). The 171 ARW installation is situated on the southeastern side of the Pittsburgh IAP, an international airport owned and operated by the Allegheny County Airport Authority (ACAA). The 171 ARW installation currently occupies approximately 179 acres in the southeastern corner of Pittsburgh IAP. The 171 ARW holds a lease with the Pittsburgh IAP with a termination date of 2050.

2.3.4.2 Mission

The mission of the 171 ARW is to provide support for federal, state, and community interests by providing timely worldwide air refueling, airlift, and support forces; protecting life and property; and preserving peace, order, and public safety. The 171 ARW currently flies and maintains 16 KC-135 refueler aircraft to support its air refueling mission. The primary support operations performed at the 171 ARW include aircraft fueling, aircraft deicing, aircraft maintenance, aerospace support equipment maintenance, ground vehicle maintenance, fueling of ground vehicles, and facilities maintenance. These operations involve activities such as corrosion control, non-destructive inspection, fuel cell maintenance, engine maintenance, hydraulics, and wheel and tire maintenance.

2.3.4.3 Aircraft Conversion

Under Alternative #4, the 171 ARW would convert from 16 KC-135 PAA and no KC-135 BAI to 12 KC-46A PAA. Concurrent with the beddown of the 12 KC-46A PAA at Pittsburgh ANGS, the existing KC-135 aircraft would either be relocated to other installations or retired out of the USAF inventory, depending on the life-cycle status of each particular aircraft. Separate NEPA documentation would be prepared for any of the aircraft relocated to other installations.
Figure 2.3-7. Regional Location, Pittsburgh ANGS
2.3.4.4 Airfield Operations

Pittsburgh IAP has four runways. Runway 10R/28L is 11,500 feet long and 200 feet wide. Runway 10L/28R is 10,502 feet long and 150 feet wide. Runway 10C/28C is 10,774 feet long for takeoff and 9,708 feet long for landing and 150 feet wide. Runway 14/32 is 8,101 feet long and 150 feet wide (AirNav 2013b).

The 171 ARW currently flies 1,569 sorties annually. According to the unit’s scheduling data and airport traffic counts, 926 were flown from Pittsburgh IAP, or 59 percent of the total annual sorties flown (171 ARW 2013a). The remaining sorties were flown from other airfields in the U.S. and/or overseas in support of operational missions. Actual airfield data indicates that the 171 ARW flew 6,943 airfield operations with an average of 7.5 operations per sortie during 2012 (Table 2.3-19).

Table 2.3-19. Current 171 ARW KC-135 Aircraft Operations at Pittsburgh IAP

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>DEPARTURES</th>
<th>ARRIVALS</th>
<th>TOTAL</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night1</td>
<td>Day</td>
<td>Night1</td>
</tr>
<tr>
<td>KC-135</td>
<td>3,272</td>
<td>200</td>
<td>3,176</td>
<td>295</td>
</tr>
</tbody>
</table>

Notes: 1. Includes Closed Patterns (which count as two airfield operations). 2. Night – Between 10 p.m. and 7 a.m. for environmental night.
Source: 171 ARW 2013a.

Following the aircraft beddown under Alternative #4, the KC-46A aircraft would fly a total of 8,040 hours annually, with an ASD of 4.0 hours. This would result in 2,010 sorties, 59 percent of which would be performed at the home-station (Pittsburgh ANGS). Thus, 1,186 sorties would be flown at Pittsburgh IAP annually under this alternative. This would be an increase of 27 percent over the baseline 926 sorties currently flown at Pittsburgh IAP (it is assumed that the same percentage of the sorties found under current baseline conditions would be flown at Pittsburgh IAP under this alternative). Based on 1,186 annual home-station sorties and an average of 7.78 operations per sortie, there would be 9,226 annual home-station operations, or an additional 2,283 airfield operations annually at Pittsburgh IAP (Table 2.3-20). This would increase the average daily airfield operations from 19.0 to 25.3 (Table 2.3-21). There would be no changes expected to departure/arrival patterns and tracks, and use of runways. Current noise abatement procedures would continue to be followed (see Section 4.4.1, Noise).

Table 2.3-20. Proposed 171 ARW KC-46A Operations at Pittsburgh IAP

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>DEPARTURES</th>
<th>ARRIVALS</th>
<th>TOTAL</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night1</td>
<td>Day</td>
<td>Night1</td>
</tr>
<tr>
<td>KC-46A</td>
<td>4,287</td>
<td>326</td>
<td>4,275</td>
<td>338</td>
</tr>
</tbody>
</table>

Notes: 1. Includes Closed Patterns (which count as two airfield operations). 2. Night – Between 10 p.m. and 7 a.m. for environmental night.
Table 2.3-21. Changes to 171 ARW Airfield Operations with Proposed KC-46A Aircraft

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>171 ARW</td>
<td>6,943 (19.0)</td>
<td>9,226 (25.3)</td>
<td>2,283 (32.9%)</td>
</tr>
</tbody>
</table>

2.3.4.5 Airspace Operations

The 171 ARW conducts air refueling for both training and contingency missions for the receiver aircraft. Primary air refueling tracks used by the 171 ARW are described in Table 2.3-22. Under Alternative #4, there would be a slight change to the frequency of use due to the proposed increase in the sorties. The KC-46A will also have a requirement for training as a receiver aircraft (on-loading fuel) and will be using the existing air refueling tracks as a receiver in addition to the normal use as a refueling aircraft (off-loading fuel), but the minutes in the airspace for each sortie, and the operational training conducted would not change in any of the airspace described.

2.3.4.6 Construction Required

Under Alternative #4, 12 KC-46A PAA aircraft would be beddown at the 171 ARW installation at Pittsburgh ANGS; the 171 ARW would also implement minor construction projects for that conversion (Table 2-3-23). The proposed construction projects would comply with standards set forth in ANG Handbook 32-1084, Facility Space Standards (November 2012). AT/FP requirements would also be addressed to the extent practicable. Proposed facilities would be sited approximately as shown in Figure 2.3-8. The precise layout and design of proposed facilities is in the early planning stages, and therefore, exact locations and layouts are not finalized. Should locations and final layout of the facilities differ substantially from those anticipated and depicted herein, further environmental analysis would be required. Each of these projects is described in more detail in the following sections.
Table 2.3-22. Current and Proposed Local Air Refueling Airspace Used by the 171 ARW

<table>
<thead>
<tr>
<th>Airspace Unit</th>
<th>Altitude2 Floor and Ceiling</th>
<th>Current Aircraft</th>
<th>Minutes in Airspace for Each Sortie</th>
<th>Average KIAS</th>
<th>ANNUAL SORTIE OPERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Proposed Aircraft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duke MOA3</td>
<td>ATCAA 8,000 feet –FL180 ATCAA FL180-As Assigned</td>
<td>KC-135 KC-46A</td>
<td>30</td>
<td>315</td>
<td>17 18</td>
</tr>
<tr>
<td>W1054</td>
<td>Surface-FL500</td>
<td>KC-135 KC-46A</td>
<td>45</td>
<td>315</td>
<td>45 54</td>
</tr>
<tr>
<td>W1074</td>
<td>Surface-Unlimited</td>
<td>KC-135 KC-46A</td>
<td>45</td>
<td>315</td>
<td>35 42</td>
</tr>
<tr>
<td>193WA</td>
<td>TBD</td>
<td>KC-135 KC-46A</td>
<td>60</td>
<td>210</td>
<td>80 97</td>
</tr>
<tr>
<td>AR 777</td>
<td>FL210-FL280</td>
<td>KC-135 KC-46A</td>
<td>75</td>
<td>275</td>
<td>56 68</td>
</tr>
<tr>
<td>AR 109H/L</td>
<td>FL250-310H FL190-230L</td>
<td>KC-135 KC-46A</td>
<td>45</td>
<td>275</td>
<td>41 49</td>
</tr>
<tr>
<td>AR 110</td>
<td>FL240-270</td>
<td>KC-135 KC-46A</td>
<td>50</td>
<td>260</td>
<td>21 25</td>
</tr>
<tr>
<td>AR 609</td>
<td>FL180-FL280</td>
<td>KC-135 KC-46A</td>
<td>60</td>
<td>300</td>
<td>25 30</td>
</tr>
<tr>
<td>AR 631</td>
<td>FL200-FL260</td>
<td>KC-135 KC-46A</td>
<td>60</td>
<td>265</td>
<td>30 36</td>
</tr>
<tr>
<td>AR 206H/L</td>
<td>FL280-FL310H FL250-FL270L</td>
<td>KC-135 KC-46A</td>
<td>50</td>
<td>295</td>
<td>14 16</td>
</tr>
<tr>
<td>KIWI MOA5</td>
<td>FL190-FL230</td>
<td>KC-135 KC-46A</td>
<td>60</td>
<td>315</td>
<td>20 24</td>
</tr>
<tr>
<td>AR 636</td>
<td>FL200-290</td>
<td>KC-135 KC-46A</td>
<td>60</td>
<td>300</td>
<td>16 19</td>
</tr>
<tr>
<td>AR 202</td>
<td>FL260-FL280</td>
<td>KC-135 KC-46A</td>
<td>55</td>
<td>265</td>
<td>29 35</td>
</tr>
<tr>
<td>AR 207</td>
<td>FL260-280</td>
<td>KC-135 KC-46A</td>
<td>75</td>
<td>265</td>
<td>37 45</td>
</tr>
<tr>
<td>AR 216</td>
<td>FL260-FL280</td>
<td>KC-135 KC-46A</td>
<td>75</td>
<td>265</td>
<td>33 39</td>
</tr>
<tr>
<td>AR 220</td>
<td>FL190-FL220</td>
<td>KC-135 KC-46A</td>
<td>70</td>
<td>275</td>
<td>239 289</td>
</tr>
<tr>
<td>AR 633</td>
<td>FL180-FL230</td>
<td>KC-135 KC-46A</td>
<td>60</td>
<td>275</td>
<td>40 48</td>
</tr>
<tr>
<td>AR 328</td>
<td>FL180-FL230</td>
<td>KC-135 KC-46A</td>
<td>60</td>
<td>275</td>
<td>20 24</td>
</tr>
</tbody>
</table>

Notes:
1. This table only shows KC-135 and KC-46A aircraft that are or would be flown by the 171 ARW in this airspace. Additional aircraft flown by other units that use this airspace are not shown.”
2. FL Altitude is Mean Sea Level.
3. Military Operations Area (MOA) but no refuelings occur below 10,000 feet MSL.
4. W-Warning Area Floor is the Surface but no refuelings occur below 10,000 feet MSL.

KIAS = knots indicated airspeed; MOA = Military Operations Area; ATCAA = Air Traffic Control Assigned Airspace; FL = Flight Level

Source: 171 ARW 2013a.
Table 2.3-23. Proposed 171 ARW Construction Projects at Pittsburgh IAP

<table>
<thead>
<tr>
<th>Project Description</th>
<th>Total New Construction Footprint (SF)</th>
<th>New Impervious Surface (SF)</th>
<th>Estimated Year of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project #1 – Addition to Hangar 302</td>
<td>20,464</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would involve the addition of a 20,464 SF addition to the existing Maintenance Hangar 302 in order to provide an adequately sized hangar for the new KC-46A aircraft.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #2 – Addition to Hangar 320</td>
<td>19,180</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would involve the addition of a 19,180 SF addition to the existing Fuel Cell Hangar 320 in order to provide an adequately sized hangar for the new KC-46A aircraft.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #3 – Internal Renovation to Hangar 301</td>
<td>0</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would include internal renovations only in order to provide sufficient space to house the KC-46A Fuselage Trainer, the Weapons System Trainer, and the Boom Operator Trainer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #4 – Modifications to Existing Parking Ramp and Taxiway</td>
<td>143,505</td>
<td>88,529</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would include the addition of 143,505 SF of concrete and asphalt to the existing parking ramp and taxiway that leads to the parking ramp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #5 – New Hydrants and Fuel Lines and Demolition of Existing Hydrants</td>
<td>3,246</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would include the addition of eight new fuel hydrants as well as new fuel lines to these hydrants. Approximately 58,335 SF of disturbance would occur as a result of the new hydrants and fuel lines.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>186,395</td>
<td>88,529</td>
<td></td>
</tr>
</tbody>
</table>

Notes: SF = square foot; FY = fiscal year
Figure 2.3-8. Construction Associated with Alternative #4, Pittsburgh ANGS
Implementation of the KC-46A aircraft beddown would require the 171 ARW to ensure their installation has properly sized and adequately configured facilities to support 12 KC-46A aircraft. Although the Pittsburgh ANGS location was deemed to have an acceptable level of facilities to support this beddown, and has facilities that currently meet the majority of the requirements laid out in Section 2.1.2.2, there remain some functional areas that require modification. Proposed construction includes an addition to Hangar 302, an addition to Hangar 320, internal renovations of Hangar 301, modification to existing ramp and taxiway, and addition and demolition of hydrants and fuel lines on the parking apron.

The projects described below would incorporate LEED and sustainable development concepts, so as to achieve optimum resource efficiency, constructability, sustainability, and energy conservation, while minimizing adverse impacts to the built and natural environments through all phases of their life cycle. This may result in primary facility costs exceeding DoD costing standards, but the initial investment in higher acquisition cost would be rewarded with lower life cycle costs. This is consistent with the requirements of the Energy Policy Act of 2005, 10 USC 2802, EO 13423, and other applicable laws and EOs.

Addition to Hangar 302

A minimum of one Maintenance Hangar is required to support the maintenance and operations of KC-46A. Hangars provide an environmentally controlled area to perform maintenance. The hangar bays require enough space to use the support equipment such as stands and carts to perform maintenance functions. The hangars would house the maintenance shops, tool cribs, and personnel. The KC-46A is a military derivative of a commercial Boeing 767 aircraft and has a slightly larger footprint than the KC-135. Therefore, a 20,464 SF addition to Hangar 302 would need to be added in order to accommodate the larger aircraft inside the maintenance hangar.
Addition to Hangar 320

A minimum of one Fuel Systems Maintenance Hangar is required to support the maintenance and operations of KC-46A. The Fuel Systems Maintenance Hangar provides space for covered aircraft maintenance, shop, and administrative functions, and contains utilities and safety systems required to perform fuel systems maintenance to include pressure checks and inspections. Aircraft hangar space is required for on-aircraft open fuel cell maintenance. The KC-46A is a military derivative of a commercial Boeing 767 aircraft and has a slightly larger footprint than the KC-135. Therefore, a 19,180 SF addition to Hangar 320 would need to be added in order to accommodate the larger aircraft inside the maintenance hangar.

Internal Renovations to Hangar 301

Internal renovations to Hangar 301 would be made in order to house the KC-46A Fuselage Trainer, the Weapons System Trainer, and the Boom Operator Trainer.

Modifications to Existing Parking Ramp and Taxiway

The proposed beddown of 12 PAA KC-46A aircraft requires a minimum of 8 KC-46A parking spots with a fuel hydrant at each location. Additional concrete would need to be added to the parking ramp and taxiway at Pittsburgh IAP in order to increase the size of the parking ramp to accommodate the larger KC-46A aircraft. In addition, the taxiways would need to be wide enough to support the turning radii of the KC-46A. Therefore, under Alternative #4, the addition of 143,505 SF of concrete and asphalt would be added to the existing parking ramp and the taxiway that leads to the parking ramp. Following the construction, there would be an increase of approximately 88,529 SF of impervious surface as a result of this project.

New Hydrants and Fuel Lines and Demolition of Existing Hydrants

As stated above, the proposed beddown of 12 PAA KC-46A aircraft requires a minimum of 8 KC-46A parking spots with a fuel hydrant at each location. A fuel hydrant system provides all
the equipment and controls to provide clean fuel to fueling points in the aircraft parking apron. The system reduces the amount of physical movement of fuel around an airfield. Under Alternative #4, eight new fuel hydrants would be added to the existing parking ramp as well as new fuel lines to one of these hydrants. Approximately 3,246 SF of disturbance would occur as a result of the new hydrants and fuel lines.

2.3.4.7 Personnel Changes

The 171 ARW currently is authorized 1,306 personnel (Table 2.3-24). Under Alternative #4, the KC-46A mission would add an additional 59 military positions to the authorized manning requirement (approximately a 5 percent increase in total personnel). Changes to the authorized personnel under this alternative are shown in Table 2.3-24.

Table 2.3-24. Comparison of Currently Authorized and Proposed 171 ARW Personnel

<table>
<thead>
<tr>
<th>Personnel</th>
<th>Authorized</th>
<th>Proposed</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Associate (USAF)</td>
<td>0</td>
<td>199</td>
<td>199</td>
</tr>
<tr>
<td>Active Guard and Reserve</td>
<td>101</td>
<td>101</td>
<td>0</td>
</tr>
<tr>
<td>Dual Status Technician (Guard civilians, federal)</td>
<td>292</td>
<td>328</td>
<td>36</td>
</tr>
<tr>
<td>Non-Dual Status (DoD civilians, Air Traffic Control)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Subtotal</td>
<td>393</td>
<td>628</td>
<td>235</td>
</tr>
<tr>
<td>Part Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drill Status Guardsmen</td>
<td>913</td>
<td>737</td>
<td>-176</td>
</tr>
<tr>
<td>Total Personnel Assignments</td>
<td>1,306</td>
<td>1,365</td>
<td>59</td>
</tr>
<tr>
<td>Total Personnel On Base</td>
<td>1,014</td>
<td>1,037</td>
<td>23</td>
</tr>
</tbody>
</table>

Note:
1. Total personnel on base is the sum of all categories minus the number of people with two assignments.
2. Some personnel work off-site but are assigned to the unit.

2.3.5 Alternative #5 – Rickenbacker Air National Guard Station

2.3.5.1 Background

Rickenbacker ANGS, home of the 121st Air Refueling Wing (121 ARW) of the Ohio Air National Guard (OH ANG), is located approximately 12 miles southeast of downtown Columbus, Ohio in Franklin County (Figure 2.3-9). The 121 ARW installation is situated on the west side of Rickenbacker IAP, an international airport operated by the Columbus Regional Airport Authority (CRAA). The 121 ARW holds a lease with the Rickenbacker IAP for the installation property with a termination date of 2061. The installation occupies approximately 170 acres, most of which are within the main cantonment area.
Figure 2.3-9.
Regional Location
Rickenbacker ANGS
2.3.5.2 Mission

The mission of the 121 ARW is to provide support for federal, state, and community interests by providing timely worldwide air refueling, airlift, and support forces; protecting life and property; and preserving peace, order, and public safety. The 121 ARW currently flies and maintains 18 KC-135 refueler aircraft to support its air refueling mission. The primary support operations performed at the 121 ARW include aircraft fueling, aircraft deicing, aircraft maintenance, aerospace support equipment maintenance, ground vehicle maintenance, fueling of ground vehicles, and facilities maintenance. These operations involve activities such as corrosion control, non-destructive inspection, fuel cell maintenance, engine maintenance, hydraulics, and wheel and tire maintenance.

2.3.5.3 Aircraft Conversion

Under Alternative #5, the 121 ARW would convert from 18 KC-135 PAA and no KC-135 BAI to 12 KC-46A PAA. Concurrent with the beddown of the 12 KC-46A PAA at Rickenbacker ANGS, the existing KC-135 aircraft would either be relocated to other installations or retired out of the USAF inventory, depending on the life-cycle status of each particular aircraft. Separate NEPA documentation would be prepared for any of the aircraft relocated to other installations, as necessary.

2.3.5.4 Airfield Operations

Rickenbacker IAP has two parallel runways spaced approximately 1,000 feet apart. Runway 05R/23L is 12,102 feet long and 200 feet wide and Runway 05L/23R is 11,902 feet long and 150 feet wide (AirNav 2013c).

In 2012, the 121 ARW flew 2,014 sorties. According to the unit’s scheduling data and airport traffic counts, the unit flew 1,289 of these sorties from Rickenbacker IAP, or 64 percent of the total annual sorties flown. The remaining sorties were flown from other airfields in the U.S. and/or overseas in support of operational missions. Actual airfield data indicates that the 121 ARW conducted 6,445 operations with an average of 5.0 operations per sortie at the airfield (Table 2.3-25).

Table 2.3-25. Current 121 ARW KC-135 Operations at Rickenbacker IAP

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>DEPARTURES</th>
<th>ARRIVALS</th>
<th>TOTAL</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night</td>
<td>Day</td>
<td>Night</td>
</tr>
<tr>
<td>KC-135</td>
<td>3,223</td>
<td>0</td>
<td>3,061</td>
<td>161</td>
</tr>
</tbody>
</table>

Notes: 1. Includes Closed Patterns (which count as two airfield operations).
2. Night – Between 10 p.m. and 7 a.m. for environmental night.
3. Night operations are limited due to Maintenance Union Agreement.

Source: 121 ARW 2013a.
Following the aircraft beddown under Alternative #5, the KC-46A aircraft would fly a total of 8,040 hours annually, with an ASD of 4.0 hours. This would result in 2,010 annual sorties, 64 percent of which would be performed at the home-station (Rickenbacker ANGS). Thus, it is expected that up to 1,286 sorties would be flown at Rickenbacker IAP annually under this alternative. This would be essentially the same as the baseline 1,289 sorties (it is assumed that the same percentage of the sorties found under current baseline conditions would be flown at Rickenbacker IAP under this alternative). Based on 1,286 annual home-station sorties and an average of 5.33 operations per sortie, there would be 6,857 annual home-station operations, or an additional 412 airfield operations annually at Rickenbacker IAP (Table 2.3-26). This would increase the average daily airfield operations from 17.7 to 18.8 (Table 2.3.27). There would be no changes expected to departure/arrival patterns and tracks, and use of runways. Current noise abatement procedures would continue to be followed (see Section 4.5.1, Noise).

Table 2.3-26. Proposed 121 ARW KC-46A Aircraft Operations at Rickenbacker IAP

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>DEPARTURES</th>
<th>ARRIVALS</th>
<th>TOTAL</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night</td>
<td>Day</td>
<td>Night</td>
</tr>
<tr>
<td>KC-46A</td>
<td>3,424</td>
<td>0</td>
<td>3,157</td>
<td>276</td>
</tr>
</tbody>
</table>

Notes: 1. Includes Closed Patterns (which count as two airfield operations). 2. Night – Between 10 p.m. and 7 a.m. for environmental night. 3. Night Operations are limited due to Maintenance Union Agreement.

Table 2.3-27. Changes to 121 ARW Airfield Operations with Proposed KC-46A Aircraft

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>121 ARW</td>
<td>6,445 (17.7)</td>
<td>6,857 (18.8)</td>
<td>412 (6.4%)</td>
</tr>
</tbody>
</table>

2.3.5.5 Airspace Operations

The 121 ARW conducts air refueling for both training and contingency missions for the receiver aircraft. Primary air refueling tracks used by the 121 ARW are described in Table 2.3-28. Under Alternative #5, there would be a slight change to the frequency of use due to the proposed increase in the sorties. The KC-46A will also have a requirement for training as a receiver aircraft (on-loading fuel) and will use the existing air refueling tracks as a receiver in addition to the normal use as a refueling aircraft (off-loading fuel). However, the minutes in the airspace for each sortie and the operational training conducted would not be expected to change in any of the airspace described.
Table 2.3-28. Current and Proposed Local Air Refueling Airspace Used by the 121 ARW

<table>
<thead>
<tr>
<th>Airspace Unit</th>
<th>Current Aircraft</th>
<th>Proposed Aircraft</th>
<th>Minutes in Airspace for Each Sortie</th>
<th>Average KIAS</th>
<th>ANNUAL SORTIE OPERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6,000 feet MSL</td>
<td>KC-135</td>
<td>30</td>
<td>300</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>- FL500 KIAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buckeye MOA</td>
<td></td>
<td>KC-135</td>
<td>30</td>
<td>315</td>
<td>24</td>
</tr>
<tr>
<td>ATCAA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steelhead MOA</td>
<td></td>
<td>KC-135</td>
<td>60</td>
<td>275</td>
<td>150</td>
</tr>
<tr>
<td>ATCAA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL240-FL260</td>
<td></td>
<td>KC-135</td>
<td>60</td>
<td>275</td>
<td>150</td>
</tr>
<tr>
<td>AR 202</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL260-FL280</td>
<td></td>
<td>KC-135</td>
<td>60</td>
<td>275</td>
<td>150</td>
</tr>
<tr>
<td>AR 207</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL260-280</td>
<td></td>
<td>KC-135</td>
<td>60</td>
<td>275</td>
<td>150</td>
</tr>
<tr>
<td>AR 216</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL260-FL280</td>
<td></td>
<td>KC-135</td>
<td>60</td>
<td>275</td>
<td>150</td>
</tr>
<tr>
<td>AR 220</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL190-FL220</td>
<td></td>
<td>KC-135</td>
<td>60</td>
<td>275</td>
<td>150</td>
</tr>
<tr>
<td>AR 315</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL190-FL210</td>
<td></td>
<td>KC-135</td>
<td>60</td>
<td>275</td>
<td>150</td>
</tr>
<tr>
<td>AR 328</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL180-FL230</td>
<td></td>
<td>KC-135</td>
<td>60</td>
<td>275</td>
<td>150</td>
</tr>
<tr>
<td>AR 455</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FL250-FL270</td>
<td></td>
<td>KC-135</td>
<td>60</td>
<td>275</td>
<td>150</td>
</tr>
</tbody>
</table>
| Notes: | 1. This table only shows KC-135 and KC-46A aircraft that are or would be flown by the 121 ARW in this airspace. Additional aircraft flown by other units that use this airspace are not shown.
2. MOA Floor is 6,000 feet MSL but no refueling occurs below 10,000 feet MSL
3. 50,000 feet MSL (FL500)
KIAS = knots indicated airspeed; MOA = military operations area; ATCAA = Air Traffic Control Assigned Airspace; MSL = mean sea level; FL = Flight Level
Source: 121 ARW 2013b.

2.3.5.6 Construction Required

Under Alternative #5, 12 KC-46A PAA aircraft would be beddown at the 121 ARW installation at Rickenbacker ANGS; the 121 ARW would also implement minor construction projects for that conversion (Table 2.3-29). The proposed construction projects would comply with standards set forth in ANG Handbook 32-1084, *Facility Space Standards* (November 2012). AT/FP requirements would also be addressed to the extent practicable. Proposed facilities would be sited approximately as shown in Figure 2.3-10. The precise layout and design of proposed facilities is in the early planning stages, and therefore, exact locations and layouts are not finalized. Should locations and final layout of the facilities differ substantially from those anticipated and depicted herein, further environmental analysis would be required. Each of these projects is described in more detail in the following sections.

Implementation of the KC-46A aircraft beddown would require the 121 ARW to ensure their installation has properly sized and adequately configured facilities to support 12 KC-46A aircraft. Although the Rickenbacker ANGS location was deemed to have an acceptable level of facilities to support this beddown, and has facilities that currently meet the majority of the requirements laid out in Section 2.1.2.2, there remain some functional areas that require
modification. Proposed construction includes additions and renovations to Hangar 885, an addition to Hangar 883, internal renovations of Hangar 888, modifications to the existing ramp and taxiway, and addition and demolition of hydrants and fuel lines on the parking apron.

The projects described below would incorporate LEED and sustainable development concepts, so as to achieve optimum resource efficiency, constructability, sustainability, and energy conservation, while minimizing adverse impacts to the built and natural environments through all phases of their life cycle. This may result in primary facility costs exceeding DoD costing standards, but the initial investment in higher acquisition cost would be rewarded with lower life cycle costs. This is consistent with the requirements of the Energy Policy Act of 2005, 10 USC 2802, EO 13423, and other applicable laws and EOs.

Table 2.3-29. Proposed 121 ARW Construction Projects at Rickenbacker IAP

<table>
<thead>
<tr>
<th>Project Description</th>
<th>Total New Construction Footprint (SF)</th>
<th>New Impervious Surface (SF)</th>
<th>Estimated Year of Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project #1 – Addition and Modifications to Hangar 885</td>
<td>4,000</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would involve a 4,000 SF addition to the existing Maintenance Hangar 885 in order to provide an adequately sized hangar for the new KC-46A aircraft, and modification of existing spaces to address changes in the Life Safety code. The Weapons System Trainer and the Boom Operator Trainer would also be installed within this facility.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #2 – Addition to Hangar 883</td>
<td>17,290</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would involve a 17,290 SF addition to the existing Fuel Cell Hangar 883 in order to provide an adequately sized hangar for the new KC-46A aircraft.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #3 – Internal Renovation to Hangar 888</td>
<td>0</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would include internal renovations only in order to provide sufficient space to house the KC-46A Fuselage Trainer.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #4 – Modifications to Existing Parking Ramp and Taxilane</td>
<td>338,877</td>
<td>14,660</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would include the renovation of 338,877 SF of concrete to the existing parking ramp and the taxilane that leads to the hangars from the parking ramp, as well as the end of this same parking ramp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project #5 – New Hydrants and Fuel Lines and Demolition of Existing Hydrants</td>
<td>8,163</td>
<td>0</td>
<td>FY 2015</td>
</tr>
<tr>
<td>This project would include the addition of seven new fuel hydrants. New fuel lines would be added to two of these hydrants, while five would be re-piped from the existing spurs. In addition, demolition of seven hydrants would occur. Approximately 8,163 SF of disturbance would occur as a result of the new hydrants and fuel lines, while an additional 1,206 SF of disturbance would occur as a result of the demolition of existing hydrants and fuel lines.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>368,330</td>
<td>14,660</td>
<td></td>
</tr>
</tbody>
</table>

Notes: SF = square foot; FY = fiscal year
Figure 2.3-10. Construction Associated with Alternative #5, Rickenbacker ANGS

Chapter 2 Description of the Proposed Action and Alternatives

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS

2-52
Addition and Modifications to Hangar 885

A minimum of one Maintenance Hangar is required to support the maintenance and operations of KC-46A. Hangars provide an environmentally controlled area to perform maintenance. The hangar bays require enough space to use the support equipment such as stands and carts to perform maintenance functions. The hangars will house the maintenance shops, tool cribs, and personnel. The KC-46A is a military derivative of a commercial Boeing 767 aircraft and has a slightly larger footprint than the KC-135. Therefore, a 4,000 SF addition to Hangar 885 would need to be added in order to accommodate the larger aircraft inside the maintenance hangar. Interior modifications of Hangar 885 are required to address changes to Life Safety Codes.

Addition to Hangar 883

A minimum of one Fuel Systems Maintenance Hangar is required to support the maintenance and operations of KC-46A. The Fuel Systems Maintenance Hangar provides space for covered aircraft maintenance, shop, and administrative functions, and contains utilities and safety systems required to perform fuel systems maintenance to include pressure checks and inspections. Aircraft hangar space is required for on-aircraft open fuel cell maintenance. The KC-46A is a military derivative of a commercial Boeing 767 aircraft and has a slightly larger footprint than the KC-135. Therefore, a 17,290 SF addition to Hangar 885 would need to be added in order to accommodate the larger aircraft inside the maintenance hangar.

Internal Renovations to Hangar 888

Internal renovations to Hangar 888 would be made in order to house the KC-46A Fuselage Trainer.
Modifications to Existing Parking Ramp

The proposed beddown of 12 PAA KC-46A aircraft requires a minimum of 8 KC-46A parking spots with a fuel hydrant at each location. The correct pavement thickness and strength of the parking ramps and taxiways is also important to avoid damage to the KC-46A and/or to the airfield pavement. During landing, the aircraft is light on fuel and the weight is transferred from the wings to the landing gear as the nose landing gear touches down and the aircraft decelerates. During takeoff the aircraft is heavy, but as the aircraft accelerates the weight is gradually transferred from the wheels to the wings. Thus, the majority of the damage to the pavement occurs during loading and taxiing prior to departure. Additional concrete would need to be added to the parking ramp and taxilane at Rickenbacker IAP in order to satisfy the thickness and strength requirements for the KC-46A aircraft. In addition, the taxilanes would need to be wide enough to support the turning radii of the KC-46A. Therefore, under Alternative #5, the renovation of 338,877 SF of concrete would be added to the existing parking ramp and the taxilane that leads to the hangars from the parking ramp. Following the construction, there would be an increase of approximately 14,660 SF of impervious surface as a result of this project.

New Hydrants and Fuel Lines and Demolition of Existing Hydrants

As stated above, the proposed beddown of 12 PAA KC-46A aircraft requires a minimum of 8 KC-46A parking spots with a fuel hydrant at each location. A fuel hydrant system provides all the equipment and controls to provide clean fuel to fueling points in the aircraft parking apron. The system reduces the amount of physical movement of fuel around an airfield. Under Alternative #5, seven new fuel hydrants would be added to the existing parking ramp. New fuel lines will be added to two of these, while five will be re-piped from the existing spurs. In addition, demolition of seven hydrants would occur. Approximately 8,163 SF of disturbance would occur as a result of the new hydrants and fuel lines, while an additional 1,206 SF of disturbance would occur as a result of the demolition of existing hydrants and fuel lines. Approximately 1,198 SF of the total disturbance occurring would be temporary disturbance occurring on grassland areas; however, this area would remain a pervious surface following construction.

2.3.5.7 Personnel Changes

The 121 ARW currently is authorized 1,497 personnel. Under Alternative #5, the KC-46A mission would add an additional 197 military positions to the authorized manning requirement...
(approximately a 13 percent increase in total personnel). Changes to authorized personnel under this alternative are shown in Table 2.3-30.

Table 2.3-30. Comparison of Currently Authorized and Proposed 121 ARW Personnel

<table>
<thead>
<tr>
<th>Personnel</th>
<th>Authorized</th>
<th>Proposed</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Associate (USAF)</td>
<td>0</td>
<td>199</td>
<td>199</td>
</tr>
<tr>
<td>Active Guard and Reserve</td>
<td>119</td>
<td>119</td>
<td>0</td>
</tr>
<tr>
<td>Dual Status Technician (Guard civilians, federal)</td>
<td>323</td>
<td>336</td>
<td>13</td>
</tr>
<tr>
<td>Non-Dual Status (DoD civilians, Air Traffic Control)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Subtotal</td>
<td>442</td>
<td>654</td>
<td>212</td>
</tr>
<tr>
<td>Part Time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drill Status Guardsmen</td>
<td>1,055</td>
<td>1,040</td>
<td>-15</td>
</tr>
<tr>
<td>Total Personnel Assignments<sup>2</sup></td>
<td>1,497</td>
<td>1,694</td>
<td>197</td>
</tr>
<tr>
<td>Total Personnel On Base</td>
<td>1,174</td>
<td>1,358</td>
<td>184</td>
</tr>
</tbody>
</table>

Note: 1. Total personnel on base is the sum of all categories minus the number of people with two assignments.
2. Some personnel work off-site but are assigned to the unit.

2.4 NO ACTION ALTERNATIVE

The CEQ regulation 40 CFR § 1502.14(d) specifically requires analysis of the “No Action” alternative in all NEPA documents. Under the No Action Alternative, the proposed aircraft beddown would not occur, and the NGB would not implement the components described above under the five Action Alternatives. There would be no change in based aircraft; use of the airfield at the proposed locations; or use of Special Use Airspace (SUA), construction, or personnel assigned to the KC-46A aircraft squadron. Under the No Action Alternative, the NGB would continue to conduct their current mission using the existing KC-135 aircraft with multiple configurations and crews that are not trained to accomplish every mission. This lack of standardized equipment and training throughout the fleet would continue to negatively impact the ability for KC-135 aircrews to support, on a large scale, multi-role missions or exploit new tactics and procedures. The continued use of the KC-135 aircraft would not meet the identified needs of the NGB or the USAF; however, this alternative is carried forward for analysis in this EIS per CEQ regulations, and as a baseline from which to compare the potential impacts of the Proposed Action and alternatives.

2.5 IDENTIFICATION OF PREFERRED ALTERNATIVE

The USAF has identified Pease ANGS as the preferred alternative for the MOB 2 KC-46A beddown. The USAF selected Pease ANGS based on an operational analysis, results of site surveys, and military judgment factors.

2.6 SUMMARY OF ANTICIPATED IMPACTS AMONG ALTERNATIVES

Comparing and differentiating among alternatives comprises a fundamental premise of NEPA. A summary of each alternative, including the No Action Alternative, is presented in
Table 2.6-1, which can then be used to compare the anticipated impacts of each alternative. A summary and comparison of the anticipated impacts associated with implementation of each alternative for this action is presented in Table 2.6-2.
Table 2.6-1. Summary of Alternatives (Current/Proposed)

<table>
<thead>
<tr>
<th></th>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Refueler Aircraft (PAA)</td>
<td>12 / 12</td>
<td>8 / 12</td>
<td>8 / 12</td>
<td>16 / 12</td>
<td>18 / 12</td>
<td>Same as current</td>
</tr>
<tr>
<td>ARW Refueler Flying Hours</td>
<td>4,868 / 8,040</td>
<td>3,687 / 8,040</td>
<td>6,219 / 8,040</td>
<td>6,016 / 8,040</td>
<td>7,215 / 8,040</td>
<td>Same as current</td>
</tr>
<tr>
<td>Annual Sorties</td>
<td>1,478 / 2,010</td>
<td>1,112 / 2,010</td>
<td>1,382 / 2,010</td>
<td>1,569 / 2,010</td>
<td>2,014 / 2,010</td>
<td>Same as current</td>
</tr>
<tr>
<td>% Home-Station Operations</td>
<td>64% / 64%</td>
<td>75% / 75%</td>
<td>44% / 44%</td>
<td>59% / 59%</td>
<td>64% / 64%</td>
<td>Same as current</td>
</tr>
<tr>
<td>Home-Station Sorties</td>
<td>946 / 1,286</td>
<td>834 / 1,508</td>
<td>614 / 884</td>
<td>926 / 1,186</td>
<td>1,289 / 1,286</td>
<td>Same as current</td>
</tr>
<tr>
<td>Annual Airfield Operations Home-Station -- ANG</td>
<td>10,452 / 14,562</td>
<td>8,340 / 17,608</td>
<td>6,140 / 8,840</td>
<td>6,943 / 9,226</td>
<td>6,445 / 6,857</td>
<td>Same as current</td>
</tr>
<tr>
<td>Total Actual Airfield Operations (including ANG) based on 2012 FAA/Tower reports</td>
<td>24,630 / 28,740</td>
<td>62,686 / 71,875</td>
<td>37,410 / 40,110</td>
<td>139,217 / 141,500</td>
<td>39,436 / 39,848</td>
<td>Same as current</td>
</tr>
<tr>
<td>Total FAR Part 150 Approved Operations (including ANG)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>321,436¹ / 317,602</td>
<td>67,160² / 60,877</td>
<td>Same as current</td>
</tr>
<tr>
<td>Construction -- new</td>
<td>Hangar modifications; new fuel hydrants; new simulator building; ramp/taxiway modifications</td>
<td>Hangar modifications; building additions; new fuel hydrants; ramp/taxiway modifications</td>
<td>Hangar modifications; new fuel hydrants; ramp/taxiway modifications</td>
<td>Hangar modifications; new fuel hydrants; ramp/taxiway modifications</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Construction -- renovations</td>
<td>Internal building renovations</td>
<td>Internal hangar renovations</td>
<td>Internal building renovations</td>
<td>Internal hangar renovations</td>
<td>Internal hangar renovations</td>
<td>None</td>
</tr>
<tr>
<td>Proposed Personnel Change (ANG and active duty)</td>
<td>+194</td>
<td>+287</td>
<td>+171</td>
<td>+59</td>
<td>+197</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes:
1. 2006 Part 150 Study data
2. 2007 Part 150 Study data

ANGS = Air National Guard Station; JB MDL = Joint Base McGuire-Dix-Lakehurst; PAA = Primary Aerospace Vehicles Authorized; ARW = Air Refueling Wing; ANG = Air National Guard; FAR = Federal Aviation Regulations
Table 2.6-2. Summary of Impacts

<table>
<thead>
<tr>
<th></th>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airfield operations would increase by 4,110 (39 percent increase in 190 ARW operations, 17 percent increase in total airfield operations).</td>
<td>Airfield operations would increase by 9,268 (111 percent increase in 108 WG operations, 15 percent increase in total airfield operations).</td>
<td>Airfield operations would increase by 2,700 (44 percent increase in 157 ARW operations, 7 percent increase in total airfield operations).</td>
<td>Airfield operations would decrease by 3,834 (29 percent decrease from the currently published baseline FAR Part 150 Noise Compatibility Program [2006]; and a 2 percent increase in actual 2012 airfield operations).</td>
<td>Airfield operations would decrease by 6,283 (48 percent decrease from the currently published baseline FAR Part 150 Noise Compatibility Program [2007]; and a 1 percent increase in actual 2012 airfield operations).</td>
<td>Each of the five installations would retain the KC-135 aircraft and would continue to fly the aircraft in the same manner and with approximately the same number of airfield operations as they currently do. The noise environment at each of the five alternative airfields would continue to be managed through their existing AICUZ or FAR Part 150 airfield compatibility programs. There would be no additional Noise impacts at any of the alternative installations under the No Action Alternative.</td>
<td></td>
</tr>
</tbody>
</table>
| Acreage within the 65 dB DNL (and greater) noise contour would decrease by 41 acres. Impacts from noise would be negligible. | Acreage within the 65 dB DNL (and greater) noise contour would increase by 1,831 acres. Impacts from noise would be negligible. | Acreage within the 65 dB DNL (and greater) noise contour would increase by 135 acres. Impacts from noise would be negligible. | Acreage within the 65 dB DNL (and greater) noise contour would decrease by 79 acres. Impacts from noise would be negligible. | Acreage within the 65 dB DNL (and greater) noise contour would decrease by 99 acres. Impacts from noise would be negligible. | }
Table 2.6-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Air Quality</th>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forbes ANGS</td>
<td>The 108 WG installation is in a nonattainment area for O3 (marginal nonattainment) and maintenance area for PM2.5 and CO, and is therefore subject to de minimis thresholds. Impacts from proposed operational emissions would be less than significant for all criteria pollutants. Impacts from construction emissions and operational HAP emissions are negligible.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JB MDL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pease ANGS</td>
<td>The Pease ANGS installation is in a maintenance area for O3, and is therefore subject to de minimis thresholds. Impacts from proposed operational emissions would be less than significant for all criteria pollutants. Impacts from construction emissions and operational HAP emissions are negligible.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pittsburgh ANGS</td>
<td>The Pittsburgh ANGS is located within a non-attainment area for PM2.5, a moderate nonattainment area for the 1997 8-hour O3 standard, and is classified as a marginal nonattainment area for the 2008 8-hour O3 standard, according to 40 CFR 81.339. The Pittsburgh ANGS is therefore subject to de minimis thresholds. Impacts from proposed operational emissions would be less than significant for all criteria pollutants. Impacts from construction emissions and operational HAP emissions are negligible.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rickenbacker ANGS</td>
<td>The Rickenbacker ANGS is located in a nonattainment area for the O3 and PM2.5 NAAQS. While there are increases in operational criteria pollutant emissions, they are below the PSD/de minimis thresholds for all pollutants and are not significant. Impacts from construction emissions and operational HAP emissions are negligible.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Action Alternative</td>
<td>Air Quality at each alternative airfield would remain as it currently is. Each of the five installations would retain the KC-135 aircraft and would continue to fly the aircraft in the same manner and with approximately the same number of airfield operations as they currently do. Emissions at each of the alternative installations would continue to be in compliance with their respective SIPs. There would be no additional impacts to Air Quality at each alternative installation under the No Action Alternative.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2.6-2. Summary of Impacts

<table>
<thead>
<tr>
<th></th>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td>There would be a 39 percent increase in actual 190 ARW airfield operations (17 percent increase in total airfield operations) at Forbes Field Airport with commensurate increase in mishap and BASH potential.</td>
<td>There would be a 111 percent increase in actual 108 WG airfield operations (15 percent increase in total airfield operations) at JB MDL with a commensurate increase in mishap and BASH potential.</td>
<td>There would be a 44 percent increase in actual 157 ARW airfield operations (7 percent increase in total airfield operations) at Portsmouth IAP with a commensurate increase in mishap and BASH potential.</td>
<td>There would be a 33 percent increase in actual 2012 171 ARW airfield operations (2 percent increase in total airfield operations) at Pittsburgh IAP with a commensurate increase in mishap and BASH potential.</td>
<td>Both ground and flight safety at each alternative airfield would remain as they currently are. Each of the five installations would retain the KC-135 aircraft and would continue to fly the aircraft in the same manner and with approximately the same number of airfield operations as they currently do. There would be no additional impacts to Safety under the No Action Alternative.</td>
<td></td>
</tr>
</tbody>
</table>

Construction activities would involve no unusual or extraordinary techniques. During construction, standard construction safety procedures would be employed, and strict adherence to all applicable standard industrial safety requirements and procedures would further minimize the relatively low risk associated with these construction activities. Impacts to safety would be expected to be negligible.

Soils and Water

<table>
<thead>
<tr>
<th></th>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soils and Water</td>
<td>There would be approximately 5.9 acres of temporary soil disturbance and no new impervious surface as a result of the proposed construction.</td>
<td>There would be approximately 4.7 acres of temporary soil disturbance and 2.4 acres of new impervious surface as a result of the proposed construction.</td>
<td>There would be approximately 3.0 acres of temporary soil disturbance and 0.5 acres of new impervious surface as a result of the proposed construction.</td>
<td>There would be approximately 4.3 acres of temporary soil disturbance and 2.0 acres of new impervious surface as a result of the proposed construction.</td>
<td>There would be approximately 8.5 acres of temporary soil disturbance and 0.3 acres of new impervious surface as a result of the proposed construction.</td>
<td>Soils and Water Resources at each alternative airfield would remain as they currently are. There would be no additional impacts to Soils and Water Resources as a result of the No Action alternative.</td>
</tr>
</tbody>
</table>

To minimize potential impacts associated with erosion, runoff, and sedimentation, standard construction practices would be implemented. In addition, as the construction is for national defense purposes and the surrounding land is already in urban development, the Farmland Protection Policy Act does not apply to this alternative. Therefore, impacts to soil and water resources would be negligible.
Table 2.6-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No impacts to vegetation and wetlands.</td>
<td>Impacts to vegetation would be minor.</td>
<td>There would be no change to Biological Resources under this alternative.</td>
</tr>
<tr>
<td>Impacts to wildlife species from operational noise would be imperceptibly beneficial due to the slight decrease in noise.</td>
<td>No impacts to wetlands.</td>
</tr>
<tr>
<td>39 percent increase in 190 ARW (17 percent increase in total) airfield operations may result in a slight increased opportunity for bird/wildlife aircraft strikes to occur, including those with migratory birds.</td>
<td>Impacts to wildlife species from operational noise would be expected to be minor due to the slight increase in noise and the temporary nature of construction.</td>
<td>Impacts to wildlife species from operational noise would be expected to be minor due to the slight increase in noise and the temporary nature of construction.</td>
<td>Impacts to wildlife species from operational noise would be minor due to the 6 percent increase in 121 ARW airfield operations.</td>
<td>Impacts to wildlife species from operational noise would be minor due to the 6 percent increase in 121 ARW airfield operations.</td>
<td>No federally listed species or critical habitat is known to occur on Rickenbacker IAP; therefore, there would be no impacts to federally listed species.</td>
</tr>
<tr>
<td>111 percent increase in 108 WG (15 percent increase in total) airfield operations may result in a slight increased opportunity for bird/wildlife aircraft strikes to occur, including those with migratory birds.</td>
<td>No federally listed species or critical habitat is known to occur on McGuire Field.</td>
<td>Six state listed species are known to occur on McGuire Field. There would be no impacts to federally listed and impacts to state listed species would be minor.</td>
<td>No federal listed species or critical habitat is known to occur on Pittsburgh IAP; therefore, there would be no impacts to state listed species.</td>
<td>No federal listed species or critical habitat is known to occur on Pittsburgh IAP; therefore, there would be no impacts to state listed species.</td>
<td>No federally listed species or critical habitat is known to occur on Rickenbacker IAP; therefore, there would be no impacts to federally listed species.</td>
</tr>
<tr>
<td>Impacts to wildlife due to construction would be negligible.</td>
<td>No special status species or critical habitat is known to occur on Forbes Field Airport; therefore, there would be no impacts to these species.</td>
<td>Impacts to state listed species would be minor.</td>
<td>Impacts to state listed species would be minor.</td>
<td>Impacts to state listed species would be minor.</td>
<td>No federally listed species or critical habitat is known to occur on Portsmouth IAP; therefore, there would be no impacts to state listed species.</td>
</tr>
<tr>
<td>No impacts to vegetation and wetlands.</td>
<td>Impacts to vegetation would be minor.</td>
</tr>
<tr>
<td>Impacts to wildlife species from operational noise would be expected to be minor due to the slight increase in noise and the temporary nature of construction.</td>
<td>No impacts to vegetation and wetlands.</td>
<td>No impacts to wetlands.</td>
<td>No impacts to wetlands.</td>
<td>No impacts to wetlands.</td>
<td></td>
</tr>
</tbody>
</table>
Table 2.6-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultural Resources</td>
<td>Construction activities associated with this alternative would be limited to the developed areas of the installation, primarily in the areas of the aircraft hangars and airfield pavements. Minor interior modifications to Building 679 would not affect the NRHP-eligibility of the building. The Kansas SHPO has concurred with these findings. The installation has been intensively surveyed and no known traditional resources are known to occur. Two responses have been received from the Kaw Nation and the Wichita and Affiliated Tribes stating that they have no objection to the Proposed Action. Additional efforts were made to contact non-responsive tribes without success. While the NGB and the USAF values its relationship with all tribes and will continue to consult on other planning efforts.</td>
<td>Construction activities associated with this alternative would be primarily limited to the developed areas of the installation in the areas of the aircraft hangars and airfield pavements. A small amount of construction (0.15 acre) would occur in forested area near this developed area. Based on previous archaeological surveys at McGuire Field, the area of proposed construction does not contain any known NRHP-eligible sites or traditional resources. Construction activities associated with this alternative would be limited to the developed areas of the installation, primarily in the areas of the aircraft hangars and airfield pavements. The New Hampshire SHPO has concurred with these findings. The Penobscot Indian Nation is the only federally-recognized tribal entity affiliated with Pease ANGS, and has responded stating that they have no issues with the Proposed Action. No impacts to cultural impacts would be expected to occur.</td>
<td>Based on previous archaeological surveys on the installation, the area of proposed construction does not contain any known NRHP-eligible sites or traditional resources. Construction activities associated with this alternative would be limited to the developed areas of the installation, primarily in the areas of the aircraft hangars and airfield pavements. The installation contains no known traditional resources. Given the extensive development on the installation, it is unlikely that there are traditional resources located at the Pittsburgh ANGS. Construction activities associated with this alternative are limited to the developed areas of the installation, primarily in the areas of the aircraft hangars and airfield pavements and all impacts would be negligible. Correspondence has been received from all tribes consulted including the Seneca Nation of Indians, the Cayuga Nation of New York, the Tonowanda Band of Seneca, Tuscarora Nation of New York, and the Onondaga Nation of New York stating that they have no objection to the Proposed Action.</td>
<td>Construction activities at Rickenbacker ANGS would be limited to the developed areas of the installation, primarily in the areas of the aircraft hangars and airfield pavements. The installation has been intensively surveyed for traditional resources and no potential impacts to facilities that are eligible for listing on the NRHP. There would be no surface disturbance from construction activities, and thus no potential to impact unknown archaeological resources.</td>
<td>Under the No Action Alternative, Cultural Resources at each alternative installation would remain as they currently are. None of the proposed facility construction/renovations would occur at any of the installations, and thus, there would be no potential impacts to facilities that are eligible for listing on the NRHP. There would be no additional impacts to Cultural Resources as a result of the No Action Alternative.</td>
</tr>
</tbody>
</table>
Table 2.6-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>or matters of known or potential interest to tribes, Section 106 consultation on the KC-46A MOB 2 proposed alternative at Forbes ANGS is now complete.</td>
<td>affected under the proposed action.</td>
<td>adverse effects to these buildings. Correspondence has been received from the Peoria Tribe of Indians, the Pokagon Band of Potawatomi Indians, the Turtle Mountain Band of Chippewa Indians of North Dakota, the Delaware Nation, and the Shawnee Tribe who indicated that they had no objection to the proposed project. Additional efforts were made to contact non-responsive tribes without success. While the NGB and the USAF values its relationship with all tribes and will continue to consult on other planning efforts or matters of known or potential interest to tribes, Section 106 consultation on the KC-46A MOB 2 proposed alternative at Rickenbacker ANGS is now complete.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Land Use

| Total annual airfield operations would increase by 4,110 (17 percent). | Total annual airfield operations would increase by 9,268 (15 percent). | Total annual airfield operations would increase by 2,700 (44 percent). | Airfield operations would decrease by 3,834 (29 percent decrease) from the currently | The number of airfield operations would decrease by 6,283 (48 percent decrease) from the | Land Use at each alternative airfield would remain as it currently is. Each of the five installations would retain the |
Table 2.6-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acreage within the 65 dB DNL (and greater) noise contour would decrease by 41 acres (55 acres off airport-controlled property). Current land use and zoning designations would not change due to the basing of the KC-46A. This alternative would be compatible with current land use and zoning designations and would result in imperceptibly beneficial impacts by reducing the off-airport areas currently exposed to a DNL between 65 dB and 70 dB. Airport Hazard Areas would not be affected.</td>
<td>Acreage within the 65 dB DNL (and greater) noise contour off DoD-controlled property would increase by 419 acres. An additional 8 acres of residential use areas would be exposed to greater than 65 dB DNL. Current land use and zoning designations would not change due to the basing of the KC-46A. This alternative would result in minor adverse impacts due to an increase in off-airport areas (including residential areas) exposed to a DNL between 65 dB and 75 dB. Airport Hazard Areas would not be affected.</td>
<td>Acreage within the 65 dB DNL (and greater) noise contour would increase by 135 acres. Of this increase in acreage, 4 acres would be off-airport-controlled property. Current land use and zoning designations would not change due to the basing of the KC-46A. This alternative would result in negligible impacts due to an increase in off-airport areas exposed to a DNL above 65 dB. Airport Hazard Areas would not be affected.</td>
<td>Published FAR Part 150 Noise Compatibility Program (2006), and the acreage within the 65 dB DNL (and greater) noise contour would decrease by 79 acres. There would be a decrease of approximately 23 acres within the 65 dB DNL noise contour that are off airport-controlled property. Current land use and zoning designations would not change due to the basing of the KC-46A. This alternative would result in negligible impacts due to an increase in off-airport areas exposed to a DNL above 65 dB. Airport Hazard Areas would not be affected.</td>
<td>Currently published FAR Part 150 Noise Compatibility Program (2007), and the acreage within the 65 dB DNL (and greater) noise contour would decrease by 99 acres. Decrease of 72 acres within the 65 dB DNL noise contour that are off airport-controlled property, resulting in 345 acres off airport-controlled property that lie within the 65 dB contour. Current land use and zoning designations would not change due to the basing of the KC-46A. This alternative would result in negligible impacts in off-airport areas exposed to a DNL above 65 dB. Airport Hazard Areas would not be affected.</td>
<td>KC-135 aircraft and would continue to fly the aircraft in the same manner and with approximately the same number of airfield operations as they currently do. There would be no additional impacts to Land Use under the No Action Alternative at any of the alternative locations.</td>
</tr>
</tbody>
</table>
Table 2.6-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure and Transportation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impacts from this alternative would not be expected since there have been no deficiencies identified with the existing systems, and it is expected that the existing infrastructure is generally adequate to serve the facilities and increased personnel proposed under this alternative. Impacts to infrastructure resulting from construction would be negligible since any interruption of utility services or increased demand on infrastructure would be temporary and infrequent. Impacts to infrastructure would be negligible.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Infrastructure and Transportation at each alternative installation would remain as they currently are. There would be no change to the based personnel at any of the alternative locations. There would be no increase in use of various utilities or roadway systems under this alternative. There would be no additional impacts under the No Action Alternative.</td>
</tr>
</tbody>
</table>
Table 2.6-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous Materials and Waste</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>There would be no expected impact from ERP sites, as the ERP site that overlaps proposed construction is closed. However, if contaminated media were encountered during the course of site preparation or site development, work would cease until 190 ARW Program Managers establish an appropriate course of action for the construction project to ensure that federal and state agency notification requirements are met. Impacts relative to hazardous materials and wastes would be negligible.</td>
<td>One of the ERP Sites, SS-39, overlaps with a portion of the existing fuel hydrants that would be capped, as well as the proposed addition to Hangar 3336. Remedial investigation is on-going with this site. It is recommended that a vapor intrusion analysis/testing is completed prior to construction to investigate any potential concern. If testing indicates a vapor intrusion concern, the installation would implement practices in accordance with site-specific vapor mitigation design considerations. If contaminated media were encountered during the course of site preparation or site development, work would cease until 108 WG Program Managers establish an appropriate course of action for the construction project to ensure that federal and state agency notification requirements are met. Impacts relative to hazardous materials and wastes would be negligible.</td>
<td>There would be no expected impact from ERP sites. Impacts relative to hazardous materials and wastes would be negligible.</td>
<td>There would be no expected impact from ERP sites, as the ERP site that overlaps proposed construction is closed. However, if contaminated media were encountered during the course of site preparation or site development, work would cease until 171 ARW Program Managers establish an appropriate course of action for the construction project to ensure that federal and state agency notification requirements are met. Impacts relative to hazardous materials and wastes would be negligible.</td>
<td>Hazardous Materials and Wastes at each alternative installation would remain as described in the baseline section for each alternative location. The benefit of eliminating ozone depleting substances with the KC-46A would not be realized. The throughput and management of hazardous materials and wastes would not change from baseline conditions. There would be no additional impacts to Hazardous Materials and Wastes under the No Action Alternative.</td>
<td></td>
</tr>
</tbody>
</table>
Table 2.6-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>There would not be an increased risk of hazardous waste releases or exposure from this alternative. The types of hazardous materials needed for maintenance and operation of the KC-46A would be expected to remain similar to those currently used for maintenance and operation of the KC-135 fleet. Any LBP or ACM that may be found in buildings that are scheduled for construction activities would be managed per applicable USAF regulations.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Socioeconomics

Impacts to socioeconomics resulting from construction would be beneficial and negligible resulting from construction payrolls and materials purchased. In addition, impacts from proposed operations would be beneficial and minor due to the proposed increase in personnel.

Socioeconomics at each alternative installation would remain as described in the baseline section for each alternative. The minor economic benefit of additional based personnel and construction activity would not occur at any of the alternative installations. There would be no additional impacts to Socioeconomics under the No Action Alternative.
Table 2.6-2. Summary of Impacts

<table>
<thead>
<tr>
<th>Forbes ANGS</th>
<th>JB MDL</th>
<th>Pease ANGS</th>
<th>Pittsburgh ANGS</th>
<th>Rickenbacker ANGS</th>
<th>No Action Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Justice and the Protection of Children</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>There would be no residential populations, including no minority or low-income populations, and no additional schools located within the vicinity of Forbes Field Airport exposed to a DNL of 65 dB or above.</td>
<td>The percentage of minority and low-income persons affected would remain approximately the same as baseline.</td>
<td>There are no residential areas within the noise contours. No additional schools would be located within the vicinity of Portsmouth IAP exposed to a DNL of 65 dB or above.</td>
<td>There would be no residential populations, including no minority or low-income populations, and no additional schools located within the vicinity of Pittsburgh IAP exposed to a DNL of 65 dB or above.</td>
<td>There would be no residential populations, including no minority or low-income populations, and no additional schools exposed to a DNL of 65 dB or above.</td>
<td>Under the No Action Alternative, Environmental Justice and the Protection of Children at each alternative installation would remain as described in the baseline section for each alternative. There were no disproportionate impacts to low-income, minority, or children identified under any of the action alternatives. There would be no additional impacts as a result of the No Action Alternative.</td>
</tr>
<tr>
<td>There would be no disproportionate impacts to minority or low-income populations.</td>
<td>There would be no disproportionate impacts to minority or low-income populations. The child development center that is currently under the 65 dB contour would be located under the 70 dB contour. There would be no special health or safety risks to children.</td>
<td>There would be no disproportionate impacts to minority or low-income populations and no special health or safety risks to children.</td>
<td>There would be no disproportionate impacts to minority or low-income populations.</td>
<td>There would be no disproportionate impacts to minority or low-income populations. There would be no special health or safety risks to children.</td>
<td></td>
</tr>
<tr>
<td>There would be no special health or safety risks to children.</td>
<td></td>
<td>There would be no residential populations, including no minority or low-income populations, and no additional schools located within the vicinity of Pittsburgh IAP exposed to a DNL of 65 dB or above.</td>
<td>There would be no disproportionate impacts to minority or low-income populations.</td>
<td>There would be no special health or safety risks to children.</td>
<td></td>
</tr>
</tbody>
</table>

Notes: 190 ARW = 190th Air Refueling Wing; dB = decibel; DNL = Day-Night Average Sound Level; DoD = Department of Defense; 108 WG = 108th Wing; 157 ARW = 157th Air Refueling Wing; FAR = Federal Aviation Regulations; AICUZ = Air Installation Compatible Use Zone; ANGS = Air National Guard Station; PSD = Prevention of Significant Deterioration; HAP = hazardous air pollutant; O₃ = ozone; PM₂·₅ = particulate matter less than or equal to 2.5 microns in diameter; CO = carbon monoxide; NOₓ = oxides of nitrogen; tpy = tons per year; CFR = Code of Federal Regulations; SIP = State Implementation Plan; BASH = Bird/Wildlife Aircraft Strike Hazard; JB MDL = Joint Base McGuire-Dix-Lakehurst; IAP = International Airport; 171 ARW = 171st Air Refueling Wing; 121 ARW = 121st Air Refueling Wing; NRHP = National Register of Historic Places; SHPO = State Historic Preservation Office; ERP = Environmental Restoration Program; LBP = lead-based paint; ACM = asbestos-containing material; USAF = United States Air Force.
2.7 Mitigation

Mitigation measures avoid, minimize, remediate, or compensate for environmental impacts. CEQ regulations (40 CFR 1508.20) define mitigation to include the following:

1. Avoiding the impact altogether by not taking a certain action or parts of an action.
2. Minimizing impacts by limiting the degree or magnitude of the action, and its implementation.
3. Rectifying the impact by repairing, rehabilitating, or restoring the affected environment.
4. Reducing or eliminating the impact over time by preservation and maintenance operations during the life of the action.
5. Compensating for the impact by replacing or providing substitute resources or environments.

Avoiding, minimizing, or reducing potential impacts has been a priority guiding the development of the KC-46A alternatives and the proposed aircraft operations associated with each. Measures to minimize impacts are designed into the alternatives; applied to construction, operation, or maintenance involved in the action; or implemented as compensatory measures.

Depending on which base is eventually selected to host the MOB 2 KC-46A beddown, there are potential mitigation actions that will be required. These mitigation actions would be carried forward in implementing the selected alternative. Listed below are the potential mitigations that could be required at JB MDL and Rickenbacker ANGS. The proponent of the action is responsible for ensuring that mitigations are carried forward. No mitigation actions have been identified for Forbes ANGS, Pease ANGS, and Pittsburgh ANGS.

If JB MDL is selected to host the MOB 2 KC-46A beddown, mitigation for air quality would be required. The 108 WG installation is in a nonattainment area for O₃ (marginal nonattainment), and maintenance area for CO and PM₂.₅, and is therefore subject to de minimis thresholds (see Section 4.2.2 and Appendix F). Impacts from proposed operational emissions would be less than significant for all criteria pollutants, except NOₓ, which would be above the de minimis threshold of 100 tpy. If JB MDL is selected to host the MOB 2 KC-46A beddown, a conformity determination must be completed, demonstrating compliance with the SIP, prior to signature of the ROD.

If Rickenbacker ANGS is selected to host the MOB 2 KC-46A beddown, mitigation for adverse impacts to cultural resources could be required (see Section 4.5.6). Two of the hangars (885 and 888) proposed for additions, modifications, and renovations are eligible to the NRHP. The Ohio SHPO concurred with the eligibility determination. Hangar 885 would have an addition and renovations inside to house the new aircraft and support facilities. Because these renovations
would alter a structure that is considered eligible for the NRHP, the construction would have an adverse effect on a historic property. Modification to Hangar 888 would all be interior; however, they could have an adverse effect to this NRHP-eligible resource. Rickenbacker ANGS and the Ohio SHPO have developed a Programmatic Agreement stating that if Rickenbacker ANGS is selected to host the MOB 2 KC-46A beddown, further consultation would be conducted to minimize and mitigate adverse effects (see Appendix B, Section B3).

Following signature of the ROD, a Mitigation Plan will be prepared in accordance with 32 CFR 989.22(d). The Mitigation Plan will address specific mitigations identified for the selected alternative and agreed to during the environmental impact analysis process.
CHAPTER 3 EXISTING CONDITIONS

This section describes the natural and human environment that would be affected by implementation of the various alternatives described in Chapter 2. In describing the affected environment, a framework for understanding the potential direct, indirect, and cumulative effects of each alternative, including the No Action Alternative is provided.

As directed by guidelines contained in NEPA, CEQ regulations, and 32 CFR 989, *Environmental Impact Analysis Process*, the description of the affected environment focuses only on those resource areas potentially subject to impacts and should be commensurate with the anticipated level of environmental impact.

The affected environment is described for 11 resource topics: Noise, Air Quality, Safety, Soils and Water, Biological Resources, Cultural Resources, Land Use, Infrastructure and Transportation, Hazardous Materials and Waste, Socioeconomics, and Environmental Justice and the Protection of Children. The following sections reference Appendix A, which presents an introduction that defines each of the resources addressed in the section, summarizes applicable laws and regulations that apply to all installations, defines key terms as necessary, and describes the general ROI within which the effects from implementation of the various alternatives are anticipated to occur. The ROI varies from resource to resource, but in general, effects from the proposed activities are expected to be concentrated around each of the alternative installations. A more specific ROI for each installation/resource is described within each Chapter 3 section that follows, as are any local/regional regulations.

3.1 FORBES AIR NATIONAL GUARD STATION

Forbes ANGS, home of the 190 ARW of KS ANG, is located approximately 5 miles south of Topeka in Shawnee County, Kansas. The 190 ARW base is situated on the northwest side of Forbes Field Airport, a municipal airport owned and operated by MTAA.

3.1.1 Noise

To evaluate noise impacts in the vicinity of a military installation located within a commercial airport with a published Federal Aviation Regulations (FAR) Part 150 Airport Noise Compatibility Study, the USAF allows for use of the Federal Aviation Administration’s (FAA’s) Integrated Noise Model (INM) to generate DNL noise contours; however, if the primary noise generator are military aircraft, NOISEMAP may also be used. For this noise analysis, the USAF generated DNL noise files reflecting 2012 airport operations using NOISEMAP, a computer program used to model noise exposure in the vicinity of military airfields. For commercial
airfields, the most current and approved FAR Part 150 noise files were used for the baseline conditions and airfield operations and for noise impacts, these baselines were used for analysis. For other resource areas, the most current 2012 FAA/airport airfield operational data was used. For more detailed information on the noise modeling methods, see Appendix A, Section A.1.2.

3.1.1.1 Baseline Operations

In 1984, the MTAA published a noise study in support of the 1984 Airport Master Plan Update (Johnson 2013) and represents 1982 operational levels (Forbes Field Airport 1984). Due to the age of the data, and because the military aircraft (KC-135 and Army National Guard HH-60’s) are the prominent aircraft based at Forbes Field Airport, the USAF completed a new study to estimate baseline noise exposure using the NOISEMAP computer program. The new study was completed to reflect 2012 airport operations and is used as the baseline for this analysis.

Based on aircraft operations data validated in May 2013, approximately 24,630 total aircraft operations occurred at Forbes Field Airport during the 12-month period ending December 2012 (Forbes ANGS 2013). An aircraft operation is counted each time an aircraft departs from the runway and each time they approach the runway. Table 3.1.1-1 summarizes the frequency of aircraft operations for Forbes Field Airport based on information provided by base staff, flying organizations, and air traffic control personnel. The majority of aircraft traffic includes air cargo, commercial regional jets (air taxi), and larger commercial aircraft and other based military aircraft, along with based ANG KC-135 aircraft. Although the number of aircraft operations at an installation varies from day to day, for Forbes Field Airport, operations were calculated for an average busy day for military aircraft and an average annual day (AAD) for civilian aircraft. Yearly operations were averaged over the number of flying days flown (260 days) for military aircraft and across all 365 days of the year for civilian aircraft. Table 3.1.1-1 reflects a total of approximately 79 total aircraft operations on an AAD (10,452 divided by 260 days plus 14,178 divided by 365 days) flown at Forbes Field Airport. Approximately 8 percent of the total operations at Forbes Field Airport occur during environmental night (10:00 p.m. through 7:00 a.m.).

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>DEPARTURES</th>
<th>ARRIVALS</th>
<th>TOTAL</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night</td>
<td>Day</td>
<td>Night</td>
</tr>
<tr>
<td>KC-135</td>
<td>4,541</td>
<td>685</td>
<td>4,390</td>
<td>836</td>
</tr>
<tr>
<td>Other Aircraft</td>
<td>6,848</td>
<td>241</td>
<td>6,848</td>
<td>241</td>
</tr>
<tr>
<td>Total</td>
<td>11,389</td>
<td>926</td>
<td>11,238</td>
<td>1,077</td>
</tr>
</tbody>
</table>

Notes: 1. Includes Closed Patterns (which count as two airfield operations).
2. Night – Between 10 p.m. and 7 a.m. for environmental night.
3. Other based military and civilian aircraft and transient aircraft (multiple type aircraft); example aircraft include: L-1011, MD-80, Lear 35, and HH-60.

Using the 2012 baseline data, the 190 ARW KC-135 aircraft flew a total of 10,452 annual airfield operations, or an average of 40 airfield operations a day. Approximately 15 percent of the total KC-135 operations occur during environmental night. Approximately 42 percent of total operations at Forbes Field Airport are accomplished by the 190 ARW KC-135 aircraft.

3.1.1.2 Runway and Flight Profiles

Forbes Field Airport aircraft use straight out departures, straight in approaches, Instrument Flight Rule (IFR) or radar closed patterns, and Visual Flight Rule (VFR) closed patterns as the basic flight patterns for training, local arrival, and departures. Detailed representative arrival, departure, and closed pattern flight tracks are found in Appendix C, Noise.

3.1.1.3 Existing Noise Environment

Noise contours developed for the baseline conditions at Forbes Field Airport are shown in Figure 3.1.1-1. The acreage within each DNL contour on and off Forbes Field Airport property is shown in Table 3.1.1-2 for the baseline condition. Approximately 971 acres are exposed to DNL greater than or equal to 65 dB. Detailed information on off-airport land use that lies within a DNL greater than 65 dB can be found in Section 3.1.7, Land Use.

<table>
<thead>
<tr>
<th>Noise Level (dB)</th>
<th>On-Airport (acres)</th>
<th>Off-Airport (acres)</th>
<th>Total (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>65-70</td>
<td>448</td>
<td>165</td>
<td>613</td>
</tr>
<tr>
<td>70-75</td>
<td>308</td>
<td>0</td>
<td>308</td>
</tr>
<tr>
<td>75-80</td>
<td>50</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>80-85</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Greater than 85</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>806</td>
<td>165</td>
<td>971</td>
</tr>
</tbody>
</table>

Note: dB = decibel
Figure 3.1.1-1. Baseline DNL Noise Contours for Forbes Field Airport

Source: Forbes Field Airport 2014
Potential Hearing Loss

There is no property off the Forbes Field Airport that falls within the baseline 80+ dB DNL noise contour; therefore, no potential hearing loss risk is currently associated with these areas.

3.1.1.4 Forbes Field Airport Noise Abatement Procedures

Forbes Field Airport has no published noise abatement procedures. The 117th Air Refueling Squadron (117 ARS) (a squadron of the 190 ARW) has one noise abatement procedure published in their In-Flight Guide (117 ARS 2011) that requires pilots to avoid overflight of a housing area located 2 nautical miles (nm) west of Runway 13. This published procedure minimizes flying activities of the 117 ARS that could adversely affect its neighbors in an effort to reduce noise impacts while maintaining safe operations.

3.1.1.5 Forbes Air National Guard Station Noise Complaint Procedures

Currently, noise complaints are handled through the MTAA. There have been no recent noise complaints (Johnson 2013).

3.1.2 Air Quality

3.1.2.1 Regulatory Setting

Individual states are delegated the responsibility to regulate air quality in order to achieve or maintain air quality in attainment with these standards. The Kansas Department of Health and Environment Bureau of Air is the agency responsible for the regulation of air quality within the state of Kansas. The state of Kansas regulates air quality through the Kansas Air Quality Act, Section 65.3001 through 65.3030 of the Kansas Air Quality Statues, and the Kansas Air Quality Regulations, Section 28, Article 19 of the Kansas Administrative Regulations. The state of Kansas has not adopted separate ambient air quality standards from the NAAQS. The NAAQS are summarized in Table 3.1.2-1.
Table 3.1.2-1. Ambient Air Quality Standards

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>NATIONAL STANDARDS<sup>a</sup></th>
<th>Primary<sup>b,c</sup></th>
<th>Secondary<sup>b,d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>O<sub>3</sub></td>
<td>8-hour</td>
<td>0.075 ppm (147 µg/m<sup>3</sup>)</td>
<td>Same as primary</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>CO</td>
<td>8-hour</td>
<td>9 ppm (10 mg/m<sup>3</sup>)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>35 ppm (40 mg/m<sup>3</sup>)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>NO<sub>2</sub></td>
<td>Annual</td>
<td>0.053 ppm (100 µg/m<sup>3</sup>)</td>
<td>Same as primary</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>0.100 ppm (188 µg/m<sup>3</sup>)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>SO<sub>2</sub></td>
<td>24-hour</td>
<td>—</td>
<td>—</td>
<td>0.5 ppm (1,300 µg/m<sup>3</sup>)</td>
</tr>
<tr>
<td></td>
<td>3-hour</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>0.075 ppm (189 µg/m<sup>3</sup>)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>PM<sub>10</sub></td>
<td>Annual</td>
<td>—</td>
<td>—</td>
<td>Same as primary</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>150 µg/m<sup>3</sup></td>
<td>Same as primary</td>
<td>—</td>
</tr>
<tr>
<td>PM<sub>2.5</sub></td>
<td>Annual</td>
<td>12 µg/m<sup>3</sup></td>
<td>15 µg/m<sup>3</sup></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>35 µg/m<sup>3</sup></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Pb</td>
<td>Rolling 3-month period</td>
<td>0.15 µg/m<sup>3</sup></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>30-Day Average</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Notes:

a Standards other than the 1-hour ozone, 24-hour PM₁₀, 24-hour PM_{2.5}, and those based on annual averages are not to be exceeded more than once a year. The 8-hour ozone national standard has replaced the 1-hour ozone national standard.

b Concentrations are expressed first in units in which they were promulgated. Equivalent units given in parenthesis.

c Primary Standards: The levels of air quality necessary, with an adequate margin of safety to protect the public health. Each state must attain the primary standards no later than 3 years after that state’s implementation plan is approved by the USEPA.

d Secondary Standards: The levels of air quality necessary to protect the public welfare from any known or anticipated adverse effects of a pollutant.

µg/m³ = micrograms per cubic meter; CO = carbon monoxide; mg/m³ = milligrams per cubic meter; NO₂ = nitrogen dioxide; O₃ = ozone; Pb = lead; PM_{2.5} = particulate matter less than or equal to 2.5 microns in diameter; PM₁₀ = particulate matter less than or equal to 10 microns in diameter; ppm = parts per million; SO₂ = sulfur dioxide

Source: USEPA 2012.

Forbes ANGS, home of the 190 ARW of the KS ANG, is located on Forbes Field Airport, approximately 5 miles south of Topeka in Shawnee County, Kansas. The U.S. Environmental Protection Agency (USEPA) has classified the state of Kansas as an attainment/unclassified area for all criteria pollutants. The Proposed Action is therefore not subject to the requirements of Section 176(c) of the Clean Air Act (CAA), as articulated in the USEPA General Conformity Rule.

The USEPA recently promulgated a more stringent standard for lead, and has redesigned its monitoring program to address lead and identified airports for monitoring because aviation gas...
used in piston aircraft still contains lead. The project area is considered attainment/unclassified for lead, and lead is not used in aviation fuel used in the KC-135 or KC-46A aircraft.

3.1.2.2 Climate and Meteorology

The state of Kansas has a continental climate, meaning that it is not influenced by any major bodies of water. Summers are warm with the majority of annual precipitation occurring from April through September. Winters tend to be cold with an occasional mild period and moderate snowfall amounts. Much of the severe weather for which Kansas is often noted is due to weather patterns that bring cold dry air into contact with warm moist air over the state. There are many severe thunderstorms each year with an average of 111 tornadoes per year in the state (High Plains Regional Climate Center 2013).

Annual average temperatures in Topeka range from an average minimum temperature of 43.5 degrees Fahrenheit (°F) to an average maximum temperature of 65.8°F, with a yearly average of 54.6°F (Western Regional Climate Center 2013). January is the coldest month, with average minimum temperatures of 17.6°F. July is the hottest month in the area, with average maximum temperatures reaching 89.7°F. In the Topeka area, average annual precipitation (1948-2012) was 34.77 inches (High Plains Regional Climate Center 2013).

The prevailing wind direction for the state of Kansas is from the south. The average annual wind speed for Topeka is 10.4 miles per hour (High Plains Regional Climate Center 2013).

3.1.2.3 Regional and Local Air Pollutant Sources

The area surrounding Forbes Field Airport is mainly used for agriculture, with some development in the surrounding areas to the north, west, and south. The USEPA’s National Emissions Inventory includes data for the year 2008 for Shawnee County. Table 3.1.2-2 summarizes the regional emissions (stationary, area-wide sources, and mobile) of criteria pollutants and precursor emissions for the affected areas.
Table 3.1.2-2. Regional Emissions for Shawnee County, Kansas

<table>
<thead>
<tr>
<th>EMISONS, TONS/YEAR</th>
<th>CO</th>
<th>VOCs</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional Emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stationary Sources</td>
<td>2,143</td>
<td>2,009</td>
<td>3,853</td>
<td>6,036</td>
<td>635</td>
<td>342</td>
</tr>
<tr>
<td>Area-Wide Source</td>
<td>3,866</td>
<td>7,543</td>
<td>410</td>
<td>34</td>
<td>17,149</td>
<td>2,117</td>
</tr>
<tr>
<td>Mobile Sources</td>
<td>31,885</td>
<td>6,840</td>
<td>2,902</td>
<td>77</td>
<td>348</td>
<td>280</td>
</tr>
<tr>
<td>Total</td>
<td>37,894</td>
<td>16,392</td>
<td>7,165</td>
<td>6,147</td>
<td>18,132</td>
<td>2,739</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding. Emissions of Pb are not included because the affected region contains no significant sources of this criteria pollutant.

CO = carbon monoxide; NOx = oxides of nitrogen; PM10 = particulate matter less than or equal to 10 microns in diameter; PM2.5 = particulate matter less than or equal to 2.5 microns in diameter; SO2 = sulfur dioxide; VOC = volatile organic compound

Source: USEPA 2008.

3.1.2.4 Baseline Air Quality

Representative background air monitoring data for the 190 ARW for the period 2008-2012 are shown in Table 3.1.2-3. The closest monitoring station to the Forbes Field Airport is located in Topeka, and monitors ozone (O3), particulate matter less than or equal to 10 microns in diameter (PM10), and particulate matter less than or equal to 2.5 microns in diameter (PM2.5). The closest monitoring station to the Forbes Field Airport that monitors carbon monoxide (CO), nitrogen dioxide (NO2), and sulfur dioxide (SO2) is located in Kansas City. Values measured at the Kansas City monitoring station are likely to be conservative because Kansas City is more developed than the Forbes Field Airport area.

As shown in Table 3.1.2-3, some O3 exceedances have been measured in Topeka during the recent 5-year period; however, the area has not been designated as a nonattainment area for O3. One exceedance of the 24-hour PM2.5 standard was measured in 2011; however, that exceedance was attributed to an exceptional event. The 1-hour SO2 standard was exceeded in 2008 and 2010; however, the 99th percentile did not exceed the standard. The data show that the area did not experience violations of all other NAAQS.
Table 3.1.2-3. Ambient Air Monitoring Data for Topeka and Kansas City, Kansas

<table>
<thead>
<tr>
<th>Air Quality Indicator</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone (O<sub>3</sub>)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 8-hour value (ppm)</td>
<td>0.068</td>
<td>0.068</td>
<td>0.082</td>
<td>0.084</td>
<td>0.085</td>
</tr>
<tr>
<td>Days above federal standard (0.075 ppm)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Particulate matter less than or equal to 2.5 microns in diameter (PM<sub>2.5</sub>)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 24-hour value (µg/m³)</td>
<td>26.6</td>
<td>35.6</td>
<td>29.1</td>
<td>40.8</td>
<td>35.2</td>
</tr>
<tr>
<td>Days above federal standard (35 µg/m³)</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Annual Average value (µg/m³)</td>
<td>10</td>
<td>8.7</td>
<td>9</td>
<td>9.9</td>
<td>8.6</td>
</tr>
<tr>
<td>Particulate matter less than or equal to 10 microns in diameter (PM<sub>10</sub>)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 24-hour value (µg/m³)</td>
<td>51</td>
<td>78</td>
<td>72</td>
<td>76</td>
<td>67</td>
</tr>
<tr>
<td>Days above federal standard (150 µg/m³)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 1-hour value (ppm)</td>
<td>2.2</td>
<td>2.4</td>
<td>2.1</td>
<td>2.3</td>
<td>3.3</td>
</tr>
<tr>
<td>Days above federal standard (9 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peak 8-hour value (ppm)</td>
<td>1.8</td>
<td>1.6</td>
<td>1.6</td>
<td>1.6</td>
<td>2.0</td>
</tr>
<tr>
<td>Days above federal standard (35 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO<sub>2</sub>)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 1-hour value (ppm)</td>
<td>0.066</td>
<td>0.062</td>
<td>0.077</td>
<td>0.061</td>
<td>0.064</td>
</tr>
<tr>
<td>98<sup>th</sup> Percentile (ppm)</td>
<td>0.062</td>
<td>0.045</td>
<td>0.054</td>
<td>0.053</td>
<td>0.052</td>
</tr>
<tr>
<td>Days above federal standard (0.100 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO<sub>2</sub>)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 1-hour value (ppm)</td>
<td>0.090</td>
<td>0.050</td>
<td>0.081</td>
<td>0.065</td>
<td>0.071</td>
</tr>
<tr>
<td>99<sup>th</sup> Percentile (ppm)</td>
<td>0.043</td>
<td>0.043</td>
<td>0.049</td>
<td>0.048</td>
<td>0.050</td>
</tr>
<tr>
<td>Days above federal standard (0.075 ppm)<sup>1</sup></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peak 24-hour value (ppm)</td>
<td>0.017</td>
<td>0.015</td>
<td>0.013</td>
<td>0.012</td>
<td>0.013</td>
</tr>
</tbody>
</table>

Notes: 1. The federal 1-hour SO₂ standard was adopted in 2010.
 Numbers may not add precisely due to rounding.
 µg/m³ = micrograms per cubic meter; NA = data not available; ppm = parts per million

Source: USEPA 2013a.

3.1.2.5 190th Air Refueling Wing Emissions

The 190 ARW currently flies and maintains 12 KC-135 refueler aircraft to support its air refueling mission. The primary support operations performed at the 190 ARW include aircraft fueling, aircraft deicing, aircraft maintenance, aerospace support equipment maintenance, ground vehicle maintenance, fueling of ground vehicles, and facilities maintenance. These operations involve activities such as corrosion control, non-destructive inspection, fuel cell maintenance, engine maintenance, hydraulics, and wheel and tire maintenance.

Emissions for the 190 ARW have been quantified in the Final 2006 Air Emissions Inventory (190 ARW 2008a). The inventory evaluated the emissions from the 190 ARW to determine its status under the Title V Federal Operating Permits program. Based on the major source thresholds for the area, the major source thresholds are 100 tons per year (tpy) for all criteria pollutants and less than 10 tpy of any single hazardous air pollutant (HAP) or 25 tpy of any combination of HAPs. The 190 ARW does not currently hold a Federal Operating Permit as its emissions are below the major source thresholds, and is not required to hold Class I or Class II...
Operating Permits under the Title V permitting requirements or the requirements of the Kansas Department of Health and Environment.

Stationary source emissions at the 190 ARW include emissions from natural gas-fired heating units, waste oil boilers, diesel generators, and open detonation of ordnance. Mobile source emissions include emissions from aircraft operations (take-offs and landings), AGE, ground vehicle operations, and maintenance aircraft operations performed with the engines still mounted on the aircraft (engine run-ups and trim checks). Emissions from aircraft operations at the 190 ARW installation considered all based and transient aircraft. Aircraft emissions were calculated for all flight activities below the default mixing height (3,000 feet above ground level [AGL]). Baseline emissions also include stationary sources and emissions associated with vehicle trips associated with existing personnel and dependents. These emissions, combined with those from the other mobile sources, account for the majority of the emissions from the installation.

To provide a baseline for evaluating the net emissions increases/decreases associated with Alternative #1, emissions from the KC-135 aircraft operations, aircraft refueling, KC-135 engine testing, KC-135-related AGE, and privately owned vehicles (POVs) associated with KC-135 flight operations were evaluated. Emissions from the KC-135 aircraft operations were calculated based on 2012 aircraft operations identified in Table 2.3-1, utilizing site-specific flight profiles to calculate aircraft operations below a default mixing height of 3,000 feet AGL. A discussion of the methodology for quantifying emissions is provided in Appendix A, Section A.2.3. Emissions for the baseline emissions associated with baseline operations of the KC-135 aircraft are provided in Table 3.1.2-4.

<table>
<thead>
<tr>
<th>Emission Source</th>
<th>VOCs</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 Baseline Aircraft Operations</td>
<td>3.63</td>
<td>54.09</td>
<td>99.23</td>
<td>8.48</td>
<td>0.45</td>
<td>0.45</td>
<td>23,585</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2,446</td>
</tr>
<tr>
<td>Engine Testing</td>
<td>0.17</td>
<td>2.52</td>
<td>0.69</td>
<td>0.11</td>
<td>0.01</td>
<td>0.01</td>
<td>299</td>
</tr>
<tr>
<td>POVs</td>
<td>1.94</td>
<td>26.38</td>
<td>1.46</td>
<td>0.02</td>
<td>0.06</td>
<td>0.03</td>
<td>993</td>
</tr>
<tr>
<td>Total Baseline Emissions</td>
<td>5.75</td>
<td>83.00</td>
<td>101.39</td>
<td>8.61</td>
<td>0.53</td>
<td>0.49</td>
<td>27,324</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding.

CO = carbon monoxide; CO2e = carbon dioxide equivalent; NOx = oxides of nitrogen; PM10 = particulate matter less than or equal to 10 microns in diameter; PM2.5 = particulate matter less than or equal to 2.5 microns in diameter; SO2 = sulfur dioxide; VOC = volatile organic compound; AGE = aerospace ground equipment; POV = privately owned vehicle

Source: 190 ARW 2008a.

3.1.3 Safety

This section provides information on both ground and flight safety. Ground safety includes discussions of fire/crash response capabilities, APZs/Runway Protection Zones (RPZs), explosive safety, and AT/FP. Flight safety includes discussions on flight safety procedures,
aircraft mishaps, bird/wildlife aircraft strike hazards (BASH), and fuel jettison requirements. The affected environment includes the airfield and local airspace surrounding Forbes Field Airport.

3.1.3.1 Ground Safety

Fire/Crash Response

Day-to-day operations and maintenance activities conducted by the 190 ARW are performed in accordance with applicable USAF safety regulations, published USAF Technical Orders, and standards prescribed by Air Force Occupational Safety and Health (AFOSH) requirements. The 190 ARW provides fire, crash, rescue, and structural fire protection for the installation and its aircraft. The 190 ARW has a cooperative response agreement with the local Metropolitan Topeka Airport fire department for mutual aid in fire protection, first responder and lifesaving services, and hazardous materials incident response.

Accident Potential Zone/Runway Protection Zone

Development restrictions associated with RPZs are intended to preclude incompatible land use activities from being established in these areas (see Appendix A, Section A.3, for specific RPZ discussion and Section 3.1.7 for land use compatibilities). The city of Topeka, Kansas utilizes the FAA’s airport land use compatibility guidelines, and as such, the RPZs have allowed development to be compatible with airport operations.

Explosive Safety

The 190 ARW stores, maintains, and uses a small range of munitions required for performance of their mission. Ordnance for the 190 ARW is currently stored in an aboveground storage magazine, with an operating location in a nearby Munitions Inspection Building. Both facilities are located on the north end of the flightline near the engine test cell and have limits of 4,000 pounds and 1,000 pounds of Hazard Division explosives 1.3 and 1.4, respectively.

Anti-Terrorism/Force Protection

Many of the military facilities at the 190 ARW installation at Forbes Field Airport were constructed before AT/FP considerations became a critical concern. Thus, under current conditions, many facilities do not comply with all current AT/FP standards. However, as new construction occurs and as facilities are modified, the 190 ARW would incorporate these standards to the maximum extent practicable.
3.1.3.2 Flight Safety

Flight Safety Procedures

Aircraft flight operations from Forbes Field Airport are governed by standard flight rules. Specific safety requirements are contained in standard operating procedures that must be followed by all aircrews operating from the airfield (AFI 11-2KC-135V3, *Flying Operations, C/KC-135 Operations Procedures* 2010) to ensure flight safety. While having aircraft in close proximity during air refueling is inherently dangerous, refueling mishaps are rare. Emergency separation procedures are established and practiced by both tanker and receiver aircrews.

Aircraft Mishaps

KC-135 aircraft (all models) have flown more than 14,750,000 hours since the aircraft entered the USAF inventory in 1957. Over that period, 83 Class A mishaps have occurred and 64 aircraft have been destroyed (specific statistics for mishaps during refueling are not recorded). This results in a Class A mishap rate of 0.56 per 100,000 flight-hours, and an aircraft destroyed rate of 0.43 per 100,000 flight-hours (Air Force Safety Center [AFSEC] 2012). The 190 ARW has not experienced a Class A mishap in the past 11 years (190 ARW 2013b). Together, the low KC-135 mishap rate and the lack of 190 ARW mishap history would make the chances of a Class A accident involving a KC-135 aircraft at Forbes Field Airport an unlikely event.

Bird/Wildlife Aircraft Strike Hazard

USAF BASH Team maintains a database that documents all reported bird/wildlife aircraft strikes. Historic information across the USAF for the past 40 years indicates that 39 USAF KC-135 aircraft have been destroyed and 33 fatalities have occurred from bird/wildlife aircraft strikes, with the last Class A mishap occurring in 2010 (AFSEC 2013).

The 190 ARW of the KS ANG has an on-going BASH program through which information and assistance is freely shared between airfield users, the Forbes Field Airport staff, and the local air traffic controllers. Serious BASH-related accidents within the immediate Forbes Field Airport area are unusual and have never resulted in a Class A mishap (190 ARW 2013a). The 190 ARW has recorded 63 minor BASH incidents from 2002 to 2012, with an average of fewer than six per year (190 ARW 2013a).

Fuel Jettison

For use in emergency situations, the KC-135 aircraft have the capability to jettison fuel and reduce aircraft gross weight for flight safety. Airbases must establish jettison areas and
procedures to minimize the impact of fuel jettisoning. Ideally, jettison areas are established at altitudes above 20,000 feet AGL, off published federal airways, avoiding urban areas, agricultural regions, and water supply sources. AFIs cover the fuel jettison procedures, and local operating policies define specific fuel ejection areas for each base.

After receiving approval from the Operations Group Commander and coordinating with Kansas City Air Route Traffic Control Center, the primary fuel jettison area for the 190 ARW is a holding pattern between 20 and 30 miles southwest of the field at 21,000 feet MSL. The aircrew would follow fuel jettisoning procedures in AFI 11-2KC135, C/KC-135 Operations Procedures (2010).

3.1.4 Soils and Water

3.1.4.1 Soils

This area of Kansas is within the Interior Plains on a glacial drift plain with broad, smooth ridgetops and slopes that are nearly level to strongly sloping. Loess covers the surface of almost all of the uplands in this area underlying glacial drift (U.S. Department of Agriculture [USDA] 2006). The 190 ARW installation is located on relatively flat improved land with an elevation of approximately 1,080 feet MSL (Kansas Army National Guard 2010).

The Natural Resources Conservation Service (NRCS) Soil Survey for Pawnee County, Kansas identifies the following three individual soil types at the installation:

Ladysmith silty clay loam, 0 to 1 percent slopes: This soil is typically found on summits and uplands from weathered limestone and shale. This soil type displays properties that would potentially limit building site development due to high shrink-swell potential, low strength, and depth to saturated zone. In addition, this soil type is designated as Prime Farmland (NRCS 2013a). Approximately 70 percent of the installation is composed of this soil type.

Ladysmith silty clay loam, 1 to 3 percent slopes: This soil is identical to the soil type above; however, the slopes are slightly steeper. This soil type is also designated as Prime Farmland (NRCS 2013a). Approximately 28 percent of the installation is composed of this soil type.

Pawnee clay loam, 4 to 8 percent slopes, eroded: This soil type is often found on side slopes of till plains. The rating class for building site development is considered very limited due to high shrink-swell potential, low strength, and depth to saturated zone. In addition, this soil type is considered a Farmland of Statewide Importance (NRCS 2013a). Approximately 2 percent, located in the northwestern corner of the installation, is composed of this soil type.
3.1.4.2 Surface Water

The 190 ARW installation is located within the Shunganunga Creek Watershed, a sub-basin of the Middle Kansas Watershed that encompasses over 5,684 square miles within the state of Kansas (USEPA 2013b). The Kansas River valley is 138 miles long; this course roughly follows the maximum extent of the Kansan glaciation, and the river likely began as a path of glacial meltwater drain (Kansas Center for Agricultural Resources and the Environment 2011). The Shunganunga Creek Watershed drains the Shunganunga Creek until it joins the Kansas River further downstream.

Surface water features within the vicinity of the 190 ARW installation include Lynn Creek to the east and South Branch Shunganunga Creek to the west (Figure 3.1.4-1). The Kansas River is approximately 6 miles north of the installation and the Wakarusa River is approximately 3 miles south. Forbes Field Airport is located on a drainage divide between Lynn Creek to the east and the South Branch of Shunganunga Creek to the west. Lynn Creek flows southeasterly into the Wakarusa River approximately 5 miles from the installation. The South Branch Shunganunga Creek flows north into the Kansas River about 6.5 miles from the installation (190 ARW 2008b).

Surface water within the installation primarily consists of a series of manmade ditches, storm sewers, and drainage swales. Drainage of the developed area is typified by overland flow to storm drain inlets and basins connected by a network of underground pipes. There are three primary drainage basins on the installation: SDO-001, -002, and -003. All three outfalls ultimately join the South Branch Shunganunga Creek. The two outfalls associated with industrial activity (SDO-001 and -002) are regulated under the Kansas General Permit for Stormwater Runoff Associated with Industrial Activity (S-ISWA-1111-1). The permit is administered by the Kansas Department of Health and the Environment under the auspice of the USEPA (190 ARW 2012a).

3.1.4.3 Groundwater

Groundwater in this area often occurs in valley-fill of alluvium and terrace deposits associated with the Kansas River Valley. There is no regional circulation of groundwater in this area due to the highly dissected nature of the upland topography. Therefore, water level fluctuations in upland wells are a direct result of local additions or withdrawals of groundwater. Water-level fluctuations in wells in the valley alluvium are somewhat more complex owing to the influence of the Kansas River and its tributaries which tend to reverse normal groundwater gradients (Kansas Geological Survey 2012).
Figure 3.1.4-1. Surface Water Features in the Vicinity of Forbes ANGS
Groundwater resources underlying the 190 ARW are found in two distinct units: the Nodaway Coal underlying bedrock and the unconsolidated material overlying the bedrock. The water table occurs at 10 feet below ground surface beneath most of the installation but ranges from 2 to 24 feet in portions of the installation. Groundwater flow is generally to the northwest. Due to lack of hydraulic connectivity of groundwater underlying the installation, groundwater does not flow from one end of the installation to the other, but occurs as isolated pockets. The potential for contaminant migration in groundwater underlying the installation is low due to the lack of hydraulic connectivity (190 ARW 2008b).

3.1.4.4 Floodplains

Per the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map for Shawnee County, Kansas, Panel 310 (Map Number 20177C0310E, Effective September 29, 2011), the 190 ARW installation is located within an area designated as Zone X. The designation Zone X are areas determined to be outside the 0.2 percent annual chance flood (500 year flood), indicating areas of minimal flooding (FEMA 2011).

3.1.5 Biological Resources

3.1.5.1 Vegetation

Forbes Field Airport occurs within the Prairie Parkland (Temperate) Province. Vegetation in this region typically is forest-steppe characterized by intermixed prairie, groves, and bands of deciduous trees. Prairies are dominated by grasses such as big bluestem (*Andropogon gerardii*), little bluestem (*Schizachyrium scoparium*), switchgrass (*Panicum virgatum*), and Indian grass (*Sorghastrum nutans*). Upland forests are dominated by oak (*Quercus* spp.) and hickory (*Carya* spp.) (Bailey 1995). The majority of the airport is developed or actively landscaped, with little natural vegetation or habitat remaining.

3.1.5.2 Wildlife

Due to the lack of substantial pockets of native vegetation, high noise levels, and human activities at and surrounding the airport, wildlife habitat is limited. As a result, the majority of wildlife present at the airport and the 190 ARW installation consists of species that are highly adapted to developed and disturbed areas. Forbes ANGS is located within the Central Flyway, one of four major North American corridors for migratory birds. The majority of the bird species found at Forbes Field Airport or its vicinity are protected under the Migratory Bird Treaty Act of 1918 (MBTA). Common bird species observed on the installation include Killdeer (*Charadrius vociferous*), Barn Swallow (*Hirundo rustica*), Great Horned Owl (*Bubo virginianus*), European Starling (*Sturnus vulgaris*), Chimney Swift (*Chaetura pelagica*), Western Meadowlark
(Sturnella neglecta), Mourning Dove (Zenaida macroura), American Kestrel (Falco sparverius), American Robin (Turdus migratorius), Broad-winged Hawk (Buteo platypterus), Franklin’s Gull (Spermophilus franklinii), Rock Pigeon (Columbia livia), Lesser Scaup (Aythya affinis), Horned Lark (Eremophila alpestris), and Eastern Meadowlark (Sturnella magna). Other common wildlife include the white-tailed deer (Odocoileus virginianus), coyote (Canis latrans), red fox (Vulpes vulpes), striped skunk (Mephitis mephitis), and eastern cottontail (Sylvilagus floridanus) (190 ARW 2004, 2012b).

3.1.5.3 Special Status Species

No federally or state listed species have been observed at Forbes Field Airport. The potential for several federally and state listed species to occur within Shawnee County within the vicinity of the airport exists; however, there is little to no habitat for these species within the airport or the installation. A list of these species can be found in Appendix E. There is no critical habitat located on the installation.

3.1.5.4 Wetlands

No wetland delineation has been conducted on the 190 ARW installation (190 ARW 2004). In addition, no National Wetland Inventory wetlands occur on the installation (U.S. Fish and Wildlife Service [USFWS] 2013). A general survey of the proposed construction sites conducted in March 2013 showed no signs of wetlands.

3.1.6 Cultural Resources

3.1.6.1 Archaeological Resources

All undeveloped and relatively undisturbed areas of the 190 ARW installation have been intensively surveyed for archaeological resources and no archaeological resources have been identified at the 190 ARW installation (KS ANG 2008).

The 2008 cultural resources survey verified that the entire installation has low to no probability for archaeological resources due to past disturbances from construction and the high level of development. Additionally, the installation lacks the types of landforms associated with previously recorded cultural resources on adjacent lands (KS ANG 2008, 2010). The Kansas SHPO concurred with these findings (Zollner 2008).

3.1.6.2 Architectural Resources

All of the 190 ARW installation’s 24 buildings pre-dating the end of the Cold War (pre-1990) have been inventoried and evaluated for NRHP eligibility (KS ANG 2008). One building
(Building 679) was determined eligible by the Kansas SHPO for listing in the NRHP. The remaining 23 buildings were determined not eligible for listing in the NRHP. The Kansas SHPO concurred with these determinations (see Zollner 2008 in Appendix B4). Building 679 is eligible for listing in the NRHP under criterion A for having contributed to events important in history (the U.S. defensive military response during the Cold War) and under criterion C as a prime example of a particular type of architecture. It was one of only ten 150-men alert readiness structures constructed in the U.S., and one of approximately 40 alert crew dormitories of the various sizes nationwide that are extant today. In May of 2008, the Kansas SHPO received notice of a proposed major renovation of Building 679. Subsequently, a Memorandum of Agreement was signed among the Kansas SHPO, the KS ANG, and the 190 ARW that outlined procedures to mitigate the adverse effects the renovations would have to this NRHP-eligible building (see Appendix B4). The building was demolished to the foundation and entirely rebuilt the following year.

3.1.6.3 Traditional Resources

The 190 ARW contains no known traditional resources; however, eight federally-recognized Tribes that are historically, culturally, and linguistically affiliated with the area have been identified including: Citizen Potawatomi Nation, Delaware Nation, Kaw Nation, Osage Nation of Oklahoma, the Prairie Band Potawatomi Tribe, Absentee Shawnee Tribe of Oklahoma, East Shawnee Tribe of Oklahoma, and the Wichita and Affiliated Tribes.

3.1.7 Land Use

Forbes ANGS is located on Forbes Field Airport, a public use airport owned by the MTAA. The airfield is located in Topeka, Shawnee County, Kansas, about 10 miles south of the city center. The 190 ARW installation consists of approximately 160 acres on the northwest corner of Forbes Field Airport, adjacent to the runway.

Land adjacent to the airfield in unincorporated Shawnee County is traditionally agricultural and remains sparsely populated and rural in character. On the west side of the airfield within the city limits of Topeka, industrial uses have developed along U.S. Highway 75. Long-term land use for the city is guided by a comprehensive plan. Short-term actions are regulated by zoning ordinances implemented through the Topeka Municipal Code and Shawnee County (City of Topeka 2011, Shawnee County 2013)

Zoning surrounding the airport generally supports compatible land use planning and provides for protection of the areas surrounding Forbes Field Airport. The Topeka Municipal Code 1981 § 4-55 defines and establishes airport hazard zones, height limitations, and land use restrictions
within these zones. This zoning protects RPZs. Detailed descriptions of RPZs can be found in Section A.3.1.1 of Appendix A. The City of Topeka has zoned the areas to the west of the airfield for industrial use. A triangular area, north of the airport boundary and between U.S. Highway 75 and S.E. 53rd Street, is a Planned Unit Development (PUD) district, which allows more flexibility in the use of land and structures to account for specific site features than standard land use categories. The PUD north of the airport currently includes industrial uses and vacant land, but also accommodates streets and commercial use (City of Topeka 2011). The unincorporated areas to the east of the airfield are zoned as Residential Reserve District, where the maximum density permitted is one single-family dwelling per 3 acres minimum. This designation provides a transitional area between urbanized development and rural-agricultural areas where increased urbanization occurs if municipal services and facilities were to become available (Shawnee County 2013).

Currently, aircraft noise from Forbes Field Airport exposes approximately 166 acres of off-airport areas of land zoned as industrial, residential reserve, and PUD to noise levels between 65 dB and 70 dB DNL. No houses, churches, schools or other sensitive noise receptors are located within the 65 dB and 70 dB DNL off-airport noise contour areas. Figure 3.1.7-1 shows an overlay of the baseline noise contours onto a map displaying the existing land use in the vicinity of Forbes Field Airport.
Figure 3.1.7-1. DNL Noise Contours and Land Use at Forbes Field Airport

3.1.8 Infrastructure and Transportation

3.1.8.1 Potable Water System

Potable water for the 190 ARW installation is provided by the City of Topeka. Potable water in the area is supplied primarily from the Kansas River. The City of Topeka Water Division pumps an average of approximately 8 trillion gallons of water per year to its customers (City of Topeka 2013a). In calendar year (CY) 2012, 2,424,824 gallons of potable water were supplied to the 190 ARW installation (190 ARW 2013b).

3.1.8.2 Wastewater

The 190 ARW installation generates wastewater from sanitary, stormwater, and industrial processes, including oil/water separator discharge (OWS), wash rack discharge, floor wash-down, latrines, sinks, and showers. Wastewater generated within the 190 ARW installation is conveyed into the municipal sewage system to the City of Topeka Wastewater Treatment Plant. The City owns two wastewater treatment plans, The Oakland and the North Topeka Wastewater Treatment Plants, which have a combined capacity to treat 28 million gallons of wastewater daily (City of Topeka 2010).

3.1.8.3 Stormwater

A high percentage of the active administrative and industrial areas of the installation are paved or roofed, resulting in high runoff rates during precipitation events. As described in the 190 ARW Stormwater Pollution Prevention Plan (SWPPP) (2012), the 190 ARW installation has a stormwater drainage conveyance system typified by overland flow to catch basins, inlets, surface drains, underground pipes, culverts, ditches, and swales that discharge to receiving waters (see Section 3.1.4, Soils and Water) or other municipal separate storm sewer systems. The stormwater drainage system has been designed to safely collect and transport surface water runoff from storm events to prevent flooding within the installation and is a separate system from the wastewater (sewage) system.

3.1.8.4 Electrical and Natural Gas Systems

Electricity is supplied to the 190 ARW installation by West Star Energy via an underground powerline. Natural gas is supplied by Kansas Gas Service via an 8-inch main line. Electricity consumption for CY 2012 at the 190 ARW installation was 6,144,451 kilowatt-hours. Natural gas consumption for CY 2012 at the 190 ARW installation was 152,900 cubic feet (190 ARW 2013b).
3.1.8.5 Solid Waste Management

Municipal solid waste at the 190 ARW installation is managed in accordance with the 190 ARW Solid Waste Management Plan (190 ARW 2009a) and guidelines specified in AFI 32-7042, *Waste Management* (2009). This AFI incorporates, by reference, the federal standard for solid waste regulations contained within 40 CFR, Subtitle D, *Non-hazardous Waste*, and other applicable federal regulations, AFIs, and DoD Directives. In general, AFI 32-7042 establishes the requirement for installations to have a solid waste management program that incorporates the following: a solid waste management plan; procedures for recycling, diversion, handling, storage, collection, and disposal of solid waste; recordkeeping and reporting; and pollution prevention.

The 190 ARW installation generates solid waste in the form of office trash, non-hazardous industrial wastes, normal municipal waste, and construction debris. These nonhazardous solid wastes are collected in dumpsters located throughout the 190 ARW installation and transported by contractor to the Rolling Meadows Waste Management facility in Topeka, Kansas.

3.1.8.6 Transportation

The 190 ARW installation is located within close proximity to several major highways. Interstate (I-) 70 and I-470 lie to the north of the installation and run primarily east and west. In addition, I-335 intersects with I-470 and runs north and south, to the west of the installation. The installation’s main gate is accessed from SW Topeka Boulevard, which can be accessed from I-470 or U.S. Highway 75.

3.1.9 Hazardous Materials and Waste

3.1.9.1 Hazardous Materials

Hazardous materials are used at the 190 ARW installation for aircraft operations support and maintenance, including petroleum, oil, and lubricant (POL) management and distribution, liquid fuels maintenance, transportation maintenance, vehicle paint, power production, machine shop operations, and flight simulation. Types of hazardous substances found on the 190 ARW installation include hydraulic fluid, waste oils, recovered fuels, spent cleaners, strippers, solvents, flammable and combustible liquids, acids, aerosols, batteries, corrosives, and paints (190 ARW 2009b).

There is currently one 1,500-gallon aboveground storage tank (AST) on the 190 ARW installation in Building 176 that stores polyvinyl chloride. There are currently two underground storage tanks (USTs) located on the 190 ARW installation. One is located at Building 775 and is
used for capturing an accidental release of pesticide. The other is an 8,000-gallon UST in the
POL (ANG 2008).

Toxic Substances

Regulated toxic substances typically associated with buildings and facilities include asbestos,
lead-based paint (LBP), and polychlorinated biphenyls (PCBs). Asbestos-containing material
(ACM) is known to occur in Buildings/Hangars 665, 666, 673, 679, 692, 770, and 780. ACM
was removed from Buildings 151 and 167 prior to a recent renovation that was completed. In
addition, ACM was removed from Buildings 656 and 659 prior to their demolition in the early
1990s (190 ARW 2005).

An LBP survey has not been conducted at the 190 ARW installation. Any buildings on the
installation constructed prior to 1978 are presumed to contain LBP and would be tested for LBP
prior to demolition or renovation.

The installation is considered PCB free. PCBs may still be present in older light ballasts;
however, these are not regulated as PCB equipment or PCB-contaminated equipment (ANG
2008).

3.1.9.2 Hazardous Waste Management

The 190 ARW Oil and Hazardous Substances Spill Prevention and Response Plan contains the
governing regulations for spill prevention and describes specific protocols for preventing and
responding to releases, accidents, and spills involving oils and hazardous materials (190 ARW
2012c). The 190 ARW Hazardous Waste Management Plan outlines procedures for controlling
and managing hazardous wastes from the point where they are generated until they are disposed.
In addition, it includes guidance for compliance with all federal, state, and local regulations
pertaining to hazardous waste (190 ARW 2009b).

The 190 ARW is regulated as a Small Quantity Generator of hazardous waste and maintains
USEPA Identification Number KS0572824043. A hazardous waste generation point is where
the waste is initially created or generated. A satellite accumulation point (SAP) is an area where
hazardous waste is initially accumulated at the point of generation and is under the control of the
SAP manager. Hazardous wastes initially accumulated at an SAP are accumulated in appropriate
containers before being transferred to the installation central accumulation point (CAP). There
are six SAPs (where a waste is initially accumulated) identified at the installation in
Buildings/Hangars 662, 668, and 770. The installation CAP is located in Building 57008 (190
ARW 2009b).
OWSs are used to separate oils, fuels, sand, and grease from wastewater and to prevent contaminants from entering the sanitary sewer and stormwater drainage systems. Two former OWSs were located on the installation but were removed in the 1990s. Currently there are no active OWSs located within the 190 ARW installation (190 ARW 2005).

3.1.9.3 Environmental Restoration Program

Ten potentially contaminated Environmental Restoration Program (ERP) sites were identified in 1986 for closure at the 190 ARW.

For all except three sites, Decision Documents for no further action were recorded due to a determination to have little or no threat for contaminant migration. For the remaining three sites, Decision Documents for no further action but periodic groundwater monitoring were recorded (190 ARW 2005). Table 3.1.9-1 provides details for each of these sites and Figure 3.1.9-1 shows the locations.

<table>
<thead>
<tr>
<th>ERP Site</th>
<th>Materials of Concern</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>This site is adjacent to the JP-4 storage area where contamination was judged to be minimal. Monitoring conducted during 1990-1993 at these three sites were completed with no contaminants reported above detection limits.</td>
<td>Closed</td>
</tr>
<tr>
<td>6</td>
<td>This site is a surface drainage ditch and storm sewer overflow. Low contaminant concentrations and relative immobility of contaminants cause the risk to the public or the environment to be judged minimal. Monitoring conducted during 1990-1993 at these three sites were completed with no contaminants reported above detection limits.</td>
<td>Closed</td>
</tr>
<tr>
<td>8</td>
<td>This site is the refueling hydrant C, where Total Petroleum Hydrocarbon was reported in groundwater and soil gas samples. No evidence of contaminant migration was indicated. Monitoring conducted during 1990-1993 at these three sites were completed with no contaminants reported above detection limits.</td>
<td>Closed</td>
</tr>
</tbody>
</table>

Notes: ERP = Environmental Restoration Program
Source: 190 ARW 2005.

3.1.10 Socioeconomics

3.1.10.1 Population and Employment

Population

Forbes ANGS is located approximately 5 miles south of Topeka in Shawnee County, Kansas. Current population data and estimates for the state of Kansas, Shawnee County, and the city of Topeka are provided in Table 3.1.10-1. From 1990 to 2010, Shawnee County’s population increased by 16,958, an increase of approximately 11 percent (U.S. Census Bureau [USCB] 1990a, 2000a, 2010a).
Figure 3.1.9-1. Environmental Restoration Program Sites at the 190 ARW Installation, Forbes Field Airport
Table 3.1.10-1. Population Growth within the Vicinity of Forbes ANGS

<table>
<thead>
<tr>
<th>Area</th>
<th>1990 Census</th>
<th>2000 Census</th>
<th>2010 Census</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kansas</td>
<td>2,477,574</td>
<td>2,688,418</td>
<td>2,853,118</td>
</tr>
<tr>
<td>Shawnee County</td>
<td>160,976</td>
<td>169,871</td>
<td>177,934</td>
</tr>
<tr>
<td>City of Topeka</td>
<td>119,883</td>
<td>122,377</td>
<td>127,473</td>
</tr>
</tbody>
</table>

The 190 ARW currently supports a workforce authorization of 1,242, including 403 full-time and 839 part-time personnel (see Table 2.3-6).

Employment and Earnings

Table 3.1.10-2 presents total labor force and employment rates for Kansas, Shawnee County, and the city of Topeka. Based on 2007-2011 American Community Survey (ACS) 5-year estimates, there were 92,855 persons in the labor force (able to work) and 86,188 employed within Shawnee County, resulting in an unemployment rate of approximately 7 percent. Top employment industries in Shawnee County include 1) educational services, and health care and social assistance; 2) retail; and 3) public administration (USCB 2011a). Principal employers include State of Kansas, Storemont-Vail Healthcare, Topeka School District, Blue Cross Blue Shield, and St. Francis Health Center (City of Topeka 2013b).

Table 3.1.10-2. Employment Data (2011) within the Vicinity of Forbes ANGS

<table>
<thead>
<tr>
<th>Area</th>
<th>Labor Force</th>
<th>Employed</th>
<th>Unemployed</th>
<th>Unemployment Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kansas</td>
<td>1,506,400</td>
<td>1,410,911</td>
<td>95,489</td>
<td>6.3</td>
</tr>
<tr>
<td>Shawnee County</td>
<td>92,855</td>
<td>86,188</td>
<td>6,667</td>
<td>7.2</td>
</tr>
<tr>
<td>City of Topeka</td>
<td>66,056</td>
<td>60,550</td>
<td>5,506</td>
<td>8.3</td>
</tr>
</tbody>
</table>

Note: Employment numbers include individuals in the Armed Forces.
Source: USCB 2011a.

3.1.10.2 Schools

According to the 2011 ACS enrollment 5-year estimates, 31,296 students were enrolled in schools from Kindergarten through Grade 12 in Shawnee County (USCB 2011a).

3.1.10.3 Housing

In 2010, the number of housing units in Shawnee County was 79,140 with a vacancy rate of approximately 8 percent (USCB 2010a).
3.1.11 Environmental Justice and the Protection of Children

3.1.11.1 Minority and Low-Income Populations

Table 3.1.11-1 displays the minority, low-income, and children under age 18 within the state of Kansas, as well as the city and county within the vicinity of Forbes Field Airport. Approximately 19 percent of the population of Shawnee County is composed of minorities (i.e., an ethnic or racial group with a distinctive presence in a community), compared to approximately 16 percent for the state of Kansas. The percentage of population living below the poverty level for the state of Kansas (approximately 13 percent) is the lower than Shawnee County (approximately 15 percent) (USCB 2010a).

<table>
<thead>
<tr>
<th>Geographic Area</th>
<th>Total Population</th>
<th>Minority Population</th>
<th>Percent Minority</th>
<th>Low-Income Population</th>
<th>Percent Low-Income</th>
<th>Children Under Age 18</th>
<th>Percent Children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kansas</td>
<td>2,853,118</td>
<td>462,074</td>
<td>16.2</td>
<td>359,493</td>
<td>12.6</td>
<td>726,939</td>
<td>25.5</td>
</tr>
<tr>
<td>Shawnee County</td>
<td>177,934</td>
<td>33,522</td>
<td>18.8</td>
<td>26,156</td>
<td>14.7</td>
<td>44,171</td>
<td>24.8</td>
</tr>
<tr>
<td>City of Topeka</td>
<td>127,473</td>
<td>30,301</td>
<td>23.8</td>
<td>24,092</td>
<td>18.9</td>
<td>31,093</td>
<td>24.4</td>
</tr>
</tbody>
</table>

Note: 1. Total population, minority population, and number of children under the age of 18 were obtained from the 2010 census data. Low-income population numbers are from the 2007-2011 ACS 5-Year Estimates.

2. The percentage of low-income persons is calculated as a percentage of all persons for whom the USCB determines poverty status, which is generally a lower number than the total population because it excludes institutionalized persons, persons in military group quarters and college dormitories, and unrelated individuals under 15 years old.

Currently there are no populations, including minority or low-income populations, located in the vicinity of Forbes Field Airport within the baseline DNL greater than 65 dB.

3.1.11.2 Protection of Children

In 2010, the number of children under the age of 18 living in Shawnee County was approximately 44,171 (approximately 25 percent of the population) (Table 3.1.11-1). The state of Kansas has a slightly higher percentage population of children compared to the county (approximately 26 percent) (USCB 2010a). There are no on-installation housing or facilities for children located at the 190 ARW installation. Currently, there are no Kindergarten through Grade 12 off-installation schools that are exposed to DNL of 65 dB or above.
3.2 **JOINT BASE MCGUIRE-DIX-LAKEHURST**

JB MDL, home of the 108 WG of the NJ ANG, is located in central New Jersey, spanning more than 20 miles with more than 42,000 contiguous acres. The base is located 18 miles southeast of Trenton, 45 miles east of Philadelphia, 50 miles south of New York City, and 14 miles inland from the Atlantic Ocean.

3.2.1 Noise

To evaluate noise impacts in the vicinity of a military installation, the USAF uses NOISEMAP, a computer program used to model noise exposure in the vicinity of military airfields. Noise contours were generated for JB MDL (McGuire Field) in 2012. For more detailed information on the noise modeling methods, see Appendix A, Section A.1.2.

3.2.1.1 Baseline Operations

In 2012, JB MDL initiated an update to their 2009 McGuire AFB Air Installation Compatible Use Zone (AICUZ) study that included noise modeling for current McGuire Field aircraft operations. The aircraft operations included in the 2012 NOISEMAP update form the baseline for this analysis.

Based on aircraft operations data validated in March 2013, approximately 62,686 total aircraft operations occurred at McGuire Field during the 12-month period ending October 2011 (JB MDL 2013a). An aircraft operation is counted each time an aircraft departs from the runway and each time they approach the runway. Table 3.2.1-1 summarizes the frequency of aircraft operations for McGuire Field based on information provided by base staff, flying organizations, and air traffic control personnel. The majority of active USAF and ANG flying units currently at McGuire Field operate the C-17, KC-10, KC-135, and the C-32 aircraft. Although the number of aircraft operations at an installation varies from day to day, for McGuire Field, operations were calculated for an AAD, meaning that yearly operations were averaged across all 365 days of the year. Table 3.2.1-1 reflects a total of approximately 172 aircraft operations on an AAD (62,686 divided by 365 days). Approximately 34 percent of the total operations at McGuire Field occur during environmental night (10:00 p.m. through 7:00 a.m.).

Based on the 2012 baseline data, the 108 WG KC-135 aircraft flew a total of 8,340 annual airfield operations, or an average of 23 airfield operations a day. Approximately 20 percent of the total KC-135 operations occur during environmental night. Approximately 13 percent of total operations at McGuire Field are accomplished by the 108 ARW KC-135 aircraft.
Table 3.2.1-1. Current McGuire Field Annual Aircraft Operations

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Departures</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night</td>
<td>Day</td>
<td>Night</td>
<td>Day</td>
<td>Night</td>
</tr>
<tr>
<td>KC-135</td>
<td>3,348</td>
<td>822</td>
<td>3,308</td>
<td>862</td>
<td>6,656</td>
<td>1,684</td>
</tr>
<tr>
<td>Other Aircraft</td>
<td>18,842</td>
<td>8,316</td>
<td>15,895</td>
<td>11,293</td>
<td>34,737</td>
<td>19,609</td>
</tr>
<tr>
<td>Total</td>
<td>22,190</td>
<td>9,138</td>
<td>19,203</td>
<td>12,155</td>
<td>41,393</td>
<td>21,293</td>
</tr>
</tbody>
</table>

Notes: 1. Includes Closed Patterns (which count as two airfield operations). 2. Night –Between 10 p.m. and 7 a.m. for environmental night. 3. Other based military and civilian aircraft, and transient aircraft (multiple type aircraft); example aircraft include: KC-10, C-17, and C-32.

3.2.1.2 Runway and Flight Profiles

McGuire Field aircraft use straight in approaches, overhead approaches, IFR or radar closed patterns, and VFR closed patterns along with re-entry VFR patterns as the basic flight patterns for training, local arrival, and departures. Detailed representative arrival, departure, and closed pattern flight tracks are found in Appendix C, Noise (JB MDL 2013a).

3.2.1.3 Existing Noise Environment

Noise contours developed for the baseline conditions at JB MDL are shown in Figure 3.2.1-1. The acreage within each DNL contour on and off JB MDL property is shown in Table 3.2.1-2. Approximately 3,561 acres are exposed to DNL greater than or equal to 65 dB. Detailed information on off-airport land use that lies within a DNL greater than 65 dB can be found in Section 3.2.7, Land Use.

Table 3.2.1-2. Acres within Baseline Noise Contours, McGuire Field

<table>
<thead>
<tr>
<th>Noise Level (dB)</th>
<th>On-Base (acres)</th>
<th>Off-Base (acres)</th>
<th>Total (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>65-70</td>
<td>1,375</td>
<td>311</td>
<td>1,686</td>
</tr>
<tr>
<td>70-75</td>
<td>1,186</td>
<td>21</td>
<td>1,207</td>
</tr>
<tr>
<td>75-80</td>
<td>370</td>
<td>0</td>
<td>370</td>
</tr>
<tr>
<td>80-85</td>
<td>222</td>
<td>0</td>
<td>222</td>
</tr>
<tr>
<td>Greater than 85</td>
<td>76</td>
<td>0</td>
<td>76</td>
</tr>
<tr>
<td>Total</td>
<td>3,229</td>
<td>332</td>
<td>3,561</td>
</tr>
</tbody>
</table>

Note: dB = decibel
Figure 3.2.1-1. Baseline DNL Noise Contours for McGuire Field
Potential Hearing Loss

As shown in Table 3.2.1-2, there is no property off the JB MDL that falls within the baseline 80+ dB DNL noise contour; therefore, no potential hearing loss risk is currently associated with these areas.

3.2.1.4 Joint Base McGuire-Dix-Lakehurst Noise Abatement Procedures

JB MDL has placed certain restrictions on flying activities that could adversely affect its neighbors in an effort to reduce noise impacts while maintaining safe operations. Local noise abatement procedures are published in AFI 11-2KC135 V3, 108 ARW Supplement (2009).

For McGuire Field, noise abatement procedures include, but are not limited to, restrictions on rolling and intersection take-offs, and maximum gross weights for practice landings (i.e., closed patterns). Additional McGuire Field local restrictions provide additional protection in housing areas by requiring aircraft to avoid overflight of the housing areas by 1,600 feet MSL from 6:00 a.m. to 10:00 p.m. and restricting aircraft overflight between the hours of 10:00 p.m. and 7:00 a.m., and to avoid overflight of Fort Dix housing, McGuire AFB Clinic, and Deborah Hospital at all times (JB MDL 2009).

3.2.1.5 Joint Base McGuire-Dix-Lakehurst Noise Complaints Procedures

Currently, JB MDL receives noise complaints through the 87th Air Base Wing Public Affairs office. In 2012, McGuire Field received a total of nine noise complaints. Each compliant was routed through JB MDL Radar Approach Control to determine what, if any, military aircraft were in the vicinity of the noise complainant. If it is determined that a JB MDL aircraft was in the vicinity of the complainant, the complaint is forwarded to the appropriate operations flying groups for response and appropriate action (McGee 2013a).

3.2.2 Air Quality

3.2.2.1 Regulatory Setting

Individual states are delegated the responsibility to regulate air quality in order to achieve or maintain air quality in attainment with these standards. The New Jersey Department of Environmental Protection (NJDEP) is the agency responsible for the regulation of air quality within the state of New Jersey. The state of New Jersey regulates air quality through the New Jersey Administrative Code, Title 7:27A through 7:27D. The state of New Jersey has adopted additional ambient air quality standards that apply within the state. The NAAQS and state AAQS are summarized in Table 3.2.2-1.
Table 3.2.2-1. Ambient Air Quality Standards

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>National Standards</th>
<th>New Jersey Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Primary (^{b,c})</td>
<td>Secondary (^{b,d})</td>
</tr>
<tr>
<td>O(_3)</td>
<td>8-hour</td>
<td>0.075 ppm (147 µg/m(^3))</td>
<td>Same as primary</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>CO</td>
<td>8-hour</td>
<td>9 ppm (10 mg/m(^3))</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>35 ppm (40 mg/m(^3))</td>
<td>—</td>
</tr>
<tr>
<td>NO(_2)</td>
<td>Annual</td>
<td>0.053 ppm (100 µg/m(^3))</td>
<td>Same as primary</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>0.100 ppm (188 µg/m(^3))</td>
<td>—</td>
</tr>
<tr>
<td>SO(_2)</td>
<td>Annual</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3-hour</td>
<td>—</td>
<td>0.5 ppm (1,300 µg/m(^3))</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>0.075 ppm (189 µg/m(^3))</td>
<td>—</td>
</tr>
<tr>
<td>Total Suspended Particulate</td>
<td>Annual</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>PM(_{10})</td>
<td>Annual</td>
<td>—</td>
<td>Same as primary</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>150 µg/m(^3)</td>
<td>Same as primary</td>
</tr>
<tr>
<td>PM(_{2.5})</td>
<td>Annual</td>
<td>12 µg/m(^3)</td>
<td>15 µg/m(^3)</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>35 µg/m(^3)</td>
<td>Same as primary</td>
</tr>
<tr>
<td>Pb</td>
<td>Rolling 3-month period</td>
<td>0.15 µg/m(^3)</td>
<td>Same as primary</td>
</tr>
</tbody>
</table>

Notes:

- a Standards other than the 1-hour ozone, 24-hour PM\(_{10}\), 24-hour PM\(_{2.5}\), and those based on annual averages are not to be exceeded more than once a year. The 8-hour ozone national standard has replaced the 1-hour ozone national standard.
- b Concentrations are expressed first in units in which they were promulgated. Equivalent units given in parenthesis.
- c Primary Standards: The levels of air quality necessary, with an adequate margin of safety to protect the public health. Each state must attain the primary standards no later than 3 years after that state’s implementation plan is approved by the USEPA.
- d Secondary Standards: The levels of air quality necessary to protect the public welfare from any known or anticipated adverse effects of a pollutant.
- µg/m\(^3\) = micrograms per cubic meter; CO = carbon monoxide; mg/m\(^3\) = milligrams per cubic meter; NO\(_2\) = nitrogen dioxide; O\(_3\) = ozone; Pb = lead; PM\(_{2.5}\) = particulate matter less than or equal to 2.5 microns in diameter; PM\(_{10}\) = particulate matter less than or equal to 10 microns in diameter; ppm = parts per million; SO\(_2\) = sulfur dioxide

Source: USEPA 2012.
JB MDL is located in the central portion of the state of New Jersey, in Ocean and Burlington counties. The USEPA has classified the Philadelphia-Wilmington-Atlantic City area of the states of Pennsylvania, Delaware, and New Jersey as nonattainment for the O₃ (marginal nonattainment) NAAQS, and a maintenance area for PM₂.₅ and CO. The region is designated attainment/unclassified area for all other criteria pollutants. The Proposed Action is therefore subject to the requirements of Section 176(c) of the CAA, as articulated in the USEPA General Conformity Rule. Based on the nonattainment classification for the region, the *de minimis* emission thresholds for the General Conformity Rule for O₃ precursors (oxides of nitrogen \([\text{NO}_x]\) and volatile organic compounds \([\text{VOCs}]\)) is 100 tpy, and the *de minimis* emission thresholds for PM₂.₅ and CO emissions are also 100 tpy.

The USEPA recently promulgated a more stringent standard for lead, and has redesigned its monitoring program to address lead and identified airports for monitoring because aviation gas used in piston aircraft still contains lead. The project area is considered attainment/unclassified for lead, and lead is not used in aviation fuel used in the KC-135 or KC-46A aircraft.

3.2.2.2 Climate and Meteorology

JB MDL is located in the central portion of the state of New Jersey, in Ocean and Burlington counties. The climate in the central portion of New Jersey is influenced by its vegetation, with moderation due to its proximity to the Atlantic Ocean. Scrub pine and oak forests dominate the interior southern portion of New Jersey, hence the name, Pine Barrens. Sandy soils, which are porous and not very fertile, have a major effect on the climate of this region. On clear nights, solar radiation absorbed during the day is quickly radiated back into space, resulting in surprisingly low minimum temperatures. The porous soil permits any precipitation to rapidly infiltrate and leave surfaces quite dry. Drier conditions allow for a wider range between the daily maximum and minimum temperatures, and make the area vulnerable to forest fires.

The warmest month of the year is July with an average maximum temperature of 87.10°F, while the coldest month of the year is January with an average minimum temperature of 22.50°F. Temperature variations between night and day tend to be moderate during summer with a difference that can reach 24°F, and moderate during winter with an average difference of 20°F. The annual average precipitation at Fort Dix is 47.12 inches. Rainfall is fairly evenly distributed throughout the year. The wettest month of the year is August with an average rainfall of 5.16 inches (Northeast Regional Climate Center 2013a). Prevailing winds in New Jersey are from the southwest in summer and from the northwest in winter.
3.2.2.3 Regional and Local Air Pollutant Sources

The 108 WG of the NJ ANG is based at McGuire Field in New Jersey. The area surrounding JB MDL is a mix of agricultural uses, developed areas, and undeveloped areas and includes Fort Dix to the west.

The USEPA’s National Emissions Inventory includes data for the year 2008 for Burlington and Ocean counties. Table 3.2.2-2 summarizes the regional emissions (stationary, area-wide, and mobile) of criteria pollutants and precursor emissions for the affected areas.

Table 3.2.2-2. Regional Emissions for Burlington and Ocean Counties, New Jersey

<table>
<thead>
<tr>
<th>EMISSIONS, TONS/YEAR</th>
<th>CO</th>
<th>VOCs</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional Emissions – Burlington County</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stationary Sources</td>
<td>6,767</td>
<td>1,882</td>
<td>2,935</td>
<td>500</td>
<td>1,010</td>
<td>940</td>
</tr>
<tr>
<td>Area-Wide Sources</td>
<td>12,110</td>
<td>24,564</td>
<td>311</td>
<td>73</td>
<td>4,191</td>
<td>1,066</td>
</tr>
<tr>
<td>Mobile Sources</td>
<td>60,287</td>
<td>6,056</td>
<td>9,594</td>
<td>122</td>
<td>592</td>
<td>487</td>
</tr>
<tr>
<td>Total</td>
<td>79,164</td>
<td>32,502</td>
<td>12,840</td>
<td>695</td>
<td>5,793</td>
<td>2,493</td>
</tr>
<tr>
<td>Regional Emissions – Ocean County</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stationary Sources</td>
<td>5,078</td>
<td>1,277</td>
<td>2,881</td>
<td>582</td>
<td>883</td>
<td>666</td>
</tr>
<tr>
<td>Area-Wide Sources</td>
<td>6,369</td>
<td>19,656</td>
<td>339</td>
<td>36</td>
<td>2,740</td>
<td>583</td>
</tr>
<tr>
<td>Mobile Sources</td>
<td>70,288</td>
<td>12,765</td>
<td>8,415</td>
<td>109</td>
<td>656</td>
<td>516</td>
</tr>
<tr>
<td>Total</td>
<td>81,735</td>
<td>33,698</td>
<td>11,635</td>
<td>727</td>
<td>4,279</td>
<td>1,765</td>
</tr>
</tbody>
</table>

Notes: Emissions of Pb are not included because the affected region contains no significant sources of this criteria pollutant. Numbers may not add precisely due to rounding.

CO = carbon monoxide; NOx = oxides of nitrogen; PM10 = particulate matter less than or equal to 10 microns in diameter; PM2.5 = particulate matter less than or equal to 2.5 microns in diameter; SO2 = sulfur dioxide; VOC = volatile organic compound

Source: USEPA 2008.

3.2.2.4 Baseline Air Quality

Representative background air monitoring data for the 108 WG for the period 2008-2012 are shown in Table 3.2.2-3. The closest monitoring stations to JB MDL are located in Ocean County (Jackson Township), Camden County (Camden and Winslow), Trenton, and Burlington County. Values measured in more developed areas such as Camden and Trenton are likely to be conservative due to the amount of development in those areas.

As shown in Table 3.2.2-3, O3 exceedances have been measured in the developed areas surrounding JB MDL during the recent 5-year period. The data show that the area did not experience violations of other NAAQS.
Table 3.2.2-3. Ambient Air Monitoring Data for the JB MDL Area

<table>
<thead>
<tr>
<th>Air Quality Indicator</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone (O<sub>3</sub>)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 8-hour value (ppm)</td>
<td>0.100</td>
<td>0.085</td>
<td>0.094</td>
<td>0.094</td>
<td>0.09</td>
</tr>
<tr>
<td>Days above federal standard (0.075 ppm)</td>
<td>15</td>
<td>2</td>
<td>16</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>Particulate matter less than or equal to 2.5 microns in diameter (PM<sub>2.5</sub>)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 24-hour value (µg/m<sup>3</sup>)</td>
<td>36.2</td>
<td>35.8</td>
<td>36.5</td>
<td>33.8</td>
<td>27.7</td>
</tr>
<tr>
<td>Days above federal standard (35 µg/m<sup>3</sup>)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Annual Average value (µg/m<sup>3</sup>)</td>
<td>11.1</td>
<td>9.3</td>
<td>9.5</td>
<td>10.3</td>
<td>8.8</td>
</tr>
<tr>
<td>Particulate matter less than or equal to 10 microns in diameter (PM<sub>10</sub>)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 24-hour value (µg/m<sup>3</sup>)</td>
<td>56</td>
<td>81</td>
<td>86</td>
<td>77</td>
<td>67</td>
</tr>
<tr>
<td>Days above federal standard (150 µg/m<sup>3</sup>)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 1-hour value (ppm)</td>
<td>3.7</td>
<td>2.5</td>
<td>2.7</td>
<td>0.7</td>
<td>2.2</td>
</tr>
<tr>
<td>Days above federal standard (9 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peak 8-hour value (ppm)</td>
<td>1.8</td>
<td>1.4</td>
<td>1.9</td>
<td>0.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Days above federal standard (35 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO<sub>2</sub>)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 1-hour value (ppm)</td>
<td>0.090</td>
<td>0.045</td>
<td>0.046</td>
<td>NA</td>
<td>0.051</td>
</tr>
<tr>
<td>98<sup>th</sup> Percentile (ppm)</td>
<td>0.058</td>
<td>0.040</td>
<td>0.040</td>
<td>NA</td>
<td>0.043</td>
</tr>
<tr>
<td>Days above federal standard (0.100 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO<sub>2</sub>)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 1-hour value (ppm)</td>
<td>0.040</td>
<td>0.028</td>
<td>0.016</td>
<td>NA</td>
<td>0.017</td>
</tr>
<tr>
<td>99<sup>th</sup> Percentile (ppm)</td>
<td>0.025</td>
<td>0.020</td>
<td>0.010</td>
<td>NA</td>
<td>0.015</td>
</tr>
<tr>
<td>Days above federal standard (0.075 ppm)<sup>1</sup></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NA</td>
<td>0</td>
</tr>
<tr>
<td>Peak 24-hour value (ppm)</td>
<td>0.013</td>
<td>0.015</td>
<td>0.006</td>
<td>NA</td>
<td>0.008</td>
</tr>
</tbody>
</table>

Notes: 1. The federal 1-hour SO₂ standard was adopted in 2010.
µg/m³ = micrograms per cubic meter; NA = data not available; ppm = parts per million
Source: USEPA 2013a.

3.2.2.5 108th Wing Emissions

The 108 WG currently flies and maintains eight KC-135 refueler aircraft to support its air refueling mission. The primary support operations performed at the 108 WG include aircraft fueling, aircraft deicing, aircraft maintenance, aircraft support equipment maintenance, ground vehicle maintenance, fueling of ground vehicles, and facilities maintenance. These operations involve activities such as corrosion control, non-destructive inspection, fuel cell maintenance, engine maintenance, hydraulics, and wheel and tire maintenance.

Emissions for the 108 WG have been quantified in the Final 2009 Air Emissions Inventory (108 WG 2011a). The inventory evaluated the emissions from the 108 WG to determine its status under the Title V Federal Operating Permits program. Based on the major source thresholds for the area, the major source thresholds are 25 tpy for O₃ precursors NO_x and VOCs, 100 tpy for all other criteria pollutants, and less than 10 tpy of any single HAP or 25 tpy of any combination of HAPs.
In December 2009, the base was issued an air permit from the NJDEP that contains operational limits such that its potential emissions are restricted below the Title V major source thresholds. While the 2009 Air Emissions Inventory also contains fugitive emission calculations, it demonstrates that total base-wide potential emissions from stationary sources are below the major source thresholds.

Stationary source emissions at the 108 WG include emissions from natural gas-fired heating units, emergency generators and pumps, fuel tanks, fuel cell maintenance, and various minor sources such as solvent use, deicing, and welding. Mobile source emissions include emissions from aircraft operations (take-offs and landings), AGE, ground vehicle operations, and maintenance aircraft operations performed with the engines still mounted on the aircraft (engine run-ups and trim checks). Emissions from aircraft operations at the 108 WG considered all based and transient aircraft. Aircraft emissions were calculated for all flight activities below the default mixing height (3,000 feet AGL). Baseline emissions also include stationary sources and emissions associated with vehicle trips associated with existing personnel and dependents. These emissions, combined with those from the other mobile sources, account for the majority of the emissions from the installation.

To provide a baseline for evaluating the net emissions increases/decreases associated with Alternative #2, emissions from the KC-135 aircraft operations, aircraft refueling, KC-135 engine testing, KC-135-related AGE, and POVs associated with KC-135 flight operations were evaluated. Emissions from the KC-135 aircraft operations were calculated based on 2012 aircraft operations identified in Table 2.3.7 utilizing site-specific flight profiles to calculate aircraft operations below a default mixing height of 3,000 feet AGL. A discussion of the methodology for quantifying emissions is provided in Appendix A, Section A.2.3. Emissions associated with baseline operations of the KC-135 aircraft are provided in Table 3.2.2-4.

<table>
<thead>
<tr>
<th>Emission Source</th>
<th>VOCs</th>
<th>CO</th>
<th>NO₂</th>
<th>SO₂</th>
<th>PM₁₀</th>
<th>PM₂·₅</th>
<th>CO₂e</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 Baseline Aircraft Operations</td>
<td>3.21</td>
<td>49.03</td>
<td>83.34</td>
<td>7.43</td>
<td>0.39</td>
<td>0.39</td>
<td>20,659</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.01</td>
<td>0.09</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2,157</td>
</tr>
<tr>
<td>Engine Testing</td>
<td>0.14</td>
<td>2.01</td>
<td>0.55</td>
<td>0.09</td>
<td>0.01</td>
<td>0.01</td>
<td>239</td>
</tr>
<tr>
<td>POVs</td>
<td>5.12</td>
<td>110.72</td>
<td>5.20</td>
<td>0.07</td>
<td>0.21</td>
<td>0.12</td>
<td>3,543</td>
</tr>
<tr>
<td>Total Baseline Emissions</td>
<td>8.48</td>
<td>161.78</td>
<td>89.18</td>
<td>7.59</td>
<td>0.61</td>
<td>0.53</td>
<td>26,597</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding.
CO = carbon monoxide; CO₂e = carbon dioxide equivalent; NO₂ = oxides of nitrogen; PM₁₀ = particulate matter less than or equal to 10 microns in diameter; PM₂·₅ = particulate matter less than or equal to 2.5 microns in diameter; SO₂ = sulfur dioxide; VOC = volatile organic compound; AGE = aerospace ground equipment; POV = privately owned vehicle.

3.2.3 Safety

This section provides information on both ground and flight safety. Ground safety includes discussions of fire/crash response capabilities, APZs/RPZs, explosive safety, and AT/FP. Flight safety includes discussions on flight safety procedures, aircraft mishaps, BASH, and fuel jettison requirements. The affected environment includes the airfield and local airspace surrounding McGuire Field.

3.2.3.1 Ground Safety

Fire/Crash Response

Day-to-day operations and maintenance activities conducted by the 108 WG are performed in accordance with applicable USAF safety regulations, published USAF Technical Orders, and standards prescribed by AFOSH requirements. The USAF active duty host at JB MDL provides fire, crash, rescue, and structural fire protection for the McGuire Field installation, including the 108 WG, and its aircraft. Aircraft Rescue Fire Fighting (ARFF) services at McGuire Field are available on a 24-hour basis. Upon notification of an in-flight or ground emergency, the crash and rescue services personnel would coordinate emergency services. ARFF equipment and personnel at McGuire Field meet USAF requirements (JB MDL 2013b).

Accident Potential Zone/Runway Protection Zone

APZs are established to delineate recommended surrounding land uses for the protection of people and property on the ground, as described in Appendix A, Section A.3. At McGuire Field, airfield operations currently has waivers for two buildings, 1931 and 5650, which violate the CZs for Runways 24 and 36 respectively. Both are scheduled for demolition. Details of development and land use in the McGuire Field vicinity are included in Section 3.2.7, Land Use.

Explosive Safety

The 108 WG uses a small range of munitions required for performance of their mission. The existing munitions storage capabilities on JB MDL meet the requirement for small arms deployment/training ammunition and other munitions required by the 108 WG.

Anti-Terrorism/Force Protection

Many of the 108 WG military facilities at JB MDL were constructed before AT/FP considerations became a critical concern. Thus, under current conditions, many facilities do not comply with all current AT/FP standards. However, as new construction occurs and as facilities
are modified, the New Jersey 108 WG would incorporate these standards to the maximum extent practicable.

3.2.3.2 Flight Safety

Flight Safety Procedures

Aircraft flight operations from McGuire Field are governed by standard flight rules. Specific safety requirements are contained in standard operating procedures that must be followed by all aircrews operating from the airfield (AFI 11-2KC-135V3, *Flying Operations, C/KC-135 Operations Procedures* 2010) to ensure flight safety. While having aircraft in close proximity during air refueling is inherently dangerous, air refueling mishaps are rare. Emergency separation procedures are established and practiced by both tanker and receiver aircrews.

Aircraft Mishaps

KC-135 aircraft (all models) have flown more than 14,750,000 hours since the aircraft entered the USAF inventory in 1957. Over that period, 83 Class A mishaps have occurred and 64 aircraft have been destroyed (specific statistics for mishaps during refueling are not recorded). This results in a Class A mishap rate of 0.56 per 100,000 flight-hours, and an aircraft destroyed rate of 0.43 per 100,000 flight-hours (AFSEC 2012). There have been no Class A mishaps involving 108 WG aircraft at McGuire Field. The aircrew members at the 108 WG are highly experienced and have accumulated over 270,000 accident free hours (JB MDL 2013b).

Bird/Wildlife Aircraft Strike Hazard

The USAF BASH Team maintains a database that documents all reported bird/wildlife aircraft strikes. Historic information across the USAF for the past 40 years indicates that 39 USAF KC-135 aircraft have been destroyed and 33 fatalities have occurred from bird/wildlife-aircraft strikes, with the last Class A mishap occurring in 2010 (AFSEC 2013).

The 108 WG has an effective, on-going BASH program through which information and assistance is freely shared between airfield users, the McGuire Field staff, and the local air traffic controllers. Serious BASH-related accidents within the immediate JB MDL area are unusual and have never resulted in a Class A mishap (JB MDL 2013c). JB MDL recorded a total of 94 minor BASH incidents and one deer mishap from 2008 to 2013. From this total, the 108 WG experienced 22, for an average of fewer than 2 per year (JB MDL 2013c).
Fuel Jettison

For use in emergency situations, the KC-135 aircraft have the capability to jettison fuel and reduce aircraft gross weight for flight safety. Although fuel jettisoning is not practiced, airbases must establish jettison areas and procedures to minimize the impact of fuel jettisoning should it occur during an emergency situation. Ideally, jettison areas are established at altitudes above 20,000 feet, off published federal airways, avoiding urban areas, agricultural regions, and water supply sources.

The primary emergency fuel jettison area for the 108 WG is the PREPI (charted, mandatory overwater reporting point) overwater intersection, 62 miles southeast of JB MDL. Aircrews enter a holding pattern east of PREPI intersection, flying 7-mile legs, with right hand turns, after notifying the appropriate Air Traffic Control facility of intentions to jettison fuel. Aircrews will request an altitude as high as practical, consistent with the nature of the in-flight emergency; however, 20,000 feet AGL or above is preferred (JB MDL 2009).

3.2.4 Soils and Water

3.2.4.1 Soils

This area of New Jersey is within the Coastal Plain Province, a nearly level to rolling, dissected coastal plain that has been subjected to episodes of rising and falling sea levels. During low sea levels, eroding streams have dissected the area, leaving a series of terraces across the landscape (USDA 2006). The 108 WG installation is located on improved land, and relief ranges from 70 to 90 feet above MSL (JB MDL 2011).

The NRCS Soil Survey for Burlington County, New Jersey identifies eight individual soil types at the 108 WG installation. The following four soil types are located within the project study area:

Adelphia-Urban land complex, 0 to 5 percent slopes: This soil consists of strongly intermingled Urban land and Adelphia soil. Urban land consists of soil from cut/fill sites used for buildings, paved roads, parking lots, and other areas of urban development. The rating class for building site development is considered somewhat limited due to shrink-swell potential and depth to saturated zone (NRCS 2013b). Approximately 54 percent of the installation is composed of this soil type.

Holmdel sandy loam, 0 to 2 percent slopes: This soil is typically found on flats from loamy marine deposits. The rating class for building site development is considered somewhat limited
due to depth to saturated zone. In addition, this soil type is designated as Prime Farmland (NRCS 2013b). Approximately 4 percent of the installation is composed of this soil type.

Sassafras sandy loam, 2 to 5 percent slopes: This soil is typically found on knolls and low hills from loamy or gravelly marine deposits. There are no known limitations to site development associated with this soil type. In addition, this soil type is designated as Prime Farmland (NRCS 2013b). Approximately 18 percent of the installation is composed of this soil type.

Udorthents, wet substratum, 0 to 8 percent slopes: This soil is found in areas that have been excavated and regraded or that have been filled with soil material and graded. This soil type is typically used for urban development or landfills. The suitability of the soils as a site for development varies. The rating class for building site development is not rated for this soil type (NRCS 2013b). Approximately 5 percent of the installation is composed of this soil type.

The remaining 19 percent is comprised of soil types that would not be affected.

3.2.4.2 Surface Water

The 108 WG is located within the Middle Delaware-Musconetcong Watershed that encompasses over 3,480 square miles across New Jersey and Pennsylvania (USEPA 2013c). The Delaware is the longest un-dammed river in the U.S., extending 330 miles from the confluence of its east and west branches at Hancock, New York to the mouth of the Delaware Bay where it meets the Atlantic Ocean. Three-quarters of the Delaware River is now included in the National Wild and Scenic Rivers System. Sections of the Maurice River and the Musconetcong River in New Jersey also have been included in the national system (Delaware River Basin Commission 2013).

Surface water features within the vicinity of the JB MDL include Assiscunk Creek, Crosswicks Creek, Manapaqua Brook, North Ruckles, Rancocas Creek, Ridgeway Brook, and the Toms River which drains southeast into Barnegat Bay (Figure 3.2.4-1). Three of these creeks are tributaries to the Delaware River: Assiscunk Creek, Crosswicks Creek, and Rancocas Creek. The western portion of the installation, including McGuire Field, is in the Rancocas Creek watershed. Smaller streams include Harris Branch, Elisha Branch, Paint Branch, and a number of unnamed tributaries (87th Civil Engineering Squadron 2012).
Figure 3.2.4-1. Surface Water Features and Wetlands in the Vicinity of McGuire Field
There are five stormwater outfalls on McGuire Field, Drainage Basins 1 through 5. Drainage basins containing industrial activities include Basins 1, 2, and 3. Drainage Basin 1 directs effluent into the South Run of Crosswicks Creek, while Drainage Basin 2 directs effluent to Jacks Run. Drainage Basin 3 discharges into Larkins Run of the North Branch of Rancocas Creek. Drainage Basin 4 directly discharges stormwater to Drainage Basin 5, which in turn discharges into the North Run of the Crosswicks Creek. The outfalls associated with industrial activity are regulated under a New Jersey Basic Industrial General Stormwater Permit (NJ0088315). The permit is administered by the NJDEP under the auspice of the USEPA (USAF School of Aerospace Medicine 2010).

3.2.4.3 Groundwater

Groundwater in this area is part of the Northern Atlantic Coastal Plain aquifer system consisting of sedimentary deposits that range in age from Early Cretaceous to Holocene (U.S. Geological Survey [USGS] 1995a). The installation lies within the Kirkwood-Cohansey Aquifer present throughout the New Jersey coastal plain and covers approximately 3,000 square miles. The Cohansey Formation is mostly sand with minor lenses of silt, clay, and gravel. The Kirkwood Formation contains both sand and clay beds. The Kirkwood-Chansey water table is highly permeable due to the dominance of well-sorted medium- to coarse-grained sand (New Jersey Geological Survey 2009). Because of the high water table and permeable soils, the underlying groundwater resources are particularly sensitive to contamination making groundwater pollution prevention an important issue on the installation (87th Civil Engineering Squadron 2012).

Immediately below the Cohansey Formation is the Kirkwood Formation. Together, these two aquifers are estimated to contain as much as 17 trillion gallons of water. Underlying the Cohansey and Kirkwood Formations is the Potomac-Raritan-Magothy Formation. The installation’s largest capacity well taps into the Potomac-Raritan-Magothy Aquifer at about 1,580 feet (87th Civil Engineering Squadron 2012).

3.2.4.4 Floodplains

Per the FEMA Flood Insurance Rate Map for Burlington County, New Jersey, the 108 WG installation falls within an unmapped area, and no FEMA floodplains have been delineated within this area (FEMA 2013).

A floodplain study was prepared by the U.S. Army Corps of Engineers (USACE) for the Lakehurst area of JB MDL in 1989 and was later revised in 1990. Peak discharges for flood levels that occur with average intervals of 10, 50, 100, and 500 years were determined for Ridgeway Branch, North Ruckles Branch, Manapaqua Brook, Paint Branch, and Harris Branch.
Flood Insurance Studies have also been prepared by FEMA for the Township of Manchester and the Borough of Lakehurst. No floodplain studies have been conducted on the Fort Dix or McGuire areas of JB MDL (87th Civil Engineering Squadron 2012).

3.2.5 Biological Resources

3.2.5.1 Vegetation

The 108 WG installation occurs within the Eastern Broadleaf Forest (Oceanic) Province. Vegetation in this region typically is characterized by a winter deciduous forest dominated by tall broadleaf trees (Bailey 1995). Within this region, the 108 WG installation lies within the Pinelands, a heavily forested area characterized by a mix of pitch pine (*Pinus rigida*), Virginia pine (*Pinus virginiana*), and short leaf pine (*Pinus echinata*). The majority of the JB MDL (69 percent) is forested with pine/oak or oak/pine forests with dense deciduous stands of red maple, sweet gum, and black gum in the wetland forests. However, the majority of McGuire Field and the 108 WG installation is either developed or comprised of turf and landscaped areas (87th Civil Engineering Squadron 2012, Headquarters AMC 2008).

3.2.5.2 Wildlife

Since 69 percent of JB MDL is forested, and the majority of the 108 WG installation is developed, wildlife present within the vicinity includes a mix of species highly adapted to developed and disturbed areas as well as species typical of native forests in the area. Common mammal species found on JB MDL include white-tailed deer, woodchuck (*Marmota marmox*), beaver (*Castor canadensis*), eastern cottontail rabbit (*Sylvilagus floridanus*), red squirrel (*Tamiasciurus hudsonicus*), white-footed mouse (*Peromyscus leucopus*), and meadow vole (*Microtus pennsylvanicus*) (87th Civil Engineering Squadron 2012, Headquarters AMC 2008).

Common reptilian and amphibian species observed within the vicinity of the installation include the milk snake (*Lampropeltis* spp.), northern black racer (*Coluber constrictor*), northern fence lizard (*Sceloporus undulates hyacinthus*), painted turtle (*Chrysemys picta*), American toad (*Bufo americanus*), Fowler’s toad (*Bufo woodhousei fowleri*), and northern leopard frog (*Rana pipiens sphenoschistosa*) (Headquarters AMC 2008).

The 108 WG installation is located within the Atlantic Flyway, one of four major North American corridors for migratory birds. The majority of the bird species found within the 108 WG installation or its vicinity are protected under the MBTA. Grassland areas on the installation, as well as those grassland areas near the airfield, provide habitat for birds such as the Upland Sandpiper (*Bartramia longicauda*), Grasshopper Sparrow (*Ammodramus savannarum*), and Savannah Sparrow (*Passerculus sandwhichensis*). The ecotone between grassland and...
forested ecosystems provides excellent habitat for bird species such as the Gray Catbird (*Dumetella carolinensis*), Yellow Warbler (*Dendroica petechia*), Northern Cardinal (*Cardinalis cardinalis*), Indigo Bunting (*Passerina cyanea*), Rufous-sided Towhee (*Pipilo erythrophthalmus*), Song Sparrow (*Melospiza melodia*), Brown-headed Cowbird (*Molothrus ater*), and American Goldfinch (*Carduelis tristis*). Common birds found in the wetlands areas include the Great Blue Heron (*Ardea herodias*), Northern Rough-winged Willow Flycatcher (*Empidonax traillii*), Eastern Kingbird (*Tyrannus tyrannus*), Cedar Waxwing (*Bombycilla cedrorum*), and Red-winged Blackbird (*Agelaius phoeniceus*). Common birds that could be found in the upland forest areas include the Downy Woodpecker (*Picoides pubescens*), Eastern Wood-pewee (*Contopus virens*), Carolina Chickadee (*Parus carolinensis*), Pine Warbler (*Dendroica pinus*) and Chipping Sparrow (*Spizella passerina*). Common raptor species that may be found include the American Kestrel (*Falco sparverius*), Red-tailed Hawk (*Buteo jamaicensis*), Great Horned Owl (*Bubo virginianus*), and the Turkey Vulture (*Cathartes aura*) (Headquarters AMC 2008).

3.2.5.3 Special Status Species

Appendix E lists federally threatened, endangered, candidate, and state listed species observed or potentially occurring in the vicinity of JB MDL. No federally listed species have been observed on McGuire Field or the 108 WG installation. Three federally listed plant species and one candidate plant species have been observed within the vicinity of JB MDL, but have not been observed within the 108 WG installation. An additional 30 state listed species have been observed on JB MDL, while 6 state listed species have been observed within McGuire Field (American Kestrel, Grasshopper Sparrow, Northern Harrier, Pie-billed Grebe, Savannah Sparrow, and Upland Sandpiper). There is no critical habitat located on JB MDL (87th Civil Engineer Squadron 2012, Air Mobility Command 2008, New Jersey Department of Environmental Protection 2013).

3.2.5.4 Wetlands

Approximately 21 percent (8,791 acres) of JB MDL is comprised of emergent, scrub-shrub, and forested wetlands (Figure 3.2.4-1). Approximately 900 acres occur at Lakehurst, 238 acres occur at McGuire, and 7,653 acres occur at Dix (87th Civil Engineer Squadron 2012). There are no wetlands located within the vicinity of the construction projects under Alternative #2.
3.2.6 Cultural Resources

3.2.6.1 Archaeological Resources

A survey of cultural resources including archaeological resources and pre-Cold War era buildings and structures was completed in 1995 for McGuire AFB (now McGuire Field) (Headquarters AMC 1995). This survey included all areas within the 1995 boundary of McGuire AFB and all off-base facilities, except for a 20-acre parcel of leased land (the Boeing Michigan Aerospace Research Center [BOMARC] missile site at Fort Dix). Areas that were highly disturbed from construction or ERP sites were excluded from the survey and five previously designated areas of archaeological sensitivity were included based on geomorphology, the history of land disturbance on base, vegetation, and prehistoric and historic site distribution patterns on surrounding lands. A sixth area of archaeological sensitivity was added in the North Run area of the base due to the potential for buried prehistoric remains in undisturbed alluvial deposits and on locations of historic buildings on historic maps (Headquarters AMC 1995). This survey resulted in the recordation of 11 historic archaeological sites. Following further testing in 1998, three of these sites (site numbers 28BU458, 28BU459, and 28BU473) were determined eligible for listing in the NRHP. The three sites include two mid-eighteenth to early-nineteenth century agricultural households associated with a nearby mill site, which was reported but not identified; and one mid-eighteenth to early nineteenth century domestic site associated with the historic village of Pointville. The remaining eight sites were determined not eligible for listing in the NRHP (Duryee 2013, 87th Civil Engineering Squadron 2013, Headquarters AMC 2008).

3.2.6.2 Architectural Resources

The 1995 survey of McGuire AFB included an inventory and NRHP evaluation of all buildings and structures constructed before 1947, the BOMARC missile complex at Fort Dix, and the 1956 Semi-Automatic Ground Environment complex. Both the Semi-Automatic Ground Environment complex and the BOMARC site were recommended as NRHP-eligible Cold War era resources under the criteria for exceptional significance (Criterion Consideration G). Additionally, as a result of this survey, 18 World War II era temporary structures were found to be eligible for listing in the NRHP. The structures are considered eligible; however, per the 1986 Memorandum of Agreement between the DOD, the Advisory Council on Historic Preservation, and the National Conference of SHPOs, these structures could be demolished without further Section 106 review. All other buildings were found not eligible for listing in the NRHP (Headquarters AMC 2008).

A follow-up survey in 1996 included all Cold War era buildings, which were all less than 50 years old at the time. No buildings were recommended eligible to the NRHP under criteria for exceptional significance (Criterion Consideration G) (Headquarters AMC 1995). In 2013, a
survey was completed for pre-1967 resources that have since become 50 years old. Hangar 3322, built in 1957, was evaluated for NRHP eligibility during this survey. The results of the inventory indicated that Hangar 3322 is not eligible for listing in the NRHP (JB MDL 2013d).

3.2.6.3 Traditional Resources

McGuire Field contains no known traditional resources; however, three federally-recognized Tribes that are historically, culturally, and linguistically affiliated with the area have been identified: Delaware Nation, Delaware Tribe of Indians, and Stockbridge-Munsee Community. JB MDL has completed consultation with the Delaware Nation and Delaware Tribe of Indians, who were identified as potentially having an interest in JB MDL. In the past, the Stockbridge-Munsee Community was invited by JB MDL to participate in government-to-government consultation, but declined interest in being further consulted (87th Civil Engineering Squadron 2013, Duryee 2013).

3.2.7 Land Use

JB MDL is located in central Burlington County, adjacent to and southeast of the Borough of Wrightstown and within New Hanover Township. Land use within those portions of Burlington County adjacent to McGuire Field is a mix of residential and commercial to the north and south, with several open and agricultural areas adjacent to the western boundary of the installation. The land use in Ocean County northeast of JB MDL is similar to the existing land use in Burlington County that is north of the airfield (Figure 3.2.7-1).

Aircraft noise and potential hazards from aircraft operations at McGuire Field currently are incompatible with some off-installation land use. Since JB MDL surrounds McGuire Field to the east, south, and west, the impact of airfield activities on adjacent communities is limited. Higher DNL contours and APZs associated with the runways at McGuire Field do not extend off installation. (Detailed descriptions of APZs can be found in Section A.1.3 of Appendix A.)

An updated noise study in support of the AICUZ program was completed for JB MDL in 2013 and the JB MDL Joint Land Use Study was completed in 2009. These documents identify incompatible land uses and supports compatible land use planning in the vicinity of JB MDL. Both Burlington and Ocean Counties have supported the AICUZ and Joint Land Use Study programs in their on-going planning and zoning decisions to reduce land use conflicts and ensure future land uses are compatible (JB MDL 2013a, DoD 2009b).

Currently, aircraft noise from JB MDL exposes approximately 332 acres of off-JB MDL areas of land zoned as Recreational, Agricultural, Commercial, Residential, Open Space, and Other to
noise levels between 65 dB and 75 dB DNL. Figure 3.2.7-1 shows an overlay of the baseline DNL contours onto a map displaying the existing land use in the vicinity of JB MDL.

3.2.8 Infrastructure and Transportation

3.2.8.1 Potable Water System

Potable water for the 108 WG installation is supplied by four wells drawn from the Potomac-Raritan-Magothy aquifer. McGuire Field has a water allocation permit that entitles the installation to use 450.75 million gallons of water per year with capacity of 4.03 million gallons per day. Average daily water usage averages between 1 and 1.4 million gallons per day. Water is treated at each well and temporarily stored in 25,000-gallon ASTs, then pumped to a single elevated 750,000-gallon water storage tank by the McGuire Field Water Department (Headquarters AMC 2008, 108 WG 2012).

3.2.8.2 Wastewater

The 108 WG installation generates wastewater from sanitary, stormwater, and industrial processes, including OWS discharge, wash rack discharge, floor wash-down, latrines, sinks, and showers. Wastewater generated within the 108 WG installation is conveyed into the Fort Dix tertiary wastewater treatment plant. The facility has a capacity of 4.6 million gallons per day but typically receives 1.0 to 1.5 million gallons of wastewater per day from McGuire Field (Headquarters AMC 2008).

3.2.8.3 Stormwater

A high percentage of the active administrative and industrial areas of the installation are paved or roofed, resulting in high runoff rates during precipitation events. As described in the 108 WG SWPPP (2010), the 108 WG installation has a stormwater drainage conveyance system typified by overland flow to catch basins, inlets, surface drains, underground pipes, culverts, ditches, and swales that discharge to receiving waters (see Section 3.2.4, Soils and Water) or other municipal separate storm sewer systems. The stormwater drainage system has been designed to safely collect and transport surface water runoff from storm events to prevent flooding within the installation and is a separate system from the wastewater (sewage) system.
Figure 3.2.7-1. DNL Noise Contours and Land Use at McGuire Field
3.2.8.4 Electrical and Natural Gas Systems

Electricity is supplied to the 108 WG installation by Jersey Central Power & Light via a single 34.5-kilovolt switching station and aboveground lines. Natural gas is supplied by Public Service Electric and Gas Company via two separate metered main lines. Electricity consumption for CY 2012 at the 108 WG installation was 6,071 megawatt hours. Natural gas consumption for CY 2012 at the 108 WG installation was 34,609 thousand cubic feet (108 WG 2012).

3.2.8.5 Solid Waste Management

Municipal solid waste at the 108 WG installation is managed in accordance with the McGuire AFB Solid Waste Management Plan (USAF 2002) and guidelines specified in AFI 32-7042, Waste Management (2009). This AFI incorporates, by reference, the federal standard for solid waste regulations contained within 40 CFR, Subtitle D, Non-hazardous Waste, and other applicable federal regulations, AFIs, and DoD Directives. In general, AFI 32-7042 establishes the requirement for installations to have a solid waste management program that incorporates the following: a solid waste management plan; procedures for recycling, diversion, handling, storage, collection, and disposal of solid waste; recordkeeping and reporting; and pollution prevention.

The 108 WG installation generates solid waste in the form of office trash, non-hazardous industrial wastes, normal municipal waste, and construction debris. These non-hazardous solid wastes are collected in dumpsters located throughout the 108 WG installation and transported to the Burlington County Resource Recovery Complex in Mansfield and Florence Townships, New Jersey (USAF 2002).

3.2.8.6 Transportation

The 108 WG installation is located within close proximity to several major highways. The New Jersey Turnpike I-95), a major north/south highway, is less than 10 miles to the west of the installation. State Route (SR) 68 serves as the primary access to the installation from the New Jersey Turnpike. The 108 WG installation can be accessed through McGuire Field or through Fort Dix at Broidy Road Gate (Gate 9) or the NJ ANG gate (Gate 5). Wrightstown-Cookstown Road provides access to the main gate of McGuire Field as well as a secondary entrance to the east (Headquarters AMC 2008).
3.2.9 Hazardous Materials and Waste

3.2.9.1 Hazardous Materials

Hazardous materials are used at the 108 WG installation for aircraft operations support and maintenance, including POL management and distribution, liquid fuels maintenance, transportation maintenance, vehicle paint, power production, machine shop operations, and flight simulation. Types of hazardous substances found on the 108 WG installation include hydraulic fluid, waste oils, recovered fuels, spent cleaners, strippers, solvents, flammable and combustible liquids, acids, aerosols, batteries, corrosives, and paints (108 WG 2011b).

There are currently 14 regulated USTs and 140 ASTs on McGuire Field containing jet fuel, diesel, and motor gasoline (Headquarters AMC 2008). Of these, the 108 WG has no regulated USTs and five ASTs on the installation.

Toxic Substances

Regulated toxic substances typically associated with buildings and facilities include asbestos, LBP, and PCBs. An asbestos survey was performed at the 108 WG installation in 2007. ACM identified in the insulation, floor tiles, and mastic were found in 18 buildings (Buildings/Hangars 1811, 3302, 3303, 3305, 3306, 3310, 3312, 3315, 3321, 3322, 3323, 3325, 3326, 3331, 3332, 3369, 3373, and 3379) (NJ ANG 2007).

A LBP survey has not been conducted at the 108 WG installation. Any buildings on the installation constructed prior to 1978 are presumed to contain LBP and would be tested for LBP prior to demolition or renovation.

The 108 WG does not maintain, operate, or own any PCB equipment or PCB-contaminated equipment and the subject property is considered PCB-free (108 WG 2011b).

3.2.9.2 Hazardous Waste Management

McGuire AFB Integrated Contingency Plan for Oil Spill Prevention and Response Plan incorporates the requirements for a Spill Prevention Control and Countermeasure Plan and a Facility Response Plan (87th Air Base Wing 2009). It contains the governing regulations for spill prevention and describes specific protocols for preventing and responding to releases, accidents, and spills involving oils and hazardous materials (87th Air Base Wing 2009). The 108 WG Hazardous Waste Management plan outlines procedures for controlling and managing hazardous wastes from the point where they are generated until they are disposed. In addition, it includes guidance for compliance with all federal, state, and local regulations pertaining to hazardous waste (108 WG 2011b).
The 108 WG hazardous waste disposal activities are covered under the McGuire Field USEPA Identification Number NJ2571824018, which is regulated as a Large Quantity Generator of hazardous waste. A hazardous waste generation point is where the waste is initially created or generated. An SAP is an area where hazardous waste is initially accumulated at the point of generation and is under the control of the SAP manager. Hazardous wastes initially accumulated at a SAP are accumulated in appropriate containers before being transferred to the installation CAP. There are seven SAPs (where a waste is initially accumulated) identified at the 108 WG installation in Buildings/Hangars 3324, 3325, 3331, 3333, 3336, 3379, and 3384. The 108 WG installation CAP is located on McGuire Field in Building 2310 (108 WG 2013c).

OWSs are used to separate oils, fuels, sand, and grease from wastewater and to prevent contaminants from entering the sanitary sewer and stormwater drainage systems. OWSs located on the 108 WG installation primarily receive discharge from floor drains in maintenance areas.

3.2.9.3 Environmental Restoration Program

There are currently 42 ERP sites on McGuire Field, with 1 of these sites (SS-39) located on the 108 WG installation. In addition, there is currently a contaminated area located in the POL facility on the 108 WG installation that has recently been discovered and is currently being investigated. Table 3.2.9-1 provides details for each of these sites on the 108 WG installation and Figure 3.2.9-1 shows the locations. The exact boundaries for the Defense Logistics Agency (DLA) site is still being investigated. Therefore, the area shown on the map is only a general location.

Table 3.2.9-1. ERP Sites within the 108 WG Installation

<table>
<thead>
<tr>
<th>ERP Site</th>
<th>Materials of Concern</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS-39</td>
<td>Site SS-39 includes several former and current industrial buildings at which aircraft maintenance, aircraft washing, and fuel cell repairs currently and historically were performed. It includes Buildings 3321, 3322, 3325, and 3350. A portion of Site SS-39 is currently an aircraft parking apron.</td>
<td>Remedial Investigation</td>
</tr>
<tr>
<td>DLA Site</td>
<td>Recently an area located within the POL facility on the 108 WG installation was discovered to have low levels of jet fuel and other fuel types. This site is being managed by the Defense Logistics Agency (DLA) and is still in the discovery phase. The extent and the source of the contamination is still unknown at this time. Soil and groundwater investigations are ongoing</td>
<td>Preliminary Assessment/Site Investigation</td>
</tr>
</tbody>
</table>

Source: Air Force Center for Engineering and the Environment 2012, 108 WG 2013c
Figure 3.2.9-1. Environmental Restoration Program Sites at the 108 WG Installation, JB MDL.
3.2.10 Socioeconomics

3.2.10.1 Population and Employment

Population

JB MDL is located approximately 18 miles southeast of Trenton, New Jersey in Ocean and Burlington counties. Current population data and estimates for the state of New Jersey, Burlington and Ocean counties, and New Hanover, North Hanover, and Pemberton Townships are provided in Table 3.2.10-1. From 1990 to 2010, Burlington County’s population increased by 53,668, an increase of approximately 14 percent. Ocean County grew by 143,364 between 1990 and 2010, an increase of approximately 33 percent (USCB 1990b, 2000b, 2010b).

Table 3.2.10-1. Population Growth within the Vicinity of JB MDL

<table>
<thead>
<tr>
<th>Area</th>
<th>1990 Census</th>
<th>2000 Census</th>
<th>2010 Census</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Jersey</td>
<td>7,730,188</td>
<td>8,414,350</td>
<td>8,791,894</td>
</tr>
<tr>
<td>Burlington County</td>
<td>395,066</td>
<td>423,394</td>
<td>448,734</td>
</tr>
<tr>
<td>Ocean County</td>
<td>433,203</td>
<td>510,916</td>
<td>576,567</td>
</tr>
<tr>
<td>New Hanover Township</td>
<td>9,546</td>
<td>9,744</td>
<td>7,385</td>
</tr>
<tr>
<td>North Hanover Township</td>
<td>9,994</td>
<td>7,347</td>
<td>7,678</td>
</tr>
<tr>
<td>Pemberton Township</td>
<td>31,342</td>
<td>28,691</td>
<td>27,912</td>
</tr>
<tr>
<td>Plumsted Township</td>
<td>2,089</td>
<td>7,275</td>
<td>8,421</td>
</tr>
<tr>
<td>Wrightstown Borough</td>
<td>3,843</td>
<td>748</td>
<td>802</td>
</tr>
</tbody>
</table>

The 108 WG currently supports a workforce authorization of 1,329, including 416 full-time and 913 part-time personnel (see Table 2.3-12).

Employment and Earnings

Table 3.2.10-2 presents total labor force and employment rates for New Jersey; Burlington and Ocean counties; New Hanover, North Hanover, Pemberton and Plumsted Townships; and Wrightstown Borough. Based on 2007-2011 ACS 5-year estimates, there were 244,032 persons in the labor force (able to work) and 224,720 employed within Burlington County, resulting in an unemployment rate of approximately 8 percent. Labor force estimates for Ocean County include 267,716 persons, with 243,182 employed, resulting in an unemployment rate of approximately 9 percent. Top employment industries in Burlington County include 1) educational services, and health care and social assistance; 2) professional, scientific, and management, and administrative and waste management services; and 3) retail trade (USCB 2011b). Principal employers include Virtua Memorial Hospital of Burlington County, Lockheed Martin, Burlington Coat Factory, Viking Yacht Company, and PHH Mortgage (Burlington County 2010). Top employment industries in Ocean County include 1) educational services, and health care and social assistance; 2) retail; and 3) professional, scientific, and management, and administrative and waste
management services (USCB 2011b). Principal employers include Saint Barnabas Health Care System, Six Flags theme parks, Naval Engineering Station-Naval Air Warfare Center, Toms River Regional School System, and Ocean County government (Ocean County 2008).

<table>
<thead>
<tr>
<th>Area</th>
<th>Labor Force</th>
<th>Employed</th>
<th>Unemployed</th>
<th>Unemployment Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Jersey</td>
<td>4,633,565</td>
<td>4,230,814</td>
<td>402,751</td>
<td>8.7</td>
</tr>
<tr>
<td>Burlington County</td>
<td>244,032</td>
<td>224,720</td>
<td>19,312</td>
<td>7.9</td>
</tr>
<tr>
<td>Ocean County</td>
<td>267,716</td>
<td>243,182</td>
<td>24,534</td>
<td>9.2</td>
</tr>
<tr>
<td>New Hanover Township</td>
<td>2,082</td>
<td>1,984</td>
<td>98</td>
<td>4.7</td>
</tr>
<tr>
<td>North Hanover Township</td>
<td>4,030</td>
<td>3,641</td>
<td>389</td>
<td>9.7</td>
</tr>
<tr>
<td>Pemberton Township</td>
<td>15,079</td>
<td>13,465</td>
<td>1,614</td>
<td>10.7</td>
</tr>
<tr>
<td>Plumsted Township</td>
<td>4,731</td>
<td>4,391</td>
<td>340</td>
<td>7.2</td>
</tr>
<tr>
<td>Wrightstown Borough</td>
<td>467</td>
<td>432</td>
<td>35</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Note: Employment numbers include individuals in the Armed Forces.
Source: USCB 2011b.

3.2.10.2 Schools

According to the 2011 ACS enrollment 5-year estimates, 80,547 students were enrolled in schools from Kindergarten through Grade 12 in Burlington County. In Ocean County, 95,936 students were enrolled in schools from Kindergarten through Grade 12 (USCB 2011b).

3.2.10.3 Housing

In 2010, the number of housing units in Burlington County was 175,615, with a vacancy rate of 5.3 percent. In Ocean County in 2010, there were a total of 278,052 housing units with a vacancy rate of approximately 21 percent (USCB 2010b). Currently, approximately 20 percent of active duty personnel live on-base (108 WG 2013c).

3.2.11 Environmental Justice and the Protection of Children

3.2.11.1 Minority and Low-Income Populations

Table 3.2.11-1 displays the minority, low-income, and children under age 18 within the state of New Jersey, as well as the counties, boroughs, and townships within the vicinity of McGuire Field. Approximately 26 percent of the population of Burlington County is composed of minorities (i.e., an ethnic or racial group with a distinctive presence in a community), compared to approximately 31 percent for the state of New Jersey. Ocean County has a lower proportion of minorities (approximately 9 percent) than Burlington County or the state (USCB 2010c).
The percentage of population living below the poverty level for the state of New Jersey (approximately 9 percent) is higher than Burlington County (approximately 5 percent), and similar to Ocean County (approximately 10 percent) (USCB 2010b).

Table 3.2.11-1. Population within the Vicinity of JB MDL

<table>
<thead>
<tr>
<th>Geographic Area</th>
<th>Total Population</th>
<th>Minority Population</th>
<th>Percent Minority</th>
<th>Low-Income Population</th>
<th>Percent Low-Income</th>
<th>Children Under Age 18</th>
<th>Percent Children</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Jersey</td>
<td>8,791,894</td>
<td>2,762,646</td>
<td>31.6</td>
<td>826,438</td>
<td>9.4</td>
<td>2,065,214</td>
<td>23.5</td>
</tr>
<tr>
<td>Burlington County</td>
<td>448,734</td>
<td>117,392</td>
<td>26.2</td>
<td>23,783</td>
<td>5.3</td>
<td>104,243</td>
<td>23.2</td>
</tr>
<tr>
<td>Ocean County</td>
<td>576,567</td>
<td>51,990</td>
<td>9.0</td>
<td>54,774</td>
<td>9.5</td>
<td>134,919</td>
<td>23.4</td>
</tr>
<tr>
<td>New Hanover Township</td>
<td>7,385</td>
<td>3,393</td>
<td>45.9</td>
<td>258</td>
<td>3.5</td>
<td>586</td>
<td>7.9</td>
</tr>
<tr>
<td>North Hanover Township</td>
<td>7,768</td>
<td>1,522</td>
<td>19.8</td>
<td>499</td>
<td>6.5</td>
<td>2,266</td>
<td>29.5</td>
</tr>
<tr>
<td>Pemberton Township</td>
<td>27,912</td>
<td>9,064</td>
<td>32.5</td>
<td>2,735</td>
<td>9.8</td>
<td>6,869</td>
<td>24.6</td>
</tr>
<tr>
<td>Plumsted Township</td>
<td>8,421</td>
<td>489</td>
<td>5.8</td>
<td>1,322</td>
<td>15.7</td>
<td>2,207</td>
<td>26.2</td>
</tr>
<tr>
<td>Wrightstown Borough</td>
<td>802</td>
<td>422</td>
<td>52.6</td>
<td>36</td>
<td>4.5</td>
<td>216</td>
<td>26.9</td>
</tr>
</tbody>
</table>

Note: 1. Total population, minority population, and number of children under the age of 18 were obtained from the 2010 census data. Low income population numbers are from the 2007-2011 American Community Survey 5-Year Estimates.
2. The percentage of low-income persons is calculated as a percentage of all persons for whom the Bureau of the Census determines poverty status, which is generally a lower number than the total population because it excludes institutionalized persons, persons in military group quarters and college dormitories, and unrelated individuals under 15 years old.

Source: USCB 2010b, 2011c.

Table 3.2.11-2 displays the total population, total minority population, percentage minority, total low-income population, and low-income percentages for the vicinity of JB MDL with the baseline DNL greater than 65 dB.

Table 3.2.11-2. Population within Baseline Noise Contours, JB MDL

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>65-70</td>
<td>54</td>
<td>8</td>
<td>15</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>70-75</td>
<td>26</td>
<td>4</td>
<td>15</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>75-80</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>80-85</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
<td>12</td>
<td>15</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Note: 1. Total population, minority population, and number of children under the age of 18 were obtained from the 2010 census data. Low income population numbers are from the 2007-2011 ACS 5-Year Estimates.
2. The percentage of low-income persons is calculated as a percentage of all persons for whom the USCB determines poverty status, which is generally a lower number than the total population because it excludes institutionalized persons, persons in military group quarters and college dormitories, and unrelated individuals under 15 years old.

Sources: USCB 2010c, 2011c.
In the area surrounding JB MDL, approximately 80 people were estimated to be affected by existing DNL between 65 and 75 dB. Out of that total, approximately 30 percent are considered to be minorities and 5 percent to be low-income. The percentage of minority populations currently affected by noise is greater than the approximate 26 percent minority average in Burlington County and greater than the approximate 9 percent minority average in Ocean County. The percentage of low-income populations in the area surrounding JB MDL affected by the DNL greater than 65 dB is approximately the same as the 5 and slightly lower than the 10 percent low-income average in Burlington and Ocean counties (respectively).

3.2.11.2 Protection of Children

In 2010, the number of children under the age of 18 living in Burlington County was approximately 104,243 (approximately 23 percent of the population). In 2010, the number of children under the age of 18 living in Ocean County was approximately 134,919 (approximately 23 percent of the population) (Table 3.2.11-1). The state of New Jersey has a similar percentage population of children compared to the counties (approximately 24 percent). There are no on-installation housing or facilities for children located at the 108 WG installation. Currently, there are no Kindergarten through Grade 12 off-installation schools that are exposed to aircraft DNL of 65 dB or above; however, there is one child development center that is currently located within the 65 dB contour.
3.3 Pease Air National Guard Station

Pease ANGS, home of the 157 ARW of the NH ANG, is located in Portsmouth and Newington, New Hampshire, approximately 55 miles north of Boston, Massachusetts. The 157 ARW base is situated on the northeast side of the Portsmouth IAP at Pease, which is owned and operated by PDA.

3.3.1 Noise

To evaluate noise impacts in the vicinity of a military installation located at a commercial airport with a published FAR Part 150 Airport Noise Compatibility Study, the USAF allows for use of the FAA’s INM to generate DNL noise contours. The Airport Authority under the FAA uses INM for generating noise contours and for Portsmouth IAP, the FAA’s INM was used. For more detailed information on the noise modeling methods, see Appendix A, Section A.1.2.

3.3.1.1 Baseline Operations

In 1996, the PDA published a FAR Part 150 Airport Noise Compatibility study for Portsmouth IAP. This study is currently being updated but was not available to use for this EIS. The 1996 INM aircraft operational data was updated in 2008 in support of an Environmental Assessment prepared to support construction projects at Pease ANGS (157 ARW 2008a). This data for the KC-135 was updated to reflect the actual KC-135 2012 aircraft operations and is used as the baseline for this analysis.

Based on aircraft operations data validated in March 2013, approximately 37,016 total aircraft operations occurred at Portsmouth IAP during the 12-month period ending October 2012 (Pomeroy 2013). An aircraft operation is counted each time an aircraft departs from the runway and each time they approach the runway. Table 3.3.1-1 summarizes the frequency of aircraft operations for the Portsmouth IAP airfield based on information provided by base staff, flying organizations, and air traffic control personnel. The majority of aircraft traffic includes air cargo, commercial regional jets (air taxi), and larger commercial aircraft and other based military aircraft, along with based ANG KC-135 aircraft. Although the number of aircraft operations at an installation varies from day to day, for Portsmouth IAP, operations are calculated for an AAD, meaning that yearly operations are averaged across all 365 days of the year. Table 3.3.1-1 reflects a total of approximately 102 aircraft operations on an AAD (37,410 divided by 365 days). Approximately 4 percent of the total operations at Portsmouth IAP occur during environmental night (10:00 p.m. through 7:00 a.m.).
Table 3.3.1-1. Current Portsmouth IAP Annual Aircraft Operations

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>DEPARTURES</th>
<th>ARRIVALS</th>
<th>TOTAL1</th>
<th>Grand Total1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night2</td>
<td>Day</td>
<td>Night2</td>
</tr>
<tr>
<td>KC-135</td>
<td>2,939</td>
<td>131</td>
<td>2,939</td>
<td>131</td>
</tr>
<tr>
<td>Other Aircraft3</td>
<td>14,541</td>
<td>1,094</td>
<td>14,853</td>
<td>782</td>
</tr>
<tr>
<td>Total</td>
<td>17,480</td>
<td>1,225</td>
<td>17,792</td>
<td>913</td>
</tr>
</tbody>
</table>

Notes: 1. Includes Closed Patterns (which count as two airfield operations).
2. Night – Between 10 p.m. and 7 a.m. for environmental night.
3. Other based military and civilian aircraft and transient aircraft (multiple type aircraft); example aircraft include: Lear 25, 35, Airbus 319.

Source: 157 ARW 2013a.

Based on the 2012 baseline data, the 157 ARW KC-135 aircraft flew a total of 6,140 annual airfield operations, or an average of 17 airfield operations a day. Approximately 4 percent of the total KC-135 operations occur during environmental night. Approximately 16 percent of total operations at Portsmouth IAP are accomplished by the 157 ARW KC-135 aircraft.

3.3.1.2 Runway and Flight Profiles

Portsmouth IAP aircraft use straight out departures, straight in approaches, IFR or radar closed patterns, and VFR closed patterns as the basic flight patterns for training flights and local arrival and departures. Detailed representative arrival, departure, and closed pattern flight tracks are found in Appendix C, Noise.

3.3.1.3 Existing Noise Environment

Noise contours developed for baseline conditions at Portsmouth IAP are shown in Figure 3.3.1-1. The acreage within each DNL contour on Portsmouth IAP property is shown in Table 3.3.1-2; no off-airport noise levels greater than 65 dB DNL occur.

Table 3.3.1-2. Acres within Baseline Noise Contours, Portsmouth IAP

<table>
<thead>
<tr>
<th>Noise Level (dB)</th>
<th>On-Airport (acres)</th>
<th>Off-Airport (acres)</th>
<th>Total (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>65-70</td>
<td>237</td>
<td>0</td>
<td>237</td>
</tr>
<tr>
<td>70-75</td>
<td>81</td>
<td>0</td>
<td>81</td>
</tr>
<tr>
<td>75-80</td>
<td>16</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>80-85</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Greater than 85</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>334</td>
<td>0</td>
<td>334</td>
</tr>
</tbody>
</table>

Note: Numbers may not add precisely due to rounding.

dB = decibel
Figure 3.3.1-1. Baseline DNL Noise Contours for Portsmouth IAP
Potential Hearing Loss

As shown in Table 3.3.1-2, there is no property off the Portsmouth IAP that falls within the baseline 80+ dB DNL noise contour; therefore, no potential hearing loss risk is currently associated with these areas.

3.3.1.4 Portsmouth International Airport Noise Abatement Procedures

Portsmouth IAP has published certain restrictions on flying activities that could adversely affect its neighbors in an effort to reduce noise impacts while maintaining safe operations. The restrictions are published on aeronautical charts and apply to both military and civilian aircraft (SkyVector 2013a). The restrictions include guidance for noise abatement procedures for the airfield including, but not limited to, requiring aircraft departing the airport to maintain runway heading to 1,100 feet MSL prior to turning and not allowing aircraft to practice low approaches or touch-and-go landings between the hours of 11:00 p.m. and 7:00 a.m. for local based aircraft and from 9:00 p.m. to 7:00 a.m. for transient aircraft or before 12:00 on Sundays for all aircraft. The noise abatement procedures are considered voluntary for military aircraft and can be waived based on mission requirements (Smith 2013a).

3.3.1.5 Pease Air National Guard Station Noise Complaints Procedures

Currently, all noise complaints are handled through the PDA noise complaint hotline or website. Thirty-one noise complaints were logged between April 10, 2012 and December 12, 2012 (nine of the complaints received were from one specific individual, five complaints from another specific individual, and the rest were from others). Sherman Village, a housing development, lies just outside of the 65 dB DNL noise contour; complaints received from that area are typically associated with helicopter activity (PDA 2012a, 2012b).

3.3.2 Air Quality

3.3.2.1 Regulatory Setting

Individual states are delegated the responsibility to regulate air quality in order to achieve or maintain air quality in attainment with these standards. The New Hampshire Department of Environmental Services is the agency responsible for the regulation of air quality within the state of New Hampshire. The state of New Hampshire regulates air quality through the New Hampshire Code of Administrative Rules, ENV-A 100 to ENV-A 4805. The state of New Hampshire has adopted the NAAQS and has not adopted separate state air quality standards. The NAAQS are summarized in Table 3.3.2-1.
Table 3.3.2-1. Ambient Air Quality Standards

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>National Standards<sup>a</sup></th>
<th>Primary<sup>b,c</sup></th>
<th>Secondary<sup>b,d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>O<sub>3</sub></td>
<td>8-hour</td>
<td></td>
<td>0.075 ppm (147 µg/m<sup>3</sup>)</td>
<td>Same as primary</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>CO</td>
<td>8-hour</td>
<td></td>
<td>9 ppm (10 mg/m<sup>3</sup>)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td></td>
<td>35 ppm (40 mg/m<sup>3</sup>)</td>
<td>—</td>
</tr>
<tr>
<td>NO<sub>2</sub></td>
<td>Annual</td>
<td></td>
<td>0.053 ppm (100 µg/m<sup>3</sup>)</td>
<td>Same as primary</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td></td>
<td>0.100 ppm (188 µg/m<sup>3</sup>)</td>
<td>—</td>
</tr>
<tr>
<td>SO<sub>2</sub></td>
<td>24-hour</td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3-hour</td>
<td></td>
<td>—</td>
<td>0.5 ppm (1,300 µg/m<sup>3</sup>)</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td></td>
<td>—</td>
<td>0.075 ppm (189 µg/m<sup>3</sup>)</td>
</tr>
<tr>
<td>PM<sub>10</sub></td>
<td>Annual</td>
<td></td>
<td>—</td>
<td>Same as primary</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td></td>
<td>—</td>
<td>150 µg/m<sup>3</sup></td>
</tr>
<tr>
<td>PM<sub>2.5</sub></td>
<td>Annual</td>
<td></td>
<td>—</td>
<td>12 µg/m<sup>3</sup></td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td></td>
<td>—</td>
<td>15 µg/m<sup>3</sup></td>
</tr>
<tr>
<td>Pb</td>
<td>Rolling 3-month period</td>
<td></td>
<td>—</td>
<td>0.15 µg/m<sup>3</sup></td>
</tr>
</tbody>
</table>

Notes:

- ^a Standards other than the 1-hour ozone, 24-hour PM₁₀, 24-hour PM_{2.5}, and those based on annual averages are not to be exceeded more than once a year. The 8-hour ozone national standard has replaced the 1-hour ozone national standard.
- ^b Concentrations are expressed first in units in which they were promulgated. Equivalent units given in parenthesis.
- ^c Primary Standards: The levels of air quality necessary, with an adequate margin of safety to protect the public health. Each state must attain the primary standards no later than 3 years after that state’s implementation plan is approved by the USEPA.
- ^d Secondary Standards: The levels of air quality necessary to protect the public welfare from any known or anticipated adverse effects of a pollutant.

µg/m³ = micrograms per cubic meter; CO = carbon monoxide; mg/m³ = milligrams per cubic meter; NO_x = nitrogen dioxide; O₃ = ozone; Pb = lead; PM_{2.5} = particulate matter less than or equal to 2.5 microns in diameter; PM₁₀ = particulate matter less than or equal to 10 microns in diameter; ppm = parts per million; SO₂ = sulfur dioxide.

Source: USEPA 2012.

Pease ANGS, home of the 157 ARW of the NH ANG, is located in Portsmouth and Newington, New Hampshire, approximately 55 miles north of Boston, Massachusetts. The USEPA had previously classified the Boston-Manchester-Portsmouth area as a moderate nonattainment area for the 1997 O₃ standard. On January 31, 2013, the USEPA formally redesignated southeastern New Hampshire as an attainment area for the 1997 O₃ standard. The region is therefore considered a maintenance area for O₃. The region is designated attainment/unclassified area for all other criteria pollutants. The Proposed Action is therefore subject to the requirements of Section 176(c) of the CAA, as articulated in the USEPA General Conformity Rule. Based on the classification for the region as a maintenance area, the de minimis emission thresholds for the General Conformity Rule for ozone precursors (NO_x and VOCs) is 100 tpy.
The USEPA recently promulgated a more stringent standard for lead, and has redesigned its monitoring program to address lead and identified airports for monitoring because aviation gas used in piston aircraft still contains lead. The project area is considered attainment/unclassified for lead, and lead is not used in aviation fuel used in the KC-135 or KC-46A aircraft.

3.3.2.2 Climate and Meteorology

Portsmouth, New Hampshire has a humid continental climate with warm summers and no dry season. The area within 25 miles of this station is covered by forests (62 percent), oceans and seas (34 percent), and lakes and rivers (2 percent). Over the course of a year, the temperature typically varies from 17°F to 81°F and is rarely below 3°F or above 89°F. The warm season lasts from June 4 to September 15 with an average daily high temperature above 71°F. The highest temperatures occur in July, with an average high of 81°F and low of 63°F. The cold season lasts from December 5 to March 13 with an average daily high temperature below 42°F. The coldest temperatures occur in January, with an average low of 17°F and high of 32°F (Northeast Regional Climate Center 2013b).

The wind is most often out of the west (24 percent of the time), north west (14 percent of the time), and south west (11 percent of the time). Over the course of the year, typical wind speeds vary from 0 miles per hour to 16 miles per hour (calm to moderate breeze), rarely exceeding 25 miles per hour (strong breeze). Winds are generally highest during the springtime (Northeast Regional Climate Center 2013b).

3.3.2.3 Regional and Local Air Pollutant Sources

The 157 ARW is based on the northeast side of Portsmouth IAP, approximately 1 mile from Portsmouth, New Hampshire. The surrounding area is developed to the east and south of the airport. To the west of the airport lies the Great Bay National Wildlife Refuge and Great Bay.

The USEPA’s National Emissions Inventory includes data for the year 2008 for Rockingham County. Table 3.3.2-2 summarizes the regional emissions (stationary, area-wide, and mobile) of criteria pollutants and precursor emissions for the affected areas.
Table 3.3.2-2. Regional Emissions for Rockingham County, New Hampshire

<table>
<thead>
<tr>
<th>EMISSIONS, TONS/YEAR</th>
<th>CO</th>
<th>VOCs</th>
<th>NOx</th>
<th>SO2</th>
<th>PM_{10}</th>
<th>PM_{2.5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional Emissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stationary Sources</td>
<td>5,780</td>
<td>1,042</td>
<td>2,628</td>
<td>6,982</td>
<td>3,888</td>
<td>3,696</td>
</tr>
<tr>
<td>Area-Wide Source</td>
<td>4,368</td>
<td>3,521</td>
<td>159</td>
<td>8</td>
<td>4,055</td>
<td>981</td>
</tr>
<tr>
<td>Mobile Sources</td>
<td>50,746</td>
<td>5,226</td>
<td>8,648</td>
<td>587</td>
<td>534</td>
<td>421</td>
</tr>
<tr>
<td>Total</td>
<td>60,894</td>
<td>9,789</td>
<td>11,435</td>
<td>7,577</td>
<td>8,477</td>
<td>5,098</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding. Emissions of Pb are not included because the affected region contains no significant sources of this criteria pollutant. CO = carbon monoxide; NOx = oxides of nitrogen; PM_{10} = particulate matter less than or equal to 10 microns in diameter; PM_{2.5} = particulate matter less than or equal to 2.5 microns in diameter; SO2 = sulfur dioxide; VOC = volatile organic compound

Source: USEPA 2008.

3.3.2.4 Baseline Air Quality

Representative background air monitoring data for the 157 ARW for the period 2008-2012 are shown in Table 3.3.2-3. The closest monitoring stations to Portsmouth IAP include the monitoring station in Portsmouth itself, along with monitoring stations in Nashua and Manchester.

As shown in Table 3.3.2-3, the area has experienced one to two O3 exceedances annually during the recent 5-year period. The data show that the area did not experience violations of other NAAQS.
Table 3.3.2-3. Ambient Air Monitoring Data for the Portsmouth Area

<table>
<thead>
<tr>
<th>Air Quality Indicator</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone (O₃)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 8-hour value (ppm)</td>
<td>0.079</td>
<td>0.076</td>
<td>0.081</td>
<td>0.086</td>
<td>0.083</td>
</tr>
<tr>
<td>Days above federal standard (0.075 ppm)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Particulate matter less than or equal to 2.5 microns in diameter (PM₂.₅)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 24-hour value (µg/m³)</td>
<td>33.2</td>
<td>29</td>
<td>26.3</td>
<td>14</td>
<td>24.3</td>
</tr>
<tr>
<td>Days above federal standard (35 µg/m³)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Annual Average value (µg/m³)</td>
<td>8.2</td>
<td>7.1</td>
<td>7.4</td>
<td>6.5</td>
<td>7.7</td>
</tr>
<tr>
<td>Particulate matter less than or equal to 10 microns in diameter (PM₁₀)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 24-hour value (µg/m³)</td>
<td>61</td>
<td>57</td>
<td>60</td>
<td>59</td>
<td>59</td>
</tr>
<tr>
<td>Days above federal standard (150 µg/m³)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 1-hour value (ppm)</td>
<td>9.4</td>
<td>3.3</td>
<td>3.4</td>
<td>2.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Days above federal standard (9 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peak 8-hour value (ppm)</td>
<td>4.4</td>
<td>2.3</td>
<td>2.4</td>
<td>2.4</td>
<td>0.6</td>
</tr>
<tr>
<td>Days above federal standard (35 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO₂)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 1-hour value (ppm)</td>
<td>NA</td>
<td>0.051</td>
<td>0.050</td>
<td>0.012</td>
<td>0.011</td>
</tr>
<tr>
<td>99th Percentile (ppm)</td>
<td>NA</td>
<td>0.047</td>
<td>0.042</td>
<td>0.010</td>
<td>0.010</td>
</tr>
<tr>
<td>Days above federal standard (0.100 ppm)</td>
<td>NA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO₂)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 1-hour value (ppm)</td>
<td>0.085</td>
<td>0.073</td>
<td>0.048</td>
<td>0.070</td>
<td>0.034</td>
</tr>
<tr>
<td>99th Percentile (ppm)</td>
<td>0.062</td>
<td>0.042</td>
<td>0.045</td>
<td>0.037</td>
<td>0.021</td>
</tr>
<tr>
<td>Days above federal standard (0.075 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peak 24-hour value (ppm)</td>
<td>0.025</td>
<td>0.016</td>
<td>0.015</td>
<td>0.014</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Notes:
1. The federal 1-hour SO₂ standard was adopted in 2010.

μg/m³ = micrograms per cubic meter; NA = data not available; ppm = parts per million

Source: USEPA 2013a.

3.3.2.5 157th Air Refueling Wing Emissions

The 157 ARW currently flies and maintains eight KC-135 refueler aircraft and one backup inventory KC-135 to support its air refueling mission. The primary support operations performed at the 157 ARW include aircraft fueling, aircraft deicing, aircraft maintenance, aircraft support equipment maintenance, ground vehicle maintenance, fueling of ground vehicles, and facilities maintenance. These operations involve activities such as corrosion control, non-destructive inspection, fuel cell maintenance, engine maintenance, hydraulics, and wheel and tire maintenance (157 ARW 2005, 2013c).

Emissions for the 157 ARW have been quantified in the *Final 2009 Air Emissions Inventory* (157 ARW 2010). The inventory evaluated the emissions from the 157 ARW to determine its status under the Title V Federal Operating Permits program. Based on the major source thresholds for the area, the major source thresholds are 50 tpy for O₃ precursors NOₓ and VOCs, 100 tpy for all other criteria pollutants, and less than 10 tpy of any single HAP or 25 tpy of any combination of HAPs (157 ARW 2010).
The 157 ARW operates under General State Permit GSP-EG-0370 which includes nine emergency generators and one emergency fire pump. The permit contains operational limits such that its potential emissions are restricted below the Title V major source thresholds. The 2009 Air Emissions Inventory demonstrates that the installation operates in compliance with the limits in its permit, and total base-wide potential emissions from stationary sources are below the major source thresholds (157 ARW 2010).

Stationary source emissions at the 157 ARW include emissions from natural gas, diesel, and propane-fired heating units, internal combustion engines, fuel tanks, a gasoline service station, and various minor sources such as solvent use, deicing, and welding. Mobile source emissions include emissions from aircraft operations (take-offs and landings), AGE, ground vehicle operations, and maintenance aircraft operations performed with the engines still mounted on the aircraft (engine run-ups and trim checks). Emissions from aircraft operations at the 157 ARW installation considered all based and transient aircraft. Aircraft emissions were calculated for all flight activities below the default mixing height (3,000 feet AGL). Baseline emissions also include stationary sources, and emissions associated with vehicle trips associated with existing personnel and dependents. These emissions, combined with those from the other mobile sources, account for the majority of the emissions from the installation.

To provide a baseline for evaluating the net emissions increases/decreases associated with Alternative #3, emissions from the KC-135 aircraft operations, aircraft refueling, KC-135 engine testing, KC-135-related AGE, and POVs associated with KC-135 flight operations were evaluated. Emissions from the KC-135 aircraft operations were calculated based on 2012 aircraft operations identified in Table 2.3-13, utilizing site-specific flight profiles to calculate aircraft operations below a default mixing height of 3,000 feet AGL. A discussion of the methodology for quantifying emissions is provided in Appendix A, Section A.2.3. Emissions for the baseline emissions associated with baseline operations of the KC-135 aircraft are provided in Table 3.3.2-4.

<table>
<thead>
<tr>
<th>Emission Source</th>
<th>VOCs</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 Baseline Aircraft Operations</td>
<td>2.41</td>
<td>36.29</td>
<td>73.94</td>
<td>6.29</td>
<td>0.33</td>
<td>0.33</td>
<td>17,480</td>
</tr>
<tr>
<td>AGE</td>
<td>0.00</td>
<td>0.01</td>
<td>0.07</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1,588</td>
</tr>
<tr>
<td>Engine Testing</td>
<td>0.10</td>
<td>1.47</td>
<td>0.40</td>
<td>0.06</td>
<td>0.01</td>
<td>0.01</td>
<td>174</td>
</tr>
<tr>
<td>POVs</td>
<td>1.11</td>
<td>19.06</td>
<td>0.91</td>
<td>0.01</td>
<td>0.04</td>
<td>0.02</td>
<td>597</td>
</tr>
<tr>
<td>Total Baseline Emissions</td>
<td>3.62</td>
<td>56.84</td>
<td>75.32</td>
<td>6.36</td>
<td>0.37</td>
<td>0.35</td>
<td>19,839</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding.
CO = carbon monoxide; CO2e = carbon dioxide equivalent; NOx = oxides of nitrogen; PM10 = particulate matter less than or equal to 10 microns in diameter; PM2.5 = particulate matter less than or equal to 2.5 microns in diameter; SO2 = sulfur dioxide; VOC = volatile organic compound

3.3.3 Safety

This section provides information on both ground and flight safety. Ground safety includes discussions of fire/crash response capabilities, APZs/RPZs, explosive safety, and AT/FP. Flight safety includes discussions on flight safety procedures, aircraft mishaps, BASH, and fuel jettison requirements. The affected environment includes the airfield and local airspace surrounding Portsmouth IAP.

3.3.3.1 Ground Safety

Fire/Crash Response

Day-to-day operations and maintenance activities conducted by the 157 ARW are performed in accordance with applicable USAF safety regulations, published USAF Technical Orders, and standards prescribed by AFOSH requirements. ARFF services at Pease ANGS are available on a 24-hour basis. Upon notification of an in-flight or ground emergency, the crash and rescue services personnel would coordinate emergency services. ARFF equipment and personnel at Pease ANGS meet USAF requirements (Headquarters AMC and NGB 2013a).

Accident Potential Zone/Runway Protection Zone

Development restrictions associated with RPZs are intended to preclude incompatible land use activities from being established in these areas. The city of Portsmouth, New Hampshire utilizes the FAA’s airport land use compatibility guidelines, and as such, the RPZs have allowed development to be compatible with airport operations. Details of development and land use in the Portsmouth IAP vicinity are included in Section 3.3.7, Land Use.

Explosive Safety

The 157 ARW uses a small range of munitions required for performance of their mission. The existing munitions storage capabilities on Pease ANGS meet the requirement for small arms deployment/training ammunition and other munitions required by the 157 ARW. The munitions storage complex consists of five earth-covered igloos of 208 SF each (total storage area of 1,040 SF), with a 192 SF receipt/inspection facility. Additional storage was established in the Squadron Operations building, which provides additional square footage for aircrew flight equipment assets. Additionally, a 2013 Memorandum of Agreement with Westover Air Reserve Base is in place augmenting munitions storage capacity.
Anti-Terrorism/Force Protection

Many of the 157 ARW military facilities at Pease ANGS were constructed before AT/FP considerations became a critical concern. Thus, under current conditions, many facilities do not comply with all current AT/FP standards. However, as new construction occurs and as facilities are modified, the 157 ARW would incorporate these standards to the maximum extent practicable.

3.3.3.2 Flight Safety

Flight Safety Procedures

Aircraft flight operations from Pease ANGS are governed by standard flight rules. Specific safety requirements are contained in standard operating procedures that must be followed by all aircrews operating from the airfield (AFI 11-2KC-135V3, *Flying Operations, C/KC-135 Operations Procedures*, 2010) to ensure flight safety. While having aircraft in close proximity during air refueling is inherently dangerous, refueling mishaps are rare. Emergency separation procedures are established and practiced by both tanker and receiver aircrews.

Aircraft Mishaps

KC-135 aircraft (all models) have flown more than 14,750,000 hours since the aircraft entered the USAF inventory in 1957. Over that period, 83 Class A mishaps have occurred and 64 aircraft have been destroyed (specific statistics for mishaps during refueling are not recorded). This results in a Class A mishap rate of 0.56 per 100,000 flight-hours, and an aircraft destroyed rate of 0.43 per 100,000 flight-hours (AFSEC 2012). The 157 ARW has not experienced a Class A mishap in the past 10 years (Pease ANGS 2013).

Bird/Wildlife Aircraft Strike Hazard

The USAF BASH Team maintains a database that documents all reported bird/wildlife aircraft strikes. Historic information across the USAF for the past 40 years indicates that 39 USAF KC-135 aircraft have been destroyed and 33 fatalities have occurred from bird/wildlife-aircraft strikes, with the last Class A mishap occurring in 2010 (AFSEC 2013).

The 157 ARW of the NH ANG has an effective, on-going BASH program through which information and assistance is freely shared between airfield users, the Portsmouth IAP staff, and the local air traffic controllers. The airport also has an aggressive program with the USDA, including continual monitoring within the fenceline to minimize BASH potential. The airport has an excellent track record of managing BASH issues and has successfully included the management at the off-airport landfill property. Serious BASH-related accidents within the
immediate Portsmouth IAP area are rare and have never resulted in a Class A mishap (Pease ANGS 2013). The 157 ARW has recorded 98 minor BASH incidents from 2008 to 2013, with an average of fewer than 20 per year (Pease ANGS 2013).

Fuel Jettison

For use in emergency situations, the KC-135 aircraft have the capability to jettison fuel and reduce aircraft gross weight for flight safety. In accordance with AFIs, Pease ANGS has established local procedures for gross weight adjustments; fuel jettison areas are over the Atlantic Ocean and above 20,000 feet AGL. 157 ARW aircraft jettisoned fuel once in 2012 and twice in 2011 (Pease ANGS 2013).

3.3.4 Soils and Water

3.3.4.1 Soils

The Portsmouth area of New Hampshire is within the Appalachian Highlands and consists almost entirely of glaciated till plains and rolling hills dissected by narrow valleys with a thin mantle of till. The river valleys and coastal plains are filled with glacial lake sediments, marine sediments, and glacial outwash (USDA 2006). The 157 ARW installation is located on improved land and is generally flat with plateau-like declining coastal terrain. Relief ranges from approximately 0 to 115 feet MSL with slopes generally under 5 percent (157 ARW 2008a).

The NRCS Soil Survey for Rockingham County, New Hampshire identifies the following five individual soil types at the installation:

Pennichuck channery very fine sandy loam, 3 to 8 percent slopes: This is a gently sloping soil typically found on low hills and terraces from till or glacial drift composed of an unconsolidated mixture of sediments. The rating class for building site development is considered somewhat limited due to slope, depth to hard bedrock, and depth to saturated zone. This soil type is designated as Prime Farmland (NRCS 2012). Approximately 11 percent of the installation is composed of this soil type.

Udorthents, smoothed: This soil is found in areas that have been excavated and regraded or that have been filled with soil material and graded. This soil type is typically used for urban development or landfills. The suitability of the soils as a site for development varies (NRCS 2012). The rating class for building site development is not rated for this soil type. Approximately 15 percent of the installation is composed of this soil type.

Urban land: This soil primarily consists of cut/fill sites used for buildings, paved roads, parking lots, and other areas of urban development. The rating class for building site development is not
rated for this soil type and requires onsite investigation and evaluation for most land use decisions to identify any potential limitations (NRCS 2012). Approximately 42 percent of the installation is composed of this soil type.

Urban land-Canton complex, 3 to 15 percent slopes: This soil is typically found on broad plains and low hills that are partially covered by streets, parking lots, and buildings. The soil consists of strongly intermingled Urban land and sloping Canton soil (NRCS 2012). The rating class for building site development is not rated for this soil type. Approximately 30 percent of the installation is composed of this soil type.

Windsor loamy sand, 3 to 8 percent slopes: This gently sloping soil is typically found on low hills, broad plains, and adjacent to major streams. The rating class for building site development is considered somewhat limited due to slope and depth to saturated zone. In addition, this soil type is designated as Farmland of Local Importance (NRCS 2012). Approximately 2 percent of the installation is composed of this soil type.

3.3.4.2 Surface Water

The 157 ARW installation is located within the Piscataqua-Salmon Falls Watershed that encompasses over 2,590 square miles across the states of Maine, New Hampshire, and Massachusetts (USEPA 2013d). The Piscataqua River Watershed, a sub-basin of Piscataqua-Salmon Falls Watershed, is the local watershed surrounding Portsmouth IAP. The Piscataqua River Watershed begins at the confluence of Salmon Falls and Cocheco Rivers and ultimately drains to Portsmouth Harbor (Seacoast Watershed Information Manager 2013).

Surface water features within the vicinity of the 157 ARW installation include the Atlantic Ocean and Portsmouth Harbor to the east, the Great Bay National Estuary to the southwest, Little Bay to the northwest, and several rivers and creeks including: Flagstone Brook to the north, the confluence of Oyster and Piscataqua rivers to the northeast, Paul’s Brook to the northeast, Grafton Ditch to the south, Hodgson Brook to the east, and McIntyre Brook to the west (Figure 3.3.4-1).

The Great Bay National Estuary, adjacent to the Portsmouth IAP along its southwestern border, is a unique water feature as it is both a saltwater and a freshwater system, set apart from the coastline. Great Bay lies at the confluence of tidally driven salt water from the Gulf of Maine and fresh water from the Salmon Falls, Cocheco, Bellamy, Oyster, Lamprey, Squamscott, and Winnicut rivers. The USEPA has afforded special protection to it as one of only 28 Estuaries of National Significance (New Hampshire Department of Environmental Services 2013).
Figure 3.3.4-1. Surface Water Features and Wetlands in the Vicinity of Pease ANGS
Surface water within the installation primarily consists of a series of man-made ditches, storm sewers, and drainage swales. Drainage of the developed area is typified by overland flow to storm drain inlets and basins connected by a network of underground pipes. There are four primary drainage basins on the installation: Outfall-001, -002, -003, and -004. Outfall-001 drains to Hodgson Brook and ultimately joins the Piscataqua River. Outfall-002 drains to Flagstone Brook and eventually discharges to Little Bay. Outfall-003 drains to McIntyre Brook ultimately discharging to Great Bay. Outfall-004 drains to Grafton Ditch and eventually discharges to the Piscataqua River. The outfalls associated with industrial activity are regulated under an individual National Pollutant Discharge Elimination System (NPDES) permit for Stormwater Runoff Associated with Industrial Activity (Permit No. NH0090000). The permit is administered by the USEPA New England Region (Portsmouth IAP 2011).

3.3.4.3 Groundwater

Groundwater in this area is primarily composed of crystalline-rock aquifers of the New England Physiographic Province (USGS 1995b). The regional groundwater system within the Great Bay area consists of a till- or marine-sediment-covered crystalline bedrock aquifer. Coarse-grained sand and gravel aquifers are generally small and discontinuous with the exception of a large ice-contact deposit beneath the former Pease AFB, in Newington. Crystalline bedrock consists of three main units: the Kittery Formation, a metasandstone on the western side of the bay; the Eliot Formation, a phyllite along the eastern and southern sides of the bay; and the Exeter Diorite, inland west of the bay (USGS 2001).

Groundwater at the 157 ARW occurs in unconsolidated material, fractured bedrock, and competent bedrock. The principal water-bearing overburden units are the Upper Sand and Lower Sand. Tidal fluctuations can be measured in both water table and bedrock wells within the installation. Groundwater elevations also vary seasonally, with groundwater highs from December to May and lows from July to September. Based on the installation groundwater contour map, the subject property is on a localized high point with radial flow outward (157 ARW 2008a).

The primary water source for the Pease International Tradeport are three wells operated by Portsmouth waterworks; Haven, Smith, and Harrison wells (City of Portsmouth 2010). There are currently three active Groundwater Management Zones located on the installation, as mandated by the New Hampshire Department of Environmental Services. A Groundwater Management Zone is a three-dimensional region containing groundwater being managed to mitigate impairment caused by the release of contaminants from a site. The source of contaminants in the three Groundwater Management Zones on the installation include the flightline, Building 249 (a storage facility), and the Bulk Fuels Storage area (157 ARW 2008a).
3.3.4.4 Floodplains

Per the FEMA Flood Insurance Rate Map for Rockingham County, New Hampshire, Panel 255 (Map Number 33015C0255E, Effective May 17, 2005), the 157 ARW installation is located within an area designated as Zone X. The designation Zone X are areas determined to be outside the 0.2 percent annual chance flood (500 year flood), indicating areas of minimal flooding (FEMA 2005).

3.3.5 Biological Resources

3.3.5.1 Vegetation

Portsmouth IAP occurs within the Eastern Broadleaf Forest (Oceanic) Province. Vegetation in this region typically is characterized by a winter deciduous forest dominated by tall broadleaf trees (Bailey 1995). The majority of the 157 ARW installation is developed or actively landscaped, with approximately 37 percent containing natural vegetation. Natural vegetation consists of primarily fragmented areas comprised of Appalachian oak-pine forests in the northern and southeastern portion of the installation. Dominant evergreen species include white pine (*Pinus strobus*) and hemlock (*Tsuga canadensis*). Dominant deciduous species include maples (*Acer* spp.), oaks (*Quercus* spp.), birch (*Betula* spp.), beech (*Fagus grandifolia*), and hickories (*Carya* spp.) (NGB 2011; 157 ARW 2008a, 2013b).

3.3.5.2 Wildlife

Due to the fragmented pockets of native vegetation, high noise levels, and human activities at and surrounding the airport, wildlife habitat is limited. As a result, the majority of wildlife present at the airport and the 157 ARW installation consists of species that are highly adapted to developed and disturbed areas. Pease ANGS is located within the Atlantic Flyway, one of four major North American corridors for migratory birds. The majority of the bird species found at Portsmouth IAP or within its vicinity are protected under the MBTA. Common bird species occurring or potentially occurring in or near the airport include Rock Doves (*Columba livia*), European Starlings (*Sturnus vulgaris*), Mourning Doves (*Zenaida macroura*), American Crows (*Corvus brachyrhynchos*), American Kestrels (*Falco sparverius*), Red-winged Blackbirds (*Agelaius phoeniceus*), Short-eared Owls (*Asio flammeus*), and Red-tailed Hawks (*Buteo jamaicensis*). Common mammals include white-tailed deer (*Odocoileus virginianus*), red foxes (*Vulpes vulpes*), coyotes (*Canis latrans*), eastern chipmunk (*Tamias striatus*), gray squirrel (*Sciurus carolinensis*), and raccoon (*Procyon lotor*). Common reptiles and amphibians include the American bullfrog (*Lithobates catesbianus*), American toad (*Anaxyrus americanus*), eastern red-backed salamander (*Plethodon cinereus*), black racer (*Coluber constrictor*), snapping turtle (*Chelydra serpentina*), and spotted turtle (*Clemmys guttata*) (157 ARW 2008a, 2013b).
3.3.5.3 Special Status Species

No federally listed or candidate species are known to occur within the airport vicinity or on the 157 ARW installation. However, eight state listed species have been observed within the airport vicinity, and additional special status species have been observed within Rockingham County within the vicinity of Portsmouth IAP. A list of these species can be found in Appendix E. There is no critical habitat located on the installation (157 ARW 2013, New Hampshire Fish and Game 2013, New Hampshire Natural Heritage Bureau 2013).

3.3.5.4 Wetlands

Nine jurisdictional wetlands, totaling 6.86 acres, occur on the 157 ARW installation in the southeast and northern portion of the installation (Figure 3.3.4-1). Seven of these wetlands are palustrine forested and two are considered palustrine emergent wetlands (NGB 2011, 157 ARW 2013b). None of these wetlands occur within the vicinity of the proposed construction projects.

3.3.6 Cultural Resources

3.3.6.1 Archaeological Resources

All portions of the 157 ARW installation determined to be relatively undisturbed were intensively surveyed for cultural resources. One archaeological resource consisting of two Native American artifacts was encountered in a shovel test pit within a layer of fill material from adjacent construction activities. Due to the isolated and sparse nature of the find and its location in fill, the resource is considered not eligible for listing in the NRHP (157 ARW 2009). The New Hampshire SHPO has concurred with these findings (see Muzzey 2009 in Appendix B4).

3.3.6.2 Architectural Resources

All 46 buildings and structures pre-dating the end of the Cold War era (pre-1990) were inventoried and evaluated for NRHP-eligibility (157 ARW 2009). None of the buildings, structures, or monuments were recommended as eligible for listing in the NRHP (157 ARW 2009; St. Louis 2009). The New Hampshire SHPO has concurred with these recommendations (see Muzzey 2009 and St. Louis 2009 in Appendix B4).

3.3.6.3 Traditional Resources

The 157 ARW installation contains no known traditional resources; however, one federally-recognized Tribe that is historically, culturally, and linguistically affiliated with the area has been identified: The Penobscot Indian Nation.
3.3.7 Land Use

The Pease ANGS occupies approximately 220 fee owned acres in the northeastern portion of Portsmouth IAP, situated in both Newington and Portsmouth in Rockingham County, New Hampshire. Portsmouth IAP is a holding of the Pease International Tradeport; the Tradeport is owned and operated by the PDA, a state agency of New Hampshire. The present day Pease International Tradeport was established in the 1950s by the USAF as Pease AFB and owned by the USAF Strategic Air Command. When the Base Realignment and Closure Committee closed Pease AFB in October 1991, the 157 ARW became the sole occupant. The USAF maintained ownership of and management responsibility for the property of the remaining 1,073 acres until 1997. Between 1992 and 1997, the USAF transferred 1,054 acres to the USFWS and 19 acres to the U.S. Department of Transportation (157 ARW 2008a).

Land use surrounding Portsmouth IAP is predominantly open space characterized by forested areas interspersed with commercial, residential, industrial parcels. Small parcels of agricultural use are located to the southwest. Wetland areas lie to the northwest and southeast. The Great Bay National Wildlife Refuge, established in 1992 and managed by the USFWS, occupies a large tract of land just to the northwest of the airport and presents a barrier to future development (Rockingham Planning Commission 2006). The Great Bay Estuary, New Hampshire’s largest estuarine system, lies approximately 1 mile to the west and north of the airport boundary. This estuarine complex is fed by the tidal waters of the Piscataqua River, flowing approximately 1.5 miles east of the airport. The Spaulding Turnpike (SR 4) runs roughly parallel to the airport’s eastern boundary and I-95 traverses just beyond the southeastern boundary of the airport.

Zoning surrounding the airport generally supports compatible land use planning and provides protection of Portsmouth IAP (City of Portsmouth 2012a). Zoning codes define and establish airport hazard zones height limitations and land use restrictions within these zones. This zoning protects RPZs, details of which can be found in the Safety section of Appendix A, Section A.3. In Portsmouth, land surrounding the airport to the south and west is zoned primarily as Natural Resource Protection (Open Space/Conservation) with an isolated development zoned for Residential use, located between I-95 and the south end of the airport. A golf course is also located just south of the airport. Adjacent areas to the east of the airport are zoned for Business (Commercial), Residential, and Municipal (Public) (City of Portsmouth 2012a). In Newington, areas to the north are generally zoned for Residential and Commercial uses (Town of Newington 2009). Current average noise levels from aircraft operations above 65 dB DNL do not extend off-base (Figure 3.3.7-1).
Figure 3.3.7-1. DNL Noise Contours and Land Use at Portsmouth IAP

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS
Chapter 3 – Base Affected Environment
Pease ANGS
3.3.8 Infrastructure and Transportation

3.3.8.1 Potable Water System

Potable water for the 157 ARW installation is supplied by the Madbury Treatment Plant operated by the City of Portsmouth Water Department. Potable water in the area is supplied primarily from the three regional groundwater aquifer wells located on Pease International Tradeport. The City of Portsmouth pumps approximately 1.64 trillion gallons of water per year to its customers (City of Portsmouth 2012b). In CY 2012, 26,510,960 gallons of potable water was supplied to the 157 ARW installation (157 ARW 2012a).

3.3.8.2 Wastewater

The 157 ARW installation generates wastewater from sanitary, stormwater, and industrial processes, including oil/water separator discharge, wash rack discharge, floor wash-down, latrines, sinks, and showers. Wastewater generated within the 157 ARW installation is conveyed into the municipal sewage system, operated by the City of Portsmouth to the Pease International Tradeport Wastewater Treatment Facility. The facility has an average daily flow capacity of 1.2 million gallons per day but typically receives 0.75 million gallons of wastewater per day for treatment (City of Portsmouth 2006).

3.3.8.3 Stormwater

A high percentage of the active administrative and industrial areas of the installation are paved or roofed, resulting in high runoff rates during precipitation events. As described in the Pease International Tradeport SWPPP (2011), the 157 ARW installation has a stormwater drainage conveyance system typified by overland flow to catch basins, inlets, surface drains, underground pipes, culverts, ditches, and swales that discharge to receiving waters (see Section 3.3.4, Soils and Water) or other municipal separate storm sewer systems. The stormwater drainage system has been designed to safely collect and transport surface water runoff from storm events to prevent flooding within the installation and is a separate system from the wastewater (sewage) system.

3.3.8.4 Electrical and Natural Gas Systems

Electricity is supplied to the 157 ARW installation by Public Service of New Hampshire via a substation located on the north side of Building 153 and is distributed via underground lines. Natural gas is supplied by Unitil Corporation. Electricity consumption for CY 2012 at the 157 ARW installation was 4,271,136 kilowatt hours. Natural gas consumption for CY 2012 at the 157 ARW installation was 124,582 thousand cubic feet (157 ARW 2012a).
3.3.8.5 Solid Waste Management

Municipal solid waste at the 157 ARW installation is managed in accordance with the 157 ARW Solid Waste Management Plan (157 ARW 2012a) and guidelines specified in AFI 32-7042, *Waste Management* (2009). This AFI incorporates, by reference, the federal standard for solid waste regulations contained within 40 CFR, Subtitle D, *Non-hazardous Waste*, and other applicable federal regulations, AFIs, and DoD Directives. In general, AFI 32-7042 establishes the requirement for installations to have a solid waste management program that incorporates the following: a solid waste management plan; procedures for recycling, diversion, handling, storage, collection, and disposal of solid waste; recordkeeping and reporting; and pollution prevention.

The 157 ARW installation generates solid waste in the form of office trash, non-hazardous industrial wastes, normal municipal waste, and construction debris. These nonhazardous solid wastes are collected in dumpsters located throughout the 157 ARW installation, recyclables are separated, and waste is transported by contract to Turnkey Landfill in Rochester, New Hampshire or other local landfill (157 ARW 2012a). Up to 83 percent of mixed containers (both debris and recyclables) is recycled, and 100 percent of metal and cardboard are recycled (Smith 2013b).

3.3.8.6 Transportation

The 157 ARW installation is located within close proximity to several major highways. U.S. Route 4 is located to the north and east of the installation and runs west to Concord, New Hampshire. U.S. Route 4 intersects with New Hampshire Route 16 northeast of the installation. New Hampshire Route 16 intersects with I-95 southeast of the airport and runs the entire length of the eastern seaboard. In addition, SRs 101 and 108 are located near the installation to the south and west. Access to the installation is located at the intersection of Pease Boulevard and Arboretum Drive (157 ARW 2008a).

3.3.9 Hazardous Materials and Waste

3.3.9.1 Hazardous Materials

Hazardous materials are used at the 157 ARW installation for aircraft operations support and maintenance, including POL management and distribution, liquid fuels maintenance, transportation maintenance, vehicle paint, power production, machine shop operations, and flight simulation. Types of hazardous substances found on the 157 ARW installation include hydraulic fluid, waste oils, recovered fuels, spent cleaners, strippers, solvents, flammable and combustible liquids, acids, aerosols, batteries, corrosives, and paints (157 ARW 2013c).
The are 16 ASTs that are currently on the installation that are used to store heating oil, diesel, jet fuel, motor gasoline, and high expansion foam. The majority of USTs currently at the installation are used as overflow storage tanks in conjunction with various OWSs. There is one registered 4,000-gallon UST adjacent to Building 168 in the Bulk Fuels Storage Area (157 ARW 2005).

Toxic Substances

Regulated toxic substances typically associated with buildings and facilities include asbestos, LBP, and PCBs. An asbestos survey was performed at the 157 ARW installation in 2011. ACM identified in the insulation, floor tiles, and mastic were found in Buildings/Hangars 149, 151, 152, 153, 241, 247, 251, 252, 254, and 262 (157 ARW 2005, 2011a).

A LBP survey has not been conducted at the 157 ARW installation. Any buildings on the installation constructed prior to 1978 are presumed to contain LBP and would be tested for LBP prior to demolition or renovation (157 ARW 2005).

PCB-containing transformers were removed from the subject property in 1993. With the exception of occasionally encountering a PCB ballast, there are no known sources of PCBs at the subject property (157 ARW 2005).

3.3.9.2 Hazardous Waste Management

The 157 ARW Spill Prevention, Control, and Countermeasure Plan contains the governing regulations for spill prevention and describes specific protocols for preventing and responding to releases, accidents, and spills involving oils and hazardous materials (157 ARW 2012b). The 157 ARW Hazardous Waste Management plan outlines procedures for controlling and managing hazardous wastes from the point where they are generated until they are disposed. In addition, it includes guidance for compliance with all federal, state, and local regulations pertaining to hazardous waste (157 ARW 2012a).

The 157 ARW is regulated as a Small Quantity Generator of hazardous waste by the USEPA and maintains USEPA Identification Number NH8572824847. The 157 ARW is regulated as a Full Quantity Generator of hazardous waste per New Hampshire regulations. Full Quantity Generators are defined as those entities generating greater than or equal to 100 kilograms of hazardous waste a month. Although facilities that generate this amount (but no more than 2,200 pounds) of hazardous waste are considered a small quantity generator by the USEPA, the 157 ARW follows the more stringent Full Quantity Generator requirements of New Hampshire. A hazardous waste generation point is where the waste is initially created or generated. A SAP is an area where hazardous waste is initially accumulated at the point of generation and is under the
control of the SAP manager. Hazardous wastes initially accumulated at a SAP are accumulated in appropriate containers before being transferred to the installation CAP. There are 29 SAPs (where a waste is initially accumulated) identified at the installation in Buildings/Hangars 145, 146, 149, 157, 243, 244, 245, 168, 249, 251, 253, 254, and 256. The installation CAP consists of two outdoor hazmat storage sheds and a small portion of Hangar 253 (157 ARW 2013c).

OWSs are used to separate oils, fuels, sand, and grease from wastewater and to prevent contaminants from entering the sanitary sewer and stormwater drainage systems. Fourteen OWSs are located on the 157 ARW installation. These OWSs primarily receive discharge from floor drains in maintenance areas. One 3,000-gallon concrete OWS for Building 249 failed in the 1980s and contaminated the soil and groundwater. It was replaced in 1992 with a new 1,000-gallon concrete OWS. This resulted in the institution of a ground water management zone to monitor the petroleum contaminants (see Section 3.3.4, Soils and Water) (157 ARW 2005).

3.3.9.3 Environmental Restoration Program

There are two closed ERP sites at the 157 ARW installation. Table 3.3.9-1 provides details for each of these sites and Figure 3.3.9-1 shows the locations.

Table 3.3.9-1. ERP Sites within the 157 ARW Installation

<table>
<thead>
<tr>
<th>ERP Site</th>
<th>Materials of Concern</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Waste Solvent Tank located at Building 244, former aircraft maintenance and repair building. Degreasing operations generated waste solvents, primarily trichloroethene. Trichloroethene was held in a 1,200-gallon UST adjacent to Building 244. Soil and groundwater sampling confirmed that the UST had leaked.</td>
<td>Closed</td>
</tr>
<tr>
<td>44</td>
<td>This site was a Paint Can Disposal Area and was a common location for burial waste flocculent generated at the industrial waste treatment plant. Soil and groundwater sampling conducted showed that contaminant concentrations did not exceed action levels.</td>
<td>Closed</td>
</tr>
</tbody>
</table>

Note: UST = underground storage tank
Figure 3.3.9-1. ERP Sites at the 157 ARW Installation, Portsmouth IAP
3.3.10 Socioeconomics

3.3.10.1 Population and Employment

Population

Pease ANGS is located in Portsmouth and Newington, New Hampshire, in Rockingham County. Current population data and estimates for the state of New Hampshire, Rockingham County, Town of Newington, and Portsmouth are provided in Table 3.3.10-1. From 1990 to 2010, Rockingham County’s population increased by 49,378, an increase of approximately 20 percent (USCB 1990c, 2000c, 2010d).

Table 3.3.10-1. Population Growth within the Vicinity of Pease ANGS

<table>
<thead>
<tr>
<th>Area</th>
<th>1990 Census</th>
<th>2000 Census</th>
<th>2010 Census</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Hampshire</td>
<td>1,109,252</td>
<td>1,235,786</td>
<td>1,316,470</td>
</tr>
<tr>
<td>Rockingham County</td>
<td>245,845</td>
<td>277,359</td>
<td>295,223</td>
</tr>
<tr>
<td>Town of Newington</td>
<td>990</td>
<td>775</td>
<td>753</td>
</tr>
<tr>
<td>Portsmouth</td>
<td>25,925</td>
<td>20,784</td>
<td>20,779</td>
</tr>
</tbody>
</table>

Source: Town of Newington 2009; USCB 1990c, 2000c, 2010d.

The 157 ARW currently supports a workforce authorization of 1,382, including 539 full-time and 843 part-time personnel (see Table 2.3-18).

Employment and Earnings

Table 3.3.10-2 presents total labor force and employment rates for New Hampshire, Rockingham County, Town of Newington, and Portsmouth. Based on 2007-2011 ACS 5-year estimates, there were 171,749 persons in the labor force (able to work) and 161,577 employed within Rockingham County, resulting in an unemployment rate of approximately 6 percent. Top employment industries in Rockingham County include 1) educational services, and health care and social assistance; 2) retail; and 3) manufacturing (USCB 2011d). Principal employers in the region include Portsmouth Naval Shipyard, UA Local 788 Marine Pipefitter, Portsmouth Regional Hospital, and Liberty Mutual Insurance (InfoGroup 2013, 157 ARW 2008a).

Table 3.3.10-2. Employment Data (2011) within the Vicinity of Pease ANGS

<table>
<thead>
<tr>
<th>Area</th>
<th>Labor Force</th>
<th>Employed</th>
<th>Unemployed</th>
<th>Unemployment Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Hampshire</td>
<td>743,342</td>
<td>696,674</td>
<td>46,668</td>
<td>6.3</td>
</tr>
<tr>
<td>Rockingham County</td>
<td>171,749</td>
<td>161,577</td>
<td>10,172</td>
<td>5.9</td>
</tr>
<tr>
<td>Town of Newington</td>
<td>416</td>
<td>414</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>Portsmouth</td>
<td>13,222</td>
<td>12,625</td>
<td>597</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Note: Employment numbers include individuals in the Armed Forces.
Source: USCB 2011d.
3.3.10.2 Schools

According to the 2011 ACS enrollment 5-year estimates, 53,702 students were enrolled in schools from Kindergarten through Grade 12 in Rockingham County (USCB 2011d).

3.3.10.3 Housing

In 2010, the number of housing units in Rockingham County was 126,709, with a vacancy rate of approximately 9 percent (USCB 2010d).

3.3.11 Environmental Justice and the Protection of Children

3.3.11.1 Minority and Low-Income Populations

Table 3.3.11-1 displays the minority, low-income, and children under age 18 within the state of New Hampshire, as well as the county and towns within the vicinity of Portsmouth IAP. Approximately 4 percent of the population of Rockingham County is composed of minorities (i.e., an ethnic or racial group with a distinctive presence in a community), compared to approximately 6 percent for the state of New Hampshire. The percentage of population living below the poverty level for the state of New Hampshire (approximately 8 percent) is higher than Rockingham County (approximately 5 percent) (USCB 2010d).

<table>
<thead>
<tr>
<th>Geographic Area</th>
<th>Total Population</th>
<th>Minority Population</th>
<th>Percent Minority</th>
<th>Low-Income Population</th>
<th>Percent Low-Income</th>
<th>Children Under Age 18</th>
<th>Percent Children</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Hampshire</td>
<td>1,316,470</td>
<td>80,420</td>
<td>6.1</td>
<td>105,318</td>
<td>8.0</td>
<td>287,234</td>
<td>21.8</td>
</tr>
<tr>
<td>Rockingham County</td>
<td>295,223</td>
<td>13,257</td>
<td>4.4</td>
<td>14,466</td>
<td>4.9</td>
<td>67,438</td>
<td>22.8</td>
</tr>
<tr>
<td>Town of Newington</td>
<td>753</td>
<td>28</td>
<td>3.7</td>
<td>28</td>
<td>3.7</td>
<td>130</td>
<td>17.3</td>
</tr>
<tr>
<td>Portsmouth</td>
<td>20,779</td>
<td>1,762</td>
<td>8.5</td>
<td>1,870</td>
<td>9.0</td>
<td>3,459</td>
<td>16.6</td>
</tr>
</tbody>
</table>

Note: 1. Total population, minority population, and number of children under the age of 18 were obtained from the 2010 census data. Low income population numbers are from the 2007-2011 ACS 5-Year Estimates.
2. The percentage of low-income persons is calculated as a percentage of all persons for whom the USCB determines poverty status, which is generally a lower number than the total population because it excludes institutionalized persons, persons in military group quarters and college dormitories, and unrelated individuals under 15 years old.

Source: USCB 2010d, 2011d.

The 65 dB DNL contour does not extend off the airport property; therefore, currently there are no populations, including minority or low-income populations, in the vicinity of Portsmouth IAP within the baseline DNL greater than 65 dB.
3.3.11.2 Protection of Children

In 2010, the number of children under the age of 18 living in Rockingham County was approximately 67,438 (22.8 percent of the population) (Table 3.3.11-1). The state of New Hampshire has a slightly lower percentage population of children compared to the counties (21.8 percent). There are no on-installation housing or facilities for children located at the 157 ARW installation. Currently there are no Kindergarten through Grade 12 off-installation schools that are exposed to DNL of 65 dB or above.
3.4 PITTSBURGH AIR NATIONAL GUARD STATION

Pittsburgh ANGS, home of 171 ARW of the PA ANG, is located approximately 12 miles northwest of Pittsburgh, Pennsylvania in Allegheny County. The 171 ARW installation is situated on the southeastern side of the Pittsburgh IAP, an international airport owned and operated by the ACAA.

3.4.1 Noise

To evaluate noise impacts in the vicinity of a military installation located within a commercial airport with a published FAR Part 150 Airport Noise Compatibility Study, the USAF allows for use of the FAA’s INM to generate DNL noise contours. The ACAA under the FAA uses the INM computer model for generating noise contours and for Pittsburgh IAP, the FAA’s INM was used. For more detailed information on the noise modeling methods see Appendix A, Section A.1.2.

3.4.1.1 Baseline Operations

This section describes the baseline conditions as approved by the ACAA. In 2006, the ACAA completed Noise Exposure Maps Update as part of the FAA’s FAR Part 150 Noise Compatibility Program for Pittsburgh IAP based on operational data from a 12-month period ending February 2005. The study used the standard FAA INM program to establish noise contours based on those operations and is the FAA approved and public document for the noise compatibility program currently in effect for the airport.

Based on aircraft operations data validated in March 2013 (FAA 2013, 171 ARW 2013a), approximately 139,217 total aircraft operations occurred at Pittsburgh IAP during 2012; of those, the 171 ARW flew a total of 6,943 airfield operations with approximately 7 percent at night (approximately 5 percent of total operations at the airfield). These numbers were validated by the 171 ARW and Pittsburgh ATADs (FAA tower) report and are used as the basis for determination of KC-46A airfield operations for the Proposed Action (FAA 2013, 171 ARW 2013a).

The current FAR Part 150 data identified 321,436 total aircraft operations that occurred at Pittsburgh IAP during the 12-month period ending March 2006. Per the request of the ACAA, the current approved and published FAR Part 150 Noise Compatibility Program Update for Pittsburgh IAP is used as the baseline for this analysis (Belotti 2013). The baseline aircraft operations at the airport used for this analysis differs from the current 2012 aircraft operations.
due to changes to airfield use by U.S. Air which no longer uses Pittsburgh IAP as a major commercial airline hub.

Table 3.4.1-1 summarizes the frequency of aircraft operations for Pittsburgh IAP based on information provided by base staff, flying organizations, and air traffic control personnel. An aircraft operation is counted each time an aircraft departs from the runway and each time they approach the runway. The majority of aircraft traffic includes air cargo, commercial regional jets (air taxi), and larger commercial aircraft and other based military aircraft, along with based ANG KC-135 aircraft. There are also a number of general aviation jet and non-jet and corporate aircraft based at the airfield. Although the number of aircraft operations at an airfield varies from day to day, for Pittsburgh IAP, operations are calculated for an AAD, meaning that yearly operations are averaged across all 365 days of the year. Table 3.4.1-1 reflects a total of approximately 881 aircraft operations on an AAD (321,436 divided by 365 days). Approximately 9 percent of the total operations at Pittsburgh IAP occur during environmental night (10:00 p.m. through 7:00 a.m.).

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>DEPARTURES</th>
<th>ARRIVALS</th>
<th>TOTAL</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night</td>
<td>Day</td>
<td>Night</td>
</tr>
<tr>
<td>KC-135</td>
<td>6,530</td>
<td>0</td>
<td>13,060</td>
<td>0</td>
</tr>
<tr>
<td>Other Aircraft</td>
<td>140,683</td>
<td>13,505</td>
<td>147,213</td>
<td>13,505</td>
</tr>
<tr>
<td>Total</td>
<td>147,213</td>
<td>13,505</td>
<td>147,213</td>
<td>13,505</td>
</tr>
</tbody>
</table>

Notes:
1. Operations based on currently approved FAR Part 150.
2. Includes Closed Patterns (which count as two airfield operations).
3. Night –Between 10 p.m. and 7 a.m. for environmental night.
4. Other based military and civilian aircraft and transient aircraft (multiple type aircraft); example aircraft include: Boeing 747, 717, and the Airbus 321.

Source: ACAA 2006.

Based on the published FAR Part 150 Study (2006), the 171 ARW KC-135 aircraft flew a total of 13,060 annual airfield operations, or an average of 36 airfield operations a day. No KC-135 operations at Pittsburgh IAP occur during environmental night in the baseline data. Approximately 4 percent of total operations at Pittsburgh IAP are accomplished by the 171 ARW KC-135 aircraft (ACAA 2006).

3.4.1.2 Runway and Flight Profiles

Pittsburgh IAP aircraft use VFR departures, published Standard Instrument Departures, straight in approaches, overhead approaches, IFR or radar closed patterns, and VFR closed patterns along with re-entry VFR patterns as the basic flight patterns for general aviation and military training flights and local arrival and departures. Detailed representative arrival, departure, and closed pattern flight tracks are found in the Appendix C, Noise.
3.4.1.3 Existing Noise Environment

Noise contours developed for the baseline conditions at Pittsburgh IAP are shown in Figure 3.4.1-1. The acreage within each DNL contour on and off Pittsburgh IAP property is shown in Table 3.4.1-2. Approximately 3,138 acres are exposed to DNL greater than or equal to 65 dB. Detailed information on off-airport land use that lies within a DNL greater than 65 dB can be found in Section 3.4.7, Land Use.

<table>
<thead>
<tr>
<th>Noise Level (dB)</th>
<th>On Airport (acres)</th>
<th>Off Airport (acres)</th>
<th>Total (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>65-70</td>
<td>1,331.5</td>
<td>128.6</td>
<td>1,460.1</td>
</tr>
<tr>
<td>70-75</td>
<td>850.7</td>
<td>0</td>
<td>850.7</td>
</tr>
<tr>
<td>75-80</td>
<td>468.6</td>
<td>0</td>
<td>468.6</td>
</tr>
<tr>
<td>80-85</td>
<td>151.5</td>
<td>0</td>
<td>151.5</td>
</tr>
<tr>
<td>Greater than 85</td>
<td>207.5</td>
<td>0</td>
<td>207.5</td>
</tr>
<tr>
<td>Total</td>
<td>3,009.8</td>
<td>128.6</td>
<td>3,138.4</td>
</tr>
</tbody>
</table>

Notes: dB = decibel

Potential Hearing Loss

As shown in Table 3.4.1-2, there is no property off the Pittsburgh IAP that falls within the 80+ dB DNL noise contour; therefore, no potential hearing loss risk is currently associated with these areas.

3.4.1.4 Pittsburgh International Airport Noise Abatement Procedures

Pittsburgh IAP has no published restrictions on flying activities but has instituted noise abatement procedures that are incorporated directly into their Air Traffic Control Operating Procedures. Procedures include departing aircraft to maintain runway heading to 1,700 feet above mean sea level (AMSL) and follow Departure Control (SkyVector 2013b).

3.4.1.5 Pittsburgh International Airport Noise Complaints Procedures

Currently, Pittsburgh IAP procedures for registering and logging noise complaints are through the Airport Operation’s staff, who receive calls on a 24-hour basis. Calls requiring investigation and/or follow up to assure compliance with the FAR Part 150 Noise Program are submitted to the Manager of Planning Services. During 2012, the airport reported a total of 274 complaints, 259 from three specific individuals and 15 from others. Any noise complaints resulting from the 171 ARW are routed through 171 ARW operations for resolution. The number of noise complaints is not considered significant due to the large airport property and lack of urban encroachment (Belotti 2013).
Figure 3.4.1-1. Baseline DNL Noise Contours for Pittsburgh IAP
3.4.2 Air Quality

3.4.2.1 Regulatory Setting

In addition to criteria pollutants, the USEPA has defined 187 substances as HAPs. HAPs are substances that have been determined to present some level of acute or chronic health risk (cancer or non-cancer) to the general public. These pollutants may be emitted in trace amounts from various types of sources, including combustion sources. HAPs are regulated for specific source categories under the USEPA’s National Emission Standards for Hazardous Air Pollutants regulations.

Individual states are delegated the responsibility to regulate air quality in order to achieve or maintain air quality in attainment with these standards. The Pennsylvania Department of Environmental Protection (PADEP) Bureau of Air Quality is the agency responsible for the regulation of air quality within the state of Pennsylvania. The state of Pennsylvania regulates air quality through the Pennsylvania Code Title 25, Article III, Chapters 121 through 145. Within Allegheny County, air quality is regulated by the Allegheny County Health Department Division of Air Quality through Article XXI Air Quality Regulations. The state of Pennsylvania has adopted the NAAQS, and has adopted additional standards regulating beryllium, fluorides, hydrogen sulfide, and settled particulate matter. Because the Proposed Action would not contribute to emissions of these pollutants, they are not considered further in this EIS. The NAAQS are summarized in Table 3.4.2-1.

Pittsburgh ANGS is located approximately 12 miles northwest of Pittsburgh, Pennsylvania in Allegheny County. The USEPA has classified Allegheny County as a moderate nonattainment area for the 1997 8-hour O₃ NAAQS, and is classified as a marginal nonattainment area for the 2008 8-hour O₃ NAAQS. Allegheny County is also a nonattainment area for PM₂.₅. Pittsburgh is also designated as a nonattainment area for CO, but this designation applies only in high traffic areas in the central business district of the city. The region is designated attainment/unclassified area for all other criteria pollutants. Alternative #4 is therefore subject to the requirements of Section 176(c) of the CAA, as articulated in the USEPA General Conformity Rule. Based on the nonattainment classification for the region, the de minimis emission thresholds for the General Conformity Rule for O₃ precursors (NOₓ and VOCs) is 100 tpy, and the de minimis emission threshold for PM₂.₅ emissions is also 100 tpy.
Table 3.4.2-1. Ambient Air Quality Standards

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>National Standards<sup>a</sup></th>
<th>Primary<sup>b,c</sup></th>
<th>Secondary<sup>b,d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>O<sub>3</sub></td>
<td>8-hour</td>
<td>0.075 ppm (147 µg/m<sup>3</sup>)</td>
<td>Same as primary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>8-hour</td>
<td>9 ppm (10 mg/m<sup>3</sup>)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>35 ppm (40 mg/m<sup>3</sup>)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>NO<sub>2</sub></td>
<td>Annual</td>
<td>0.053 ppm (100 µg/m<sup>3</sup>)</td>
<td>Same as primary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>0.100 ppm (188 µg/m<sup>3</sup>)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>SO<sub>2</sub></td>
<td>24-hour</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3-hour</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>0.075 ppm (189 µg/m<sup>3</sup>)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>PM<sub>10</sub></td>
<td>Annual</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>150 µg/m<sup>3</sup></td>
<td>Same as primary</td>
<td></td>
</tr>
<tr>
<td>PM<sub>2.5</sub></td>
<td>Annual</td>
<td>12 µg/m<sup>3</sup></td>
<td>15 µg/m<sup>3</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>35 µg/m<sup>3</sup></td>
<td>Same as primary</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>Rolling 3-month period</td>
<td>0.15 µg/m<sup>3</sup></td>
<td>Same as primary</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
^a Standards other than the 1-hour ozone, 24-hour PM₁₀, 24-hour PM_{2.5}, and those based on annual averages are not to be exceeded more than once a year. The 8-hour ozone national standard has replaced the 1-hour ozone national standard.
^b Concentrations are expressed first in units in which they were promulgated. Equivalent units given in parenthesis.
^c Primary Standards: The levels of air quality necessary, with an adequate margin of safety to protect the public health. Each state must attain the primary standards no later than 3 years after that state’s implementation plan is approved by the USEPA.
^d Secondary Standards: The levels of air quality necessary to protect the public welfare from any known or anticipated adverse effects of a pollutant.
µg/m³ = micrograms per cubic meter; CO = carbon monoxide; mg/m³ = milligrams per cubic meter; NO₂ = nitrogen dioxide; O₃ = ozone; Pb = lead; PM_{2.5} = particulate matter less than or equal to 2.5 microns in diameter; PM₁₀ = particulate matter less than or equal to 10 microns in diameter; ppm = parts per million; SO₂ = sulfur dioxide

Source: USEPA 2012.

The USEPA recently promulgated a more stringent standard for lead, and has redesigned its monitoring program to address lead and identified airports for monitoring because aviation gas used in piston aircraft still contains lead. The project area is considered attainment/unclassified for lead, and lead is not used in aviation fuel used in the KC-135 or KC-46A aircraft.

3.4.2.2 Climate and Meteorology

Pittsburgh is located in the southwestern corner of Pennsylvania, at the foothills of the Allegheny Mountains, where the Allegheny and Monongahela Rivers join to form the Ohio. The city’s humid climate is modified slightly by its relative proximity to the Atlantic Seaboard and the
Great Lakes. The Pittsburgh area experiences extremes of all four seasons. Precipitation is distributed throughout the year, with much of the precipitation occurring as snow during the winter months (Northeast Regional Climate Center 2013c).

January is the coldest month, with an average minimum temperature of 19.9°F. July is the hottest month, with an average maximum temperature of 82.7°F. The average annual temperature is 50.3°F. The average annual precipitation in Pittsburgh is 36.9 inches (Northeast Regional Climate Center 2013c).

The average wind speed in the Pittsburgh area is 9 miles per hour. Winds are generally westerly to southwesterly during the year (Northeast Regional Climate Center 2013c).

3.4.2.3 Regional and Local Air Pollutant Sources

The 171 ARW of the PA ANG is based on the southwestern side of Pittsburgh IAP in Allegheny County, Pennsylvania. The surrounding area includes a mix of uses, including residential development, commercial development, and open space.

The USEPA’s National Emissions Inventory includes data for the year 2008 for Allegheny County. Table 3.4.2-2 summarizes the regional emissions (stationary and mobile) of criteria pollutants and precursor emissions for the affected areas.

<table>
<thead>
<tr>
<th>Source Type</th>
<th>EMISSIONS, TONS/YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO</td>
</tr>
<tr>
<td>Stationary Sources</td>
<td>21,006</td>
</tr>
<tr>
<td>Area-Wide Source</td>
<td>1,196</td>
</tr>
<tr>
<td>Mobile Sources</td>
<td>141,851</td>
</tr>
<tr>
<td>Total</td>
<td>164,053</td>
</tr>
</tbody>
</table>

Notes: Numbers may not match precisely due to rounding.
Emissions of Pb are not included because the affected region contains no significant sources of this criteria pollutant.
CO = carbon monoxide; NOx = oxides of nitrogen; PM10 = particulate matter less than or equal to 10 microns in diameter; PM2.5 = particulate matter less than or equal to 2.5 microns in diameter; SO2 = sulfur dioxide; VOC = volatile organic compound

Source: USEPA 2008.

3.4.2.4 Baseline Air Quality

Representative background air monitoring data for the 171 ARW for the period 2008-2012 are shown in Table 3.4.2-3. The closest monitoring stations to Pittsburgh IAP include three monitoring stations in Pittsburgh itself.
As shown in Table 3.4.2-3, the area has experienced several O₃ exceedances during the recent 5-year period. The Pittsburgh area also experienced exceedances of the 24-hour PM₂.₅ standard. The data show that the area did not experience violations of other NAAQS.

Table 3.4.2-3. Ambient Air Monitoring Data for the Pittsburgh Area

<table>
<thead>
<tr>
<th>Air Quality Indicator</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ozone (O₃)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 8-hour value (ppm)</td>
<td>0.08</td>
<td>0.071</td>
<td>0.084</td>
<td>0.086</td>
<td>0.086</td>
</tr>
<tr>
<td>Days above federal standard (0.075 ppm)</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Particulate matter less than or equal to 2.5 microns in diameter (PM₂.₅)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 24-hour value (µg/m³)</td>
<td>39.7</td>
<td>33.3</td>
<td>41.5</td>
<td>32.1</td>
<td>23.1</td>
</tr>
<tr>
<td>Days above federal standard (35 µg/m³)</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Annual Average value (µg/m³)</td>
<td>12.9</td>
<td>11.6</td>
<td>12.2</td>
<td>11.1</td>
<td>10.1</td>
</tr>
<tr>
<td>Particulate matter less than or equal to 10 microns in diameter (PM₁₀)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 24-hour value (µg/m³)</td>
<td>58</td>
<td>53</td>
<td>58</td>
<td>55</td>
<td>54</td>
</tr>
<tr>
<td>Days above federal standard (150 µg/m³)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 1-hour value (ppm)</td>
<td>1.8</td>
<td>1.9</td>
<td>1.8</td>
<td>1.9</td>
<td>4.6</td>
</tr>
<tr>
<td>Days above federal standard (9 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peak 8-hour value (ppm)</td>
<td>1.3</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Days above federal standard (35 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO₂)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 1-hour value (ppm)</td>
<td>0.086</td>
<td>0.059</td>
<td>0.066</td>
<td>0.069</td>
<td>0.047</td>
</tr>
<tr>
<td>98th Percentile (ppm)</td>
<td>0.066</td>
<td>0.049</td>
<td>0.051</td>
<td>0.058</td>
<td>0.043</td>
</tr>
<tr>
<td>Days above federal standard (0.100 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO₂)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak 1-hour value (ppm)</td>
<td>0.106</td>
<td>0.087</td>
<td>0.057</td>
<td>0.037</td>
<td>0.034</td>
</tr>
<tr>
<td>99th Percentile (ppm)</td>
<td>0.062</td>
<td>0.061</td>
<td>0.035</td>
<td>0.023</td>
<td>0.022</td>
</tr>
<tr>
<td>Days above federal standard (0.075 ppm)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Peak 24-hour value (ppm)</td>
<td>0.019</td>
<td>0.020</td>
<td>0.021</td>
<td>0.013</td>
<td>0.010</td>
</tr>
</tbody>
</table>

Notes: 1. The federal 1-hour SO₂ standard was adopted in 2010.

µg/m³ = micrograms per cubic meter; NA = data not available; ppm = parts per million

Source: USEPA 2013a.

3.4.2.5 171st Air Refueling Wing Emissions

The 171 ARW currently flies and maintains 16 KC-135 refueler aircraft to support its air refueling mission. The primary support operations performed at the 171 ARW include aircraft fueling, aircraft deicing, aircraft maintenance, aircraft support equipment maintenance, ground vehicle maintenance, fueling of ground vehicles, and facilities maintenance. These operations involve activities such as corrosion control, non-destructive inspection, fuel cell maintenance, engine maintenance, hydraulics, and wheel and tire maintenance.

Emissions for the 171 ARW have been quantified in the Final 2011 Air Emissions Inventory (171 ARW 2013b). The inventory evaluated the emissions from the 171 ARW to determine its status under the Title V Federal Operating Permits program. Based on the major source
thresholds for the area, the major source thresholds are 50 tpy for VOCs, 100 tpy for all other criteria pollutants, and less than 10 tpy of any single HAP or 25 tpy of any combination of HAPs.

The 171 ARW does not currently hold a Title V Operating Permit, but operates under a Minor Source Operating Permit (No. 0287) issued by the Allegheny County Health Department. The *2011 Air Emissions Inventory* demonstrates that total base-wide potential emissions from stationary sources are below the major source thresholds.

Stationary source emissions at the 171 ARW include emissions from combustion sources, chemical use, and small arms fire. Mobile source emissions include emissions from aircraft operations (take-offs and landings), AGE, ground vehicle operations, and maintenance aircraft operations performed with the engines still mounted on the aircraft (engine run-ups and trim checks). Emissions from aircraft operations at the 171 ARW installation considered all based and transient aircraft. Aircraft emissions were calculated for all flight activities below the default mixing height (3,000 feet AGL). Baseline emissions also include stationary sources, and emissions associated with vehicle trips associated with existing personnel and dependents. These emissions, combined with those from the other mobile sources, account for the majority of the emissions from the installation.

To provide a baseline for evaluating the net emissions increases/decreases associated with Alternative #4, emissions from the KC-135 aircraft operations, aircraft refueling, KC-135 engine testing, KC-135-related AGE, and POVs associated with KC-135 flight operations were evaluated. Emissions from the KC-135 aircraft operations were calculated based on 2012 aircraft operations identified in Table 2.3-19, utilizing site-specific flight profiles to calculate aircraft operations below a default mixing height of 3,000 feet AGL. A discussion of the methodology for quantifying emissions is provided in Appendix A, Section A.2.3. Emissions for the baseline emissions associated with baseline operations of the KC-135 aircraft are provided in Table 3.4.2-4.

<table>
<thead>
<tr>
<th>Emission Source</th>
<th>VOCs</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 Baseline Aircraft Operations</td>
<td>3.42</td>
<td>50.69</td>
<td>67.79</td>
<td>6.14</td>
<td>0.33</td>
<td>0.33</td>
<td>17,082</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.01</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2,395</td>
</tr>
<tr>
<td>Engine Testing</td>
<td>0.11</td>
<td>1.67</td>
<td>0.46</td>
<td>0.07</td>
<td>0.01</td>
<td>0.01</td>
<td>198</td>
</tr>
<tr>
<td>POVs</td>
<td>4.27</td>
<td>65.56</td>
<td>3.37</td>
<td>0.05</td>
<td>0.14</td>
<td>0.06</td>
<td>2,270</td>
</tr>
<tr>
<td>Total Baseline Emissions</td>
<td>7.81</td>
<td>117.93</td>
<td>71.72</td>
<td>6.26</td>
<td>0.48</td>
<td>0.40</td>
<td>21,946</td>
</tr>
</tbody>
</table>

Notes: Numbers may not match precisely due to rounding.

CO = carbon monoxide; CO2e = carbon dioxide equivalent; NOx = oxides of nitrogen; PM10 = particulate matter less than or equal to 10 microns in diameter; PM2.5 = particulate matter less than or equal to 2.5 microns in diameter; SO2 = sulfur dioxide; VOC = volatile organic compound

Source: 171 ARW 2013b.
3.4.3 Safety

This section provides information on both ground and flight safety. Ground safety includes discussions of fire/crash response capabilities, APZs/RPZs, explosive safety, and AT/FP. Flight safety includes discussions on flight safety procedures, aircraft mishaps, BASH, and fuel jettison requirements. The affected environment includes the airfield and local airspace surrounding Pittsburgh IAP.

3.4.3.1 Ground Safety

Fire/Crash Response

Day-to-day operations and maintenance activities conducted by the 171 ARW are performed in accordance with applicable USAF safety regulations, published USAF Technical Orders, and standards prescribed by AFOSH requirements. Under previous NEPA analysis (171 ARW 2012a), the 171 ARW plans to move the Fire/Crash Rescue Station to Building 304. The Fire/Crash Rescue Station currently provides fire, crash, rescue, and structural fire protection for the installation and its aircraft. The 171 ARW also has arrangements with the Allegheny County Fire Department; Ohio Valley Fire Defense Mutual Aid Association; and the PADEP Emergency Response Team, Greater Pittsburgh area for mutual aid in fire protection, first responder and lifesaving services, and hazardous materials incident response (171 ARW 2009).

Accident Potential Zone/Runway Protection Zone

Development restrictions associated with RPZs are intended to preclude incompatible land use activities from being established in these areas. The city of Pittsburgh, Pennsylvania utilizes the FAA’s airport land use compatibility guidelines, and as such, the RPZs have allowed development to be compatible with airport operations. Details of development and land use in the Pittsburgh IAP vicinity are included in Section 3.4.7, Land Use.

Explosive Safety

The 171 ARW uses a small range of munitions required for performance of their mission. The existing munitions storage capabilities on Pittsburgh ANGS meet the requirement for small arms deployment/training ammunition and other munitions required by the 171 ARW. Three munitions storage areas (Buildings 515, 516, and 517) have quantity-distance (QD) safety zones (171 ARW 2012a).
Anti-Terrorism/Force Protection

Many of the 117 ARW military facilities at Pittsburgh ANGS were constructed before AT/FP considerations became a critical concern. Thus, under current conditions, many facilities do not comply with all current AT/FP standards. However, as new construction occurs and as facilities are modified, the PA ANG would incorporate these standards to the maximum extent practicable.

3.4.3.2 Flight Safety

Flight Safety Procedures

Aircraft flight operations from Pittsburgh ANGS are governed by standard flight rules. Specific safety requirements are contained in standard operating procedures that must be followed by all aircrews operating from the airfield (AFI 11-2KC-135V3, Flying Operations, C/KC-135 Operations Procedures, 2010) to ensure flight safety. While having aircraft in close proximity during air refueling is inherently dangerous, refueling mishaps are rare. Emergency separation procedures are established and practiced by both tanker and receiver aircrews.

Aircraft Mishaps

KC-135 aircraft (all models) have flown more than 14,750,000 hours since the aircraft entered the USAF inventory in 1957. Over that period, 83 Class A mishaps have occurred and 64 aircraft have been destroyed (specific statistics for mishaps during refueling are not recorded). This results in a Class A mishap rate of 0.56 per 100,000 flight-hours, and an aircraft destroyed rate of 0.43 per 100,000 flight hours (AFSEC 2012). The 171 ARW recently completed their 53rd consecutive year and nearly 230,000 flying hours without a Class-A mishap (Pittsburgh ANGS 2013).

Bird/Wildlife Aircraft Strike Hazard

The USAF BASH Team maintains a database that documents all reported bird/wildlife-aircraft strikes. Historic information across the USAF for the past 40 years indicates that 39 USAF aircraft have been destroyed and 33 fatalities have occurred from bird/wildlife aircraft strikes, with the last Class A mishap occurring in 2010 (AFSEC 2013).

The 171 ARW has an on-going BASH program through which information and assistance is freely shared between airfield users, the Pittsburgh IAP staff, and the local air traffic controllers. Most strikes occur in August and September with small birds such as blackbirds, swallows, or larks. Serious BASH-related accidents within the immediate Pittsburgh IAP area are rare and
have never resulted in a Class A mishap (Pittsburgh ANGS 2013). The 171 ARW has recorded 69 minor BASH incidents in the airfield area from 2005 to 2012, with an average of fewer than nine bird strikes per year (Pittsburgh ANGS 2013).

Fuel Jettison

For use in emergency situations, the KC-135 aircraft have the capability to jettison fuel and reduce aircraft gross weight for flight safety. Airbases must establish jettison areas and procedures to minimize the impact of fuel jettisoning. Ideally, jettison areas are established at altitudes above 20,000 feet AGL, off published federal airways, avoiding urban areas, agricultural regions, and water supply sources. AFIs cover the fuel jettison procedures, and local operating policies define specific fuel ejection areas for each base. In accordance with the AFI, Pittsburgh ANGS has established local procedures for gross weight adjustments but fuel jettisoning is an emergency procedure only and is not practiced (Pittsburgh ANGS 2013).

3.4.4 Soils and Water

3.4.4.1 Soils

This area of Pennsylvania is within the Appalachian Highlands on a dissected plateau that is underlain by sedimentary rocks. There are narrow, level valleys and narrow, sloping ridgetops separated by long, steep to very steep side slopes (USDA 2006). The 171 ARW installation is surrounded by steep slopes that can exceed 25 percent in some areas. The developed areas within the installation consist of a graded hilltop leveled to accommodate aircraft facilities and a series of terraces to maximize buildable land. Relief ranges from 135 to 140 feet MSL (171 ARW 2012a).

The NRCS Soil Survey for Allegheny County, Pennsylvania identifies the following eight individual soil types at the installation:

Atkins silt loam: This soil is typically found on floodplains from recent alluvium derived from sandstone and shale. The rating class for building site development is considered very limited due to high flooding potential and depth to saturated zone (NRCS 2013c). Approximately 5 percent of the installation is composed of this soil type.

Ernest silt loam, 2 to 8 percent slopes: This soil is typically found on hillslopes from colluvium derived from shale and siltstone. The rating class for building site development is considered somewhat limited due to steep slopes and depth to saturated zone. In addition, this soil type is designated as Farmland of Statewide Importance (NRCS 2013c). Approximately 3 percent of the installation is composed of this soil type.
Gilpin-Upshur complex, very steep: This soil is typically found on hillslopes from residuum weathered from sandstone, siltstone, and shale. The rating class for building site development is considered very limited due to steep slope and depth to hard bedrock (NRCS 2013c). Approximately 10 percent of the installation is composed of this soil type.

Gilpin silt loam: This soil is typically found on hills from residuum weathered from sandstone, siltstone, and shale. The rating class for building site development is considered very limited due to steep slope and depth to hard bedrock (NRCS 2013c). Approximately 3 percent of the installation is composed of this soil type.

Gilpin, Weikert, and Culleoka shaly silt loams, very steep: This soil is typically found on hillslopes from residuum weathered from sandstone, siltstone, and shale. The rating class for building site development is considered very limited due to steep slope and depth to hard bedrock (NRCS 2013c). Approximately 3 percent of the installation is composed of this soil type.

Urban land-Culleoka complex, gently sloping and moderately steep: This soil consists of strongly intermingled Urban land and Culleoka soil. Urban land consists of soil from cut/fill sites used for buildings, paved roads, parking lots, and other areas of urban development. The rating class for building site development is not rated for this soil type (NRCS 2013c). Approximately 56 percent of the installation is composed of this soil type.

Wharton silt loam: This soil is typically found on hills from residuum weathered from siltstone and shale. The rating class for building site development is considered somewhat limited to very limited due to shrink-well potential, slope, and depth to saturated zone. In addition, this soil type is designated as Prime Farmland or Farmland of Statewide Importance depending upon slope (NRCS 2013c). Approximately 21 percent of the installation is composed of this soil type.

3.4.4.2 Surface Water

Surface water features within the vicinity of the 171 ARW installation include McClarens Run to the southwest, a tributary of Montour Run, that ultimately discharges into the Ohio River. Surface water within the installation primarily consists of a series of man-made ditches, storm sewers, and drainage swales (Figure 3.4.4-1). Drainage of the developed area is typified by overland flow to storm drain inlets and basins connected by a network of underground pipes (171 ARW 2010a).
Figure 3.4.4-1. Surface Water Features and Wetlands in the Vicinity of Pittsburgh ANGS

There are 15 stormwater outfalls on the 171 ARW installation, including an OWS outfall. Nine drainage basins receive runoff from industrial areas on the installation: SDO-001, -002, -003, -004, -006, -007, -010, -014, and -015. All outfalls ultimately discharge to McClarens Run. The nine outfalls associated with industrial activity are regulated under the Pennsylvania General Permit for Discharges of Stormwater Associated with Industrial Activity (PA-R806184). The permit is administered by the PA DEP under the auspice of the USEPA (171 ARW 2010a).

3.4.4.3 Groundwater

Groundwater in this area is part of the Appalachian Plateaus aquifers. The principal coal-bearing formations are Pennsylvanian in age and consist of sequences of sandstone, shale, conglomerate, clay, coal, and minor limestone. The sandstones are the most productive aquifers, although coal beds and limestones also yield water (USGS 1995c). Historical large-scale coal mining has led to pollution issues in both groundwater and surface water in many areas by sulfur and iron exposure (PADEP 2004).

Based on topography of the installation, the direction of regional groundwater flow is to the southwest, toward McClarens Run. Site-specific groundwater flow may fluctuate based on local geology, local well use, and seasonal variations (Department of Military and Veterans Affairs 2007). The major source of groundwater near the installation is alluvial deposits in floodplains, particularly along the Allegheny and Ohio rivers (171 ARW 2012a).

3.4.4.4 Floodplains

Per the FEMA Flood Insurance Rate Map for Allegheny County, Pennsylvania, Panel 302 (Map Number 42003C0302E, Effective October 4, 1995), the 171 ARW installation is located within an area designated as Zone X. The designation Zone X are areas determined to be outside the 0.2 percent annual chance flood (500 year flood), indicating areas of minimal flooding (FEMA 1995).

3.4.5 Biological Resources

3.4.5.1 Vegetation

The Pittsburgh IAP occurs within the Eastern Broadleaf Forest (Oceanic) Province. Vegetation in this region typically is characterized by a winter deciduous forest dominated by tall broadleaf trees (Bailey 1995). The majority of the 171 ARW installation is developed or actively landscaped, with approximately 15 percent containing natural vegetation. Natural vegetation is comprised of fragmented stands of deciduous forest along the southwest portion of the installation which consist of primarily sugar maple (Acer saccharum), black cherry (Prunus serotina), American elm (Ulmus americana), shagbark hickory (Carya ovata), and box elder (Acer negundo). In addition, small areas of shrublands occur along the edge of the forest stands.
and are comprised of species such as blackberry (*Rubus* spp.), red-panicle dogwood (*Cornus racemosa*), and multiflora rose (*Rosa multiflora*) (171 ARW 2012a).

3.4.5.2 Wildlife

Due to the lack of substantial pockets of native vegetation, high noise levels, and human activities at and surrounding the airport, wildlife habitat is limited. As a result, the majority of wildlife present in the vicinity of the airport and the 171 ARW installation consists of species that are highly adapted to developed and disturbed areas. Pittsburgh ANGS is located within the Atlantic Flyway, one of four major North American corridors for migratory birds. The majority of the bird species found within Pittsburgh IAP or its vicinity are protected under the MBTA. Common bird species found within the vicinity of the airport include Ring-Billed Gull (*Larus delawarensis*), Canada Goose (*Branta canadensis*), American Crow (*Corvus brachyrhynchos*), European Starling (*Sturnus vulgaris*), Killdeer (*Charadrius wilsonia*) and Mourning Dove (*Zenaida macroura*). Other common wildlife species include white-tailed deer (*Odocoileus virginianus*), red fox (*Vulpes vulpes*), Eastern gray squirrel (*Sciurus carolinensis*), opossum (*Didelphis marsupialis*), eastern cottontail (*Sylvilagus floridanus*), raccoon (*Procyon lotor*), and woodchuck (*Marmota monax*) (171 ARW 2012a).

3.4.5.3 Special Status Species

No federally listed or candidate species are known to occur within the airport or on the 171 ARW installation. The potential for several federally listed species that have been observed in Allegheny County to occur within the vicinity of the airport exists; however, there is little to no habitat for these species within the airport or the installation (171 ARW 2012a). Several state listed species have been observed within Allegheny County and have the potential to occur on or within the vicinity of the installation; however, only one of these have been observed on the installation (Torrey’s Rush). Torrey’s Rush (*Juncus torrei*), a Pennsylvania threatened plant species, has been identified on the installation, in the area of the mitigation wetlands (see Wetland Section below). A list of these species can be found in Appendix E. There is no critical habitat located on the installation.

3.4.5.4 Wetlands

One palustrine emergent/scrub-shrub wetland occurs on the installation between the east and west aircraft parking aprons. This wetland was constructed as mitigation for the wetlands that were impacted during the construction of the east aircraft parking apron in the 1990s. This wetland is associated with headwaters of two unnamed tributaries to McClaren’s Run and are most likely jurisdictional wetlands (Figure 3.4.4-1) (171 ARW 2012a).
3.4.6 Cultural Resources

3.4.6.1 Archaeological Resources

A majority of the 171 ARW installation is developed with buildings and pavement. Approximately 1.2 acres in the southeast portion of the installation was determined to be relatively undisturbed. This area was intensively surveyed for cultural resources in 2011. No NRHP-eligible resources were located (171 ARW 2012b, McLearen 2011). The Pennsylvania SHPO concurred with these findings (see McLearen 2011 in Appendix B4).

3.4.6.2 Architectural Resources

All 25 architectural resources at the 171 ARW installation pre-dating the end of the Cold War era or constructed before 1990 were inventoried and evaluated for NRHP eligibility (171 ARW 2012b). None of the buildings were recommended as eligible to the NRHP.

3.4.6.3 Traditional Resources

The 171 ARW installation contains no known traditional resources; however, five federally-recognized Tribes that are historically, culturally, and linguistically affiliated with the area have been identified: Cayuga Nation of New York, Onondaga Nation of New York, Seneca Nation of Indians, Tonawanda Band of Seneca Indians of New York, and Tuscarora Nation of New York.

3.4.7 Land Use

The 171 ARW is located at Pittsburgh IAP, in Allegheny County, Pennsylvania. Two townships are immediately adjacent to the airport: Moon Township is north and east of the Airport, and Findlay Township is west and south of the airport. Independence Township (Beaver County), North Fayette Township, Robinson Township, and Coraopolis Township are located to the west, south, southeast, and northeast of the airport, respectively. Land uses surrounding the airport include a mixture of suburban and rural land uses including Recreation/Conservation, Commercial, Industrial, and Undeveloped (Allegheny County 2008). No houses, churches, schools or other sensitive noise receptors are located within areas exposed to DNL greater than 70 dB off-airport.

Zoning surrounding the airport generally supports compatible land use planning and provides for protection of the areas surrounding Pittsburgh IAP. Zoning codes define and establish airport hazard zones height limitations and land use restrictions within these zones. This zoning protects RPZs, details of which can be found in the Safety section of Appendix A, Section A.3.

Pittsburgh IAP exposes 128.6 acres, off-airport, to noise levels between 65 dB and 70 dB DNL. Figure 3.4.7-1 shows an overlay of the baseline noise contours onto a map displaying the existing land use in the vicinity of the airfield.
Figure 3.4.7-1. DNL Noise Contours and Land Use at Pittsburgh IAP

3.4.8 Infrastructure and Transportation

3.4.8.1 Potable Water System

Currently, Findlay Township Water Authority is acting as a back-up source for potable water for the 171 ARW installation due to a break in the line from the Moon Township Water Authority, which is typically the primary source of potable water for the installation. A new waterline from Moon Township is in the process of design for construction. Findlay Township buys water from Moon Township, Robinson Township, and other sources (Tower 2013a). Potable water in the area is supplied primarily from four regional groundwater aquifer wells. Moon Township pumps approximately 1.18 trillion gallons of water per year to its customers (Moon Township no date). The groundwater supply is supplemented with treated surface water from the Ohio River. In FY 2012, 4.7 million gallons of potable water were supplied to the 171 ARW installation (171 ARW 2013c).

3.4.8.2 Wastewater

The 171 ARW installation generates wastewater from sanitary, stormwater, and industrial processes, including oil/water separator discharge, wash rack discharge, floor wash-down, latrines, sinks, and showers. Wastewater generated within the 171 ARW installation is conveyed into the municipal sewage system, operated by Moon Township Municipal Authority. The Authority’s Leonard L. Nary Wastewater Treatment plant treats water from Moon, Findlay, North Fayette, and Robinson Townships, as well as the installation. The facility has a capacity of a 6.2 million gallons per day (171 ARW 2012a).

3.4.8.3 Stormwater

A high percentage of the active administrative and industrial areas of the installation are paved or roofed, resulting in high runoff rates during precipitation events. As described in the 171 ARW SWPPP (2010), the 171 ARW installation has a stormwater drainage conveyance system typified by overland flow to catch basins, inlets, surface drains, underground pipes, culverts, ditches, and swales that discharge to receiving waters (see Section 3.4.4, Soils and Water) or other municipal separate storm sewer systems. The stormwater drainage system has been designed to safely collect and transport surface water runoff from storm events to prevent flooding within the installation and is a separate system from the wastewater (sewage) system.

3.4.8.4 Electrical and Natural Gas Systems

Electricity is supplied to the 171 ARW installation by Duquesne Light Company via three single phase 667 kilovolt ampere transformers and underground power lines. Natural gas is supplied by UGI Energy Services from a single 4-inch steel line. Electricity consumption for FY 2012 at the
171 ARW installation was 5,751 megawatt hours. Natural gas consumption for FY 2012 at the 171 ARW installation was 26,880 thousand cubic feet (171 ARW 2013c).

3.4.8.5 Solid Waste Management

Municipal solid waste at the 171 ARW installation is managed in accordance with the 171 ARW Solid Waste Management Plan/Qualified Recycling Program (171 ARW 2010b) and guidelines specified in AFI 32-7042, *Waste Management* (2009). This AFI incorporates, by reference, the federal standard for solid waste regulations contained within 40 CFR, Subtitle D, *Non-hazardous Waste*, and other applicable federal regulations, AFIs, and DoD Directives. In general, AFI 32-7042 establishes the requirement for installations to have a solid waste management program that incorporates the following: a solid waste management plan; procedures for recycling, diversion, handling, storage, collection, and disposal of solid waste; recordkeeping and reporting; and pollution prevention.

The 171 ARW installation generates solid waste in the form of office trash, non-hazardous industrial wastes, normal municipal waste, and construction debris. These nonhazardous solid wastes are collected in dumpsters located throughout the 171 ARW installation and transported to the Allied Waste Imperial Landfill.

3.4.8.6 Transportation

The 171 ARW installation is located approximately 14 miles northwest of downtown Pittsburgh and is easily accessible from several major highways. I-79 runs in a north-south direction approximately 4 miles east of the installation. I-376/SR 60 runs in a northwest-southeast direction through the Pittsburgh IAP property and provides direct access to the airport. In addition, U.S. Highway 30, a principal arterial that runs east-west south of the airport and then takes a turn to the north running parallel to the airport on the western side, also provides regional access. McClaren Road exit off of I-376 provides direct access to the main entrance for the 171 ARW installation.

3.4.9 Hazardous Materials and Waste

3.4.9.1 Hazardous Materials

Hazardous materials are used at the 171 ARW installation for aircraft and vehicle operations support and maintenance. Types of hazardous substances found on the 171 ARW installation include hydraulic fluid, waste oils, recovered fuels, spent cleaners, strippers, solvents, flammable and combustible liquids, acids, aerosols, batteries, corrosives, and paints (171 ARW 2009).

Nineteen ASTs occur on the 171 ARW installation and are used to store diesel, jet fuel, motor gasoline, aqueous film forming foam, potassium acetate, developer, dye penetrant, emulsifier,
and rinse solution. There is one 1,000-gallon UST on the installation located in the POL yard used to store reclaimed JP-8 (171 ARW 2012a).

Toxic Substances

Regulated toxic substances typically associated with buildings and facilities include asbestos, LBP, and PCBs. An asbestos survey was performed at the 171 ARW installation in 1991. ACMs identified in the insulation, floor tiles, and mastic were found in Buildings/Hangars 102, 103, 107, 110, 201, 206, 300, 301/302, 304 (171 ARW 2012a).

A LBP survey has not been conducted at the 171 ARW installation. Any buildings on the installation constructed prior to 1978 are presumed to contain LBP and would be tested for LBP prior to demolition or renovation (171 ARW 2012a).

The 171 ARW does not maintain, operate, or own any PCB equipment or PCB-contaminated equipment and the subject property is considered PCB-free (171 ARW 2008).

3.4.9.2 Hazardous Waste Management

The 171 ARW Oil and Hazardous Substances Spill Prevention and Response Plan contains the governing regulations for spill prevention and describes specific protocols for preventing and responding to releases, accidents, and spills involving oils and hazardous materials (171 ARW 2012c). The 171 ARW Hazardous Waste Management Plan outlines procedures for controlling and managing hazardous wastes from the point where they are generated until they are disposed. In addition, it includes guidance for compliance with all federal, state, and local regulations pertaining to hazardous waste (171 ARW 2009).

The 171 ARW is regulated as a Large Quantity Generator of hazardous waste and maintains USEPA Identification Number PAD114942832. A hazardous waste generation point is where the waste is initially created or generated. An SAP is an area where hazardous waste is initially accumulated at the point of generation and is under the control of the SAP manager. Hazardous wastes initially accumulated at a SAP are accumulated in appropriate containers before being transferred to the installation CAP. There are 20 SAPs (where a waste is initially accumulated) identified at the installation in Buildings/Hangars 103, 107, 113, 121, 213, 301, 302, 304, 307, 308, 310, 316, 320, 403, 404, and 520. The installation CAP is located in Building 501/502 (171 ARW 2009, Tower 2013b).

OWSs are used to separate oils, fuels, sand, and grease from wastewater and to prevent contaminants from entering the sanitary sewer and stormwater drainage systems. Fifteen OWSs are located on the 171 ARW installation. These OWSs primarily receive discharge from floor drains in maintenance areas (171 ARW 2012c).
3.4.9.3 Environmental Restoration Program

There are three closed ERP sites and two closed Areas of Concern (AOCs) at the 171 ARW installation. Table 3.4.9-1 provides details for each of these sites and Figure 3.4.9-1 shows the locations.

Table 3.4.9-1. ERP Sites within the 171 ARW Installation

<table>
<thead>
<tr>
<th>ERP/AOC Site</th>
<th>Materials of Concern</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>This site was a waste oil tank where JP-4 fuel, hydraulic, and engine oils were released from a UST. Soil and groundwater sampling performed at this site did not reveal contaminants of concern above PADEP guidelines.</td>
<td>Closed</td>
</tr>
<tr>
<td>2</td>
<td>This site was a UST for a gasoline for a motor pool area. Soil and groundwater sampling performed at this site revealed gasoline-related soil contamination at low levels. Results from a risk assessment of this area showed that contaminated soils did not pose a threat to human life or the environment.</td>
<td>Closed</td>
</tr>
<tr>
<td>7</td>
<td>This site was a POL storage area and fuel hydrant system for JP-4 fuel. Soil and groundwater sampling performed at this site did not reveal contaminants of concern above PADEP guidelines.</td>
<td>Closed</td>
</tr>
<tr>
<td>AOC A</td>
<td>This site is referred to as the Cabbage Patch Area and was used for dumping fuels, POLs, and solvents. Soil sampling results at this location did not identify contaminants in exceedance of regulatory criteria or posing a threat to human health or the environment. No further action was recommended.</td>
<td>Closed</td>
</tr>
<tr>
<td>AOC B</td>
<td>This site is referred to as the Embankment Area and was used for dumping petroleum distillate, tetrachloroethylene, methyl ethyl ketone, and other liquid wastes. Soil sampling results at this location did not identify contaminants in exceedance of regulatory criteria or posing a threat to human health or the environment. No further action was recommended.</td>
<td>Closed</td>
</tr>
</tbody>
</table>

Notes: ERP = Environmental Restoration Program; AOC = Area of Concern; UST = underground storage tank; PADEP = Pennsylvania Department of Environmental Protection; POL = petroleum, oil, and lubricant

Source: 171 ARW 2012a.
Figure 3.4.9-1. ERP Sites at the 171 ARW Installation, Pittsburgh IAP
3.4.10 Socioeconomics

3.4.10.1 Population and Employment

Population

Pittsburgh ANGS is located approximately 12 miles northwest of Pittsburgh, Pennsylvania in Allegheny County. The airport ROI includes portions of Moon and Finlay Townships. Current population data and estimates for the state of Pennsylvania, Allegheny County, and Findlay and Moon Townships are provided in Table 3.4.10-1. From 1990 to 2010, Allegheny County’s population decreased by 113,101, approximately 9 percent (USCB 1990d, 2000d, 2010e).

<table>
<thead>
<tr>
<th>Area</th>
<th>1990 Census</th>
<th>2000 Census</th>
<th>2010 Census</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pennsylvania</td>
<td>11,881,643</td>
<td>12,281,054</td>
<td>12,702,379</td>
</tr>
<tr>
<td>Allegheny County</td>
<td>1,336,449</td>
<td>1,281,666</td>
<td>1,223,348</td>
</tr>
<tr>
<td>Findlay Township</td>
<td>4,500</td>
<td>5,145</td>
<td>5,060</td>
</tr>
<tr>
<td>Moon Township</td>
<td>19,631</td>
<td>22,290</td>
<td>24,185</td>
</tr>
</tbody>
</table>

The 171 ARW currently supports a workforce authorization of 1,306, including 393 full-time and 913 part-time personnel (see Table 2.3-24).

Employment and Earnings

Table 3.4.10-2 presents total labor force and employment rates for Pennsylvania, Allegheny County, and Findlay and Moon Townships. Based on 2007-2011 ACS 5-year estimates, there were 644,951 persons in the labor force (able to work) and 598,554 employed within Allegheny County, resulting in an unemployment rate of approximately 7 percent. Top employment industries in Allegheny County include 1) educational services, and health care and social assistance; 2) professional, scientific, and management, and administrative and waste management services; and 3) retail (USCB 2011e). Principal employers include UPMC Presbyterian Shadyside, University of Pittsburgh, the federal government, Giant Eagle Inc., and PNC Bank NA (Center for Workforce Information and Analysis 2012).

<table>
<thead>
<tr>
<th>Area</th>
<th>Labor Force</th>
<th>Employed</th>
<th>Unemployed</th>
<th>Unemployment Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pennsylvania</td>
<td>6,456,527</td>
<td>5,947,873</td>
<td>508,654</td>
<td>7.9</td>
</tr>
<tr>
<td>Allegheny County</td>
<td>644,951</td>
<td>598,554</td>
<td>46,397</td>
<td>7.2</td>
</tr>
<tr>
<td>Findlay Township</td>
<td>2,879</td>
<td>2,598</td>
<td>281</td>
<td>9.8</td>
</tr>
<tr>
<td>Moon Township</td>
<td>13,199</td>
<td>12,532</td>
<td>667</td>
<td>5.1</td>
</tr>
</tbody>
</table>

Note: Employment numbers include individuals in the Armed Forces.
Source: USCB 2011e.
3.4.10.2 Schools

According to the 2011 ACS enrollment 5-year estimates, 179,072 students were enrolled in schools from Kindergarten through Grade 12 in Allegheny County (USCB 2011e).

3.4.10.3 Housing

In 2010, the number of housing units in Allegheny County was 589,201, with a vacancy rate of approximately 9 percent (USCB 2010e).

3.4.11 Environmental Justice and the Protection of Children

3.4.11.1 Minority and Low-Income Populations

Table 3.4.11-1 displays the minority, low-income, and children under age 18 within the state of Pennsylvania, as well as the county and townships within the vicinity of Pittsburgh IAP. Approximately 19 percent of the population of Allegheny County is composed of minorities (i.e., an ethnic or racial group with a distinctive presence in a community), compared to approximately 18 percent for the state of Pennsylvania. The percentage of population living below the poverty level for the state of Pennsylvania (approximately 13 percent) is slightly higher than Allegheny County (approximately 12 percent) (USCB 2010e).

<table>
<thead>
<tr>
<th>Geographic Area</th>
<th>Total Population</th>
<th>Minority Population</th>
<th>Percent Minority</th>
<th>Low-Income Population</th>
<th>Percent Low-Income</th>
<th>Children Under Age 18</th>
<th>Percent Children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pennsylvania</td>
<td>12,702,379</td>
<td>2,296,091</td>
<td>18.1</td>
<td>1,600,500</td>
<td>12.6</td>
<td>2,792,155</td>
<td>22.0</td>
</tr>
<tr>
<td>Alleghany County</td>
<td>1,223,348</td>
<td>226,053</td>
<td>18.5</td>
<td>151,695</td>
<td>12.4</td>
<td>241,663</td>
<td>19.8</td>
</tr>
<tr>
<td>Findlay Township</td>
<td>5,060</td>
<td>198</td>
<td>3.9</td>
<td>202</td>
<td>4.0</td>
<td>1,139</td>
<td>22.5</td>
</tr>
<tr>
<td>Moon Township</td>
<td>24,185</td>
<td>2,473</td>
<td>10.2</td>
<td>2,080</td>
<td>8.6</td>
<td>5,169</td>
<td>21.4</td>
</tr>
</tbody>
</table>

Note: 1. Total population, minority population, and number of children under the age of 18 were obtained from the 2010 census data. Low income population numbers are from the 2007-2011 American Community Survey 5-Year Estimates.
2. The percentage of low-income persons is calculated as a percentage of all persons for whom the Bureau of the Census determines poverty status, which is generally a lower number than the total population because it excludes institutionalized persons, person in military group quarters and college dormitories, and unrelated individuals under 15 years old.

Source: USCB 2010e, 2011f.

Table 3.4.11-2 displays the total population, total minority population, percentage minority, total low-income population, and low-income percentages for the areas in the vicinity of Pittsburgh IAP within the baseline DNL greater than 65 dB.
Table 3.4.11-2. Population within Baseline Noise Contours, Pittsburgh ANGS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>65-70</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>70-75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>75-80</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>80-85</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note:
1. Total population, minority population, and number of children under the age of 18 were obtained from the 2010 census data. Low income population numbers are from the 2007-2011 ACS 5-Year Estimates.
2. The percentage of low-income persons is calculated as a percentage of all persons for whom the USCB determines poverty status, which is generally a lower number than the total population because it excludes institutionalized persons, persons in military group quarters and college dormitories, and unrelated individuals under 15 years old.

Source: USCB 2010f, 2011f.

In the area surrounding Pittsburgh IAP, approximately 12 people were estimated to be affected by baseline DNL between 65 dB and 70 dB. Out of that total, none are considered to be minorities or low-income populations.

3.4.11.2 Protection of Children

In 2010, the number of children under the age of 18 living in Allegheny County was approximately 241,633 (19.8 percent of the population). The state of Pennsylvania has a slightly higher percentage population of children compared to the county (22 percent). There are no on-installation housing or facilities for children located at the 171 ARW installation. Currently, there are no Kindergarten through Grade 12 off-installation schools that are exposed to aircraft DNL of 65 dB or above.
3.5 **RICKENBACKER AIR NATIONAL GUARD STATION**

Rickenbacker ANGS, home of the 121 ARW of the OH ANG, is located approximately 12 miles southeast of downtown Columbus, Ohio in Franklin County. The 121 ARW installation is situated on the west side of Rickenbacker IAP, an international airport operated by the CRAA.

3.5.1 **Noise**

To evaluate noise impacts in the vicinity of a military installation located within a commercial airport with a published FAR Part 150 Airport Noise Compatibility Study, the USAF allows for use of the FAA’s INM to generate DNL noise contours. The CRAA under the FAA uses the INM computer model for generating noise contours and for Rickenbacker IAP, the FAA’s INM was used. For more detailed information on the noise modeling methods see Appendix A, Section A.1.2.

3.5.1.1 **Baseline Operations**

In August 2007, the CRAA approved a Noise Compatibility Program Update as part of the FAA’s FAR Part 150 Noise Compatibility Program for Rickenbacker IAP based on operational data from a 12-month period ending April 2005. The study used the standard FAA INM program to establish noise contours based on those operations and is the FAA-approved and public document for the noise compatibility program currently in affect for the airport.

Based on aircraft operations data validated in February 2013 (FAA 2012a, 121 ARW 2013a), approximately 39,436 total aircraft operations occurred at Rickenbacker IAP during 2012; of those, the 121 ARW flew a total of 6,445 airfield operations with approximately 3 percent at night (approximately 16 percent of total operations at the airfield). These numbers were validated by the 121 ARW and Rickenbacker ATADs (FAA tower) report and are used as the basis for determining airfield operations for the Proposed Action (FAA 2012a, 121 ARW 2013a).

The current FAR Part 150 data identified 67,160 total aircraft operations that occurred at Rickenbacker IAP during the 12-month period ending April 2005. Per the request of the CRAA, the current approved Final FAR Part 150 Noise Compatibility Program Update August 2007 for Rickenbacker IAP is used as the baseline for this analysis (Gwiner 2013). The baseline aircraft operations at the airport used for this analysis differs from the current 2012 aircraft operations due to changes to airfield use by AirNet Systems Cargo with significantly reduced activity, along with reductions in general aviation and other cargo aircraft (CRAA 2007).

Table 3.5.1-1 summarizes the frequency of aircraft operations for Rickenbacker IAP based on the 2007 published FAR Part 150 Study. An aircraft operation is counted each time an aircraft
departs from the runway and each time they approach the runway. The majority of aircraft traffic includes jet cargo, charter aircraft along with based ANG KC-135, C-130, and general aviation aircraft. Although the number of aircraft operations at an airfield varies from day to day, for Rickenbacker IAP, operations are calculated for an AAD, meaning that yearly operations are averaged across all 365 days of the year. Table 3.5.1-1 reflects a total of approximately 184 aircraft operations on an AAD (67,160 divided by 365 days). Approximately 40 percent of the total operations occur during environmental night (10:00 p.m. through 7:00 a.m.).

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>DEPARTURES</th>
<th>ARRIVALS</th>
<th>TOTAL</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night</td>
<td>Day</td>
<td>Night</td>
</tr>
<tr>
<td>KC-135</td>
<td>6,570</td>
<td>0</td>
<td>6,205</td>
<td>365</td>
</tr>
<tr>
<td>Other Aircraft</td>
<td>13,870</td>
<td>13,140</td>
<td>13,505</td>
<td>13,505</td>
</tr>
<tr>
<td>Total</td>
<td>20,440</td>
<td>13,140</td>
<td>19,710</td>
<td>13,870</td>
</tr>
</tbody>
</table>

Notes: 1. Operations based on currently approved FAR Part 150 2. Includes Closed Patterns (which count as two airfield operations). 3. Night –Between 10 p.m. and 7 a.m. for environmental night. 4. Other based military, civilian aircraft and transient aircraft (multiple type aircraft) including: Boeing 737, 747, and Airbus 300.

Based on the 2007 baseline data, the 121 ARW KC-135 aircraft flew a total of 13,140 annual airfield operations, or an average of 36 airfield operations a day. Approximately 3 percent of the total KC-135 operations occur during environmental night. Approximately 20 percent of total operations at Rickenbacker are accomplished by the 121 ARW KC-135 aircraft.

3.5.1.2 Runway and Flight Profiles

Rickenbacker IAP aircraft use VFR departures, published Standard Instrument Departures, straight in approaches, overhead approaches, published IFR or radar patterns, and VFR closed patterns along with re-entry VFR patterns as the basic flight patterns for local arrival and departures and flight training. Detailed representative arrival, departure, and closed pattern flight tracks are found in Appendix C, Noise.

3.5.1.3 Existing Noise Environment

Noise contours developed for the baseline conditions at Rickenbacker IAP are shown in Figure 3.5.1-1. The acreage within each DNL contour on and off Rickenbacker IAP property is shown in Table 3.5.1-2. Approximately 2,359 acres are exposed to DNL greater than or equal to 65 dB. Detailed information on off-airport land use that lies within a DNL greater than 65 dB can be found in Section 3.5.7, Land Use.
Figure 3.5.1-1. Baseline DNL Noise Contours for Rickenbacker IAP

Table 3.5.1-2. Acres within Baseline Noise Contours, Rickenbacker IAP

<table>
<thead>
<tr>
<th>Noise Level (dB)</th>
<th>On Airport (acres)</th>
<th>Off Airport (acres)</th>
<th>Total (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>65-70</td>
<td>811</td>
<td>417</td>
<td>1,228</td>
</tr>
<tr>
<td>70-75</td>
<td>478</td>
<td>0</td>
<td>478</td>
</tr>
<tr>
<td>75-80</td>
<td>156</td>
<td>0</td>
<td>156</td>
</tr>
<tr>
<td>80-85</td>
<td>265</td>
<td>0</td>
<td>265</td>
</tr>
<tr>
<td>Greater than 85</td>
<td>232</td>
<td>0</td>
<td>232</td>
</tr>
<tr>
<td>Total</td>
<td>1,942</td>
<td>417</td>
<td>2,359</td>
</tr>
</tbody>
</table>

Notes: dB = decibel

Potential Hearing Loss

As shown in Table 3.5.1-2, there is no property off the Rickenbacker IAP that falls within the 80+ dB DNL noise contour; therefore, no potential hearing loss risk is currently associated with these areas.

3.5.1.4 Rickenbacker International Airport Noise Abatement Procedures

Rickenbacker IAP has published certain restrictions on flying activities that could adversely affect its neighbors in an effort to reduce noise impacts while maintaining safe operations. The restrictions are published on aeronautical charts and apply to both military and civilian aircraft. The restrictions include guidance for noise abatement procedures for the airfield including noise abatement procedures in effect from 11:00 p.m. until 7:00 a.m. for departures on Runways 23L and 23R with winds 10 knots or less and arrivals on Runways 05L and 05R with winds 10 knots or less. Aircraft are advised to contact airport operations for any other noise abatement instructions or more information (SkyVector 2013c).

3.5.1.5 Rickenbacker International Airport Noise Complaints Procedures

Rickenbacker IAP has an automated phone messaging system that the public can call to leave a complaint. The complaint is investigated and the individual receives a call back within 3 days. The airport planning office reviews the radar and listens to tower and ground communication to explore the noise complaints and provide a response. In 2012, Rickenbacker IAP received 17 noise complaints, 13 of which were found to be from military aircraft (primary transient military aircraft). Over the past five years, 156 noise complaints were submitted with 50 percent of those from military transient aircraft focused on the F-16, F-18, and other fighter or high performance transient aircraft (Gwiner 2013).

In addition, the 121 ARW noise complaint procedures include referring callers to the CRAA Noise Hotline at 614-239-4065. The caller may also submit noise complaints via email to the airport noise web site: noiseabatementoffice@columbusairports.com (121 ARW 2013c).
3.5.2 Air Quality

3.5.2.1 Regulatory Setting

Individual states are delegated the responsibility to regulate air quality in order to achieve or maintain air quality in attainment with these standards. The Ohio Environmental Protection Agency is the agency responsible for the regulation of air quality within the state of Ohio. The state of Ohio regulates air quality through the Ohio Administrative Code, Chapters 3745-14 through 3745-114. The state of Ohio has adopted the NAAQS, and has not adopted additional more stringent state standards. The NAAQS are summarized in Table 3.5.2-1.

Rickenbacker ANGS is located approximately 12 miles south of downtown Columbus, Ohio in Franklin County. The USEPA has classified the Columbus area, including all of Franklin County, as nonattainment for the O$_3$ and PM$_{2.5}$ NAAQS. The region is designated attainment/unclassified area for all other criteria pollutants. The Proposed Action is therefore subject to the requirements of Section 176(c) of the CAA, as articulated in the USEPA General Conformity Rule. Based on the nonattainment classification for the region, the de minimis emission thresholds for the General Conformity Rule for ozone precursors (NOx and VOCs) is 100 tpy, and the de minimis emission threshold for PM$_{2.5}$ emissions is also 100 tpy.

The USEPA recently promulgated a more stringent standard for lead, and has redesigned its monitoring program to address lead and identified airports for monitoring because aviation gas used in piston aircraft still contains lead. The project area is considered attainment/unclassified for lead, and lead is not used in aviation fuel used in the KC-135 or KC-46A aircraft.
Table 3.5.2-1. Ambient Air Quality Standards

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>National Standards a</th>
<th>Primary b,c</th>
<th>Secondary b,d</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₃</td>
<td>8-hour</td>
<td>0.075 ppm (147 µg/m³)</td>
<td>Same as primary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>CO</td>
<td>8-hour</td>
<td>9 ppm (10 mg/m³)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>35 ppm (40 mg/m³)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>NO₂</td>
<td>Annual</td>
<td>0.053 ppm (100 µg/m³)</td>
<td>Same as primary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>0.100 ppm (188 µg/m³)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>SO₂</td>
<td>24-hour</td>
<td>—</td>
<td>0.5 ppm (1,300 µg/m³)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-hour</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>0.075 ppm (189 µg/m³)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>Annual</td>
<td>—</td>
<td>Same as primary</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>150 µg/m³</td>
<td>Same as primary</td>
<td></td>
</tr>
<tr>
<td>PM₂.₅</td>
<td>Annual</td>
<td>12 µg/m³</td>
<td>15 µg/m³</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>35 µg/m³</td>
<td>Same as primary</td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>Rolling 3-month period</td>
<td>0.15 µg/m³</td>
<td>Same as primary</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

a Standards other than the 1-hour ozone, 24-hour PM₁₀, 24-hour PM₂.₅, and those based on annual averages are not to be exceeded more than once a year. The 8-hour ozone national standard has replaced the 1-hour ozone national standard.

b Concentrations are expressed first in units in which they were promulgated. Equivalent units given in parenthesis.

c Primary Standards: The levels of air quality necessary, with an adequate margin of safety to protect the public health. Each state must attain the primary standards no later than 3 years after that state’s implementation plan is approved by the USEPA.

d Secondary Standards: The levels of air quality necessary to protect the public welfare from any known or anticipated adverse effects of a pollutant.

µg/m³ = micrograms per cubic meter; CO = carbon monoxide; mg/m³ = milligrams per cubic meter; NO₂ = nitrogen dioxide; O₃ = ozone; Pb = lead; PM₂.₅ = particulate matter less than or equal to 2.5 microns in diameter; PM₁₀ = particulate matter less than or equal to 10 microns in diameter; ppm = parts per million; SO₂ = sulfur dioxide

Source: USEPA 2012.

3.5.2.2 Climate and Meteorology

Columbus is located in the central portion of Ohio in an area with relatively flat terrain. Situated in central Ohio in the drainage area of the Ohio River, Columbus is located on the Scioto and Olentangy rivers; two minor streams running through the city are Alum Creek and Big Walnut Creek. Columbus’s weather is changeable, influenced by air masses from central and southwest Canada; air from the Gulf of Mexico reaches the region during the summer and to a lesser extent in the fall and winter. The moderate climate is characterized by four distinct seasons. Snowfall averages around 27 inches annually (Midwest Regional Climate Center 2013).
January is the coldest month, with an average minimum temperature of 20°F. July is the hottest month, with an average maximum temperature of 86°F. The average annual temperature is 52.8°F. The average annual precipitation in Columbus is 40.0 inches (Midwest Regional Climate Center 2013).

Prevailing winds in Columbus are generally westerly to southwesterly during the year. The annual average wind speed is 8.3 miles per hour (Midwest Regional Climate Center 2013).

3.5.2.3 Regional and Local Air Pollutant Sources

The 121 ARW is based on the western side of Rickenbacker IAP in Franklin County, Ohio. The surrounding area to the west, south, and east of the airport is mainly agricultural, with light industrial/commercial uses to the north.

The USEPA’s National Emissions Inventory includes data for the year 2008 for Franklin County. Table 3.5.2-2 summarizes the regional emissions (stationary, area-wide, and mobile) of criteria pollutants and precursor emissions for the affected areas.

<table>
<thead>
<tr>
<th>Regional Emissions</th>
<th>CO</th>
<th>VOCs</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stationary Sources</td>
<td>18,108</td>
<td>3,208</td>
<td>3,797</td>
<td>1,326</td>
<td>3,180</td>
<td>2,719</td>
</tr>
<tr>
<td>Area-Wide Source</td>
<td>1,124</td>
<td>14,821</td>
<td>376</td>
<td>11</td>
<td>16,452</td>
<td>1,764</td>
</tr>
<tr>
<td>Mobile Sources</td>
<td>220,807</td>
<td>19,397</td>
<td>35,271</td>
<td>318</td>
<td>1,948</td>
<td>1,559</td>
</tr>
<tr>
<td>Total</td>
<td>240,039</td>
<td>37,426</td>
<td>39,444</td>
<td>1,655</td>
<td>21,580</td>
<td>6,042</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding. Emissions of Pb are not included because the affected region contains no significant sources of this criteria pollutant. CO = carbon monoxide; NOx = oxides of nitrogen; PM10 = particulate matter less than or equal to 10 microns in diameter; PM2.5 = particulate matter less than or equal to 2.5 microns in diameter; SO2 = sulfur dioxide; VOC = volatile organic compound

Source: USEPA 2008.

3.5.2.4 Baseline Air Quality

Representative background air monitoring data for the Rickenbacker ANGS for the period 2008-2012 are shown in Table 3.5.2-3. The closest monitoring stations to Rickenbacker IAP include monitoring stations in Columbus, which measure O3, CO, PM10, PM2.5, and SO2 (2008 – 2009). NO2 data were collected in Cincinnati, and SO2 data were collected from 2010 through 2012 in Clark County. NO2 data from Cincinnati may be conservative as the area is more developed than the area surrounding Rickenbacker IAP.

As shown in Table 3.5.2-3, the area has experienced several O3 exceedances during the recent 5-year period; however, Franklin County has not been designated as an O3 nonattainment area.
The Columbus area also experienced two exceedances of the 24-hour PM$_{2.5}$ standard in 2010. The data show that the area did not experience violations of other NAAQS.

<table>
<thead>
<tr>
<th>Table 3.5.2-3. Ambient Air Monitoring Data for the Columbus Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Quality Indicator</td>
</tr>
<tr>
<td>Ozone (O$_3$)</td>
</tr>
<tr>
<td>Peak 8-hour value (ppm)</td>
</tr>
<tr>
<td>Days above federal standard (0.075 ppm)</td>
</tr>
<tr>
<td>Particulate matter less than or equal to 2.5 microns in diameter (PM$_{2.5}$)</td>
</tr>
<tr>
<td>Peak 24-hour value (µg/m3)</td>
</tr>
<tr>
<td>Days above federal standard (35 µg/m3)</td>
</tr>
<tr>
<td>Annual Average value (µg/m3)</td>
</tr>
<tr>
<td>Particulate matter less than or equal to 10 microns in diameter (PM$_{10}$)</td>
</tr>
<tr>
<td>Peak 24-hour value (µg/m3)</td>
</tr>
<tr>
<td>Days above federal standard (150 µg/m3)</td>
</tr>
<tr>
<td>Carbon Monoxide (CO)</td>
</tr>
<tr>
<td>Peak 1-hour value (ppm)</td>
</tr>
<tr>
<td>Days above federal standard (9 ppm)</td>
</tr>
<tr>
<td>Peak 8-hour value (ppm)</td>
</tr>
<tr>
<td>Days above federal standard (35 ppm)</td>
</tr>
<tr>
<td>Nitrogen Dioxide (NO$_2$)</td>
</tr>
<tr>
<td>Peak 1-hour value (ppm)</td>
</tr>
<tr>
<td>98th Percentile (ppm)</td>
</tr>
<tr>
<td>Days above federal standard (0.100 ppm)</td>
</tr>
<tr>
<td>Sulfur Dioxide (SO$_2$)</td>
</tr>
<tr>
<td>Peak 1-hour value (ppm)</td>
</tr>
<tr>
<td>99th Percentile (ppm)</td>
</tr>
<tr>
<td>Days above federal standard (0.075 ppm)1</td>
</tr>
<tr>
<td>Peak 24-hour value (ppm)</td>
</tr>
</tbody>
</table>

Notes: 1. The federal 1-hour SO$_2$ standard was adopted in 2010.
 µg/m3 = micrograms per cubic meter; NA = data not available; ppm = parts per million
 Source: USEPA 2013a.

3.5.2.5 121st Air Refueling Wing Emissions

The 121 ARW currently flies and maintains 18 KC-135 refueling aircraft to support its air refueling mission. The primary support operations performed at the 121 ARW include aircraft fueling, aircraft deicing, aircraft maintenance, aircraft support equipment maintenance, ground vehicle maintenance, fueling of ground vehicles, and facilities maintenance. These operations involve activities such as corrosion control, non-destructive inspection, fuel cell maintenance, engine maintenance, hydraulics, and wheel and tire maintenance (121 ARW 2008).

Emissions for the 121 ARW have been quantified in the Final 2009 Air Emissions Inventory (121 ARW 2011a). The inventory evaluated the emissions from the 121 ARW to determine its status under the Title V Federal Operating Permits program. Based on the major source thresholds for the area, the major source thresholds are 100 tpy for all criteria pollutants, and less than 10 tpy of any single HAP or 25 tpy of any combination of HAPs (121 ARW 2011a).
The 121 ARW is not required to operate under a Title V Operating Permit. The 2009 Air Emissions Inventory demonstrates that total base-wide potential emissions from stationary sources are below the major source thresholds (121 ARW 2011a).

Stationary source emissions at the 121 ARW include emissions from natural gas and fuel oil fired heating units, internal combustion engines, fuel tanks, and minor sources including chemical use, aircraft deicing, and fuel cell maintenance activities. Mobile source emissions include emissions from aircraft operations (take-offs and landings), AGE, ground vehicle operations, and maintenance aircraft operations performed with the engines still mounted on the aircraft (engine run-ups and trim checks). Emissions from aircraft operations at the 121 ARW considered all based and transient aircraft. Aircraft emissions were calculated for all flight activities below the default mixing height (3,000 feet AGL). Baseline emissions also include stationary sources and emissions associated with vehicle trips associated with existing personnel and dependents. These emissions, combined with those from the other mobile sources, account for the majority of the emissions from the installation (121 ARW 2011a).

To provide a baseline for evaluating the net emissions increases/decreases associated with Alternative #5, emissions from the KC-135 aircraft operations, aircraft refueling, KC-135 engine testing, KC-135-related AGE, and POVs associated with KC-135 flight operations were evaluated. Emissions from the KC-135 aircraft operations were calculated based on 2012 aircraft operations identified baseline airfield operations identified in Table 2.3-25, utilizing site-specific flight profiles to calculate aircraft operations below a default mixing height of 3,000 feet AGL. A discussion of the methodology for quantifying emissions is provided in Appendix A, Section A.2.3. Emissions for the baseline emissions associated with baseline operations of the KC-135 aircraft are provided in Table 3.5.2-4.

Table 3.5.2-4. 121 ARW Baseline Emissions at Rickenbacker ANGS

<table>
<thead>
<tr>
<th>Emission Source</th>
<th>VOCs</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 Baseline Aircraft Operations</td>
<td>4.63</td>
<td>68.57</td>
<td>64.35</td>
<td>6.38</td>
<td>0.34</td>
<td>0.34</td>
<td>17,742</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.02</td>
<td>0.15</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>3,333</td>
</tr>
<tr>
<td>Engine Testing</td>
<td>0.11</td>
<td>1.55</td>
<td>0.43</td>
<td>0.07</td>
<td>0.01</td>
<td>0.01</td>
<td>185</td>
</tr>
<tr>
<td>POVs</td>
<td>4.55</td>
<td>67.35</td>
<td>3.55</td>
<td>0.05</td>
<td>0.15</td>
<td>0.07</td>
<td>2,407</td>
</tr>
<tr>
<td>Total Baseline Emissions</td>
<td>9.29</td>
<td>137.50</td>
<td>68.48</td>
<td>6.50</td>
<td>0.51</td>
<td>0.42</td>
<td>23,667</td>
</tr>
</tbody>
</table>

Notes: Numbers might not add precisely due to rounding.
Source: 121 ARW 2011a.
3.5.3 Safety

This section provides information on both ground and flight safety. Ground safety includes discussions of fire/crash response capabilities, APZs/RPZs, explosive safety, and AT/FP. Flight safety includes discussions on flight safety procedures, aircraft mishaps, BASH, and fuel jettison requirements. The affected environment includes the airfield and local airspace surrounding Rickenbacker IAP.

3.5.3.1 Ground Safety

Fire/Crash Response

ARFF services at Rickenbacker ANGS are available on a 24-hour basis. Upon notification of an in-flight or ground emergency, the crash and rescue services personnel would coordinate emergency services. ARFF equipment and personnel at Rickenbacker ANGS meet USAF requirements (Headquarters AMC and NGB 2013b).

Accident Potential Zone/Runway Protection Zone

Development restrictions associated with RPZs are intended to preclude incompatible land use activities from being established in these areas. The city of Columbus, Ohio utilizes the FAA’s airport land use compatibility guidelines, and as such, the RPZs have allowed development to be compatible with airport operations. Details of development and land use in the Rickenbacker IAP vicinity are included in Section 3.5.7, Land Use.

Explosive Safety

No QD arcs exist at Rickenbacker IAP as there are no storage facilities of any hazardous materials on the installation (Headquarters AMC and NGB 2013b).

Anti-Terrorism/Force Protection

Many of the military facilities at the 121 ARW installation at Rickenbacker ANGS were constructed before AT/FP considerations became a critical concern. Thus, under current conditions, many facilities do not comply with all current AT/FP standards. However, as new construction occurs and as facilities are modified, the 121 ARW would incorporate these standards to the maximum extent practicable.
3.5.3.2 Flight Safety

Flight Safety Procedures

Aircraft flight operations from Rickenbacker ANGS are governed by standard flight rules. Specific safety requirements are contained in standard operating procedures that must be followed by all aircrews operating from the airfield (AFI 11-2KC-135V3, *Flying Operations, C/KC-135 Operations Procedures*, 2010) to ensure flight safety. While having aircraft in close proximity during air refueling is inherently dangerous, refueling mishaps are rare. Emergency separation procedures are established and practiced by both tanker and receiver aircrews.

Aircraft Mishaps

KC-135 aircraft (all models) have flown more than 14,750,000 hours since the aircraft entered the USAF inventory in 1957. Over that period, 83 Class A mishaps have occurred and 64 aircraft have been destroyed (specific statistics for mishaps during refueling are not recorded). This results in a Class A mishap rate of 0.56 per 100,000 flight-hours, and an aircraft destroyed rate of 0.43 per 100,000 flying hours (AFSEC 2012). The last Class A mishap of a 121 ARW aircraft at the Rickenbacker airfield was in 2002 (Buzzard 2013).

Bird/Wildlife Aircraft Strike Hazard

The USAF BASH Team maintains a database that documents all reported bird/wildlife-aircraft strikes. Historic information across the USAF for the past 40 years indicates that 39 USAF KC-135 aircraft have been destroyed and 33 fatalities have occurred from bird/wildlife aircraft strikes, with the last Class A mishap occurring in 2010 (AFSEC 2013).

The 121 ARW has an on-going BASH program through which information and assistance is freely shared between airfield users, the Rickenbacker IAP staff, and the local air traffic controllers. Serious BASH-related accidents within the immediate Rickenbacker IAP area are unusual and have never resulted in a Class A mishap (Buzzard 2013). The 121 ARW has recently recorded 21 minor BASH incidents in 2010, 19 in 2011, and 13 in 2012, and an average over 8 years of 22 incidents (Buzzard 2013).

Fuel Jettison

For use in emergency situations, the KC-135 aircraft have the capability to jettison fuel and reduce aircraft gross weight for flight safety. Airbases must establish jettison areas and procedures to minimize the impact of fuel jettisoning. Ideally, jettison areas are established at
altitudes above 20,000 feet AGL, off published federal airways, avoiding urban areas, agricultural regions, and water supply sources

The primary fuel jettison area for the 121 ARW is within the Buckeye MOA, and above 20,000 feet AGL (121 ARW 2011b). The aircrew would follow fuel jettisoning procedures in AFI 11-2KC135, C/KC-135 Operations Procedures.

3.5.4 Soils and Water

3.5.4.1 Soils

This area of Ohio is within the Columbus Valley, which was formed by glaciers and has relatively level to gently rolling terrain. This area is characterized by limited relief except near streams, glacial moraines, or resistant bedrock (USDA 2006). The 121 ARW installation is located on relatively flat improved land with relief ranging from 734 to 744 feet MSL (121 ARW 2010).

The NRCS Soil Survey for Franklin County, Ohio identifies the following two individual soil types at the installation:

Kokomo-Urban land complex. This soil, typically found in shallow depressions and drainages, is composed of silty and clayey till. The rating class for building site development is considered very limited due to ponding, shrink-swell potential, and depth to saturated zone (NRCS 2013d). Approximately 20 percent of the installation is composed of this soil type.

Crosby-Urban land complex, 0 to 2 percent slopes. This soil consists of strongly intermingled Urban land and Crosby soil. Urban land consists of soil from cut/fill sites used for buildings, paved roads, parking lots, and other areas of urban development. The rating class for building site development is not rated for this soil type (NRCS 2013d). Approximately 80 percent of the installation is composed of this soil type.

3.5.4.2 Surface Water

The 121 ARW installation is located within the Scioto River Watershed that encompasses over 6,510 square miles within the state of Ohio (USEPA 2013e) (Figure 3.5.4-1). The Scioto River Watershed drains a very diverse landscape from rural to dense urban environments and covers portions of Crawford, Delaware, Franklin, Hardin, Logan, Madison, and Union counties. The Scioto River originates near Roundhead in Hardin County, running south through central Ohio before emptying into the Ohio River at the confluence in Portsmouth, Ohio (Mid-Ohio Regional Planning Commission 2012).
Surface water features within the vicinity of the 121 ARW installation include Scioto River and Big Walnut Creek to the east and Walnut Creek to the west. Surface water within the installation primarily consists of a series of man-made ditches, storm sewers, and drainage swales. Drainage of the developed area is typified by overland flow to storm drain inlets and basins connected by a network of underground pipes.

There are two primary drainage areas on the installation, SDO-014 and SDO-601. Both outfalls, SDO-014 and -601, exit the installation via the SDO-014 drainage ditch that discharges into an unnamed tributary that ultimately converges with the Big Walnut Creek. These two outfalls are regulated under the Ohio Industrial Stormwater General Permit (OHR000005). The permit is administered by the Ohio Environmental Protection Agency under the auspice of the USEPA (121 ARW 2009).

3.5.4.3 Groundwater

Groundwater in this area is part of the Central Lowland Aquifer Province. Central Lowland aquifers are generally comprised of unconsolidated sand and gravel deposits and consolidated sandstone, limestone, and dolomite. The unconsolidated sand and gravel deposits, which are collectively called the surficial aquifer system, supply more than 50 percent of the fresh groundwater withdrawn in the Central Lowland Province, and are primarily glacial in origin (USGS 1995d).

Three aquifers have been identified beneath the 121 ARW installation: the upper water-bearing zone, the intermediate aquifer, and the deep aquifer. The upper water-bearing zone is found beneath all portions of the installation, with the top of the water table typically less than 10 feet below ground surface. Groundwater flow direction and gradient in the upper zone is controlled primarily by surface topography, including the configuration of the drainage system and the locations of the creeks in the area. A north/south trending groundwater divide is located in the central portion of the installation. Groundwater west of this divide flows southwest toward Big Walnut Creek. Groundwater east of the divide flows southeast toward Little Walnut Creek (121 ARW 2010).
Figure 3.5.4-1. Surface Water Features and Wetlands in the Vicinity of Rickenbacker ANGS

The intermediate and deep aquifers are confined. The intermediate aquifer is the shallowest aquifer capable of supporting a water supply adequate for domestic use. It is present beneath the installation at depths of between 60 and 100 feet below ground surface with a west and west southwest gradient. The deep aquifer lies at depths of between 130 and 210 feet below ground surface, where it meets a shale bedrock layer. The gradient of the deep aquifer is west and west southwest (121 ARW 2010).

3.5.4.4 Floodplains

A majority of the installation lies within the FEMA Flood Insurance Rate Map for Franklin County, Ohio, Panel 437 (Map Number 39049C0437K, Effective June 17, 2008) within an area designated as Zone X. The designation Zone X are areas determined to be outside the 0.2 percent annual chance flood (500 year flood), indicating areas of minimal flooding. The northern portion of the installation lies within Panel 433 (Map Number 39049C0433K) also determined to be Zone X (FEMA 2008).

3.5.5 Biological Resources

3.5.5.1 Vegetation

The Rickenbacker IAP occurs within the ecotone between the Eastern Broadleaf Forest Continental and Oceanic Provinces. Vegetation in this region typically is characterized by deciduous forests dominated by tall broadleaf trees often with a drought-resistant oak-hickory association in the western portion of the province. Dominant trees within these forests include white oak (Quercus alba), red oak (Quercus rubra), black oak (Quercus velutina), bitternut hickory (Carya cordiformis), and shagbark hickory (Carya ovata) (Bailey 1995). The majority of the airport is developed or actively landscaped, with little natural vegetation or habitat remaining. A few small, hardwood forested areas occur near the southwest, south, and east sides of the 121 ARW installation.

3.5.5.2 Wildlife

Due to the lack of substantial pockets of native vegetation, high noise levels, and human activities at and surrounding the airport, wildlife habitat is limited. As a result, the majority of wildlife present at the airport and the 121 ARW ANGS consists of species that are highly adapted to developed and disturbed areas. Rickenbacker ANGS is located within the Mississippi Flyway, one of four major North American corridors for migratory birds. The majority of the bird species found at Rickenbacker IAP or its vicinity are protected under the MBTA. Common bird species include Turkey Vultures (Cathartes aura), Rock Pigeons (Columbia livia), House Sparrows (Passer domesticus), Red-tailed Hawks (Buteo jamaicensis), Rough-legged Hawks...
(Buteo lagopus), Great Horned Owls (Bubo virgianus), Barn Owls (Tyto alba), Screech Owls (Otus asio), American Goldfinch (Carduellis tristis), Killdeer (Charadrius vociferous), Blue Jay (Cyanocitta cristata), Horned Lark (Eremophila alpestris), Barn Swallow (Hirundo rustica), European Starling (Sturnus vulgaris), and Mourning Dove (Zenaida macroura). Other common wildlife species observed in or near the airport include white-tailed deer (Odocoileus virginianus), woodchuck (Marmota monax), eastern gray squirrel (Sciurus carolinensis), and spring frog (Hyla sp.) (121 ARW 2010, 2011c).

3.5.5.3 Special Status Species

No federally listed or candidate species are known to occur within the airport or on the 121 ARW installation. The potential for several federally listed species to occur within Franklin County within the vicinity of the airport exists; however, there is little to no habitat for these species within the airport or the installation (USFWS 2005). One state endangered species, the Northern Harrier (Circus cyaneus), was observed during a 2004 survey of the airport. However, no nesting habitat (i.e., shrubby thickets) occurs within the airport boundaries. Several other state listed species have been observed within Franklin County and have the potential to occur on or within the vicinity of the installation; however, none of these have been observed on the installation. A list of these species can be found in Appendix E. There is no critical habitat located on the installation (Ohio Department of Natural Resources 2012; USFWS 2005, 2010).

3.5.5.4 Wetlands

A formal wetland delineation was conducted on the 121 ARW installation in 2005. This delineation identified only one jurisdictional stream in the northwest corner of the installation. This stream is an unnamed tributary to Big Walnut Creek and has a small wetland fringe immediately adjacent estimated to be 0.05 acre. No other jurisdictional wetlands or waters of the U.S. were identified within the installation boundaries (121 ARW 2010, OH ANG 2006) (see Figure 3.5.4-1).

A small drainage ditch is located near the intersection of Second Street and Tank Truck Road, as shown in Figure 3.5.4-1. This ditch is approximately 30 feet wide and flows to the northwest and eventually drains to Big Walnut Creek via a network of ditches. Although this ditch has not been surveyed, it is similar to other ditches (including the one surveyed during the 2005 delineation) on and around the airport and it is therefore likely a jurisdictional stream (121 ARW 2010, OH ANG 2006).
3.5.6 Cultural Resources

3.5.6.1 Archaeological Resources

The entire 121 ARW installation at Rickenbacker has been intensively surveyed for archaeological resources. Three archaeological sites have been recorded on the installation. Sites 33FR2652 and 33FR2653 are both isolated prehistoric artifacts found in disturbed soil contexts (National Guard Bureau 2008). These sites are not considered eligible to the NRHP and the Ohio SHPO has concurred (see Snyder 2007 in Appendix B4). Site 33FR2844 was discovered in 1985 during excavation for a new building foundation. It was described as a multi-component archaeological site consisting of two historic burials with associated historic coffin materials, a historic dump, and a prehistoric lithic scatter. The site was determined eligible for inclusion on the NRHP (Ohio ANG 2011).

3.5.6.2 Architectural Resources

Eighteen buildings within the 121 ARW property pre-dating the end of the Cold War-era (pre-1990) were inventoried in 2006. Two hangars (Hangars 885 and 888) are considered eligible for listing in the NRHP under criterion A and criterion C (121 ARW 2011d). The remaining 16 buildings are not eligible for listing in the NRHP. The Ohio Historic Preservation Office has concurred with these eligibility determinations (121 ARW 2011d, Snyder 2007).

3.5.6.3 Traditional Resources

The 121 ARW installation contains no known traditional resources; however, 13 federally-recognized Tribes that are historically, culturally, and linguistically affiliated with the area have been identified: Citizen Potawatomi Nation, Delaware Nation, Prairie Band of Potawatomi Nation, Eastern Shawnee Tribe of Oklahoma, Forest County Potawatomi Community, Hannahville Indian Community, Miami Tribe of Oklahoma, Ottawa Tribe of Oklahoma, Peoria Tribe of Indians Oklahoma, Pokagon Band of Potawatomi Indians, Shawnee Tribe, Turtle Mountain Band of Chippewa Indians of North Dakota, and Wyandotte Nation.
3.5.7 Land Use

Rickenbacker ANGS operates as a tenant activity of Rickenbacker IAP, which operates military, commercial, and cargo flights. The entire airport occupies 4,342 acres and is located 10 miles south of the central business district of Columbus, Ohio, near the village of Lockbourne in southern Franklin County and the northernmost part of Pickaway County.

Zoning surrounding the airport generally supports compatible land use planning and provides for protection of the areas surrounding Rickenbacker IAP. Comprehensive Land Use plans adopted by Franklin and Pickaway Counties guide long-term planning. Hamilton Township land use codes define and established airport hazard zones, height limitations, and land use restrictions within these zones. This zoning protects RPZs from incompatible land use. Detailed descriptions of RPZs can be found in the Safety section of Appendix A, Section A.3. Land use in the areas surrounding the airfield is predominantly Agricultural/Open Space interspersed with pockets of single-family residential parcels. Commercial use dominates along the northwest boundary of the airfield in Hamilton Township. No houses, churches, schools or other sensitive noise receptors are located within the 65 dB and 70 dB DNL off-airport noise contour areas (CRAA 2007).

Figure 3.5.7-1 is an overlay of the baseline noise contours onto a map displaying the existing land use in the vicinity of the installation. The impact of baseline airfield activities on surrounding communities in these areas is limited. Current noise levels between 65 dB DNL and 70 dB DNL expose off-base areas of Agricultural and Industrial to the southwest in Pickaway County and to a lesser degree to the northeast of the airport in Franklin County. Both land use designations are considered compatible uses under Federal Interagency Committee on Urban Noise (FICUN) standards found in Appendix A, Section A.7 (CRAA 2007).
Figure 3.5.7-1. DNL Noise Contours and Land Use at Rickenbacker IAP

Source: Pickaway County 2013, Franklin County Zoning 2013, Rickenbacker IAP 2005.
3.5.8 Infrastructure and Transportation

3.5.8.1 Potable Water System

Potable water for the 121 ARW installation is provided by the Franklin County Parsons Avenue Water Treatment Plant operated by the City of Columbus (121 ARW 2010). Potable water in the area is supplied primarily from the regional groundwater aquifer wells. The City of Columbus Water Division pumps approximately 190 trillion gallons of water per year to its customers. The groundwater supply is supplemented with treated surface water from the Scioto River and the Big Walnut Creek (Franklin County Department of Sanitary Engineering 2010). In CY 2012, 1.8 trillion gallons of potable water was supplied to the 121 ARW installation (121 ARW 2013d).

3.5.8.2 Wastewater

The 121 ARW installation generates wastewater from sanitary, stormwater, and industrial processes, including OWS discharge, wash rack discharge, floor wash-down, latrines, sinks, and showers. Wastewater generated within the 121 ARW installation is conveyed into the municipal sewage system, operated by the City of Columbus to the Columbus Southerly Wastewater Treatment Plant. The facility has a capacity of 114 million gallons per day but typically receives 96 million gallons of wastewater per day for treatment (City of Columbus n.d.).

3.5.8.3 Stormwater

A high percentage of the active administrative and industrial areas of the installation are paved or roofed, resulting in high runoff rates during precipitation events. As described in the 121 ARW SWPPP (2009), the 121 ARW installation has a stormwater drainage conveyance system typified by overland flow to catch basins, inlets, surface drains, underground pipes, culverts, ditches, and swales that discharge to receiving waters (see Section 3.5.4, Soils and Water) or other municipal separate storm sewer systems. The stormwater drainage system has been designed to safely collect and transport surface water runoff from storm events to prevent flooding within the installation and is a separate system from the wastewater (sewage) system.

3.5.8.4 Electrical and Natural Gas Systems

Electricity is supplied to the 121 ARW installation by South-Central Power via an aboveground, 46,000-volt primary power line that was recently buried on the northern half of the installation. Natural gas is supplied by Columbia Gas of Ohio via main lines ranging in size from 0.5 inch to 4 inches in diameter. Electricity consumption for CY 2012 at the 121 ARW installation was 4,999,752 kilowatt hours. Natural gas consumption for CY 2012 at the 121 ARW installation was 219,801 hundred cubic feet (121 ARW 2013d).
3.5.8.5 Solid Waste Management

Municipal solid waste at the 121 ARW installation is managed in accordance with the 121 ARW Solid Waste Management Plan (121 ARW 2013e) and guidelines specified in AFI 32-7042, Waste Management (2009). This AFI incorporates, by reference, the federal standard for solid waste regulations contained within 40 CFR, Subtitle D, Non-hazardous Waste, and other applicable federal regulations, AFIs, and DoD Directives. In general, AFI 32-7042 establishes the requirement for installations to have a solid waste management program that incorporates the following: a solid waste management plan; procedures for recycling, diversion, handling, storage, collection, and disposal of solid waste; recordkeeping and reporting; and pollution prevention.

The 121 ARW installation generates solid waste in the form of office trash, non-hazardous industrial wastes, normal municipal waste, and construction debris. These nonhazardous solid wastes are collected in dumpsters located throughout the 121 ARW installation and transported to the Franklin County Landfill.

3.5.8.6 Transportation

The 121 ARW installation is located within close proximity to several major highways. I-70 runs in an east-west direction approximately 8 miles north of the installation. I-270 runs in a northwest-southeast direction approximately 4 miles north of the installation and provides regional access to Rickenbacker IAP and the Rickenbacker ANGS. SR 317 provides direct access to Rickenbacker IAP. The principal access route to the airport is Alum Creek Drive, a four-lane arterial road that intersects I-70 and I-270, linking the airport to the regional ground transportation network. U.S. Highway 23, a principal arterial that runs north-south approximately 3 miles west of the airport and intersects I-270, also provides regional access. This highway intersects with Groveport Road, an arterial that provides access to the airport.

Rickenbacker Drive provides vehicle access to the road network and main cantonment area of the installation. The secondary entrance to the installation, Gate N-5, is typically used only by contractors (e.g., delivery of supplies by truck) to access the installation. This gate enters the installation off Tank Truck Road on the west side of the installation. Tank Truck Road connects to Zistel Street, which also connects with Rickenbacker Drive.

3.5.9 Hazardous Materials and Waste

3.5.9.1 Hazardous Materials

Hazardous materials are used at the 121 ARW installation for aircraft operations support and maintenance, including POL management and distribution, liquid fuels maintenance, transportation maintenance, vehicle paint, power production, machine shop operations, and flight
simulation. Types of hazardous substances found on the 121 ARW installation include strippers, batteries, spent cleaners, aerosols, paints, solvents, waste oils, hydraulic fluid, flammable and combustible liquids, acids, corrosives, and recovered fuels (121 ARW 2008). The primary storage facility for hazardous materials on the installation is in Building 872 (121 ARW 2006).

Sixteen ASTs are located on the 121 ARW installation and are used to store propylene glycol, gasoline, diesel, jet fuel, used oil, and used hydraulic oil. USTs were previously used at the installation to store kerosene, diesel, fuel oil, waste oil, jet fuel, gasoline, hydraulic fluid, and liquid propane. All USTs were removed from the 121 ARW installation in 1994 (121 ARW 2006).

Toxic Substances

Regulated toxic substances typically associated with buildings and facilities include asbestos, LBP, and PCBs. An asbestos survey was performed at the 121 ARW installation in 1995. ACM identified in the insulation, floor tiles, and mastic were found in Buildings 846 and 872 (121 ARW 2006).

A LBP survey has not been conducted at the 121 ARW installation. Any buildings on the installation constructed prior to 1978 are presumed to contain LBP and would be tested for LBP prior to demolition or renovation. Lead abatement was conducted in 2004 at Hangars 885 and 888 (121 ARW 2006).

The 121 ARW installation is permitted by the Nuclear Regulatory Commission for use of radioactive material in chemical agent monitoring devices (Permit No. OH-30567-01/00AFP). These devices are returned to the manufacturer for repair and disposal (121 ARW 2006).

The 121 ARW does not maintain, operate, or own any PCB equipment or PCB-contaminated equipment and the subject property is considered PCB-free (121 ARW 2006).

3.5.9.2 Hazardous Waste Management

The 121 ARW Oil and Hazardous Substances Spill Prevention and Response Plan contains the governing regulations for spill prevention and describes specific protocols for preventing and responding to releases, accidents, and spills involving oils and hazardous materials (121 ARW 2012). The 121 ARW Hazardous Waste Management plan outlines procedures for controlling and managing hazardous wastes from the point where they are generated until they are disposed. In addition, it includes guidance for compliance with all federal, state, and local regulations pertaining to hazardous waste (121 ARW 2008).

The 121 ARW is regulated as a Small Quantity Generator of hazardous waste and maintains USEPA Identification Number OH0000553829. A hazardous waste generation point is where
the waste is initially created or generated. An SAP is an area where hazardous waste is initially accumulated at the point of generation and is under the control of the SAP manager. Hazardous wastes initially accumulated at a SAP are accumulated in appropriate containers before being transferred to the installation CAP. There are 15 SAPs (where a waste is initially accumulated) identified at the installation in Buildings/Hangars 888, 2000, 883, 885, 872, and 846. The installation CAP is located in Building 872 (121 ARW 2008).

OWSs are used to separate oils, fuels, sand, and grease from wastewater and to prevent contaminants from entering the sanitary sewer and stormwater drainage systems. There are currently five OWSs located on the 121 ARW installation. These OWSs primarily receive discharge from floor drains in maintenance areas (121 ARW 2006).

3.5.9.3 Environmental Restoration Program

There is one active ERP site and five closed sites located on the 121 ARW installation. Table 3.5.9-1 provides details for each of these sites and Figure 3.5.9-1 shows the locations.

<table>
<thead>
<tr>
<th>ERP Site</th>
<th>Materials of Concern</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Old drum storage area that continued until 1984. Some drums contained methyl ethyl ketone, solvents, and paint strippers. Investigations determined that groundwater on the northwest side of the site was contaminated with chlorinated solvents. Groundwater remediation was performed to reduce contaminant concentrations below detection limits. In 1995 the southeast portion of the site was paved to create a parking lot for Building 887. In 1996, soils and grass were placed on the remaining portion of the site.</td>
<td>Active</td>
</tr>
<tr>
<td>46</td>
<td>Formerly known as AOC A. This site was investigated as part of a jet fuel pipeline investigation. Tier 1 and Tier 2 Bureau of Underground Storage Tank Regulation investigations were conducted and petroleum contamination levels were found to be below Bureau of Underground Storage Tank Regulation limits. Therefore, it was determined that remedial actions were not necessary.</td>
<td>Closed</td>
</tr>
<tr>
<td>19</td>
<td>Known as the North Coal Pile, this location was a concrete pad used for holding up to 6,000 tons of coal soaked in fuel oil. Arsenic, cadmium, chromium, mercury, lead, and nickel were detected in the groundwater underneath the site and polynuclear aromatic hydrocarbons were found in the soil and sediments.</td>
<td>Closed</td>
</tr>
<tr>
<td>22</td>
<td>This site was located behind the heating plant and adjacent to the former North Coal Pile and consisted of a concrete pad for drum storage. The concrete pad was removed and an interim remedial action was conducted to remove and treat the contaminated soils.</td>
<td>Closed</td>
</tr>
<tr>
<td>25</td>
<td>This includes all of the open drainage ditches throughout the installation which have had spills and leaks of hazardous materials and petroleum products discharged into them in the past. VOCs, semi-volatile organic compounds, pesticides, and metals were detected at several sites out of 51 sediment sampling locations.</td>
<td>Closed</td>
</tr>
<tr>
<td>35</td>
<td>Former UST that was removed in 1991.</td>
<td>Closed</td>
</tr>
</tbody>
</table>

Notes: AOC = Area of Concern; VOC = volatile organic compound; UST = underground storage tank

3.5.10 Socioeconomics

3.5.10.1 Population and Employment

Population

Rickenbacker ANGS is located approximately 12 miles southeast of downtown Columbus in Franklin County. Current population data and estimates for the state of Ohio, Franklin, and Pickaway counties, Groveport and Lockbourne Villages, and Hamilton, Harrison, and Madison Townships are provided in Table 3.5.10-1. From 1990 to 2010, Franklin County’s population increased by 201,977, an increase of approximately 21 percent. Pickaway County grew by 7,443 between 1990 and 2010, an increase of approximately 15 percent (USCB 1990e, 2000e, 2010g).

Table 3.5.10-1. Population Growth within the Vicinity of Rickenbacker ANGS

<table>
<thead>
<tr>
<th>Area</th>
<th>1990 Census</th>
<th>2000 Census</th>
<th>2010 Census</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio</td>
<td>10,847,115</td>
<td>11,353,140</td>
<td>11,536,504</td>
</tr>
<tr>
<td>Franklin County</td>
<td>961,437</td>
<td>1,068,978</td>
<td>1,163,414</td>
</tr>
<tr>
<td>Pickaway County</td>
<td>48,255</td>
<td>52,727</td>
<td>55,698</td>
</tr>
<tr>
<td>Groveport Village</td>
<td>2,948</td>
<td>3,865</td>
<td>5,363</td>
</tr>
<tr>
<td>Lockbourne Village</td>
<td>N/A</td>
<td>280</td>
<td>237</td>
</tr>
<tr>
<td>Hamilton Township</td>
<td>9,746</td>
<td>7,950</td>
<td>8,260</td>
</tr>
<tr>
<td>Harrison Township</td>
<td>5,292</td>
<td>6,424</td>
<td>7,593</td>
</tr>
<tr>
<td>Madison Township</td>
<td>18,749</td>
<td>21,243</td>
<td>23,509</td>
</tr>
</tbody>
</table>

Notes: 1990 census data was not available for this village.
N/A = not available
Source: USCB 1990e, 2000e, 2010g.

The 121 ARW currently supports a workforce authorization of 1,497, including 442 full-time and 1,055 part-time personnel (see Table 2.3-30).

Employment and Earnings

Table 3.5.10-2 presents total labor force and employment rates for Ohio, Franklin and Pickaway counties, and Groveport and Lockbourne Villages. Based on 2007-2011 ACS 5-year estimates, there were 632,774 persons in the labor force (able to work) and 580,359 employed within Franklin County, resulting in an unemployment rate of approximately 8 percent. Labor force estimates for Pickaway County include 25,074 persons, with 23,184 employed, resulting in an unemployment rate of approximately 7 percent. Top employment industries in Franklin County include 1) educational services, and health care and social assistance; 2) retail; and 3) professional, scientific, and management, and administrative and waste management services (USCB 2011g). Principal employers include state of Ohio, The Ohio State University, JP Morgan Chase, Nationwide, and Ohio Health (Franklin County 2010). Top employment industries in Pickaway County include 1) educational services, and health care and social
assistance; 2) manufacturing; and 3) retail (USCB 2011g). Principal employers include ALSO Metals Corporation, Berger Health System, Circle Plastics/TriMold LLC, Circleville City Schools, and DuPont (Pickaway Progress Partnership 2013).

Table 3.5.10-2. Employment Data (2011) within the Vicinity of Rickenbacker ANGS

<table>
<thead>
<tr>
<th>Area</th>
<th>Labor Force</th>
<th>Employed</th>
<th>Unemployed</th>
<th>Unemployment Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio</td>
<td>5,883,960</td>
<td>5,338,072</td>
<td>545,888</td>
<td>9.2</td>
</tr>
<tr>
<td>Franklin County</td>
<td>632,774</td>
<td>580,359</td>
<td>52,415</td>
<td>8.3</td>
</tr>
<tr>
<td>Pickaway County</td>
<td>25,074</td>
<td>23,184</td>
<td>1,918</td>
<td>7.6</td>
</tr>
<tr>
<td>Groveport Village</td>
<td>2,973</td>
<td>2,842</td>
<td>131</td>
<td>4.4</td>
</tr>
<tr>
<td>Lockbourne Village</td>
<td>139</td>
<td>112</td>
<td>27</td>
<td>19.4</td>
</tr>
<tr>
<td>Hamilton Township</td>
<td>4,089</td>
<td>3,404</td>
<td>685</td>
<td>16.8</td>
</tr>
<tr>
<td>Harrison Township</td>
<td>3,710</td>
<td>3,443</td>
<td>267</td>
<td>7.2</td>
</tr>
<tr>
<td>Madison Township</td>
<td>12,473</td>
<td>11,612</td>
<td>861</td>
<td>6.9</td>
</tr>
</tbody>
</table>

Note: 1. Employment numbers include individuals in the Armed Forces and are from the 2007-2011 American Community Survey 5-Year Estimates.
Source: USCB 2011g.

3.5.10.2 Schools

According to the 2011 ACS enrollment 5-year estimates, 195,535 students were enrolled in schools from Kindergarten through Grade 12 in Franklin County. In Pickaway County, 10,658 students were enrolled in schools from Kindergarten through Grade 12 (USCB 2011g).

3.5.10.3 Housing

In 2010, the number of housing units in Franklin County was 525,186, with a vacancy rate of approximately 10 percent. In the Pickaway County in 2010, there were a total of 21,275 housing units with a vacancy rate of approximately 7 percent (USCB 2010g).

3.5.11 Environmental Justice and the Protection of Children

3.5.11.1 Minority and Low-Income Populations

Table 3.5.11-1 displays the minority, low-income, and children under age 18 within the state of Ohio, as well as the counties, villages, and townships within the vicinity of Rickenbacker IAP. Approximately 31 percent of the population of Franklin County is composed of minorities (i.e., an ethnic or racial group with a distinctive presence in a community), compared to approximately 17 percent for the state of Ohio. Pickaway County has a lower proportion of minorities (5.5 percent) than Franklin County or the state (USCB 2010g).
The percentage of population living below the poverty level for the state of Ohio (approximately 15 percent) is the lower than Franklin County (approximately 17 percent), but higher than Pickaway County (approximately 13 percent) (USCB 2010g).

<table>
<thead>
<tr>
<th>Geographic Area</th>
<th>Total Population</th>
<th>Minority Population</th>
<th>Percent Minority</th>
<th>Low-Income Population</th>
<th>Percent Low-Income</th>
<th>Children Under Age 18</th>
<th>Percent Children</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio</td>
<td>11,536,504</td>
<td>1,997,067</td>
<td>17.3</td>
<td>1,707,403</td>
<td>14.8</td>
<td>2,730,751</td>
<td>23.7</td>
</tr>
<tr>
<td>Franklin County</td>
<td>1,163,414</td>
<td>357,797</td>
<td>30.8</td>
<td>202,434</td>
<td>17.4</td>
<td>278,542</td>
<td>23.9</td>
</tr>
<tr>
<td>Pickaway County</td>
<td>55,698</td>
<td>3,043</td>
<td>5.5</td>
<td>7,296</td>
<td>13.1</td>
<td>13,157</td>
<td>23.6</td>
</tr>
<tr>
<td>Groveport Village</td>
<td>5,363</td>
<td>962</td>
<td>17.9</td>
<td>493</td>
<td>9.2</td>
<td>1,271</td>
<td>23.7</td>
</tr>
<tr>
<td>Lockbourne Village</td>
<td>237</td>
<td>5</td>
<td>2.1</td>
<td>14</td>
<td>5.8</td>
<td>58</td>
<td>24.5</td>
</tr>
<tr>
<td>Hamilton Township</td>
<td>8,260</td>
<td>621</td>
<td>7.5</td>
<td>942</td>
<td>11.4</td>
<td>1,897</td>
<td>23.0</td>
</tr>
<tr>
<td>Harrison Township</td>
<td>7,593</td>
<td>266</td>
<td>3.5</td>
<td>1,496</td>
<td>19.7</td>
<td>2,141</td>
<td>28.2</td>
</tr>
<tr>
<td>Madison Township</td>
<td>23,509</td>
<td>3,856</td>
<td>16.4</td>
<td>2,092</td>
<td>8.9</td>
<td>5,953</td>
<td>25.3</td>
</tr>
</tbody>
</table>

Note: 1. Total population, minority population, and number of children under the age of 18 were obtained from the 2010 census data. Low income population numbers are from the 2007-2011 ACS 5-Year Estimates.
2. The percentage of low-income persons is calculated as a percentage of all persons for whom the USCB determines poverty status, which is generally a lower number than the total population because it excludes institutionalized persons, persons in military group quarters and college dormitories, and unrelated individuals under 15 years old.

Source: USCB 2010g.

Currently there are no residential populations, including minority or low-income populations, located within the vicinity of Rickenbacker IAP within the baseline DNL greater than 65 dB or above.

3.5.11.2 Protection of Children

In 2010, the number of children under the age of 18 living in Franklin County was approximately 278,542 (approximately 24 percent of the population). In 2010, the number of children under the age of 18 living in Pickaway County was approximately 13,157 (approximately 24 percent of the population) (Table 3.5.11-1). The state of Ohio has a similar percentage population of children compared to the counties (approximately 24 percent). There are no on-installation housing or facilities for children located at the 121 ARW installation. Currently there are no schools exposed to DNL of 65 dB or above.
CHAPTER 4 ENVIRONMENTAL CONSEQUENCES

The resource analyses presented in this chapter are based on an examination of potential effects that the various alternatives, including the No Action Alternative may have on existing environmental conditions. The alternatives are described in Chapter 2, and the existing environmental conditions for each resource are described in Chapter 3. This chapter examines the potential environmental consequences for each of the resource areas in the same sequence as presented in Chapter 3. The sections that follow present an evaluation of potential impacts within the specific ROI as a result of implementation of each of the alternatives using the analytical methodology presented in Appendix A.

4.1 ALTERNATIVE #1 -- FORBES AIR NATIONAL GUARD STATION

4.1.1 Noise

In this section, noise associated with flying operations and construction activities related to Alternative #1 are considered and compared with current conditions to assess potential impacts. Details of the methodologies used for this section can be found in Appendix A, Section A.1.2.

The DNL noise contours for Forbes ANGS were generated using the NOISEMAP computer model and represent the most current noise data available for establishing baseline conditions and for which to analyze changes to the noise environment in the Forbes ANGS ROI. DNL noise contours for the KC-46A under Alternative #1 were also generated using NOISEMAP through the removal of all KC-135 operations and the insertion of the proposed KC-46A operations using the substitute KC-46A noise data and flight profile data provided by Air Force Civil Engineer Center (AFCEC) and applying the data to the current KC-135 flight tracks and operational procedures.

4.1.1.1 Aircraft Noise

Under Alternative #1, 12 KC-46As would be based at Forbes ANGS, replacing the current 12 KC-135 aircraft. There would be no change in the number or type of other aircraft using the airfield and KC-46A aircrews would use the same flying procedures (e.g., ground tracks, altitude profiles) currently used by KC-135 aircrews. Aircrews associated with the KC-46A would continue to practice closed patterns, including tactical procedures in which the aircraft climbs or descends in the immediate vicinity of the airfield. Tactical training prepares aircrews for operations in forward operating locations in which flying at low-altitudes over land not controlled by friendly forces exposes the aircraft to ground-based threats. This procedure is currently being flown with the KC-135. Aircrews associated with the KC-46A would continue
to practice closed patterns, including tactical procedures; however, most tactical procedures would be accomplished in the simulator and at other locations away from Forbes Field Airport.

Under Alternative #1, the 190 ARW would have an increase in flying hours generating an increase in annual airfield operations by 4,110 from 10,452 to 14,562 operations (a 39 percent increase). Aircraft operations per average busy flying day (arrivals and departures [3.64] and closed patterns [16.64]) would increase under Alternative #1 to 4.94 arrivals and departures and 23.1 closed patterns/day. The percentage of 190 ARW annual aircraft operations occurring during environmental night (10 p.m. to 7 a.m.) would remain at the same 15 percent as under baseline conditions. The total number of operations flown by all other aircraft at Forbes Field Airport would not change from previously identified airfield activities (Table 4.1.1-1). There would be no change to any other aircraft types or aircraft flight tracks and profiles from the baseline condition.

Table 4.1.1-1. Forbes Field Airport Annual Aircraft Operations with Proposed KC-46A

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>DEPARTURES</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night</td>
<td>Day</td>
<td>Night</td>
<td></td>
<td>Day</td>
<td>Night</td>
</tr>
<tr>
<td>KC-46A</td>
<td>6,322</td>
<td>959</td>
<td>6,118</td>
<td>1,163</td>
<td>12,440</td>
<td>2,122</td>
<td></td>
</tr>
<tr>
<td>Other Aircraft</td>
<td>6,848</td>
<td>241</td>
<td>6,848</td>
<td>241</td>
<td>13,696</td>
<td>482</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>13,170</td>
<td>1,200</td>
<td>12,966</td>
<td>1,404</td>
<td>26,136</td>
<td>2,604</td>
<td></td>
</tr>
</tbody>
</table>

Notes: 1. Includes Closed Patterns (which count as two airfield operations).
2. Night –Between 10 p.m. and 7 a.m. for environmental night.
3. Other based military and civilian aircraft and transient aircraft (multiple type aircraft); example aircraft include: L-1011, MD-80, Lear 35, and HH-60.

Figure 4.1.1-1 depicts the noise exposure area from aircraft operations after the conversion from the current 12 KC-135 aircraft to 12 KC-46A aircraft, and Figure 4.1.1-2 compares baseline noise contours with Alternative #1 contours. The aircraft operations modeled include all transient aircraft, and general and commercial aircraft operations depicted in the most current Forbes Field Airport 2013 noise modeling update using 2012 data. Table 4.1.1-2 shows changes to the acreage of land within each noise contour under Alternative #1.

Table 4.1.1-2. Land Areas within DNL Contours at Forbes Field Airport Affected by DNL Greater than 65 dB under Baseline and Alternative #1

<table>
<thead>
<tr>
<th>Noise Contour (dBA DNL)</th>
<th>Baseline (KC-135)</th>
<th>Alternative #1 (KC-46A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On Airport</td>
<td>Off Airport</td>
</tr>
<tr>
<td></td>
<td>Total (Acres)</td>
<td>Total (Acres)</td>
</tr>
<tr>
<td>65-70</td>
<td>448</td>
<td>165</td>
</tr>
<tr>
<td>70-75</td>
<td>308</td>
<td>0</td>
</tr>
<tr>
<td>75-80</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>80-85</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>>85</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>806</td>
<td>165</td>
</tr>
</tbody>
</table>

Notes: DNL = Day Night Average Sound Level; dB = decibel
Figure 4.1.1-1. DNL Noise Contours Under Alternative #1 at Forbes Field Airport
Figure 4.1.1-2. Comparison of Baseline and Alternative #1
DNL Noise Contours at Forbes Field Airport

Source: Forbes Field Airport 2013
While the operations increase under Alternative #1, the DNL noise contours would reduce slightly from the baseline DNL noise contours because the KC-46A is generally a quieter aircraft (5 dB quieter on landing and 1 dB louder on take-off) than the KC-135 and other aircraft such as the F-18 and E-3 contributing more to the DNL levels than the KC-46A. Overall, the number of acres contained within the 65 dB DNL and greater exposure area would decrease by approximately 41 acres, or 4 percent, and would remain primarily on airport property with approximately 111 of the acres off the airport property. Information regarding the number of people residing in this area can be found in Section 4.1.11, *Environmental Justice and the Protection of Children*; and information regarding the area of residential use is located in Section 4.1.7, *Land Use*.

Percent of the Population Expected to be Highly Annoyed

The percentage of the population expected to be highly annoyed under Alternative #1 would not be expected to change from baseline conditions because there are no additional residences exposed to levels above 65 dB DNL.

Single Event Sound Analysis

Under Alternative #1, the flying profiles would not change, and the scheduled flying program would not change. As shown in Appendix A, Section A.1.2, Table A.1.2-2 provides representative SELs, indicating that the SEL for individual landings by the KC-46A would be 5 dB less while take-offs would be 1 dB more than the KC-135. Under Alternative #1, only the number of aircraft operations would change; there would be no change in where or when individual aircraft operate. Flights would be scheduled for similar time periods as currently flown during the morning and afternoons, with less than 15 percent of flights occurring during environmental night (after 10 p.m. and before 7 a.m.).

Per the ANG mission, the KC-46A would be operated Monday through Friday for a total of approximately 260 operational days per year, mirroring the operational patterns of current KC-135 operations. Based on the average annual day, aircrews would fly 4.94 sorties (initial departure and initial arrival) and approximately 23.1 additional practice approaches (closed patterns) at the airfield. The KC-46A mission would add an additional 4,110 airfield operations per year at the airport with approximately 15 percent conducted between 10:00 p.m. and 7:00 a.m.

Potential Hearing Loss

As shown in Table 4.1.1-1, there is no property off the Forbes Field Airport that falls within the 80+ dB DNL noise contour; therefore, there would be no potential hearing loss risk associated with these areas.
4.1.1.2 Construction Noise

There would be some minor noise from construction equipment associated with construction activities that would occur intermittently during the construction period (beginning FY 2015). Typical noise levels from heavy equipment range from 69 to 84 dB at 100 feet from the source (Federal Highway Administration [FHWA] 2006) (Appendix C, Noise, Section A.1.2.2). Aviation-related activities at Forbes Field Airport dominate the local noise environment for brief times on some days. Equipment used during the facility construction would contribute little to the general background noise levels around the airfield. Therefore, impacts from construction under Alternative #1 would be negligible.

4.1.1.3 Summary of Impacts

While the number of annual airfield operations would increase by 4,110 (39 percent increase in 190 ARW operations, 17 percent increase in total airfield operations), the acreage within the 65 dB DNL (and greater) noise contour would decrease by 41 acres. There would be no potential for hearing loss off the airport and no increase in the percent population highly annoyed. Construction noise would be localized and temporary and would not add to the overall noise environment. Impacts from noise would be negligible.

4.1.2 Air Quality

The air quality analysis estimated the magnitude of emissions that would result from implementation of the proposed KC-46A construction and operational activities at the 190 ARW of the KS ANG at Forbes Field Airport in Topeka, Kansas. The estimation of proposed operational emissions is based on the net change in emissions between existing aircraft operations and projected KC-46A operations.

As discussed in Appendix A.2.3, air quality impacts from the beddown of the KC-46A aircraft at Forbes Field Airport were reviewed for significance relative to the Prevention of Significant Deterioration (PSD) threshold for new major sources for attainment pollutants, and the General Conformity de minimis thresholds for nonattainment pollutants. Because the project region within Shawnee County attain all of the NAAQS, the PSD threshold of 250 tpy (100,000 tpy for greenhouse gases [GHGs]) was used as an indicator of the potential significance of the emissions from Alternative #1.

4.1.2.1 Operational Emissions

Sources associated with operation of the proposed KC-46A beddown at Forbes Field Airport include (1) operations and engine maintenance/testing of aircraft; (2) onsite POVs; (3) off-site POV commutes; and (4) AGE. It was assumed that other sources, including nonroad mobile equipment, mobile fuel transfer, and stationary source emissions would be unchanged.
Operational data used to calculate projected KC-46A aircraft emissions were obtained from the data used in the project noise analysis. Factors used to calculate combustion emissions for the KC-46A aircraft are based on emissions data developed by Pratt and Whitney for the PW4062 engine (International Civil Aviation Organization 2013). The operational times in mode for the KC-46A engine are based on those currently used for the KC-135 aircraft (AFCEC 2013). The analysis of proposed aircraft operations is limited to operations that occur within the lowest 3,000 feet of the atmosphere, as this is the typical depth of the atmospheric mixing layer where the release of aircraft emissions would affect ground-level pollutant concentrations.

Emissions from AGE were estimated based on the methodology recommended in the *Air Emissions Guide for Air Force Mobile Sources* (AFCEC 2013). Emissions from POVs were estimated based on the proposed personnel for the existing and proposed scenarios, using emission factors for vehicles from AFCEC 2013.

Table 4.1.2-1 summarizes the annual operational emissions that would result from KC-46A operations at Forbes Field Airport. Table 4.1.2-1 also presents the net emissions increase associated with the beddown of the KC-46A aircraft at Forbes Field Airport. As shown in Table 4.1.2-1, the net emissions increases are below the PSD thresholds for all pollutants.

<table>
<thead>
<tr>
<th>Table 4.1.2-1. Comparison of Baseline and Proposed Annual Operational Emissions, 190 ARW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>KC-135 Aircraft Operations</td>
</tr>
<tr>
<td>AGE</td>
</tr>
<tr>
<td>Engine Tests</td>
</tr>
<tr>
<td>POVs</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Proposed Action</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>KC-46A Aircraft Operations</td>
</tr>
<tr>
<td>AGE</td>
</tr>
<tr>
<td>Engine Tests</td>
</tr>
<tr>
<td>POVs</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Net Increase</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>MOB 2 Net Emissions Increase</td>
</tr>
<tr>
<td>PSD Threshold</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding. CO = carbon monoxide; CO₂e = carbon dioxide equivalent; NOₓ = oxides of nitrogen; PM₁₀ = particulate matter less than or equal to 10 microns in diameter; PM₂.₅ = particulate matter less than or equal to 2.5 microns in diameter; SO₂ = sulfur dioxide; VOC = volatile organic compound; AGE = aerospace ground equipment; POV = privately owned vehicle; PSD = Prevention of Significant Deterioration
In addition to criteria pollutant emissions, the beddown of the KC-46A aircraft at Forbes Field Airport would result in emissions of HAPs and GHGs. Operational activities would result in a net increase of HAPs that is below 1 tpy.

Table 4.1.2-2 summarizes the annual operational greenhouse gas (GHG) emissions that would result from KC-46A operations at Forbes Field Airport, along with the net increase in comparison with the baseline. As shown in Table 4.1.2-2, emissions are below the PSD thresholds for GHGs.

Table 4.1.2-2. Comparison of Baseline and Proposed Annual Operational GHG Emissions, 190 ARW

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Annual GHG Emissions, Metric Tons/Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO₂</td>
</tr>
<tr>
<td>KC-135 Aircraft Operations</td>
<td>23,347</td>
</tr>
<tr>
<td>AGE</td>
<td>2,421</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>296</td>
</tr>
<tr>
<td>POVs</td>
<td>993</td>
</tr>
<tr>
<td>Total</td>
<td>27,056</td>
</tr>
<tr>
<td>Proposed Action</td>
<td>CO₂</td>
</tr>
<tr>
<td>KC-46A Aircraft Operations</td>
<td>38,724</td>
</tr>
<tr>
<td>AGE</td>
<td>3,291</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>384</td>
</tr>
<tr>
<td>POVs</td>
<td>1,015</td>
</tr>
<tr>
<td>Total</td>
<td>43,413</td>
</tr>
<tr>
<td>Net Increase</td>
<td>16,359</td>
</tr>
<tr>
<td>PSD Threshold</td>
<td>100,000</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding.
GHG = greenhouse gas; CO₂ = carbon dioxide; CH₄ = methane; N₂O = nitrous oxide; CO₂e = carbon dioxide equivalent; AGE = aerospace ground equipment; POV = privately owned vehicle

4.1.2.2 Construction Emissions

The KC-46A beddown at Forbes Field Airport would require construction and renovation of existing airfield facilities, including hangars, buildings, and aprons and ramps. Air quality impacts resulting from the proposed construction activities would occur from (1) combustion emissions from heavy equipment and vehicles; and (2) fugitive dust emissions due to operation of equipment on exposed soil. Table 4.1.2-3 presents a summary of the annual construction emissions for the beddown of the KC-46A aircraft at Forbes Field Airport. As shown in Table 4.1.2-3, emissions would be below the PSD thresholds for all pollutants. For construction emissions, the project option with the greatest potential to emit was used in the analysis (see Table 2.3-5).
Table 4.1.2-3. Annual Construction Emissions Under Alternative #1

<table>
<thead>
<tr>
<th>Construction Project</th>
<th>CO</th>
<th>NO\textsubscript{x}</th>
<th>VOC</th>
<th>SO\textsubscript{x}</th>
<th>PM\textsubscript{10}</th>
<th>PM\textsubscript{2.5}</th>
<th>Total CO\textsubscript{2} Metric tons/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project #1 (Option 1) - Addition to Hangar 662</td>
<td>0.94</td>
<td>1.49</td>
<td>0.26</td>
<td>0.03</td>
<td>1.34</td>
<td>1.12</td>
<td>498.26</td>
</tr>
<tr>
<td>Project #2 (Option 2) - Addition to Building 665</td>
<td>1.52</td>
<td>2.42</td>
<td>0.43</td>
<td>0.05</td>
<td>2.45</td>
<td>1.88</td>
<td>808.91</td>
</tr>
<tr>
<td>Project #3 - Internal Renovations to Building 679</td>
<td>0.30</td>
<td>0.47</td>
<td>0.06</td>
<td>0.01</td>
<td>0.04</td>
<td>0.04</td>
<td>122.59</td>
</tr>
<tr>
<td>Project #4 (Option 2) - Pave Apron/Hydrants and Airfield Hold Ramp</td>
<td>5.38</td>
<td>12.98</td>
<td>1.32</td>
<td>0.66</td>
<td>10.93</td>
<td>4.59</td>
<td>3,319.19</td>
</tr>
<tr>
<td>Total Maximum Emissions</td>
<td>8.14</td>
<td>17.36</td>
<td>2.07</td>
<td>0.75</td>
<td>14.76</td>
<td>7.63</td>
<td>4,748.95</td>
</tr>
<tr>
<td>PSD Threshold</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>100,000</td>
</tr>
</tbody>
</table>

Note: Numbers may not add precisely due to rounding.
CO = carbon monoxide; NO\textsubscript{x} = oxides of nitrogen; VOC = volatile organic compound; SO\textsubscript{x} = oxides of sulfur; PM\textsubscript{10} = particulate matter less than or equal to 10 microns in diameter; PM\textsubscript{2.5} = particulate matter less than or equal to 2.5 microns in diameter; CO\textsubscript{2} = carbon dioxide; PSD = Prevention of Significant Deterioration

4.1.2.3 Summary of Impacts

Forbes ANGS is located in an attainment area for all criteria pollutants. While there would be increases in operational criteria pollutant emissions, they would be below the PSD threshold, and would not be significant. Operational GHG emissions would be within thresholds in the PSD tailoring. Impacts from construction emissions and operational HAP emissions would be negligible.

4.1.3 Safety

4.1.3.1 Ground Safety

Existing facilities at Forbes Field Airport for fire response and crash recovery meet KC-46A beddown requirements (Headquarters AMC and NGB 2013c).

Providing new and renovated facilities for the 190 ARW that support operational requirements of the KC-46A, and are properly sited with adequate space and a modernized supporting infrastructure would generally enhance ground and flight safety during required operations, training, maintenance and support procedures, security functions, and other activities conducted by the 190 ARW.

Proposed renovation and infrastructure improvement projects related to Alternative #1 would not impact aircraft take-off and landings or penetrate any RPZs. New building construction is not proposed, only existing building renovation and minor additions; therefore, construction activity would not result in any greater safety risk or obstructions to navigation. Operations would fall within the same general types as those that have historically occurred at Forbes Field Airport.
For example, the KC-46A would follow established local approach and departure patterns used. Therefore, flight activity and subsequent operations would not require changes to RPZs.

Planned construction at Forbes Field Airport comprises additions to existing buildings and internal modifications only; no new facilities are proposed. Therefore, none of the construction or demolition would be in conflict with the current QD arcs. Per Air Force Manual (AFMAN) 91-201, *Explosive Safety Standards*, there would be no public transportation route or inhabited building located within the proposed QD arcs. No explosives would be handled during construction or demolition activities. Therefore, no additional risk would be expected as a result of implementation of this alternative.

To support the aircraft beddown at Forbes ANGS, some facilities would require renovation/modification. However, no construction activities would involve any unusual or extraordinary techniques. During construction and modifications, standard construction safety procedures would be employed, and strict adherence to all applicable standard industrial safety requirements and procedures, including AFI 13-213, *Airfield Driving* (2011), would further minimize the relatively low risk associated with these construction activities.

The proposed construction projects meet all criteria specified in the ANG Handbook 32-1084, *Facility Space Standards*. AT/FP requirements have also been addressed to the extent practicable in all projects. Projects would use AT/FP site design standards for siting of facilities, parking, walkways, and other features. Renovations would bring the facilities into compliance with Unified Facilities Criteria (UFC) 4-022-01, *Security Engineering: Entry Control Facilities/Access Control Points* and UFC 4-010-01, *DoD Minimum Antiterrorism Standards for Buildings*, providing additional protection for the personnel based there.

4.1.3.2 Flight Safety

Although the KC-46A is a new aircraft, it is a military derivative of the commercial Boeing 767 aircraft. First flown commercially in 1982, more than 1,000 commercial Boeing 767 aircraft have been produced and it is a proven commercial airliner, freighter, and tanker already in service (Boeing 2012). Mishap statistics for the commercial Boeing 767 show 14 total aircraft losses (similar to a Class A military mishap definition) during its 31 year lifetime (Aviation Safety Network [ASN] 2013).

Although no facilities are proposed that would affect navigable airspace, Forbes ANGS would comply with 14 CFR Part 77, *Objects Affecting Navigable Airspace*, as appropriate, should they be selected to host the KC-46A.
To augment airborne training missions, pilots flying the KC-46A would use simulators extensively. Simulator training includes all facets of flight operations and comprehensive emergency procedures. The sophistication and fidelity of current simulators and related computer programs are commensurate with the advancements made in aircraft technology and are extremely realistic. These factors should minimize risk associated with mishaps due to pilot error.

Under Alternative #1, there would be an increase of approximately 39 percent 190 ARW operations (17 percent in total airfield operations) at Forbes Field Airport airfield operations compared to existing conditions. Even after the proposed increase, however, the total airfield operations would remain fewer than many of the state’s other commercial airfields, including Salina Regional Airport, Hutchinson Municipal Airport, Philip Billard Municipal (Topeka) Airport, and New Century (Olathe) AirCenter (FAA 2013). This increase in take-offs, landings, proficiency training, and other flights would result in a commensurate increase in the safety risk to aircrews and personnel.

The proposed increase in airfield flight operations would be expected to increase the opportunity for aircraft mishaps, including BASH incidents; however, the expected rate of mishaps or BASH incidents would not be expected to change from current conditions. Both the KC-135 and the commercial Boeing 767 have very low mishap rates, and with a new airframe and technological improvements, the KC-46A would be expected to have a similar safety record. In addition, current airfield safety procedures discussed previously would continue to be implemented and additional airfield flight operations would adhere to established safety procedures (190 ARW 2012b). In addition, KC-46A aircrews would be required to follow applicable procedures outlined in the 190 ARW BASH Plan (2012); adherence to this program has minimized bird/wildlife aircraft strikes. When risk increases, limits are placed on low-altitude flights and some types of training (e.g., multiple approaches, closed pattern work). Furthermore, special briefings are provided to pilots whenever the potential exists for greater bird/wildlife strike risks within the airspace; KC-46A pilots would also be subject to these procedures.

Given the low likelihood for an aircraft accident or BASH mishap to occur in the local airfield area and even lower likelihood for civilians to be impacted, impacts to safety in the vicinity of Forbes Field Airport as a result of Alternative #1 are expected to be negligible.

The KC-46A will have the capability to jettison fuel for emergency situations. Military policy is to avoid fuel jettisons, unless safety of flight dictates an immediate jettison, and requires senior officer approval before fuel jettison, unless under emergency situations. Records of KC-135 fuel jettison events reveal that such circumstances are rare, occurring in slightly less than two sorties per thousand (Headquarters AMC 2013). Additionally, unlike the KC-135, the KC-46A will
have the capability to land fully loaded with fuel so long as adequate runway length and braking capability are available (Headquarters AMC 2013), which could potentially lessen the need to jettison fuel in certain circumstances. Based on information provided by Boeing, landing the KC-46A above maximum landing weight is not prohibited; however, it does drive costly inspection requirements. To land above maximum landing weight routinely could reduce the fatigue life of the airplane (Headquarters AMC 2013).

4.1.3.3 Summary of Impacts

There would be a 39 percent increase in actual 190 ARW airfield operations (17 percent increase in total airfield operations) at Forbes Field Airport with commensurate increase in mishap and BASH potential. Construction activities would involve no unusual or extraordinary techniques. During construction, standard construction safety procedures would be employed, and strict adherence to all applicable standard industrial safety requirements and procedures would further minimize the relatively low risk associated with these construction activities. Impacts to safety would be expected to be negligible.

4.1.4 Soils and Water

4.1.4.1 Soils

Under Alternative #1, new construction would consist of four separate projects resulting in up to 258,149 SF (5.9 acres) of new construction footprint and no new impervious surface. There are two construction scenarios for the aircraft conversion under consideration; only one of these options for each project would be implemented. The total construction footprint analyzed represents the largest possible footprint of each of the options (Table 2.3-5). These proposed construction projects would meet all criteria specified in ANG Handbook 32-1084, Facility Space Standards.

Proposed construction under Alternative #1 would occur on Ladysmith silty clay loam (0 to 1 percent slopes). This soil type is rated by the NRCS Web Soil Survey as very limited for roads and small commercial building development due to high shrink swell potential, low strength, ponding, frost action, and depth to saturated zone (NRCS 2013). In addition, this soil is designated as Prime Farmland under the Farmland Protection Policy Act. However, there would be no new impervious surface as a result of Alternative #1 and construction would occur on previously paved ground. In addition, as the construction is for national defense purposes and the surrounding land is already in urban development, the Farmland Protection Policy Act does not apply to this alternative.
To minimize potential impacts to soil and water resources associated with erosion, runoff, and sedimentation during construction activity, standard construction practices as described in the 190 ARW SWPPP (190 ARW 2012a) would be implemented during and following the construction period. Such practices could include the use of well-maintained silt fences or straw wattles, minimizing surficial areas disturbed, stabilization of cut/fill slopes, minimization of earth-moving activities during wet weather, and covering of soil stockpiles, as appropriate. A site-specific and detailed SWPPP that coordinates the timing of soil disturbing activities with the installation of soil erosion and runoff controls is an effective way of controlling erosion while soil is exposed and subject to construction activity. An NOI must be filed with the state of Kansas to obtain coverage under the General Permit for Stormwater Runoff from Construction Activities (General Permit No. S-MCST-0312-1) prior to implementation of individual projects. Construction activities subject to this permit include clearing, grading, and disturbances to the ground such as stockpiling or excavation. Implementation of these measures, as necessary and appropriate, would ensure that impacts to earth resources as a result of implementation of Alternative #1 would be minimal.

4.1.4.2 Surface Water

As a result of implementation of Alternative #1, there would be up to 258,149 SF (5.9 acres) of temporary soil disturbance from the proposed facility construction; however, there would be no increase in impervious surface (Figure 4.1.4-1). In accordance with UFC 3-210-10, Low Impact Development (LID) (as amended, 2010) and Energy and Independence Security Act (EISA) Section 438, any increase in surface water runoff as a result of the proposed construction would be attenuated through the use of temporary and/or permanent drainage management features. However, EISA does not apply in this instance since there would be no increase in impervious surface. Temporary soil disturbance could result in localized increases in total suspended particulates to nearby surface waters. To minimize potential impacts associated with erosion, runoff, and sedimentation, standard construction practices as described above and in the 190 ARW SWPPP (190 ARW 2012a) would be implemented during and following the construction period. Implementation of these measures, as necessary and appropriate, would ensure that impacts to surface water as a result of implementation of Alternative #1 would be minimal.

4.1.4.3 Groundwater

As a result of Alternative #1, there would be no increase in the amount of impervious surface as a result of proposed construction. Therefore, impacts to groundwater would be negligible.
Figure 4.1.4-1. Surface Water Features and Proposed Construction in the Vicinity of Forbes ANGS
4.1.4.4 Floodplains

Proposed construction activities at the installation would not occur within the 100-year floodplain zone. As such, there would be no impacts to floodplains under this alternative.

4.1.4.5 Summary of Impacts

There would be approximately 5.9 acres of temporary soil disturbance and no new impervious surface as a result of the proposed construction. To minimize potential impacts associated with erosion, runoff, and sedimentation, standard construction practices would be implemented. In addition, as the construction is for national defense purposes and the surrounding land is already in urban development, the Farmland Protection Policy Act does not apply to this alternative. Therefore, impacts to soil and water resources would be negligible.

4.1.5 Biological Resources

4.1.5.1 Vegetation

Construction of new facilities associated with Alternative #1 at the 190 ARW installation would occur on currently paved areas and would not result in an increase of impervious surfaces. Therefore, there would be no impacts to the vegetation at the installation.

4.1.5.2 Wildlife

Under Alternative #1, impacts to wildlife due to construction would be minor. Noise and human activity associated with construction could evoke reactions to wildlife, including those that are protected under the MBTA, and may cause them to temporarily avoid the area. Disturbed nests in the immediate vicinity of construction activity would be susceptible to abandonment and depredation. A study conducted by Strasser and Heath (2013) suggested that cavity nesting birds, such as kestrels, who inhabit noisy environments may compensate for decreased auditory cues by increasing vigilance behavior, leading to changes in energy allocation or extended periods away from the nest during incubation. This behavior appeared to be followed, at a high rate, by nest abandonment. However, bird and wildlife populations in the vicinity of the airport where project components would occur are accustomed to elevated noise associated with aircraft and general military industrial use. As a result, indirect impacts from construction noise are expected to be minimal because the ambient noise levels within the vicinity are high under existing conditions and would be unlikely to substantially increase by the relatively minor and temporary nature of the proposed construction and modifications.

Under Alternative #1, impacts to wildlife due to proposed operations would be minor. Operational noise levels would be expected to decrease slightly from baseline with the
conversion to the KC-46A aircraft. Bird/wildlife aircraft strikes are also an inevitable hazard associated with military aircraft training. Under Alternative #1, the KC-46A would operate in the same airfield environment as the current aircraft. Annual operations for the KC-46A at Forbes Field Airport would be projected to increase by approximately 39 percent over the KC-135 baseline operations (17 percent increase in total airfield operations). An increase in airfield operations may result in a slight increased opportunity for bird/wildlife aircraft strikes to occur, including those with migratory birds. Adherence to the existing BASH program would minimize the risk of bird/wildlife aircraft strikes (see Section 4.1.3, Safety). The 190 ARW has developed procedures designed to minimize the occurrence of bird/wildlife aircraft strikes, and has documented detailed procedures to monitor and react to heightened risk of bird/wildlife aircraft strikes. When risk increases, limits are placed on low-altitude flight and some types of training (e.g., multiple approaches, closed pattern work) in the airport environment. Special briefings are provided to pilots whenever the potential exists for increased bird/wildlife aircraft strikes within the airspace.

4.1.5.3 Special Status Species

No special status species are currently known to occur on Forbes Field Airport and there is only a low potential for them to occur within the vicinity due to the lack of habitat. In addition, noise levels would be expected to decrease slightly from baseline with the conversion to the KC-46A aircraft. Therefore, under Alternative #1, there would be no effect to special status species. The USFWS Kansas Ecological Services Field Office stated in a letter sent on March 13, 2014 that they have no concerns regarding the Proposed Action.

4.1.5.4 Wetlands

There are no wetland areas that occur within the vicinity of the proposed project footprints. Therefore, no impacts to wetlands would occur as a result of Alternative #1.

4.1.5.5 Summary of Impacts

There would be no impacts to vegetation and wetlands under this alternative. Impacts to wildlife species from operational noise would be imperceptibly beneficial due to the slight decrease in noise. A 39 percent increase in 190 ARW (17 percent increase in total) airfield operations may result in a slight increased opportunity for bird/wildlife aircraft strikes to occur, including those with migratory birds. Impacts to wildlife due to construction would be negligible. No special status species or critical habitat is known to occur on Forbes Field Airport; therefore, there would be no impacts to these species.
4.1.6 Cultural Resources

Potential direct impacts to cultural resources examined in this analysis include effects to archaeological sites due to ground disturbing activities during construction or modification to buildings. Indirect impacts from an increase in personnel from 1,242 to 1,436 would be negligible as personnel would primarily be confined to the developed areas on the installation, which lack cultural resources.

4.1.6.1 Archaeological Resources

Based on previous archaeological surveys that identified no archaeological resources, the installation is considered to have low to no potential of containing buried archaeological resources (KS ANG 2008). The Kansas SHPO has concurred with these findings (Zollner 2008, 2013). In the unlikely event that archaeological or human remains are identified during construction, the 190 ARW would immediately cease all activities in the area of the discovery and contact the 190 ARW Environmental Manager who would contact a qualified archaeologist to evaluate the discovery. Because there are no significant archaeological resources (prehistoric or historic) on the 190 ARW installation, the implementation of Alternative #1 would have no impact to archaeological resources.

4.1.6.2 Architectural Resources

Two of the buildings proposed for alteration (Hangars 662 and 665) are not eligible for listing in the NRHP (Zollner 2008). The third building (Building 679) is eligible for listing in the NRHP. However, Building 679 has been demolished and completely rebuilt. These actions were mitigated by a Memorandum of Agreement between the Kansas SHPO, Kansas ANG, and 190 ARW for a previous project (Air National Guard Readiness Center et al. 2009). The current proposed Alternative #1 would not affect the existing agreement. The interpretive display located in the entry corridor of the new building that was the major component of the Memorandum of Agreement would not be altered (KS ANG 2010). Therefore, the NGB has determined that there would be no effect to historic properties as a result of the Proposed Action. The Kansas SHPO concurs that no historic properties would be affected by the Proposed Action (see Zollner 2013 in Appendix B3). Therefore, the implementation of Alternative #1 would have no impact to architectural resources.

4.1.6.3 Traditional Resources

There are no known traditional resources on the 190 ARW installation. Given the extensive development on the installation, it is considered unlikely that there are traditional resources located at the 190 ARW. Government-to-government consultation for this action was conducted with each federally-recognized Tribe in recognition of their status as sovereign nations, and to
provide information regarding tribal concerns per Section 106 of the National Historic Preservation Act as well as information on traditional resources that may be present on or near the installation. Two responses from federally-recognized tribes have been received (the Kaw Nation and the Wichita and Affiliated Tribes). The Kaw Nation and the Wichita and Affiliated Tribes stated that they have no objection to the Proposed Action. Letters and written correspondence to Tribes were followed up with telephone calls and emails in an effort to increase accessibility and encourage communication in the event a Tribe would have any concerns regarding the Proposed Action or land below the affected or proposed airspace areas. Correspondence sent to the tribes and follow-up efforts are located in Appendix B2. Additional efforts were made to contact non-responsive tribes without success (see Appendix B2). While the NGB and the USAF values its relationship with all tribes and will continue to consult on other planning efforts or matters of known or potential interest to tribes, Section 106 consultation on the KC-46A MOB 2 proposed alternative at Forbes ANGS is now complete.

4.1.6.4 Summary of Impacts

Construction activities associated with this alternative would be limited to the developed areas of the installation, primarily in the areas of the aircraft hangars and airfield pavements, where no archaeological resources are known. Interior modifications to Building 679 would not affect the NRHP-eligibility of the building. Other architectural resources are not eligible for listing in the NRHP. The Kansas SHPO has concurred with the determination that no historic properties would be affected (Zollner 2013). No traditional resources are known to occur at the installation. Therefore, no impacts to cultural resources at the 190 ARW installation are anticipated under Alternative #1.

4.1.7 Land Use

The primary source of impacts to land use resulting from Alternative #1 would be from noise. As shown in Table 4.1.7-1 and Figure 4.1.7-1, areas outside of the airport boundaries currently exposed to DNL of 65 dB to 70 dB would decrease by 55 acres, overall. By zoning districts, the PUD area affected by DNL of 65 dB to 70 dB would decrease by approximately 3 acres; Industrial areas would decrease by approximately 8 acres; and Residential Reserve areas would decrease by approximately 42 acres. No houses, churches, schools, or other known noise sensitive receptors would be located within the 65 dB DNL noise contour. Therefore, Alternative #1 is compatible with current land use and zoning designations and would result in minor beneficial impacts. A more detailed discussion of aircraft operations and noise can be found in Section 4.1.1, Noise.
Table 4.1.7-1. Change in Acres Affected by Noise Levels Above 65 dB DNL Outside the Forbes Field Airport Boundary

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Baseline Total (acres)</th>
<th>Proposed Total (acres)</th>
<th>Change Total (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned Unit Development</td>
<td>24.0</td>
<td>21.4</td>
<td>-2.6</td>
</tr>
<tr>
<td>Industrial</td>
<td>36.0</td>
<td>28.3</td>
<td>-7.7</td>
</tr>
<tr>
<td>Residential Reserve</td>
<td>97.4</td>
<td>55.4</td>
<td>-42.0</td>
</tr>
<tr>
<td>Non-designated</td>
<td>8.1</td>
<td>5.8</td>
<td>-2.3</td>
</tr>
<tr>
<td>Total Area</td>
<td>165.5</td>
<td>110.9</td>
<td>-54.6</td>
</tr>
</tbody>
</table>

4.1.7.1 Summary of Impacts

While the number of total annual airfield operations would increase by 4,110 (17 percent), the acreage within the 65 dB DNL (and greater) noise contour would decrease by 41 acres (55 acres off airport property). Current land use and zoning designations would not change due to the basing of the KC-46A. This alternative would be compatible with current land use and zoning designations and would result in imperceptibly beneficial impacts by reducing the off-airport areas currently exposed to noise levels between 65 dB and 70 dB DNL. Airport Hazard Areas would not be affected.
Figure 4.1.7-1. DNL Noise Contours and Land Use Under Alternative #1 at Forbes Field Airport

4.1.8 Infrastructure and Transportation

4.1.8.1 Potable Water

Water consumption would be expected to increase slightly under Alternative #1 as a result of the increase in personnel; however, an increase in 181 personnel on the installation would not be expected to impact regional water supply. Additionally, the demand for water (e.g., if used to control dust) could also increase during demolition and construction phases. However, this increase would be temporary and intermittent and would not be expected to impact regional water supply.

4.1.8.2 Wastewater

Wastewater generation would be expected to increase slightly as a result of the increase in 181 personnel on the installation. However, there have been no deficiencies identified with the existing system, and it is expected that the existing sanitary sewer system is generally adequate to serve the facilities proposed under this alternative.

4.1.8.3 Stormwater

Under Alternative #1, there would be up to 258,149 SF (5.9 acres) of temporary soil disturbance and no new impervious surface as a result of proposed construction. The proposed construction activities could temporarily impact the quality of stormwater runoff (see Section 4.1.4, Soils and Water); however, through implementation of appropriate standard construction practices (as described previously), preventative maintenance, and periodic inspections and sampling to detect risk to stormwater, especially during active construction activity, no impacts would be expected to the existing stormwater drainage system as a result of the proposed construction.

4.1.8.4 Electrical and Natural Gas Systems

Demand for electricity and natural gas would be expected to increase slightly as a result of the increase in personnel, and the building space and facilities to be constructed would require additional electricity. However, any new facilities and additions associated with Alternative #1 would be implemented with more energy efficient design standards and utility systems than are currently in place. In addition, construction projects would incorporate LEED and sustainable development concepts to achieve optimum resource efficiency, sustainability, and energy conservation. Therefore, average energy consumption would be expected to remain consistent or decrease compared to energy consumption associated with existing facilities.
Construction activity associated with Alternative #1 could result in some temporary interruption of utility services during construction. These impacts would be temporary, occurring briefly during active construction periods. In addition, the demand for energy (primarily electricity) could increase slightly during demolition and construction phases. The energy supply at the installation and in the region is adequate and would not be affected by this temporary increase in demand.

4.1.8.5 Solid Waste Management

The building space and facilities to be constructed would generate construction and demolition debris requiring landfill disposal. Construction activities would result in approximately 258,149 SF of additions and alterations to existing facilities. Using a multiplier provided by the USEPA to determine solid waste generation, it was estimated that proposed renovations at Forbes ANGS would generate 3,043,577 pounds (1,522 tons) of renovation debris requiring landfill disposal (USEPA 2009).

Solid waste generated as a result of the proposed construction could result in impacts to solid waste management facilities in the area. The Rolling Meadows Landfill has a remaining life expectancy of 15 years and a permitted throughput of 321,000 tons per year (Rolling Meadows Waste Management 2009). The 1,522 tons of proposed construction debris generated at Forbes ANGS would represent approximately 0.5 percent of the yearly capacity of the landfill. In addition, Shawnee County has a remaining municipal solid waste capacity of 20-40 years (Kansas Department of Health and Environment 2010). Impacts to local landfills would not be expected to exceed the permitted throughput or contribute significantly to the remaining capacity.

Off-installation contractors completing construction and demolition projects at the 190 ARW installation would be responsible for disposing of waste generated from these activities. Contractors would be required to comply with federal, state, and local regulations for the collection and disposal of municipal solid waste from the installation. Much of this material can be recycled or reused, or otherwise diverted from landfills. EO 13514, Federal Leadership in Environmental, Energy, and Economic Performance, sets a target diversion rate of 50 percent for recycling and waste diversion for DoD facilities by 2015, including construction and demolition waste; compliance with EO 13514 would further minimize the increase in solid waste generation as a result of the proposed construction. All non-recyclable construction and demolition waste would be collected in a dumpster until removal. Construction and demolition waste contaminated with hazardous waste, ACM, LBP, or other undesirable components would be managed in accordance with AFI 32-7042, Waste Management (2009).
4.1.8.6 Transportation

Construction equipment would be driven to proposed construction areas and would be kept on-site for the duration of the respective activity. Construction workers would drive daily in their personal vehicles to and from the construction site. In general, construction traffic would result in increases in the use of on-installation roadways during construction activities; however, increases would be temporary and intermittent, occurring only during active construction periods.

The number of authorized personnel on the installation would increase by 181 under Alternative #1 (see Table 2.3-6). The increase in personnel would create a potential 181 additional one-way vehicle trips to and from the installation during morning and evening peak periods for these additional personnel. Assuming that each person makes two trips per day, the implementation of Alternative #1 would add an additional 362 trips onto the existing roadway network after the construction phase is complete. However, regional roads used to access the installation as well as those located on the installation have sufficient capacity to manage this increase in traffic without substantial impacts to circulation. Therefore, impacts to transportation infrastructure would not be significant under Alternative #1.

4.1.8.7 Summary of Impacts

Impacts from this alternative would not be expected since there have been no deficiencies identified with the existing systems, and it is expected that the existing infrastructure is generally adequate to serve the facilities and increased personnel proposed under this alternative. Impacts to infrastructure resulting from construction would be negligible since any interruption of utility services or increase demand on infrastructure would be temporary and infrequent. Impacts to infrastructure would be negligible.

4.1.9 Hazardous Materials and Waste

4.1.9.1 Hazardous Materials

A Hazardous Materials Management Program has been developed for the KC-46A program. Training activities and other functions would be expected to remain similar between the KC-46A and existing KC-135 aircraft. The types of hazardous materials needed for maintenance and operation of the KC-46A would be expected to remain similar to those currently used for maintenance and operation of the KC-135 fleet. However, unlike the KC-135, the KC-46A aircraft will be free of ozone depleting substances (ODSs). ODSs were typically used as part of the fire suppression systems on aircraft; ODS use and/or storage would no longer be required under Alternative #1.
The KC-46A aircraft has been designed with a focus on reduction of hazardous materials such that hazardous materials currently required for maintenance, operations, and materials on or associated with the new aircraft would be less than or equal to the existing aircraft (Boeing 2011). In addition, it is anticipated that the amount of hazardous waste generated for one KC-46A aircraft for maintenance activities would be slightly less than that generated for one KC-135 aircraft since the KC-46A has two engines as opposed to the four engines for the KC-135. Furthermore, the KC-46A is a newer aircraft and is expected to need less maintenance than the older KC-135 aircraft.

Under Alternative #1, the total number of annual flying hours for the 190 ARW would increase from 4,868 to 8,040 (a 65 percent increase); therefore, the throughput of petroleum substances (e.g., fuels, oils) used during operations would be expected to increase commensurately from what is currently used to maintain the KC-135 fleet (see Appendix A, Section A.1, for more details). Additionally, it is expected that short-term increases would be realized in terms of the quantity of fuel used during construction activities, because various fuels (e.g., diesel, gasoline) would be required to run earth moving equipment and power tools and to provide electricity and lighting as conditions warrant. Procedures for hazardous material management established for the 190 ARW installation would continue to be followed in future operations associated with Alternative #1 and as required during all construction and renovation activities.

Toxic Substances

Under Alternative #1, additions to Hangars 662 and 665 are proposed, and internal renovations to Building 679 are proposed. ACM is known to occur in Hangar 665 and Building 679. An LBP survey has not been conducted at the 190 ARW installation. However, Hangar 662 and 665, and Building 669 were constructed prior to 1978 and therefore may contain LBP. Any structures proposed for demolition, addition, or retrofit would be inspected for ACM and LBP according to established ANG procedures prior to any renovation or demolition activities. All ACM would be properly removed and disposed of prior to or during demolition in accordance with 40 CFR 61.40 through 157. All LBP would be managed and disposed of in accordance with the Toxic Substances Control Act (TSCA), Occupational Safety and Health Administration (OSHA) regulations, Kansas requirements (regarding site work practices for buildings with LBP), and established ANG procedures. Materials, especially discarded oil products, would be screened for PCB contamination prior to disposal.

4.1.9.2 Hazardous Waste Management

The type of hazardous waste streams generated by KC-46A operations would be expected to remain similar to those being generated by the existing KC-135 aircraft, with the exception of ODSs. Additionally, the two aircraft require the same types of hazardous materials for their
maintenance and operations (e.g., fuels, oils). Under Alternative #1, the total number of flying hours for the 190 ARW would increase approximately 65 percent; therefore, hazardous waste streams would be expected to increase commensurately (see Appendix A, Section A.9, for more details). However, the increase in hazardous waste streams is supportable by the current infrastructure at the installation. Hazardous waste generation (e.g., used oil, used filters, oily rags, etc.) would continue to be managed in accordance with the installation’s Hazardous Waste Management Plan and all applicable federal, state, and local regulations. Additionally, no changes to the installation’s small quantity generator status would be expected to occur due to the increase in hazardous waste generation from aircraft operations.

4.1.9.3 Environmental Restoration Program

In accordance with AFI 32-7020, The Environmental Restoration Program, construction, modifications and/or additions to existing buildings can occur on or in proximity to existing ERP sites. Accordingly, the appropriate organizations (e.g., installation planners, ERP managers, design engineers) must consider a compatible land use based on current site conditions and the selected or projected remedial action alternatives. Construction should be sited and designed to minimize life-cycle costs to include those associated with impacts from existing contaminated sites. If the potential for uncharacterized ERP sites exist, the installation is responsible for identifying existing contamination at the proposed construction sites to avoid unknowingly locating construction projects in areas with contamination. The installation is responsible for performing necessary environmental baseline surveys, accomplishing environmental impact analysis process requirements, and for otherwise informing itself about existing site conditions and their associated cost impacts in preparation for a construction project. When warranted by the site history, environmental restoration funds may be used to accomplish Resource Conservation and Recovery Act (RCRA) facility assessments, or preliminary assessments and site inspections undertaken in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, or similar site investigations in accordance with applicable state laws for suspected releases. To the extent that a construction project generates actions to address contamination, or a need to change the timing of ERP-generated actions to address contamination, the costs of such actions are not Environmental Restoration Account-eligible and shall be funded as part of the construction project. This includes the handling, mitigation, and disposal or other disposition of contamination discovered before or during the construction activity.

The removal and disposal of contamination unexpectedly encountered within the construction project footprint during the execution of a construction project will be undertaken as part of the construction project using construction project funds which may include other military construction (MILCON) funds reprogrammed to a MILCON construction project. Construction
contractor costs (such as direct delay costs and unabsorbed or extended overhead) incidental to discovery and removal of the contamination will be construction project funded to the extent that the government is responsible and liable for such costs.

Vapor intrusion should be evaluated when volatile chemicals are present in soil, soil gas, or groundwater that underlies existing structures or has the potential to underlie future buildings and there may be a complete human exposure pathway. Due to their physical properties, volatile chemicals can migrate through unsaturated soil and into the indoor air of buildings located near zones of subsurface contamination.

One site, ERP Site 8, overlaps with a portion of the proposed renovation of the existing pervious surfaces on the parking apron (Figure 4.1.9-1). This site is closed and monitoring conducted during 1990-1993 was completed with no contaminants reported above detection limits; therefore, it is not expected to pose a vapor intrusion concern. However, it is recommended that a vapor intrusion analysis/testing is completed prior to construction to investigate any potential concern. If testing indicates a vapor intrusion concern, the installation would implement practices in accordance with site-specific vapor mitigation design considerations.

If contaminated media (e.g., soil, vapor, groundwater) are encountered during the course of site preparation (e.g., clearing, grading) or site development (e.g., excavation for installation of building footers) for proposed construction activities, work would cease until 190 ARW Program Managers establish an appropriate course of action for the construction project to ensure that federal and state agency notification requirements are met, and to arrange for agency consultation as necessary if existing ERP sites are affected. Also, prior to construction activities, the construction contractors would be notified of the nature and extent of known contamination so that they can inform their employees in advance of on-site activities and take appropriate precautions to protect health and safety, and to prevent the spread of contamination. The construction contractors would be responsible for ensuring their workers follow appropriate health and safety requirements.

4.1.9.4 Summary of Impacts

There would not be an increased risk of hazardous waste releases or exposure from this alternative. Any LBP or ACM that may be found in buildings that are scheduled for construction activities would be managed per applicable USAF regulations. There would be no expected impact from ERP sites, as the ERP site that overlaps proposed construction is closed. However, if contaminated media were encountered during the course of site preparation or site development, work would cease until 190 ARW Program Managers establish an appropriate course of action for the construction project to ensure that federal and state agency notification requirements are met. Impacts relative to hazardous materials and wastes would be negligible.
Figure 4.1.9-1. ERP Sites and Proposed Construction in the Vicinity of Forbes ANGS
4.1.10 Socioeconomics

Under Alternative #1, construction activities would be contained entirely within the boundaries of Forbes Field Airport. Economic activity associated with proposed construction activities at the 190 ARW installation, such as employment and materials purchasing, would provide short-term economic benefits to the local economy. However, short-term beneficial impacts resulting from construction payrolls and materials purchased would be negligible on a regional scale.

The proposed aircraft beddown and related activities would result in a change in staffing requirements for the 190 ARW. Currently, the 190 ARW is authorized 1,242 personnel. Under Alternative #1, the KC-46A mission would add an additional 194 military positions (increase in 212 full-time positions and reduction of 18 traditional Guard positions) (see Table 2.3-6). Combined with their approximately 264 family members, this would represent less than 0.1 percent of Shawnee County population. Of the 264 family members, approximately 114 would be anticipated to be of school age. The students entering the local schools would be expected to be enrolled in various grades and live in different areas within Shawnee County. It is anticipated that there is enough capacity within the schools in Shawnee County to absorb this minimal increase in school age children.

An increase in 194 military personnel positions would amount to an increase of approximately 16 percent to the existing 190 ARW personnel. Total payroll associated with the 212 additional full-time personnel would amount to an estimated annual salary increase of approximately $16 million for full-time employees.

All 190 ARW personnel live off-installation as there is no on-installation housing. A conservative scenario would result in 194 homes purchased at the same time as personnel relocate to the area. This would represent less than 0.2 percent of the total housing units in Shawnee County. However, not all the military personnel who would relocate would own homes.

4.1.10.1 Summary of Impacts

Impacts to socioeconomics resulting from construction would be beneficial and negligible resulting from construction payrolls and materials purchased. In addition, impacts from proposed operations would be beneficial and minor due to the proposed increase in personnel.
4.1.11 Environmental Justice and the Protection of Children

4.1.11.1 Minority and Low-Income Populations

Under Alternative #1, there would be no residential populations, including no minority or low-income populations, located within the vicinity of Forbes Field Airport exposed to 65 dB DNL or above. Therefore, there would be no disproportionate impacts to minority or low-income populations in the vicinity of Forbes Field Airport.

4.1.11.2 Protection of Children

There are no facilities on the installation where children may be encountered on a regular basis. Currently there are no off-installation Kindergarten through Grade 12 schools that are exposed to 65 dB DNL or above. Under Alternative #1 there would be no new Kindergarten through Grade 12 schools exposed to 65 dB DNL or above. Therefore, under Alternative #1 there would be no special health or safety risks to children.

4.1.11.3 Summary of Impacts

Given that the acreage within the 65 dB DNL noise contour would be reduced, there would be no residential populations, including no minority or low-income populations, and no additional schools located within the vicinity of Forbes Field Airport exposed to 65 dB DNL or above; thus, there would be no disproportionate impacts to minority or low-income populations in the vicinity of Forbes Field Airport. In addition, there would be no special health or safety risks to children.
4.2 ALTERNATIVE #2 -- JOINT BASE MCGUIRE-DIX-LAKEHURST

4.2.1 Noise

In this section, noise associated with flying operations and construction activities related to Alternative #2 are considered and compared with baseline conditions to assess potential impacts. Details of the methodologies used for this section can be found in Appendix A, Section A.1.2.

The DNL noise contours for this alternative were generated using the NOISEMAP computer model and represent the most current noise data available for establishing baseline conditions and for which to analyze changes to the noise environment in the McGuire Field ROI. The DNL noise contours for the KC-46A under Alternative #2 were also generated using NOISEMAP through the removal of all KC-135 operations and the insertion of the proposed KC-46A operations using the substitute KC-46A noise data and flight profile data provided by AFCEC and applying the data to the current KC-135 flight tracks and operational procedures.

4.2.1.1 Aircraft Noise

Under Alternative #2, 12 KC-46As would be based at JB MDL, replacing the current 8 KC-135 aircraft. There would be no change in the number or type of other aircraft using the airfield and KC-46A aircrews would use the same flying procedures (e.g., ground tracks, altitude profiles) currently used by KC-135 aircrews. Aircrews associated with the KC-46A would continue to practice closed patterns, including tactical procedures in which the aircraft climbs or descends in the immediate vicinity of the airfield. Tactical training prepares aircrews for operations in forward operating locations in which flying at low-altitudes over land not controlled by friendly forces exposes the aircraft to ground-based threats. This procedure is currently being flown with the KC-135. Aircrews associated with the KC-46A would continue to practice closed patterns, including tactical procedures; however, most tactical procedures would be accomplished in the simulator or at other locations away from JB MDL. The percentage of aircraft operations occurring during the night (10 p.m. to 7 a.m.) would decrease from that in the baseline conditions. Under Alternative #2, JB MDL would have an increase in flying hours generating an increase in KC-46A airfield operations.

Following the aircraft beddown under Alternative #2, the 108 WG would have an increase in total flying hours resulting in 1,508 sorties being flown at McGuire Field. This would be an increase of 81 percent over the baseline 834 sorties identified in the McGuire Field Noise Study (it is assumed that the same percentage of the sorties found under current baseline conditions would be flown at McGuire Field under this alternative) (JB MDL 2013a). Based on 1,508 annual home-station sorties and an average of 11.68 operations per sortie, there would be 17,608 annual home-station operations, or an additional 9,268 airfield operations annually at McGuire
Field (an increase of 111 percent for the 108 WG, and 15 percent increase in total JB MDL annual operations) (Table 4.2.1-1). This would increase the average daily airfield operations from 23 to 48. The 108 WG KC-46A operations would be approximately 24 percent of all aircraft operations at the airfield.

All operations would remain as described under existing conditions (with the exception of a decrease in published night operations [JB MDL 2013a]); however, the KC-135 would be replaced by the KC-46A. There would be no changes expected to departure/arrival patterns and tracks, and use of runways. Current noise abatement procedures would continue to be followed as documented in Section 3.2.1.4.

Table 4.2.1-1. McGuire Field Annual Aircraft Operations with Proposed KC-46A

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>DEPARTURES</th>
<th>ARRIVALS</th>
<th>TOTAL</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night<sup>2</sup></td>
<td>Day</td>
<td>Night<sup>2</sup></td>
</tr>
<tr>
<td>KC-46A</td>
<td>8,047</td>
<td>764</td>
<td>7,863</td>
<td>934</td>
</tr>
<tr>
<td>Other Aircraft<sup>3</sup></td>
<td>18,803</td>
<td>8,316</td>
<td>15,855</td>
<td>11,293</td>
</tr>
<tr>
<td>Total</td>
<td>26,850</td>
<td>9,080</td>
<td>23,718</td>
<td>12,227</td>
</tr>
</tbody>
</table>

Notes: 1. Includes Closed Patterns (which count as two airfield operations). 2. Night – Between 10 p.m. and 7 a.m. for environmental night. 3. Other Based aircraft and Transient Aircraft (multiple type aircraft) including: KC-10, C-17, and C-32.

KC-135 aircraft operations per average annual day (arrivals and departures [2.28] and closed patterns [9.14]) would increase with the KC-46A to 11.6 arrivals and departures and 12.5 closed patterns/day. There would be approximately 10 percent of the KC-46A airfield operations flown during environmental night. The total number of operations flown by all other aircraft at JB MDL would not change from previously identified airfield activities. There would be no change to any other aircraft types or aircraft flight tracks and profiles from the baseline condition.

Figure 4.2.1-1 depicts the noise exposure area from aircraft operations after the conversion from the current 8 KC-135 aircraft to 12 KC-46A aircraft, and Figure 4.2.1-2 compares baseline noise contours with Alternative #2 contours. The aircraft operations modeled include all current based and transient aircraft operations depicted in the 2012 JB MDL noise update. Table 4.2.1-2 shows changes to the acreage of land within each noise contour under Alternative #2.

Table 4.2.1-2. Land Areas within DNL Contours at JB MDL Affected by DNL

<table>
<thead>
<tr>
<th>Noise Contour (dB DNL)</th>
<th>BASELINE (KC-135)</th>
<th>ALTERNATIVE #2 (KC-46A)</th>
<th>Change Total (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On Base</td>
<td>Off Base</td>
<td>Total</td>
</tr>
<tr>
<td>65-70</td>
<td>1,375</td>
<td>311</td>
<td>1,686</td>
</tr>
<tr>
<td>70-75</td>
<td>1,186</td>
<td>21</td>
<td>1,207</td>
</tr>
<tr>
<td>75-80</td>
<td>370</td>
<td>0</td>
<td>370</td>
</tr>
<tr>
<td>80-85</td>
<td>222</td>
<td>0</td>
<td>222</td>
</tr>
<tr>
<td>>85</td>
<td>76</td>
<td>0</td>
<td>76</td>
</tr>
<tr>
<td>Total</td>
<td>3,229</td>
<td>332</td>
<td>3,561</td>
</tr>
</tbody>
</table>

Notes: DNL = Day Night Average Sound Level; dB = decibel
Figure 4.2.1-1. DNL Noise Contours Under Alternative #2 at McGuire Field

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS

Chapter 4 – Environmental Consequences

JB MDL
Figure 4.2.1-2. Comparison of Baseline and Alternative #2 DNL Noise Contours at McGuire Field
Under Alternative #2, the DNL noise contours would expand slightly in all directions from the baseline DNL noise contours. Overall, the number of acres contained within the 65 dB DNL and greater exposure area would increase by approximately 1,831 acres, or 51 percent, but would remain primarily on McGuire Field with approximately 751 of these acres off the base property (an increase of 419 acres off base). Information regarding number of people residing in this area can be found in Section 4.2.11, *Environmental Justice and the Protection of Children*; and information regarding the area of residential use is located in Section 4.2.7, *Land Use*.

Percent of the Population Expected to be Highly Annoyed

The percentage of the population expected to be highly annoyed under Alternative #2 would increase slightly from baseline conditions because there would be an expected 48 additional individuals living in residences exposed to levels above a DNL of 65 dB.

Single Event Sound Analysis

Under Alternative #2, the flying profiles would not change, and the scheduled flying program would not change. As shown in Appendix A, Table A.1-1 provides representative SELs, indicating that the SEL for individual landings by the KC-46A would be 5 dB less while take-offs would be 1 dB more than the KC-135. Under Alternative #2, flights would be scheduled for similar time periods as currently flown during the morning and afternoons, with less than 10 percent of flights occurring during environmental night (after 10 p.m. and before 7 a.m.).

Potential Hearing Loss

As shown in Table 4.2.1-2, there is no property off the JB MDL that falls within the 80+ dB DNL noise contour; therefore, there would be no potential hearing loss risk associated with these areas. In addition, the on-base housing area lies outside of the 65 dB DNL contour; therefore, there would be no potential hearing loss risk associated with these areas.

4.2.1.2 Construction Noise

There would be some minor temporary noise from construction equipment associated with construction activities that would occur intermittently during the construction period (beginning FY 2015). Typical noise levels from heavy equipment range from 69 to 84 dB at 100 feet from the source (FHWA 2006) (see Appendix C, *Noise*, Section A.1.2.2). Aviation-related activities at JB MDL dominate the local noise environment. Equipment used during the facility construction would contribute little to the general background noise levels around the airfield and would be only temporary. Therefore, impacts from construction under Alternative #2 would be negligible.
4.2.1.3 Summary of Impacts

The number of annual airfield operations would increase by 9,268 (111 percent increase in 108 WG operations, 15 percent increase in total airfield operations), and the acreage within the 65 dB DNL (and greater) noise contour would increase by 1,831 acres. Of this increase in acreage, 419 acres would be off DoD-controlled property. There would be no potential for hearing loss off the airport and only a slight increase in the percent of the population highly annoyed. Construction noise would be localized and temporary and would not add to the overall noise environment. Impacts from noise would be negligible.

4.2.2 Air Quality

The air quality analysis estimated the magnitude of emissions that would result from implementation of the proposed KC-46A construction and operational activities at the 108 WG installation. The estimation of proposed operational emissions is based on the net change in emissions between existing aircraft operations and projected KC-46A operations.

As discussed in Appendix A.2.3, air quality impacts from the beddown of the KC-46A aircraft at JB MDL were reviewed for significance relative to the PSD threshold for new major sources for attainment pollutants, and the General Conformity de minimis thresholds for nonattainment pollutants. Because the project region within Burlington and Ocean counties are part of the Philadelphia-Wilmington-Atlantic City nonattainment area for O₃ (marginal nonattainment), and is a maintenance area for PM₂.₅ and CO, the de minimis threshold of 100 tpy for O₃ precursors NOₓ and VOCs, PM₂.₅, and CO was used as an indicator of the potential significance of the emissions from the KC-46A conversion. For attainment pollutants PM₁₀ and SO₂, the PSD threshold of 250 tpy (100,000 tpy for GHGs) was used as an indicator of the potential significance of the emissions from Alternative #2.

4.2.2.1 Operational Emissions

Sources associated with operation of the proposed KC-46A beddown at the 108 WG installation include (1) operations and engine maintenance/testing of aircraft; (2) onsite POVs; (3) offsite POV commutes; and (4) AGE. It was assumed that other sources, including non-road mobile equipment, mobile fuel transfer, and stationary source emissions would be unchanged. Operational data used to calculate projected KC-46A aircraft emissions were obtained from the data used in the project noise analysis. Factors used to calculate combustion emissions for the KC-46A aircraft are based on emissions data developed by Pratt and Whitney for the PW4062 engine (International Civil Aviation Organization 2013). The operational times in mode for the KC-46A engine are based on those currently used for the KC-135 aircraft (AFCEC 2013). The analysis of proposed aircraft operations is limited to operations that occur within the lowest 3,000 feet of the atmosphere, as this is the typical depth of the atmospheric mixing layer where the release of aircraft emissions would affect ground-level pollutant concentrations.
Emissions from AGE were estimated based on the methodology recommended in the *Air Emissions Guide for Air Force Mobile Sources* (AFCEC 2013). Emissions from POVs were estimated based on total personnel for the existing and proposed scenarios, using emission factors for vehicles from AFCEC 2013.

Table 4.2.2-1 summarizes the annual operational emissions that would result from KC-46A operations at 108 WG installation. Table 4.2.2-1 also presents the net emissions increase associated with the beddown of the KC-46A aircraft at JB MDL. As shown in Table 4.2.2-1, the net emissions increases are below the PSD/de minimis thresholds for all pollutants except NO\textsubscript{x}. Emissions of NO\textsubscript{x} would exceed the de minimis threshold, and this alternative would therefore require a Conformity Determination under the General Conformity Rule (Appendix F).

The ANG has prepared a Draft Conformity Determination that demonstrates that emissions associated with Alternative #2 would be within the SIP NO\textsubscript{x} emissions budget for McGuire AFB (now JB MDL), should this alternative be selected. The ANG is coordinating with the NJDEP regarding the 2011 SIP emissions budget and the proposed increase in NO\textsubscript{x} emissions associated with Alternative #2 to ensure that the 2011 budget is still effective. If Alternative #2 is selected, it is anticipated that the ANG will obtain an affirmative General Conformity Determination prior to signing of the ROD.

Table 4.2.2-1. Comparison of Baseline and Proposed Annual Operational Emissions, 108 WG Installation

<table>
<thead>
<tr>
<th>Baseline</th>
<th>VOC</th>
<th>CO</th>
<th>NO\textsubscript{x}</th>
<th>SO\textsubscript{2}</th>
<th>PM\textsubscript{10}</th>
<th>PM\textsubscript{2.5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 Aircraft Operations</td>
<td>3.21</td>
<td>49.03</td>
<td>83.34</td>
<td>7.43</td>
<td>0.39</td>
<td>0.39</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.01</td>
<td>0.09</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.14</td>
<td>2.01</td>
<td>0.55</td>
<td>0.09</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>POVs</td>
<td>5.12</td>
<td>110.72</td>
<td>5.20</td>
<td>0.07</td>
<td>0.21</td>
<td>0.12</td>
</tr>
<tr>
<td>Total</td>
<td>8.48</td>
<td>161.78</td>
<td>89.18</td>
<td>7.59</td>
<td>0.61</td>
<td>0.53</td>
</tr>
<tr>
<td>Proposed Action</td>
<td>VOC</td>
<td>CO</td>
<td>NO\textsubscript{x}</td>
<td>SO\textsubscript{2}</td>
<td>PM\textsubscript{10}</td>
<td>PM\textsubscript{2.5}</td>
</tr>
<tr>
<td>KC-46A Aircraft Operations</td>
<td>26.19</td>
<td>100.37</td>
<td>294.03</td>
<td>17.32</td>
<td>1.13</td>
<td>0.96</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.02</td>
<td>0.17</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>1.53</td>
<td>5.23</td>
<td>1.38</td>
<td>0.09</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>POVs</td>
<td>4.75</td>
<td>126.34</td>
<td>3.97</td>
<td>0.09</td>
<td>0.22</td>
<td>0.12</td>
</tr>
<tr>
<td>Total</td>
<td>32.48</td>
<td>231.97</td>
<td>299.54</td>
<td>17.58</td>
<td>1.38</td>
<td>1.11</td>
</tr>
<tr>
<td>Net Increase</td>
<td>24.01</td>
<td>70.19</td>
<td>210.36</td>
<td>9.99</td>
<td>0.77</td>
<td>0.58</td>
</tr>
<tr>
<td>MOB 2 Net Emissions Increase Fraction of Existing Emissions</td>
<td>2.83</td>
<td>0.43</td>
<td>2.36</td>
<td>1.32</td>
<td>1.26</td>
<td>1.09</td>
</tr>
<tr>
<td>PSD/de minimis Threshold</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>250</td>
<td>250</td>
<td>100</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding.
CO = carbon monoxide; CO\textsubscript{2e} = carbon dioxide equivalent; NO\textsubscript{x} = oxides of nitrogen; PM\textsubscript{10} = particulate matter less than or equal to 10 microns in diameter; PM\textsubscript{2.5} = particulate matter less than or equal to 2.5 microns in diameter; SO\textsubscript{2} = sulfur dioxide; VOC = volatile organic compound; AGE = aerospace ground equipment; POV = privately owned vehicle; PSD = Prevention of Significant Deterioration
In addition to criteria pollutant emissions, the beddown of the KC-46A aircraft under Alternative #2 would result in emissions of HAPs and GHGs. Operational activities would result in a net increase of HAPs that is below 1 ton per year.

Table 4.2.2-2 summarizes the annual operational GHG emissions that would result from KC-46A operations at JB MDL, along with the net increase in comparison with the baseline. As shown in Table 4.2.2-2, emissions are below the PSD thresholds for GHGs.

Table 4.2.2-2. Comparison of Baseline and Proposed Annual Operational GHG Emissions, 108 WG

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Proposed Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ANNUAL GHG EMISSIONS, METRIC TONS/YEAR</td>
<td>ANNUAL GHG EMISSIONS, METRIC TONS/YEAR</td>
</tr>
<tr>
<td></td>
<td>(CO_2)</td>
<td>(CH_4)</td>
</tr>
<tr>
<td>KC-135 Aircraft Operations</td>
<td>20,450</td>
<td>0.57</td>
</tr>
<tr>
<td>AGE</td>
<td>2,134</td>
<td>0.06</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>237</td>
<td>0.01</td>
</tr>
<tr>
<td>POVs</td>
<td>3,543</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>26,363</td>
<td>0.63</td>
</tr>
<tr>
<td>Net Increase</td>
<td>29,509</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding. CO\(_2\) = carbon dioxide; CH\(_4\) = methane; N\(_2\)O = nitrous oxide; CO\(_2\)e = carbon dioxide equivalent; AGE = aerospace ground equipment; POV = privately owned vehicle

4.2.2.2 Construction Emissions

The KC-46A beddown at JB MDL would require construction and renovation of existing airfield facilities, including hangars, buildings, and aprons and ramps. Air quality impacts resulting from the proposed construction activities would occur from (1) combustion emissions from heavy equipment and vehicles; and (2) fugitive dust emissions due to operation of equipment on exposed soil. Table 4.2.2-3 presents a summary of the annual construction emissions for the beddown of the KC-46A aircraft at JB MDL. As shown in Table 4.2.2-3, emissions would be below the PSD/de minimis thresholds for all pollutants.

For construction emissions the project option with the greatest potential to emit was used in the analysis (see Table 2.3-11).
Table 4.2.2-3. Annual Construction Emissions Under Alternative #2

<table>
<thead>
<tr>
<th>Construction Project</th>
<th>CO</th>
<th>NOx</th>
<th>VOC</th>
<th>SOx</th>
<th>PM10</th>
<th>PM2.5</th>
<th>Total CO₂ Metric tons/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project #1 - Addition to Hangar 3333</td>
<td>1.43</td>
<td>2.28</td>
<td>0.40</td>
<td>0.04</td>
<td>2.27</td>
<td>1.77</td>
<td>762.34</td>
</tr>
<tr>
<td>Project #2 - Addition to Hangar 3336</td>
<td>1.46</td>
<td>2.32</td>
<td>0.41</td>
<td>0.04</td>
<td>2.32</td>
<td>1.80</td>
<td>775.72</td>
</tr>
<tr>
<td>Project #3 - Internal Renovations to Hangar 3322</td>
<td>0.30</td>
<td>0.47</td>
<td>0.06</td>
<td>0.01</td>
<td>0.04</td>
<td>0.04</td>
<td>122.59</td>
</tr>
<tr>
<td>Project #4 - New Simulator Building</td>
<td>0.54</td>
<td>0.85</td>
<td>0.15</td>
<td>0.02</td>
<td>0.71</td>
<td>0.63</td>
<td>285.47</td>
</tr>
<tr>
<td>Project #5 - Modifications to Existing Parking Ramp and Taxiway</td>
<td>4.28</td>
<td>10.18</td>
<td>1.06</td>
<td>0.51</td>
<td>6.15</td>
<td>3.00</td>
<td>2,529.83</td>
</tr>
<tr>
<td>Project #6 - New Hydrants and Fuel Lines and Demolition of Existing Hydrants</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>3.88</td>
</tr>
<tr>
<td>Total Option 1</td>
<td>8.01</td>
<td>16.11</td>
<td>2.08</td>
<td>0.62</td>
<td>11.48</td>
<td>7.23</td>
<td>4,479.82</td>
</tr>
<tr>
<td>PSD/de minimis Threshold</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>250</td>
<td>250</td>
<td>100</td>
<td>100,000</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding.

CO = carbon monoxide; NOx = oxides of nitrogen; VOC = volatile organic compound; SOx = oxides of sulfur; PM10 = particulate matter less than or equal to 10 microns in diameter; PM2.5 = particulate matter less than or equal to 2.5 microns in diameter; CO₂ = carbon dioxide; PSD = Prevention of Significant Deterioration

4.2.2.3 Summary of Impacts

The 108 WG installation is in a nonattainment area for O₃ (marginal nonattainment), and maintenance area for CO and PM₂.₅, and is therefore subject to de minimis thresholds. Impacts from proposed operational emissions would be less than significant for all criteria pollutants, except NOx, which would be above the de minimis threshold of 100 tpy. A conformity determination must be prepared. Operational GHG emissions are within thresholds in the PSD tailoring rule. Impacts from construction emissions and operational HAP emissions are negligible.

The ANG has prepared a Draft Conformity Determination that demonstrates that emissions associated with Alternative #2 would be within the 2011 SIP NOx emissions budget for McGuire AFB (JB MDL), should this alternative be selected. The ANG is coordinating with the NJDEP regarding the 2011 SIP emissions budget and the proposed increase in NOx emissions associated with Alternative #2 to ensure that the 2011 budget is still effective. If Alternative #2 is selected, it is anticipated that the ANG will obtain an affirmative General Conformity Determination prior to signing of the ROD.

4.2.3 Safety

4.2.3.1 Ground Safety

Existing facilities at McGuire Field for fire response and crash recovery meet KC-46A beddown requirements (JB MDL 2013b).
Proposed renovation and infrastructure improvement projects related to this alternative would not penetrate any APZs or impact aircraft take-off or landings (JB MDL 2013b). New construction and building renovation activity would not result in any greater safety risk or obstructions to navigation. Operations would fall within the same general types as those that have historically occurred at JB MDL. For example, the KC-46A would follow established local approach and departure patterns. Therefore, flight activity and subsequent operations would not require changes to APZs. Planned construction at JB MDL would be sited to be in compliance with the current QD arcs and no unauthorized construction would occur within the proposed QD arcs. None of the construction or demolition would be in conflict with the QD arcs. Per AFMAN 91-201, Explosive Safety Standards, there would be no public transportation route or inhabited building located within the proposed QD arcs. No explosives would be handled during construction or demolition activities. Therefore, no additional risk would be expected as a result of implementation of this alternative.

To support the aircraft beddown at JB MDL, some facilities would require renovation/modification. However, no construction activities would involve any unusual or extraordinary techniques. During construction and modifications, standard construction safety procedures would be employed, and strict adherence to all applicable standard industrial safety requirements and procedures, including AFI 13-213, Airfield Driving (2011), would further minimize the relatively low risk associated with these construction activities.

The proposed construction projects meet all criteria specified in the ANG Handbook 32-1084, Facility Space Standards. AT/FP requirements have also been addressed to the extent practicable in all projects. Projects would use AT/FP site design standards for siting of facilities, parking, walkways, and other features. Renovations would bring the facilities into compliance with UFC 4-022-01, Security Engineering: Entry Control Facilities/Access Control Points and UFC 4-010-01, DoD Minimum Antiterrorism Standards for Buildings, providing additional protection for the personnel based there.

4.2.3.2 Flight Safety

Although the KC-46A is a new aircraft, it is a military derivative of the commercial Boeing 767 aircraft. First flown commercially in 1982, more than 1,000 commercial Boeing 767 aircraft have been produced and it is a proven commercial airliner, freighter, and tanker already in service (Boeing 2012). Mishap statistics for the commercial Boeing 767 show 14 total aircraft losses (similar to a Class A military mishap definition) during its 31 year lifetime (ASN 2013).
Although no facilities are proposed that would affect navigable airspace, JB MDL would comply with 14 CFR Part 77, *Objects Affecting Navigable Airspace*, as appropriate, should they be selected to host the KC-46A.

To augment airborne training missions, pilots flying the KC-46A would use simulators extensively. Simulator training includes all facets of flight operations and comprehensive emergency procedures. The sophistication and fidelity of current simulators and related computer programs are commensurate with the advancements made in aircraft technology and are extremely realistic. These factors should minimize risk associated with mishaps due to pilot error.

Under Alternative #2, there would be an increase of approximately 111 percent 108 WG operations (15 percent in total JB MDL airfield operations) for the Proposed Action compared to existing conditions. This increase in take-offs, landings, proficiency training, and other flights would result in a commensurate increase in the safety risk to aircrews and personnel.

The proposed increase in airfield flight operations would be expected to increase the opportunity for aircraft mishaps, including BASH incidents; however, the expected rate of mishaps or BASH incidents would not be expected to change from current conditions. Both the KC-135 and the commercial Boeing 767 have very low mishap rates, and with a new airframe and technological improvements the KC-46A would be expected to have a similar safety record. In addition, current airfield safety procedures discussed previously would continue to be implemented and additional airfield flight operations would adhere to established safety procedures (JB MDL 2010).

Given the low likelihood for an aircraft accident or BASH mishap to occur in the local airfield area and even lower likelihood for civilians to be impacted, impacts to safety in the vicinity of JB MDL as a result of Alternative #2 are expected to be negligible.

The KC-46A will have the capability to jettison fuel for emergency situations. Military policy is to avoid fuel jettisons, unless safety of flight dictates an immediate jettison, and requires senior officer approval before fuel jettison, unless under emergency situations. Records of KC-135 fuel jettison events reveal that such circumstances are rare, occurring in slightly less than two sorties per thousand (Headquarters AMC 2013). Additionally, unlike the KC-135, the KC-46A will have the capability to land fully loaded with fuel so long as adequate runway length and braking capability are available (Headquarters AMC 2013), which could potentially lessen the need to jettison fuel in certain circumstances. Based on information provided by Boeing, landing the KC-46A above maximum landing weight is not prohibited; however, it does drive costly
inspection requirements. To land above maximum landing weight routinely could reduce the fatigue life of the airplane (Headquarters AMC 2013).

4.2.3.3 Summary of Impacts

There would be a 111 percent increase in actual 108 WG airfield operations (15 percent in total airfield operations) at JB MDL with a commensurate increase in mishap and BASH potential. Construction activities would involve no unusual or extraordinary techniques. During construction and modifications, standard construction safety procedures would be employed, and strict adherence to all applicable standard industrial safety requirements and procedures would further minimize the relatively low risk associated with these construction activities. Impacts to safety would be expected to be negligible.

4.2.4 Soils and Water

4.2.4.1 Soils

Under Alternative #2, new construction would consist of six separate projects resulting in up to 204,009 SF (4.7 acres) of new construction footprint and up to 104,884 SF (2.4 acres) of new impervious surface. There are two construction scenarios for the aircraft conversion under consideration; only one of these options would be implemented. The total construction footprint analyzed represents the largest possible footprint of each of the options (Table 2.3-11). These proposed construction projects would meet all criteria specified in ANG Handbook 32-1084, Facility Space Standards.

Proposed construction under Alternative #2 would occur primarily on Adelphia-Urban land complex (0 to 5 percent slopes), with a small amount (approximately 0.5 acre) of the new construction footprint on Sassafras sandy loam and Udorthents. Adelphia-Urban land complex is rated by the NRCS Web Soil Survey as somewhat limited for small commercial building development due to shrink-swell potential and depth to saturated zone and very limited for roadway development due to frost action and depth to saturated zone (NRCS 2013). In addition, Sassafras sandy loam (2 to 5 percent slopes) is designated as Prime Farmland under the Farmland Protection Policy Act; however, only 3 percent of the proposed construction footprint would occur on this soil type. The proposed construction is for national defense purposes and the surrounding land is already in urban development. Pursuant to the Farmland Protection Policy Act, the USAF determined that the land is not farmland subject to the Farmland Protection Policy Act; therefore, the Farmland Protection Policy Act does not apply to this alternative.
To minimize potential impacts to soil and water resources associated with erosion, runoff, and sedimentation during construction activity, standard construction practices as described in the 108 WG SWPPP (USAF School of Aerospace Medicine 2010) would be implemented during and following the construction period. Such practices could include the use of well-maintained silt fences or straw wattles, minimizing surficial areas disturbed, stabilization of cut/fill slopes, minimization of earth-moving activities during wet weather, and covering of soil stockpiles, as appropriate. A site-specific and detailed SWPPP that coordinates the timing of soil disturbing activities with the installation of soil erosion and runoff controls is an effective way of controlling erosion while soil is exposed and subject to construction activity. The contractor would also submit a Burlington County Erosion and Sediment Control Plan and receive certification of the plan prior to commencing site work. An NOI must be filed with the state of New Jersey to obtain coverage under the Construction Activity Stormwater General Permit (General Permit No. NJ0088323) prior to implementation of individual projects. Construction activities subject to this permit include clearing, grading, and disturbances to the ground such as stockpiling or excavation. Implementation of these measures, as necessary and appropriate, would ensure that impacts to earth resources as a result of implementation of Alternative #2 would be minimal.

4.2.4.2 Surface Water

As a result of implementation of Alternative #2, there would be a maximum of 104,884 SF (2.4 acres) of new impervious surface from the proposed construction (Figure 4.2.4-1). This could result in localized increases in stormwater runoff volume and intensity, in addition to increases in total suspended particulates to nearby surface waters. However, in accordance with UFC 3-210-10, LID (as amended, 2010) and EISA Section 438, any increase in surface water runoff as a result of the proposed construction would be attenuated through the use of temporary and/or permanent drainage management features. The integration of LID design concepts incorporates site design and stormwater management to maintain the site’s pre-development runoff rates and volumes to further minimize potential adverse impacts associated with increases in impervious surface area.

Increased runoff and peak discharge volumes as a result of increases to impervious surface can be managed by appropriately designed conveyance structures (such as roadways, channels, and culverts) in accordance with site-specific engineering standards that take into consideration the influence of surface water drainage within, adjacent to, and downstream of the project. In addition, implementing features that manage surface water runoff into the design of the project would avoid or minimize conflicts with city, county, state, or federal regulations and prevent adversely affecting adjacent properties and/or the project area itself. Such measures could include:
Figure 4.2.4-1. Surface Water Features and Proposed Construction in the Vicinity of McGuire Field
- water harvesting and natural open space,
- installation of detention basins for water recharge or for release of runoff at predetermined times to minimize peak discharges,
- the use of porous materials, such as pavers or gravel, for driveway and walkway construction, and
- directing runoff toward permeable areas, such that discharge exiting each site post-construction would be equal to or less than existing conditions.

Implementation of these measures, as necessary and appropriate, would ensure that impacts to surface water as a result of implementation of Alternative #2 would be minimal.

4.2.4.3 Groundwater

As a result of Alternative #2, the increase in the amount of impervious surface (2.4 acres) would also result in a decrease in groundwater recharge. However, as noted above, any increase in surface water runoff as a result of the proposed construction would be attenuated through the use of permit-related temporary and/or permanent drainage management features such as detention/retention basins and standard construction practices as described above. The integration of water harvesting and natural open space into project design would further minimize potential adverse impacts due to increased impervious surface. The use of these features would also increase groundwater recharge through direct percolation offsetting the loss of pervious surface due to future construction. Additionally, the impervious surface area resulting from the proposed activities would not be one continuous, hardened surface. Rather, the impervious surfaces would occupy several smaller areas, which would further minimize localized impacts to groundwater recharge.

4.2.4.4 Floodplains

Proposed construction activities at the installation would not occur within the 100-year floodplain zone. As such, there would be no impacts to floodplains under this alternative.

4.2.4.5 Summary of Impacts

There would be approximately 4.7 acres of temporary soil disturbance and 2.4 acres of new impervious surface as a result of the proposed construction. To minimize potential impacts associated with erosion, runoff, and sedimentation, standard construction practices would be implemented. In addition, as the construction is for national defense purposes and the surrounding land is already in urban development, the Farmland Protection Policy Act does not apply to this alternative. Therefore, impacts to soil and water resources would be negligible.
4.2.5 Biological Resources

4.2.5.1 Vegetation

Construction of new facilities associated with Alternative #2 at the 108 WG installation would primarily occur on currently paved areas or actively managed (i.e., mowed and landscaped) areas. In addition, approximately 0.15 acre (6,700 SF) of forest on the 108 WG installation (< 0.001 percent of the total forested area on JB MDL) would be removed in order to build the new simulator. However, this forested area is a small isolated fragmented parcel, and provides limited quality wildlife habitat. Alternative #2 would result in an increase of 104,884 SF (2.4 acres) of impervious surfaces. Impacts to the vegetation at the installation would be minor due to the lack of sensitive vegetation in the project area.

4.2.5.2 Wildlife

Under Alternative #2, minor impacts to wildlife would occur as a result of construction. Noise and human activity associated with construction could evoke reactions to wildlife, including those that are protected under the MBTA, and may cause them to temporarily avoid the area. Disturbed nests in the immediate vicinity of construction activity would be susceptible to abandonment and depredation. However, bird and wildlife populations in the vicinity of the 108 WG installation where project components would occur are accustomed to human activity and elevated noise associated with aircraft and general military industrial use. In addition, to the extent possible, construction would not occur during the breeding season for grassland birds (April 15 to July 31). As a result, indirect impacts from construction are expected to be minimal because the ambient noise levels within the vicinity are high under existing conditions and would be unlikely to substantially increase by the relatively minor and temporary nature of the proposed construction and modifications. Additionally, any tree clearing would be performed outside the migratory bird breeding season (March 15 to July 31) to avoid any impacts to migratory birds.

Under Alternative #2, impacts to wildlife due to proposed operations would be minor. DNL noise contours would be expected to increase slightly from baseline with the conversion to the KC-46A aircraft; however, these noise levels would not be expected to impact wildlife in the area because they are accustomed to elevated noise levels associated with existing aircraft and military operations. Bird/wildlife aircraft strikes are also an inevitable hazard associated with military aircraft training. Under Alternative #2, the KC-46A would operate in the same airfield environment as the current aircraft. Annual operations for the 108 WG would be projected to increase by approximately 111 percent over the KC-135 baseline operations (15 percent increase in total airfield operations). An increase in airfield operations would increase the potential for bird/wildlife aircraft strikes to occur. The 108 WG has developed procedures designed to
minimize the occurrence of bird/wildlife aircraft strikes, and has documented detailed procedures to monitor and react to heightened risk of bird/wildlife aircraft strikes. Adherence to the existing, effective BASH program would minimize the risk of bird/wildlife aircraft strikes (see Section 4.2.3, Safety). When risk increases, limits are placed on low-altitude flight and some types of training (e.g., multiple approaches, closed pattern work) in the airport environment. Special briefings are provided to pilots whenever the potential exists for increased bird/wildlife aircraft strikes within the airspace.

4.2.5.3 Special Status Species

No federally listed species are currently known to occur on the 108 WG installation and there is only a low potential for them to occur within the vicinity due to the lack of habitat. Six state listed species have been observed on McGuire Field. Grassland habitat located within the potential ramp expansion area could provide habitat for these species. However, to the extent possible, construction would not occur during the breeding season for grassland birds (March 15 to July 31). Operational noise levels under Alternative #2 would be expected to increase slightly from baseline with the conversion to the KC-46A aircraft. Under Alternative #2, the flying profiles would not change, and the scheduled flying program would not change. As shown in Appendix A, Table A.1.2-2 provides representative SELs, indicating that the SEL for individual landings by the KC-46A would be 5 dB less while take-offs would be 1 dB more than the KC-135. Under Alternative #2, only the number of aircraft operations would change; there would be no change in where or when individual aircraft operate. Flights would be scheduled for similar time periods as currently flown during the morning and afternoons, with approximately 4 percent of flights occurring during environmental night (after 10 p.m. and before 7 a.m.). An additional 419 acres of land off the airport property would be exposed to DNL between 65 dB and 70 dB. However, since ambient noise levels within the vicinity are relatively high under existing conditions, the Proposed Action under Alternative #2 would be unlikely to substantially increase enough to preclude wildlife from utilizing the area as they currently do. Therefore, there would be no effect to federally listed species and impacts to state listed species would be minor under Alternative #2. The USFWS New Jersey Field Office sent an e-mail on September 27, 2013 stating that they have no objection to the Proposed Action.

4.2.5.4 Wetlands

There are no wetland areas that occur within the vicinity of the proposed project footprints. Therefore, no impacts to wetlands would occur as a result of Alternative #2.
4.2.5.5 Summary of Impacts

Impacts to vegetation under this alternative would be minor due to the lack of sensitive vegetation in the project area. There would be no impacts to wetlands. Impacts to wildlife from operational noise would be expected to be minor due to the slight increase in noise and the temporary nature of construction. A 111 percent increase in 108 WG (15 percent increase in total) airfield operations may result in a slight increased opportunity for bird/wildlife aircraft strikes to occur, including those with migratory birds. No federally listed species or critical habitat is known to occur on McGuire Field; therefore, there would be no impacts to federally listed species. Six state listed species have been observed on McGuire Field. Impacts to state listed species would be minor.

4.2.6 Cultural Resources

Potential impacts to cultural resources examined in this analysis include effects to archaeological sites due to ground disturbing activities during construction or modification to buildings. Indirect impacts that would come from an increase in personnel from 1,329 to 1,616 necessary for the KC-46A beddown would be negligible as personnel would primarily be confined to the developed areas on the installation, which lack cultural resources.

4.2.6.1 Archaeological Resources

The area of McGuire Field was occupied during the late eighteenth through early twentieth century by rural homesteads outlying the nearby towns such as Pointville and Wrightstown. Both Texas Avenue and McGuire Road lie on the alignment of historic roads known to have been used as through routes during the nineteenth century. However, military development of Camp Dix Army Airfield in the early twentieth century, as well as Rudd Field and McGuire Air Force Base during the mid to late twentieth century, led to large scale disturbance of previously occupied historic landscapes. Nonetheless, there are pockets of historic archaeological resources extant within the installation boundaries including the three NRHP eligible sites mentioned in Section 3.2.6. None of these sites are within the area of potential disturbance for Alternative #2. A small amount of construction (0.15 acre) for a new simulator building off of Broidy Road would occur in a stand of trees near this developed area. This area was the location of barracks in the 1940s and 1950s and likely has some buried foundations dating to that period. However, those barracks remains are not considered eligible to the NRHP (Duryee 2013). Therefore, based on previous archaeological surveys at McGuire Field and the historic land use patterns of the installation, the area of proposed construction does not contain any known NRHP-eligible sites and this area is considered to have a low potential for containing buried archaeological materials (87th Civil Engineering Squadron 2013). In the unlikely event that archaeological or human
remains are identified during construction, all activities in the area of the discovery would cease and the JB MDL Cultural Resources Manager would be immediately contacted for further instruction. Because the 108 WG installation has been inventoried for archaeological resources and no such resources were encountered within the area of disturbance of Alternative #2, there would be no impacts to archaeological resources (prehistoric or historic) under Alternative #2. The New Jersey SHPO has concurred that there would be no historic properties affected under Alternative #2 (Saunders 2013).

4.2.6.2 Architectural Resources

Alternative #2 would include additions to Hangars 3333 and 3336 and interior renovations to Hangar 3322. Hangars 3333 and 3336 were built in the late 1990s and are not historic; therefore, they are not eligible to the NRHP as they are not yet 50 years old and they do not meet criterion G for exceptional significance under the Cold War or any other event. Hangar 3322, built in 1957, was evaluated for NRHP eligibility in 2013 and determined not eligible for listing in the NRHP (JB MDL 2013d). The New Jersey SHPO concurred that there would be no historic properties affected under the proposed action and that Section 106 consultation was complete (see Saunders 2013 in Appendix B3). Therefore, based on current information, there would be no adverse impact to Hangars 3333, 3336, and 3322 under Alternative #2.

4.2.6.3 Traditional Resources

The 108 WG installation contains no known traditional resources. Given the extensive development on much of the installation, it is considered unlikely that there are traditional resources located at the 108 WG. Government-to-government consultation for this action has been conducted with the Delaware Nation and the Delaware Tribe of Indians in recognition of their status as sovereign nations. This consultation also provides information regarding tribal concerns per Section 106 of the NRHP and information on traditional resources that may be present on or near the installation. The Delaware Tribe of Indians sent a response on October 4, 2013 stating that their review indicated no religious or culturally significant sites in the area and that they have no objection to the Proposed Action (see Obermeyer 2013 in Appendix B2). The Delaware Nation stated via telephone on April 3, 2014 that they had no objection to the Proposed Action. The NGB and the USAF values its relationship with tribes and will continue to seek opportunities to consult on other planning efforts or matters of known/potential interest to tribes.

4.2.6.4 Summary of Impacts

Construction activities associated with this alternative would be primarily limited to the developed areas of the installation in the areas of the aircraft hangars and airfield pavements,
where no archaeological resources are known. A small amount of construction (0.15 acre) for a new simulator building off of Broidy Road would occur in a stand of trees near this developed area. This area was the location of barracks in the 1940s and 1950s and likely has some buried foundations dating to that period. However, those barracks remains are not considered eligible to the NRHP (Duryee 2013). Therefore, based on previous archaeological surveys and historic land use patterns at McGuire Field, the area of proposed construction does not contain any known NRHP-eligible archaeological sites and is considered to have a low potential for containing buried archaeological materials. The New Jersey SHPO has concurred that there would be no historic properties affected under Alternative #2. No traditional resources have been identified. Therefore, no impacts to cultural resources are anticipated at the 108 WG installation under Alternative #2.

4.2.7 Land Use

The primary source of impacts to land use resulting from Alternative #2 would be from noise. As shown in Table 4.2.7-1 and Figure 4.2.7-1, areas outside of JB MDL boundaries currently exposed to DNLs of 65 dB to 70 dB would increase by approximately 350 acres, overall. By zoning districts, Recreation areas affected by DNL of 65 dB to 70 dB would increase by approximately 6 acres. Agricultural areas would increase by approximately 213 acres; Commercial areas would increase by approximately 7 acres, Residential areas would increase by approximately 2 acres, Open Space areas would increase by approximately 109 acres, and non-designated areas would increase by approximately 13 acres. Areas outside of the airport boundaries currently exposed to DNL of 70 dB to 75 dB would increase by approximately 69 acres, overall. By zoning districts, Recreation, Commercial, and other non-designated areas affected by DNL of 70 dB to 75 dB would remain approximately the same; Agricultural areas would increase by approximately 51 acres; Residential areas would increase by approximately 6 acres, and Open Space areas would increase by approximately 11 acres.
Table 4.2.7-1. Change in Acres Affected by Noise Levels Above 65 dB DNL Outside the McGuire Field Boundary

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Baseline (acres)</th>
<th>Proposed (acres)</th>
<th>Change (acres)</th>
<th>Baseline (acres)</th>
<th>Proposed (acres)</th>
<th>Change (acres)</th>
<th>Total Change (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recreation</td>
<td><1</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Agricultural</td>
<td>214</td>
<td>427</td>
<td>213</td>
<td>10</td>
<td>61</td>
<td>51</td>
<td>264</td>
</tr>
<tr>
<td>Commercial</td>
<td>2</td>
<td>9</td>
<td>7</td>
<td>0</td>
<td><1</td>
<td><1</td>
<td>7</td>
</tr>
<tr>
<td>Residential</td>
<td>13</td>
<td>15</td>
<td>2</td>
<td>7</td>
<td>13</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Open Space</td>
<td>73</td>
<td>182</td>
<td>109</td>
<td>4</td>
<td>16</td>
<td>11</td>
<td>119</td>
</tr>
<tr>
<td>Non-designated</td>
<td>9</td>
<td>22</td>
<td>13</td>
<td>0</td>
<td><1</td>
<td><1</td>
<td>13</td>
</tr>
<tr>
<td>Total Area</td>
<td>311</td>
<td>661</td>
<td>350</td>
<td>21</td>
<td>90</td>
<td>69</td>
<td>419</td>
</tr>
</tbody>
</table>
Figure 4.2.7-1. DNL Noise Contours and Land Use Under Alternative #2 at McGuire Field
Agricultural areas would be most likely to be exposed to increases in noise levels, but those levels (60-75 dB DNL) would remain compatible as per FICUN standards (Appendix A, Section A.7). An additional 8 acres of residential use areas would be exposed to DNL above 65 dB, levels considered incompatible as per FICUN standards. With the exception of residences associated with 48 additional people, no churches, schools, or other known noise sensitive receptors would be located within the 65 dB DNL noise contour. The minimal increase in incompatible noise levels would result in minor impacts to land use. A more detailed discussion of aircraft operations and noise can be found in Section 4.2.1, Noise.

4.2.7.1 Summary of Impacts

The number of total annual airfield operations would increase by 9,268 (15 percent), and the acreage within the 65 dB DNL (and greater) noise contour off DoD-controlled property would increase by 419 acres. An additional 8 acres of residential use areas would be exposed to DNL greater than 65 dB. Current land use and zoning designations would not change due to the basing of the KC-46A. This alternative would result in minor adverse impacts due to an increase in off-airport areas (including residential areas) exposed to noise levels between 65 dB and 75 dB DNL. Airport Hazard Areas would not be affected.

4.2.8 Infrastructure and Transportation

4.2.8.1 Potable Water

Water consumption would be expected to increase slightly under Alternative #2 as a result of the increase in personnel; however, an increase in 255 personnel on the installation would not be expected to impact regional water supply. Additionally, the demand for water (e.g., if used to control dust) could also increase during demolition and construction phases. However, this increase would be temporary and intermittent and would not be expected to impact regional water supply.

4.2.8.2 Wastewater

Wastewater generation would be expected to increase slightly as a result of the increase in 255 personnel on the installation. However, there have been no deficiencies identified with the existing system, and it is expected that the existing sanitary sewer system is generally adequate to serve the facilities proposed under this alternative.
4.2.8.3 Stormwater

Under Alternative #2, there would be up to 204,009 SF (4.7 acres) of temporary soil disturbance as a result of proposed construction. The proposed construction activities could temporarily impact the quality of stormwater runoff (see Section 4.2.4, Soils and Water); however, through implementation of appropriate standard construction practices (as described previously), preventative maintenance, and periodic inspections and sampling to detect risk to stormwater, especially during active construction activity, no impacts would be expected to the existing stormwater drainage system as a result of the proposed construction.

In addition, there would be an increase in up to 104,884 SF (2.4 acres) of new impervious surface. The addition of new impervious surfaces would potentially increase stormwater runoff volume and peak discharge rates; however, as discussed in further detail in Section 4.2.4, Soils and Water, stormwater runoff increases would be managed such that discharge exiting each site post-construction would be equal to or less than existing conditions in accordance with UFC 3-210-10 and EISA Section 438. Implementation of these measures would ensure that impacts to the stormwater drainage system as a result of implementation of Alternative #2 would be minimal.

4.2.8.4 Electrical and Natural Gas Systems

Demand for electricity and natural gas would be expected to increase slightly as a result of the increase in personnel, and the building space and facilities to be constructed would require additional electricity. However, any new facilities and additions associated with Alternative #2 would be implemented with more energy efficient design standards and utility systems than are currently in place. In addition, construction projects would incorporate LEED and sustainable development concepts to achieve optimum resource efficiency, sustainability, and energy conservation. Therefore, average energy consumption would be expected to remain consistent or decrease compared to energy consumption associated with existing facilities.

Construction activity associated with Alternative #2 could result in some temporary interruption of utility services during construction. These impacts would be temporary, occurring briefly during active construction periods. In addition, the demand for energy (primarily electricity) could increase slightly during demolition and construction phases. The energy supply at the installation and in the region is adequate and would not be affected by this temporary increase in demand.
4.2.8.5 Solid Waste Management

The building space and facilities to be constructed would generate construction and demolition debris requiring landfill disposal. Construction activities would result in approximately 204,009 SF of additions and alterations to existing facilities and 104,884 SF of new building construction. Using a multiplier provided by the USEPA to determine solid waste generation, it was estimated proposed renovations at JB MDL would generate 2,405,266 pounds (1,203 tons) of renovation debris requiring landfill disposal and proposed new construction at JB MDL would generate 455,197 pounds (228 tons) of construction debris (USEPA 2009). Therefore, the total amount of construction and demolition debris generated at JB MDL would be 1,431 tons.

Solid waste generated as a result of the proposed construction could result in impacts to solid waste management facilities in the area. The Burlington County Resource Recovery Complex has a remaining life expectancy of 5 years and a permitted throughput of 360,000 tons per year (Burlington County 2009). The 1,507 tons of proposed construction debris generated at JB MDL would represent approximately 0.4 percent of the yearly capacity of the landfill. In addition, Burlington County Resource Recovery Complex has room for expansion to meet the needs for future growth (Burlington County 2009). Impacts to local landfills would not be expected to exceed the permitted throughput or contribute significantly to the remaining capacity.

Off-installation contractors completing construction and demolition projects at the 108 WG installation would be responsible for disposing of waste generated from these activities. Contractors would be required to comply with federal, state, and local regulations for the collection and disposal of municipal solid waste from the installation. Much of this material can be recycled or reused, or otherwise diverted from landfills. EO 13514, Federal Leadership in Environmental, Energy, and Economic Performance, sets a target diversion rate of 50 percent for recycling and waste diversion for DoD facilities by 2015, including construction and demolition waste; compliance with EO 13514 would further minimize the increase in solid waste generation as a result of the proposed construction. All non-recyclable construction and demolition waste would be collected in a dumpster until removal. Construction and demolition waste contaminated with hazardous waste, ACM, LBP, or other undesirable components would be managed in accordance with AFI 32-7042, Waste Management (2009).

4.2.8.6 Transportation

Construction equipment would be driven to proposed construction areas and would be kept on-site for the duration of the respective activity. Construction workers would drive daily in their personal vehicles to and from the construction site. In general, construction traffic would result in increases in the use of on-installation roadways during construction activities; however,
increases would be temporary and intermittent, occurring only during active construction periods.

The number of authorized personnel on the installation would increase by 255 under Alternative #2 (see Table 2.3-12). The increase in personnel would create a potential 255 additional one-way vehicle trips to and from the installation during morning and evening peak periods for these additional personnel. Assuming that each person makes two trips per day, the implementation of Alternative #2 would add an additional 510 trips onto the existing roadway network after the construction phase is complete. However, regional roads used to access the installation as well as those located on the installation have sufficient capacity to manage this increase in traffic without substantial impacts to circulation. Therefore, impacts to transportation infrastructure would not be significant under Alternative #2.

4.2.8.7 Summary of Impacts

Impacts from this alternative would not be expected since there have been no deficiencies identified with the existing systems, and it is expected that the existing infrastructure is generally adequate to serve the facilities and increased personnel proposed under this alternative. Impacts to infrastructure resulting from construction would be negligible since any interruption of utility services or increase demand on infrastructure would be temporary and infrequent. Impacts to infrastructure would be negligible.

4.2.9 Hazardous Materials and Waste

4.2.9.1 Hazardous Materials

A HMMP has been developed for the KC-46A program. Training activities and other functions would be expected to remain similar between the KC-46A and existing KC-135 aircraft. The types of hazardous materials needed for maintenance and operation of the KC-46A would be expected to remain similar to those currently used for maintenance and operation of the KC-135 fleet. However, unlike the KC-135, the KC-46A aircraft will be free of ODSs. ODSs were typically used as part of the fire suppression systems on aircraft; ODS use and/or storage would no longer be required under Alternative #2.

The KC-46A aircraft has been designed with a focus on reduction of hazardous materials such that hazardous materials currently required for maintenance, operations, and materials on or associated with the new aircraft would be less than or equal to the existing aircraft (Boeing 2011). In addition, it is anticipated that the amount of hazardous waste generated for one KC-46A aircraft for maintenance activities would be slightly less than that generated for one KC-135 aircraft since the KC-46A has two engines as opposed to the four engines for the
KC-135. Furthermore, the KC-46A is a newer aircraft and is expected to need less maintenance than the older KC-135 aircraft.

Under Alternative #2, the total number of flying hours for the 108 WG would increase from 3,687 to 8,040 (an increase of 118 percent); therefore, the throughput of petroleum substances (e.g., fuels, oils) used during operations would be expected to increase commensurately from what is currently used to maintain the KC-135 fleet (see Appendix A, Section A.9, for more details). Additionally, it is expected that short-term increases would be realized in terms of the quantity of fuel used during construction activities, because various fuels (e.g., diesel, gasoline) would be required to run earth moving equipment and power tools and to provide electricity and lighting as conditions warrant. Procedures for hazardous material management established for the 108 WG installation would continue to be followed in future operations associated with Alternative #2 and as required during all construction and renovation activities.

Toxic Substances

Under Alternative #2, additions to Hangars 3333 and 3336 are proposed, and internal renovations to Hangar 3322 are proposed. An asbestos survey was performed at the 108 WG installation in 2007. According to the 2007 asbestos report, Hangar 3322 was found to contain ACM in the insulation, floor tiles, and mastic. An LBP survey has not been conducted at the 108 WG installation. However, Hangar 3322 was constructed prior to 1978, and therefore may contain LBP. Hangars 3333 and 3336 were built after 1978 and therefore are assumed to contain no LBP. Any structures proposed for demolition, addition, or retrofit would be inspected for ACM and LBP according to established ANG procedures prior to any renovation or demolition activities. All ACM would be properly removed and disposed of prior to or during demolition in accordance with 40 CFR 61.40 through 157. All LBP would be managed and disposed of in accordance with TSCA, OSHA regulations, State of New Jersey requirements (regarding site work practices for buildings with LBP), and established ANG procedures. Materials, especially discarded oil products, would be screened for PCB contamination prior to disposal.

4.2.9.2 Hazardous Waste Management

The type of hazardous waste streams generated by KC-46A operations would be expected to remain similar to those being generated by the existing KC-135 aircraft, with the exception of ODSs. Additionally, the two aircraft require the same types of hazardous materials for their maintenance and operations (e.g., fuels, oils). Under Alternative #2, the total number of flying hours for the 108 WG would increase approximately 118 percent; therefore, hazardous waste streams would be expected to increase commensurately (see Appendix A, Section A.9, for more details). However, the increase in hazardous waste streams is supportable by the current
infrastructure at the installation. Hazardous waste generation (e.g., used oil, used filters, oily rags, etc.) would continue to be managed in accordance with the installation’s Hazardous Waste Management Plan and all applicable federal, state, and local regulations. Additionally, no changes to the installation’s large quantity generator status would be expected to occur due to the increase in hazardous waste generation from aircraft operations.

4.2.9.3 Environmental Restoration Program

In accordance with AFI 32-7020, The Environmental Restoration Program, construction, modifications and/or additions to existing buildings can occur on or in proximity to existing ERP sites. Accordingly, the appropriate organizations (e.g., installation planners, ERP managers, design engineers) must consider a compatible land use based on current site conditions and the selected or projected remedial action alternatives. Construction should be sited and designed to minimize life-cycle costs to include those associated with impacts from existing contaminated sites. If the potential for uncharacterized ERP sites exist, the installation is responsible for identifying existing contamination at the proposed construction sites to avoid unknowingly locating construction projects in areas with contamination. The installation is responsible for performing necessary environmental baseline surveys, accomplishing environmental impact analysis process requirements, and for otherwise informing itself about existing site conditions and their associated cost impacts in preparation for a construction project. When warranted by the site history, environmental restoration funds may be used to accomplish RCRA facility assessments, or preliminary assessments and site inspections undertaken in accordance with the CERCLA process, or similar site investigations in accordance with applicable state laws for suspected releases. To the extent that a construction project generates actions to address contamination, or a need to change the timing of ERP-generated actions to address contamination, the costs of such actions are not Environmental Restoration Account-eligible and shall be funded as part of the construction project. This includes the handling, mitigation, and disposal or other disposition of contamination discovered before or during the construction activity.

The removal and disposal of contamination unexpectedly encountered within the construction project footprint during the execution of a construction project will be undertaken as part of the construction project using construction project funds which may include other MILCON funds reprogrammed to a MILCON construction project. Construction contractor costs (such as direct delay costs and unabsorbed or extended overhead) incidental to discovery and removal of the contamination will be construction project funded to the extent that the government is responsible and liable for such costs.
Vapor intrusion should be evaluated when volatile chemicals are present in soil, soil gas, or groundwater that underlies existing structures or has the potential to underlie future buildings and there may be a complete human exposure pathway. Due to their physical properties, volatile chemicals can migrate through unsaturated soil and into the indoor air of buildings located near zones of subsurface contamination.

One of the ERP Sites, SS-39, overlaps with a portion of the existing fuel hydrants that would be capped, as well as the proposed addition to Hangar 3336, under Alternative #2 (Figure 4.2.9-1). Remedial investigation is on-going with this site. It is recommended that a vapor intrusion analysis/testing is completed prior to construction to investigate any potential concern. If testing indicates a vapor intrusion concern, the installation would implement practices in accordance with site-specific vapor mitigation design considerations.

If contaminated media (e.g., soil, vapor, groundwater) are encountered during the course of site preparation (e.g., clearing, grading) or site development (e.g., excavation for installation of building footers) for proposed construction activities, work would cease until 108 WG Program Managers establish an appropriate course of action for the construction project to ensure that federal and state agency notification requirements are met, and to arrange for agency consultation as necessary if existing ERP sites are affected. Also, prior to construction activities, the construction contractors would be notified of the nature and extent of known contamination so they can inform their employees in advance of on-site activities and take appropriate precautions to protect health and safety, and to prevent the spread of contamination. The construction contractors would be responsible for ensuring their workers follow appropriate health and safety requirements.

4.2.9.4 Summary of Impacts

There would not be an increased risk of hazardous waste releases or exposure from this alternative. Any LBP or ACM that may be found in buildings that are scheduled for construction activities would be managed per applicable USAF regulations. There would be no expected impact from ERP sites. Impacts relative to hazardous materials and wastes would be negligible.
Figure 4.2.9-1. ERP Sites and Proposed Construction in the Vicinity of McGuire Field
4.2.10 Socioeconomics

Under Alternative #2, construction activities would be contained entirely within the boundaries of JB MDL. Economic activity associated with proposed construction activities at the 108 WG installation, such as employment and materials purchasing, would provide short-term economic benefits to the local economy. However, short-term beneficial impacts resulting from construction payrolls and materials purchased would be negligible on a regional scale.

The proposed aircraft beddown and related activities would result in a minor change in staffing requirements for the 108 WG. Currently, the 108 WG is authorized 1,329 personnel. Under Alternative #2, the KC-46A mission would add an additional 287 military positions (increase in 231 full-time positions and an increase of 56 traditional Guard position) (see Table 2.3-12). Combined with their approximately 390 family members, this would represent less than 0.09 percent of Burlington County and 0.07 percent of Ocean County (assumes 100 percent of increase in off-base population living in each county). Of the 390 family members, approximately 156 would be anticipated to be of school age. The students entering the local schools would be expected to be enrolled in various grades and live in different areas within Ocean and Burlington counties. It is anticipated that there is enough capacity within the schools in these counties to absorb this minimal increase in school age children.

An increase in 287 military personnel positions would amount to an increase of approximately 21.6 percent to the existing 108 WG personnel. Total payroll associated with the 231 full-time personnel would amount to an estimated total annual salary increase of approximately $21 million.

While there is housing located on JB MDL, currently all 108 WG personnel live off-installation. Under Alternative #2, there is ample on-base housing to accommodate the 199 new active associate personnel should they choose to live on base. However, currently only 20 percent of active duty personnel live on base. Therefore, it is assumed that approximately 20 percent of the 199 proposed active associate personnel (approximately 40 individuals) and their families would live on base. This could in turn result in approximately 247 personnel living off the installation and purchasing 247 homes as personnel relocate to the area. This would represent less than 0.2 percent of the total housing units in Burlington County and less than 0.1 percent of Ocean County. However, not all the military personnel who would relocate would own homes and personnel would most likely be distributed between the two counties.
4.2.10.1 Summary of Impacts

Impacts to socioeconomics resulting from construction would be beneficial and negligible resulting from construction payrolls and materials purchased. In addition, impacts from proposed operations would be beneficial and minor due to the proposed increase in personnel.

4.2.11 Environmental Justice and the Protection of Children

4.2.11.1 Minority and Low-Income Populations

As presented in Table 4.2.11-1, of the roughly 128 persons (48 more than baseline) that would be affected by a DNL above 65 dB, approximately 23 would be minority (18 percent). This is an increase of 11 people, or 3 percent, of minorities affected. The number of low-income persons affected by a DNL greater than 65 dB would be approximately 6 (an increase of 2 people and less than 1 percent). Overall, the number of persons affected by a DNL of 65 dB and greater would increase slightly under this alternative, and the increase in the percentage of minority and low-income persons affected would be minor. Therefore, impacts to minority or low-income populations in the vicinity of JB MDL would not be significant and there would be no disproportionate impacts to minority or low-income populations.

Table 4.2.11-1. Population within Alternative #2 Noise Contours, JB MDL

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>65-70</td>
<td>77</td>
<td>14</td>
<td>18</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>70-75</td>
<td>51</td>
<td>9</td>
<td>18</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>75-80</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>80-85</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>128</td>
<td>23</td>
<td>18</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

Note: 1. Total population, minority population, and number of children under the age of 18 were obtained from the 2010 census data. Low income population numbers are from the 2007-2011 5-Year Estimates.
2. The percentage of low-income persons is calculated as a percentage of all persons for whom the USCB determines poverty status, which is generally a lower number than the total population because it excludes institutionalized persons, persons in military group quarters and college dormitories, and unrelated individuals under 15 years old.

Sources: USCB 2010b and 2011c.

4.2.11.2 Protection of Children

There are no facilities on the installation where children may be encountered on a regular basis. Currently there are no Kindergarten through Grade 12 off-installation schools that are exposed to a DNL of 65 dB or above; however, there is one child development center located within the 65 dB contour. Under Alternative #2 there would be no new Kindergarten through Grade 12 schools exposed to a DNL of 65 dB or above; however, the child development center that is currently under the 65 dB contour would be located under the 70 dB contour.
4.2.11.3 Summary of Impacts

Although the acreage and the number of persons within the 65 dB DNL noise contours would increase slightly under this alternative, the percentage of minority and low-income persons affected would remain approximately the same as baseline, and no additional schools would be located within the vicinity of JB MDL exposed to DNL of 65 dB or above; thus, there would be no disproportionate impacts to minority or low-income populations and no special health or safety risks to children.
4.3 ALTERNATIVE #3 -- PEASE AIR NATIONAL GUARD STATION

4.3.1 Noise

In this section, noise associated with flying operations and construction activities related to Alternative #3 are considered and compared with current conditions to assess potential impacts at Portsmouth IAP. Details of the methodologies used for this section can be found in Appendix A, Section A.1.2.

DNL noise contours for the KC-46A under Alternative #3 were generated using INM. Based KC-135 operations were removed and replaced with KC-46A operations using the B-767-300 and the standard flight profile data provided with INM as substitute data and applying the data to the current based KC-135 flight tracks and operational procedures (INM does not have a standard profile or noise curve data for the KC-46A). Using the standard flight profile data provided for this substitute aircraft in INM provides an accurate analysis of noise contour comparisons that would be expected with the new KC-46A. Flight profiles, flight tracks, and operational procedures currently being used by the KC-135 were used in this INM program.

4.3.1.1 Aircraft Noise

Under Alternative #3, 12 KC-46As would be based at Pease ANGS, replacing the current 8 KC-135 aircraft. There would be no change in the number or type of other aircraft using the airfield and the KC-46A aircrews would use the same flying procedures (e.g., ground tracks, altitude profiles) currently used by KC-135 aircrews. Aircrews associated with the KC-46A would continue to practice closed patterns, including tactical procedures in which the aircraft climbs or descends in the immediate vicinity of the airfield. Tactical training prepares aircrews for operations in forward operating locations in which flying at low-altitudes over land not controlled by friendly forces exposes the aircraft to ground-based threats. This procedure is currently being flown with the KC-135. Aircrews associated with the KC-46A would continue to practice closed patterns, including tactical procedures; however, most tactical procedures would be accomplished primarily in the simulator or at other locations away from Portsmouth IAP.

Under Alternative #3, the 157 ARW would have an increase in flying hours generating an increase in airfield operations by 2,700 from 6,140 to 8,840 operations (a 44 percent increase). Aircraft operations per average annual day (arrivals and departures [1.68] and closed patterns [6.73]) would increase under Alternative #3 to 2.42 arrivals and departures and 9.7 closed patterns/day. The percentage of 157 ARW aircraft operations occurring during environmental night (10 p.m. to 7 a.m.) would remain at the same 4 percent as under baseline conditions. The
total number of operations flown by all other aircraft at Portsmouth IAP would not change from previously identified airfield activities. There would be no change to any other aircraft types or aircraft flight tracks and profiles from the baseline condition (Table 4.3.1-1).

Table 4.3.1-1. Portsmouth IAP Annual Aircraft Operations with Proposed KC-46A

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>DEPARTURES</th>
<th>ARRIVALS</th>
<th>TOTAL¹</th>
<th>Grand Total¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night²</td>
<td>Day</td>
<td>Night²</td>
</tr>
<tr>
<td>KC-46A</td>
<td>4,231</td>
<td>189</td>
<td>4,420</td>
<td>378</td>
</tr>
<tr>
<td>Other Aircraft³</td>
<td>14,541</td>
<td>1,094</td>
<td>15,635</td>
<td>876</td>
</tr>
<tr>
<td>Total</td>
<td>18,772</td>
<td>1,283</td>
<td>19,055</td>
<td>954</td>
</tr>
</tbody>
</table>

Notes: 1. Includes Closed Patterns (which count as two airfield operations).
2. Night –Between 10 p.m. and 7 a.m. for environmental night.
3. Other based military and civilian aircraft and transient aircraft (multiple type aircraft) including: Lear 25, 35, and Airbus 319.

Source: 157 ARW 2013a.

Figure 4.3.1-1 depicts the noise exposure area from aircraft operations after the conversion from the current 8 KC-135 aircraft to 12 KC-46A aircraft, and Figure 4.3.1-2 compares baseline noise contours with Alternative #3 contours. The aircraft operations modeled include all transient aircraft, and general and commercial aircraft operations depicted in the most current Portsmouth IAP 2012 noise modeling update. Table 4.3.1-2 shows changes to the acreage of land within each noise contour under Alternative #3.

Table 4.3.1-2. Land Areas within DNL Contours at Portsmouth IAP Affected by DNL Greater than 65 dB under Baseline and Alternative #3

<table>
<thead>
<tr>
<th>Noise Contour (dB DNL)</th>
<th>Baseline (KC-135)</th>
<th>Alternative #3 (KC-46A)</th>
<th>Change Total (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On Airport</td>
<td>Off Airport</td>
<td>Total</td>
</tr>
<tr>
<td>65-70</td>
<td>237</td>
<td>0</td>
<td>237</td>
</tr>
<tr>
<td>70-75</td>
<td>81</td>
<td>0</td>
<td>81</td>
</tr>
<tr>
<td>75-80</td>
<td>16</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>80-85</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>>85</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>334</td>
<td>0</td>
<td>334</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding.
DNL = Day Night Average Sound Level; dB = decibel
Figure 4.3.1-1. DNL Noise Contours Under Alternative #3 at Portsmouth IAP
Figure 4.3.1-2. Comparison of Baseline and Alternative #3 DNL Noise Contours at Portsmouth IAP
Under Alternative #3, the DNL noise contours would expand slightly in all directions from the baseline DNL noise contours. Overall, the number of acres contained within the 65 dB DNL and greater exposure area would increase by approximately 135 acres, or 40 percent, but would remain primarily on airport property with approximately 4 of these acres off the airport property. Information regarding number of people residing in this area can be found in Section 4.3.11, *Environmental Justice and the Protection of Children*; and information regarding the area of residential use is located in Section 4.3.7, *Land Use*.

Percent of the Population Expected to be Highly Annoyed

The percentage of the population expected to be highly annoyed under Alternative #3 would not be expected to change from baseline conditions because there are no additional residences exposed to levels above DNL65 dB.

Single Event Sound Analysis

Under Alternative #3, the flying profiles would not change, and the scheduled flying program would not change. As shown in Appendix A, Table A.1.2-2 provides representative SELs, indicating that the SEL for individual landings by the KC-46A would be 5 dB less while take-offs would be 1 dB more than the KC-135. Under Alternative #3, only the number of aircraft operations would change; there would be no change in where or when individual aircraft operate. Flights would be scheduled for similar time periods as currently flown during the morning and afternoons, with approximately 4 percent of flights occurring during environmental night (after 10 p.m. and before 7 a.m.).

Potential Hearing Loss

As shown in Table 4.3.1-1, there is no property off the Portsmouth IAP that falls within the 80+ dB DNL noise contour; therefore, there would be no potential hearing loss risk associated with these areas.

4.3.1.2 **Construction Noise**

There would be some minor noise from construction equipment associated with construction activities that would occur intermittently during the construction period (beginning FY 2015). Typical noise levels from heavy equipment range from 69 to 84 dB at 100 feet from the source (FHWA 2006) (see Appendix C, *Noise*, Section A.1.2.2). Aviation-related activities at Portsmouth IAP dominate the local noise environment. Equipment used during the facility construction would contribute little to the general background noise levels around the airfield. Therefore, impacts from construction under Alternative #3 would be negligible.
4.3.1.3 Summary of Impacts

The number of annual airfield operations would increase by 2,700 (44 percent increase in 157 ARW operations, 7 percent increase in total airfield operations), and the acreage within the 65 dB DNL (and greater) noise contour would increase by 135 acres. Of this increase in acreage, 4 acres would be off airport-controlled property. There would be no potential for hearing loss off the airport and no increase in the percent of the population highly annoyed. Construction noise would be localized and temporary and would not add to the overall noise environment. Impacts from noise would be negligible.

4.3.2 Air Quality

The air quality analysis estimated the magnitude of emissions that would result from implementation of the proposed KC-46A construction and operational activities at the 157 ARW of the NH ANG at Pease ANGS, in Newington, New Hampshire. The estimation of proposed operational emissions is based on the net change in emissions between existing aircraft operations and projected KC-46A operations.

As discussed in Appendix A.2.3, air quality impacts from the beddown of the KC-46A aircraft at Pease ANGS were reviewed for significance relative to the PSD threshold for new major sources for attainment pollutants, and the General Conformity de minimis thresholds for nonattainment pollutants. Because the project region within Rockingham County is a maintenance area for O3, the de minimis threshold of 100 tpy for O3 precursors NOx and VOCs was used as an indicator of the potential significance of the emissions from the KC-46A conversion. For attainment pollutants, the PSD threshold of 250 tpy (100,000 tpy for GHGs) was used as an indicator of the potential significance of the emissions from Alternative #3.

4.3.2.1 Operational Emissions

Sources associated with operation of the proposed KC-46A beddown at Pease ANGS include (1) operations and engine maintenance/testing of aircraft; (2) onsite POVs; (3) offsite POV commutes; and (4) AGE. It was assumed that other sources, including nonroad mobile equipment, mobile fuel transfer, and stationary source emissions would be unchanged. Operational data used to calculate projected KC-46A aircraft emissions were obtained from the data used in the project noise analysis. Factors used to calculate combustion emissions for the KC-46A aircraft are based on emissions data developed by Pratt and Whitney for the PW4062 engine (International Civil Aviation Organization 2013). The operational times in mode for the KC-46A engine are based on those currently used for the KC-135 aircraft (AFCEC 2013). The analysis of proposed aircraft operations is limited to operations that occur within the lowest
3,000 feet of the atmosphere, as this is the typical depth of the atmospheric mixing layer where the release of aircraft emissions would affect ground-level pollutant concentrations.

Emissions from AGE were estimated based on the methodology recommended in the *Air Emissions Guide for Air Force Mobile Sources* (AFCEC 2013). Emissions from POVs were estimated based on the proposed personnel for the existing and proposed scenarios, using emission factors for vehicles from AFCEC 2013.

Table 4.3.2-1 summarizes the annual operational emissions that would result from KC-46A operations at Pease ANGS. Table 4.3.2-1 also presents the net emissions increase associated with the beddown of the KC-46A aircraft at Pease ANGS. As shown in Table 4.3.2-1, the net emissions increases are below the PSD/de minimis thresholds for all pollutants.

<table>
<thead>
<tr>
<th>Table 4.3.2-1. Comparison of Baseline and Proposed Annual Operational Emissions, 157 ARW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>KC-135 Aircraft Operations</td>
</tr>
<tr>
<td>AGE</td>
</tr>
<tr>
<td>Engine Tests</td>
</tr>
<tr>
<td>POVs</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>KC-46A Aircraft Operations</td>
</tr>
<tr>
<td>AGE</td>
</tr>
<tr>
<td>Engine Tests</td>
</tr>
<tr>
<td>POVs</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Net Increase</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding.

CO = carbon monoxide; CO₂e = carbon dioxide equivalent; NOₓ = oxides of nitrogen; PM₁₀ = particulate matter less than or equal to 10 microns in diameter; PM₂.₅ = particulate matter less than or equal to 2.5 microns in diameter; SO₂ = sulfur dioxide; VOC = volatile organic compound; AGE = aerospace ground equipment; POV = privately owned vehicle; PSD = Prevention of Significant Deterioration

In addition to criteria pollutant emissions, the beddown of the KC-46A aircraft at Pease ANGS would result in emissions of HAPs and GHGs. Operational activities would result in a net increase of HAPs that is below 1 ton per year.

Table 4.3.2-2 summarizes the annual operational GHG emissions that would result from KC-46A operations at Pease ANGS, along with the net increase in comparison with the baseline. As shown in Table 4.3.2-2, emissions are below the PSD thresholds for GHGs.
Table 4.3.2-2. Comparison of Baseline and Proposed Annual Operational GHG Emissions, 157 ARW

<table>
<thead>
<tr>
<th>Baseline</th>
<th>ANNUAL GHG EMISSIONS, METRIC TONS/YEAR</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO(_2)</td>
<td>CH(_4)</td>
<td>N(_2)O</td>
<td>CO(_2)e</td>
</tr>
<tr>
<td>KC-135 Aircraft Operations</td>
<td>17,303</td>
<td>0.48</td>
<td>0.54</td>
<td>17,480</td>
</tr>
<tr>
<td>AGE</td>
<td>1,571</td>
<td>0.04</td>
<td>0.05</td>
<td>1,588</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>172</td>
<td>0.00</td>
<td>0.01</td>
<td>174</td>
</tr>
<tr>
<td>POVs</td>
<td>597</td>
<td>0.00</td>
<td>0.00</td>
<td>597</td>
</tr>
<tr>
<td>Total</td>
<td>19,643</td>
<td>0.53</td>
<td>0.59</td>
<td>19,839</td>
</tr>
<tr>
<td>Proposed Action</td>
<td>CO(_2)</td>
<td>CH(_4)</td>
<td>N(_2)O</td>
<td>CO(_2)e</td>
</tr>
<tr>
<td>KC-46A Aircraft Operations</td>
<td>24,391</td>
<td>0.64</td>
<td>0.72</td>
<td>24,629</td>
</tr>
<tr>
<td>AGE</td>
<td>2,262</td>
<td>0.06</td>
<td>0.07</td>
<td>2,286</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>233</td>
<td>0.01</td>
<td>0.01</td>
<td>235</td>
</tr>
<tr>
<td>POVs</td>
<td>612</td>
<td>0.00</td>
<td>0.00</td>
<td>612</td>
</tr>
<tr>
<td>Total</td>
<td>27,499</td>
<td>0.71</td>
<td>0.80</td>
<td>27,762</td>
</tr>
<tr>
<td>Net Increase</td>
<td>7,855</td>
<td>0.18</td>
<td>0.21</td>
<td>7,924</td>
</tr>
<tr>
<td>PSD Threshold</td>
<td>100,000</td>
<td>100,000</td>
<td>100,000</td>
<td>100,000</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding.

CO\(_2\) = carbon dioxide; CH\(_4\) = methane; N\(_2\)O = nitrous oxide; CO\(_2\)e = carbon dioxide equivalent; AGE = aerospace ground equipment; POV = privately owned vehicle; GMV = government motor vehicle

4.3.2.2 Construction Emissions

The KC-46A beddown at Pease ANGS would require construction and renovation of existing airfield facilities, including hangars, buildings, and aprons and ramps. Air quality impacts resulting from the proposed construction activities would occur from (1) combustion emissions from heavy equipment and vehicles; and (2) fugitive dust emissions due to operation of equipment on exposed soil. Table 4.3.2-3 presents a summary of the annual construction emissions for the beddown of the KC-46A aircraft at Pease ANGS. As shown in Table 4.3.2-3, emissions would be below the PSD/de minimis thresholds for all pollutants. For construction emissions, the project option with the greatest potential to emit, was used in the analysis (see Table 2.3-17).
Table 4.3.2-3. Annual Construction Emissions Under Alternative #3

<table>
<thead>
<tr>
<th>Construction Project</th>
<th>CO</th>
<th>NOx</th>
<th>VOC</th>
<th>SOx</th>
<th>PM10</th>
<th>PM2.5</th>
<th>Total CO2 Metric tons/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project #1 (Option 2) - Renovation/Addition to Building 264</td>
<td>0.93</td>
<td>1.48</td>
<td>0.26</td>
<td>0.03</td>
<td>1.33</td>
<td>1.11</td>
<td>494.25</td>
</tr>
<tr>
<td>Project #2 - Addition to Building 166</td>
<td>0.35</td>
<td>0.55</td>
<td>0.10</td>
<td>0.01</td>
<td>0.44</td>
<td>0.41</td>
<td>185.26</td>
</tr>
<tr>
<td>Project #3 - Internal Renovations to Hangar 251</td>
<td>0.30</td>
<td>0.47</td>
<td>0.06</td>
<td>0.01</td>
<td>0.04</td>
<td>0.04</td>
<td>122.59</td>
</tr>
<tr>
<td>Project #4 (Option 1) - Addition/Alteration to Hangar 253</td>
<td>1.52</td>
<td>2.42</td>
<td>0.43</td>
<td>0.05</td>
<td>2.45</td>
<td>1.88</td>
<td>808.91</td>
</tr>
<tr>
<td>Project #5 - (Option 1) - Demolition/Addition/Alteration to Hangar 254</td>
<td>1.48</td>
<td>2.36</td>
<td>0.41</td>
<td>0.04</td>
<td>2.37</td>
<td>1.83</td>
<td>789.52</td>
</tr>
<tr>
<td>Project #6 - Alter Aircraft Taxiway</td>
<td>0.31</td>
<td>0.75</td>
<td>0.08</td>
<td>0.04</td>
<td>0.18</td>
<td>0.16</td>
<td>185.62</td>
</tr>
<tr>
<td>Project #7 - Demolition/Modify/Install Aprons and Hydrants</td>
<td>0.07</td>
<td>0.16</td>
<td>0.02</td>
<td>0.01</td>
<td>0.04</td>
<td>0.04</td>
<td>42.16</td>
</tr>
<tr>
<td>Project #8 - Repave Quad Apron</td>
<td>1.16</td>
<td>2.80</td>
<td>0.28</td>
<td>0.14</td>
<td>1.01</td>
<td>0.71</td>
<td>715.98</td>
</tr>
<tr>
<td>Total maximum emissions</td>
<td>6.12</td>
<td>10.99</td>
<td>1.64</td>
<td>0.33</td>
<td>7.86</td>
<td>6.18</td>
<td>3,344.29</td>
</tr>
<tr>
<td>PSD/de minimis Threshold</td>
<td>250</td>
<td>100</td>
<td>100</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>100,000</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding.

CO = carbon monoxide; NOx = oxides of nitrogen; VOC = volatile organic compound; SOx = oxides of sulfur; PM10 = particulate matter less than or equal to 10 microns in diameter; PM2.5 = particulate matter less than or equal to 2.5 microns in diameter; CO2 = carbon dioxide; PSD = Prevention of Significant Deterioration

4.3.2.3 Summary of Impacts

The Pease ANGS installation is in a maintenance area for O3, and is therefore subject to de minimis thresholds. While there are increases in operational criteria pollutant emissions, they are below the PSD/de minimis thresholds for all pollutants and are not significant. Operational GHG emissions are within thresholds in the PSD tailoring rule. Impacts from construction emissions and operational HAP emissions are negligible.

4.3.3 Safety

4.3.3.1 Ground Safety

Existing facilities at Pease ANGS for fire response and crash recovery meet KC-46A beddown requirements (Headquarters AMC and NGB 2013a).

Proposed renovation and infrastructure improvement projects related to this alternative would not penetrate any RPZs or impact aircraft takeoff or landing (Headquarters AMC and NGB 2013a). New construction and building renovation activity would not result in any greater safety risk or obstructions to navigation. Operations would fall within the same general types as those that have historically occurred at Portsmouth IAP. For example, the KC-46A would follow established local approach and departure patterns used. Therefore, flight activity and subsequent operations would not require changes to RPZs.
Under this alternative, no new facilities are proposed for Pease ANGS. Planned construction at the installation comprises renovation and additions to several hangars; construction and upgrades to the taxiway; and demolition and installation of new fuel hydrants and lines on the parking apron. None of the construction or demolition would be in conflict with the current QD arcs.

Providing new and renovated facilities for the 157 ARW that support operational requirements of the KC-46A, and are properly sited with adequate space and a modernized supporting infrastructure would generally enhance ground and flight safety during required operations, training, maintenance and support procedures, security functions, and other activities conducted by the 157 ARW.

Construction activities would not involve any unusual or extraordinary techniques. During construction and modifications, standard construction safety procedures would be employed, and strict adherence to all applicable standard industrial safety requirements and procedures, including AFI 13-213, *Airfield Driving* (2011), would further minimize the relatively low risk associated with these construction activities.

The proposed construction projects meet all criteria specified in the ANG Handbook 32-1084, *Facility Space Standards*. AT/FP requirements have also been addressed to the extent practicable in all projects. Projects would use AT/FP site design standards for siting of facilities, parking, walkways, and other features. Renovations would bring the facilities into compliance with UFC 4-022-01, *Security Engineering: Entry Control Facilities/Access Control Points* and UFC 4-010-01, *DoD Minimum Antiterrorism Standards for Buildings*, providing additional protection for the personnel based there.

4.3.3.2 Flight Safety

Although the KC-46A is a new aircraft, it is a military derivative of the commercial Boeing 767 aircraft. First flown commercially in 1982, more than 1,000 commercial Boeing 767 aircraft have been produced and it is a proven commercial airliner, freighter, and tanker already in service (Boeing 2012). Mishap statistics for the commercial Boeing 767 show 14 total aircraft losses (similar to a Class A military mishap definition) during its 31 year lifetime (ASN 2013).

Although no facilities are proposed that would affect navigable airspace, Pease ANGS would comply with 14 CFR Part 77, *Objects Affecting Navigable Airspace*, as appropriate, should they be selected to host the KC-46A.

To augment airborne training missions, pilots flying the KC-46A would use simulators extensively. Simulator training includes all facets of flight operations and comprehensive emergency procedures. The sophistication and fidelity of current simulators and related computer programs are commensurate with the advancements made in aircraft technology and
are extremely realistic. These factors should minimize risk associated with mishaps due to pilot error.

Under Alternative #3, there would be an increase of approximately 44 percent 157 ARW airfield operations (7 percent in total Portsmouth IAP operations) at Portsmouth IAP compared to existing conditions. This increase in take-offs, landings, proficiency training, and other flights would result in a commensurate increase in the safety risk to aircrews and personnel.

The proposed increase in airfield flight operations would be expected to increase the opportunity for aircraft mishaps, including BASH incidents; however, the expected rate of mishaps or BASH incidents would not be expected to change from current conditions. Both the KC-135 and the commercial Boeing 767 have very low mishap rates, and with a new airframe and technological improvements the KC-46A would be expected to have a similar safety record. In addition, current airfield safety procedures discussed previously would continue to be implemented and additional airfield flight operations would adhere to established safety procedures (157 ARW 2011b).

Given the low likelihood for an aircraft accident or BASH mishap to occur in the local airfield area and even lower likelihood for civilians to be impacted, impacts to safety in the vicinity of Portsmouth IAP as a result of Alternative #3 would be expected to be negligible.

The KC-46A will have the capability to jettison fuel for emergency situations. Military policy is to avoid fuel jettisons, unless safety of flight dictates an immediate jettison, and requires senior officer approval before fuel jettison, unless under emergency situations. Records of KC-135 fuel jettison events reveal that such circumstances are rare, occurring in slightly less than two sorties per thousand (Headquarters AMC 2013). Additionally, unlike the KC-135, the KC-46A will have the capability to land fully loaded with fuel so long as adequate runway length and braking capability are available (Headquarters AMC 2013), which could potentially lessen the need to jettison fuel in certain circumstances. Based on information provided by Boeing, landing the KC-46A above maximum landing weight is not prohibited; however, it does drive costly inspection requirements. To land above maximum landing weight routinely could reduce the fatigue life of the airplane (Headquarters AMC 2013).

4.3.3.3 Summary of Impacts

There would be a 44 percent increase in actual 157 ARW airfield operations (7 percent increase in total airfield operations) at Portsmouth IAP with a commensurate increase in mishap and BASH potential. Construction activities would involve no unusual or extraordinary techniques. During construction and modifications, standard construction safety procedures would be employed, and strict adherence to all applicable standard industrial safety requirements and
procedures would further minimize the relatively low risk associated with these construction activities. Impacts to safety would be expected to be negligible.

4.3.4 Soils and Water

4.3.4.1 Soils

Under Alternative #3, new construction would consist of eight separate projects resulting in up to 130,966 SF (3.0 acres) of new construction footprint and up to 23,617 SF (0.5 acre) of new impervious surface. There are two construction scenarios for the aircraft conversion under consideration; only one of these options for each project would be implemented. The total construction footprint analyzed represents the largest possible footprint of each of the options (Table 2.3-17). These proposed construction projects would meet all criteria specified in ANG Handbook 32-1084, *Facility Space Standards*.

Proposed construction under Alternative #3 would occur primarily on Urban land-Canton complex (3 to 15 percent slopes), with a small amount of the new construction footprint on Urban land and Udorthents. These three soils are either not rated or not limited for road or small commercial building development and may require onsite investigation and evaluation for most land use decisions to identify any potential limitations (NRCS 2013). Proposed construction would not impact prime farmlands; therefore the Farmland Protection Policy Act does not apply.

Under Alternative #3, there would be 130,966 SF (3.0 acres) of temporary soil disturbance as a result of the proposed construction. To minimize potential impacts to soil and water resources associated with erosion, runoff, and sedimentation during construction activity, standard construction practices, as described in the Portsmouth IAP SWPPP (Portsmouth IAP 2011) would be implemented during and following the construction period. Such practices could include the use of well-maintained silt fences or straw wattles, minimizing surficial areas disturbed, stabilization of cut/fill slopes, minimization of earth-moving activates during wet weather, and covering of soil stockpiles, as appropriate. A site-specific and detailed SWPPP that coordinates the timing of soil disturbing activities with the installation of soil erosion and runoff controls is an effective way of controlling erosion while soil is exposed and subject to construction activity. An NOI must be filed with the USEPA New England Region to obtain coverage under the NPDES General Permit for Discharges from Construction Activities prior to implementation of individual projects. Construction activities subject to this permit include clearing, grading, and disturbances to the ground such as stockpiling or excavation. Implementation of these measures, as necessary and appropriate, would ensure that impacts to earth resources as a result of implementation of Alternative #3 would be minimal.
4.3.4.2 Surface Water

As a result of implementation of Alternative #3, there would be approximately 23,617 SF (0.5 acre) of new impervious surface from the proposed construction (Figure 4.3.4-1). This could result in localized increases in stormwater runoff volume and intensity, in addition to increases in total suspended particulates to nearby surface waters. However, in accordance with UFC 3-210-10, LID (as amended, 2010) and EISA Section 438, any increase in surface water runoff as a result of the proposed construction would be attenuated through the use of temporary and/or permanent drainage management features. The integration of LID design concepts incorporates site design and stormwater management to maintain the site’s pre-development runoff rates and volumes to further minimize potential adverse impacts associated with increases in impervious surface area.

Increased runoff and peak discharge volumes as a result of increases to impervious surface can be managed by appropriately designed conveyance structures (such as roadways, channels, and culverts) in accordance with site-specific engineering standards that take into consideration the influence of surface water drainage within, adjacent to, and downstream of the project. In addition, implementing features that manage surface water runoff into the design of the project would avoid or minimize conflicts with city, county, state, or federal regulations and prevent adversely affecting adjacent properties and/or the project area itself. Such measures could include:

- water harvesting and natural open space,
- installation of retention/detention basins for water recharge or for release of runoff at predetermined times to minimize peak discharges,
- the use of porous materials, such as pavers or gravel, for driveway and walkway construction, and
- directing runoff toward permeable areas, such that discharge exiting each site post-construction would be equal to or less than existing conditions.

Implementation of these measures, as necessary and appropriate, would ensure that impacts to surface water as a result of implementation of Alternative #3 would be minimal.
Figure 4.3.4.1. Surface Water Features and Proposed Construction in the Vicinity of Pease ANGS
4.3.4.3 Groundwater

As a result of Alternative #3, the increase in the amount of impervious surface (0.5 acre) would also result in a decrease in groundwater recharge. However, as noted above, any increase in surface water runoff as a result of the proposed construction would be attenuated through the use of permit-related temporary and/or permanent drainage management features such as detention/retention basins and standard construction practices, as described above. The integration of water harvesting and natural open space into project design would further minimize potential adverse impacts due to increased impervious surface. The use of these features would also increase groundwater recharge through direct percolation offsetting the loss of pervious surface due to future construction. Additionally, the impervious surface area resulting from the proposed activities would not be one continuous, hardened surface. Rather, the impervious surfaces would occupy several smaller areas, which would further minimize localized impacts to groundwater recharge.

4.3.4.4 Floodplains

Proposed construction activities at the installation would not occur within the 100-year floodplain zone. As such, there would be no impacts to floodplains under this alternative.

4.3.4.5 Summary of Impacts

There would be approximately 3.0 acres of temporary soil disturbance and 0.5 acre of new impervious surface as a result of the proposed construction. To minimize potential impacts associated with erosion, runoff, and sedimentation, standard construction practices would be implemented. Proposed construction would not impact prime farmlands; therefore the Farmland Protection Policy Act does not apply to this alternative. Therefore, impacts to soil and water resources would be negligible.

4.3.5 Biological Resources

4.3.5.1 Vegetation

Construction of new facilities associated with Alternative #3 at the 157 ARW installation would occur primarily on currently paved areas or actively managed (i.e., mowed and landscaped) areas, and would result in an increase of 23,617 SF (0.5 acre) of impervious surfaces. No native vegetation would be impacted. Impacts to the vegetation at the installation would be negligible due to the lack of sensitive vegetation in the project area.
4.3.5.2 Wildlife

Under Alternative #3, impacts to wildlife due to construction would be minor. Noise associated with construction may cause wildlife to temporarily avoid the area, including those that are protected under the MBTA. Noise associated with construction activities, as well as an increase in general industrial activity and human presence, could evoke reactions in birds. Disturbed nests in the immediate vicinity of construction activity would be susceptible to abandonment and depredation. However, bird and wildlife populations in the vicinity of the airport where project components would occur are accustomed to elevated noise associated with aircraft and general military industrial use. As a result, indirect impacts from construction noise are expected to be minimal because the ambient noise levels within the vicinity are high under existing conditions and would be unlikely to substantially increase by the relatively minor and temporary nature of the proposed construction and modifications.

Operational noise levels under Alternative #3 would be expected to increase slightly from baseline with the conversion to the KC-46A aircraft. Under Alternative #3, the flying profiles would not change, and the scheduled flying program would not change. As shown in Appendix A, Table A.1.2-2 provides representative SELs, indicating that the SEL for individual landings by the KC-46A would be 5 dB less while take-offs would be 1 dB more than the KC-135. Under Alternative #3, only the number of aircraft operations would change; there would be no change in where or when individual aircraft operate. Flights would be scheduled for similar time periods as currently flown during the morning and afternoons, with approximately 4 percent of flights occurring during environmental night (after 10 p.m. and before 7 a.m.). In addition, an additional 4 acres of land off the airport property would be exposed to DNL between 65 dB and 70 dB. As a result, since ambient noise levels within the vicinity are relatively high under existing conditions, the Proposed Action under Alternative #3 would be unlikely to substantially increase enough to preclude wildlife from utilizing the area as they currently do.

Bird/wildlife aircraft strikes are also an inevitable hazard associated with military aircraft training. Under Alternative #3, the KC-46A would operate in the same airfield environment as the current aircraft. Annual operations for the KC-46A at Portsmouth IAP would increase by approximately 44 percent over the KC-135 baseline operations (7 percent increase in total airfield operations). An increase in airfield operations may result in a slight increased opportunity for bird/wildlife aircraft strikes to occur, including those with migratory birds. Adherence to the existing BASH program would minimize the risk of bird/wildlife aircraft strikes (see Section 4.3.3, Safety). The 157 ARW has developed procedures designed to minimize the occurrence of bird/wildlife aircraft strikes, and has documented detailed procedures to monitor and react to heightened risk of bird/wildlife aircraft strikes. When risk increases, limits are placed on low-altitude flight and some types of training (e.g., multiple approaches,
closed pattern work) in the airport environment. Special briefings are provided to pilots whenever the potential exists for increased bird/wildlife aircraft strikes within the airspace.

4.3.5.3 Special Status Species

No federally threatened and endangered species and eight state listed species are currently known to occur on Portsmouth IAP. The USFWS New England Field Office concurred in a letter written on March 25, 2014 that no federally listed or proposed, threatened or endangered species or critical habitat are known to occur in the project area. There is only a low potential for additional species to occur within the vicinity due to the lack of habitat. Under Alternative #3, impacts to special status species would be similar to that described under wildlife. Impacts due to construction and proposed operations would be minor. Operational noise levels under Alternative #3 would be expected to increase slightly from baseline with the conversion to the KC-46A aircraft. Under Alternative #3, the flying profiles would not change, and the scheduled flying program would not change. As shown in Appendix A, Table A.1.2-2 provides representative SELs, indicating that the SEL for individual landings by the KC-46A would be 5 dB less while take-offs would be 1 dB more than the KC-135. Under Alternative #3, only the number of aircraft operations would change; there would be no change in where or when individual aircraft operate. Flights would be scheduled for similar time periods as currently flown during the morning and afternoons, with approximately 4 percent of flights occurring during environmental night (after 10 p.m. and before 7 a.m.). In addition, an additional 4 acres of land off the airport property would be exposed to DNL between 65 dB and 70 dB. As a result, since ambient noise levels within the vicinity are relatively high under existing conditions, the Proposed Action under Alternative #3 would be unlikely to substantially increase enough to preclude wildlife from utilizing the area as they currently do.

Therefore, there would be no effect to federally listed species and impacts to state listed species would be minimal under Alternative #3.

4.3.5.4 Wetlands

There are no wetland areas that occur within the vicinity of the proposed project footprints. Therefore, no impacts to wetlands would occur as a result of Alternative #3.

4.3.5.5 Summary of Impacts

Construction of new facilities associated with this alternative would occur primarily on currently paved areas or actively managed areas. Therefore, impacts to vegetation would be negligible. There would be no impacts to wetlands under this alternative. Impacts to wildlife and sensitive species from operational noise would be expected to be minor due to the slight increase in noise and the temporary nature of construction. A 44 percent increase in 157 ARW (7 percent increase
in total) airfield operations may result in a slight increased opportunity for bird/wildlife aircraft strikes to occur, including those with migratory birds. Impacts to state listed species would be minor. No federally listed species or critical habitat is known to occur on Portsmouth IAP, therefore there would be no impacts to federally listed species.

4.3.6 Cultural Resources

Potential direct impacts to cultural resources examined in this analysis include effects to archaeological sites due to ground disturbing activities during construction or modification to buildings. Indirect impacts from an increase in personnel from 1,382 to 1,553 would be negligible as personnel would primarily be confined to the developed areas on the installation, which lack cultural resources.

4.3.6.1 Archaeological Resources

The entire undeveloped 157 ARW installation has been intensively surveyed for archaeological resources and it has been determined that no NRHP-eligible archaeological resources are present on the installation. The New Hampshire SHPO has concurred with this determination (157 ARW 2009, Muzzey 2009). In the unlikely event that archaeological or human remains are identified during construction, all activities in the area of the discovery would cease and the Environmental Manager would contact a qualified archaeologist to evaluate the discovery. Under these conditions, there would be no adverse impact to archaeological resources with implementation of Alternative #3.

4.3.6.2 Architectural Resources

At the 157 ARW installation, six buildings (Buildings 156, 166, 251, 253, 254, and 264) are proposed for additions, interior renovations, or demolition. Buildings 251, 253, and 254 have been inventoried, evaluated, and determined not eligible to the NRHP with concurrence from the New Hampshire SHPO (see Muzzey 2009 and St. Louis 2009 in Appendix B4). Buildings 156, 166, and 264 were all recently constructed and so they are less than 50 years old, are not Cold War-era resources, and would not be eligible under Criteria Consideration G. As such, Buildings 156, 166, and 264 are not eligible to the NRHP. SHPO consultation for this EIS has provided concurrence that no historic resources are present within the proposed project area (see Appendix B3). Therefore, there would be no impact to architectural resources as a result of implementation of Alternative #3.

4.3.6.3 Traditional Resources

The 157 ARW installation contains no known traditional resources. Given the extensive development on the installation, it is unlikely that there are traditional resources located at the
157 ARW. Government-to-government consultation for this action has been conducted with this Tribe in recognition of their status as a sovereign nation. This consultation also provides information regarding tribal concerns per Section 106 of the NRHP and information on traditional resources that may be present on or near the installation. The Penobscot Indian Nation has responded and indicated that they have no issues with the Proposed Action. The NGB and the USAF values its relationship with tribes and will continue to seek opportunities to consult on other planning efforts or matters of known/potential interest to tribes.

4.3.6.4 Summary of Impacts

Construction activities associated with this alternative would be limited to the developed areas of the installation, primarily in the areas of the aircraft hangars and airfield pavements, where no archaeological resources are known. None of the buildings that would be impacted under the Proposed Action are eligible to the NRHP. The New Hampshire SHPO has concurred with the determination that no historic properties would be affected (Muzzey 2013). No traditional resources are known to occur at the installation. Therefore, no impacts to cultural resources are anticipated at the 157 ARW installation under Alternative #3.

4.3.7 Land Use

Under this alternative, the number of operations at Pease ANGS would increase, resulting in a slight increase in average noise levels as measured as discussed in Section 3.3.1, Noise. An additional 4 acres of land off the airport property would be exposed to DNL between 65 dB and 70 dB. The majority of this area is zoned for Open Space/Conservation, which under FAA Regulation 14 CFR Part 150, effective January 18, 1985, is considered a compatible land use up to within this range of noise exposure. The primary source of impacts to land use resulting from Alternative #3 would be from noise. As shown in Table 4.3.7-1 and Figure 4.3.7-1, new areas outside of the airport boundaries would be exposed to DNL of 65 dB to 70 dB. By zoning areas, Recreation areas affected by DNL of 65 dB to 70 dB would remain the same; Open Space areas would increase by approximately 3.6 acres; and non-designated areas would increase by less than 1 acre. However, all of these land uses are considered compatible with this range of DNL under FICUN. No houses, churches, schools or other sensitive noise receptors are located within the 65 dB DNL off-airport noise contour areas. Therefore, Alternative #3 is compatible with current land use and zoning designations and would result in negligible impacts. A more detailed discussion of aircraft operations and noise under Alternative #3 can be found in Section 4.3.1, Noise.
Figure 4.3.7-1. DNL Noise Contours and Land Use Under Alternative #3 at Portsmouth IAP

Table 4.3.7-1. Change in Acres Affected by Noise Levels Above 65 dB DNL Outside the Portsmouth IAP

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Baseline Total (acres)</th>
<th>Proposed Total (acres)</th>
<th>Change Total (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recreation</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Open Space</td>
<td>0</td>
<td>3.6</td>
<td>3.6</td>
</tr>
<tr>
<td>Non-designated</td>
<td>0</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Total Area</td>
<td>0</td>
<td>3.9</td>
<td>3.9</td>
</tr>
</tbody>
</table>

4.3.7.1 Summary of Impacts

The number of total annual airfield operations would increase by 2,700 (7 percent), and the acreage within the 65 dB DNL (and greater) noise contour would increase by 135 acres. Of this increase in acreage, 4 acres would be off airport-controlled property. Current land use and zoning designations would not change due to the basing of the KC-46A. This alternative would result in negligible impacts due to an increase in off-airport areas exposed to noise levels above 65 dB DNL. Airport Hazard Areas would not be affected.

4.3.8 Infrastructure and Transportation

4.3.8.1 Potable Water

Water consumption would be expected to increase slightly under Alternative #3 as a result of the increase in personnel; however, an increase in 128 personnel on the installation would not be expected to impact regional water supply. Additionally, the demand for water (e.g., if used to control dust) could also increase during demolition and construction phases. However, this increase would be temporary and intermittent and would not be expected to impact regional water supply.

4.3.8.2 Wastewater

Wastewater generation would be expected to increase slightly as a result of the increase in 128 personnel on the installation. However, there have been no deficiencies identified with the existing system, and it is expected that the existing sanitary sewer system is generally adequate to serve the facilities proposed under this alternative.

4.3.8.3 Stormwater

Under Alternative #3, there would be up to 130,966 SF (3.0 acres) of temporary soil disturbance as a result of proposed construction. The proposed construction activities could temporarily impact the quality of stormwater runoff (see Section 4.3.4, Soils and Water); however, through implementation of appropriate standard construction practices, (as described previously),
preventative maintenance, and periodic inspections and sampling to detect risk to stormwater, especially during active construction activity, no impacts would be expected to the existing stormwater drainage system as a result of the proposed construction.

In addition, there would be an increase in up to 23,617 SF (0.5 acre) of new impervious surface. The addition of new impervious surfaces would potentially increase stormwater runoff volume and peak discharge rates; however, as discussed in further detail in Section 4.3.4, Soils and Water, stormwater runoff increases would be managed such that discharge exiting each site post-construction would be equal to or less than existing conditions in accordance with UFC 3-210-10 and EISA Section 438. Implementation of these measures would ensure that impacts to the stormwater drainage system as a result of implementation of Alternative #3 would be minimal.

4.3.8.4 Electrical and Natural Gas Systems

Demand for electricity and natural gas would be expected to increase slightly as a result of the increase in personnel, and the building space and facilities to be constructed would require additional electricity. However, any new facilities and additions associated with this alternative would be implemented with more energy efficient design standards and utility systems than are currently in place. In addition, construction projects would incorporate LEED and sustainable development concepts to achieve optimum resource efficiency, sustainability, and energy conservation. Therefore, average energy consumption would be expected to remain consistent or decrease compared to energy consumption associated with existing facilities.

Construction activity associated with Alternative #3 could result in some temporary interruption of utility services during construction. These impacts would be temporary, occurring briefly during active construction periods. In addition, the demand for energy (primarily electricity) could increase slightly during demolition and construction phases. The energy supply at the installation and in the region is adequate and would not be affected by this temporary increase in demand.

4.3.8.5 Solid Waste Management

The building space and facilities to be constructed would generate construction and demolition debris requiring landfill disposal. Construction activities would result in approximately 130,966 SF of additions and alterations to existing facilities and 23,617 SF of new building construction. Using a multiplier provided by the USEPA to determine solid waste generation, it was estimated that proposed renovations at Pease ANGS would generate 1,544,089 pounds (772 tons) of renovation debris requiring landfill disposal and proposed new construction at Pease ANGS.
would generate 102,498 pounds (51 tons) of construction debris (USEPA 2009). Therefore, the total amount of construction and demolition debris generated at Pease ANGS would be 823 tons.

Solid waste generated as a result of the proposed construction could result in impacts to solid waste management facilities in the area. The Turnkey Recycling and Environmental Enterprise Landfill has a remaining life expectancy of 7 years and a permitted throughput of 900,000 tons per year (New Hampshire Department of Environmental Services 2009). The 823 tons of proposed construction debris generated at Pease ANGS would represent less than 1 percent of the yearly capacity of the landfill. Impacts to local landfills would not be expected to exceed the permitted throughput or contribute significantly to the remaining capacity.

Off-installation contractors completing construction and demolition projects at the 157 ARW installation would be responsible for disposing of waste generated from these activities. Contractors would be required to comply with federal, state, and local regulations for the collection and disposal of municipal solid waste from the installation. Much of this material can be recycled or reused, or otherwise diverted from landfills. EO 13514, Federal Leadership in Environmental, Energy, and Economic Performance, sets a target diversion rate of 50 percent for recycling and waste diversion for DoD facilities by 2015, including construction and demolition waste; compliance with EO 13514 would further minimize the increase in solid waste generation as a result of the proposed construction. All non-recyclable construction and demolition waste would be collected in a dumpster until removal. Construction and demolition waste contaminated with hazardous waste, ACM, LBP, or other undesirable components would be managed in accordance with AFI 32-7042, Waste Management (2009).

4.3.8.6 Transportation

Construction equipment would be driven to proposed construction areas and would be kept on-site for the duration of the respective activity. Construction workers would drive daily in their personal vehicles to and from the construction site. In general, construction traffic would result in increases in the use of on-installation roadways during construction activities; however, increases would be temporary and intermittent, occurring only during active construction periods.

The number of authorized personnel on the installation would increase by 128 under Alternative #3 (see Table 2.3-18). The increase in personnel would create a potential 128 additional one-way vehicle trips to and from the installation during morning and evening peak periods for these additional personnel. Assuming that each person makes two trips per day, the implementation of Alternative #3 would add an additional 256 trips onto the existing roadway network after the construction phase is complete. However, regional roads used to access the installation as well
as those located on the installation have sufficient capacity to manage this increase in traffic without substantial impacts to circulation and level of service. Therefore, impacts to transportation infrastructure would not be significant under Alternative #3.

4.3.8.7 Summary of Impacts

Impacts from this alternative would not be expected since there have been no deficiencies identified with the existing systems, and it is expected that the existing infrastructure is generally adequate to serve the facilities and increased personnel proposed under this alternative. Impacts to infrastructure resulting from construction would be negligible since any interruption of utility services or increased demand on infrastructure would be temporary and infrequent. Impacts to infrastructure would be negligible.

4.3.9 Hazardous Materials and Waste

4.3.9.1 Hazardous Materials

A HMMP has been developed for the KC-46A program. Training activities and other functions would be expected to remain similar between the KC-46A and existing KC-135 aircraft. The types of hazardous materials needed for maintenance and operation of the KC-46A would be expected to remain similar to those currently used for maintenance and operation of the KC-135 fleet. However, unlike the KC-135, the KC-46A aircraft will be free of ODSs. ODSs were typically used as part of the fire suppression systems on aircraft; ODS use and/or storage would no longer be required under Alternative #3.

The KC-46A aircraft has been designed with a focus on reduction of hazardous materials such that hazardous materials currently required for maintenance, operations, and materials on or associated with the new aircraft would be less than or equal to the existing aircraft (Boeing 2011). In addition, it is anticipated that the amount of hazardous waste generated for one KC-46A aircraft for maintenance activities would be slightly less than that generated for one KC-135 aircraft since the KC-46A has two engines as opposed to the four engines for the KC-135. Furthermore, the KC-46A is a newer aircraft and is expected to need less maintenance than the older KC-135 aircraft.

Under Alternative #3, the total number of flying hours for the 157 ARW would increase from 6,219 to 8,040 (a 29 percent increase); therefore, the throughput of petroleum substances (e.g., fuels, oils) used during operations would be expected to increase commensurately from what is currently used to maintain the KC-135 fleet (see Appendix A, Section A.9, for more details). Additionally, it is expected that short-term increases would be realized in terms of the quantity of fuel used during construction activities, because various fuels (e.g., diesel, gasoline) would be...
required to run earth moving equipment and power tools and to provide electricity and lighting as conditions warrant. Procedures for hazardous material management established for the 157 ARW installation would continue to be followed in future operations associated with Alternative #3 and as required during all construction and renovation activities.

Toxic Substances

Under Alternative #3, additions and renovations to Buildings 156, 264, 166 and Hangars 251, 253, and 254 are proposed. According to the 1997 asbestos report, Hangars 251 and 254 were found to contain ACM in the insulation, floor tiles, and mastic. A LBP survey has not been conducted at the 157 ARW installation. However, Hangars 251, 253, and 254 were built prior to 1978 and may contain LBP. Any structures proposed for demolition, addition, or retrofit would be inspected for ACM and LBP according to established ANG procedures prior to any renovation or demolition activities. All ACM would be properly removed and disposed of prior to or during demolition in accordance with 40 CFR 61.40 through 157. All LBP would be managed and disposed of in accordance with TSCA, OSHA regulations, New Hampshire requirements (regarding site work practices for buildings with LBP), and established ANG procedures. Materials, especially discarded oil products, would be screened for PCB contamination prior to disposal.

4.3.9.2 Hazardous Waste Management

The type of hazardous waste streams generated by KC-46A operations would be expected to remain similar to those being generated by the existing KC-135 aircraft, with the exception of ODSs. Additionally, the two aircraft require the same types of hazardous materials for their maintenance and operations (e.g., fuels, oils). Under Alternative #3, the total number of flying hours for the 157 ARW would increase approximately 29 percent; therefore, hazardous waste streams would be expected to increase commensurately (see Appendix A, Section A.9, for more details). Hazardous waste generation (e.g., used oil, used filters, oily rags, etc.) would continue to be managed in accordance with the installation’s Hazardous Waste Management Plan and all applicable federal, state, and local regulations. Additionally, no changes to the installation’s small quantity generator status would be expected to occur due to the increase in hazardous waste generation from aircraft operations.

4.3.9.3 Environmental Restoration Program

In accordance with AFI 32-7020, The Environmental Restoration Program, construction, modifications and/or additions to existing buildings can occur on or in proximity to existing ERP sites. Accordingly, the appropriate organizations (e.g., installation planners, ERP managers, design engineers) must consider a compatible land use based on current site conditions and the
selected or projected remedial action alternatives. Construction should be sited and designed to minimize life-cycle costs to include those associated with impacts from existing contaminated sites. If the potential for uncharacterized ERP sites exist, the installation is responsible for identifying existing contamination at the proposed construction sites to avoid unknowingly locating construction projects in areas with contamination. The installation is responsible for performing necessary environmental baseline surveys, accomplishing environmental impact analysis process requirements, and for otherwise informing itself about existing site conditions and their associated cost impacts in preparation for a construction project. When warranted by the site history, environmental restoration funds may be used to accomplish RCRA facility assessments, or preliminary assessments and site inspections undertaken in accordance with the CERCLA process, or similar site investigations in accordance with applicable state laws for suspected releases. To the extent that a construction project generates actions to address contamination, or a need to change the timing of ERP-generated actions to address contamination, the costs of such actions are not Environmental Restoration Account-eligible and shall be funded as part of the construction project. This includes the handling, mitigation, and disposal or other disposition of contamination discovered before or during the construction activity.

The removal and disposal of contamination unexpectedly encountered within the construction project footprint during the execution of a construction project will be undertaken as part of the construction project using construction project funds which may include other MILCON funds reprogrammed to a MILCON construction project. Construction contractor costs (such as direct delay costs and unabsorbed or extended overhead) incidental to discovery and removal of the contamination will be construction project funded to the extent that the government is responsible and liable for such costs.

None of the ERP sites overlap the proposed construction projects under Alternative #3 (Figure 4.3.9-1). If contaminated media (e.g., soil, groundwater) are encountered during the course of site preparation (e.g., clearing, grading) or site development (e.g., excavation for installation of building footers) for proposed construction activities, work would cease until 157 ARW Program Managers establish an appropriate course of action for the construction project to ensure that federal and state agency notification requirements are met, and to arrange for agency consultation as necessary if existing ERP sites are affected. Also, prior to construction activities, the construction contractors would be notified of the nature and extent of known contamination so that they can inform their employees in advance of on-site activities and take appropriate precautions to protect health and safety, and to prevent the spread of contamination. The construction contractors would be responsible for ensuring their workers follow appropriate health and safety requirements.
4.3.9.4 Summary of Impacts

There would not be an increased risk of hazardous waste releases or exposure from this alternative. Any LBP or ACM that may be found in buildings that are scheduled for construction activities would be managed per applicable USAF regulations. There would be no expected impact from ERP sites as there are no sites that overlap with areas proposed for ground disturbance. Impacts relative to hazardous materials and wastes would be negligible.

4.3.10 Socioeconomics

Under Alternative #3, construction activities would be contained entirely within the boundaries of Portsmouth IAP. Economic activity associated with proposed construction activities at the 157 ARW installation, such as employment and materials purchasing, would provide short-term economic benefits to the local economy. However, short-term beneficial impacts resulting from construction payrolls and materials purchased would be negligible on a regional scale.

The proposed aircraft beddown and related activities under this alternative would result in a change in staffing requirements for the 157 ARW. Currently, the 157 ARW is authorized 1,382 personnel. Under Alternative #3, the KC-46A mission would add an additional 171 military positions (increase in 115 full-time positions and 56 traditional Guard positions) (see Table 2.3-18). Combined with their approximately 233 family members, this would represent less than 0.08 percent of Rockingham County. Of the 233 family members, approximately 92 would be anticipated to be of school age. The students entering the local schools would be expected to be enrolled in various grades and live in different areas within Rockingham County. It is anticipated that there is enough capacity within the schools in this county to absorb this minimal increase in school age children.

An increase in 171 military personnel positions would amount to an increase of approximately 12 percent to the existing 157 ARW personnel. Total payroll associated with the 115 full-time personnel would amount to a total estimated annual salary increase of approximately $9.5 million.

All 157 ARW personnel live off-installation as there is no on-installation housing. A conservative scenario would result in 171 homes purchased at the same time as personnel relocate to the area. This would represent less than 0.13 percent of the total housing units in Rockingham County. However, not all the military personnel who would relocate would own homes.
4.3.10.1 Summary of Impacts

Impacts to socioeconomics resulting from construction would be beneficial and negligible resulting from construction payrolls and materials purchased. In addition, impacts from proposed operations would be beneficial and minor due to the proposed increase in personnel.

4.3.11 Environmental Justice and the Protection of Children

4.3.11.1 Minority and Low-Income Populations

Under Alternative #3, there would be no residential populations, including no minority or low-income populations, located within the vicinity of Portsmouth IAP exposed to DNL greater than 65 dB. Therefore, there would be no disproportionate impacts to minority or low-income populations in the vicinity of Portsmouth IAP.

4.3.11.2 Protection of Children

There are no facilities on the installation where children may be encountered on a regular basis. Currently there is no off-installation Kindergarten through Grade 12 schools that are exposed to DNL of 65 dB or above. Under Alternative #3 there would be no new Kindergarten through Grade 12 schools exposed to DNL of 65 dB or above. Therefore, under Alternative #3 there would be no special health or safety risks to children.

4.3.11.3 Summary of Impacts

Although the acreage within the 65 dB DNL noise contours would increase slightly under this alternative, there are no residential areas within the noise contours and no additional schools would be located within the vicinity of Portsmouth IAP exposed to DNL of 65 dB or above; thus, there would be no disproportionate impacts to minority or low-income populations and no special health or safety risks to children.
4.4 ALTERNATIVE #4 -- PITTSBURGH AIR NATIONAL GUARD STATION

4.4.1 Noise

In this section, noise associated with flying operations and construction activities related to Alternative #4 are considered and compared with current conditions associated with the most current approved and published baseline noise study to assess potential impacts. Details of the noise modeling methodologies used for this section can be found in Appendix A, Section A.1.2.

Actual 2012 KC-135 airfield operations were identified in Table 2.3-19. This data was used in determining the proposed KC-46A airfield operations based on most current home-station sorties and airfield operations to provide a more accurate determination of the number of airfield operations for the Proposed Action. Under this analysis, the proposed airfield operations are compared to the most current approved and published 2006 baseline noise study for Pittsburgh IAP.

The DNL noise contours for the KC-46A under Alternative #4 were generated using INM. Based KC-135 operations were removed and replaced with KC-46A operations using the B-767-300 and the standard flight profile data provided with INM as substitute data and applying the data to the current based KC-135 flight tracks and operational procedures (INM does not have a standard profile or noise curve data for the KC-46A). Using the standard flight profile data provided for this substitute aircraft in INM provides an accurate analysis of noise contour comparisons that would be expected with the new KC-46A. Flight profiles, flight tracks, and operational procedures currently being used by the KC-135 were used in this INM program.

4.4.1.1 Aircraft Noise

Under Alternative #4, 12 KC-46As would be based at Pittsburgh ANGS, replacing the current 16 KC-135 aircraft. There would be no change in the number or type of other aircraft using the airfield and the KC-46A aircrews would use the same flying procedures (e.g., ground tracks, altitude profiles) currently used by KC-135 aircrews. KC-46A aircraft flight profiles would continue to fly the same standard flight profiles for departures and arrivals and closed pattern airfield training. KC-46A aircrews would use the same flying procedures (e.g., ground tracks, altitude profiles) currently used by KC-135 aircrews. Aircrews associated with the KC-46A would continue to practice closed patterns, including tactical procedures in which the aircraft climbs or descends in the immediate vicinity of the airfield. Tactical training prepares aircrews for operations in forward operating locations in which flying at low-altitudes over land not controlled by friendly forces exposes the aircraft to ground-based threats. This procedure is currently being flown with the KC-135; however most tactical procedures would be accomplished in the simulator and at the other locations away from Pittsburgh IAP.
Under Alternative #4, the 171 ARW aircraft would fly a total of 8,040 hours resulting in 2,010 annual sorties of which it is expected that up to 1,186 sorties would be flown at Pittsburgh ANGS. Baseline conditions for the KC-135 are represented here as the same number of the Pittsburgh ANGS airfield operations published in the Pittsburgh IAP FAR Part 150 Study (ACAA 2006). Based on 1,186 annual home-station sorties with an average of 7.78 operations per sortie, there would be 9,226 annual home-station operations, or a reduction of 3,834 airfield operations annually at Pittsburgh IAP. This would decrease the average daily airfield operations from 35.8 to 25.3 as shown in Table 4.4.1-1. The 171 ARW KC-46A operations would be approximately 3 percent of all aircraft operations at the airfield under the current approved FAR Part 150 Noise Compatibility Update.

Table 4.4.1-1. Changes to Pittsburgh IAP Airfield Operations with Proposed KC-46A Based on FAR Part 150 Baseline

<table>
<thead>
<tr>
<th>Unit</th>
<th>Total Based KC-135 (Average Daily Airfield Operations)</th>
<th>Total Based KC-46A (Average Daily Airfield Operations)</th>
<th>Change in Airfield Operations for Proposed KC-46A (% Change)</th>
</tr>
</thead>
<tbody>
<tr>
<td>171 ARW</td>
<td>13,060[^1] (35.8)</td>
<td>9,226 (25.3)</td>
<td>-3,834 (-29.3%)</td>
</tr>
</tbody>
</table>

Note: 1. Operations based on currently approved FAR Part 150.

All operations would remain as described under existing conditions; however, the KC-135 would be replaced by the KC-46A. There would be no changes expected to departure/arrival patterns and tracks, and use of runways. Current noise abatement procedures would continue to be followed as documented in Section 3.4.1.4.

Table 4.4.1-2 provides details on the total airfield operations for Pittsburgh IAP under Alternative #4 using the most current FAR Part 150 as the baseline operations. There would be a 1.2 percent decrease in the overall airfield operations from the current baseline operations. There would be approximately 7 percent of the KC-46A airfield operations flown during environmental night. The total number of operations flown by all other aircraft at Pittsburgh IAP would not change from previously identified airfield activities. There would be no change to any other aircraft types or aircraft flight tracks and profiles from the baseline condition.

Table 4.4.1-2. Pittsburgh ANGS Aircraft Operations with Proposed KC-46A

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>DEPARTURES</th>
<th>ARRIVALS</th>
<th>TOTAL[^1]</th>
<th>Grand Total[^1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A</td>
<td>4,287</td>
<td>326</td>
<td>4,275</td>
<td>338</td>
</tr>
<tr>
<td>Other Aircraft[^3]</td>
<td>140,683</td>
<td>13,505</td>
<td>140,683</td>
<td>13,505</td>
</tr>
<tr>
<td>Total</td>
<td>144,970</td>
<td>13,831</td>
<td>144,958</td>
<td>13,843</td>
</tr>
</tbody>
</table>

*Notes: 1. Includes Closed Patterns (which count as two airfield operations).
2. Night –Between 10 p.m. and 7 a.m. for environmental night.
3. Other Based aircraft and Transient Aircraft (multiple type aircraft) including: Boeing 747, 717, and the Airbus 321.
4. Operations based on currently approved FAR Part 150.*
Figure 4.4.1-1 depicts the noise exposure area from the aircraft operations after the conversion from the current 16 KC-135 aircraft to 12 KC-46A aircraft, and Figure 4.4.1-2 compares baseline noise contours with Alternative #4 contours. The aircraft operations modeled include all transient aircraft and general and commercial aircraft operations depicted in the current approved 2006 FAR Part 150 Noise Compatibility Update. Table 4.4.1-3 shows changes to the acreage of land within each noise contour under Alternative #4.

Table 4.4.1-3. Land Areas within DNL Contours at Pittsburgh IAP Affected by DNL Greater than 65 dB under Baseline and Alternative #4

<table>
<thead>
<tr>
<th>Noise Contour (dB DNL)</th>
<th>Baseline (KC-135) Total (ACRES)</th>
<th>Alternative #4 (KC-46A) Total (ACRES)</th>
<th>Change Total (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On Airport</td>
<td>Off Airport</td>
<td>Total</td>
</tr>
<tr>
<td>65-70</td>
<td>1,331.5</td>
<td>128.6</td>
<td>1,460.1</td>
</tr>
<tr>
<td>70-75</td>
<td>850.7</td>
<td>0</td>
<td>850.7</td>
</tr>
<tr>
<td>75-80</td>
<td>468.6</td>
<td>0</td>
<td>468.6</td>
</tr>
<tr>
<td>80-85</td>
<td>151.5</td>
<td>0</td>
<td>151.5</td>
</tr>
<tr>
<td>>85</td>
<td>207.5</td>
<td>0</td>
<td>207.5</td>
</tr>
<tr>
<td>Total</td>
<td>3,009.8</td>
<td>128.6</td>
<td>3,138.4</td>
</tr>
</tbody>
</table>

Notes: DNL = Day Night Average Sound Level; dB = decibel

Under Alternative #4, the DNL noise contours would decrease slightly in the areas of arrivals and departures from the DNL baseline contours because of fewer KC-46A airfield operations than depicted in the approved FAR Part 150 and the KC-46A is generally a quieter aircraft (5 dB quieter on landing and 1 dB louder on take-off) than the KC-135.

Overall, the number of acres contained within the 65 dB DNL and greater exposure area would decrease by approximately 79 acres, or approximately 2.5 percent, and would remain primarily on airport property with approximately 106 of the acres off airport property. Information regarding the number of people residing in the area can be found in Section 4.4.11, Environmental Justice and the Protection of Children and information regarding the area of residential use is located in the Section 4.4.7, Land Use.

Percent of the Population Expected to be Highly Annoyed

The percentage of the population expected to be highly annoyed under Alternative #4 would not be expected to change from baseline conditions because there are no additional residences exposed to levels above a DNL of 65 dB.
Figure 4.4.1-1. DNL Noise Contours Under Alternative #4 at Pittsburgh IAP

Figure 4.4.1-2. Comparison of Baseline and Alternative #4 DNL Noise Contours for Pittsburgh IAP.
Single Event Sound Analysis

Under Alternative #4, the flying profiles would not change, and the scheduled flying program would not change. As shown in Appendix A, Table A.1-1 provides representative SELs, indicating that the SEL for individual landings by the KC-46A would be 5 dB less while take-offs would be 1 dB more than the KC-135. Under Alternative #4, only the number of aircraft operations would change; there would be no change in where or when individual aircraft operate. Flights would be scheduled for similar time periods as currently flown during the morning and afternoons, with approximately 7 percent of flights occurring during environmental night (after 10 p.m. and before 7 a.m.).

Potential Hearing Loss

As shown in Table 4.4.1-3, there is no property off the Pittsburgh IAP that falls within the 80+ dB DNL noise contour; therefore, there would be no potential hearing loss risk associated with these areas.

4.4.1.2 Construction Noise

There would be some minor temporary noise from construction equipment associated with construction activities that would occur intermittently during the construction period (beginning 2015). Typical noise levels from heavy equipment range from 69 to 84 dB at 100 feet from the source (FHWA 2006) (see Appendix C, Noise, Section A.1.2.2). Aviation-related activities at Pittsburgh IAP dominate the local noise environment. Equipment used during the facility construction would contribute little to the general background noise levels around the airfield. Therefore, impacts from construction under Alternative #4 would be negligible.

4.4.1.3 Summary of Impacts

The number of 171 ARW airfield operations would decrease by 3,834 (29 percent decrease from the currently published FAR Part 150 Noise Compatibility Program; and a 2 percent increase in actual 2012 airfield operations), and the acreage within the 65 dB DNL (and greater) noise contour would decrease by 88 acres. There would be a decrease of approximately 23 acres within the 65 dB DNL noise contour that are off airport-controlled property, resulting in 106 acres off airport-controlled property that lie within the 65 dB contour. There would be no potential for hearing loss off the airport and no increase in the percent of the population highly annoyed. Construction noise would be localized and temporary and would not add to the overall noise environment. Impacts from noise would be negligible.
4.4.2 Air Quality

The air quality analysis estimated the magnitude of emissions that would result from implementation of the proposed KC-46A construction and operational activities at the 171 ARW of the PA ANG at Pittsburgh IAP, approximately 12 miles northwest of Pittsburgh, Pennsylvania. The estimation of proposed operational emissions is based on the net change in emissions between existing aircraft operations and projected KC-46A operations.

As discussed in Appendix A.2.3, air quality impacts from the beddown of the KC-46A aircraft at Pittsburgh IAP were reviewed for significance relative to the PSD threshold for new major sources for attainment pollutants, and the General Conformity de minimis thresholds for nonattainment pollutants. Because the project region within Allegheny County is a nonattainment area for O₃ (moderate) and PM₂.₅, the de minimis threshold of 100 tpy for O₃ precursors NOₓ and VOCs, and PM₂.₅ was used as an indicator of the potential significance of the emissions from the KC-46A conversion. For attainment pollutants, the PSD threshold of 250 tpy (100,000 tpy for GHGs) was used as an indicator of the potential significance of the emissions from Alternative #4.

4.4.2.1 Operational Emissions

Sources associated with operation of the proposed KC-46A beddown at Pittsburgh IAP include (1) operations and engine maintenance/testing of aircraft; (2) onsite POVs; (3) offsite POV commutes; and (4) AGE. It was assumed that other sources, including nonroad mobile equipment, mobile fuel transfer, and stationary source emissions would be unchanged. Operational data used to calculate projected KC-46A aircraft emissions were obtained from the data used in the 2012 baseline airfield analysis. Factors used to calculate combustion emissions for the KC-46A aircraft are based on emissions data developed by Pratt and Whitney for the PW4062 engine (International Civil Aviation Organization 2013). The operational times in mode for the KC-46A engine are based on those currently used for the KC-135 aircraft (AFCEC 2013). The analysis of proposed aircraft operations is limited to operations that occur within the lowest 3,000 feet of the atmosphere, as this is the typical depth of the atmospheric mixing layer where the release of aircraft emissions would affect ground-level pollutant concentrations.

Emissions from AGE were estimated based on the methodology recommended in the Air Emissions Guide for Air Force Mobile Sources (AFCEC 2013). Emissions from POVs were estimated based on the proposed personnel for the existing and proposed scenarios, using emission factors for vehicles from AFCEC 2013.
Table 4.4.2-1 summarizes the annual operational emissions that would result from KC-46A operations at Pittsburgh IAP. Table 4.4.2-1 also presents the net emissions increase associated with the beddown of the KC-46A aircraft at Pittsburgh IAP. As shown in Table 4.4.2-1, the net emissions increases are below the PSD/de minimis thresholds for all pollutants.

Table 4.4.2-1. Comparison of Baseline and Proposed Annual Operational Emissions, 171 ARW

<table>
<thead>
<tr>
<th>Baseline</th>
<th>Annual Emissions, Tons/year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VOC</td>
</tr>
<tr>
<td>KC-135 Aircraft Operations</td>
<td>3.42</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.11</td>
</tr>
<tr>
<td>POVs</td>
<td>4.27</td>
</tr>
<tr>
<td>Total</td>
<td>7.81</td>
</tr>
<tr>
<td>Proposed Action</td>
<td></td>
</tr>
<tr>
<td>KC-46A Aircraft Operations</td>
<td>20.22</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.80</td>
</tr>
<tr>
<td>POVs</td>
<td>3.44</td>
</tr>
<tr>
<td>Total</td>
<td>24.48</td>
</tr>
<tr>
<td>Net Increase</td>
<td>16.67</td>
</tr>
<tr>
<td>MOB2 Net Emissions Increase</td>
<td>2.13</td>
</tr>
<tr>
<td>Fraction of Existing Emissions</td>
<td></td>
</tr>
<tr>
<td>PSD/de minimis Threshold</td>
<td>100</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding.

CO = carbon monoxide; CO2e = carbon dioxide equivalent; NOx = oxides of nitrogen; PM10 = particulate matter less than or equal to 10 microns in diameter; PM2.5 = particulate matter less than or equal to 2.5 microns in diameter; SO2 = sulfur dioxide; VOC = volatile organic compound; AGE = aerospace ground equipment; POV = privately owned vehicle; PSD = Prevention of Significant Deterioration

In addition to criteria pollutant emissions, the beddown of the KC-46A aircraft at Pittsburgh IAP would result in emissions of HAPs and GHGs. Operational activities would result in a net increase of HAPs that is below 1 tpy.

Table 4.4.2-2 summarizes the annual operational GHG emissions that would result from KC-46A operations at Pittsburgh IAP, along with the net increase in comparison with the baseline. As shown in Table 4.4.2-2, emissions are below the PSD thresholds for GHGs.
Table 4.4.2-2. Comparison of Baseline and Proposed Annual Operational GHG Emissions, 171 ARW

<table>
<thead>
<tr>
<th></th>
<th>ANNUAL GHG EMISSIONS, METRIC TONS/YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO₂</td>
</tr>
<tr>
<td>Baseline</td>
<td></td>
</tr>
<tr>
<td>KC-135 Aircraft Operations</td>
<td>16,909</td>
</tr>
<tr>
<td>AGE</td>
<td>2,370</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>196</td>
</tr>
<tr>
<td>POV</td>
<td>2,270</td>
</tr>
<tr>
<td>Total</td>
<td>21,746</td>
</tr>
<tr>
<td>Proposed Action</td>
<td></td>
</tr>
<tr>
<td>KC-46A Aircraft Operations</td>
<td>25,411</td>
</tr>
<tr>
<td>AGE</td>
<td>3,035</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>243</td>
</tr>
<tr>
<td>POV</td>
<td>2,274</td>
</tr>
<tr>
<td>Total</td>
<td>30,963</td>
</tr>
<tr>
<td>Net Increase</td>
<td>9,218</td>
</tr>
<tr>
<td>PSD Threshold</td>
<td>100,000</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding.
CO₂ = carbon dioxide; CH₄ = methane; N₂O = nitrous oxide; CO₂ₑ = carbon dioxide equivalent; AGE = aerospace ground equipment; POV = privately owned vehicle

4.4.2.2 Construction Emissions

The KC-46A beddown at Pittsburgh IAP would require construction and renovation of existing airfield facilities, including hangars, buildings, and aprons and ramps. Air quality impacts resulting from the proposed construction activities would occur from (1) combustion emissions from heavy equipment and vehicles; and (2) fugitive dust emissions due to operation of equipment on exposed soil. Table 4.4.2-3 presents a summary of the annual construction emissions for the beddown of the KC-46A aircraft at Pittsburgh IAP. As shown in Table 4.4.2-3, emissions would be below the PSD/de minimis thresholds for all pollutants.
Table 4.4.2-3. Annual Construction Emissions Under Alternative #4

<table>
<thead>
<tr>
<th>Construction Project</th>
<th>CO</th>
<th>NOx</th>
<th>VOC</th>
<th>SOx</th>
<th>PM10</th>
<th>PM2.5</th>
<th>Total CO2 Metric tons/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project #1 - Addition to Hangar 302</td>
<td>1.64</td>
<td>2.61</td>
<td>0.46</td>
<td>0.05</td>
<td>2.70</td>
<td>2.04</td>
<td>871.93</td>
</tr>
<tr>
<td>Project #2 - Addition to Hangar 320</td>
<td>1.54</td>
<td>2.44</td>
<td>0.43</td>
<td>0.05</td>
<td>2.48</td>
<td>1.90</td>
<td>817.22</td>
</tr>
<tr>
<td>Project #3 - Internal Renovations to Hangar 301</td>
<td>0.30</td>
<td>0.47</td>
<td>0.06</td>
<td>0.01</td>
<td>0.04</td>
<td>0.04</td>
<td>122.59</td>
</tr>
<tr>
<td>Project #4 - Modifications to Existing Parking Ramp and Taxiway</td>
<td>3.84</td>
<td>9.13</td>
<td>0.95</td>
<td>0.45</td>
<td>5.14</td>
<td>2.61</td>
<td>2,267.97</td>
</tr>
<tr>
<td>Project #5 - New Hydrants and Fuel Lines and Demolition of Existing Hydrants</td>
<td>0.02</td>
<td>0.03</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>11.06</td>
</tr>
<tr>
<td>Total</td>
<td>7.33</td>
<td>14.68</td>
<td>1.91</td>
<td>0.56</td>
<td>10.37</td>
<td>6.60</td>
<td>4,090.77</td>
</tr>
<tr>
<td>PSD/de minimis Threshold</td>
<td>250</td>
<td>100</td>
<td>100</td>
<td>250</td>
<td>250</td>
<td>100</td>
<td>100,000</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding.
CO = carbon monoxide; NOx = oxides of nitrogen; VOC = volatile organic compound; SOx = oxides of sulfur; PM10 = particulate matter less than or equal to 10 microns in diameter; PM2.5 = particulate matter less than or equal to 2.5 microns in diameter; CO2 = carbon dioxide; PSD = Prevention of Significant Deterioration

4.4.2.3 Summary of Impacts

The Pittsburgh ANGS is located within a non-attainment area for PM2.5, a moderate nonattainment area for the 1997 8-hour O3 standard, and is classified as a marginal nonattainment area for the 2008 8-hour O3 standard, according to 40 CFR 81.339. The Pittsburgh ANGS is therefore subject to de minimis thresholds. Impacts from proposed operational emissions would be less than significant for all criteria pollutants. Impacts from construction emissions and operational HAP emissions are negligible.

4.4.3 Safety

4.4.3.1 Ground Safety

Existing facilities at Pittsburgh ANGS for fire response and crash recovery meet KC-46A beddown requirements (Headquarters AMC and NGB 2013d).

To support the aircraft beddown at Pittsburgh ANGS, some facilities would require renovation/modification. However, no construction activities would involve any unusual or extraordinary techniques. During construction and modifications, standard construction safety procedures would be employed, and strict adherence to all applicable standard industrial safety requirements and procedures would further minimize the relatively low risk associated with these construction activities.

Proposed renovation and infrastructure improvement projects related to Alternative #4 would not impact aircraft take-off or landings or penetrate any RPZs (Headquarters AMC and NGB 2013d).
New construction and building renovation activity would not result in any greater safety risk or obstructions to navigation. Operations would fall within the same general types as those that have historically occurred at Pittsburgh IAP. For example, the KC-46A would follow established local approach and departure patterns. Therefore, flight activity and subsequent operations would not require changes to RPZs.

Under this alternative, no new facilities are proposed for Pittsburgh ANGS. Planned construction at the base comprises renovation and additions to three hangars; modification to existing parking ramp and taxiway; and demolition and installation of new fuel hydrants and lines. Therefore, none of the construction or demolition would be in conflict with the current QD arcs.

No construction activities would involve any unusual or extraordinary techniques. During construction and modifications, standard construction safety procedures would be employed, and strict adherence to all applicable standard industrial safety requirements and procedures, including AFI 13-213, *Airfield Driving* (2011), would further minimize the relatively low risk associated with these construction activities.

The proposed construction projects meet all criteria specified in the ANG Handbook 32-1084, *Facility Space Standards*. AT/FP requirements have also been addressed to the extent practicable in all projects. Projects would use AT/FP site design standards for siting of facilities, parking, walkways, and other features. Renovations would bring the facilities into compliance with UFC 4-022-01, *Security Engineering: Entry Control Facilities/Access Control Points* and UFC 4-010-01, *DoD Minimum Antiterrorism Standards for Buildings*, providing additional protection for the personnel based there.

4.4.3.2 Flight Safety

Although the KC-46A is a new aircraft, it is a military derivative of the commercial Boeing 767 aircraft. First flown commercially in 1982, more than 1,000 commercial Boeing 767 aircraft have been produced; and it is a proven commercial airliner, freighter, and tanker already in service (Boeing 2012). Mishap statistics for the commercial Boeing 767 show 14 total aircraft losses (similar to a Class A military mishap definition) during its 31 year lifetime (ASN 2013).

Although no facilities are proposed that would affect navigable airspace, Pittsburgh ANGS would comply with 14 CFR Part 77, *Objects Affecting Navigable Airspace*, as appropriate, should they be selected to host the KC-46A.

To augment airborne training missions, pilots flying the KC-46A would use simulators extensively. Simulator training includes all facets of flight operations and comprehensive
emergency procedures. The sophistication and fidelity of current simulators and related computer programs are commensurate with the advancements made in aircraft technology and are extremely realistic. These factors would minimize risk associated with mishaps due to pilot error.

Under Alternative #4, there would be an increase of approximately 33 percent in 171 ARW operations (2 percent in total Pittsburgh IAP airfield operations) compared to existing conditions. This increase in take-offs, landings, proficiency training, and other flights would result in a commensurate increase in the safety risk to aircrews and personnel.

The proposed increase in airfield flight operations would be expected to increase the opportunity for aircraft mishaps, including BASH incidents; however, the expected rate of mishaps or BASH incidents would not be expected to change from current conditions. Both the KC-135 and the commercial Boeing 767 have very low mishap rates and with a new airframe and technological improvements, the KC-46A would be expected to have a similar safety record. Current airfield safety procedures would continue to be implemented and additional airfield flight operations would adhere to established safety procedures (171 ARW 2010c).

Given the low likelihood of an aircraft accident or BASH mishap to occur in the local airfield area and even lower likelihood for civilians to be impacted, impacts to safety in the vicinity of Pittsburgh IAP as a result of Alternative #4 are expected to be negligible.

The KC-46A will have the capability to jettison fuel for emergency situations. Military policy is to avoid fuel jettisons, unless safety of flight dictates an immediate jettison, and requires senior officer approval before fuel jettison, unless under emergency situations. Records of KC-135 fuel jettison events reveal that such circumstances are rare, occurring in slightly less than two sorties per thousand (Headquarters AMC 2013). Additionally, unlike the KC-135, the KC-46A will have the capability to land fully loaded with fuel so long as adequate runway length and braking capability are available (Headquarters AMC 2013), which could potentially lessen the need to jettison fuel in certain circumstances. Based on information provided by Boeing, landing the KC-46A above maximum landing weight is not prohibited; however, it does drive costly inspection requirements. To land above maximum landing weight routinely could reduce the fatigue life of the airplane (Headquarters AMC 2013).

4.4.3.3 Summary of Impacts

There would be a 33 percent increase in actual 171 ARW airfield operations (2 percent increase in total airfield operations) at Pittsburgh IAP with a commensurate increase in mishap and BASH potential. Construction activities would involve no unusual or extraordinary techniques. During construction and modifications, standard construction safety procedures would be employed, and
strict adherence to all applicable standard industrial safety requirements and procedures would further minimize the relatively low risk associated with these construction activities. Impacts to safety would be expected to be negligible.

4.4.4 Soils and Water

4.4.4.1 Soils

Under Alternative #4, new construction would consist of five separate projects resulting in 186,395 SF (4.3 acres) of new construction footprint and 88,529 SF (2.0 acres) of new impervious surface (Table 2.3-23). These proposed construction projects for aircraft conversion would meet all criteria specified in ANG Handbook 32-1084, *Facility Space Standards.*

Proposed construction under Alternative #4 would occur on Urban land-Culleoka complex. This soil type is not rated in road or small commercial building development and may require onsite investigation and evaluation for most land use decisions to identify any potential limitations (NRCS 2013). Pursuant to the Farmland Protection Policy Act, the USAF determined that the land is not farmland subject to the Farmland Protection Policy Act; therefore, the Farmland Protection Policy Act does not apply to this alternative.

Under Alternative #4, there would be approximately 186,395 SF (4.3 acres) of temporary soil disturbance as a result of proposed construction. To minimize potential impacts to soil and water resources associated with erosion, runoff, and sedimentation during construction activity, standard construction practices as described in the 171 ARW SWPPP (171 ARW 2010a) would be implemented during and following the construction period. Such practices could include the use of well-maintained silt fences or straw wattles, minimizing surficial areas disturbed, stabilization of cut/fill slopes, minimization of earth-moving activities during wet weather, and covering of soil stockpiles, as appropriate. A site-specific and detailed SWPPP that coordinates the timing of soil disturbing activities with the installation of soil erosion and runoff controls is an effective way of controlling erosion while soil is exposed and subject to construction activity. An NOI must be filed with the state of Pennsylvania to obtain coverage under the General NPDES Permit for Stormwater Discharges Associated with Construction Activities (General Permit No. PAG-02) prior to implementation of individual projects. Construction activities subject to this permit include clearing, grading, and disturbances to the ground such as stockpiling or excavation. Impacts to earth resources would be negligible.
4.4.4.2 Surface Water

As a result of implementation of Alternative #4, there would be approximately 88,529 SF (2.0 acres) of new impervious surface from the proposed construction (Figure 4.4.4-1). This could result in localized increases in stormwater runoff volume and intensity, in addition to increases in total suspended particulates to nearby surface waters. However, in accordance with UFC 3-210-10, LID (as amended, 2010) and EISA Section 438, any increase in surface water runoff as a result of the proposed construction would be attenuated through the use of temporary and/or permanent drainage management features. The integration of LID design concepts incorporates site design and stormwater management to maintain the site’s pre-development runoff rates and volumes to further minimize potential adverse impacts associated with increases in impervious surface area.

Increased runoff and peak discharge volumes as a result of increases to impervious surface can be managed by appropriately designed conveyance structures (such as roadways, channels, and culverts) in accordance with site-specific engineering standards that take into consideration the influence of surface water drainage within, adjacent to, and downstream of the project. In addition, implementing features that manage surface water runoff into the design of the project would avoid or minimize conflicts with city, county, state, or federal regulations and prevent adversely affecting adjacent properties and/or the project area itself. Such measures could include:

- water harvesting and natural open space,
- installation of retention/detention basins for water recharge or for release of runoff at predetermined times to minimize peak discharges,
- the use of porous materials, such as pavers or gravel, for driveway and walkway construction, and
- directing runoff toward permeable areas, such that discharge exiting each site post-construction would be equal to or less than existing conditions.

Implementation of these measures, as necessary and appropriate, would ensure that impacts to surface water as a result of implementation of Alternative #4 would be minimal.
Figure 4.4.4-1. Surface Water Features and Proposed Construction in the Vicinity of Pittsburgh ANGS

Notes: Project numbers (①) correspond to those presented in Table 2.3-23.
Internal renovation projects not shown.

4.4.4.3 Groundwater

As a result of Alternative #4, the increase in the amount of impervious surface (2.0 acres) would also result in a decrease in groundwater recharge. However, as noted above, any increase in surface water runoff as a result of the proposed construction would be attenuated through the use of permit-related temporary and/or permanent drainage management features such as detention/retention basins and standard construction practices as described above and in the 171 ARW SWPPP (171 ARW 2010a). The integration of water harvesting and natural open space into project design would further minimize potential adverse impacts due to increased impervious surface. The use of these features would also increase groundwater recharge through direct percolation offsetting the loss of pervious surface due to future construction. Additionally, the impervious surface area resulting from the proposed activities would not be one continuous, hardened surface. Rather, the impervious surfaces would occupy several smaller areas, which would further minimize localized impacts to groundwater recharge.

4.4.4.4 Floodplains

Proposed construction activities at the installation would not occur within the 100-year floodplain zone. As such, there would be no impacts to floodplains under this alternative.

4.4.4.5 Summary of Impacts

There would be approximately 4.3 acres of temporary soil disturbance and 2.0 acres of new impervious surface as a result of the proposed construction. To minimize potential impacts associated with erosion, runoff, and sedimentation, standard construction practices would be implemented. Proposed construction would not impact prime farmlands; therefore the Farmland Protection Policy Act does not apply to this alternative. Therefore, impacts to soil and water resources would be negligible.

4.4.5 Biological Resources

4.4.5.1 Vegetation

Construction of new facilities associated with Alternative #4 at the 171 ARW installation would occur on currently paved areas or actively managed (i.e., mowed and landscaped) areas, and would result in an increase of 88,529 SF (2.0 acres) of impervious surfaces. No native vegetation would be impacted. Impacts to the vegetation at the installation would be negligible due to the lack of sensitive vegetation in the project area.
4.4.5.2 Wildlife

Under Alternative #4, impacts to wildlife due to construction would be minor. Noise associated with construction may cause wildlife to temporarily avoid the area, including those that are protected under the MBTA. Noise associated with construction activities, as well as an increase in general industrial activity and human presence, could evoke reactions in birds. Disturbed nests in the immediate vicinity of construction activity would be susceptible to abandonment and depredation. However, bird and wildlife populations in the vicinity of the airport where project components would occur are accustomed to elevated noise associated with aircraft and general military industrial use. As a result, indirect impacts from construction noise are expected to be minimal because the ambient noise levels within the vicinity are high under existing conditions and would be unlikely to substantially increase by the relatively minor and temporary nature of the proposed construction and modifications.

Under Alternative #4, impacts to wildlife due to proposed operations would be minor. Annual operations for the KC-46A at Pittsburgh IAP would be projected to increase by approximately 33 percent over the KC-135 baseline operations (2 percent increase in total airfield operations) found on Table 2.3-21. An increase in levels of operations (e.g., sorties) may result in an increased opportunity for bird-aircraft strikes to occur, including those with migratory birds. Adherence to the existing, BASH program would minimize the risk of bird/wildlife aircraft strikes (see Section 4.4.3, Safety). The 171 ARW has developed procedures designed to minimize the occurrence of bird/wildlife aircraft strikes, and has documented detailed procedures to monitor and react to heightened risk of bird/wildlife aircraft strikes. When risk increases, limits are placed on low-altitude flight and some types of training (e.g., multiple approaches, closed pattern work) in the airport environment. Special briefings are provided to pilots whenever the potential exists for increased bird/wildlife aircraft strikes within the airspace.

4.4.5.3 Special Status Species

No federally threatened and endangered species are currently known to occur on Pittsburgh IAP and there is only a low potential for them to occur within the vicinity due to the lack of habitat. In a letter dated April 2, 2014, the USFWS Pennsylvania Field Office concurred that no federally listed threatened or endangered species are known to occur within the project area. One state listed species (Torrey’s Rush) is currently known to occur on Pittsburgh IAP; however, it would not be impacted by the proposed construction or operations. Therefore, Alternative #4 would have no effect on special status species.

4.4.5.4 Wetlands

There are no wetland areas that occur within the proposed project footprints. The wetland that occurs within the vicinity of the project areas, between the east and west aircraft parking aprons,
would not be impacted from the proposed construction. To minimize potential impacts associated with erosion, runoff, and sedimentation, standard construction practices as described in the 171 ARW SWPPP (171 ARW 2010a) would be implemented during and following the construction period. Such standard construction practices could include the use of well-maintained silt fences or straw wattles, minimizing surficial areas disturbed, stabilization of cut/fill slopes, minimization of earth-moving activities during wet weather, and covering of soil stockpiles, as appropriate. Following construction, disturbed areas not covered with impervious surface would be reestablished with appropriate vegetation and native seed mixtures and managed to minimize future erosion potential. Therefore, no significant impacts to wetlands would occur as a result of Alternative #4.

4.4.5.5 Summary of Impacts

Construction of new facilities associated with this alternative would occur primarily on currently paved or actively managed areas. Therefore impacts to vegetation would be negligible. There would be no impacts to wetlands. Impacts to wildlife from operational noise would be minor due to the 33 percent increase in 171 ARW airfield operations. This small increase in the airfield operations may also result in a slight increased opportunity for bird-aircraft strikes to occur, including those with migratory birds. No federally listed species or critical habitat and one state listed species is known to occur on Pittsburgh IAP. However, under Alternative #4 there would be no impacts to special status species.

4.4.6 Cultural Resources

Potential direct impacts to cultural resources examined in this analysis include effects to archaeological sites due to ground disturbing activities during construction or modification to buildings. Indirect impacts from an increase in personnel from 1,306 to 1,365 would be negligible as personnel would primarily be confined to the developed areas on the installation.

4.4.6.1 Archaeological Resources

The only undisturbed portion of the 171 ARW installation in the southwest portion was intensively surveyed for archaeological resources and no NRHP-eligible archaeological resources were located. The Pennsylvania SHPO concurred with the results of this archaeological survey (171 ARW 2012b, McLearen 2011). In the unlikely event that archaeological or human remains are identified during construction, all activities in the area of the discovery would cease and the Environmental Manager would contact a qualified archaeologist to evaluate the discovery. Under these conditions, there would be no adverse impacts to archaeological resources as a result of Alternative #4.
4.4.6.2 Architectural Resources

Three buildings are proposed for interior renovations or additions at the 171 ARW installation (Buildings 301, 302, and 320). None of these buildings are eligible to the NRHP. Both 301 and 302 were inventoried and evaluated for NRHP eligibility in 2011 and the SHPO concurred with the recommendation that they were not eligible for listing in the NRHP (171 ARW 2012b, MacDonald 2011). Building 320 was built in 1997 and is therefore not eligible to the NRHP because it is less than 50 years old, does not fall within the Cold War-era, and has not achieved exceptional significance (meet Criterion Consideration G) for any other reason. SHPO consultation for this EIS has provided concurrence that the proposed project has no potential to adversely affect historic properties (see Appendix B3). There would be no adverse impacts to architectural resources as a result of implementation of Alternative #4.

4.4.6.3 Traditional Resources

The 171 ARW installation contains no known traditional resources. Given the extensive development on the installation, it is unlikely that there are traditional resources located at the 171 ARW. Government-to-government consultation for this action has been conducted with each federally-recognized Tribe associated with the 171 ARW installation in recognition of their status as sovereign nations and in order to provide information regarding tribal concerns per Section 106 of the NRHP as well as information on traditional resources that may be present on or near the installation. Responses have been received from all the Tribes under consultation. On October 3, 2013 an e-mail from the Seneca Nation of Indians was received stating that they had no objection to the Proposed Action (see Toth 2013 in Appendix B2). On January 13, 2014, an e-mail from the Cayuga Nation of New York was received stating that they had no objection to the Proposed Action (see Halftown 2014 in Appendix B2). On January 17, 2014, the Onondaga Nation of New York stated that they had no objection to the Proposed Action via telephone call. On April 4, 2014, the Tonowanda Band of Seneca stated that they had no objection to the Proposed Action via telephone call. In a letter dated April 14, 2014, the Tuscarora Nation stated that they concur that the proposed project will have no effect on predetermined archaeological sites within the Area of Potential Effect. The NGB and the USAF values its relationship with tribes and will continue to seek opportunities to consult on other planning efforts or matters of known/potential interest to tribes.

4.4.6.4 Summary of Impacts

Construction activities associated with this alternative are limited to the developed areas of the installation, primarily in the areas of the aircraft hangars and airfield pavements, where no archaeological resources are known. Additionally, all undisturbed parts of the installation have been surveyed and no resources were present; the SHPO has concurred (McLearen 2011). The area is also considered to have a low potential for buried archaeological materials. None of the
buildings that would be impacted under the Proposed Action are eligible to the NRHP. The SHPO has concurred with this determination for Buildings 301 and 302 (MacDonald 2011). Building 320 is modern and does not meet any of the NRHP criteria for significance. No traditional resources are known to occur at the installation. Therefore, no impacts to cultural resources are anticipated at the 171 ARW installation under Alternative #4.

4.4.7 Land Use

The primary source of impacts to land use resulting from Alternative #4 would be from noise. As shown in Table 4.4.7-1 and Figure 4.4.7-1, areas outside of the airport boundaries currently exposed to DNLs of 65 dB to 70 dB would decrease by approximately 23 acres, overall. By zoning districts, the Commercial area affected by DNL of 65 dB to 70 dB would decrease by approximately 27 acres; Mixed Use areas would increase by approximately 2 acres; Industrial areas would increase by approximately 3 acres; and Residential and Agricultural areas would remain approximately the same. There would be no change in the areas affected by DNL of 70 dB or greater. No additional houses, churches, schools or other sensitive noise receptors are located within the 65 dB DNL off-airport noise contour areas.

Table 4.4.7-1. Change in Acres Affected by Noise Levels Above 65 dB DNL Outside the Pittsburgh IAP Boundary

<table>
<thead>
<tr>
<th>Land Use</th>
<th>65 dB to 70 dB DNL</th>
<th>70 dB DNL +65 dB to 80 dB DNL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>Proposed</td>
</tr>
<tr>
<td>Commercial</td>
<td>67.5</td>
<td>40.4</td>
</tr>
<tr>
<td>Mixed Use</td>
<td>25.1</td>
<td>27.4</td>
</tr>
<tr>
<td>Industrial</td>
<td>33.1</td>
<td>35.6</td>
</tr>
<tr>
<td>Residential</td>
<td>2.9</td>
<td>2.5</td>
</tr>
<tr>
<td>Agricultural</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total Area</td>
<td>128.6</td>
<td>105.9</td>
</tr>
</tbody>
</table>

A more detailed discussion of aircraft operations and noise can be found in Section 4.4.1, Noise.

4.4.7.1 Summary of Impacts

The number of airfield operations would decrease by 3,834 (29 percent decrease) from the currently published FAR Part 150 Noise Compatibility Program, and the acreage within the 65 dB DNL (and greater) noise contour would decrease by 79 acres. There would be a decrease of approximately 23 acres within the 65 dB DNL noise contour that are off airport-controlled property. Current land use and zoning designations would not change due to the basing of the KC-46A. This alternative would result in negligible impacts in off-airport areas exposed to noise levels above 65 dB DNL. Airport Hazard Areas would not be affected.
Figure 4.4.7-1. DNL Noise Contours and Land Use Under Alternative #4 at Pittsburgh IAP
4.4.8 Infrastructure and Transportation

4.4.8.1 Potable Water

Water consumption would be expected to increase slightly under Alternative #4 as a result of the increase in personnel; however, an increase in 23 personnel on the installation would not be expected to impact regional water supply. Additionally, the demand for water (e.g., if used to control dust) could also increase during demolition and construction phases. However, this increase would be temporary and intermittent and would not be expected to impact the regional water supply.

4.4.8.2 Wastewater

Wastewater generation would be expected to increase slightly as a result of the increase in 23 personnel on the installation. However, there have been no deficiencies identified with the existing system, and it is expected that the existing sanitary sewer system is generally adequate to serve the facilities proposed under this alternative.

4.4.8.3 Stormwater

Under Alternative #4, there would be up to 186,395 SF (4.3 acres) of temporary soil disturbance as a result of proposed construction. The proposed construction activities could temporarily impact the quality of stormwater runoff (see Section 4.4.4, Soils and Water); however, through implementation of appropriate standard construction practices, preventative maintenance, and periodic inspections and sampling to detect risk to stormwater, especially during active construction activity, no impacts would be expected to the existing stormwater drainage system as a result of the proposed construction.

In addition, there would be an increase in up to 88,529 SF (2.0 acres) of new impervious surface. The addition of new impervious surfaces would potentially increase stormwater runoff volume and peak discharge rates; however, as discussed in further detail in Section 4.4.4, Soils and Water, stormwater runoff increases would be managed such that discharge exiting each site post-construction would be equal to or less than existing conditions in accordance with UFC 3-210-10 and EISA Section 438. Implementation of these measures would ensure that impacts to the stormwater drainage system as a result of implementation of Alternative #4 would be minimal.

4.4.8.4 Electrical and Natural Gas Systems

Demand for electricity and natural gas would be expected to increase slightly as a result of the increase in personnel, and the building space and facilities to be constructed would require
additional electricity. However, any new facilities and additions associated with this alternative would be implemented with more energy efficient design standards and utility systems than are currently in place. In addition, construction projects would incorporate LEED and sustainable development concepts to achieve optimum resource efficiency, sustainability, and energy conservation. Therefore, average energy consumption would be expected to remain consistent or decrease compared to energy consumption associated with existing facilities.

Construction activity associated with Alternative #4 could result in some temporary interruption of utility services during construction. These impacts would be temporary, occurring briefly during active construction periods. In addition, the demand for energy (primarily electricity) could increase slightly during demolition and construction phases. The energy supply at the installation and in the region is adequate and would not be affected by this temporary increase in demand.

4.4.8.5 Solid Waste Management

The building space and facilities to be constructed would generate construction and demolition debris requiring landfill disposal. Construction activities would result in approximately 186,395 SF of additions and alterations to existing facilities and 88,529 SF of new building construction. Using a multiplier provided by the USEPA to determine solid waste generation, it was estimated that proposed renovations at Pittsburgh ANGS would generate 2,197,597 pounds (1,099 tons) of renovation debris requiring landfill disposal and proposed new construction at Pittsburgh ANGS would generate 384,216 pounds (192 tons) of construction debris (USEPA 2009). Therefore, the total amount of construction and demolition debris generated at Pittsburgh ANGS would be 1,291 tons.

Solid waste generated as a result of the proposed construction could result in impacts to solid waste management facilities in the area. It is unknown what landfill would be used for construction debris since the construction contractor would choose the landfill. However, the Allied Waste Imperial Landfill, which is the closest to the installation, has a permitted throughput of 649,800 tons per year (Allegheny County 2009). The 1,291 tons of proposed construction debris generated at Pittsburgh ANGS would represent 0.2 percent of the yearly capacity of the landfill. Impacts to local landfills would not be expected to exceed the permitted throughput or contribute significantly to the remaining capacity.

Off-installation contractors completing construction and demolition projects at the 171 ARW installation would be responsible for disposing of waste generated from these activities. Contractors would be required to comply with federal, state, and local regulations for the collection and disposal of municipal solid waste from the installation. Much of this material can
be recycled or reused, or otherwise diverted from landfills. EO 13514, *Federal Leadership in Environmental, Energy, and Economic Performance*, sets a target diversion rate of 50 percent for recycling and waste diversion for DoD facilities by 2015, including construction and demolition waste; compliance with EO 13514 would further minimize the increase in solid waste generation as a result of the proposed construction. All non-recyclable construction and demolition waste would be collected in a dumpster until removal. Construction and demolition waste contaminated with hazardous waste, ACM, LBP, or other undesirable components would be managed in accordance with AFI 32-7042, *Waste Management* (2009).

4.4.8.6 Transportation

Construction equipment would be driven to proposed construction areas and would be kept on-site for the duration of the respective activity. Construction workers would drive daily in their personal vehicles to and from the construction site. In general, construction traffic would result in increases in the use of on-installation roadways during construction activities; however, increases would be temporary and intermittent, occurring only during active construction periods.

The number of authorized personnel on the installation would increase by 23 under Alternative #4 (see Table 2.3-24). The increase in personnel would create a potential 23 additional one-way vehicle trips to and from the installation during morning and evening peak periods for these additional personnel. Assuming that each person makes two trips per day, the implementation of Alternative #4 would add an additional 46 trips onto the existing roadway network after the construction phase is complete. However, regional roads used to access the installation as well as those located on the installation have sufficient capacity to manage this minimal increase in traffic without substantial impacts to circulation. Therefore, impacts to transportation infrastructure would not be significant under Alternative #4.

4.4.8.7 Summary of Impacts

Impacts from this alternative would not be expected since there have been no deficiencies identified with the existing systems, and it is expected that the existing infrastructure is generally adequate to serve the facilities and increased personnel proposed under this alternative. Impacts to infrastructure resulting from construction would be negligible since any interruption of utility services or increase demand on infrastructure would be temporary and infrequent. Impacts to infrastructure would be negligible.
4.4.9 Hazardous Materials and Waste

4.4.9.1 Hazardous Materials

A HMMP has been developed for the KC-46A program. Training activities and other functions would be expected to remain similar between the KC-46A and existing KC-135 aircraft. The types of hazardous materials needed for maintenance and operation of the KC-46A would be expected to remain similar to those currently used for maintenance and operation of the KC-135 fleet. However, unlike the KC-135, the KC-46A aircraft will be free of ODSs. ODSs were typically used as part of the fire suppression systems on aircraft; ODS use and/or storage would no longer be required under Alternative #4.

The KC-46A aircraft has been designed with a focus on reduction of hazardous materials such that hazardous materials currently required for maintenance, operations, and materials on or associated with the new aircraft would be less than or equal to the existing aircraft (Boeing 2011). In addition, it is anticipated that the amount of hazardous waste generated for one KC-46A aircraft for maintenance activities would be slightly less than that generated for one KC-135 aircraft since the KC-46A has two engines as opposed to the four engines for the KC-135. Furthermore, the KC-46A is a newer aircraft and is expected to need less maintenance than the older KC-135 aircraft.

Under Alternative #4, the total number of flying hours would increase from 6,016 to 8,040 (a 34 percent increase); therefore, the throughput of petroleum substances (e.g., fuels, oils) used during operations would be expected to increase commensurately from what is currently used to maintain the KC-135 fleet (see Appendix A, Section A.9, for more details). Additionally, it is expected that short-term increases would be realized in terms of the quantity of fuel used during construction activities, because various fuels (e.g., diesel, gasoline) would be required to run earth-moving equipment and power tools and to provide electricity and lighting as conditions warrant. Procedures for hazardous material management established for the 171 ARW installation would continue to be followed in future operations associated with Alternative #4 and as required during all construction and renovation activities.

Toxic Substances

Under Alternative #4, additions to Hangars 302 and 320 are proposed, and internal renovations to Hangar 301 are proposed. According to the 1991 asbestos report, Hangars 301 and 302 were found to contain ACM in the insulation, floor tiles, and mastic. A LBP survey has not been conducted at the 171 ARW installation. However, Buildings 301 and 302 were built before 1978 and therefore may contain LBP. Any structures proposed for demolition, addition, or retrofit would be inspected for ACM and LBP according to established ANG procedures prior to any
renovation or demolition activities. All ACM would be properly removed and disposed of prior to or during demolition in accordance with 40 CFR 61.40 through 157. All LBP would be managed and disposed of in accordance with TSCA, OSHA regulations, Pennsylvania requirements (regarding site work practices for buildings with LBP), and established ANG procedures. Removal and disposal of ACM and LBP may also require local permits and inspections (depending on volume or area being removed/renovated) through the Allegheny County Health Department. Materials, especially discarded oil products, would be screened for PCB contamination prior to disposal.

4.4.9.2 Hazardous Waste Management

The type of hazardous waste streams generated by KC-46A operations would be expected to remain similar to those being generated by the existing KC-135 aircraft. Additionally, the two aircraft require the same types of hazardous materials for their maintenance and operations (e.g., fuels, oils). Under Alternative #4, the total number of flying hours for the 171 ARW would increase by approximately 34 percent; therefore, hazardous waste streams would be expected to increase commensurately (see Appendix A, Section A.9, for more details). Hazardous waste generation (e.g., used oil, used filters, oily rags, etc.) would continue to be managed in accordance with the installation’s Hazardous Waste Management Plan and all applicable federal, state, and local regulations. No changes to the installation’s large quantity generator status would be expected to occur due to the increase in hazardous waste generation from aircraft operations.

4.4.9.3 Environmental Restoration Program

In accordance with AFI32-7020, The Environmental Restoration Program, construction, modifications and/or additions to existing buildings can occur on or in proximity to existing ERP sites. Accordingly, the appropriate organizations (e.g., installation planners, ERP managers, design engineers) must consider a compatible land use based on current site conditions and the selected or projected remedial action alternatives. Construction should be sited and designed to minimize life-cycle costs to include those associated with impacts from existing contaminated sites. If the potential for uncharacterized ERP sites exist, the installation is responsible for identifying existing contamination at the proposed construction sites to avoid unknowingly locating construction projects in areas with contamination. The installation is responsible for performing necessary environmental baseline surveys, accomplishing environmental impact analysis process requirements, and for otherwise informing itself about existing site conditions and their associated cost impacts in preparation for a construction project. When warranted by the site history, environmental restoration funds may be used to accomplish RCRA facility assessments, or preliminary assessments and site inspections undertaken in accordance with the
CERCLA process, or similar site investigations in accordance with applicable state laws for suspected releases. To the extent that a construction project generates actions to address contamination, or a need to change the timing of ERP-generated actions to address contamination, the costs of such actions are not Environmental Restoration Account-eligible and shall be funded as part of the construction project. This includes the handling, mitigation, and disposal or other disposition of contamination discovered before or during the construction activity.

The removal and disposal of contamination unexpectedly encountered within the construction project footprint during the execution of a construction project will be undertaken as part of the construction project using construction project funds which may include other MILCON funds reprogrammed to a MILCON construction project. Construction contractor costs (such as direct delay costs and unabsorbed or extended overhead) incidental to discovery and removal of the contamination will be construction project funded to the extent that the government is responsible and liable for such costs.

Vapor intrusion should be evaluated when volatile chemicals are present in soil, soil gas, or groundwater that underlies existing structures or has the potential to underlie future buildings and there may be a complete human exposure pathway. Due to their physical properties, volatile chemicals can migrate through unsaturated soil and into the indoor air of buildings located near zones of subsurface contamination.

One ERP site, Site #7 overlaps with the proposed addition to Hangar 320 as well as the proposed apron expansion (Figure 4.4.9-1). This site is closed and was a POL storage area and fuel hydrant system for JP-4 fuel. Soil and groundwater sampling performed at this site did not reveal contaminants of concern above PADEP guidelines; therefore, it is not expected to pose a vapor intrusion concern. However, it is recommended that a vapor intrusion analysis/testing is completed prior to construction to investigate any potential concern. If testing indicates a vapor intrusion concern, the installation would implement practices in accordance with site-specific vapor mitigation design considerations.
Figure 4.4.9-1. ERP Sites and Proposed Construction in the Vicinity of Pittsburgh ANGS
If contaminated media (e.g., soil, vapor, groundwater) are encountered during the course of site preparation (e.g., clearing, grading) or site development (e.g., excavation for installation of building footers) for proposed construction activities, work would cease until 171 ARW Program Managers establish an appropriate course of action for the construction project to ensure that federal and state agency notification requirements are met, and to arrange for agency consultation as necessary if existing ERP sites are affected. Also, prior to construction activities, the construction contractors would be notified of the nature and extent of known contamination so that they can inform their employees in advance of on-site activities and take appropriate precautions to protect health and safety, and to prevent the spread of contamination. The construction contractors would be responsible for ensuring their workers follow appropriate health and safety requirements.

Alternative #4 would not result in an increased risk of hazardous waste releases or exposure, nor would it affect the criteria listed in Appendix A, Section A.9. Therefore, no significant impacts from hazardous materials and wastes would occur with the implementation of Alternative #4.

4.4.9.4 Summary of Impacts

There would not be an increased risk of hazardous waste releases or exposure from this alternative. Any LBP or ACM that may be found in buildings that are scheduled for construction activities would be managed per applicable USAF regulations. There would be no expected impact from ERP sites. Impacts relative to hazardous materials and wastes would be negligible.

4.4.10 Socioeconomics

Under Alternative #4, construction activities would be contained entirely within the boundaries of Pittsburgh IAP. Economic activity associated with proposed construction activities at the 171 ARW installation, such as employment and materials purchasing, would provide short-term economic benefits to the local economy. However, short-term beneficial impacts resulting from construction payrolls and materials purchased would be negligible on a regional scale.

The proposed aircraft beddown and related activities would result in a minor change in staffing requirements for the 171 ARW. Currently, the 171 ARW is authorized 1,306 personnel. Under Alternative #4, the KC-46A mission would add an additional 59 military positions (increase in 235 full-time positions and reduction of 176 traditional Guard positions) (see Table 2.3-24). Combined with their approximately 80 family members, this would represent less than 0.01 percent of Allegheny County population. Of the 80 family members, approximately 28 would be anticipated to be of school age. The students entering the local schools would be expected to be enrolled in various grades and live in different areas within Allegheny County. It is anticipated...
that there is enough capacity within the schools in this county to absorb this minimal increase in school age children.

A net increase in 59 military personnel positions would amount to an increase of approximately 4.5 percent to the existing 171 ARW personnel. Total payroll associated with the 235 additional full-time personnel would amount to an estimated total annual salary increase of approximately $12 million for full-time employees. However, a portion of this (approximately $4 million) would be offset by the loss of 176 part-time guardsmen.

All 171 ARW personnel live off-installation as there is no on-installation housing. A conservative scenario would result in 80 homes purchased at the same time as personnel relocate to the area. This would represent less than 0.01 percent of the total housing units in the Allegheny County. However, not all the military personnel who would relocate would own homes, and some personnel may choose to live in other neighboring counties or states.

4.4.10.1 Summary of Impacts

Impacts to socioeconomics resulting from construction would be beneficial and negligible resulting from construction payrolls and materials purchased. In addition, impacts from proposed operations would be beneficial and minor due to the proposed increase in personnel.

4.4.11 Environmental Justice and the Protection of Children

4.4.11.1 Minority and Low-Income Populations

As presented in Table 4.4.11-1, of the roughly 12 persons (same as baseline) that would be affected by proposed DNL between 65 dB and 70 dB, none are considered to be minorities, or low-income populations. No additional minorities or low-income populations would be impacted by aircraft DNL greater 65 dB under Alternative #4. Therefore, there would be no impacts to minority or low-income populations in the vicinity of Pittsburgh IAP and there would be no disproportionate impacts to minority or low-income populations.
Table 4.4.11-1. Population within Alternative #4 Noise Contours, Pittsburgh IAP

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>65-70</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>70-75</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>75-80</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>80-85</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>85+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note:
1. Total population, minority population, and number of children under the age of 18 were obtained from the 2010 census data. Low income population numbers are from the 2007-2011 ACS 5-Year Estimates.
2. The percentage of low-income persons is calculated as a percentage of all persons for whom the USCB determines poverty status, which is generally a lower number than the total population because it excludes institutionalized persons, persons in military group quarters and college dormitories, and unrelated individuals under 15 years old.

Sources: USCB 2010f and 2011f.

4.4.11.2 Protection of Children

There are no facilities on the installation where children may be encountered on a regular basis. Currently there are no Kindergarten through Grade 12 off-installation schools that are exposed to aircraft DNL between 65 dB and 70 dB. Under Alternative #4 there would be no new Kindergarten through Grade 12 schools exposed to aircraft DNL of 65 dB or above. Therefore, under Alternative #4 there would be no special health or safety risks to children.

4.4.11.3 Summary of Impacts

Given that the acreage within the 65 dB DNL noise contour would be reduced under Alternative #4, there would be no additional residential populations, including no minority or low-income populations, and no additional schools located within the vicinity Pittsburgh IAP exposed to DNL of 65 dB or above; thus, there would be no disproportionate impacts to minority or low-income populations in the vicinity of Pittsburgh IAP. In addition, there would be no special health or safety risks to children.
4.5 **ALTERNATIVE #5 -- RICKENBACKER AIR NATIONAL GUARD STATION**

4.5.1 Noise

In this section, noise associated with flying operations and construction activities related to Alternative #5 are considered and compared with current conditions associated with the most current approved and published baseline noise study to assess potential impacts. Details of the noise modeling methodologies used for this section can be found Appendix A, Section A.1.2.

Actual 2012 KC-135 airfield operations were identified in Table 2.3-25. This data was used in determining the proposed KC-46A airfield operations based on most current home-station sorties and airfield operations to provide a more accurate determination of the number of airfield operations for Alternative #5. Under this analysis, the proposed airfield operations are compared to the most current approved and published 2007 FAR Part 150 Noise Compatibility Program for Rickenbacker IAP.

The DNL noise contours for the KC-46A under Alternative #5 were generated using INM. Based KC-135 operations were removed and replaced with KC-46A operations using the B-767-300 and the standard flight profile data provided with INM as substitute data and applying the data to the current based KC-135 flight tracks and operational procedures (INM does not have a standard profile or noise curve data for the KC-46A). Using the standard flight profile data provided for this substitute aircraft in INM provides an accurate analysis of noise contour comparisons that would be expected with the new KC-46A. Flight profiles, flight tracks, and operational procedures currently being used by the KC-135 were used in this INM program.

4.5.1.1 Aircraft Noise

Under Alternative #5, 12 KC-46As would be based at Rickenbacker ANGS replacing the current 18 KC-135 aircraft. There would be no change in the number or type of other aircraft using the airfield. KC-46A aircrews would use the same flying procedures (e.g., ground tracks, altitude profiles) currently used by KC-135 aircrews. Aircrews associated with the KC-46A would continue to practice closed patterns, including tactical procedures in which the aircraft climbs or descends in the immediate vicinity of the airfield. Tactical training prepares aircrews for operations in forward operating locations in which flying at low-altitudes over land not controlled by friendly forces exposes the aircraft to ground-based threats. This procedure is currently being flown with the KC-135; however, most tactical procedures would be accomplished in the simulator and at the other locations away from Rickenbacker IAP.
Using the current published and approved baseline noise contours from the Rickenbacker IAP FAR Part 150 Noise Compatibility Program Update and INM data, there would be a decrease in the overall number of airfield operations with the proposed KC-46A for comparison (Table 4.5.1-1).

Under Alternative #5, the 121 ARW KC-46A aircraft would fly a total of 8,040 hours, resulting in 2,010 annual sorties of which it is expected that up to 1,286 sorties would be flown at Rickenbacker ANGS. Baseline conditions for the KC-135 are represented here as the same number of 121 ARW airfield operations published in the August 2007 Rickenbacker IAP FAR Part 150 study (CRAA 2007). Based on 1,286 annual home-station sorties with an average of 5.33 operations per sortie, there would be 6,857 annual home-station operations, or a reduction of 6,283 airfield operations annually at Rickenbacker IAP. This would decrease the average daily airfield operations from approximately 36 to 25 as shown in Table 4.5.1-1. The 121 ARW KC-46A operations would be approximately 11 percent of all aircraft operations at the airfield under the current approved FAR Part 150 Noise Compatibility Update.

Table 4.5.1-1. Changes to Rickenbacker IAP Airfield Operations with Proposed KC-46A Based on FAR Part 150 Baseline

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>121 ARW</td>
<td>13,140(^1) (35.8)</td>
<td>6,857 (25.3)</td>
<td>-6,283 (-47.8%)</td>
</tr>
</tbody>
</table>

Note: 1. Operations based on currently approved FAR Part 150.

Table 4.5.1-2 provides details on the total airfield operations for Rickenbacker IAP under Alternative #5 using the current FAR Part 150 as the baseline operations. There would be a 9.4 percent decrease in the overall airfield operations from the current baseline operations. There would be approximately 4 percent of KC-46A airfield operations flown during environmental night. The total number of operations flown by all other aircraft at Rickenbacker IAP would not change from previously identified airfield activities. There would be no change to any other aircraft types or aircraft flight tracks and profiles from the baseline condition.

Table 4.5.1-2. Rickenbacker ANGS Aircraft Operations with Proposed KC-46A

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Departures Day</th>
<th>Departures Night(^2)</th>
<th>Arrivals Day</th>
<th>Arrivals Night(^2)</th>
<th>Total(^1) Day</th>
<th>Total(^1) Night(^2)</th>
<th>Grand Total(^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A</td>
<td>3,428</td>
<td>0</td>
<td>3,153</td>
<td>276</td>
<td>6,581</td>
<td>276</td>
<td>6,857</td>
</tr>
<tr>
<td>Other Aircraft(^3)</td>
<td>13,870</td>
<td>13,140</td>
<td>13,505</td>
<td>13,505</td>
<td>27,375</td>
<td>26,645</td>
<td>54,020</td>
</tr>
<tr>
<td>Total</td>
<td>17,298</td>
<td>13,140</td>
<td>16,658</td>
<td>13,781</td>
<td>33,956</td>
<td>26,921</td>
<td>60,877</td>
</tr>
</tbody>
</table>

Notes: 1. Includes Closed Patterns (which count as two airfield operations). 2. Night – Between 10 p.m. and 7 a.m. for environmental night. 3. Other Based aircraft and Transient Aircraft (multiple type aircraft) including: Boeing 737, 747, and Airbus 300. 4. Operations based on currently approved FAR Part 150.

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS

4-124 Chapter 4 – Environmental Consequences

Rickenbacker ANGS
Figure 4.5.1-1 depicts Alternative #5 noise exposure area from aircraft operations after the conversion from the current 18 KC-135 aircraft to 12 KC-46A aircraft, and Figure 4.5.1-2 compares baseline noise contours with Alternative #5 contours. The aircraft operations modeled include all current based and transient aircraft as depicted in the 2007 FAR Part 150 Noise Compatibility Noise Update. Table 4.5.1-3 shows changes to the acreage of land within each noise contour under Alternative #5.

Table 4.5.1-3. Land Areas within DNL Contours at Rickenbacker IAP Affected by DNL Greater than 65 dB under Baseline and Alternative #5

<table>
<thead>
<tr>
<th>Noise Contour (dB DNL)</th>
<th>Baseline (KC-135) Total (Acres)</th>
<th>Alternative #5 (KC-46A) Total (Acres)</th>
<th>Change Total (Acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>On Airport</td>
<td>Off Airport</td>
<td>Total</td>
</tr>
<tr>
<td>65-70</td>
<td>811</td>
<td>417</td>
<td>1,228</td>
</tr>
<tr>
<td>70-75</td>
<td>478</td>
<td>0</td>
<td>478</td>
</tr>
<tr>
<td>75-80</td>
<td>156</td>
<td>0</td>
<td>156</td>
</tr>
<tr>
<td>80-85</td>
<td>265</td>
<td>0</td>
<td>265</td>
</tr>
<tr>
<td>>85</td>
<td>232</td>
<td>0</td>
<td>232</td>
</tr>
<tr>
<td>Total</td>
<td>1,942</td>
<td>417</td>
<td>2,359</td>
</tr>
</tbody>
</table>

Notes: DNL = Day Night Average Sound Level; dB = decibel

Under Alternative #5, the DNL noise contours would decrease slightly from the DNL baseline contours. The reduction is the result of fewer KC-46A airfield operations and because the KC-46A is generally a quieter aircraft (5 dB quieter on landing and 1 dB louder on take-off) than the KC-135.

Overall, the number of acres contained within the 65 dB DNL and greater exposure area would decrease by approximately 99 acres, or 4 percent, and would remain primarily on airport property with approximately 345 of the acres off the airport property under Alternative #5. Information regarding the number of people residing in this area can be found in Section 4.5.11, *Environmental Justice and the Protection of Children*; and information regarding the area of residential use is located in Section 4.5.7, *Land Use*.
Figure 4.5.1-1. DNL Noise Contours Under Alternative #5 at Rickenbacker IAP

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS
Figure 4.5.1-2. Comparison of Baseline and Alternative #5
DNL Noise Contours at Rickenbacker IAP
Percent of the Population Expected to be Highly Annoyed

The percentage of the population expected to be highly annoyed under Alternative #5 would not be expected to change from baseline conditions because there are no additional residences exposed to levels above 65 dB DNL.

Single Event Sound Analysis

Under Alternative #5, the flying profiles would not change, and the scheduled flying program would not change. As shown in Appendix A, Table A.1.2-2 provides representative SELs, indicating that the SEL for individual landings by the KC-46A would be 5 dB less while take-offs would be 1 dB more than the KC-135. Under Alternative #5, only the number of aircraft operations would change; there would be no change in where or when individual aircraft operate. Flights would be scheduled for similar time periods as currently flown during the morning and afternoons, with approximately 4 percent of flights occurring during environmental night (after 10 p.m. and before 7 a.m.).

Potential Hearing Loss

As shown in Table 4.5.1-3, there is no property off the Rickenbacker IAP that falls within the 80+ dB DNL noise contour; therefore, there would be no potential hearing loss risk associated with these areas.

4.5.1.2 Construction Noise

There would be some minor noise from construction equipment associated with construction activities that would occur intermittently during the construction period (beginning FY 2015). Typical noise levels from heavy equipment range from 69 to 84 dB at 100 feet from the source (FHWA 2006). Aviation-related activities at Rickenbacker IAP dominate the local noise environment for brief times on some days. Equipment used during the facility construction would contribute little to the general background noise levels around the airfield. Therefore, impacts from construction under Alternative #5 would be negligible.

4.5.1.3 Summary of Impacts

The number of 121 ARW airfield operations would decrease by 6,283 (48 percent decrease from the currently published FAR Part 150 Noise Compatibility Program; and a 1 percent increase in actual 2012 airfield operations), and the acreage within the 65 dB DNL (and greater) noise contour would decrease by 99 acres. There would be a decrease of 72 acres within the 65 dB DNL noise contour that are off airport-controlled property, resulting in 345 acres off airport-
controlled property that lie within the 65 dB DNL contour. There would be no potential for hearing loss off the airport and no increase in the percent of the population highly annoyed. Construction noise would be localized and temporary and would not add to the overall noise environment. Impacts from noise would be negligible.

4.5.2 Air Quality

The air quality analysis estimated the magnitude of emissions that would result from implementation of the proposed KC-46A construction and operational activities at the 121 ARW. The estimation of proposed operational emissions is based on the net change in emissions between existing aircraft operations and projected KC-46A operations.

As discussed in Appendix A.2.3, air quality impacts from the beddown of the KC-46A aircraft at Rickenbacker IAP were reviewed for significance relative to the PSD threshold for new major sources for attainment pollutants, and the General Conformity de minimis thresholds for nonattainment pollutants. Because the project region within Franklin County is a nonattainment area for O3 (marginal) and PM2.5, the de minimis threshold of 100 tpy for O3 precursors NOx and VOCs, and PM2.5, was used as an indicator of the potential significance of the emissions from the KC-46A conversion. For attainment pollutants, the PSD threshold of 250 tpy (100,000 tpy for GHGs) was used as an indicator of the potential significance of the emissions from Alternative #5.

4.5.2.1 Operational Emissions

Sources associated with operation of the proposed KC-46A beddown at Rickenbacker IAP include (1) operations and engine maintenance/testing of aircraft; (2) onsite POVs; (3) offsite POV commutes; and (4) AGE. It was assumed that other sources, including nonroad mobile equipment, mobile fuel transfer, and stationary source emissions would be unchanged. Operational data used to calculate projected KC-46A aircraft emissions were obtained from the data used in the project noise analysis. Factors used to calculate combustion emissions for the KC-46A aircraft are based on emissions data developed by Pratt and Whitney for the PW4062 engine (International Civil Aviation Organization 2013). The operational times in mode for the KC-46A engine are based on those currently used for the KC-135 aircraft (AFCEC 2013). The analysis of proposed aircraft operations is limited to operations that occur within the lowest 3,000 feet of the atmosphere, as this is the typical depth of the atmospheric mixing layer where the release of aircraft emissions would affect ground-level pollutant concentrations.

Emissions from AGE were estimated based on the methodology recommended in the Air Emissions Guide for Air Force Mobile Sources (AFCEC 2013). Emissions from POVs were
estimated based on the proposed personnel for the existing and proposed scenarios, using emission factors for vehicles from AFCEC 2013.

Table 4.5.2-1 summarizes the annual operational emissions that would result from KC-46A operations at Rickenbacker IAP. Table 4.5.2-1 also presents the net emissions increase associated with the beddown of the KC-46A aircraft at Rickenbacker IAP. As shown in Table 4.5.2-1, the net emissions increases are below the PSD/de minimis thresholds for all pollutants.

Table 4.5.2-1. Comparison of Baseline and Proposed Annual Operational Emissions, 121 ARW

<table>
<thead>
<tr>
<th>Baseline</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 Aircraft Operations</td>
<td>4.63</td>
<td>68.57</td>
<td>64.35</td>
<td>6.38</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.02</td>
<td>0.15</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.11</td>
<td>1.55</td>
<td>0.43</td>
<td>0.07</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>POVs</td>
<td>4.55</td>
<td>67.35</td>
<td>3.55</td>
<td>0.05</td>
<td>0.15</td>
<td>0.07</td>
</tr>
<tr>
<td>Total</td>
<td>9.29</td>
<td>137.50</td>
<td>68.48</td>
<td>6.50</td>
<td>0.51</td>
<td>0.42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proposed Action</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A Aircraft Operations</td>
<td>21.73</td>
<td>77.82</td>
<td>123.58</td>
<td>7.78</td>
<td>0.57</td>
<td>0.49</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.02</td>
<td>0.15</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.59</td>
<td>2.03</td>
<td>0.54</td>
<td>0.07</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>POVs</td>
<td>4.09</td>
<td>60.59</td>
<td>2.68</td>
<td>0.05</td>
<td>0.15</td>
<td>0.07</td>
</tr>
<tr>
<td>Total</td>
<td>26.43</td>
<td>140.46</td>
<td>126.95</td>
<td>7.90</td>
<td>0.73</td>
<td>0.55</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Net Increase</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Increase</td>
<td>17.13</td>
<td>2.96</td>
<td>58.47</td>
<td>1.40</td>
<td>0.23</td>
<td>0.15</td>
</tr>
</tbody>
</table>

| Notes: | | | | | | |
| Numbers may not add precisely due to rounding.|
| CO = carbon monoxide; CO\textsubscript{2}e = carbon dioxide equivalent; NO\textsubscript{x} = oxides of nitrogen; PM\textsubscript{10} = particulate matter less than or equal to 10 microns in diameter; PM\textsubscript{2.5} = particulate matter less than or equal to 2.5 microns in diameter; SO\textsubscript{2} = sulfur dioxide; VOC = volatile organic compound; AGE = aerospace ground equipment; POV = privately owned vehicle; PSD = Prevention of Significant Deterioration |

In addition to criteria pollutant emissions, the beddown of the KC-46A aircraft at Rickenbacker IAP would result in emissions of HAPs and GHGs. Operational activities would result in a net increase of HAPs that is below 1 ton per year.
Table 4.5.2-2 summarizes the annual operational GHG emissions that would result from KC-46A operations at Rickenbacker IAP, along with the net increase in comparison with the baseline. As shown in Table 4.5.2-2, emissions are below the PSD thresholds for GHGs.

Table 4.5.2-2. Comparison of Baseline and Proposed
Annual Operational GHG Emissions, 121 ARW

<table>
<thead>
<tr>
<th></th>
<th>Baseline Annual GHG Emissions, Metric Tons/Year</th>
<th>Proposed Action Annual GHG Emissions, Metric Tons/Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO₂</td>
<td>CH₄</td>
</tr>
<tr>
<td>KC-135 Aircraft Operations</td>
<td>17,562</td>
<td>0.49</td>
</tr>
<tr>
<td>AGE</td>
<td>3,298</td>
<td>0.09</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>183</td>
<td>0.01</td>
</tr>
<tr>
<td>POVs</td>
<td>2,407</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>23,451</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Net Increase

| Net Increase | 3,458 | 0.05 | 0.05 | 3,476 |
| PSD Threshold| 100,000| 100,000| 100,000| 100,000|

Notes: Numbers may not add precisely due to rounding.

CO₂ = carbon dioxide; CH₄ = methane; N₂O = nitrous oxide; CO₂e = carbon dioxide equivalent; AGE = aerospace ground equipment; POV = privately owned vehicle

4.5.2.2 Construction Emissions

The KC-46A beddown at Rickenbacker IAP would require construction and renovation of existing airfield facilities, including hangars, buildings, and aprons and ramps. Air quality impacts resulting from the proposed construction activities would occur from (1) combustion emissions from heavy equipment and vehicles; and (2) fugitive dust emissions due to operation of equipment on exposed soil. Table 4.5.2-3 presents a summary of the annual construction emissions for the beddown of the KC-46A aircraft at Rickenbacker IAP. As shown in Table 4.5.2-3, emissions would be below the PSD/de minimis thresholds for all pollutants.
Table 4.5.2-3. Annual Construction Emissions Under Alternative #5

<table>
<thead>
<tr>
<th>Construction Project</th>
<th>CO</th>
<th>NOx</th>
<th>VOC</th>
<th>SOx</th>
<th>PM10</th>
<th>PM2.5</th>
<th>Total CO₂ Metric tons/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project #1 - Addition and Modifications to Hangar 885</td>
<td>0.32</td>
<td>0.51</td>
<td>0.09</td>
<td>0.01</td>
<td>0.40</td>
<td>0.37</td>
<td>170.43</td>
</tr>
<tr>
<td>Project #2 - Addition to Hangar 883</td>
<td>1.39</td>
<td>2.20</td>
<td>0.39</td>
<td>0.04</td>
<td>2.17</td>
<td>1.70</td>
<td>736.69</td>
</tr>
<tr>
<td>Project #3 - Internal Renovations to Hangar 888</td>
<td>0.30</td>
<td>0.47</td>
<td>0.06</td>
<td>0.01</td>
<td>0.04</td>
<td>0.04</td>
<td>122.59</td>
</tr>
<tr>
<td>Project #4 - Modifications to Existing Parking Ramp and Taxiway</td>
<td>9.07</td>
<td>21.55</td>
<td>2.25</td>
<td>1.07</td>
<td>22.37</td>
<td>8.31</td>
<td>5,355.66</td>
</tr>
<tr>
<td>Project #5 - New Hydrants and Fuel Lines and Demolition of Existing Hydrants</td>
<td>0.05</td>
<td>0.08</td>
<td>0.01</td>
<td>0.00</td>
<td>0.02</td>
<td>0.01</td>
<td>27.82</td>
</tr>
<tr>
<td>Total</td>
<td>11.12</td>
<td>24.82</td>
<td>2.80</td>
<td>1.13</td>
<td>25.00</td>
<td>10.43</td>
<td>6,413.19</td>
</tr>
</tbody>
</table>

PSD/de minimis Threshold

| CO₂ | 250 | 100 | 100 | 250 | 250 | 250 | 100,000 |

Notes: Numbers may not add precisely due to rounding. CO = carbon monoxide; NOₓ = oxides of nitrogen; VOC = volatile organic compound; SOₓ = oxides of sulfur; PM₁₀ = particulate matter less than or equal to 10 microns in diameter; PM₂.₅ = particulate matter less than or equal to 2.5 microns in diameter; CO₂ = carbon dioxide; PSD = Prevention of Significant Deterioration

4.5.2.3 Summary of Impacts

The Rickenbacker ANGS is located in an area of nonattainment for the O₃ and PM₂.₅ NAAQS. While there are increases in operational criteria pollutant emissions, they are below the PSD/de minimis thresholds for all pollutants and are not significant. Operational GHG emissions are within thresholds in the PSD tailoring rule. Impacts from construction emissions and operational HAP emissions are negligible.

4.5.3 Safety

4.5.3.1 Ground Safety

Existing facilities at Rickenbacker IAP for fire response and crash recovery meet KC-46A beddown requirements (Headquarters AMC and NGB 2013b).

Providing new and renovated facilities for the 121 ARW that support operational requirements of the KC-46A, and are properly sited with adequate space and a modernized supporting infrastructure would generally enhance ground and flight safety during required operations, training, maintenance and support procedures, security functions, and other activities conducted by the 121 ARW.

Proposed renovation and infrastructure improvement projects related to Alternative #5 would not impact aircraft take-off or landings or penetrate any RPZs. New construction is not proposed, only existing building renovation; therefore, construction activity would not result in any greater safety risk or obstructions to navigation. Operations would fall within the same general types as
those that have historically occurred at Rickenbacker IAP. For example, the KC-46A would follow established local approach and departure patterns used. Therefore, flight activity and subsequent operations would not require changes to RPZs.

To support the aircraft beddown at Rickenbacker ANGS, some facilities would require renovation/modification. However, no construction activities would involve any unusual or extraordinary techniques. During construction and modifications, standard construction safety procedures would be employed, and strict adherence to all applicable standard industrial safety requirements and procedures, including AFI 13-213, *Airfield Driving* (2011), would further minimize the relatively low risk associated with these construction activities.

At present, Rickenbacker ANGS has no QD arcs and no plans to store munitions at the installation are proposed.

The proposed construction projects meet all criteria specified in the ANG Handbook 32-1084, *Facility Space Standards*. AT/FP requirements have also been addressed to the extent practicable in all projects. Projects would use AT/FP site design standards for siting of facilities, parking, walkways, and other features. Renovations would bring the facilities into compliance with UFC 4-022-01, *Security Engineering: Entry Control Facilities/Access Control Points* and UFC 4-010-01, *DoD Minimum Antiterrorism Standards for Buildings*, providing additional protection for the personnel based there.

4.5.3.2 Flight Safety

Although the KC-46A is a new aircraft, it is a military derivative of the commercial Boeing 767 aircraft. First flown commercially in 1982, more than 1,000 commercial Boeing 767 aircraft have been produced and it is a proven commercial airliner, freighter, and tanker already in service (Boeing 2012). Mishap statistics for the commercial Boeing 767 show 14 total aircraft losses (similar to a Class A military mishap definition) during its 31 year lifetime (ASN 2013).

Although no facilities are proposed that would affect navigable airspace, Rickenbacker ANGS would comply with 14 CFR Part 77, *Objects Affecting Navigable Airspace*, as appropriate, should they be selected to host the KC-46A.

To augment airborne training missions, pilots flying the KC-46A would use simulators extensively. Simulator training includes all facets of flight operations and comprehensive emergency procedures. The sophistication and fidelity of current simulators and related computer programs are commensurate with the advancements made in aircraft technology and are extremely realistic. These factors should minimize risk associated with mishaps due to pilot error.
Under Alternative #5, there would be an increase of approximately 6 percent in 121 ARW annual operations (1 percent in total Rickenbacker IAP airfield operations) compared to existing conditions. This negligible increase in take-offs, landings, proficiency training, and other flights would not result in a measurable change in the safety risk to aircrews and personnel.

The proposed change in airfield flight operations would be expected to increase the opportunity for aircraft mishaps, including BASH incidents; however, the expected rate of mishaps or BASH incidents would not be expected to change from current conditions. In addition, current airfield safety procedures discussed previously would continue to be implemented and additional airfield flight operations would adhere to established safety procedures.

Given the low likelihood for an aircraft accident or BASH mishap to occur in the local airfield area and even lower likelihood for civilians to be impacted, impacts to safety in the vicinity of Rickenbacker IAP as a result of the Proposed Action are expected to be negligible.

The KC-46A will have the capability to jettison fuel for emergency situations. Military policy is to avoid fuel jettisons, unless safety of flight dictates an immediate jettison, and requires senior officer approval before fuel jettison, unless under emergency situations. Records of KC-135 fuel jettison events reveal that such circumstances are rare, occurring in slightly less than two sorties per thousand (Headquarters AMC 2013). Additionally, unlike the KC-135, the KC-46A will have the capability to land fully loaded with fuel so long as adequate runway length and braking capability are available (Headquarters AMC 2013), which could potentially lessen the need to jettison fuel in certain circumstances. Based on information provided by Boeing, landing the KC-46A above maximum landing weight is not prohibited; however, it does drive costly inspection requirements. To land above maximum landing weight routinely could reduce the fatigue life of the airplane (Headquarters AMC 2013).

4.5.3.3 Summary of Impacts

There would be a 6 percent increase in actual 121 ARW airfield operations (1 percent increase in total airfield operations) at Rickenbacker IAP with a commensurate increase in mishap and BASH potential. Construction activities would involve no unusual or extraordinary techniques. During construction and modifications, standard construction safety procedures would be employed, and strict adherence to all applicable standard industrial safety requirements and procedures would further minimize the relatively low risk associated with these construction activities. Impacts to safety would be expected to be negligible.
4.5.4 Soils and Water

4.5.4.1 Soils

Under Alternative #5, new construction would consist of five separate projects resulting in 368,330 SF (8.5 acres) of new construction footprint and 14,660 SF (0.3 acre) of new impervious surface (Table 2.3-29). These proposed construction projects for aircraft conversion would meet all criteria specified in ANG Handbook 32-1084, *Facility Space Standards*.

Proposed construction under Alternative #5 would occur primarily on Crosby-Urban land complex (0 to 2 percent slopes), with a small amount of the new construction footprint on Kokomo-Urban land complex. Crosby-Urban land complex is not rated in road or small commercial building development and may require onsite investigation and evaluation for most land use decisions to identify any potential limitations (NRCS 2013). There is no proposed construction on any farmland; therefore, the Farmland Protection Policy Act does not apply to Alternative #5.

Under Alternative #5, there would be approximately 368,330 SF (8.5 acres) of temporary soil disturbance as a result of the proposed construction. To minimize potential impacts to soil and water resources associated with erosion, runoff, sedimentation during construction activity, and standard construction practices as described in the 121 ARW SWPPP (121 ARW 2009) would be implemented during and following the construction period. Such practices could include the use of well-maintained silt fences or straw wattles, minimizing surficial areas disturbed, stabilization of cut/fill slopes, minimization of earth-moving activities during wet weather, and covering of soil stockpiles, as appropriate.

A site-specific and detailed SWPPP that coordinates the timing of soil disturbing activities with the installation of soil erosion and runoff controls is an effective way of controlling erosion while soil is exposed and subject to construction activity. An NOI must be filed with the state of Ohio to obtain coverage under the Storm Water Discharge from Small and Large Construction Activities (General Permit No. OH000004) prior to implementation of individual projects. Construction activities subject to this permit include clearing, grading, and disturbances to the ground such as stockpiling or excavation. Implementation of these measures, as necessary and appropriate, would ensure that impacts to earth resources as a result of implementation of Alternative #5 would be minimal.

4.5.4.2 Surface Water

As a result of implementation of Alternative #5, there would be approximately 14,660 SF (0.3 acre) of new impervious surface from the proposed construction (Figure 4.5.4-1). This could
result in localized increases in stormwater runoff volume and intensity, in addition to increases in total suspended particulates to nearby surface waters. However, in accordance with UFC 3-210-10, LID (as amended, 2010) and EISA Section 438, any increase in surface water runoff as a result of the proposed construction would be attenuated through the use of temporary and/or permanent drainage management features. The integration of LID design concepts incorporates site design and stormwater management to maintain the site’s pre-development runoff rates and volumes to further minimize potential adverse impacts associated with increases in impervious surface area.

Increased runoff and peak discharge volumes as a result of increases to impervious surface can be managed by appropriately designed conveyance structures (such as roadways, channels, and culverts) in accordance with site-specific engineering standards that take into consideration the influence of surface water drainage within, adjacent to, and downstream of the project. In addition, implementing features that manage surface water runoff into the design of the project would avoid or minimize conflicts with city, county, state, or federal regulations and prevent adversely affecting adjacent properties and/or the project area itself. Such measures could include:

- water harvesting and natural open space,
- installation of retention/detention basins for water recharge or for release of runoff at predetermined times to minimize peak discharges,
- the use of porous materials, such as pavers or gravel, for driveway and walkway construction, and
- directing runoff toward permeable areas, such that discharge exiting each site post-construction would be equal to or less than existing conditions.

Implementation of these measures, as necessary and appropriate, would ensure that impacts to surface water as a result of implementation of Alternative #5 would be minimal.
Figure 4.5.4-1. Surface Water Features and Proposed Construction in the Vicinity of Rickenbacker ANGS

4.5.4.3 Groundwater

As a result of Alternative #5, the increase in the amount of impervious surface (0.3 acre) would also result in a decrease in groundwater recharge. However, as noted above, any increase in surface water runoff as a result of the proposed construction would be attenuated through the use of permit-related temporary and/or permanent drainage management features such as detention/retention basins and standard construction practices as described in the 121 ARW SWPPP (121 ARW 2009). The integration of water harvesting and natural open space into project design would further minimize potential adverse impacts due to increased impervious surface. The use of these features would also increase groundwater recharge through direct percolation offsetting the loss of pervious surface due to future construction. Additionally, the impervious surface area resulting from the proposed activities would not be one continuous, hardened surface. Rather, the impervious surfaces would occupy several smaller areas, which would further minimize localized impacts to groundwater recharge.

4.5.4.4 Floodplains

Proposed construction activities at the installation would not occur within the 100-year floodplain zone. As such, there would be no impacts to floodplains under this alternative.

4.5.4.5 Summary of Impacts

There would be approximately 8.5 acres of temporary soil disturbance and 0.3 acre of new impervious surface as a result of the proposed construction. To minimize potential impacts associated with erosion, runoff, and sedimentation, standard construction practices would be implemented. Proposed construction would not impact prime farmlands; therefore the Farmland Protection Policy Act does not apply to this alternative. Therefore, impacts to soil and water resources would be negligible.

4.5.5 Biological Resources

4.5.5.1 Vegetation

Construction of new facilities associated with Alternative #5 at the 121 ARW installation would occur on currently paved areas or actively managed (i.e., mowed and landscaped) areas, and would result in an increase of 14,660 SF (0.3 acre) of impervious surfaces. No native vegetation would be impacted. Impacts to the vegetation at the installation would be negligible due to the lack of sensitive vegetation in the project area.
4.5.5.2 Wildlife

Under Alternative #5, impacts to wildlife due to construction would be minor. Noise associated with construction may also cause wildlife to temporarily avoid the area, including those that are protected under the MBTA and may cause them to temporarily leave the area. Noise associated with excavating, as well as an increase in general industrial activity and human presence, could evoke reactions in birds. Disturbed nests in the immediate vicinity of construction activity would be susceptible to abandonment and depredation. However, bird and wildlife populations in the vicinity of the airport where project components would occur are accustomed to elevated noise associated with aircraft and general military industrial use. As a result, indirect impacts from construction such as dust and noise are expected to be minimal because the ambient noise levels within the vicinity are high under existing conditions and would be unlikely to substantially increase by the relatively minor and temporary nature of the proposed construction and modifications.

Under Alternative #5, impacts to wildlife due to noise from proposed operations would be minor. Bird/wildlife aircraft strikes are also an inevitable hazard associated with military aircraft training. Under Alternative #5, the KC-46A would operate in the same airfield environment as the current aircraft. Annual operations for the KC-46A at Rickenbacker IAP would be projected to increase slightly by approximately 6 percent from the 2012 baseline operations (1 percent increase in total airfield operations) found in Table 2.3-27. This negligible increase in levels of operations (e.g., sorties) may result in a negligible increase in opportunity for bird/wildlife aircraft strikes to occur, including those with migratory birds. Adherence to the existing, BASH program would minimize the risk of bird/wildlife aircraft strikes (see Section 4.5.3, Safety). The 121 ARW has developed procedures designed to minimize the occurrence of bird/wildlife aircraft strikes, and has documented detailed procedures to monitor and react to heightened risk of bird/wildlife aircraft strikes. When risk increases, limits are placed on low-altitude flight and some types of training (e.g., multiple approaches, closed pattern work) in the airport environment. Special briefings are provided to pilots whenever the potential exists for increased bird/wildlife aircraft strikes within the airspace.

4.5.5.3 Special Status Species

No federally threatened and endangered species are known to occur on Rickenbacker IAP, and there is only a low potential for them to occur due to lack of habitat. Therefore, there would be no effect on federally listed species. In an email dated April 7, 2014, the USFWS has concurred with this determination (see Appendix B, Section B6). Only one state listed species, the Northern Harrier, is currently known to occur on Rickenbacker IAP, and there is only low potential for others to occur due to lack of habitat. Impacts to the Northern Harrier would be similar to those
impacts described under wildlife. Indirect impacts to the Northern Harrier from construction such as dust and noise are expected to be minimal because the ambient noise levels within the vicinity are relatively high under existing conditions and would be unlikely to substantially increase by the relatively minor and temporary nature of the proposed construction and modifications. In addition, noise from proposed operations would be minor as total airfield operations are projected to increase slightly by approximately 1 percent from baseline. This negligible increase in levels of operations (e.g., sorties) may result in a negligible increase in opportunity for bird/wildlife aircraft strikes to occur, including those with migratory birds. However, adherence to the existing BASH program would minimize the risk of bird/wildlife aircraft strikes (see Section 4.5.3, Safety). Impacts due to construction noise and from proposed operations would be minor.

4.5.5.4 Wetlands

There are no wetland areas that occur within the vicinity of the proposed project footprints. Therefore, no impacts to wetlands would occur as a result of Alternative #5.

4.5.5.5 Summary of Impacts

Construction of new facilities associated with this alternative would occur primarily on currently paved or actively managed areas. Therefore impacts to vegetation would be negligible. There would be no impacts to wetlands. Impacts to wildlife and sensitive species from operational noise would be minor due to the 6 percent increase in 121 ARW airfield operations. This small increase in the airfield operations may also result in a slight increased opportunity for bird-aircraft strikes to occur, including those with migratory birds. Impacts to state listed species would be minor. No federally listed species or critical habitat is known to occur on Rickenbacker IAP, therefore there would be no impacts to federally listed species.

4.5.6 Cultural Resources

Potential direct impacts to cultural resources examined in this analysis include effects to archaeological sites due to ground disturbing activities during construction or modification to buildings. Indirect impacts from an increase in personnel from 1,497 to 1,694 would be negligible as personnel would primarily be confined to the developed areas on the installation, which lack cultural resources.

4.5.6.1 Archaeological Resources

There is one significant archaeological resource located at the 121 ARW at Rickenbacker IAP. This is a multi-component site that is considered eligible to the NRHP. The ground disturbing
activities associated with this alternative would not occur near the archaeological resource and therefore, there would be no impacts to the site. In the unlikely event that archaeological or human remains are identified during construction, all activities in the area of the discovery would cease and the Environmental Manager would contact a qualified archaeologist to evaluate the discovery. Under these conditions, there would be no impact to archaeological resources under Alternative #5.

4.5.6.2 Architectural Resources

Two of the hangars (885 and 888) proposed for additions, modifications, and renovations are eligible to the NRHP. The Ohio SHPO concurred with this eligibility determination (121 ARW 2011d). Hangar 885 would have an addition and renovations inside to house the new aircraft and support facilities. Because these renovations would alter the exterior appearance of a structure that is considered eligible because of its design, the construction would have an adverse effect on a historic property. Modification to Hangar 888 would all be interior; however, they could have an adverse effect to this NRHP-eligible resource. Rickenbacker ANGS and the Ohio SHPO have developed a Programmatic Agreement stating that if Rickenbacker ANGS is selected to host the MOB 2 KC-46A beddown, further consultation would be conducted to minimize and mitigate adverse effects to these buildings (see Appendix B, Section B3). The third hangar with proposed changes (additions) under this alternative is Hangar 883. This structure has not been inventoried; however, it was constructed in 2000 and is therefore less than 50 years old, is not a Cold War-era resource, and is not exceptionally significant (eligible to the NRHP under Criterion Consideration G). For these reasons, it is not eligible for listing in the NRHP. The SHPO has concurred with this determination and agrees that no adverse effects to this structure would result from the proposed action.

4.5.6.3 Traditional Resources

No traditional resources have been identified at the 121 ARW installation and the highly developed nature of the installation makes it unlikely to contain any such resources. Government-to-government consultation for this action has been conducted with each federally-recognized Tribe associated with the 121 ARW installation in recognition of their status as sovereign nations, to provide information regarding tribal concerns per Section 106 of the NRHP as well as information on traditional resources that may be present on or near the installation. Five responses have been received. The Peoria Tribe of Indians of Oklahoma has sent a response stating that according to their reviews no traditional resources exist on the 121 ARW installation (see Appendix B2 and Stacy 2013). On January 17, 2014, the Shawnee Tribe stated that they had no objection to the Proposed Action via telephone call. On January 22, 2014 the Turtle Mountain Band of Chippewa Indians of North Dakota stated that they had no objection to the Proposed Action via telephone call. On February 4, 2014, the Pokagon Band of Potawatomi
Indians stated that they had no objection to the Proposed Action via telephone call. The Delaware Nation stated via telephone on April 3, 2014 that they had no objection to the Proposed Action. Letters and written correspondence to Tribes were followed up with telephone calls and emails in an effort to increase accessibility and encourage communication in the event a Tribe would have any concerns regarding the Proposed Action or land below the affected or proposed airspace areas. Correspondence sent to the tribes and follow-up efforts are located in Appendix B2. Additional efforts were made to contact non-responsive tribes without success (see Appendix B2). While the NGB and the USAF values its relationship with all tribes and will continue to consult on other planning efforts or matters of known or potential interest to tribes, Section 106 consultation on the KC-46A MOB 2 proposed alternative at Rickenbacker ANGS is now complete.

4.5.6.4 Summary of Impacts

Construction activities at Rickenbacker ANGS would be limited to the developed areas of the installation, primarily in the areas of the aircraft hangars and airfield pavements, where no archaeological resources are known. Additionally, the installation has been surveyed for archaeological resources and no NRHP-eligible resources were discovered. The Ohio SHPO has concurred with the findings of the archaeological survey (Snyder 2007). One significant archaeological resource was recorded prior to the 2007 installation-wide survey. This site is not within the proposed construction areas and would not be impacted by the Proposed Action. Two NRHP-eligible hangars (883 and 885) could be adversely impacted by construction under this alternative. Rickenbacker ANGS and the Ohio SHPO have developed a Programmatic Agreement stating that if Rickenbacker ANGS is selected to host the MOB 2 KC-46A beddown, further consultation would be conducted to minimize and mitigate adverse effects to these buildings. Therefore, with completion of Section 106 consultation, no adverse impacts are anticipated to cultural resources at the 121 ARW installation under Alternative #5.

4.5.7 Land Use

The primary source of impacts to land use resulting from Alternative #5 would be from noise. As shown in Table 4.5.7-1 and Figure 4.5.7-1, areas outside of the airport boundaries currently exposed to DNLs of 65 dB to 70 dB would decrease by 72 acres, overall. By zoning districts, Industrial areas affected by DNL of 65 dB to 70 dB would decrease by approximately 2 acres, Public and Utility areas would decrease slightly (less than 1 acre each), Agricultural areas would decrease by approximately 36 acres, and non-designated lands would decrease by approximately 33 acres. No houses, churches, schools or other sensitive noise receptors are located within the 65 dB DNL off-airport noise contour areas. A more detailed discussion of aircraft operations and noise can be found in Section 4.5.1, Noise. Therefore, Alternative #5 is compatible with current land use and zoning designations and would result in minor beneficial impacts.
Table 4.5.7-1. Change in Acres Affected by Noise Levels Above 65 dB DNL Outside the Rickenbacker IAP Boundary

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Baseline</th>
<th>65 dB to 70 dB DNL Proposed</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial</td>
<td>5.3</td>
<td>3.1</td>
<td>-2.2</td>
</tr>
<tr>
<td>Public Exempt</td>
<td>0.3</td>
<td>0.1</td>
<td>-0.2</td>
</tr>
<tr>
<td>Utilities</td>
<td>0.8</td>
<td>0.3</td>
<td>-0.5</td>
</tr>
<tr>
<td>Agricultural</td>
<td>342.1</td>
<td>306.1</td>
<td>-36.0</td>
</tr>
<tr>
<td>Non-designated</td>
<td>68.5</td>
<td>35.4</td>
<td>-33.1</td>
</tr>
<tr>
<td>Total Area</td>
<td>417</td>
<td>345</td>
<td>-72.0</td>
</tr>
</tbody>
</table>
Figure 4.5.7-1. DNL Noise Contours and Land Use Under Alternative #5 at Rickenbacker IAP

Source: Pickaway County 2013, Franklin County Zoning 2013, Rickenbacker IAP 2005.
4.5.7.1 Summary of Impacts

The number of airfield operations would decrease by 6,283 (48 percent decrease) from the currently published FAR Part 150 Noise Compatibility Program, and the acreage within the 65 dB DNL (and greater) noise contour would decrease by 99 acres. There would be a decrease of 72 acres within the 65 dB DNL noise contour that are off airport-controlled property, resulting in 345 acres off airport-controlled property that lie within the 65 dB contour. Current land use and zoning designations would not change due to the basing of the KC-46A. This alternative would result in negligible impacts in off-airport areas exposed to noise levels above 65 dB DNL. Airport Hazard Areas would not be affected.

4.5.8 Infrastructure and Transportation

4.5.8.1 Potable Water

Water consumption would be expected to increase slightly under Alternative #5 as a result of the increase in personnel; however, an increase in 184 personnel on the installation would not be expected to impact regional water supply. Additionally, the demand for water (e.g., if used to control dust) could also increase during demolition and construction phases. However, this increase would be temporary and intermittent and would not be expected to impact regional water supply.

4.5.8.2 Wastewater

Wastewater generation would be expected to increase slightly as a result of the increase in 184 personnel on the installation. However, there have been no deficiencies identified with the existing system, and it is expected that the existing sanitary sewer system is generally adequate to serve the facilities proposed under this alternative.

4.5.8.3 Stormwater

Under Alternative #5, there would be an up to 368,330 SF (8.5 acres) of temporary soil disturbance as a result of proposed construction. The proposed construction activities could temporarily impact the quality of stormwater runoff (see Section 4.5.4, Soils and Water); however, through implementation of appropriate standard construction practices (as described previously), preventative maintenance, and periodic inspections and sampling to detect risk to stormwater, especially during active construction activity, no impacts would be expected to the existing stormwater drainage system as a result of the proposed construction.
In addition, there would be an increase in up to 14,660 SF (0.3 acre) of new impervious surface. The addition of new impervious surfaces would potentially increase stormwater runoff volume and peak discharge rates; however, as discussed in further detail in Section 4.5.4, Soils and Water, stormwater runoff increases would be managed such that discharge exiting each site post-construction would be equal to or less than existing conditions in accordance with UFC 3-210-10 and EISA Section 438. Implementation of these measures would ensure that impacts to the stormwater drainage system as a result of implementation of Alternative #5 would be minimal.

4.5.8.4 Electrical and Natural Gas Systems

Demand for electricity and natural gas would be expected to increase slightly as a result of the increase in personnel, and the building space and facilities to be constructed would require additional electricity. However, any new facilities and additions associated with Alternative #5 would be implemented with more energy efficient design standards and utility systems than are currently in place. In addition, construction projects would incorporate LEED and sustainable development concepts to achieve optimum resource efficiency, sustainability, and energy conservation. Therefore, average energy consumption would be expected to remain consistent or decrease compared to energy consumption associated with existing facilities.

Construction activity associated with Alternative #5 could result in some temporary interruption of utility services during construction. These impacts would be temporary, occurring briefly during active construction periods. In addition, the demand for energy (primarily electricity) could increase slightly during demolition and construction phases. The energy supply at the installation and in the region is adequate and would not be affected by this temporary increase in demand.

4.5.8.5 Solid Waste Management

The building space and facilities to be constructed would generate construction and demolition debris requiring landfill disposal. Construction activities would result in approximately 368,330 SF of additions and alterations to existing facilities and 14,660 SF of new building construction. Using a multiplier provided by the USEPA to determine solid waste generation, it was estimated that proposed renovations at Rickenbacker IAP would generate 4,342,611 pounds (2,171 tons) of renovation debris requiring landfill disposal and proposed new construction at Rickenbacker IAP would generate 63,624 pounds (32 tons) of construction debris (USEPA 2009). Therefore, the total amount of construction and demolition debris generated at Rickenbacker IAP would be 2,203 tons.
Solid waste generated at Rickenbacker IAP as a result of the proposed construction could result in impacts to solid waste management facilities in the area. The Franklin County Landfill has a remaining life expectancy of 24 years and a permitted throughput of 1,020,659 tons per year (Solid Waste Authority of Central Ohio 2011). The 2,203 tons of proposed construction debris generated at Rickenbacker IAP would represent 0.2 percent of the yearly capacity of the landfill. Impacts to local landfills would not be expected to exceed the permitted throughput or contribute significantly to the remaining capacity.

Off-installation contractors completing construction and demolition projects at the 121 ARW installation would be responsible for disposing of waste generated from these activities. Contractors would be required to comply with federal, state, and local regulations for the collection and disposal of municipal solid waste from the installation. Much of this material can be recycled or reused, or otherwise diverted from landfills. EO 13514, Federal Leadership in Environmental, Energy, and Economic Performance, sets a target diversion rate of 50 percent for recycling and waste diversion for DoD facilities by 2015, including construction and demolition waste; compliance with EO 13514 would further minimize the increase in solid waste generation as a result of the proposed construction. All non-recyclable construction and demolition waste would be collected in a dumpster until removal. Construction and demolition waste contaminated with hazardous waste, ACM, LBP, or other undesirable components would be managed in accordance with AFI 32-7042, Waste Management (2009).

4.5.8.6 Transportation

Construction equipment would be driven to proposed construction areas and would be kept on-site for the duration of the respective activity. Construction workers would drive daily in their personal vehicles to and from the construction site. In general, construction traffic would result in increases in the use of on-installation roadways during construction activities; however, increases would be temporary and intermittent, occurring only during active construction periods.

The number of authorized personnel on the installation would increase by 184 under Alternative #5 (see Table 2.3-30). The increase in personnel would create a potential 184 additional one-way vehicle trips to and from the installation during morning and evening peak periods for these additional personnel. Assuming that each person makes two trips per day, the implementation of Alternative #5 would add an additional 368 trips onto the existing roadway network after the construction phase is complete. However, regional roads used to access the installation as well as those located on the installation have sufficient capacity to manage this increase in traffic without substantial impacts to circulation. Therefore, impacts to transportation infrastructure would not be significant under Alternative #5.
4.5.8.7 Summary of Impacts

Impacts from this alternative would not be expected since there have been no deficiencies identified with the existing systems, and it is expected that the existing infrastructure is generally adequate to serve the facilities and increased personnel proposed under this alternative. Impacts to infrastructure resulting from construction would be negligible since any interruption of utility services or increase demand on infrastructure would be temporary and infrequent. Impacts to infrastructure would be negligible.

4.5.9 Hazardous Materials and Waste

4.5.9.1 Hazardous Materials

A HMMP has been developed for the KC-46A program. Training activities and other functions would be expected to remain similar between the KC-46A and existing KC-135 aircraft. The types of hazardous materials needed for maintenance and operation of the KC-46A would be expected to remain similar to those currently used for maintenance and operation of the KC-135 fleet. However, unlike the KC-135, the KC-46A aircraft will be free of ODSs. ODSs were typically used as part of the fire suppression systems on aircraft; ODS use and/or storage would no longer be required under the Proposed Actions.

The KC-46A aircraft has been designed with a focus on reduction of hazardous materials such that hazardous materials currently required for maintenance, operations, and materials on or associated with the new aircraft would be less than or equal to the existing aircraft (Boeing 2011). In addition, it is anticipated that the amount of hazardous waste generated for one KC-46A aircraft for maintenance activities would be slightly less than that generated for one KC-135 aircraft since the KC-46A has two engines as opposed to the four engines for the KC-135. Furthermore, the KC-46A is a newer aircraft and is expected to need less maintenance than the older KC-135 aircrafts.

Under Alternative #5, the total number of flying hours for the 121 ARW would increase from 7,215 to 8,040 (an 11 percent increase); therefore, the throughput of petroleum substances (e.g., fuels, oils) used during operations would be expected to increase commensurately from what is currently used to maintain the KC-135 fleet (see Appendix A, Section A.9, for more details). Additionally, it is expected that short-term increases would be realized in terms of the quantity of fuel used during construction activities, because various fuels (e.g., diesel, gasoline) would be required to run earth moving equipment and power tools and to provide electricity and lighting as conditions warrant. Procedures for hazardous material management established for the 121
ARW installation would continue to be followed in future operations associated with Alternative #5 and as required during all construction and renovation activities.

Toxic Substances

Under Alternative #5, additions to Hangars 885 and 883 are proposed, and internal renovations to Hangar 888 are proposed. Lead abatement was conducted in 2004 at Buildings 885 and 888. According to the 1995 asbestos report, Hangars 885 and 883 were found to contain no ACM. Building 883 was built in the year 2000 and therefore it is assumed that it does not contain any LBP or ACM. Any structures proposed for demolition, addition, or retrofit would be inspected for ACM and LBP according to established ANG procedures prior to any renovation or demolition activities. All ACM would be properly removed and disposed of prior to or during demolition in accordance with 40 CFR 61.40 through 157. All LBP would be managed and disposed of in accordance with TSCA, OSHA regulations, Ohio requirements (regarding site work practices for buildings with LBP), and established ANG procedures. Materials, especially discarded oil products, would be screened for PCB contamination prior to disposal.

4.5.9.2 Hazardous Waste Management

The type of hazardous waste streams generated by KC-46A operations would be expected to remain similar to those being generated by the existing KC-135 aircraft with the exception of ODSs, which would not be required with the KC-46A. Additionally, the two aircraft require the same types of hazardous materials for their maintenance and operations (e.g., fuels, oils). Under Alternative #5, the total number of flying hours would increase approximately 11 percent; therefore, hazardous waste streams would be expected to increase commensurately (see Appendix A, Section A.9, for more details). Hazardous waste generation (e.g., used oil, used filters, oily rags, etc.) would continue to be managed in accordance with the installation’s Hazardous Waste Management Plan and all applicable federal, state, and local regulations. Additionally, no changes to the installation’s small quantity generator status would be expected to occur due to the increase in hazardous waste generation from aircraft operations.

4.5.9.3 Environmental Restoration Program

In accordance with AFI 32-7020, *The Environmental Restoration Program*, construction, modifications and/or additions to existing buildings can occur on or in proximity to existing ERP sites. Accordingly, the appropriate organizations (e.g., installation planners, ERP managers, design engineers) must consider a compatible land use based on current site conditions and the selected or projected remedial action alternatives. Construction should be sited and designed to minimize life-cycle costs to include those associated with impacts from existing contaminated sites. If the potential for uncharacterized ERP sites exist, the installation is responsible for
identifying existing contamination at the proposed construction sites to avoid unknowingly locating construction projects in areas with contamination. The installation is responsible for performing necessary environmental baseline surveys, accomplishing environmental impact analysis process requirements, and for otherwise informing itself about existing site conditions and their associated cost impacts in preparation for a construction project. When warranted by the site history, environmental restoration funds may be used to accomplish RCRA facility assessments, or preliminary assessments and site inspections undertaken in accordance with the CERCLA process, or similar site investigations in accordance with applicable state laws for suspected releases. To the extent that a construction project generates actions to address contamination, or a need to change the timing of ERP-generated actions to address contamination, the costs of such actions are not Environmental Restoration Account-eligible and shall be funded as part of the construction project. This includes the handling, mitigation, and disposal or other disposition of contamination discovered before or during the construction activity.

The removal and disposal of contamination unexpectedly encountered within the construction project footprint during the execution of a construction project will be undertaken as part of the construction project using construction project funds which may include other MILCON funds reprogrammed to a MILCON construction project. Construction contractor costs (such as direct delay costs and unabsorbed or extended overhead) incidental to discovery and removal of the contamination will be construction project funded to the extent that the government is responsible and liable for such costs.

Vapor intrusion should be evaluated when volatile chemicals are present in soil, soil gas, or groundwater that underlies existing structures or has the potential to underlie future buildings and there may be a complete human exposure pathway. Due to their physical properties, volatile chemicals can migrate through unsaturated soil and into the indoor air of buildings located near zones of subsurface contamination.

One ERP site, Site #46, overlaps with the proposed fuel line under Alternative #5 (Figure 4.5.9-1). This site, which is closed, was investigated as part of a jet fuel pipeline investigation. Petroleum contamination levels for this site were found to be below Bureau of Underground Storage Tank Regulation limits; therefore, it is not expected to pose a vapor intrusion concern. However, it is recommended that a vapor intrusion analysis/testing is completed prior to construction to investigate any potential concern. If testing indicates a vapor intrusion concern, the installation would implement practices in accordance with site-specific vapor mitigation design considerations.
Figure 4.5.9-1. ERP Sites and Proposed Construction in the Vicinity of Rickenbacker ANGS
If contaminated media (e.g., soil, vapor, groundwater) are encountered during the course of site preparation (e.g., clearing, grading) or site development (e.g., excavation for installation of building footers) for proposed construction activities, work would cease until 121 ARW Program Managers establish an appropriate course of action for the construction project to ensure that federal and state agency notification requirements are met, and to arrange for agency consultation as necessary if existing ERP sites are affected. Also, prior to construction activities, the construction contractors would be notified of the nature and extent of known contamination so that they can inform their employees in advance of on-site activities and take appropriate precautions to protect health and safety, and to prevent the spread of contamination. The construction contractors would be responsible for ensuring their workers follow appropriate health and safety requirements.

4.5.9.4 Summary of Impacts

There would not be an increased risk of hazardous waste releases or exposure under this alternative. Any LBP or ACM that may be found in buildings that are scheduled for construction activities would be managed per applicable USAF regulations. There would be no expected impact from ERP sites. However, if contaminated media are encountered during the course of site preparation or site development, work would cease until 121 ARW Program Managers establish an appropriate course of action for the construction project to ensure that federal and state agency notification requirements are met. Impacts relative to hazardous materials and wastes would be negligible.

4.5.10 Socioeconomics

Under Alternative #5, construction activities would be contained entirely within the boundaries of Rickenbacker IAP. Economic activity associated with proposed construction activities at the 121 ARW installation, such as employment and materials purchasing, would provide short-term economic benefits to the local economy. However, short-term beneficial impacts resulting from construction payrolls and materials purchased would be negligible on a regional scale.

The proposed aircraft beddown and related activities would result in a change in staffing requirements for the 121 ARW. Currently, the 121 ARW is authorized 1,497 personnel. Under Alternative #5, the KC-46A mission would add an additional 197 military positions (increase in 212 full-time positions and reduction of 15 traditional Guard positions) (see Table 2.3-30). Combined with their approximately 268 family members, this would represent less than 0.04 percent of Franklin County population and 0.8 percent of Pickaway County population. Of the 268 family members, approximately 112 would be anticipated to be of school age. The students entering the local schools would be expected to be enrolled in various grades and live in different
areas within Pickaway and Franklin counties. It is anticipated that there is enough capacity within the schools in these counties to absorb this minimal increase in school age children.

A net increase in 197 military personnel positions would amount to an increase of approximately 13.2 percent to the existing 121 ARW personnel. Total payroll associated with the 212 proposed full-time personnel would amount to an estimated total annual salary increase of approximately $16.5 million.

All 121 ARW personnel live off-installation as there is no on-installation housing. A conservative scenario would result in 197 homes purchased at the same time as personnel relocate to the area. This would represent less than 0.04 percent of the total housing units in the Franklin County and less than 0.9 percent of Pickaway County. However, not all the military personnel who would relocate would own homes and personnel would most likely be distributed between the two counties.

4.5.10.1 Summary of Impacts

Impacts to socioeconomics resulting from construction would be beneficial and negligible resulting from construction payrolls and materials purchased. In addition, impacts from proposed operations would be beneficial and minor due to the proposed increase in personnel.

4.5.11 Environmental Justice and the Protection of Children

4.5.11.1 Minority and Low-Income Populations

Under Alternative #5, there would be no residential populations, including no minority or low-income populations, located within the vicinity of Rickenbacker IAP exposed to aircraft DNL of 65 dB or above. Therefore, there would be no disproportionate impacts to minority or low-income populations in the vicinity of Rickenbacker IAP.

4.5.11.2 Protection of Children

There are no facilities on the installation where children may be encountered on a regular basis. Currently there no schools that are exposed to DNL of 65 dB or above. Under Alternative #5 there would be no schools exposed to DNL of 65 dB or above. Therefore, under Alternative #5 there would be no special health or safety risks to children.

4.5.11.3 Summary of Impacts

Given that the acreage within the 65 dB DNL noise contour would be reduced, there would be no residential populations, including no minority or low-income populations, and no additional
schools located within the vicinity Rickenbacker IAP exposed to DNL of 65 dB or above; thus, there would be no disproportionate impacts to minority or low-income populations in the vicinity of Rickenbacker IAP. In addition, there would be no special health or safety risks to children.
4.6 **NO ACTION ALTERNATIVE**

The CEQ regulation 40 CFR § 1502.14(d) specifically requires analysis of the “No Action” alternative in all NEPA documents. Under the No Action Alternative, the proposed aircraft beddown would not occur, and the NGB would not implement the components described under any of the five Action Alternatives analyzed in the previous sections. There would be no change in based aircraft, use of the airfield or Special Use Airspace (SUA), or personnel assigned to the KC-135 aircraft squadrons and the proposed construction would not be required. Under the No Action Alternative, the NGB would continue to conduct their current mission using the existing KC-135 aircraft with multiple configurations and crews that are not trained to accomplish every mission. This lack of standardized equipment and training throughout the fleet would continue to negatively impact the ability for aircrews to support, on a large scale, multi-role missions or exploit new tactics and procedures. The continued use of the KC-135 aircraft would not meet the identified needs of the NGB or the USAF; however, this alternative is carried forward for analysis in this EIS per CEQ regulations. Impacts at each of the alternative installations as a result of the No Action Alternative are described below.

Under the No Action Alternative there would be no change in based aircraft authorized at any of the alternative installations; use of the respective airfield; construction, or assigned personnel.

- The 190 ARW would continue to fly the air refueling mission with a PAA of 12 KC-135 aircraft and 1,242 personnel.
- The 108 WG would continue to fly the air refueling mission with a PAA of 8 KC-135 aircraft and 1 BAI and 1,329 personnel.
- The 157 ARW would continue to fly the air refueling mission with a PAA of 8 KC-135 aircraft and 1 BAI and 1,382 personnel.
- The 171 ARW would continue to fly the air refueling mission with a PAA of 16 KC-135 aircraft and 1,306 personnel.
- The 121 ARW would continue to fly the air refueling mission with a PAA of 18 KC-135 aircraft and 1,497 personnel, until the 2013 NDAA is fully implemented. At that time, the 121 ARW will have a reduction of 6 KC-135 aircraft, resulting in a PAA of 12 KC-135. There would be a commensurate reduction in personnel assigned to the 121 ARW as a result of implementation of the NDAA (see Section 5.5).

4.6.1 **Noise**

Noise at each alternative airfield would remain as described in the baseline Noise section for each alternative location (Sections 3.1.1, 3.2.1, 3.3.1, 3.4.1, and 3.5.1). Each of the five
installations would retain the KC-135 aircraft and would continue to fly the aircraft in the same manner and with approximately the same number of airfield operations as described in Chapter 3. The noise environment at each of the five alternative airfields would continue to be managed through their existing AICUZ or FAR Part 150 airfield compatibility programs. Under each alternative described in the Noise sections in Chapter 4, there were varying changes in the extent of the 65 dB DNL noise contours; some of the alternatives had imperceptible positive changes (Forbes ANGS, Pittsburgh ANGS, Rickenbacker ANGS), and some had larger adverse changes (JB MDL, Pease ANGS). There would be no additional Noise impacts at any of the alternative installations under the No Action Alternative.

4.6.2 Air Quality

Air Quality at each alternative airfield would remain as described in the baseline Air Quality section for each alternative location (Sections 3.1.2, 3.2.2, 3.3.3, 3.4.2, and 3.5.2) under the No Action Alternative. Each of the five installations would retain the KC-135 aircraft and would continue to fly the aircraft in the same manner and with approximately the same number of airfield operations as described in Chapter 3. Emissions at each of the alternative installations would continue to be in compliance with their respective SIPs. There would be no additional impacts to Air Quality at each alternative installation under the No Action Alternative.

4.6.3 Safety

Both ground and flight safety at each alternative airfield would remain as described in the baseline Safety section for each alternative location (Sections 3.1.3, 3.2.3, 3.3.3, 3.4.3, and 3.5.3). Each of the five installations would retain the KC-135 aircraft and would continue to fly the aircraft in the same manner and with approximately the same number of airfield operations as described in Chapter 3. Under each alternative described in Chapter 4, there was a range in the increase of annual airfield operations, with Rickenbacker ANGS increasing by 412 annual operations up to JB MDL, which would increase by 9,268 annual operations. Under the No Action Alternative, this increase in annual airfield operations would not occur at any of the alternative installations. All aspects of both ground and flight safety would be expected to remain as described in Chapter 3. There would be no additional impacts to Safety under the No Action Alternative.

4.6.4 Soils and Water

Both Soils and Water Resources at each alternative airfield would remain as described in the baseline Soils and Water section for each alternative location (Sections 3.1.4, 3.2.4, 3.3.4, 3.4.4, and 3.5.4). Under the alternatives, surface disturbance at the alternative installations ranged
from 3.0 to 8.5 acres (Pease ANGS and Rickenbacker ANGS, respectively); and new impervious surface ranged from 0 to 2.4 acres (Pease ANGS and JB MDL, respectively). Under the No Action Alternative, none of this proposed construction would occur at any of the alternative installations, although other non-related construction activities would occur to provide the necessary facilities for the on-going mission. There would be no additional impacts to Soils and Water Resources as a result of the No Action Alternative.

4.6.5 Biological Resources

Biological Resources would remain as described in the baseline Biological Resources section for each alternative location (Sections 3.1.5, 3.2.5, 3.3.5, 3.4.5, and 3.5.5). Under the alternatives, new impervious surface ranged from 0 to 2.4 acres (Pease ANGS and JB MDL, respectively); and there was a proposed increase in annual airfield operations, with Rickenbacker ANGS increasing by 412 annual operations up to JB MDL, which would increase by 9,268 annual operations. Under the No Action Alternative, there would be no increase in annual airfield operations at any of the installations, and none of this proposed construction would occur at any of the alternative installations, although other non-related construction activities would occur to provide the necessary facilities for the on-going mission. There would be no additional impacts to Biological Resources as a result of the No Action Alternative.

4.6.6 Cultural Resources

Under the No Action Alternative, Cultural Resources at each alternative installation would remain as described in the baseline Cultural Resources section for each alternative location (Sections 3.1.6, 3.2.6, 3.3.6, 3.4.6, and 3.5.6). None of the proposed facility construction/renovations would occur at any of the installations, and thus, there would be no potential impacts to facilities that are eligible for listing on the NRHP. There would be no surface disturbance from construction activities, and thus no potential to impact unknown archaeological resources. There would be no additional impacts to Cultural Resources as a result of the No Action Alternative.

4.6.7 Land Use

Land Use at each alternative airfield would remain as described in the baseline Land Use section for each alternative location (Sections 3.1.7, 3.2.7, 3.3.7, 3.4.7, and 3.5.7). Each of the five installations would retain the KC-135 aircraft and would continue to fly the aircraft in the same manner and with approximately the same number of airfield operations as described in Chapter 3. Under each alternative described in the Land Use sections in Chapter 4, there were varying changes in the areal extent of the 65 dB DNL noise contours; some of the alternatives had imperceptible positive changes (Forbes ANGS, Pittsburgh ANGS, Rickenbacker ANGS), and
some had larger adverse changes (JB MDL, Pease ANGS), but land use within the 65 dB DNL and greater noise contours was generally considered to be compatible at all locations. There would be no additional impacts to Land Use under the No Action Alternative at any of the alternative locations.

4.6.8 Infrastructure and Transportation

Under the No Action Alternative, Infrastructure and Transportation at each alternative installation would remain as described in the baseline section for each alternative location (Sections 3.1.8, 3.2.8, 3.3.8, 3.4.8, and 3.5.8). Under the various action alternatives, there would be a range of increases in additional based personnel between 23 and 255 (Pittsburgh ANGS and JB MDL, respectively). Under the No Action Alternative, there would be no change to the based personnel at any of the alternative locations. There would be no increase in use of various utilities or roadway systems under this alternative. There would be no additional impacts to Infrastructure and Transportation under the No Action Alternative.

4.6.9 Hazardous Materials and Wastes

Under the No Action Alternative, Hazardous Materials and Wastes at each alternative installation would remain as described in the baseline section for each alternative location (Sections 3.1.9, 3.2.9, 3.3.9, 3.4.9 and 3.5.9). Each of the five installations would retain the KC-135 aircraft and would continue to fly the aircraft in the same manner and with approximately the same number of airfield operations as described in Chapter 3. Under the No Action Alternative, the throughput and management of hazardous materials and wastes would not change from baseline conditions. The benefit of eliminating ODS with the KC-46A would not be realized. There would be no additional impacts to Hazardous Materials and Wastes under the No Action Alternative.

4.6.10 Socioeconomics

Under the No Action alternative, Socioeconomics at each alternative installation would remain as described in the baseline section for each alternative location (Sections 3.1.10, 3.2.10, 3.3.10, 3.4.10, and 3.5.10). Under the various action alternatives, there would be a range of increases in additional stationed personnel between 23 and 255 (Pittsburgh ANGS and JB MDL, respectively). Under the No Action Alternative, there would be no change to the based personnel at any of the alternatives. Further, under the No Action Alternative, none of the proposed construction activities would occur, and thus the minor economic benefit of additional based personnel and construction activity would not occur at any of the alternative installations. There would be no additional impacts to Socioeconomics under the No Action Alternative.
4.6.11 Environmental Justice and the Protection of Children

Under the No Action Alternative, Environmental Justice and the Protection of Children at each alternative installation would remain as described in the baseline section for each alternative location (Sections 3.1.11, 3.2.11, 3.3.11, 3.4.11, and 3.5.11). There were no disproportionate impacts to low-income, minority, or children identified under any of the action alternatives. There would be no additional impacts as a result of the No Action Alternative.
[This page intentionally left blank.]
CHAPTER 5 CUMULATIVE EFFECTS AND IRREVERSIBLE AND IRRETRIEVABLE COMMITMENT OF RESOURCES

Cumulative impacts to environmental resources result from incremental effects of proposed actions when combined with other past, present, and reasonably foreseeable future projects in the ROI. Cumulative impacts can result from individually minor, but collectively substantial, actions undertaken over a period of time by various agencies (federal, state, and local) or individuals. In accordance with NEPA, a discussion of cumulative impacts resulting from projects that are proposed (or anticipated over the foreseeable future) is required.

5.1 ALTERNATIVE #1 -- FORBES AIR NATIONAL GUARD STATION CUMULATIVE EFFECTS

5.1.1 Past, Present, and Reasonably Foreseeable Actions

Forbes Field Airport is an active, dynamic airfield where operational changes and facility upgrades occur on a frequent basis. Projects that have been identified in the ROI that have the potential to act in a cumulative manner with Alternative #1 are discussed in this section. The ROI for cumulative impacts is generally limited to Forbes Field Airport, and the immediately adjacent property because physical impacts related to the proposal are largely confined to these properties. Planning efforts in the ROI include the actions described within this EIS, as well as those other projects that are ongoing, or planned over the short term. Additional projects within the ROI are discussed below in Table 5.1.1-1.

Table 5.1.1-1. Past, Present, and Reasonably Foreseeable Actions in the ROI for Forbes ANGS

<table>
<thead>
<tr>
<th>Project Name/Descriptions</th>
<th>Approximate Square Footage (SF)</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>190 ARW Projects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KC-46A MOB 1 Basing would add 977 airfield operations per year to Forbes Field Airport</td>
<td>N/A</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Building 770: Consolidate vehicle maintenance/AGE</td>
<td>2,000</td>
<td>FY 2014</td>
</tr>
<tr>
<td>Building 665: Repair roof</td>
<td>N/A</td>
<td>FY 2014</td>
</tr>
<tr>
<td>Secondary Entry Control: Add new control point at main entry</td>
<td>80,000</td>
<td>FY 2015</td>
</tr>
<tr>
<td>Parking ramp: replace parking ramp at the full depth</td>
<td>850,000</td>
<td>FY 2016</td>
</tr>
<tr>
<td>Building 550 Repair roof, add 78 photovoltaic panels</td>
<td>N/A</td>
<td>FY 2017</td>
</tr>
<tr>
<td>Building 200: Repair roof, add photovoltaic panels</td>
<td>80,000</td>
<td>FY 2018</td>
</tr>
<tr>
<td>Repair Building 668</td>
<td>N/A</td>
<td>FY 2018</td>
</tr>
</tbody>
</table>

Notes: SF = square feet; 190 ARW = 190th Air Refueling Wing; MOB 1 = Main Operating Base 1; FY = Fiscal Year; AGE = aerospace ground equipment
5.1.2 Cumulative Impacts

5.1.2.1 Noise

Under Alternative #1, the number of acres contained within the 65 dB DNL and greater exposure area would decrease by approximately 41 acres. There are no residential areas that underlie the noise contours under this alternative. While there are other projects listed in Table 5.1.1-1 that have the ability to add noise to the environment at Forbes Field Airport, most of these, with the exception of the potential MOB 1 KC-46A use of the airfield, are short-term construction projects that would occur in what is otherwise an industrial setting. Noise associated with the additional 977 MOB 1 annual operations would not be expected to change the noise contours to the extent that additional sensitive receptors would be impacted, or that would result in land use incompatibilities. Noise from implementation of these actions would be short term and localized to the airport environs, and would not be expected to increase the overall DNL noise contours. Cumulative impacts to the noise environment at Forbes Field Airport would be minimal.

5.1.2.2 Air Quality

The net annual emissions increases from the proposed KC-46A beddown as well as the other projects described in Table 5.1.1-1 at Forbes Field Airport (including both construction and airfield operations) would be below the CAA PSD major source thresholds as set forth in the CAA for all pollutants. Implementation of the proposed KC-46A beddown at Forbes Field Airport would contribute to less than adverse (or less than significant) cumulative impacts to air quality.

The potential effects of GHG emissions from the Proposed Action are by nature global. Substantial temperature increases attributable to global climate change could result in a variety of impacts to the people, economy, and environment. These impacts include potential impacts to ecosystems, wildlife and agriculture, increases in the incidence of wildfires, changes in precipitation levels, and rising sea levels. The impacts of global climate change would not be expected to have a substantial impact on Forbes ANGS beyond regional impacts to the area in general.

Given the global nature of climate change and the current state of the science, it is not useful at this time to attempt to link the emissions quantified for local actions to any specific climatological change or resulting environmental impact. Nonetheless, the GHG emissions from the project alternatives have been quantified to the extent feasible in this EIS for information and comparison purposes.
5.1.2.3 Safety

Providing new and renovated facilities for the 190 ARW that support operational requirements of the KC-46A, and are properly sited with adequate space and a modernized supporting infrastructure would generally enhance ground and flight safety during required operations, training, maintenance and support procedures, security functions, and other activities conducted by the 190 ARW. AT/FP requirements have also been addressed to the extent practicable in all facility construction projects. The fire and crash response capability currently provided by the 190 ARW at Forbes Field Airport is sufficient to meet all requirements. Risk of a catastrophic event occurring during construction activities described under Alternative #1 or those activities described in Table 5.1.1-1 is considered to be low, and strict adherence to all applicable occupational safety requirements would further minimize the relatively low risk associated with described construction activities. Cumulative impacts to ground or flight safety would be negligible at the airfield. Construction and repair projects identified in Table 5.1.1-1 would be beneficial to safety with pavement repairs and AT/FP enhancements.

5.1.2.4 Soils and Water

Soils

In addition to the 258,149 SF (5.9 acres) of surface disturbance that would result from the implementation of Alternative #1, additional surface area would also be disturbed in the vicinity as a result of the projects described in Table 5.1.1-1 over the next 5 years.

The Clean Water Act (CWA) considers stormwater from a construction site as a point source of pollution regulated by the NPDES permit. Therefore, those projects described in Table 5.1.1-1 larger than 1 acre would be required to have a site-specific and detailed SWPPP that coordinates the timing of soil disturbing activities with the installation of soil erosion and runoff controls in an effort to reduce the impacts to the local watershed; this is an effective way of controlling erosion while soil is exposed and subject to construction activity. Implementation of standard construction practices would be used to limit or eliminate soil movement, stabilize erosion, and control sedimentation. These standard construction practices would include the use of: velocity dissipation devices; well-maintained silt fences; minimizing surficial area disturbed; stabilization of cut/fill slopes; minimization of earth-moving activities during wet weather; and use of temporary detention ponds. Following construction, disturbed areas not covered with impervious surfaces would be reestablished with appropriate vegetation and managed to minimize future erosion potential. Given the use of engineering practices that would minimize potential erosion, cumulative impacts to earth resources would be expected to be minor.
The Farmland Protection Policy Act is intended to minimize the impact federal programs have on the unnecessary and irreversible conversion of farmland to nonagricultural uses. Provided that the projects in Table 5.1.1-1 are all within federal lands, each project would be subject to Farmland Protection Policy Act compliance. Should any of these projects have the potential to convert farmland to non-farm use, a land evaluation and site assessment would be conducted and alternative sites considered should potential adverse impacts to farmland exceed the recommended allowable level.

Water

There would be no increase in impervious surfaces as a result of implementation of Alternative #1. It is expected that any construction activities would adhere to NPDES requirements including implementation of standard construction practices described above. As such, cumulative impacts to surface water and groundwater would be expected to be minor.

5.1.2.5 Biological Resources

DNL noise contours from operations would be expected to decrease by 41 acres from baseline with the conversion to the KC-46A aircraft. Noise levels from construction would not be expected to impact wildlife in the area because they are accustomed to elevated noise levels associated with current aircraft and military operations. Annual operations for the KC-46A at Forbes Field Airport would be projected to increase by approximately 39 percent from baseline operations (17 percent increase in total airfield operations). An increase in levels of operations (e.g., sorties) may result in a slight increased opportunity for bird/wildlife aircraft strikes to occur, including those with migratory birds. No special status species are currently known to reside on Forbes Field Airport and there is only a low potential for them to occur within the vicinity due to the lack of habitat. There would be no construction-related impacts to the vegetation at the installation and in the vicinity of projects identified in Table 5.1.1-1. There are no wetland areas that occur within the vicinity of the project footprints. In general, construction activities at the 190 ARW installation and at Forbes Field Airport would primarily occur on sites that are already highly altered by man. These impacts would include the removal of some vegetation and associated wildlife habitat. However, wildlife that uses these areas is typical of urban and suburban areas. Therefore, cumulative impacts to biological resources would be minor.

5.1.2.6 Cultural Resources

The installation is considered to have no to low probability of containing archaeological resources. In the unlikely event that archaeological or human remains were identified during
proposed construction activities associated with Alternative #1 or any of the projects listed in Table 5.1.1-1, activities would immediately cease in the area of the discovery and appropriate personnel would contact a qualified archaeologist to evaluate the discovery. Under Alternative #1, only one of the buildings proposed for modification (Building 679) is eligible for listing in the NRHP. However, extensive renovations have occurred to this building that were mitigated through a Memorandum of Agreement signed in 2009. The current interior modifications would not affect this previous agreement. Additionally, the Kansas SHPO has concurred that there would be no historic properties affected with implementation of Alternative #1 (Zollner 2013). Therefore, there would be no adverse effect to a historic property. No traditional cultural resources have been identified on the installation. None of the facilities listed for renovation and/or modification listed in Table 5.1.1-1 are eligible for listing in the NRHP. Therefore, no cumulative impacts to cultural resources are anticipated.

5.1.2.7 Land Use

Under Alternative #1, acreage off airport property contained within the 65 dB DNL and greater noise contours would decrease by approximately 41 acres resulting in beneficial impacts. In general, land uses surrounding Forbes Field Airport would not be adversely affected by the activities described under Alternative #1 in concert with those described in Table 5.1.1-1. The location and function of proposed structures within the Forbes ANGS are compatible with the surrounding area. Although future development at Forbes Field Airport and adjacent areas is anticipated, development would be subject to planning and land use requirements, including those associated with the airport, counties, cities and other municipalities. Project-specific studies would be performed to determine and address any projects that would result in land use conflicts, such as encroachment airfield safety zones. If the rehabilitation of the runway in 2014 is approved, all based aircraft would need to be relocated to a different airfield during construction. Additionally, if the USAF MOB 1 bases the KC 46 at McConnell AFB, Forbes Field Airport would be used as an auxiliary field, adding an additional 977 operations per year. Cumulative impacts to land use as a result of the described activities, including impacts from noise and air quality, would be expected to be negligible.

5.1.2.8 Infrastructure and Transportation

Demand for electricity and natural gas would be expected to increase slightly as a result of the increase in personnel under Alternative #1. Further, building space and facilities to be constructed as a component of this action as well as those identified in Table 5.1.1-1 may require additional electricity. In addition, wastewater, solid waste, demand for potable water, and traffic would temporarily increase during construction, and would increase slightly in the long-term due to increase in personnel. The proposed construction and demolition activities could temporarily
affect the quality of stormwater runoff through potential increases in soil erosion. Standard construction practices would be implemented during construction and demolition to minimize runoff. Any new facilities and additions associated with these projects would be implemented with more energy efficient design standards and utility systems than are currently in place. In addition, construction projects would incorporate LEED and sustainable development concepts to achieve optimum resource efficiency, sustainability, and energy conservation. In general, cumulative impacts to installation infrastructure as a result of described activities would be expected to be positive over the long-term.

5.1.2.9 Hazardous Materials and Waste

The type of hazardous materials needed for maintenance and operation of the KC-46A would be expected to remain similar to those currently used for maintenance and operation of the KC-135 fleet, with the exception of ODSs. Under Alternative #1, the total number of flying hours for the 190 ARW would increase approximately 65 percent; therefore, throughput of petroleum substances and hazardous waste streams would be expected to increase commensurately. Furthermore, it is expected that short-term increases would be realized in terms of the quantity of fuel used during construction activities for this action as well as those listed in Table 5.1.1-1. Hazardous waste generation (e.g., used oil, used filters, oily rags, etc.) would continue to be managed in accordance with the installation’s Hazardous Waste Management Plan and all applicable federal, state, and local regulations. Additionally, no changes to the installation’s small quantity generator status would be expected to occur due to the increase in hazardous waste generation from aircraft operations. In addition, any structures listed in Table 5.1.1-1 proposed for demolition, addition, or retrofit would be inspected for ACM and LBP according to established ANG procedures prior to any renovation or demolition activities. Cumulative impacts as a result of the described activities are expected to be minor.

5.1.2.10 Socioeconomics

Economic activity associated with proposed construction activities described as a component of this alternative and those shown in Table 5.1.1-1, such as employment and materials purchasing, would provide short-term economic benefits to the local economy. Additionally, there would be a permanent increase in 194 military positions. However, short-term cumulative beneficial impacts resulting from construction payrolls and materials purchased as a result of implementation of Alternative #1 and those projects listed in Table 5.1.1-1 would be negligible on a regional scale.
5.1.2.11 Environmental Justice and the Protection of Children

Under Alternative #1, in concert with those projects listed in Table 5.1.1-1, there would be no residential populations, including no minority or low-income populations, located within the projected 65 dB DNL noise contour in the vicinity of Forbes Field Airport. There are no other projects listed in Table 5.1.1-1 that would be expected to impact environmental justice communities. Therefore, there would be no cumulative impacts to the health or safety of children.
5.2 **ALTERNATIVE #2 -- JOINT BASE MCGUIRE-DIX-LAKEHURST CUMULATIVE EFFECTS**

Cumulative impacts to environmental resources result from incremental effects of proposed actions when combined with other past, present, and reasonably foreseeable future projects in the ROI. Cumulative impacts can result from individually minor, but collectively substantial, actions undertaken over a period of time by various agencies (federal, state, and local) or individuals. In accordance with NEPA, a discussion of cumulative impacts resulting from projects that are proposed (or anticipated over the foreseeable future) is required.

5.2.1 **Past, Present, and Reasonably Foreseeable Actions**

McGuire Field is an active, dynamic airfield where operational changes and facility upgrades occur on a frequent basis. Projects that have been identified in the ROI that have the potential to act in a cumulative manner with Alternative #2 are discussed in this section. The ROI for cumulative impacts is generally limited to McGuire Field, and the immediately adjacent property because physical impacts related to the proposal are largely confined to these properties. Planning efforts in the ROI include the actions described within this EIS, as well as those other projects that are ongoing, or planned over the short term. Additional projects within the ROI are discussed below in Table 5.2.1-1.

Table 5.2.1-1. Past, Present, and Reasonably Foreseeable Actions in the ROI for JB MDL

<table>
<thead>
<tr>
<th>Project Name/Descriptions</th>
<th>Approximate Square Footage (SF)</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>108 WG Projects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demolition of Building 3326</td>
<td>940</td>
<td>FY 2015 – FY 2017</td>
</tr>
<tr>
<td>Addition to Building 3325</td>
<td>3,000</td>
<td>FY 2015 – FY 2017</td>
</tr>
</tbody>
</table>

JB MDL Projects		
Various airfield repairs - Repair airfield shoulders, Assault Landing Zone Runway shoulders, main ramp taxiway, repair concrete apron and Alpha ramp, replace Taxiway A, B, C, D, and L edge lights, repair Runway 15/33, Repair Transportation Working Capital Fund apron.	Currently unknown	FY 2013
Construct Munitions Storage Area	Currently unknown	FY 2014 – FY 2018
Construct Physical Fitness Facility	Currently unknown	FY 2014 – FY 2018
Construct Fire Station	Currently unknown	FY 2014 – FY 2018
Construct Global Reach Development Complex	Currently unknown	FY 2014 – FY 2018
Construct Education and Professional Development Center	Currently unknown	FY 2014 – FY 2018
Table 5.2.1-1. Past, Present, and Reasonably Foreseeable Actions in the ROI for JB MDL

<table>
<thead>
<tr>
<th>Project Name/Descriptions</th>
<th>Approximate Square Footage (SF)</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construct Unified Security Forces Operations Facility</td>
<td>Currently unknown</td>
<td>FY 2014 – FY 2018</td>
</tr>
<tr>
<td>Addition to Combat Communications Admin Facility, Building 3514</td>
<td>Currently unknown</td>
<td>FY 2014 – FY 2018</td>
</tr>
<tr>
<td>Construct Army Aviation Support Facility</td>
<td>Currently unknown</td>
<td>FY 2014 – FY 2018</td>
</tr>
<tr>
<td>Construct Aviation Readiness Center</td>
<td>Currently unknown</td>
<td>FY 2014 – FY 2018</td>
</tr>
<tr>
<td>Construct Communications-Electronics Research, Development, and Engineering Center</td>
<td>Currently unknown</td>
<td>FY 2014 – FY 2018</td>
</tr>
</tbody>
</table>

Other Projects

| Hurricane Sandy U.S. Army Corps of Engineers disaster relief projects to repair, restore, and fortify the coastline. Four projects exceed NOx trigger level of 100 TPY. | N/A | FY 2014 – FY 2016 |

Notes: SF = square foot; 108 WG = 108th Wing; FY = Fiscal Year; JB MDL = Joint Base McGuire-Dix-Lakehurst; N/A = Not Applicable; TPY = tons per year

5.2.2 Cumulative Impacts

5.2.2.1 Noise

Under Alternative #2, the number of acres contained within the 65 dB DNL and greater exposure area would increase by approximately 1,831 acres. Of the acreage exposed to 65 dB DNL or greater, approximately 751 would be off-airport property. While there are other projects listed in Table 5.2.1-1 that have the ability to add noise to the environment at JB MDL, most of these are short-term construction projects that would occur in what is otherwise an industrial setting. Noise from implementation of these actions would be short-term and localized to the airport environs, and would not be expected to increase the overall DNL noise contours. Cumulative impacts to the noise environment at JB MDL would be minimal.

5.2.2.2 Air Quality

The net annual emissions increases from the proposed KC-46A beddown as well as those other projects described in Table 5.2.1-1 at JB MDL (including both construction and airfield operations) would be below the CAA PSD major source thresholds and/or the General Conformity Rule *de minimis* thresholds as set forth in the CAA for all pollutants except NOx. JB MDL and the USACE have entered into a Memorandum of Agreement that would allow temporary use of a portion of the NOx SIP emissions budget for calendar years 2014 through 2016 to allow the USACE to proceed with construction projects to repair, restore, and fortify the coastline in the state of New Jersey in response to damage during Hurricane Sandy (JB MDL and USACE 2013). The USACE projects will be completed prior to implementation of Alternative

#2 at JB MDL, should that alternative be selected for the KC-46A MOB 2 beddown; therefore, the temporary use of NOx emissions within the SIP would be complete by the time the emissions associated with Alternative #2 would occur, which would be scheduled to commence in 2018.

A Conformity Determination as required under the General Conformity Rule would ensure that the selected action would conform to the requirements of the applicable SIP and would not cause or contribute to a delay in attainment consistent with 42 USC § 7506(c). The purpose of the General Conformity Rule is to demonstrate that project emissions, combined with all of the other air basin emissions, would not result in a cumulative impact and thereby delay attainment of the air quality standards. The ANG has prepared a Draft Conformity Determination that demonstrates that emissions associated with Alternative #2 are within the SIP NOx emissions budget for JB MDL. It is anticipated that the ANG will obtain an affirmative Conformity Determination prior to signing of the ROD. Thus, given that Alternative #2 will have demonstrated conformity with the SIP, cumulative impacts to air quality would not be significant.

The potential effects of GHG emissions from the Proposed Action are by nature global. Substantial temperature increases attributable to global climate change could result in a variety of impacts to the people, economy, and environment. These impacts include potential impacts to ecosystems, wildlife and agriculture, increases in the incidence of wildfires, changes in precipitation levels, and rising sea levels. The impacts of global climate change would not be expected to have a substantial impact on JB MDL beyond regional impacts to the area in general.

Given the global nature of climate change and the current state of the science, it is not useful at this time to attempt to link the emissions quantified for local actions to any specific climatological change or resulting environmental impact. Nonetheless, the GHG emissions from the project alternatives have been quantified to the extent feasible in this EIS for information and comparison purposes.

5.2.2.3 Safety

Providing new and renovated facilities for the 108 WG that support operational requirements and are properly sited with adequate space and a modernized supporting infrastructure would generally improve ground and flight safety during required operations, training, maintenance and support procedures, security functions, and other activities conducted by the 108 WG. AT/FP requirements have also been addressed to the extent practicable in all facility construction projects. A new fire station would enhance fire and crash response capability at JB MDL. Risk of a catastrophic event occurring during construction activities described under Alternative #2 or those activities described in Table 5.2.1-1 is considered to be low, and strict adherence to
all applicable occupational safety requirements would further minimize the relatively low risk associated with described construction activities. Additionally, the new munitions storage area facility at JB MDL would be sited in accordance with AFMAN 91-201 and improve munitions safety. Cumulative impacts to ground or flight safety would be negligible at the airfield. Construction and repair projects identified in Table 5.2.1-1 would be beneficial to safety with pavement repairs and AT/FP enhancements.

5.2.2.4 Soils and Water

Soils

In addition to the 204,009 SF (4.7 acres) of surface disturbance that would result from the implementation of Alternative #2, additional surface area would be disturbed in the vicinity as a result of the projects described in Table 5.2.1-1 over the next 5 years.

The CWA considers stormwater from a construction site as a point source of pollution regulated by the NPDES permit. Therefore, those projects described in Table 5.2.1-1 larger than 1 acre would be required to have a site-specific and detailed SWPPP that coordinates the timing of soil disturbing activities with the installation of soil erosion and runoff controls in an effort to reduce the impacts to the local watershed; this is an effective way of controlling erosion while soil is exposed and subject to construction activity. Implementation of standard construction practices would be used to limit or eliminate soil movement, stabilize erosion, and control sedimentation. These standard construction practices would include the use of: velocity dissipation devices; well-maintained silt fences; minimizing surficial area disturbed; stabilization of cut/fill slopes; minimization of earth-moving activities during wet weather; and use of temporary detention ponds. Following construction, disturbed areas not covered with impervious surfaces would be reestablished with appropriate vegetation and managed to minimize future erosion potential. Given the use of engineering practices that would minimize potential erosion, cumulative impacts to earth resources would be expected to be minor.

The Farmland Protection Policy Act is intended to minimize the impact federal programs have on the unnecessary and irreversible conversion of farmland to nonagricultural uses. Provided that the projects in Table 5.2.1-1 are all within federal lands, each project would be subject to Farmland Protection Policy Act compliance. Should any of these projects have the potential to convert farmland to non-farm use, a land evaluation and site assessment would be conducted and alternative sites considered should potential adverse impacts to farmland exceed the recommended allowable level.
In addition to the 104,884 SF (2.4 acres) of new impervious surface that would result from Alternative #2, other increases in impervious surfaces would also occur in the vicinity as a result of the projects described in Table 5.2.1-1 over the next 5 years.

Cumulative impacts to the hydrologic cycle as a result of increasing impervious surface would be dependent on the unique conditions present at the site and its watershed. LID is a stormwater management approach that mimics nature’s ability to clean and store stormwater runoff accomplished through use of standard construction practices that infiltrate, filter, store, reuse, evaporate, and detain runoff close to its source.

Provided that the projects listed in Table 5.2.1-1 are located within federal lands, compliance with UFC 3-210-10, LID (as amended, 2010) and EISA Section 438 would ensure any increase in surface water runoff as a result of the proposed construction would be attenuated through the use of temporary and/or permanent drainage management features such that post-development runoff rates would be equal to or less than pre-development rates. Additionally, it is expected that any construction activities would adhere to NPDES requirements including implementation of standard construction practices described above. As such, cumulative impacts to water resources would be expected to be minor.

5.2.2.5 Biological Resources

DNL noise contours would be expected to increase over 1,831 acres. However, the noise levels from operations and construction would not be expected to impact wildlife in the area because they are accustomed to elevated noise levels associated with aircraft and military operations. Noise levels from construction would not be expected to impact wildlife in the area because they are accustomed to elevated noise levels associated with current aircraft and military operations. Annual operations for the 108 WG are projected to increase by approximately 111 percent from baseline operations (15 percent increase in total airfield operations). An increase in levels of operations (e.g., sorties) may result in a slight increased opportunity for bird-aircraft strikes to occur, including those with migratory birds. Construction-related impacts to the vegetation at the installation and in the vicinity of projects identified in Table 5.2.1-1 would be negligible due to the lack of sensitive vegetation in the project areas. There are no wetland areas that occur within the vicinity of the project footprints. In general, construction activities at the 108 WG installation and at JB MDL would primarily occur on sites that are already highly altered by man. These impacts would include the removal of some vegetation and associated wildlife habitat. However, wildlife that uses these areas is typical of urban and suburban areas. No federally listed species are currently known to occur on the 108 WG installation and there is only
a low potential for them to occur within the vicinity due to the lack of habitat. Six state listed species have been observed on McGuire Field. Grassland habitat located within the potential ramp expansion area could provide habitat for these species. However, to the extent possible, construction would not occur during the breeding season for grassland birds (March 15 to July 31). Cumulative impacts to biological resources would be minor.

5.2.2.6 Cultural Resources

The area of proposed construction is considered to have no to low probability of containing archaeological resources. Additionally, the Proposed Action would disturb a relatively small amount of acreage, all of which has previously been disturbed. The proposed use is consistent with the installations historical land use for over 70 years. In the unlikely event that archaeological or human remains were identified during proposed construction activities associated with Alternative #2 or any of the projects listed in Table 5.2.1-1, activities would immediately cease in the area of the discovery and the JB MDL Cultural Resource Manager would immediately be contacted for further instruction. None of the facilities listed for renovation and/or modification under Alternative #2 or those listed in Table 5.2.1-1 are eligible for listing in the NRHP. Two of the buildings (3333 and 3336) listed for renovation and/or modification under Alternative #2 are less than 20 years old. Hangar 3322 (built in 1957) was evaluated for NRHP eligibility in 2013 and the results of the inventory indicated that Hangar 3322 is not eligible (JB MDL 2013d). SHPO consultation for this EIS has provided concurrence that no historic properties would be affected under the proposed action (see Saunders 2013 in Appendix B3). No traditional cultural resources have been identified on the installation. Therefore, contingent upon evaluation of Building 3322, no cumulative impacts to cultural resources are anticipated.

5.2.2.7 Land Use

Under Alternative #2, acreage off airport property contained within the 65 dB DNL and greater noise contours would increase by approximately 751 acres. In general, land uses surrounding JB MDL would not be adversely affected by the activities described under Alternative #2 in concert with those described in Table 5.2.1-1. The location and function of proposed structures within the JB MDL are compatible with the surrounding area. Although future development at JB MDL and adjacent areas is anticipated, development would be subject to planning and land use requirements, including those associated with the counties, cities and other municipalities. Project specific studies would be performed to determine and address any projects that would result in land use conflicts, such as encroachment in and near airfield safety zones. Cumulative impacts to land use as a result of the described activities, including impacts from noise and air quality, would be expected to be negligible.
5.2.2.8 Infrastructure and Transportation

Demand for electricity and natural gas would be expected to increase slightly as a result of the increase in personnel under Alternative #2. Further, building space and facilities to be constructed as a component of this action as well as those identified in Table 5.2.1-1 may require additional electricity. In addition, wastewater, solid waste, demand for potable water, and traffic would temporarily increase during construction, and would increase slightly in the long-term due to increase in personnel. The proposed construction and demolition activities could temporarily affect the quality of stormwater runoff through potential increases in soil erosion. Standard construction practices would be implemented during construction and demolition to minimize runoff. Any new facilities and additions associated with these projects would be implemented with more energy efficient design standards and utility systems than are currently in place. In addition, construction projects would incorporate LEED and sustainable development concepts to achieve optimum resource efficiency, sustainability, and energy conservation. In general, cumulative impacts to installation infrastructure as a result of described activities would be expected to be positive over the long-term.

5.2.2.9 Hazardous Materials and Waste

The type of hazardous materials needed for maintenance and operation of the KC-46A would be expected to remain similar to those currently used for maintenance and operation of the KC-135 fleet, with the exception of ODSs. Under Alternative #2, the total number of flying hours for the 108 WG would increase approximately 118 percent; therefore, throughput of petroleum substances and hazardous waste streams would be expected to increase commensurately. Furthermore, it is expected that short-term increases would be realized in terms of the quantity of fuel used during construction activities for this action as well as those listed in Table 5.2.1-1. Hazardous waste generation (e.g., used oil, used filters, oily rags, etc.) would continue to be managed in accordance with the installation’s Hazardous Waste Management Plan and all applicable federal, state, and local regulations. Additionally, no changes to the installation’s large quantity generator status would be expected to occur due to the increase in hazardous waste generation from aircraft operations. In addition, any structures listed in Table 5.2.1-1 proposed for demolition, addition, or retrofit would be inspected for ACM and LBP according to established ANG procedures prior to any renovation or demolition activities. Cumulative impacts as a result of the described activities are expected to be minor.

5.2.2.10 Socioeconomics

Economic activity associated with proposed construction activities described as a component of this alternative and those shown in Table 5.2.1-1, such as employment and materials purchasing,
would provide short-term economic benefits to the local economy. Additionally, there would be a permanent increase of 287 military positions. However, short-term beneficial impacts resulting from construction payrolls and materials purchased as a result of implementation of Alternative #2 and those projects listed in Table 5.2.1-1 would be negligible on a regional scale.

5.2.2.11 Environmental Justice and the Protection of Children

Under Alternative #2, in concert with those projects listed in Table 5.2.1-1, roughly 128 persons (48 more than baseline) that would be affected by DNL between 65 dB and 75 dB, approximately 23 would be minority (18 percent). This is an increase of 11 people, or 3 percent, of minorities affected. The number of low-income persons affected by DNL greater than 65 dB would be approximately 6 (an increase of 2 people and less than 1 percent). Overall, the number of persons affected by DNL of 65 dB and greater would increase slightly under this alternative, and the increase in the percentage of minority and low-income persons affected would be minor. Under Alternative #2, there would be no new Kindergarten through Grade 12 schools exposed to a DNL of 65 dB or above; however, the child development center that is currently under the 65 dB contour would be located under the 70 dB contour. There would not be disproportionate cumulative impacts to minority or low-income populations in the vicinity of JB MDL as a result of this action in concert with the current noise impacts from the airport. There are no other projects listed in Table 5.2.1-1 that would be expected to impact environmental justice communities or the health or safety of children.
5.3 **Alternative #3 -- Pease Air National Guard Station Cumulative Effects**

Cumulative impacts to environmental resources result from incremental effects of proposed actions when combined with other past, present, and reasonably foreseeable future projects in the ROI. Cumulative impacts can result from individually minor, but collectively substantial, actions undertaken over a period of time by various agencies (federal, state, and local) or individuals. In accordance with NEPA, a discussion of cumulative impacts resulting from projects that are proposed (or anticipated over the foreseeable future) is required.

5.3.1 **Past, Present, and Reasonably Foreseeable Actions**

Portsmouth IAP is an active, dynamic airfield where operational changes and facility upgrades occur on a frequent basis. Projects that have been identified in the ROI that have the potential to act in a cumulative manner with Alternative #3 are discussed in this section. The ROI for cumulative impacts is generally limited to Portsmouth IAP and the immediately adjacent property because physical impacts related to the proposal are largely confined to these properties. Planning efforts in the ROI include the actions described within this EIS, as well as those other projects that are ongoing, or planned over the short term. Additional projects within the ROI are discussed below in Table 5.3.1-1.

Table 5.3.1-1. Past, Present, and Reasonably Foreseeable Actions in the ROI for Pease ANGS

<table>
<thead>
<tr>
<th>Project Name/Descriptions</th>
<th>Approximate Square Footage (SF)</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airfield Pavements: Repair and upgrade pavement areas</td>
<td>61,281</td>
<td>FY 2014 – FY 2015</td>
</tr>
<tr>
<td>Building 252: Repair roof</td>
<td>26,200</td>
<td>FY 2014 – FY 2015</td>
</tr>
<tr>
<td>Parking Lots: Repair Installation-Wide (Crack Seal/ Seal Coat)</td>
<td>270,000</td>
<td>FY 2014 – FY 2015</td>
</tr>
<tr>
<td>Bulk Fuel Roads: Repair and upgrade asphalt</td>
<td>57,654</td>
<td>FY 2014 – FY 2015</td>
</tr>
<tr>
<td>Building 257: Renovate for Security Forces</td>
<td>14,000</td>
<td>FY 2014 – FY 2015</td>
</tr>
<tr>
<td>Building 151: Build addition to support medical facilities</td>
<td>12,126</td>
<td>FY 2016 – FY 2018</td>
</tr>
<tr>
<td>Building 244: Demolish for Security Forces Facility</td>
<td>24,047</td>
<td>FY 2016 – FY 2018</td>
</tr>
<tr>
<td>Non-Organizational Parking: Replace to conform to AT/FP standards</td>
<td>150,021</td>
<td>FY 2016 – FY 2018</td>
</tr>
<tr>
<td>Building 152: Demolish for proposed expansion of facilities</td>
<td>14,486</td>
<td>FY 2016 – FY 2018</td>
</tr>
<tr>
<td>Building 244: Demolish for Security Forces Facility</td>
<td>24,047</td>
<td>FY 2016 – FY 2018</td>
</tr>
<tr>
<td>Parking Apron: Upgrade and add Hydrant, including interstitial monitoring and containment</td>
<td>198,000</td>
<td>FY 2016 – FY 2018</td>
</tr>
<tr>
<td>Aircraft Parking Apron: Repair as Phase V for Multi-Hangar construction</td>
<td>296,766</td>
<td>FY 2016 – FY 2018</td>
</tr>
</tbody>
</table>

Notes: SF = square foot; 157 ARW = 157th Air Refueling Wing; FY = Fiscal Year
5.3.2 Cumulative Impacts

5.3.2.1 Noise

Under Alternative #3, the number of acres contained within the 65 dB DNL and greater exposure area would increase by approximately 135 acres. Of the acreage exposed to 65 dB DNL or greater, approximately 4 would be off the airport property. There are no residential areas that underlie the noise contours under this alternative. While there are other projects listed in Table 5.3.1-1 that have the ability to add noise to the environment at Portsmouth IAP, most of these are short-term construction projects that would occur in what is otherwise an industrial setting. Noise from implementation of these actions would be short term and localized to the airport environs, and would not be expected to increase the overall DNL noise contours. Cumulative impacts to the noise environment at Portsmouth IAP would be minimal.

5.3.2.2 Air Quality

The net annual emissions increases from the proposed KC-46A beddown as well as those other projects described in Table 5.3.1-1 at Pease ANGS (including both construction and airfield operations) would be below the CAA PSD major source thresholds and/or the General Conformity Rule de minimis thresholds as set forth in the CAA for all pollutants. Therefore, cumulative impacts to air quality would not be significant.

The potential effects of GHG emissions from the Proposed Action are by nature global. Substantial temperature increases attributable to global climate change could result in a variety of impacts to the people, economy, and environment. These impacts include potential impacts to ecosystems, wildlife and agriculture, increases in the incidence of wildfires, changes in precipitation levels, and rising sea levels. The impacts of global climate change would not be expected to have a substantial impact on Pease ANGS beyond regional impacts to the area in general.

Given the global nature of climate change and the current state of the science, it is not useful at this time to attempt to link the emissions quantified for local actions to any specific climatological change or resulting environmental impact. Nonetheless, the GHG emissions from the project alternatives have been quantified to the extent feasible in this EIS for information and comparison purposes.

5.3.2.3 Safety

Providing new and renovated facilities for the 157 ARW that support operational requirements of the KC-46A, and are properly sited with adequate space and a modernized supporting
infrastructure would generally enhance ground and flight safety during required operations, training, maintenance and support procedures, security functions, and other activities conducted by the 157 ARW. AT/FP requirements have also been addressed to the extent practicable in all facility construction projects. The fire and crash response capability currently provided by the 157 ARW at Portsmouth IAP is sufficient to meet all requirements. Risk of a catastrophic event occurring during construction activities described under Alternative #3 or those activities described in Table 5.3.1-1 is considered to be low, and strict adherence to all applicable occupational safety requirements would further minimize the relatively low risk associated with described construction activities. Cumulative impacts to ground or flight safety would be negligible at the airfield. Construction and repair projects identified in Table 5.3.1-1 would be beneficial to safety with pavement repairs and AT/FP enhancements.

5.3.2.4 Soils and Water

Soils

In addition to the 130,966 SF (3.0 acres) of surface disturbance that would result from implementation of Alternative #3, additional surface area would be disturbed in the vicinity as a result of the projects described in Table 5.3.1-1 over the next 5 years.

The CWA considers stormwater from a construction site as a point source of pollution regulated by the NPDES permit. Therefore, those projects described in Table 5.3.1-1 larger than 1 acre would be required to have a site-specific and detailed SWPPP that coordinates the timing of soil disturbing activities with the installation of soil erosion and runoff controls in an effort to reduce the impacts to the local watershed; this is an effective way of controlling erosion while soil is exposed and subject to construction activity. Implementation of standard construction practices would be used to limit or eliminate soil movement, stabilize erosion, and control sedimentation. These standard construction practices would include the use of: velocity dissipation devices; well-maintained silt fences; minimizing surficial area disturbed; stabilization of cut/fill slopes; minimization of earth-moving activities during wet weather; and use of temporary detention ponds. Following construction, disturbed areas not covered with impervious surfaces would be reestablished with appropriate vegetation and managed to minimize future erosion potential. Given the use of engineering practices that would minimize potential erosion, cumulative impacts to earth resources would be expected to be minor.
Water

In addition to the 23,617 SF (0.5 acre) of new impervious surface that would result from Alternative #3, other increases in impervious surfaces would also occur in the vicinity as a result of the projects described in Table 5.3.1-1 over the next 5 years.

Cumulative impacts to the hydrologic cycle as a result of increasing impervious surface would be dependent on the unique conditions present at the site and its watershed. LID is a stormwater management approach that mimics nature’s ability to clean and store stormwater runoff accomplished through use of standard construction practices that infiltrate, filter, store, reuse, evaporate, and detain runoff close to its source.

Provided that the projects listed in Table 5.3.1-1 are located within Federal lands, compliance with UFC 3-210-10, LID (as amended, 2010) and EISA Section 438 would ensure any increase in surface water runoff as a result of the proposed construction would be attenuated through the use of temporary and/or permanent drainage management features such that post-development runoff rates would be equal to or less than pre-development rates. Additionally, it is expected that any construction activities would adhere to NPDES requirements including implementation of standard construction practices described above. As such, cumulative impacts to water resources would be expected to be minor.

5.3.2.5 Biological Resources

Noise contours would be expected to increase by 135 acres from baseline with the conversion to the KC-46A aircraft. However, these noise levels from operations and construction would not be expected to impact wildlife in the area because they are accustomed to elevated noise levels associated with current aircraft and military operations. Annual operations for the 157 ARW at Portsmouth IAP are projected to increase by approximately 44 percent from baseline operations (7 percent increase in total airfield operations). An increase in levels of operations (e.g., sorties) may result in a slight increased opportunity for bird-aircraft strikes to occur, including those with migratory birds. No federally threatened and endangered species are currently known to occur on Portsmouth IAP; however, eight state listed species are currently known to occur on Portsmouth IAP. Construction-related impacts to the vegetation at the installation and in the vicinity of projects identified in Table 5.3.1-1 would be negligible due to the lack of sensitive vegetation in the project areas. There are no wetland areas that occur within the vicinity of the project footprints. In general, construction activities at the 157 ARW installation and at Portsmouth IAP would primarily occur on sites that are already highly altered by man. These impacts would include the removal of some vegetation and associated wildlife habitat. However,
wildlife that uses these areas is typical of urban and suburban areas. Cumulative impacts to biological resources would be minor.

5.3.2.6 Cultural Resources

The installation is considered to have no to low probability of containing archaeological resources. In the unlikely event that archaeological or human remains were identified during proposed construction activities associated with Alternative #3 or any of the projects listed in Table 5.3.1-1, activities would immediately cease in the area of the discovery and appropriate personnel would contact a qualified archaeologist to evaluate the discovery. None of the facilities listed for renovation and/or modification under Alternative #3 or those listed in Table 5.3.1-1 are eligible for listing in the NRHP. The SHPO has concurred with a “no historic properties affected” determination (Muzzey 2013). No traditional cultural resources have been identified on the installation. Therefore, no cumulative impacts to cultural resources are anticipated.

5.3.2.7 Land Use

Under Alternative #3, acreage off airport property contained within the 65 dB DNL and greater noise contours would increase by approximately 135 acres. In general, land uses surrounding Portsmouth IAP would not be adversely affected by the activities described under Alternative #3 in concert with those described in Table 5.3.1-1. The location and function of proposed structures within the Pease ANGS are compatible with the surrounding area. No future development at Portsmouth IAP and adjacent areas has been identified; however, any future development would be subject to planning and land use requirements, including those associated with the airport, counties, cities and other municipalities. Project-specific studies would be performed to determine and address any projects that would result in land use conflicts, such as encroachment in and near airfield safety zones. Cumulative impacts to land use as a result of the described activities, including impacts from noise and air quality, would be expected to be negligible.

5.3.2.8 Infrastructure and Transportation

Demand for electricity and natural gas would be expected to increase slightly as a result of the increase in personnel under Alternative #3. Further, building space and facilities to be constructed as a component of this action as well as those identified in Table 5.3.1-1 may require additional electricity. In addition, wastewater, solid waste, demand for potable water, and traffic would temporarily increase during construction, and would increase slightly in the long-term due to increase in personnel. The proposed construction and demolition activities could temporarily
affect the quality of stormwater runoff through potential increases in soil erosion. Standard construction practices would be implemented during construction and demolition to minimize runoff. Any new facilities and additions associated with these projects would be implemented with more energy efficient design standards and utility systems than are currently in place. In addition, construction projects would incorporate LEED and sustainable development concepts to achieve optimum resource efficiency, sustainability, and energy conservation. In general, cumulative impacts to installation infrastructure as a result of described activities would be expected to be positive over the long-term.

5.3.2.9 Hazardous Materials and Waste

The type of hazardous materials needed for maintenance and operation of the KC-46A would be expected to remain similar to those currently used for maintenance and operation of the KC-135 fleet with the exception of ODSs. Under Alternative #3, the total number of flying hours for the 157 ARW would increase approximately 29 percent; therefore, throughput of petroleum substances and hazardous waste streams would be expected to increase commensurately. Furthermore, it is expected that short-term increases would be realized in terms of the quantity of fuel used during construction activities for this action as well as those listed in Table 5.3.1-1. Hazardous waste generation (e.g., used oil, used filters, oily rags, etc.) would continue to be managed in accordance with the installation’s Hazardous Waste Management Plan and all applicable federal, state, and local regulations. Additionally, no changes to the installation’s small quantity generator status would be expected to occur due to the increase in hazardous waste generation from aircraft operations. In addition, any structures listed in Table 5.3.1-1 proposed for demolition, addition, or retrofit would be inspected for ACM and LBP according to established ANG procedures prior to any renovation or demolition activities. Cumulative impacts as a result of the described activities are expected to be minor.

5.3.2.10 Socioeconomics

Economic activity associated with proposed construction activities described as a component of this alternative and those shown in Table 5.3.1-1, such as employment and materials purchasing, would provide short-term economic benefits to the local economy. Additionally, there would be a permanent increase of 171 military positions. However, short-term beneficial impacts resulting from construction payrolls and materials purchased as a result of implementation of Alternative #3 and those projects listed in Table 5.3.1-1 would be negligible on a regional scale.

5.3.2.11 Environmental Justice and the Protection of Children

Under Alternative #3 in concert with those projects listed in Table 5.3.1-1, there would be no residential populations, including no minority or low-income populations, located within the
projected 65 dB DNL noise contour in the vicinity of Portsmouth IAP. There are no other projects listed in Table 5.3.1-1 that would be expected to impact environmental justice communities. Therefore, there would be no cumulative impacts to the health or safety of children.
5.4 **ALTERNATIVE #4 -- PITTSBURGH AIR NATIONAL GUARD STATION CUMULATIVE EFFECTS**

Cumulative impacts to environmental resources result from incremental effects of proposed actions when combined with other past, present, and reasonably foreseeable future projects in the ROI. Cumulative impacts can result from individually minor, but collectively substantial, actions undertaken over a period of time by various agencies (federal, state, and local) or individuals. In accordance with NEPA, a discussion of cumulative impacts resulting from projects that are proposed (or anticipated over the foreseeable future) is required.

5.4.1 **Past, Present, and Reasonably Foreseeable Actions**

Pittsburgh IAP is an active, dynamic airfield where operational changes and facility upgrades occur on a frequent basis. Projects that have been identified in the ROI that have the potential to act in a cumulative manner with Alternative #4 are discussed in this section. The ROI for cumulative impacts is generally limited to Pittsburgh IAP, and the immediately adjacent property because physical impacts related to the proposal are largely confined to these properties. Planning efforts in the ROI include the actions described within this EIS, as well as those other projects that are ongoing, or planned over the short term. Additional projects within the ROI are discussed below in Table 5.4.1-1.

Table 5.4.1-1. Past, Present, and Reasonably Foreseeable Actions in the ROI for Pittsburgh ANGS

<table>
<thead>
<tr>
<th>Project Name/Descriptions</th>
<th>Approximate Square Footage (SF)</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>171 ARW Projects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interior renovations of Buildings 310 (Jet Engine Shop and AGE), 316 (non-powered AGE Corrosion Control and Nondestructive Inspection), and 307 (Small Air Terminal Facility)</td>
<td>NA</td>
<td>FY 2013</td>
</tr>
<tr>
<td>Construct new security forces and physical fitness facility.</td>
<td>8,000</td>
<td>Within the next 5 years.</td>
</tr>
<tr>
<td>Interior renovations of Building 300 (Medical, dining hall, and operations and training), Hangars 301 and 302 (for various uses), and 110 and 120 (supply consolidation).</td>
<td>Currently unknown</td>
<td>Within the next 5 years.</td>
</tr>
<tr>
<td>Expand Building 206: Special Operations Weather Team</td>
<td>5,655</td>
<td>Within the next 5 years.</td>
</tr>
<tr>
<td>Expand Building 107 for small air terminal.</td>
<td>12,800</td>
<td>Within the next 5 years.</td>
</tr>
<tr>
<td>Construct new AT/FP commercial vehicle inspection facility.</td>
<td>N/A</td>
<td>Within the next 5 years.</td>
</tr>
<tr>
<td>Phase 1: Demolition of current parking areas (108 parking spaces) and construction of new parking (107 parking spaces) for AT/FP compliance.</td>
<td>Currently unknown</td>
<td>Completed within the last few years.</td>
</tr>
<tr>
<td>Phase 2: Demolition of current parking areas (206 parking spaces) and construction of new parking (230 parking spaces) for AT/FP compliance.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS

Chapter 5 – Cumulative Effects and Irreversible and Irretrievable Commitment of Resources

Pittsburgh ANGS
Table 5.4.1-1. Past, Present, and Reasonably Foreseeable Actions in the ROI for Pittsburgh ANGS

<table>
<thead>
<tr>
<th>Project Name/Descriptions</th>
<th>Approximate Square Footage (SF)</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demolition of Buildings 102 (Reserve Forces Training, Physical Fitness), 103 (Security Forces, Nondestructive Inspection Shop), and 105 (Base Exchange).</td>
<td>18,292</td>
<td>Within the next 5 years.</td>
</tr>
<tr>
<td>Plan identified renovate Building 304 and move the Fire Station to this building.</td>
<td>N/A</td>
<td>Within the next 5 years.</td>
</tr>
<tr>
<td>Construct Deployment Processing Center and Relocate Munitions Storage Area.</td>
<td>8,000</td>
<td>Within the next 5 years.</td>
</tr>
<tr>
<td>Construct New Simulator Facility</td>
<td>6,600</td>
<td>Within the next 5 years.</td>
</tr>
</tbody>
</table>

911th Airlift Wing Pittsburgh IAP Air Reserve Station

<table>
<thead>
<tr>
<th>Project Name/Descriptions</th>
<th>Approximate Square Footage (SF)</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquisition by lease of a 26-acre parcel at the Pittsburgh IAP known as the “T-Ramp” owned by ACAA. The 911th Airlift Wing has been using the T-Ramp property since 1993 under a Memorandum of Agreement to provide space for the 911th Airlift Wing to relocate C-130 aircraft for parking during construction activity.</td>
<td>NA</td>
<td>Within the past year.</td>
</tr>
</tbody>
</table>

Pittsburgh IAP

<table>
<thead>
<tr>
<th>Project Name/Descriptions</th>
<th>Approximate Square Footage (SF)</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Airways pulled its hub out of Pittsburgh IAP in 2004, dropping passenger traffic by over 8 million, significantly reducing airfield operations and eliminating approximately 7,000 jobs.</td>
<td>NA</td>
<td>FY 2004</td>
</tr>
<tr>
<td>Drilling of Marcellus Shale oil and natural gas well sites on Pittsburgh IAP property</td>
<td>NA</td>
<td>Within the next 5 years.</td>
</tr>
<tr>
<td>Two non-aviation buildings being constructed west of highway off airport property.</td>
<td>NA</td>
<td>In progress</td>
</tr>
</tbody>
</table>

Notes: SF = square foot; 171 ARW = 171st Air Refueling Wing; AGE = aerospace ground equipment; FY = Fiscal Year; AT/FP = anti-terrorism/force protection; IAP = International Airport; ACAA = Allegheny County Airport Authority

5.4.2 Cumulative Impacts

5.4.2.1 Noise

Under Alternative #4, the number of acres contained within the 65 dB DNL and greater exposure area would decrease by approximately 79 acres. Of the acreage exposed to 65 dB DNL or greater, approximately 23 would be off-airport property. Residential use areas that underlie the noise contours would be slightly reduced under Alternative #4. While there are other projects listed in Table 5.4.1-1 that have the ability to add noise to the environment at Pittsburgh IAP, most of these are short-term construction projects that would occur in what is otherwise an industrial setting. Noise from implementation of these actions would be short-term and localized to the airport environs, and would not be expected to increase the overall DNL noise contours. Cumulative impacts to the noise environment at Pittsburgh IAP would be minimal.
5.4.2.2 Air Quality

The net annual emissions increases from the proposed KC-46A beddown as well as those other projects described in Table 5.4.1-1 at Pittsburgh ANGS (including both construction and airfield operations) would be below the CAA PSD major source thresholds and/or the General Conformity Rule de minimis thresholds as set forth in the CAA for all pollutants. Therefore, cumulative impacts to air quality would not be significant.

The potential effects of GHG emissions from the Proposed Action are by nature global. Substantial temperature increases attributable to global climate change could result in a variety of impacts to the people, economy, and environment. These impacts include potential impacts to ecosystems, wildlife and agriculture, increases in the incidence of wildfires, changes in precipitation levels, and rising sea levels. The impacts of global climate change would not be expected to have a substantial impact on Pittsburgh ANGS beyond regional impacts to the area in general.

Given the global nature of climate change and the current state of the science, it is not useful at this time to attempt to link the emissions quantified for local actions to any specific climatological change or resulting environmental impact. Nonetheless, the GHG emissions from the project alternatives have been quantified to the extent feasible in this EIS for information and comparison purposes.

5.4.2.3 Safety

Providing new and renovated facilities for the 171 ARW that support operational requirements of the KC-46A, and are properly sited with adequate space and a modernized supporting infrastructure would generally enhance ground and flight safety during required operations, training, maintenance and support procedures, security functions, and other activities conducted by the 171 ARW. AT/FP requirements have also been addressed to the extent practicable in all facility construction projects. Additional beneficial impacts would occur from a new AT/FP commercial vehicle inspection facility and parking. The fire and crash response capability currently provided by the 171 ARW at Pittsburgh IAP is sufficient to meet all requirements. Risk of a catastrophic event occurring during construction activities described under Alternative #4 or those activities described in Table 5.4.1-1 is considered to be low, and strict adherence to all applicable occupational safety requirements would further minimize the relatively low risk associated with described construction activities. Cumulative impacts to ground or flight safety would be negligible at the airfield. Construction and repair projects identified in Table 5.4.1-1 would be beneficial to safety with pavement repairs and AT/FP enhancements. No adverse impacts to ground safety are anticipated at the airfield. There would be a large decrease in
airfield operations at Pittsburgh IAP from those previously analyzed as a result of the U.S. Airways ceasing operations at Pittsburgh IAP. No increase in the safety risk is expected due to the accident and mishap potential associated with aircraft operations. Cumulative impacts to safety would be negligible.

5.4.2.4 Soils and Water

Soils

In addition to the 186,395 SF (4.3 acres) of surface disturbance that would result from implementation of Alternative #4, additional surface area would be disturbed in the vicinity as a result of the projects described in Table 5.4.1-1 over the next 5 years.

The CWA considers stormwater from a construction site as a point source of pollution regulated by the NPDES permit. Therefore, those projects described in Table 5.4.1-1 larger than 1 acre would be required to have a site-specific and detailed SWPPP that coordinates the timing of soil disturbing activities with the installation of soil erosion and runoff controls in an effort to reduce the impacts to the local watershed; this is an effective way of controlling erosion while soil is exposed and subject to construction activity. Implementation of construction standard construction practices would be used to limit or eliminate soil movement, stabilize erosion, and control sedimentation. These standard construction practices would include the use of: velocity dissipation devices; well-maintained silt fences; minimizing surficial area disturbed; stabilization of cut/fill slopes; minimization of earth-moving activities during wet weather; and use of temporary detention ponds. Following construction, disturbed areas not covered with impervious surfaces would be reestablished with appropriate vegetation and managed to minimize future erosion potential. Given the use of engineering practices that would minimize potential erosion, cumulative impacts to earth resources would be expected to be minor.

Water

In addition to the 88,529 SF (2.0 acres) of new impervious surface that would result from Alternative #4, other increases in impervious surfaces would also occur in the vicinity as a result of the projects described in Table 5.4.1-1 over the next 5 years.

Cumulative impacts to the hydrologic cycle as a result of increasing impervious surface would be dependent on the unique conditions present at the site and its watershed. LID is a stormwater management approach that mimics nature’s ability to clean and store stormwater runoff accomplished through use of standard construction practices that infiltrate, filter, store, reuse, evaporate, and detain runoff close to its source.
Provided that the projects listed in Table 5.4.1-1 are located within federal lands, compliance with UFC 3-210-10, LID (as amended, 2010) and EISA Section 438 would ensure any increase in surface water runoff as a result of the proposed construction would be attenuated through the use of temporary and/or permanent drainage management features such that post-development runoff rates would be equal to or less than pre-development rates. Additionally, it is expected that any construction activities would adhere to NPDES requirements including implementation of standard construction practices described above. As such, cumulative impacts to water resources would be expected to be minor.

5.4.2.5 Biological Resources

Noise levels from construction would not be expected to impact wildlife in the area because they are accustomed to elevated noise levels associated with current aircraft and military operations. Annual operations for the 171 ARW at Pittsburgh IAP would be projected to increase by approximately 33 percent from baseline operations. An increase in levels of operations (e.g., sorties) may result in a slight increased opportunity for bird/wildlife aircraft strikes to occur, including those with migratory birds. No federally threatened and endangered species are currently known to occur on Pittsburgh IAP. One state listed species is currently known to occur on Pittsburgh IAP. Construction-related impacts to the vegetation at the installation and in the vicinity of projects identified in Table 5.4.1-1 would be negligible due to the lack of sensitive vegetation in the project areas. There are no wetland areas that occur within the vicinity of the project footprints. In general, construction activities at the 171 ARW installation and at Pittsburgh IAP would primarily occur on sites that are already highly altered by man. These impacts would include the removal of some vegetation and associated wildlife habitat. However, wildlife that uses these areas is typical of urban and suburban areas. Cumulative impacts to biological resources would be minor.

5.4.2.6 Cultural Resources

The installation is considered to have no to low probability of containing archaeological resources. In the unlikely event that archaeological or human remains were identified during proposed construction activities associated with Alternative #4 or any of the projects listed in Table 5.4.1-1, activities would immediately cease in the area of the discovery and appropriate personnel would contact a qualified archaeologist to evaluate the discovery. None of the facilities listed for renovation and/or modification under Alternative #4 or those listed in Table 5.4.1-1 are eligible for listing in the NRHP. The SHPO has concurred that two of the buildings listed for renovation and/or modification under Alternative #4 are not eligible to the NRHP (see MacDonald 2011 in Appendix B4). The third building is less than 15 years old and not a resource of exceptional significance (eligible under Criterion Consideration G); therefore, it is
not eligible to the NRHP. No traditional cultural resources have been identified on the installation. Therefore, no cumulative impacts to cultural resources are anticipated.

5.4.2.7 Land Use

Under Alternative #4, acreage off airport property contained within the 65 dB DNL and greater noise contours would decrease by approximately 23 acres resulting in beneficial impacts. In general, land uses surrounding Pittsburgh IAP would not be adversely affected by the activities described under Alternative #4 in concert with those described in Table 5.4.1-1. The location and function of proposed structures within the Pittsburgh ANGS are compatible with the surrounding area. Although future development at Pittsburgh IAP and adjacent areas is anticipated, development would be subject to planning and land use requirements, including those associated with the airport, counties, cities and other municipalities. Project specific studies would be performed to determine and address any projects that would result in land use conflicts, such as encroachment to airfield safety zones. Cumulative impacts to land use as a result of the described activities, including impacts from noise and air quality, would be expected to be negligible.

5.4.2.8 Infrastructure and Transportation

Demand for electricity and natural gas would be expected to increase slightly as a result of the increase in personnel under Alternative #4. Further, building space and facilities to be constructed as a component of this action as well as those identified in Table 5.4.1-1 may require additional electricity. In addition, wastewater, solid waste, demand for potable water, and traffic would temporarily increase during construction, and would increase slightly in the long-term due to increase in personnel. The proposed construction and demolition activities could temporarily affect the quality of stormwater runoff through potential increases in soil erosion. Standard construction practices would be implemented during construction and demolition to minimize runoff. Any new facilities and additions associated with these projects would be implemented with more energy efficient design standards and utility systems than are currently in place. In addition, construction projects would incorporate LEED and sustainable development concepts to achieve optimum resource efficiency, sustainability, and energy conservation. In general, cumulative impacts to installation infrastructure as a result of described activities would be expected to be positive over the long-term.

5.4.2.9 Hazardous Materials and Waste

The type of hazardous materials needed for maintenance and operation of the KC-46A would be expected to remain similar to those currently used for maintenance and operation of the KC-135
fleet with the exception of ODSs. Under Alternative #4, the total number of flying hours for the 171 ARW would increase approximately 34 percent; therefore, throughput of petroleum substances and hazardous waste streams would be expected to increase commensurately. Furthermore, it is expected that short-term increases would be realized in terms of the quantity of fuel used during construction activities for this action as well as those listed in Table 5.4.1-1. Hazardous waste generation (e.g., used oil, used filters, oily rags, etc.) would continue to be managed in accordance with the installation’s Hazardous Waste Management Plan and all applicable federal, state, and local regulations. No changes to the installation’s large quantity generator status would be expected to occur due to the increase in hazardous waste generation from aircraft operations. In addition, any structures listed in Table 5.4.1-1 proposed for demolition, addition, or retrofit would be inspected for ACM and LBP according to established ANG procedures prior to any renovation or demolition activities. None of the ERP sites overlap the proposed construction projects under Alternative #4. Cumulative impacts as a result of the described activities are expected to be minor.

5.4.2.10 Socioeconomics

Economic activity associated with proposed construction activities described as a component of this alternative and those shown in Table 5.4.1-1, such as employment and materials purchasing, would provide short-term economic benefits to the local economy. However, short-term beneficial impacts resulting from construction payrolls and materials purchased as a result of implementation of Alternative #4 and those projects listed in Table 5.4.1-1 would be negligible on a regional scale.

5.4.2.11 Environmental Justice and the Protection of Children

Under Alternative #4, of the roughly 12 persons that would continue to be affected by DNL above 65 dB DNL, none are considered to be minorities or low-income populations. No additional minorities or low-income populations would be impacted by aircraft DNL greater than 65 dB under Alternative #4. There would not be disproportionate cumulative impacts to minority or low-income populations in the vicinity of Pittsburgh IAP as a result of this action in concert with the projects listed in Table 5.4.1-1. Therefore, there would be no cumulative impacts to the health or safety of children.
5.5 ALTERNATIVE #5 -- RICKENBACKER AIR NATIONAL GUARD STATION

CUMULATIVE EFFECTS

Cumulative impacts to environmental resources result from incremental effects of proposed actions when combined with other past, present, and reasonably foreseeable future projects in the ROI. Cumulative impacts can result from individually minor, but collectively substantial, actions undertaken over a period of time by various agencies (federal, state, and local) or individuals. In accordance with NEPA, a discussion of cumulative impacts resulting from projects that are proposed (or anticipated over the foreseeable future) is required.

5.5.1 Past, Present, and Reasonably Foreseeable Actions

Rickenbacker IAP is an active, dynamic airfield where operational changes and facility upgrades occur on a frequent basis. Projects that have been identified in the ROI that have the potential to act in a cumulative manner with Alternative #5 are discussed in this section. The ROI for cumulative impacts is generally limited to Rickenbacker IAP, and the immediately adjacent property because physical impacts related to the proposal are largely confined to these properties. Planning efforts in the ROI include the actions described within this EIS, as well as those other projects that are ongoing, or planned over the short term. Additional projects within the ROI are discussed below in Table 5.5.1-1.

Table 5.5.1-1. Past, Present, and Reasonably Foreseeable Actions in the ROI for Rickenbacker ANGS

<table>
<thead>
<tr>
<th>Project Name/Descriptions</th>
<th>Approximate Square Footage (SF)</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under the NDAA Implementation Plan, Rickenbacker ANGS will lose 6 KC-135s in FY 2013.</td>
<td>NA</td>
<td>In progress – FY 2013</td>
</tr>
<tr>
<td>New main entrance and guard house: Construction of a new Main Entrance to include 100 percent inspection area, vehicle turn-around, truck inspection canopy, and guardhouse. This includes 32,000 SF of new impervious surface.</td>
<td>47,030</td>
<td>Completed within the last few years</td>
</tr>
<tr>
<td>Repair Aircraft Ramp: Seal existing concrete joints, repair storm drain, mill asphalt; remove concrete pavement, pour new asphalt pavement with base, pour new concrete pavement for aircraft parking.</td>
<td>1,336,630</td>
<td>In progress – FY 2014</td>
</tr>
<tr>
<td>New Small Arms Indoor Range System: New Small Arms Range, range supplies and equipment storage. This includes 14,400 SF of new impervious surface.</td>
<td>18,400</td>
<td>Within the next 5 years</td>
</tr>
<tr>
<td>New Composite Reserve Forces Operations and Training and Medical Training/Administration Facility: Mission Support Group/Mission Support Flight, Medical Administration, Medical Training. This includes 68,220 SF of new impervious surface.</td>
<td>176,220</td>
<td>Within the next 5 years</td>
</tr>
</tbody>
</table>
Table 5.5.1-1. Past, Present, and Reasonably Foreseeable Actions in the ROI for Rickenbacker ANGS

<table>
<thead>
<tr>
<th>Project Name/Descriptions</th>
<th>Approximate Square Footage (SF)</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Civil Engineering Pavements and Grounds and Central Hazardous Waste Facility: Pavements and Grounds Facility, Central Hazardous Waste Accumulation Point. This includes 8,000 SF of new impervious surface.</td>
<td>22,850</td>
<td>Within the next 5 years</td>
</tr>
<tr>
<td>Repair Base Asphalt Pavements</td>
<td>234,000</td>
<td>Completed within the last few years</td>
</tr>
<tr>
<td>Renovate/Repair Building 872: Renovate Building 872 office areas, install Exterior Insulation and Finish System, new windows, and repair lintels and sills in warehouse.</td>
<td>0</td>
<td>Completed within the last few years</td>
</tr>
<tr>
<td>Replace Existing Water Lines: Replace water pipes and valves, install new smart water meters.</td>
<td>280,830</td>
<td>Within the next 5 years</td>
</tr>
</tbody>
</table>

Rickenbacker IAP

<table>
<thead>
<tr>
<th>Project Name/Descriptions</th>
<th>Approximate Square Footage (SF)</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rickenbacker Parkway Phase 1 and 2A: Construction of a median-divided four-lane curb and gutter asphalt roadway. Total length was approximately 3.3 miles along the west side of the airport. Phase 1 was completed in 2006 (Phase 1A) and 2007 (Phase 1B). Phase 2A was completed 2012.</td>
<td>NA</td>
<td>Completed within the last seven years</td>
</tr>
<tr>
<td>Rickenbacker Parkway Phase 2B: Extension of the median-divided four-lane curb and gutter asphalt roadway to the north side of the airport up to and including improvements (primarily lane widening) to SR 317 and Alum Creek Drive. Project is out to bid now and will be constructed 2013 through 2014.</td>
<td>NA</td>
<td>Within next few years.</td>
</tr>
<tr>
<td>Groveport Road Reconfiguration Phase 1 and Phase 2: Phase 1 included the primarily lane widening at the intersection of Groveport Road and Alum Creek Drive just south of Interstate 270 intersection. Completed in 2012. Phase 2 includes a new bridge and roundabouts to reconfigure vehicular traffic flow at the intersection of Groveport Road and Alum Creek Drive. Project is under construction and will be complete in 2013.</td>
<td>NA</td>
<td>Completed in 2012/To be completed in 2013</td>
</tr>
<tr>
<td>East-West Connector (Pickaway County south of airport) Phase 1A and 1B: Phase 1A includes the reconstruction and widening (to 3 lanes) of Duvall Road from SR 23 over to Ashville Pike, including a bridge over the existing railroad tracks. Phase 1B includes the reconstruction and widening (to 3 lanes) of Ashville Pike from Duvall Road up to Rickenbacker Parkway. Project is being bid and construction will start summer 2013 and be complete in 2014.</td>
<td>NA</td>
<td>To be completed in 2014</td>
</tr>
</tbody>
</table>

Notes: SF = square foot; 121 ARW = 121st Air Refueling Wing; NDAA = National Defense Authorization Act; ANG = Air National Guard Station; FY = Fiscal Year; IAP = International Airport; SR = State Route

5.5.2 Cumulative Impacts

5.5.2.1 Noise

Under Alternative #5, the number of acres contained within the 65 dB DNL and greater exposure area would decrease slightly by approximately 99 acres, including a reduction of approximately 72 acres of off-airport property. There are no residential areas that underlie the noise contours under this alternative. While there are other projects listed in Table 5.5.1-1 that have the ability to add noise to the environment at Rickenbacker IAP, most of these are short-term construction
projects that would occur in what is otherwise an industrial setting other than the reduction of aircraft assigned to the 121 ARW which would cause further reduction in noise contours. Noise from implementation of these actions would be localized to the airport environs, and would not be expected to increase the overall noise contours. Cumulative impacts to the noise environment at Rickenbacker IAP would not be significant.

5.5.2.2 Air Quality

The net annual emissions increases from the proposed KC-46A beddown as well as those other projects described in Table 5.5.1-1 at Rickenbacker ANGS (including both construction and airfield operations) would be below the CAA PSD major source thresholds and/or the General Conformity Rule *de minimis* thresholds as set forth in the CAA for all pollutants. Due to the projected loss of aircraft in FY 2013, this would further reduce emissions. It is not anticipated that any of the projects identified in Table 5.5.1-1 would impact air quality.

The potential effects of GHG emissions from the Proposed Action are by nature global. Substantial temperature increases attributable to global climate change could result in a variety of impacts to the people, economy, and environment. These impacts include potential impacts to ecosystems, wildlife and agriculture, increases in the incidence of wildfires, changes in precipitation levels, and rising sea levels. The impacts of global climate change would not be expected to have a substantial impact on Rickenbacker ANGS beyond regional impacts to the area in general.

Given the global nature of climate change and the current state of the science, it is not useful at this time to attempt to link the emissions quantified for local actions to any specific climatological change or resulting environmental impact. Nonetheless, the GHG emissions from the project alternatives have been quantified to the extent feasible in this EIS for information and comparison purposes.

5.5.2.3 Safety

Providing new and renovated facilities for the 121 ARW that support operational requirements of the KC-46A, and are properly sited with adequate space and a modernized supporting infrastructure would generally enhance ground and flight safety during required operations, training, maintenance and support procedures, security functions, and other activities conducted by the 121 ARW. AT/FP requirements have also been addressed to the extent practicable in all facility construction projects. The fire and crash response capability currently provided by the 121 ARW at Rickenbacker IAP is sufficient to meet all requirements. Risk of a catastrophic event occurring during construction activities described under Alternative #5 or those activities...
described in Table 5.5.1-1 is considered to be low, and strict adherence to all applicable occupational safety requirements would further minimize the relatively low risk associated with described construction activities. PAA reduction under the 2013 NDAA would further reduce safety concerns. Cumulative impacts to ground or flight safety would be negligible at the airfield. Construction and repair projects identified in Table 5.5.1-1 would be beneficial to safety with pavement repairs and AT/FP enhancements.

5.5.2.4 Soils and Water

Soils

In addition to the 368,330 SF (8.5 acres) of surface disturbance that would result from implementation of Alternative #5, additional surface area would be disturbed in the vicinity as a result of the projects described in Table 5.5.1-1 over the next 5 years.

The CWA considers stormwater from a construction site as a point source of pollution regulated by the NPDES permit. Therefore, those projects described in Table 5.5.1-1 larger than 1 acre would be required to have a site-specific and detailed SWPPP that coordinates the timing of soil disturbing activities with the installation of soil erosion and runoff controls in an effort to reduce the impacts to the local watershed; this is an effective way of controlling erosion while soil is exposed and subject to construction activity. Implementation of standard construction practices would be used to limit or eliminate soil movement, stabilize erosion, and control sedimentation. These standard construction practices would include the use of: velocity dissipation devices; well-maintained silt fences; minimizing surficial area disturbed; stabilization of cut/fill slopes; minimization of earth-moving activities during wet weather; and use of temporary detention ponds. Following construction, disturbed areas not covered with impervious surfaces would be reestablished with appropriate vegetation and managed to minimize future erosion potential. Given the use of engineering practices that would minimize potential erosion, cumulative impacts to earth resources would be expected to be minor.

Water

In addition to the 14,660 SF (0.3 acre) of new impervious surface that would result from Alternative #5, other increases in impervious surfaces would also occur in the vicinity as a result of the projects described in Table 5.5.1-1 over the next 5 years.

Cumulative impacts to the hydrologic cycle as a result of increasing impervious surface would be dependent on the unique conditions present at the site and its watershed. LID is a stormwater management approach that mimics nature’s ability to clean and store stormwater runoff.
accomplished through use of standard construction practices that infiltrate, filter, store, reuse, evaporate, and detain runoff close to its source.

Provided that the projects listed in Table 5.5.1-1 are located within federal lands, compliance with UFC 3-210-10, LID (as amended, 2010) and EISA Section 438 would ensure any increase in surface water runoff as a result of the proposed construction would be attenuated through the use of temporary and/or permanent drainage management features such that post-development runoff rates would be equal to or less than pre-development rates. Additionally, it is expected that any construction activities would adhere to NPDES requirements including implementation of standard construction practices described above. As such, cumulative impacts to water resources would be expected to be minor.

5.5.2.5 Biological Resources

Noise from temporary construction would not be expected to impact wildlife in the area because they are accustomed to elevated noise levels associated with current aircraft and military operations. Annual operations for the KC-46A at Rickenbacker IAP are projected to increase by approximately 6 percent from baseline operations. An increase in levels of operations (e.g., sorties) may result in a slight increased opportunity for bird/wildlife aircraft strikes to occur, including those with migratory birds. No federally threatened and endangered species and one state listed species are currently known to occur on Rickenbacker IAP. Construction-related impacts to the vegetation at the installation and in the vicinity of projects identified in Table 5.5.1-1 would be negligible due to the lack of sensitive vegetation in the project areas. There are no wetland areas that occur within the vicinity of the project footprints. In general, construction activities at the 121 ARW installation and at Rickenbacker IAP would primarily occur on sites that are already highly altered by man. These impacts would include the removal of some vegetation and associated wildlife habitat. However, wildlife that uses these areas is typical of urban and suburban areas. Cumulative impacts to biological resources would be minor.

5.5.2.6 Cultural Resources

The installation is considered to have no to low probability of containing archaeological resources. In the unlikely event that archaeological or human remains were identified during proposed construction activities associated with Alternative #5 or any of the projects listed in Table 5.5.1-1, activities would immediately cease in the area of the discovery and appropriate personnel would contact a qualified archaeologist to evaluate the discovery. Under the Proposed Action, two of the buildings proposed for modification are eligible for listing in the NRHP (Hangar 885 and 888) (Snyder 2007). Hangar 885 would have an addition and renovations inside to house the new aircraft and support facilities. Because these renovations would alter the
exterior appearance of a structure that is considered eligible because of its design, the construction would have an adverse effect on a historic property. Modifications to Hangar 888 would all be interior and are not expected to have an adverse effect on this NRHP-eligible resource. Rickenbacker ANGS and the Ohio SHPO have developed a Programmatic Agreement stating that if Rickenbacker ANGS is selected to host the MOB 2 KC-46 beddown, further consultation would be conducted to minimize and mitigate adverse effects to these buildings (see Appendix B, Section B3). No traditional cultural resources have been identified on the installation. Cumulative impacts to cultural resources are anticipated to be minor.

5.5.2.7 Land Use

Under Alternative #5, acreage off airport property contained within the 65 dBA DNL and greater noise contours would decrease by approximately 72 acres resulting in beneficial impacts. In general, land uses surrounding Rickenbacker IAP would not be adversely affected by the activities described under Alternative #5 in concert with those described in Table 5.5.1-1. The location and function of proposed structures within the Rickenbacker ANGS are compatible with the surrounding area. Although future development at Rickenbacker IAP and adjacent areas is anticipated, development would be subject to planning and land use requirements, including those associated with the airport, counties, cities and other municipalities. Project-specific studies would be performed to determine and address any projects that would result in land use conflicts, such encroachment airfield safety zones. Cumulative impacts to land use as a result of the described activities, including impacts from noise and air quality, would be expected to be negligible.

5.5.2.8 Infrastructure and Transportation

Demand for electricity and natural gas would be commensurate with the impacts from the loss of six aircraft and the increase in personnel under Alternative #5. Further, building space and facilities to be constructed as a component of this action, as well as those identified in Table 5.5.1-1, may require additional electricity. In addition, wastewater, solid waste, demand for potable water, and traffic would temporarily increase during construction, and would increase slightly in the long-term due to increase in personnel. The proposed construction and demolition activities could temporarily affect the quality of stormwater runoff through potential increases in soil erosion. Standard construction practices would be implemented during construction and demolition to minimize runoff. Any new facilities and additions associated with these projects would be implemented with more energy efficient design standards and utility systems than are currently in place. In addition, construction projects would incorporate LEED and sustainable development concepts to achieve optimum resource efficiency, sustainability, and energy
conservation. In general, cumulative impacts to installation infrastructure as a result of described activities would be expected to be positive over the long-term.

5.5.2.9 Hazardous Materials and Waste

The type of hazardous materials needed for maintenance and operation of the KC-46A would be expected to remain similar to those currently used for maintenance and operation of the KC-135 fleet, with the exception of ODSs. Under Alternative #5, the total number of flying hours for the 121 ARW would increase approximately 11 percent; therefore, throughput of petroleum substances and hazardous waste streams would be expected to increase commensurately. Furthermore, it is expected that short-term increases would be realized in terms of the quantity of fuel used during construction activities for this action as well as those listed in Table 5.5.1-1. Hazardous waste generation (e.g., used oil, used filters, oily rags, etc.) would continue to be managed in accordance with the installation’s Hazardous Waste Management Plan and all applicable federal, state, and local regulations. Additionally, no changes to the installation’s small quantity generator status would be expected to occur due to the increase in hazardous waste generation from aircraft operations. In addition, any structures listed in Table 5.5.1-1 proposed for demolition, addition, or retrofit would be inspected for ACM and LBP according to established ANG procedures prior to any renovation or demolition activities. Cumulative impacts as a result of the described activities are expected to be minor.

5.5.2.10 Socioeconomics

Economic activity associated with proposed construction activities described as a component of this alternative and those shown in Table 5.5.1-1, such as employment and materials purchasing, would provide short-term economic benefits to the local economy. Under the NDAA Implementation Plan, the 121 ARW will lose six KC-135 aircraft, including a reduction in personnel. As a result, cumulative impacts under Alternative #5 would mean a greater increase in personnel than projected, and therefore a greater increase in total annual salary for the full-time employees based on those changes. Short-term beneficial impacts resulting from construction payrolls and materials purchased as a result of implementation of Alternative #5 and those projects listed in Table 5.5.1-1 would be negligible on a regional scale.

5.5.2.11 Environmental Justice and the Protection of Children

Under Alternative #5, in concert with those projects listed in Table 5.5.1-1, there would be no residential populations, including no minority or low-income populations, located within the projected 65 dB DNL noise contour in the vicinity of Rickenbacker IAP. There are no other projects listed in Table 5.5.1-1 that would be expected to impact environmental justice.
communities. Under Alternative #5 there would be no schools exposed to aircraft DNL of 65 dB or above. Therefore, there would be no cumulative impacts to the health or safety of children.

5.6 Irreversible and Irretrievable Commitment of Resources for All Alternatives

NEPA CEQ regulations require environmental analyses to identify “...any irreversible and irretrievable commitments of resources that would be involved in the Proposed Action should it be implemented” (40 CFR Section 1502.16). Irreversible and irretrievable resource commitments are related to the use of nonrenewable resources and the effects the uses of these resources have on future generations. Irreversible effects primarily result from the use or destruction of a specific resource (e.g., energy and minerals) that cannot be replaced within a reasonable time frame. Building construction material such as gravel and gasoline usage for construction equipment would constitute the consumption of non-renewable resources. Irretrievable resource commitments also involve the loss in value of an affected resource that cannot be restored as a result of the action.

The primary irretrievable impacts of implementation of the Proposed Action for any of the alternatives would involve the use of energy, labor, materials and funds, and the conversion of some lands from an undeveloped condition through the construction of buildings and facilities on the installation. Irretrievable impacts would occur as a result of construction, facility operation, and maintenance activities. Direct losses of biological productivity and the use of natural resources from these impacts would be inconsequential.

_____. 2013b. Email communications between Maj Matt Brito, 108 ARW/OSF/DOT and Mr. Wear on March 26, 2013.

_____. 2013c. Personal communication from Lt Robert Mendez via e-mail regarding hazardous waste and materials, housing, and socioeconomic information. July 10.

_____. 2013d. Personal communication from Charles Beam via e-mail regarding hazardous waste and materials, housing, and socioeconomic information. July 24.

121st Air Refueling Wing (121 ARW). 2006. Final Environmental Baseline Survey. 121st Air Refueling Wing, Ohio National Guard, Columbus, Ohio. October.

_____. 2010. Final Environmental Assessment, Proposed Construction for the 121st Air Refueling Wing, Ohio Air National Guard, Rickenbacker International Airport, Columbus, Ohio. October.

_____. 2011a. Final 2009 Air Emissions Inventory, 121st ARW, Ohio National Guard, Columbus, Ohio. June.
_____. 2011b. 121 ARWI 13-204. Space, Missile, Command and Control; Functional Management of Airfield Operations. 15 March.

_____. 2013a. 121 ARW/OG Rickenbacker IAP Airport Operations History personal communications between Lt Col Hesterman and Mr. Wear on February 12, 2013.

_____. 2013b. Email Communications with Lt Col Gregg Hesterman, 121 OSF/CC, February 19, 2013.

_____. 2013c. Email between Lt Col Hesterman 121 OSF/CC and Mr. Wear, February 13, 2013.

_____. 2013d. Rickenbacker Total Energy Consumption Since FY03.

_____. 2013e. Integrated Solid Waste Management Plan. April.

_____. 2008b. GIS for surface water features.

_____. 2011a. 157 ARW Asbestos Survey.

190th Air Refueling Wing (190 ARW). 2005. Final Environmental Baseline Survey. 190th Air Refueling Wing, Kansas Air National Guard. Proposed acquisition of parcels A and B, Forbes Field Air National Guard Base.

190th Air Refueling Wing (190 ARW). 2008a. Final 2006 Air Emissions Inventory, 190th Air Refueling Wing, Kansas Air National Guard, Topeka, Kansas. April.

190th Air Refueling Wing (190 ARW). 2008b. Draft Environmental Assessment, Base Realignment and Closure Realignment and Construction Program at Forbes Field Air National Guard, Topeka, Kansas. February.

190th Air Refueling Wing (190 ARW). 2008c. GIS for installation features.

190th Air Refueling Wing (190 ARW). 2009a. 190th Air Refueling Wing Integrated Solid Waste Management Plan. May.

190th Air Refueling Wing (190 ARW). 2012a. Storm Water Pollution Prevention Plan, 190 Air Refueling Wing, Kansas Air National Guard, Topeka, Kansas. July.

190th Air Refueling Wing (190 ARW). 2012b. 190th Air Refueling Wing Bird/Wildlife Aircraft Strike Hazard (BASH) Plan. December.

190th Air Refueling Wing (190 ARW). 2012c. Oil and Hazardous Substances Spill Prevention and Response Plan, Kansas Air National Guard, 190th Air Refueling Wing, Forbes Field, Topeka, Kansas

190th Air Refueling Wing (190 ARW). 2013b. Email from 2dLt Jarrod Brunkow regarding Forbes ANGS utility usage. April 24.

Air National Guard Readiness Center, 190th Air Refueling Wing (190 ARW), and Kansas State Historic Preservation Officer. 2009. Memorandum of Agreement Among the Air National Guard Readiness Center, 190th Air Refueling Wing, Kansas Air National Guard and Kansas State Historic Preservation Officer Pursuant to 36 CFR 800.6(c) Regarding modifications and changes to Building 679 Squad Operations, Forbes Field Air National Guard Base, Topeka, Kansas. August.

Burlington County Zoning. 2010. GIS for land use provided by Merrilee Torres.

Buzzard, Lt Col David. 2013. Meeting with Safety Officer Lt Col David Buzzard, February.

Center for Workforce Information and Analysis. 2012. Allegheny County Top 50 Employers, 3rd Quarter 2012 Initial Data.

City of Columbus. n.d. Southerly Wastewater Treatment Plant Process. City of Columbus Department of Public Utilities Division of Sewerage and Drainage.

______. 2012b. Water and Sewer Rate Study. Presentation for a Public Informational Meeting. December.

______. 2013a. City of Topeka Public Works, Office of Utilities & Transportation, A Tour of Topeka’s Water Treatment Facility.

Delaware River Basin Commission. 2013. Delaware River Basin Commission, Basin Information. URL: www.state.nj.us/drbc/basin/

Department of Military and Veterans Affairs. 2007. Phase I Environmental Site Assessment, CSMS West, Pittsburgh International Airport, Moon Township, Allegheny County, Pennsylvania. 9 January.

Duryee, Adrienne. 2013. Comments on Interim Draft #1 Main Operating Base 2 KC-46A Beddown at Alternative Air National Guard Installations EIS.

Findlay Township Zoning. 2012. GIS for land use.

Findlay Township Zoning. 2012. GIS for land use.

Franklin County Zoning. 2013. GIS for land use.

Franklin County Department of Sanitary Engineering. 2010. Franklin County Water Quality Report, Rickenbacker Water.

Gwiner, Philip. 2013. Personal communications with Mr. Gwiner and Mr. Wear, Cardno TEC, Inc.

Halftown, Clint. 2014. E-mail from Clint Halftown, Cayuga Nation to National Guard Bureau regarding Replacement of KC-135 Fleet with KC-46A Fleet. 11 January.

Headquarters Air Mobility Command (AMC) and National Guard Bureau (NGB). 2013b. Main Operating Base #2 KC-46A Beddown, Rickenbacker ANGS, OH. 28 January – 1 February.

Headquarters Air Mobility Command (AMC) and National Guard Bureau (NGB). 2013c. Main Operating Base #2 KC-46A Beddown, Forbes Field, KS. 25 February – 1 March.
High Plains Regional Climate Center. 2013. Climate Data for Topeka, Kansas.

Johnson, Eric. 2013. E-mail from Eric Johnson, Metropolitan Topeka Airport Authority to 190 CES/CC, Subject: KC-46 EIS answers.

Kansas Army National Guard. 2010. Kansas Army National Guard, Preconstruction Site Assessment for Topeka Forbes Field, Army Aviation Support Facility No. 1, Kansas Adjutant General’s Department, Forbes Field, Topeka, Kansas.

Midwest Regional Climate Center. 2013. Climate Data for Columbus, Ohio.

Moon Township Zoning. 2013. GIS for land use provided by Lora Dombrowski.

Muzzey, Elizabeth. 2009. Letter from Elizabeth Muzzey, Director/State Historic Preservation Officer to David Nylund, Environmental Manager, NHANG regarding Review of Draft Final Cultural Resources Survey (CRS), Historic District Area Form Pease AFB, Pease ANGB, NH. 19 February.

_____. 2013. Concurrence response to letter sent from Robert Dogan, National Guard Bureau. 30 September.
National Guard Bureau (NGB). 2008. Cultural Resources Survey of the 121st Air Refueling Wing, Ohio Air National Guard, Rickenbacker International Airport, Columbus, Franklin County, Ohio

——. 2013a. GIS information provided by Chris Stanton. March.

——. 2013b. GIS information provided by Jonathan Patno. March.

National Wetlands Inventory. 2013. Geospatial wetlands data.

——. 2012a. GIS for water resources.

______. 2013b. Climate Data for Portsmouth, New Hampshire.

______. 2013c. Climate Data for Pittsburgh, Pennsylvania.

Ohio Air National Guard (OH ANG). 2006. Wetlands and Other Waters Delineation Project, 121st Air Refueling Wing, Ohio National Guard. Rickenbacker International Airport, Columbus, Ohio. February.

Pease Air National Guard Station (ANGS). 2013. Project Kickoff Meeting and Site Visit Notes. 5-6 March.

Pease International Tradeport. 2013. INM Noise Files from 2007 Construction Environmental Assessment, Updated.

Pickaway County. 2013. GIS for land use provided by Susan Liggins.

Plumsted Township Zoning. 2013. GIS for land use.

2013. Airport Diagram.

Saunders, Daniel. 2013. Concurrence response to letter sent from Robert Dogan, National Guard Bureau. 3 October.

Shawnee County Zoning. 2007. GIS for land use provided by Nick Callaghan.

Smith, Andy. 2013a. Comments on Preliminary Draft Main Operating Base 2 KC-46A Beddown at Alternative Air National Guard Installations EIS.

________. 2013b. E-mail regarding recycling statistics and landfill used by the 157 ARW. 31 October.

Snyder, David. 2007. Letter from David Snyder, Ph.D., Archaeology Reviews Manager Resource Protection and Review to Matt Nowakowski, National Guard Bureau regarding 121 ARW Ohio ANG, Rickenbacker IAP, Draft Final Cultural Resources Survey, Hamilton Township, Franklin County, Ohio.

St. Louis, Christina. 2009. Letter to Mr. David Nylund, New Hampshire Air National Guard from Ms. Christina St. Louis of the New Hampshire Division of Historical Resources regarding determination of National Register eligibility for Pease International Tradeport. February 5.

Stacy, Cynthia. 2013. Letter from Cynthia Stacy, Peoria Tribe of Indians of Oklahoma to William P. Albro, Associate Director, Installations and Mission Support, National Guard Bureau regarding KC-46A Beddown at Possible Location of Rickenbacker ANGS, Ohio (MOB 2). 2 October.

Toth, Jay. 2013. E-mail from Jay Toth, Seneca Nation Tribal Archeologist to Lt Col John Tower stating Seneca HP has no issue regarding the EIS for the MOBs. 3 October.

______. 2013b. Comments on Interim Draft #1 Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS.

______. 2000a. Profile of General Demographic Characteristics for the state of Kansas, Shawnee County, and the City of Topeka.
______. 2000b. Profile of General Demographic Characteristics for the state of New Jersey, Burlington County, Ocean County, New Hanover Township, North Hanover Township, Pemberton Township, Plumsted Township, and Wrightstown Borough.

______. 2000c. Profile of General Demographic Characteristics for the state of New Hampshire, Rockingham County, Town of Newington, and Portsmouth.

______. 2000d. Profile of General Demographic Characteristics for the state of Pennsylvania, Allegheny County, Findlay Township, and Moon Township.

______. 2000e. Profile of General Demographic Characteristics for the state of Ohio, Franklin County, Pickaway County, Groveport Village, Lockbourne Village, Hamilton Township, Harrison Township, and Madison Township.

______. 2010a. Profile of General Demographic Characteristics for the state of Kansas, Shawnee County, and the City of Topeka.

______. 2010b. Profile of General Demographic Characteristics for the state of New Jersey, Burlington County, Ocean County, New Hanover Township, North Hanover Township, Pemberton Township, Plumsted Township, and Wrightstown Borough.

______. 2010c. GIS data obtained from 2010 Census TIGER/Line Shape Files and American Factfinder for minority populations in Burlington and Ocean counties.

______. 2010d. Profile of General Demographic Characteristics for the state of New Hampshire, Rockingham County, Town of Newington, and Portsmouth.

______. 2010e. Profile of General Demographic Characteristics for the state of Pennsylvania, Allegheny County, Findlay Township, and Moon Township.

______. 2010f. GIS data obtained from 2010 Census TIGER/Line Shape Files and American Factfinder for minority populations in Allegheny County.

______. 2010g. Profile of General Demographic Characteristics for the state of Ohio, Franklin County, Pickaway County, Groveport Village, Lockbourne Village, Hamilton Township, Harrison Township, and Madison Township.

______. 2011a. 2007-2011 American Community Survey 5-Year Estimates for Selected Economic Characteristics for the state of Kansas, Shawnee County, and the City of Topeka.

______. 2011c. GIS obtained from 2007 through 2011 5-year American Community Survey for low-income populations in Burlington and Ocean counties.

2011e. 2007-2011 American Community Survey 5-Year Estimates for Selected Economic Characteristics for the state of Pennsylvania, Moon Township, Findlay Township, and Allegheny County.

2011f. GIS obtained from 2007 through 2011 5-year American Community Survey for low-income populations in Allegheny County.

2011g. 2007-2011 American Community Survey 5-Year Estimates for Selected Economic Characteristics for the state of Ohio, Franklin County, Pickaway County, Groveport Village, Lockbourne Village, Hamilton Township, Harrison Township, and Madison Township.

Zollner, Patrick. 2008. Letter from Patrick Zollner, Director, Cultural Resources Division, Deputy State Historic Preservation Officer to Marjorie Nowick, Project Manager, Engineering-Environmental Management (e2M), Englewood, Colorado regarding Cultural Resources Survey of Forbes Field Air National Guard Base, Shawnee County.

______. 2013. Letter from Patrick Zollner, Kansas Historical Society to Anne Rowe, National Guard Bureau regarding KC-46A Mob 2 Forbes Field Topeka – Shawnee County. 17 September.
[This page intentionally left blank.]
CHAPTER 7 PERSONS AND AGENCIES CONTACTED

FORBES ANGS

Barrett, John, Chairman, Citizen Potawatomi Nation, Shawnee, OK 74801
Blanchard, George, Governor, Absentee Shawnee Tribe of Oklahoma, Shawnee, OK 74801
Brownback, The Honorable Sam, Office of the Governor, Topeka, KS 66612-1590
Buhler, Shelly, Chair, Shawnee County Commissioner, District 1, Topeka, KS 66603
Bunten, The Honorable Bill, Mayor of Topeka, Topeka, KS 66603-3914
Chinn, Jennie, State Historic Preservation Officer, Kansas State Historical Society, Cultural Resources Division, Topeka, KS 66615-1099
City of Topeka Planning, Topeka, KS 66607
Director of Aviation, Kansas Department of Transportation, Topeka, KS 66603-3754
Ellis, Henryetta, THPO, Absentee Shawnee Tribe of Oklahoma, Shawnee, OK 74801
Federal Aviation Administration, Central Region, Kansas City, MO 64106-2641
Gordon, The Honorable Lana, Kansas House of Representatives, Topeka, KS 66614
Holton, Kerry, President, Delaware Nation, Anadarko, OK 73005
Hunter, Dr. Andrea A., THPO, Osage Nation of Oklahoma, Pawhuska, OK 74056
Jenkins, The Honorable Lynn, House of Representatives, Washington, DC 20515
Johnson, Eric, Metropolitan Topeka Airport Authority, Forbes Field, Topeka, KS 66619
Kansas Department of Wildlife and Parks, Region 2, Topeka, KS 66606
Mitchell, John, Kansas Department of Health and Environment, Division of Environment, Topeka, KS 66612-1367
Moran, The Honorable Jerry, U.S. Senate, Washington, DC 20510
Mosteller, Kelli, THPO, Citizen Potawatomi Nation, Shawnee, OK 74801
Munroe, Guy, Chairman, Kaw Nation, Kaw City, OK 74641
Obermeyer, Dr. Brice, Delaware Nation, Emporia, KS 66801
Ortiz, Steve, Council Chair, Prairie Band Potawatomi Tribe, Mayetta, KS 66509
Redeagle, Mr. John D., Principal Chief, Osage Nation of Oklahoma, Pawhuska, OK 74056
Roberts, The Honorable Pat, U.S. Senate, Washington, DC 20510
Schmidt, The Honorable Vicki, Kansas Senate, Topeka, KS 66610-1632
Shawnee County Planning Department, Topeka, KS 66618
Standing, Leslie, President, Wichita and Affiliated Tribes, Anadarko, OK 73005
Summerlin, Joe, NEPA Reviewer, U.S. Environmental Protection Agency, Region 7, Lenexa, KS 66219
U.S. Fish and Wildlife Service, Kansas Ecological Services Field Office, Manhattan, KS 66502-2801
Wallace, Glenna, Chief, Eastern Shawnee Tribe of Oklahoma, Wyandotte, OK 74370
Wolgast, Larry, Councilperson, Topeka City Council District #5, Topeka, KS 66611

JB MDL

Christie, The Honorable Chris, Office of the Governor, Trenton, NJ 08625
Clifton, The Honorable Robert, New Jersey Assembly, Millstone, NJ 08535
Coordinator, Regional Planning, Burlington County, Mount Holly, NJ 08060
Dancer, The Honorable Ronald, New Jersey Assembly, Cream Ridge, NJ 08514
Davis, Eric, Supervisor, U.S. Fish and Wildlife Service, New Jersey Ecological Services Field Office, Pleasantville, NJ 08232
Deman, Ernie, Supervising Environmental Specialist, New Jersey Pinelands Commission, New Lisbon, NJ 08064
Durr, The Honorable Jim, Mayor of North Hanover Township, Jacobstown, NJ 08562
Environmental Review Coordinator, U.S. Environmental Protection Agency, Region 2, New York, NY 10007-1866
Foster, Ruth W., New Jersey Department of Environmental Protection, Office of Permit Coordination and Environmental Review, Trenton, NJ 08625
Francioli, The Honorable Ronald, Mayor of New Hanover Township, Whippany, NJ 07981
Fressola, The Honorable Mike, Mayor of Manchester Township, Manchester, NJ 08759
Gould, Mark, Chairperson, Nanticoke-Lenni-Lenape Indians of New Jersey, Bridgeton, NJ 08302

Harper, The Honorable Thomas, Mayor of Wrightstown, Wrightstown, NJ 08562

Hawkins, Joanne Bundy, Powhatan-Renape Nation, Rankokus Indian Reservation, Rancocas, NJ 08073

Holton, Kerry, President, Delaware Nation, Anadarko, OK 73005

Lautenberg, The Honorable Frank, U.S. Senate, Washington, DC 20510

Leutwyler, The Honorable David, Mayor of Plumsted Township, New Egypt, NJ 08533

McDaniel, The Honorable Denis, Mayor of Springfield Township, Jobstown, NJ 08041

Menendez, The Honorable Robert, U.S. Senate, Washington, DC 20510

New Jersey Division of Fish and Wildlife, Endangered and Nongame Species Program, Department of Environmental Protection, Trenton, NJ 08625-420

Patriarca, The Honorable David, Mayor of Pemberton Township, Pemberton, NJ 08068-1539

Perry, Dwaine, Chief, Ramapough Mountain Indians, Mahwah, NJ 07430

Phifer, Ph.D., Paul, Assistant Regional Director, Ecological Services, U.S. Fish and Wildlife Service, Region 5, Hadley, MA 01035-9589

Reina, The Honorable Michael, Mayor of Jackson Township, Jackson, NJ 08527

Robbie, Mary Pat, Director, Resource Conservation, Burlington County, Mount Holly, NJ 08060

Runyun, The Honorable Jon, House of Representatives, Washington, DC 20515

Saunders, Daniel, Administrator and Deputy State Historic Preservation Officer, New Jersey Department of Environmental Protection, Historic Preservation Office, Trenton, NJ 08625-420

Smith, The Honorable Chris, House of Representatives, Washington, DC 20515

Stull, Wayne, Trust Board Chairman, Delaware Tribe of Indians, Bartlesville, OK 74006

Thompson, The Honorable Samuel, New Jersey Senate, Old Bridge, NJ 08857

Vele, Kimberly, President, Stockbridge-Munsee Community, Bowler, WI 54416
White, Sherry, THPO, Stockbridge-Munsee Community, Bowler, WI 54416

PEASE ANGS

Ayotte, The Honorable Kelly, U.S. Senate, Washington, DC 20510

Clark, The Honorable Martha, New Hampshire Senate, Concord, NH 03301

Drew, Timothy, New Hampshire Department of Environmental Services, Concord, NH 03302

Francis, Kirk, Tribal Chief, Penobscot Indian Nation, Indian Island, ME 04668

Hassan, The Honorable Maggie, Office of the Governor, Concord, NH 03301

Historic Preservation Officer, New Hampshire Division of Historical Resources, Concord, NH 03301

New Hampshire Coastal Program, Department of Environmental Services, Portsmouth, NH 03801

New Hampshire Department of Environmental Services, Wetlands Bureau, Concord, NH 03302

New Hampshire Department of Transportation, Bureau of Environment, Concord, NH 03302

New Hampshire Fish and Game Department, Concord, NH 03301

New Hampshire Office of Energy and Planning, Concord, NH 03301

New Hampshire State Port Authority, Portsmouth, NH 03801

Newsom, Bonnie, THPO, Penobscot Indian Nation, Indian Island, ME 04468

Northeast Coordinator, U.S. Fish and Wildlife Service Region V, Hadley, MA 01035

Portsmouth City Hall, Community Development Department, Portsmouth, NH 03801

Scarlotto, The Honorable Joe, New Hampshire Representative, Portsmouth, NH 03801-4126

Shaheen, The Honorable Jeanne, U.S. Senate, Washington, DC 20510

Shea-Porter, The Honorable Carol, House of Representatives, Washington, DC 20515

Spear, The Honorable Eric, Mayor of Portsmouth, Portsmouth, NH 03801

Stowell, Maria, Pease Development Authority, Portsmouth, NH 03801

Town of Newington Planning Department, Newington, NH 03801

U.S. Environmental Protection Agency, Region 1, Boston, MA 02109-3912
PITTSBURGH ANGS

Belotti, Rich, Director, Planning & Environmental Affairs, Pittsburgh International Airport, Pittsburgh, PA 15231-0370

Caruso, Christopher, Planning Administrator, Township of Findlay, Clinton, PA 15026

Casey, Jr., The Honorable Robert, U.S. Senate, Washington, DC 20510

Celeste, The Honorable Anthony, Mayor of Coraopolis, Coraopolis, PA 15108

Corbett, The Honorable Tom, Office of the Governor, Pittsburgh, PA 15222

Etzel, Sandra, Allegheny County Health Department, Air Quality Program, Pittsburgh, PA 15201

Frankel, Kathy, Natural Resource Program Supervisor, Pennsylvania Department of Conservation and Natural Resources, Pittsburgh, PA 15222-2420

Hans, Scott A., Chief, Regulatory Branch, U.S. Army Corps of Engineers, Pittsburgh, PA 15222-4186

Henry, Leo, Chief, Tuscarora Nation of New York, Lewiston, NY 14092

Hill, Roger, Chief, Tonawanda Band of Seneca, Basom, NY 14013

Jameson, Jr., Bud, Commander, 316th Expeditionary Sustainment Command, Coraopolis, PA 15108-2550

Maybee, Melinda, Nation Representative, Cayuga Nation of New York, Seneca Falls, NY 13148

McDonald, Susan, Environmental Specialist, Federal Aviation Administration, Harrisburg Airports District Office, Camp Hill, PA 17011

McLearen, Doug and Kira Heinrich, Archaeology & Protection Division, Pennsylvania Historical and Museum Commission - Bureau for Historic Preservation, Harrisburg, PA 17120

Murphy, The Honorable Tim, House of Representatives, Washington, DC 20515

Mustio, The Honorable Mark, Pennsylvania House of Representatives, Moon Township, PA 15108

Penrod, Bradley D., President and Chief Strategy Officer, Allegheny County Department of Aviation, Pittsburgh, PA 15231-0370
Peters, Craig, Commander, 911th Air Wing, U.S. Air Force Reserve, Coraopolis, PA 15108-2983

Porter, Robert Odawi, President, Seneca Nation of Indians, Irving, NY 14081

Powless, Irving, Chief, Onondaga Nation of New York, Nedrow, NY 13120

Rudnick, Barbara, NEPA Team Leader, U.S. Environmental Protection Agency, Region 3, Office of Environmental Programs (3EA30), Environmental Assessment and Innovation Division, Philadelphia, PA 19103-2029

Sitio, Lou, Assistant Chief of Public Affairs, U.S. Army Corps of Engineers, North Atlantic Division, Brooklyn, NY 11252

Smith, The Honorable Matt, Pennsylvania Senate, Harrisburg, PA 17120-3037

Toomey, The Honorable Patrick, U.S. Senate, Washington, DC 20510

Watt, Lana, THPO, Seneca Nation of Indians, Salamanca, NY 14779

Ziegler, Jeffrey, Assistant Township Manager, Moon Township Administration Office, Moon Township, PA 15108

RICKENBACKER ANGS

áá Cooká, Ethel E., Chief, Ottawa Tribe of Oklahoma, Miami, OK 74355

Adkins, Lisa, Program Coordinator, Ohio Historic Preservation Office, Columbus, OH 43211-2474

Ankrom, John, Service Director, City of Circleville Planning and Zoning Commission, Circleville, OH 43113

Bacon, The Honorable Kevin, Ohio Senate, Columbus, OH 43215

Barrett, John, Chairman, Citizen Potawatomi Nation, Shawnee, OK 74801

Bishop, The Honorable Heather, Ohio House of Representatives, Columbus, OH 43215

Brown, Lee, Planning Administrator, Franklin County Economic Development & Planning Department, Columbus, OH 43215

Brown, The Honorable Sherrod, U.S. Senate, Washington, DC 20510

Carter, Ron, Ohio Department of Natural Resources, Division of Wildlife, Columbus, OH 43229-6693

Clemons, Sherri, THPO, Wyandotte Nation, Wyandotte, OK 74370
Coleman, The Honorable Michael, Mayor of Columbus, Columbus, OH 43215

Columbus Health Department, Columbus, OH 43215

Delaney, Katie, Federal Aviation Administration, Romulus, MI 48174

Director of Planning, Columbus Regional Airport Authority, Columbus, OH 43219

Ferris, Kade, THPO, Turtle Mountain Band of Chippewa Indians of North Dakota, Belcourt, ND 58316

Frank, Harold, Chairman, Forest County Potawatomi Community, Crandon, WI 54520

Friend, Billy, Chief, Wyandotte Nation, Wyandotte, OK 74370

Froman, John P., Chief, Peoria Tribe of Indians of Oklahoma, Miami, OK 74355

Gamble, Thomas, Chairperson, Miami Tribe of Oklahoma, Miami, OK 74355-1326

Garver, Dan, District Conservationist, Ohio Natural Resource Conservation Service, Circleville, OH 43113-9575

General Manager, Columbus Regional Airport Authority, Rickenbacker International Airport, Administrative Offices, Columbus, OH 43217

Hayes, Jody, Tribe Administrator, Shawnee Tribe, Miami, OK 74355

Holton, Kerry, President, Delaware Nation, Anadarko, OK 73005

Kasich, The Honorable John, Office of the Governor, Columbus, OH 43215-6117

Knapp, Mary, Field Supervisor, Fish and Wildlife Service, Columbus, OH 43230-8355

Meshigaud, Kenneth, Chairperson, Hannahville Indian Community, Wilson, MI 49896-9728

Mosteller, Kelli, THPO, Citizen Potawatomi Nation, Shawnee, OK 74801

Obermeyer, Dr. Brice, Delaware Nation, Emporia, KS 66801

Ohio Department of Health, Columbus, OH 43215

Ohio Department of Natural Resources, Division of Geological Survey, Columbus, OH 43229-6693

Ohio Department of Natural Resources, Division of Soil & Water, Columbus, OH 43229-6693

Ohio Department of Transportation, District 6, Delaware, OH 43015

Ohio Environmental Protection Agency, Columbus, OH 43215
Ortiz, Steve, Chairperson, Prairie Band of Potawatomi Nation, Mayetta, KS 66509

Pickaway County Office of Development and Planning, Circleville, OH 43113

Portman, The Honorable Rob, U.S. Senate, Washington, DC 20510

Spagna, Teresa, U.S. Army Corps of Engineers, Huntington District, Huntington, WV 25701-2070

Sparkman, Ron, Chairperson, Shawnee Tribe, Miami, OK 74355

Sparkman, Ron, Chief, Shawnee Tribe, Miami, OK 74355

St. Claire, Merle, Chairman, Turtle Mountain Band of Chippewa Indians of North Dakota, Belcourt, ND 58316

Stivers, The Honorable Steve, House of Representatives, Washington, DC 20515

Strack, George, THPO, Miami Tribe of Oklahoma, Miami, OK 74355

U.S. Environmental Protection Agency, Region 5, Chicago, IL 60604

Wallace, Glenna, Chief, Eastern Shawnee Tribe of Oklahoma, Seneca, MO 64865

Wesaw, Matthew J., Chairman, Pokagon Band of Potawatomi Indians, Dowagiac, MI 49047

Zimmerman, Mike, THPO, Pokagon Band of Potawatomi Indians, Dowagiac, MI 49047
CHAPTER 8 LIST OF PREPARERS

Kate L. Bartz, Project Manager, Cardno TEC, Inc.
 M.S., Landscape Architecture and Environmental Planning, 1994
 B.S., Environmental Studies, 1987
 Years of Experience: 27

Peer Amble, Cardno TEC, Inc.
 B.A., Physical Geography, 1988
 Years of Experience: 23

Linda DeVine, Cardno TEC, Inc.
 A.S., Physical Science, 2001
 Undergraduate Studies, Environmental Science, Christopher Newport University
 Years of Experience: 29

Cathy Doan, Cardno TEC, Inc.
 B.S., English, 1980
 M.A., Human Resources Development, 1985
 Years of Experience: 16

Jason Harshman, Cardno TEC, Inc.
 B.A., Geography, 2006
 Years of Experience: 9

Amanda Kreider, Cardno TEC, Inc.
 M.S., Fire Ecology, 2002
 B.S., Wildlife Ecology, 1998
 Years of Experience: 12

Edie Mertz, Cardno TEC, Inc.
 A.A. General Education, 1994
 Years of Experience: 23

Kelly Mitchell, Cardno TEC, Inc.
 B.S., Anthropology, 1994
 M.A., History, 2006
 Years of Experience: 16

Susan Ratliff, Cardno TEC, Inc.
 Years of Experience: 23
Teresa Rudolph, Cardno TEC, Inc.
 B.A., Anthropology, 1975
 M.A., Anthropology, 1981
 Years of Experience: 32

Tamara Shapiro, Cardno TEC, Inc.
 B.A., English, 1989
 Years of Experience: 13

Deirdre Stites
 A.A., A.S., Geology, 1981
 Years of Experience: 34

Valorie Thompson, Scientific Resources Associated
 Ph.D., Chemical Engineering
 B.S., Chemistry
 Years of Experience: 28

Bill Wear, Cardno TEC, Inc.
 M.A., Public Administration, 1979
 B.A., Business Administration/Economics, 1969
 Years of Experience: 44

Vanessa Williford, Cardno TEC, Inc.
 B.S., Resource and Environmental Studies, 2002
 Years of Experience: 11

Kimberly Wilson, Cardno TEC, Inc.
 Years of Experience: 28
INDEX

<table>
<thead>
<tr>
<th>Clause</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accident Potential Zone (APZ)</td>
<td>2-6, 3-10, 3-37, 3-46, 3-66, 3-93, 3-119, 4-39, 6-8, 4-69, 4-70, 4-71, 4-98, 4-99, 4-100, 4-101, 4-129, 4-130, 4-131, 4-132, 5-9, 5-17, 5-25, 5-32</td>
</tr>
<tr>
<td>Air Installation Compatible Use Zone (AICUZ)</td>
<td>ES-10, ES-20, 2-58, 2-68, 3-28, 3-46, 4-156, GLOSS-1</td>
</tr>
<tr>
<td>Area of Concern (AOC)</td>
<td>3-105, 3-132</td>
</tr>
<tr>
<td>Asbestos-Containing Material (ACM)</td>
<td>ES-19, ES-20, 2-67, 2-68, 3-23, 3-50, 3-78, 3-104, 3-131, 4-22, 4-24, 4-26, 4-54, 4-56, 4-58, 4-85, 4-87, 4-90, 4-115, 4-116, 4-120, 4-147, 4-149, 4-152, 5-6, 5-14, 5-21, 5-29, 5-36</td>
</tr>
<tr>
<td>Bird/Wildlife Aircraft Strike Hazard (BASH)</td>
<td>ES-12, ES-20, 2-60, 2-68, 3-11, 3-12, 3-37, 3-38, 3-66, 3-67, 3-93, 3-94, 3-119, 3-120, 4-11, 4-12, 4-16, 4-40, 4-41, 4-46, 4-73, 4-78, 4-103, 4-108, 4-134, 4-139, 4-140, 6-2, 6-3, 6-4, 6-5, 6-9, 4-12, 4-41, 3-113, 3-119, 4-2, 6-12, 6-13</td>
</tr>
<tr>
<td>Boeing Michigan Aerospace Research Center (BOMARC)</td>
<td>3-45</td>
</tr>
<tr>
<td>Boom/Probe and Drogue Refueling</td>
<td>ES-3, 1-4, GLOSS-2</td>
</tr>
<tr>
<td>Central Accumulation Point (CAP)</td>
<td>3-23, 3-51, 3-79, 3-104, 3-132</td>
</tr>
<tr>
<td>Command and Control (C2)</td>
<td>1-4, 1-5, 1-6, 1-8, 2-2</td>
</tr>
<tr>
<td>Command, Control, Communications, and Computers (C4)</td>
<td>ES-3, 1-4</td>
</tr>
<tr>
<td>Conformity Determination</td>
<td>ES-11, 2-59, 2-69, 4-36, 4-38, 5-10, GLOSS-3</td>
</tr>
<tr>
<td>Construction Emissions</td>
<td>ES-11, 2-59, 4-8, 4-9, 4-37, 4-38, 4-70, 4-71, 4-100, 4-101, 4-131, 4-132</td>
</tr>
<tr>
<td>Consultation</td>
<td>1-11, 3-46, 4-17, 4-26, 4-48, 4-58, 4-80, 4-81, 4-88, 4-110, 4-120, 4-141, 4-152, 5-13</td>
</tr>
<tr>
<td>Council on Environmental Quality (CEQ)</td>
<td>ES-8, 1-3, 1-9, 2-55, 2-69, 3-1, 4-155, 5-37, 6-6, GLOSS-3</td>
</tr>
<tr>
<td>de minimis</td>
<td>ES-11, 2-59, 2-69, 3-33, 3-61, 3-88, 3-114, 4-6, 4-35, 4-36, 4-37, 4-38, 4-68, 4-69, 4-70, 4-71, 4-98, 4-99, 4-100, 4-101, 4-129, 4-130, 4-131, 4-132, 5-9, 5-17, 5-25, 5-32</td>
</tr>
<tr>
<td>Defense Logistics Agency (DLA)</td>
<td>3-51</td>
</tr>
<tr>
<td>Disproportionate</td>
<td>ES-20, 2-68, 4-29, 4-61, 4-62, 4-91, 4-121, 4-122, 4-153, 4-154, 4-159, 5-15, 5-29</td>
</tr>
<tr>
<td>Endangered</td>
<td>3-44, 3-125, 4-79, 4-108, 4-139, 5-19, 5-27, 5-34, GLOSS-3, GLOSS-6</td>
</tr>
<tr>
<td>Energy Independence and Security Act (EISA)</td>
<td>4-13, 4-42, 4-53, 4-75, 4-84, 4-105, 4-113, 4-136, 4-146, 5-12, 5-19, 5-27, 5-34</td>
</tr>
<tr>
<td>Environmental Restoration Program (ERP)</td>
<td>ES-18, ES-20, 2-66, 2-68, 3-24, 3-45, 3-51, 3-79, 3-105, 3-132, 4-26, 4-58, 4-88, 4-90, 4-118, 4-120, 4-150, 4-152, 5-29</td>
</tr>
<tr>
<td>Federal Aviation Administration (FAA)</td>
<td>ES-6, 1-7, 2-9, 2-57, 3-1, 3-11, 3-57, 3-66, 3-84, 3-93, 3-110, 3-119, 4-2, 4-11, 4-81, 6-7, 6-12, 6-13</td>
</tr>
<tr>
<td>Federal Aviation Regulation (FAR)</td>
<td>ES-6, ES-10, ES-15, ES-20, 2-57, 2-58, 2-64, 2-68, 3-1, 3-57, 3-84, 3-85, 3-86, 3-110, 3-111, 4-93, 4-94, 4-97, 4-111, 4-123, 4-124, 4-125, 4-128, 4-145, 4-156, 6-5, 6-6</td>
</tr>
<tr>
<td>Federal Highway Administration (FHWA)</td>
<td>4-6, 4-34, 4-67, 4-97, 4-128, 6-8</td>
</tr>
<tr>
<td>Federal Interagency Committee on Urban Noise (FICUN)</td>
<td>3-127, 4-52, 4-81</td>
</tr>
<tr>
<td>Federal Register</td>
<td>ES-1, 1-10, 1-12</td>
</tr>
<tr>
<td>Floodplains</td>
<td>3-16, 3-42, 3-72, 3-95, 3-124, 4-15, 4-44, 4-77, 4-107, 4-138</td>
</tr>
<tr>
<td>Green House Gas (GHG)</td>
<td>4-8, 4-9, 4-37, 4-38, 4-69, 4-70, 4-71, 4-99, 4-100, 4-131, 4-132, 5-2, 5-10, 5-17, 5-25, 5-32</td>
</tr>
<tr>
<td>Groundwater</td>
<td>3-14, 3-16, 3-24, 3-42, 3-51, 3-71, 3-76, 3-79, 3-98, 3-102, 3-105, 3-122, 3-129, 3-132, 4-13, 4-26, 4-44, 4-58, 4-77, 4-88, 4-107, 4-118, 4-138, 4-152, 5-4</td>
</tr>
</tbody>
</table>

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS

Index
IDX-1
Hazardous Air Pollutant (HAP), ES-11, ES-20, 2-59, 2-68, 3-9, 3-35, 3-64, 3-92, 3-117, 4-9, 4-38, 4-71, 4-101, 4-132
Integrated Noise Model (INM), 3-1, 3-57, 3-84, 3-110, 4-63, 4-92, 4-123, 4-124, 6-12, 6-13, GLOSS-4
Lead-Based Paint (LBP), ES-19, ES-20, 2-67, 2-68, 3-23, 3-50, 3-78, 3-104, 3-131, 4-22, 4-24, 4-26, 4-54, 4-56, 4-58, 4-85, 4-87, 4-90, 4-115, 4-116, 4-120, 4-147, 4-149, 4-152, 5-6, 5-14, 5-21, 5-29, 5-36
Leadership in Energy and Environmental Design (LEED), 2-14, 2-23, 2-31, 2-44, 2-51, 4-21, 4-53, 4-84, 4-114, 4-146, 5-6, 5-14, 5-21, 5-28, 5-35
Low Impact Development (LID), 4-13, 4-42, 4-75, 4-105, 4-136, 5-12, 5-19, 5-26, 5-27, 5-33, 5-34
Low-Income, ES-20, 2-68, 3-27, 3-54, 3-55, 3-56, 3-82, 3-108, 3-109, 3-135, 3-136, 4-29, 4-61, 4-62, 4-91, 4-121, 4-122, 4-153, 4-159, 5-7, 5-15, 5-21, 5-29, 5-36, 6-15, 6-16, GLOSS-3
Migratory Bird Treaty Act (MBTA), 3-16, 3-43, 3-72, 3-99, 3-124, 4-15, 4-45, 4-78, 4-108, 4-139
Military Operations Area (MOA), 2-11, 2-30, 2-41, 2-50, 3-121, GLOSS-4, GLOSS-6
Minority, ES-20, 2-68, 3-27, 3-54, 3-55, 3-56, 3-82, 3-108, 3-109, 3-135, 3-136, 4-29, 4-61, 4-62, 4-91, 4-121, 4-122, 4-153, 4-159, 5-7, 5-15, 5-21, 5-29, 5-36, 6-15, GLOSS-3
National Ambient Air Quality Standards (NAAQS), ES-11, 2-59, 3-5, 3-8, 3-31, 3-33, 3-34, 3-60, 3-63, 3-88, 3-91, 3-114, 3-117, 4-6, 4-132, GLOSS-4
National Defense Authorization Act (NDAA), 1-3, 4-155, 5-30, 5-31, 5-33, 5-36
National Environmental Policy Act (NEPA), ES-4, ES-7, ES-8, ES-9, 1-3, 1-9, 1-10, 1-11, 1-12, 2-2, 2-4, 2-9, 2-18, 2-28, 2-37, 2-48, 2-55, 3-1, 3-93, 4-155, 5-1, 5-8, 5-16, 5-23, 5-30, 5-37, 6-6, 7-2, 7-6, GLOSS-4
National Pollutant Discharge Elimination System (NPDES), 3-71, 4-74, 4-104, 5-3, 5-4, 5-11, 5-12, 5-18, 5-19, 5-26, 5-27, 5-33, 5-34
National Register of Historic Places (NRHP), ES-14, ES-20, 2-62, 2-68, 2-69, 3-17, 3-45, 3-73, 3-100, 3-126, 4-17, 4-18, 4-47, 4-48, 4-49, 4-80, 4-81, 4-109, 4-110, 4-111, 4-140, 4-141, 4-142, 4-157, 5-5, 5-13, 5-20, 5-27, 5-34
Night Vision Imaging System (NVIS), ES-3, 1-4, 1-6, 1-7
NOISEMAP, 3-1, 3-2, 3-28, 4-1, 4-30, 6-8, GLOSS-5
Notice of Availability (NOA), ES-1, 1-12
Operational Emissions, ES-11, 2-59, 2-69, 4-6, 4-6, 4-7, 4-35, 4-36, 4-38, 4-68, 4-69, 4-98, 4-99, 4-101, 4-129, 4-130
Prevention of Significant Deterioration (PSD), ES-11, ES-20, 2-68, 4-6, 4-7, 4-8, 4-9, 4-35, 4-36, 4-37, 4-38, 4-68, 4-69, 4-70, 4-71, 4-98, 4-99, 4-100, 4-101, 4-129, 4-130, 4-131, 4-132, 5-2, 5-9, 5-17, 5-25, 5-32
Public Involvement, 1-10
Public Scoping, ES-1
Record of Decision (ROD), 1-12, 2-69, 2-70
Runway Protection Zone (RPZ), 3-10, 3-11, 3-19, 3-37, 3-66, 3-74, 3-93, 3-100, 3-119, 3-127, 4-9, 4-71, 4-101, 4-132
Satellite Accumulation Point (SAP), 3-23, 3-51, 3-78, 3-79, 3-104, 3-132
Secretary of the Air Force, ES-1, ES-4, 1-1, 1-12, 2-4, 2-5, 2-6
Selection Criteria, ES-4, 2-4
Special Status, ES-13, 1-13, 2-61, 3-17, 3-44, 3-73, 3-99, 3-125, 4-16, 4-46, 4-79, 4-108, 4-109, 4-139, 5-4, GLOSS-6
Special Use Airspace (SUA), ES-9, 2-55, 4-155
State Historic Preservation Office (SHPO), ES-14, ES-20, 2-62, 2-68, 2-69, 3-17, 3-18, 3-45, 3-73, 3-100, 3-126, 4-17, 4-18, 4-48, 4-49, 4-80, 4-81, 4-109, 4-110, 4-141, 4-142, 5-5, 5-13, 5-20, 5-27, GLOSS-6
State Implementation Plan (SIP), ES-11, ES-20, 2-6, 2-59, 2-68, 2-69, 4-156, 5-10
Stormwater, 3-14, 3-21, 3-24, 3-42, 3-47, 3-51, 3-71, 3-76, 3-79, 3-98, 3-102, 3-104, 3-122, 3-129, 3-132, 4-13, 4-21, 4-42, 4-53, 4-75, 4-83, 4-84, 4-104, 4-105, 4-113, 4-136, 4-145, 4-146, 5-3, 5-6, 5-11, 5-12, 5-14, 5-18, 5-19, 5-21, 5-26, 5-28, 5-33, 5-35, 6-1, 6-12, 6-14
Stratotanker, ES-1, 1-3, 1-6
Threatened, 3-44, 3-99, 4-79, 4-108, 4-139, 5-19, 5-27, 5-34, GLOSS-6
United States Army Corps of Engineers (USACE), 3-42
United States Department of Agriculture (USDA), 3-13, 3-39, 3-67, 3-68, 3-95, 3-121, 6-5, 6-16
United States Environmental Protection Agency (USEPA), 3-6, 3-7, 3-8, 3-9, 3-14, 3-23, 3-32, 3-33, 3-34, 3-35, 3-40, 3-42, 3-51, 3-61, 3-62, 3-63, 3-64, 3-69, 3-71, 3-78, 3-88, 3-89, 3-90, 3-91, 3-98, 3-104, 3-114, 3-115, 3-116, 3-117, 3-121, 3-122, 3-131, 4-22, 4-54, 4-74, 4-84, 4-114, 4-146, 6-16
United States Fish and Wildlife Service (USFWS), 3-17, 3-74, 3-125, 6-17, GLOSS-6
United States Geological Survey (USGS), 3-42, 3-71, 3-98, 3-122, 6-17
Wetland, ES-13, 2-61, 3-17, 3-43, 3-44, 3-73, 3-74, 3-99, 3-125, 4-16, 4-46, 4-47, 4-79, 4-108, 4-109, 4-140, 5-4, 5-12, 5-19, 5-27, 5-34, 6-11, 6-17, GLOSS-7
Wildlife, ES-13, 2-61, 3-11, 3-12, 3-16, 3-38, 3-43, 3-67, 3-72, 3-94, 3-99, 3-120, 3-124, 4-11, 4-15, 4-16, 4-45, 4-47, 4-78, 4-79, 4-108, 4-109, 4-139, 4-140, 5-4, 5-12, 5-19, 5-27, 5-34, GLOSS-2, GLOSS-3, GLOSS-6
LIST OF REPOSITORIES

Topeka and Shawnee County Public Library
1515 SW 10th St
Topeka, KS 66604

Carbondale City Library
235 Main St
Carbondale, KS 66414

Burlington County Library
5 Pioneer Blvd
Westampton, NJ 08060

Pemberton Community Library
16 Broadway
Browns Mills, NJ 08015
609-893-8262

Mr. Scott Campbell
Langdon Public Library
328 Nimble Hill Rd
Newington, NH 03801

Mr. Michael Huxtable
Portsmouth Public Library
175 Parrott Ave
Portsmouth, NH 03801

Moon Township Public Library
1700 Beaver Grade Rd
Moon Township, PA 15108

Robert Morris University Library
6001 University Blvd
Moon Township, PA 15108

Metropolitan Library
South High Branch
3540 S. High Street
Columbus, OH 43207
Metropolitan Library
Southeast Branch
3980 S Hamilton Rd
Groveport, OH 43125
GLOSSARY

Above Ground Level (AGL): Altitude expressed in feet measured above the ground surface.

Accident Potential Zone (APZ): An area defined near a runway where accidents are likely to occur if they occur. APZs are normally 3,000 feet wide and extend 15,000 feet from the end of the runway but can curve with the flight tracks.

Air Refueling Tracks: Published linear routes identified on air navigation charts that define the flight path used by aircraft when refueling other aircraft. For fixed wing aircraft, this generally occurs above 10,000 feet above mean sea level.

Air Force Instruction (AFI): AFIs implementing United States laws and regulations, and providing policy for United States Air Force personnel and activities.

Air Installation Compatible Use Zone (AICUZ): A land-use-planning program, used by the military, to protect the health, safety, and welfare of those living near military airfields while preserving the defense flying mission. AICUZ presents noise zones and Accident Potential Zones for military airfields and recommendations for compatible land use.

Air Mobility Command (AMC): AMC, a major command with headquarters at Scott Air Force Base, Illinois, was created June 1, 1992. AMC provides America’s Global Reach. This rapid, flexible, and responsive air mobility promotes stability in regions by keeping America's capability and character highly visible.

Air National Guard (ANG): The ANG is administered by the National Guard Bureau, a joint bureau of the departments of the Army and United States Air Force, located in the Pentagon, Washington, D.C. It is one of the seven Reserve components of the United States armed forces that augments the active components in the performance of their missions.

Air Quality Control Region (AQCR): An administrative unit for monitoring and controlling air quality in a specific region.

Air Traffic Control Assigned Airspace (ATCAA): Airspace of defined vertical and lateral limits, assigned by Air Traffic Control, for the purpose of providing air traffic separation between the specified activities being conducted within the assigned airspace and other Instrument Flight Rule air traffic.

Anchors: Air refueling tracks that go in a race-track shape (i.e., loop).
AP/1B: AP/1B provides textual and graphic descriptions and operating instructions for all military training routes (instrument route, visual route, slow route) and refueling tracks/anchors. Complete and more comprehensive information relative to policy and procedures for instrument routes and visual routes is published in Federal Aviation Administration Handbook 7610.4 (Special Military Operation) which is agreed to by the Department of Defense and therefore directive for all military flight operations. AP/1B is the official source of route data for military users.

Area-Wide Emission Sources: Area-wide sources of pollution are those where the emissions are spread over a wide area, such as consumer products, fireplaces, road dust, and farming operations.

Average Annual Flying Day: Average Annual Flying Day represents the average number of aircraft operations flown on a typical flying day based on airport activity and operational data which indicates, on an annual average-daily basis, the number of aircraft, by type of aircraft. An average annual day is a user-defined best representation of the typical long-term average conditions for an airport (typically based on 365 flying days per year). The average conditions include the number and type of operations, routing structure, runway configuration, aircraft weight, temperature and wind.

Average Sortie Duration (ASD): A flying wing’s total number of flying hours divided by the number of sorties that must be flown.

Backup Aerospace Vehicle Inventory (BAI): BAI includes aircraft used as substitutes for Primary Aerospace Vehicles Authorized undergoing maintenance or otherwise unable to fly.

Beddown: The permanent basing of aircraft at a new installation.

Bird/Wildlife-Aircraft Strike Hazard (BASH): A United States Air Force program to reduce the possibilities of bird or wildlife collisions with aircraft.

Boom/Probe and Drogue Refueling: Probe and drogue refueling employs a flexible hose that trails from the tanker aircraft. The drogue is a fitting resembling a windsock, and is attached with a valve to a flexible hose.

Clean Air Act (CAA): This Act empowered the United States Environmental Protection Agency to establish standards for common pollutants that represent the maximum levels of background pollution that are considered safe, with an adequate margin of safety to protect public health and safety.
Council on Environmental Quality (CEQ): The Council is within the Executive Office of the President and is composed of three members appointed by the President, subject to approval by the Senate. Members are to be conscious of and responsive to the scientific, economic, social, esthetic, and cultural needs of the nation; and to formulate and recommend national policies to promote the improvement of quality of the environment.

Day-Night Average Sound Level (DNL): Day-Night Average Sound Level is a noise metric combining the levels and durations of noise events and the number of events over an extended time period. It is a cumulative average computed over a 24-hour period to represent total noise exposure. DNL also accounts for more intrusive nighttime noise, adding a 10 decibel penalty for sounds after 10:00 p.m. and before 7:00 a.m. DNL is the Federal Aviation Administration’s primary noise metric. Federal Aviation Administration Order 1050.1E defines DNL as the yearly day/night average sound level.

Decibel (dB): A sound measurement unit.

De Minimis Threshold: The minimum threshold for which a conformity determination must be performed, for various criteria pollutants in various areas.

Endangered Species Act (ESA): The Endangered Species Act of 1973 defined the term “endangered species” to mean any species (including any subspecies of fish or wildlife or plants, and any distinct population segment of any species or vertebrate fish or wildlife which interbreeds when mature) that is in danger of extinction throughout all or a significant portion of its range.

Environmental Justice: Pursuant to Executive Order 12898, *Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations*, review must be made as to whether a federal program, policy, or action presents a disproportionately high and adverse human health or environmental effect on minority and/or low-income populations.

Environmental Night: The period between 10 p.m. and 7 a.m. when 10 decibels is added to aircraft noise levels due to increased sensitivity to noise at night.

Flight Level (FL): A level of constant atmospheric pressure related to a reference datum of 29.92 inches of mercury. Each is stated in three digits that represent hundreds of feet. For example, FL 250 represents a barometric altimeter indication of 25,000 feet; FL 255, an indication of 25,500 feet.

Instrument Flight Rule (IFR): A standard set of rules that all pilots, civilian and military, must follow when operating under flight conditions that are more stringent than Visual Flight Rule. These conditions include operating an aircraft in reduced visibility, operating above certain
altitudes prescribed by Federal Aviation Administration regulations, and operating in some locations like major civilian airports. Air traffic control agencies ensure separation of all aircraft operating under IFR.

Integrated Noise Model (INM): The INM is the preferred model typically used for Federal Aviation Regulations Part 150 noise compatibility planning and for Federal Aviation Administration Order 1050 environmental assessments and environmental impact statements. INM is a computer model that evaluates aircraft noise impacts in the vicinity of airports. It is developed based on the algorithm and framework from SAE AIR 1845 standard, which used Noise-Power-Distance data to estimate noise accounting for specific operation mode, thrust setting, and source-receiver geometry, acoustic directivity and other environmental factors. The INM can output either noise contours for an area or noise level at pre-selected locations. The noise output can be either exposure-based, maximum-level-based, or time-based.

Loess: An unstratified, usually buff to yellowish brown, loamy deposit believed to be chiefly deposited by the wind.

Main Operating Base: A permanently manned, well-protected base with robust infrastructure. Main operating bases are characterized by command and control structures, enduring family support facilities, and strengthened force protection measures.

Mean Sea Level (MSL): Altitude or elevation expressed in feet referenced to the average elevation of the sea. For example, a field elevation of 26 feet above mean sea level would be expressed as “26 feet MSL” and an aircraft altitude of 1,200 feet above mean sea level would be expressed as “1,200 feet MSL.”

Military Operations Area (MOA): A MOA is airspace designated outside of Class A airspace (i.e., below 18,000 feet mean sea level) to separate or segregate certain non-hazardous military activities from Instrument Flight Rule (IFR) traffic and to identify for Visual Flight Rule (VFR) traffic where these activities are conducted.

Mobile Sources: Mobile sources include cars and light trucks, heavy trucks and buses, nonroad engines, equipment, and vehicles.

National Ambient Air Quality Standards (NAAQS): NAAQS are established by the United States Environmental Protection Agency for criteria pollutants that represent the maximum levels of background pollution that are considered safe, with an adequate margin of safety, to protect public health and safety.

National Environmental Policy Act (NEPA): The National Environmental Policy Act of 1969 directs federal agencies to take environmental factors into consideration in their decisions.
National Guard Bureau (NGB): The NGB, both a staff and operating agency, administers the federal functions of the Army and the Air National Guard. As a staff agency, the National Guard Bureau participates with the Army and Air staffs in developing and coordinating programs that directly affect the National Guard. As an operating agency, the National Guard Bureau formulates and administers the programs for training, development, and maintenance of the Army National Guard and Air National Guard and acts as the channel of communication between the Army, Air Force, and the 54 states and territories where National Guard units are located.

National Historic Preservation Act (NHPA): The NHPA of 1966, as amended, established a program for the preservation of historic properties throughout the United States.

Nautical Mile: A distance unit equal to 1.14 statute miles.

NOISEMAP: NOISEMAP is a group of computer programs developed over a number of years by the U.S. Air Force for prediction of noise exposures in the vicinity of a military installation. NOISEMAP is the primary computer model used by Department of Defense for evaluating military fixed-wing aircraft noise. It contains a suite of computer programs for prediction of noise exposure from aircraft flight, maintenance, and ground runup operations. NOISEMAP output includes noise contours, noise levels at preselected locations, and other supplemental metrics to assist users in analyzing impacts resulting from aircraft noise in the airfield environment.

Operation: An operation can apply to both airfield and airspace activities. At an airfield, an operation consists of a single action such as a take-off, or a landing (i.e., two operations). For airspace and ranges, an operation consists of the use of one airspace unit (e.g., Military Operations Area, Air Refueling Track) by one aircraft. Each time a single aircraft flies into a different airspace unit, one operation is counted. During a single sortie, an aircraft could fly in several airspace units, and conduct a number of operations; therefore, the number of operations exceeds the number of sorties.

Prime Farmland: Prime farmlands are designations assigned by the U.S. Department of Agriculture. Prime farmland is land that has the best combination of physical and chemical characteristics for producing food, feed, forage, fiber, and oilseed crops. The land is also used as cropland, pastureland, rangeland, forest land, or other land, but cannot be used as urban built-up land or water.

Power Setting: The power or thrust output of an engine in terms of kilonewtons thrust for turbojet and turbofan engines or shaft power in terms of kilowatts for turboprop engines.
Primary Aerospace Vehicles Authorized (PAA): PAA consists of the aircraft authorized and assigned to perform an Air National Guard wing’s missions.

Scoping: A process of identifying the main issues of concern at an early stage in planning, in order to discover any alternatives and aid in site selection.

Sortie: A sortie refers to a single military aircraft from take-off through final landing, and everything that might be conducted during that flying mission. A sortie will always include more than one operation.

Sortie Operation: A sortie operation is counted each time a single aircraft enters Special Activity Airspace such as an Air Refueling Route or Military Operations Area (MOA).

Sound Exposure Level (SEL): SEL accounts for both the maximum sound level and the length of time a sound lasts. It provides a measure of the total sound exposure for an entire event. Federal Aviation Administration Order 1050.1E defines SEL as a single event metric that takes into account both the noise level and duration of the event and referenced to a standard duration of one second.

Special Status Species: Special Status Species are defined as those plant and animal species listed as endangered, threatened, and species proposed for listing by the United States Fish and Wildlife Service (USFWS) under the Endangered Species Act (ESA), and by state agencies. The federal ESA protects federally listed endangered and threatened plant and animal species. Critical habitat is a term defined and used in the ESA. It is a specific geographic area(s) that contains features essential for the conservation of a threatened or endangered species and that may require special management and protection. Federally identified candidate species (species proposed for listing) are not protected under law; however, these species could become listed, and therefore, protected at any time. Their consideration early in the planning process may avoid future conflicts that could otherwise occur. Additionally, the corresponding state regulatory agencies (Kansas Department of Wildlife, Parks and Tourism; New Jersey Division of Fish and Wildlife; New Hampshire Fish and Game; Pennsylvania Department of Conservation and Natural Resources; and Ohio Department of Natural Resources) protect state-listed plant and animal species through State fish and wildlife and administrative codes.

State Historic Preservation Office (SHPO): State department responsible for assigning protected status for cultural and historic resources.

Stationary Sources: A place or object from which pollutants are released and which does not move around. Stationary sources include power plants, gas stations, incinerators, houses, etc.
Traditional/Cultural Resource: Cultural and traditional resources are any prehistoric or historic district, site or building, structure, or object considered important to a culture, subculture, or community for scientific, traditional, religious, or other purposes.

Visual Flight Rule (VFR): A standard set of rules that all pilots, both civilian and military, must follow when not operating under Instrument Flight Rule. These rules require that pilots remain clear of clouds and avoid other aircraft. See Instrument Flight Rule.

Warning Areas: A warning area is airspace of defined dimensions, extending from 3 nautical miles outward from the coast of the United States, containing activity that may be hazardous to non-participating aircraft. The purpose of such areas is to warn non-participating pilots of the potential danger. A warning area may be located over domestic or international waters or both. The airspace is designated with a “W” followed by a number (e.g., W-237).

Wetland, Jurisdictional: A jurisdictional wetland is a wetland that meets all three United States Army Corps of Engineers’ criterion for jurisdictional status: appropriate hydrologic regime, hydric soils, and facultative to obligate wetland plant communities under normal growing conditions.
Appendix A

Resource Definitions and Methodologies
This appendix provides a definition of each resource described in Chapter 3 and analyzed in Chapter 4 that would be affected by implementation of the various alternatives described in Chapter 2. This appendix also provides a description of the methodologies used in Chapter 4 to analyze the various potential impacts to those resources presented in Chapter 3.

The affected environment is described for 11 resource topics: Noise, Air Quality, Safety, Soils and Water, Biological Resources, Cultural Resources, Land Use, Infrastructure and Transportation, Hazardous Materials and Waste, Socioeconomics, and Environmental Justice and the Protection of Children. The following sections for each resource topic begin with an introduction that defines the resources addressed in the section, summarizes applicable laws and regulations that apply to all installations, defines key terms as necessary, and describes the general region of influence (ROI) within which the effects from implementation of the various alternatives are anticipated to occur. The ROI varies from resource to resource, but in general, effects from the proposed activities are expected to be concentrated around each of the alternative installations. A more specific ROI for each installation/resource is described within Chapter 3, as are any local/regional regulations.

The methodology used in Chapter 4 to analyze potential impacts for each resource follows the definition of the resource sections in this appendix. In general, throughout this EIS, the levels of significance of impacts are classified as major, moderate, minor, negligible or “no impact.” An impact is considered major if it would result in a substantial adverse change to the environment. An impact is considered moderate or minor if it would not result in substantial adverse environmental effects but could still have some effect. The determination of whether an impact is moderate or minor is described within each resource category. In contrast to “no impact,” a negligible impact could occur but at the lowest limits of detection of an effect. In cases where no impact would occur, this conclusion is noted. Quantitative thresholds are applied, where appropriate, to determine the level of significance (for example, quantitative thresholds are commonly used to determine impact levels in the areas of noise and air quality). Other issues are assessed qualitatively based on context and intensity.

A.1 NOISE

A.1.1 Definition of the Resource

Noise is considered to be unwanted sound that interferes with normal activities or otherwise diminishes the quality of the environment. It may be intermittent or continuous, steady or
impulsive, stationary or transient. Stationary sources are normally related to specific land uses (e.g., housing tracts or industrial plants). Transient noise sources move through the environment, either along relatively established paths (e.g., highways, railroads, and aircraft flight tracks around airports) or randomly. There is wide diversity in responses to noise that not only vary according to the type of noise and the characteristics of the sound source, but also according to the sensitivity and expectations of the receptor, the time of day, and the distance between the noise source (e.g., an aircraft) and the receptor (e.g., a person or animal). The duration of a noise event, and the number of times noise events occur, are also important considerations in assessing noise impacts.

As a basis for comparison when noise levels are considered, it is useful to note that at distances of about 3 feet, typical kitchen appliances range from about 83 to 88 decibels (dB), rock bands approach 110 dB, and normal conversation from about 3 feet would be approximately 60 dB. Figure C-2 in Appendix C depicts typical A-weighted sound pressure levels for various common sources.

A.1.1.1 Noise Metrics

To assess noise impacts in the vicinity of each installation, the United States Air Force (USAF) has used both a cumulative metric, known as the Day-Night Average Sound Level (DNL), and a single event metric, known as the Sound Exposure Level (SEL). DNL is used to analyze a community’s exposure to noise while SEL is useful in describing what an individual might experience on the ground as an aircraft passes by and to assess potential for sleep disturbance and interference with activities. SEL is used to assess the potential impacts of noise on structures and animals. Appendix C provides more detailed information regarding noise and the analysis of impacts from changes to the noise environment.

The frequency, sound level, and duration of aircraft overflight noise events depend on variables including aircraft type and model (engine type), aircraft configuration (i.e., flaps, landing gear, etc.), engine power setting, aircraft speed, distance between the observer and the aircraft flight track, temperature, humidity, and altitude. Therefore, extensive noise data are collected for various types of aircraft/engines at different power settings and phases of flight. This database of aircraft noise provides a basis for calculation of average individual-event sound descriptors for specific aircraft operations at any location under varying meteorological conditions. The reference values are adjusted to any location by applying appropriate corrections for the variables.
Averaged Noise Metrics

DNL is a composite metric that accounts for all noise events in a 24-hour period. In order to account for increased human sensitivity to noise at night, a 10 dB penalty is applied to nighttime events (10 p.m. to 7 a.m.). This “noise penalty” is an effort to account for increased human sensitivity to late night noise events. The summation of sound during a 24-hour period does not ignore the louder single events; it actually tends to emphasize both the sound level and number of those events. The logarithmic nature of the dB unit causes sound levels of the loudest events to control the 24-hour average.

DNL is the accepted unit for quantifying annoyance to humans from general environmental noise, including aircraft noise. The Federal Interagency Committee on Urban Noise (FICUN) developed land use compatibility guidelines for noise exposure areas (FICUN 1980). Based upon these FICUN guidelines, the Federal Aviation Administration (FAA) developed recommended land uses in aircraft noise exposure areas. The USAF and FAA use DNL as the method to estimate the amount of exposure to aircraft noise and predict impacts. Land use compatibility and incompatibility are determined by comparing the predicted DNL at a site with the recommended land uses (Appendix C).

A.1.1.2 Noise Modeling

There are a variety of tools available to model noise at and around airfields. NOISEMAP is a computer program used to model noise exposure in the vicinity of military airfields due to aircraft flights and engine run-up activities. Noise contours generated by NOISEMAP are used in support of the USAF Air Installation Compatible Use Zone (AICUZ) program and National Environmental Policy Act (NEPA) documentation, such as this Environmental Impact Statement (EIS). The model generates noise contours based on numerous input data that are used to evaluate noise in the vicinity of airfields where military activity occurs. Part 150 of the Federal Aviation Regulations (FAR), Airport Noise Compatibility Planning, sets forth standards for airport operators to use in documenting noise exposure in the civilian airport environs and establishing programs to minimize noise-related land use incompatibilities. The FAA uses the Integrated Noise Model (INM), a computer model that evaluates aircraft noise impacts in the vicinity of commercial airports.

A.1.1.3 Potential Hearing Loss

Noise-related hearing loss risk has been studied extensively. Findings of studies and resulting policies and regulations are discussed briefly below and in more detail in Appendix C. As per Department of Defense (DoD) policy memorandum (2009), populations exposed to noise greater than 80 dB DNL were identified as being at the most risk for potential hearing loss (Undersecretary of Defense for Acquisition Technology and Logistics 2009). The DoD policy
directs that hearing loss risk should be assessed using the methodology described in United
States Environmental Protection Agency (USEPA) Report No. 550/9-82-105, Guidelines for
hearing loss risk in terms of Noise-Induced Permanent Threshold Shift (NIPTS), a quantity that
defines the permanent change in the threshold level below which a sound cannot be
heard. NIPTS is stated in terms of the average threshold shift at several frequencies that can be
expected from daily exposure to noise over a normal working lifetime of 40 years, with exposure
lasting 8 hours per day for 5 days per week.

The actual value of NIPTS for any given person depends on that individual’s physical sensitivity
to noise. Over a 40-year working lifetime, some people will experience more loss of hearing
than others. The actual noise exposure for any person living in an area subject to 80 dB DNL or
greater is determined by the length of time that a person is outdoors and directly exposed to the
noise. For example, noise exposure within an 80 dB DNL noise contour near an airfield would
be affected by whether a person was at home during the daytime hours when most flying occurs.
Many people would be inside their homes and would, therefore, be exposed to lower noise levels
due to noise attenuation provided by the house structure.

Workplace Noise

In 1972, the National Institute for Occupational Safety and Health (NIOSH) published a criteria
document with a recommended exposure limit of 85 dB as an 8-hour time-weighted
average. This exposure limit was reevaluated in 1998 when NIOSH made recommendations that
went beyond conserving hearing by focusing on the prevention of occupational hearing loss
(NIOSH 1998). Following the reevaluation using a new risk assessment technique, NIOSH
published another criteria document in 1998 that reaffirmed the 85 dB recommended exposure
limit (NIOSH 1998). Active-duty and reserve components of the USAF (including the Air
National Guard [ANG]), as well as civilian employees and contracted personnel working on
USAF bases and ANG installations must comply with Occupational Safety and Health
Administration (OSHA) regulations (29 Code of Federal Regulations [CFR] § 1910.95
Occupational Noise Exposure), DoD Instruction 6055.12, Hearing Conservation Program; Air
Force Occupational Safety and Health (AFOSH) Standard 48-20 (June 2006), and Occupational
Noise and Hearing Conservation Program (including material derived from the International
Standards Organization 1999.2 Acoustics-Determination of Occupational Noise Exposure and
Estimation of Noise Induced Impairment). Per AFOSH Standard 48-20, the Hearing
Conservation Program is designed to protect workers from the harmful effects of hazardous
noise by identifying all areas where workers are exposed to hazardous noise. The following are
the primary components of the program:

1. Identify noise hazardous areas or sources and ensure these areas are clearly marked.
2. Use engineering controls as the primary means of eliminating personnel exposure to potentially hazardous noise. All practical design approaches to reduce noise levels to below hazardous levels by engineering principles shall be explored. Priorities for noise control resources shall be assigned based on the applicable risk assessment code. Where engineering controls are undertaken, the design objective shall be to reduce steady-state levels to below 85 dB, regardless of personnel exposure time, and to reduce impulse noise levels to below 140 dB peak sound pressure level.

3. Ensure workers with an occupational exposure to hazardous noise complete an initial/reference audiogram within 30 days from the date of the workers’ initial exposure to hazardous noise.

4. Ensure new equipment being considered for purchase has the lowest sound emission levels that are technologically and economically possible and compatible with performance and environmental requirements. 42 United States Code (USC) Section 4914, Public Health and Welfare, Noise Control, Development of Low-Noise Emission Products, applies.

5. Education and training regarding potentially noise hazardous areas and sources, use and care of hearing protective devices, the effects of noise on hearing, and the Hearing Conservation Program.

A.1.2 Methodology

A.1.2.1 Aircraft Noise

Noise associated with flying operations and construction activities related to the Proposed Action are considered and compared with baseline conditions to assess potential impacts. Data developed during this process also supports analyses in the biological, cultural, land use, and environmental justice and the protection of children resource areas. When analyzing noise effects on humans, public annoyance is the most common impact associated with exposure to elevated noise levels, and the DNL noise metric has been strongly correlated to public annoyance. When subjected to a DNL of 65 dB, approximately 12 percent of the persons exposed would be expected to be “highly annoyed” by the noise (Finegold et al. 1994). At levels below 60 dB DNL, the percentage of annoyance is substantially lower (less than 8 percent), and at levels above 70 dB DNL it is substantially higher (approximately 25 percent) (Table A.1.2-1). A 75 dB DNL is also the threshold above which effects other than annoyance may occur (Committee on Hearing, Bioacoustics, and Biomechanics 1977). According to USAF land use guidelines, 65 dB DNL is the highest aircraft noise level that is normally compatible with residential uses (FICUN 1980). Even with special noise attenuation measures installed, residential developments are never considered to be compatible with a DNL of 75 dB or higher.
Table A.1.2-1. Theoretical Percentage of Population Highly Annoyed by Noise Exposure

<table>
<thead>
<tr>
<th>DNL Intervals in dB</th>
<th>Percentage of Persons Highly Annoyed</th>
</tr>
</thead>
<tbody>
<tr>
<td><65</td>
<td><12</td>
</tr>
<tr>
<td>65-70</td>
<td>12-22</td>
</tr>
<tr>
<td>70-75</td>
<td>22-37</td>
</tr>
<tr>
<td>75-80</td>
<td>37-54</td>
</tr>
<tr>
<td>>80</td>
<td>>61</td>
</tr>
</tbody>
</table>

Note: Noise impacts to individuals vary as do individual reaction to noise. This is a general prediction of the percent community highly annoyed based on environmental noise surveys conducted around the world.

dB = decibel; DNL = Day-Night Average Sound Level

Sleep disturbance is often considered an adverse reaction from aircraft operations in the vicinity of an airport. While there are currently no established criteria for evaluating sleep disturbance from aircraft overflights, recent studies suggest setting the threshold of outdoor SEL of 90 dB, an indoor SEL of 65 dB (25 dB lower) when windows are closed, and an indoor SEL of 75 dB (15 dB lower) when windows are open (DNWG 2009). Figure A.1.2-1 depicts the prevalence of awakening based on indoor SELs. This analysis is based on the change in aircraft operations resulting from the conversion of the KC-135 to the KC-46A. The total number of operations flown by all other aircraft would not change and sleep disturbance from those activities would remain as they are today. Based on the minor changes to the noise environment, sleep disturbance was dismissed from detailed analysis.
Speech Interference is a primary cause for annoyance and often leads to disruption of routine activities such as listening to the radio or television, using a telephone or having conversations. The quality of speech communication is also linked to disruption of classrooms and the potential for adverse effects on children’s learning ability. Those areas where speech interference occurs from current KC-135 aircraft operations would be expected to continue with the beddown of the KC-46A. This analysis is based on the change in aircraft operations resulting from the conversion of the KC-135 to the KC-46AA. The total number of operations flown by all other aircraft would not change and speech interference from those activities would remain as they are today. Based on the minor changes to the noise environment, speech disturbance was dismissed from detailed analysis.

For the purposes of this EIS, the significance of potential noise impacts is based on the noise sensitivity in areas affected by substantially increased noise levels under the Proposed Action. Generally, noise impacts could be considered significant if they would:

- increase in DNL by greater than 1.5 dB at one or more noise sensitive locations (e.g., residential areas) within the 65 dB DNL noise contour;
- newly expose noise-sensitive land uses, such as residential areas, to noise levels at which they are not considered to be compatible without sound attenuation (at or above 65 dBA DNL), according to federal land use guidelines; and
- increase noise levels at any facility to a point at which current functions could not be carried out efficiently.

Actual noise measurements for the KC-46A have not been obtained. Therefore, the USAF developed a set of noise data that can be used as a substitute for the KC-46A until such time as actual noise data becomes available. This data is not available in the INM program; therefore, the B767-300 was used as a substitute aircraft at civilian airports. Based on this substitute data, on a one-to-one basis, the KC-46A is slightly quieter than both the KC-135 and B767-300 (Table A.1.2-2).

Table A.1.2-2. Aircraft Noise Level Comparison

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Power Setting</th>
<th>SEL (dB) at Overflight Altitude in Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1,000 feet</td>
</tr>
<tr>
<td>Landing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KC-46A</td>
<td>60% N1</td>
<td>85</td>
</tr>
<tr>
<td>KC-135</td>
<td>65% NF</td>
<td>90</td>
</tr>
<tr>
<td>B767-300</td>
<td>12,000 lbs</td>
<td>89</td>
</tr>
<tr>
<td>Takeoff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KC-46A</td>
<td>92% N1</td>
<td>96</td>
</tr>
<tr>
<td>KC-135</td>
<td>90% NF</td>
<td>95</td>
</tr>
<tr>
<td>B767-300</td>
<td>33,000 lbs</td>
<td>95</td>
</tr>
</tbody>
</table>

Notes:
- Power Setting nomenclature is based on the instruments available in each aircraft.
- Power Unit: lbs = Pounds of Thrust; NF = Engine Fan; N1 = Engine Speed
- Standard Atmospheric Data, airspeeds normalized to 160 knots indicated airspeed.

Sources: NOISEMAP 7 Omega 10 Results; INM 2007.

Baseline and proposed noise contours were developed using the noise model that was used to generate the most current noise contour for each installation. For Joint Base McGuire-Dix-Lakehurst (JB MDL) and Forbes Air National Guard Station (ANGS), noise modeling was completed using the NOISEMAP program, and for Pease ANGS, Pittsburgh ANGS, and Rickenbacker ANGS, the FAA’s INM model was used. Where NOISEMAP was used, the USAF-developed KC-46A substitute noise data was used. At airports where INM was used, the KC-46A was modeled using the B767-300 as the substitute aircraft. The KC-46A is a militarized version of the B767-300 with both aircraft powered by two Pratt and Whitney PW4062 turbofan engines. Information specific to each location is presented in Chapter 3 of each alternative.

There are a variety of data that are input into the NOISEMAP and INM computer programs to develop noise contours, and include such variables as: physical description of the airport, number and mix of aircraft operations, aircraft configurations (engine power, airspeed, altitude), day-night split of operations (by aircraft type), runway utilization rates, prototypical flight track
descriptions, and flight track utilization rates. This information by type of aircraft/engine and meteorological variables are assembled and processed for input into either the NOISEMAP or INM programs. Contours are generated as 5 dB intervals beginning at 65 dB DNL. DNL less than 65 dB are considered unconditionally compatible with residential land use (see Table A.1.7-1). While there is no technical reason why a at or above a DNL 65 dB cannot be measured or calculated for comparison purposes, this DNL provides a valid basis for comparing and assessing community noise effects, and when in the airport vicinity, represents a noise exposure level that is normally dominated by aircraft noise rather than other community or nearby highway noise sources.

A.1.2.2 Construction Noise

Construction noise is generated by the use of heavy equipment on job sites and is short-term in duration (i.e., the duration of the construction period). Typical noise levels from heavy equipment range from 69 to 84 dB at 100 feet from the source (FHA 2006). Noise from construction would be temporary and construction projects would be undertaken adjacent to the flightline away from any off-base communities. Construction noise would be expected to be contained within base environs and therefore has not been carried forward for detailed analysis in this EIS.

A.2 AIR QUALITY

A.2.1 Definition of Resource

Ambient air quality refers to the atmospheric concentration of a specific compound that occurs at a particular geographic location. The ambient air quality levels measured at a particular location are determined by the interactions of emissions, meteorology, and chemistry. When discussing air quality, it is important to consider the types, amounts, and locations of pollutants emitted into the atmosphere. Meteorological factors that affect air quality include wind and precipitation patterns that can affect the distribution, dilution, and removal of pollutant emissions from the atmosphere. Furthermore, chemical reactions in the atmosphere can transform pollutant emissions into other chemical substances. Ambient air quality data are generally reported as a mass per unit volume (e.g., micrograms per cubic meter [µg/m³] of air) or as a volume fraction (e.g., parts per million [ppm] by volume).

Air quality is defined by ambient air concentrations of specific pollutants determined by the USEPA to be of concern with respect to the health and welfare of the general public. Pollutant emissions typically refer to the amount of pollutants or pollutant precursors introduced into the atmosphere by a source or group of sources. Pollutant emissions contribute to the ambient air concentrations of criteria pollutants, either by directly affecting the pollutant concentrations
measured in the ambient air or by interacting in the atmosphere to form criteria pollutants. Primary pollutants, such as carbon monoxide (CO), sulfur dioxide (SO₂), lead (Pb), and some particulates, are emitted directly into the atmosphere from emission sources.

Secondary pollutants, such as ozone (O₃), nitrogen dioxide (NO₂), and some particulates, are formed through atmospheric chemical reactions that are influenced by meteorology, ultraviolet light, and other atmospheric processes. Suspended particulate matter less than or equal to 10 microns in diameter (PM₁₀) and particulate matter less than or equal to 2.5 microns in diameter (PM₂.₅) are generated as primary pollutants by various mechanical processes (for example, abrasion, erosion, mixing, or atomization) or combustion processes. However, PM₁₀ and PM₂.₅ can also be formed as secondary pollutants through chemical reactions or by gaseous pollutants that condense into fine aerosols. In general, emissions that are considered “precursors” to secondary pollutants in the atmosphere (such as volatile organic compounds [VOCs] and oxides of nitrogen [NOₓ], which are considered precursors for O₃) are the pollutants for which emissions are evaluated to control the level of O₃ in the ambient air.

The ROI for this discussion can vary according to pollutant. For pollutants that do not undergo a chemical reaction after being emitted from a source (i.e., direct emissions), the ROI is generally restricted to a region in the immediate vicinity of the installation. These pollutants include CO, SO₂, and directly-emitted PM₁₀ and PM₂.₅. For pollutants that undergo chemical reactions and interact within the atmosphere to form secondary pollutants, such as O₃ and its precursors NOₓ and VOCs, and precursors of PM₁₀ and PM₂.₅, the ROI is a larger regional area. The chemical transformations and interactions that create O₃ and secondary PM₁₀ and PM₂.₅ can take hours to occur; therefore, the precursor pollutants may be emitted some distance from the impact area depending on weather conditions.

Mixing height is another factor used in defining the ROI for various pollutants. The mixing height is the upper vertical limit of the volume of air in which emissions may affect air quality. Emissions released above the mixing height are typically restricted from affecting ground level ambient air quality in the region, while emissions of pollutants released below the mixing height may affect ground level concentrations. The portion of the atmosphere that is completely mixed begins at ground level and may extend up to heights of a few thousand feet. Mixing height varies from region to region based on daily temperature changes, amount of sunlight, and other climatic factors. The USEPA has defined a default mixing height as 3,000 feet above ground level (AGL); however, a more refined mixing height may be used based on regional parameters. The specific ROI for each installation is discussed under each alternative location section.
A.2.2 Regulatory Setting

A.2.2.1 National Ambient Air Quality Standards

As part of the Clean Air Act (CAA), the USEPA has established criteria for seven major pollutants of concern, called “criteria pollutants.” These criteria pollutants include CO, SO₂, NO₂, O₃, PM₁₀, PM₂.₅, and Pb. The criteria set for these pollutants, the National Ambient Air Quality Standards (NAAQS), represent maximum levels of background pollution that are considered safe, with an adequate margin of safety to protect the public health and welfare. Based on measured ambient criteria pollutant data, the USEPA designates areas in the United States (U.S.) as having air quality better than (attainment) or worse than (nonattainment) the NAAQS.

Once a nonattainment area meets the standards and additional redesignation requirements in the CAA (Section 107(d)(3)(E)), USEPA will designate the area as a “maintenance area.” Maintenance areas are subject to the requirements of maintenance plans that are designed to ensure that the area continues to meet the standards. A maintenance area remains subject to the General Conformity Rule.

A.2.2.2 Prevention of Significant Deterioration

The CAA also established a national goal of preventing degradation or impairment in federally designated Class I areas. Class I areas are defined as those areas where any appreciable degradation in air quality or associated visibility impairment is considered significant. As part of the Prevention of Significant Deterioration (PSD) Program, Congress assigned mandatory Class I status to all national parks, national wilderness areas (excluding wilderness study areas or wild and scenic rivers), and memorial parks greater than 5,000 acres. In Class I areas, visibility impairment is defined as atmospheric discoloration (such as from an industrial smokestack), and a reduction in regional visual range. Visibility impairment or haze results from smoke, dust, moisture, and vapor suspended in the air. Very small particles are either formed from gases (sulfates, nitrates) or are emitted directly into the atmosphere from sources like electric utilities, industrial processes, and vehicle emissions. Stationary sources are regulated under the PSD Program, and the PSD permitting process requires a review of impacts to all Class I areas within 62 miles (100 kilometers) of any proposed major stationary source. Mobile sources, including aircraft and associated operations such as those occurring at the alternative ANG installations being considered under this Proposed Action, are not subject to the requirements of PSD.

A.2.2.3 Hazardous Air Pollutants

In addition to criteria pollutants, the USEPA has defined 187 substances as hazardous air pollutants (HAPs). HAPs are substances that have been determined to present some level of
acute or chronic health risk (cancer or non-cancer) to the general public. These pollutants may be emitted in trace amounts from various types of sources, including combustion sources. HAPs are regulated for specific source categories under the USEPA’s *National Emission Standards for Hazardous Air Pollutants* regulations.

A.2.2.4 Greenhouse Gases

Greenhouse gases (GHGs) are also regulated under the federal CAA. The USEPA defines GHGs as any of the following compounds: carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), and fluorinated gases such as hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. GHGs have varying global warming potential (GWP). The reference gas for GWP is CO₂; therefore, CO₂ has a GWP of 1. The other main GHGs that have been attributed to human activity include CH₄, which has a GWP of 21, and N₂O, which has a GWP of 310. Carbon dioxide equivalent (CO₂e) emissions are defined as the amount of CO₂ that would have the same GWP, when measured over a specified timescale (generally, 100 years). CO₂e emissions are calculated by multiplying the mass emissions by the GWP.

A.2.2.5 State Implementation Plan

Individual states are delegated the responsibility to regulate air quality in order to achieve or maintain air quality in attainment with these standards. Each state enforces air pollution regulations and sets guidelines to attain and maintain the NAAQS and state Ambient Air Quality Standards (AAQS) within each respective state associated with the Proposed Action; these guidelines are found in each state’s State Implementation Plan (SIP).

Some of the state AAQS are more stringent than the NAAQS, which translates into more emissions reductions generally within the region being required to show that it has attained an applicable AAQS than will be required to show its attainment of the comparable NAAQS.

Section 176(c) of the CAA, as articulated in the USEPA General Conformity Rule, states that a federal agency cannot issue a permit for or support an activity unless the agency determines that it will conform to the most recent USEPA-approved SIP. This means that projects using federal funds or requiring federal approval must not: 1) cause or contribute to any new violation of a NAAQS, 2) increase the frequency or severity of any existing violation, or 3) delay the timely attainment of any standard, interim emission reduction, or other milestone. If emissions of one or more of these compounds exceed a *de minimis* threshold, the USAF must demonstrate conformity under one of the methods prescribed by the General Conformity Rule.
A.2.3 Methodology

The Proposed Action involves both the beddown of the KC-46A aircraft and its operational emissions, construction of new facilities to accommodate the new aircraft, and emissions related to a minor change in personnel commuting to the alternative installations. Environmental consequences to air quality were evaluated to assess whether degradation in air quality would be anticipated from implementation of the Proposed Action at any of the alternative installations. Air quality impacts from the KC-46A beddown were reviewed for significance relative to federal, state, and local air pollution standards and regulations. In the case of criteria pollutants for which the ROI is in attainment of the NAAQS, the analysis used the PSD threshold for new major sources of 250 tons per year (tpy) of that pollutant as an indicator of significance or non-significance of projected air quality impacts. In the case of criteria pollutants for which the project region does not attain an NAAQS or is in a maintenance area, the analysis used the pollutant threshold that triggers a conformity determination (the de minimis threshold) under the General Conformity Rule. If proposed emissions exceed a PSD threshold for attainment pollutants or a de minimis threshold for nonattainment pollutants, further analysis was conducted to determine whether impacts would be significant. In such cases, if emissions attributable to the Proposed Action (1) do not contribute to an exceedance of an ambient air quality standard, or (2) conform to the approved SIP, air quality impacts would be less than significant.

Factors needed to derive construction source emission rates were obtained from the Compilation of Air Pollutant Emission Factors, AP-42, Volume I (USEPA 1995), the USEPA NONROAD 2008a model for nonroad construction equipment (USEPA 2009), and the USEPA MOVES 2010b model for on-road vehicles (USEPA 2013b).

The Proposed Action would include construction activities at the alternative installations. Emissions associated with construction were calculated using construction source emission rates from the Compilation of Air Pollutant Emission Factors, AP-42, Volume I (USEPA 1995), the USEPA NONROAD2008 model for nonroad construction equipment (USEPA 2009), and the emission factors for vehicles from the Air Force Civil Engineer Center (AFCEC) Air Emissions Guide for Air Force Mobile Sources (AFCEC 2013) to calculate emissions from fugitive dust, construction equipment, and vehicles. Appendix D includes data and assumptions used to calculate proposed construction emissions.

Air quality impacts from construction would occur from (1) combustion emissions due to the use of fossil fuel-powered equipment and vehicles, and (2) fugitive dust emissions (PM$_{10}$) during demolition activities, earth-moving activities, and the operation of equipment on bare soil. Fugitive dust emissions were calculated based on the total site disturbance projected for each construction project for all construction years. Equipment usage was based on similar construction projects to estimate project combustion and fugitive dust emissions.
Inclusion of standard construction practices and Leadership in Energy and Environmental Design (LEED) certification level of Silver into proposed construction activities would minimize air quality impacts from proposed construction activities. For example, the analysis reduced fugitive dust emissions generated from the use of construction equipment on exposed soil by 50 percent from uncontrolled levels to simulate implementation of standard construction practices for fugitive dust control.

These standard construction practices for fugitive dust control include the following.

- Use water trucks to keep areas of vehicle movement damp enough to minimize the generation of fugitive dust.
- Minimize the amount of disturbed ground area at a given time.
- Suspend all soil disturbance activities when winds exceed 25 miles per hour or when visible dust plumes emanate from the site and stabilize all disturbed areas with water application.
- Designate personnel to monitor the dust control program and to increase watering, as necessary, to minimize the generation of dust.

Operational emissions associated with each alternative associated with the Proposed Action include emissions associated with aircraft operations and associated equipment. Mobile source emissions include emissions from aircraft operations (take-offs and landings), aerospace ground equipment (AGE), privately owned vehicle (POV) operations, and maintenance aircraft operations performed with the engines still mounted on the aircraft (engine run-ups and trim checks). Air quality impacts associated with the Proposed Action for the KC-46A aircraft were assessed by comparing the projected net emissions associated with KC-46A operations with emissions associated with existing operations for the KC-135 aircraft. Emissions evaluated for both the baseline and the Proposed Action at each alternative installation include (1) aircraft operations; (2) POVs, (3) engine run-ups, and (4) AGE use. It was assumed that there would be no net change in use of government motor vehicles (GMVs), construction (outside of the construction activities associated with the Proposed Action), or stationary sources. Emissions from these categories of sources were calculated based on guidance from the USAF in their *Air Emissions Guide for Air Force Mobile Sources* (AFCEC 2013) utilizing the latest air emissions modeling tools. Factors used to calculate combustive emissions for the KC-46A aircraft are based on emissions data developed by Pratt and Whitney for the PW4062 engine (International Civil Aviation Organization 2013). The operational times in mode for the KC-46A and KC-135 engines are based on those currently used for the KC-135 aircraft in the *Air Emissions Guide for Air Force Mobile Sources* (AFCEC 2013). A detailed description of the methodology and assumptions used for each source category is provided in Appendix D.
There are no final guidelines for discussing the potential GHG impacts in Environmental Impact Analysis Process documents. The Council on Environmental Quality (CEQ) proposed draft guidance for public comment and review on February 18, 2010, but this draft has never been formally adopted by CEQ. Given the global nature of climate change and the current state of the science, it is not useful at this time to attempt to link the emissions quantified for local actions to any specific climatological change or resulting environmental impact. Nonetheless, the GHG emissions from the project alternatives have been quantified to the extent feasible in this EIS for information and comparison purposes.

A.3 SAFETY

A.3.1 Definition of Resource

The USAF manages risk as outlined in Air Force Instruction (AFI) 90-802 Risk Management (USAF 2013a). Requirements defined in this document provide a process to maintain readiness in peacetime and achieve success in combat while safeguarding people and resources. The safety analysis contained in this EIS addresses issues related to the health and well-being of both military personnel and civilians living in the vicinity of the alternative airfields. Specifically, this section provides information on both ground and flight safety. Ground safety includes discussions of fire/crash response capabilities, Accident Potential Zones (APZs)/Runway Protection Zones (RPZs), explosive safety, and Anti-Terrorism/Force Protection (AT/FP). Flight safety includes discussions on flight safety procedures, aircraft mishaps, bird/wildlife aircraft strike hazards (BASH), and fuel jettison requirements.

A.3.1.1 Ground Safety

Fire/Crash Response

Military airfields present special hazards to rescue and response personnel. Due to the nature of combustibles involved in an aircraft crash, and the physical forces that are experienced, strategic priorities differ from other types of firefighting scenarios. In Aircraft Rescue and Fire Fighting (ARFF), the emphasis is more heavily weighted toward rescue than in structural firefighting. The rule of thumb is initially to fight only the fire that interferes with the rescue. Under the DoD Instruction 6055.6, DoD Fire and Emergency Services Program, each military airport is required to have a dedicated rescue team composed of trained firefighters whose mission includes specific aircraft rescue tasks. Military airports are equipped with rescue vehicles staffed by ARFF personnel using state-of-the-art rescue tools.
Accident Potential Zone/Runway Protection Zone

Clear Zones and APZs/RPZs are established at military and civilian airfields to delineate recommended surrounding land uses for the protection of people and property on the ground. Clear Zones and APZs define the areas in the vicinity of a military airfield that would have the highest potential to be affected if an aircraft mishap were to occur. The Clear Zone extends 3,000 feet by 3,000 feet off the end of the runway, followed by a 3,000-foot by 5,000-foot APZ I, and a 3,000-foot by 7,000-foot APZ II (Figure A.3.1-1) (DoD Instruction 4165.57, 2011). Similar to APZs, but used at civilian airports, RPZs are trapezoidal zones extending outward from the ends of active runways at commercial airports, and as with APZs, delineate those areas recognized as having the greatest risk of aircraft mishaps, most of which occur during take-off or landing. Development restrictions within RPZs are intended to discourage incompatible land use activities from being established in these areas. The RPZ dimension for a particular runway end is a function of the type of aircraft and minimum approach visibility associated with that runway end. For most commercial airports (e.g., Rickenbacker or Pittsburgh International Airport [IAP]) with large aircraft, the departure RPZ begins 200 feet from the end of the runway and continues out to 1,700 feet, with a width beginning at 500 feet and expanding as the distance from the runway increases to 1,010 feet wide (FAA 2009). The approach RPZ begins 200 feet before the runway threshold and extends out 1,700 feet in a reverse of the departure RPZ (Figure A.3.1-2) (FAA 2009).

![Figure A.3.1-1. Accident Potential Zones](source: DoD 2011.)
Explosive Safety

Quantity-distance (QD) arcs define levels of risk considered acceptable for potential explosive sites. Separation distances are buffers that provide relative protective or safe distances. QD standards were developed over many years and are based on explosives mishaps and tests. All ordnance is handled and stored in accordance with USAF explosive safety directives (AFI 91-201), and all munitions maintenance is carried out by trained, qualified personnel using USAF-approved technical data.

Anti-Terrorism/Force Protection

AT/FP standards seek effective ways to minimize the likelihood of mass casualties from terrorist attacks against DoD personnel in the buildings in which they work and live. These standards provide minimum levels of protection against terrorist attacks for the occupants of all DoD inhabited buildings. They are intended to be used by security and anti-terrorism personnel and design teams to identify the minimum requirements that must be incorporated into the design of all new construction and major renovations of inhabited DoD buildings. They also include recommendations that should be, but are not required to be, incorporated into all such buildings.
A.3.1.2 Flight Safety

Flight Safety Procedures

The Air Force Safety Center (AFSEC) recently initiated several facets for proactive flight safety. While investigations after an accident have yielded causality of mishaps, proactive safety entails searching for and measuring precursors that can lead to accidents before they occur. In mission planning, pre-flight, and during flight, safety is at the forefront of all USAF operations. By AFI, each unit conducting or supporting flight operations must have a flight safety program to support its mission and foster a culture of mishap prevention (USAF 2013a).

Aircraft Mishaps

Aircraft mishaps are classified as A, B, C, or D (Table A.3.1-1). Class A mishaps are the most severe with total property damage of $2 million or more or a fatality and/or permanent total disability. It is important to note that in 2010, the threshold for determining Class A and B mishaps was raised from $1 million to $2 million dollars for Class A and the ceiling was raised for Class B to two million dollars. Comparison of Class A mishap rates for various aircraft types, as calculated per 100,000 flying hours, provides the basis for evaluating risks among different aircraft and levels of operations. Each base-specific safety section analyzes existing and projected Class A mishap potentials based on flying hours and aircraft types.

<table>
<thead>
<tr>
<th>Mishap Class</th>
<th>Total Property Damage</th>
<th>Fatality/Injury</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$2,000,000 or more and/or aircraft destroyed</td>
<td>Fatality or permanent total disability</td>
</tr>
<tr>
<td>B</td>
<td>$500,000 or more but less than $2,000,000</td>
<td>Permanent partial disability or three or more persons hospitalized as inpatients</td>
</tr>
<tr>
<td>C</td>
<td>$50,000 or more but less than $500,000</td>
<td>Nonfatal injury resulting in loss of one or more days from work beyond day/shift when injury occurred</td>
</tr>
<tr>
<td>D</td>
<td>$20,000 or more but less than $50,000</td>
<td>Recordable injury or illness not otherwise classified as A, B, or C</td>
</tr>
</tbody>
</table>

Source: DoD 2011.

Bird/Wildlife Aircraft Strike Hazard

BASH and the dangers it presents form another safety concern for aircraft operations. BASH constitutes a safety concern because of the potential for damage to aircraft or injury to aircrews or local populations if an aircraft crash should occur in a populated area. Aircraft can encounter birds at nearly all altitudes up to 30,000 feet above mean sea level (MSL); however, most birds fly close to the ground. According to the AFSEC BASH statistics, more than 50 percent of bird/wildlife strikes occur below 400 feet, and 90 percent occur at less than 2,000 feet above ground level (AGL) (AFSEC 2012a). Of these strikes, approximately 49 percent occur in the
airfield environment (AFSEC 2012b). Waterfowl present the greatest BASH potential due to their congregational flight patterns and because, when migrating, they can be encountered at altitudes up to 20,000 feet AGL. Raptors also present a substantial hazard due to their size and soaring flight patterns. In general, the threat of bird/wildlife aircraft strikes increases during March and April and from August through November due to migratory activities. The USAF BASH program was established to minimize the risk for collisions of birds/wildlife and aircraft and the subsequent loss of life and property. In accordance with AFI 91-202_AFGM2, U.S. Air Force Mishap Prevention Program (USAF 2013b), each flying unit in the USAF (including the Air Force Reserve Command and ANG) must develop a BASH plan to reduce hazardous bird/wildlife activity relative to airport flight operations. The intent of each plan is to reduce BASH issues at airfields by creating an integrated hazard abatement program through awareness, avoidance, monitoring, and actively controlling bird and animal population movements. Some of the procedures outlined in the plan include monitoring the airfield for bird and other wildlife activity, issuing bird hazard warnings, initiating bird/wildlife avoidance procedures when potentially hazardous bird/wildlife activities are reported, and submitting BASH reports for all incidents.

Fuel Jettison

Aircraft have two major types of weight limits: the maximum take-off weight and the maximum structural landing weight, with the maximum structural landing weight almost always being the lower of the two. This allows an aircraft on a normal, routine flight to take off at the higher weight, consume fuel en route, and arrive at a lower weight. If a flight takes off at the maximum take-off weight and then faces an emergency situation whereupon it must return to the departure airfield, there will not be time to consume the fuel intended for transit to the original destination, and the aircraft may exceed the maximum landing weight to land at the departure airfield. At this point, if the aircraft is capable, sufficient fuel would be jettisoned to reduce the aircraft’s weight below that maximum landing weight limit and then it would land. This rare phenomenon is known as fuel jettisoning. AFIs cover the fuel jettison procedures, and local operating policies define specific fuel jettison areas for each base. The KC-46A, like the KC-135 aircraft, has the ability to jettison fuel in cases of emergency and non-emergency situations. Data on historical KC-135 operations show that slightly less than two sorties per thousand resulted in a release of fuel (Headquarters Air Mobility Command [AMC] 2013). The KC-46A can land at its maximum take-off weight; therefore, KC-46A sorties would rarely require fuel jettison. However, depending on the type and severity of an emergency, there is always the possibility of the requirement to adjust gross weight quickly for aircraft maneuverability/control for safety based on the nature of an emergency. If there are flight control issues, etc. where the aircraft needs to be at a lower gross weight for aircraft safety, then fuel jettisoning could take place.
Current USAF policy is designed to minimize potential impacts of fuel jettison events. The continued use of such strategies, in addition to the following tactics, would minimize the deposition of fuel onto the ground from a KC-46A fuel jettison event:

- Fuel jettison would occur at a minimum altitude of 20,000 feet AGL, whenever possible.
- Release fuel in a straight line.
- Release fuel at a right angle to flight level wind direction.
- Release fuel as slowly as possible.
- Release fuel at as fast of an aircraft speed as possible.
- Release fuel at as high of an altitude as possible.

For this EIS, previous studies and fuel jettisoning models were reviewed to determine if fuel jettisoning impacts were a concern to the well-being of humans and the environment. The analysis concluded that maximum fuel deposition values expected from the KC-46A would not produce substantial or significant impacts to human or natural resources (Headquarters Air Mobility Command AMC 2013).

In addition to military procedures, the FAA sets requirements for when and how fuel jettisoning may occur. The FAA instruction stipulates that, whenever possible, fuel can only be jettisoned above a minimum altitude of 20,000 feet AGL to improve its evaporation, and that a jettisoning aircraft must be separated from other air traffic by at least 5 miles (FAA 2012). Air traffic controllers are also instructed to direct planes dumping fuel away from populated areas and over large bodies of water to the extent practicable. In 2001, the USEPA National Vehicle and Fuel Emissions Laboratory concluded, “Since fuel dumping is a rare event, and the fuel would likely be dispersed over a very large area, we believe its impact to the environment would not be serious” (USEPA 2001).

The primary environmental concern from fuel jettison from an aircraft is for it to negatively impact human health or natural resources. The results of a study by Harvey Clewell concluded that if JP-4 jet fuel was jettisoned above a critical altitude of 20,000 feet AGL, the ultimate ground fall and related environmental impact would be negligible (Clewell 1980). The dumped fuel evaporates completely or it is transformed before reaching the ground. Only at significant lower dumping altitude or during strong precipitation, it may be possible that finest fuel droplets reach the ground.

With the USAF transition to JP-8 jet fuel, further studies on the effects of fuel jettisoning were warranted as the lower volatility of JP-8 fuel increases the time required for complete evaporation at ambient temperatures. Several mathematical models were developed and/or used to assess the impact of jettisoning JP-8 jet fuel, including an Air Force Institute of Technology model, the Fuel Jettisoning Simulation Model, and the Fuel Dumping Impact Assessment Model.
Additionally, a modified version of the Air Force Institute of Technology model, which includes surface evaporation, was used to evaluate the time required to evaporate JP-8 jet fuel after it reaches the surface.

Compared with the impact of JP-4 jet fuel, the jettisoning of JP-8 does result in more fuel reaching the surface. The surface and atmospheric temperatures greatly influence the evaporation rate of the jet fuel. Surface temperatures around 0 degrees Celsius (°C) (32 degrees Fahrenheit [°F]) and below result in a greater fraction of fuel reaching the surface. However, assuming a controlled release above 20,000 feet AGL and a non-freezing surface temperature, the deposition value of JP-8 is below known natural resource and human health thresholds for jet fuel and the impact should be negligible (Todd 1995). Accordingly, AFI 11-2KC-135 Volume 3, C/KC-135 Operations Procedures, and AMC policy establish 20,000 feet AGL as the minimum fuel jettison altitude.

A.3.2 Methodology

Based on the current commercial Boeing 767 aircraft, development and basing of the KC-46A includes a robust safety clearance program conducted by test pilots in multiple phases at the Boeing aircraft test facility. Modeling, simulation, and ground tests reduce the uncertainties of flight testing, and the flight test program ensures flight safety and reducing risks associated with new technologies.

At publication of this EIS, there have not been enough flight hours to accurately depict the specific safety record for this new aircraft. Therefore, the analysis used the similar airframe of the Boeing 767 aircraft safety records. Mishap analysis was based on that commercial aircraft to draw operational history, as well as the current refueling aircraft, the KC-135.

The assessment of safety examines how implementation of any of the alternatives would affect safety at the particular airfield location. Public safety impacts are considered relative to whether the general public is endangered as a result of proposed USAF activities. For each training activity or group of similar activities, an estimate of risk to the general public was formulated based on USAF safety procedures. Existing AFI and regulations provide operational and safety procedures for all normal USAF aerial events. Several factors were considered in evaluating the effects of USAF proposed activities on public safety. These factors include proximity to the public, access control, scheduling, public notification of events, frequency of events, duration of events, safety procedures, operational control of training events, and safety history.
A.4 SOILS AND WATER RESOURCES

A.4.1 Definition of the Resource

The term “soils” refers to the unconsolidated earthen organic or mineral materials overlying bedrock or other parent material. Soil structure, elasticity, strength, shrink-swell potential, and erodibility all determine the suitability of the ground to support man-made structures and facilities. Relative to development, soils typically are described in terms of their type, slope, physical characteristics, and relative compatibility or limitations with regard to particular construction activities and types of land use.

The Farmland Protection Policy Act (FPPA) was passed by Congress as part of the Agriculture and Food Act of 1981 (Public Law 97-98) in response to findings that millions of acres of farmland were being converted to non-farm uses each year. The Agriculture and Food Act was passed in an effort to protect farmland and combat urban sprawl. Additionally, the FPPA is intended to minimize the impact federal programs have on the unnecessary and irreversible conversion of farmland to nonagricultural uses. It assures that, to the extent possible, federal programs are administered to be compatible with state, local, and private programs and policies to protect farmland. For the purpose of FPPA, farmland includes prime farmland, unique farmland, and land of statewide or local importance.

Water resources analyzed in this EIS include both surface and groundwater quantity and quality, and floodplains. Surface water includes all lakes, ponds, rivers, and streams and is important for a variety of reasons including irrigation, power generation, recreation, flood control, and human health. The nation’s waters are protected under the Clean Water Act (CWA). The goal of the CWA is to restore and maintain the chemical, physical, and biological integrity of the nation’s waters so that they can support “the protection and propagation of fish, shellfish, and wildlife and recreation in and on the water.” Pollutants regulated under the CWA include “priority” pollutants, including various toxic pollutants; “conventional” pollutants, such as biochemical oxygen demand, total suspended solids, fecal coliform, oil and grease, and pH; and “non-conventional” pollutants, including any pollutant not identified as either conventional or priority. Under the CWA Section 402, it is illegal to discharge any point and/or nonpoint pollution sources into any surface water without a National Pollutant Discharge Elimination System (NPDES) permit. Specific State NPDES programs are discussed in Chapter 3 under each installation.

Groundwater includes the subsurface hydrologic resources of the physical environment and is by and large a safe and reliable source of fresh water for the general population, especially those in areas of limited precipitation and is commonly used for potable water consumption, agricultural irrigation, and industrial applications. Groundwater also plays an important part in the overall...
hydrologic cycle and its properties are described in terms of depth to aquifer or water table, water quality, and surrounding geologic composition.

Floodplains are defined by Executive Order (EO) 11988, *Floodplain Management*, as “the lowland and relatively flat areas adjoining inland and coastal waters including flood-prone areas of offshore islands, including at a minimum, the area subject to a one percent or greater chance of flooding in any given year” (that area inundated by a 100-year flood). Floodplains and riparian habitat are biologically unique and highly diverse ecosystems providing a rich diversity of aquatic and terrestrial species, as well as promoting stream bank stability and regulating water temperatures. EO 11988 requires federal agencies to avoid, to the extent possible, the long- and short-term adverse impacts associated with the occupancy and modification of floodplains and to avoid direct or indirect support of floodplain development whenever there is a practicable alternative.

The ROI for soils includes the locations on each installation where construction activities would occur. The ROI for water resources includes each of the five installations, as well as nearby surface waters that receive runoff generated within the specific project areas.

A.4.2 Methodology

Minimization of soil erosion and the siting of facilities in relation to soil limitations are considered when evaluating impacts to soils. Generally, impacts associated with earth resources can be avoided or minimized to a level of insignificance if proper construction techniques, erosion control measures, and structural engineering designs are incorporated into project development. Should the proposed activities have the potential to convert farmland to non-farm use, a land evaluation and site assessment would be conducted and alternative sites considered should potential adverse impacts to farmland exceed the recommended allowable level.

Adverse impacts to soils and the associated potential indirect impacts to water resources can be minimized through the implementation of standard construction practices such as those typically required to be in compliance with the CWA (i.e., the use of well-maintained silt fences or straw wattles, minimizing surficial areas disturbed, stabilization of cut/fill slopes, minimization of earth-moving activities during wet weather, and covering of soil stockpiles, as appropriate). Analysis of impacts to soil resources resulting from proposed activities examines the suitability of locations for proposed operations and activities. Impacts to soil resources can result from earth disturbance that would expose soil to wind or water erosion.

With regard to water resources, the primary concerns associated with the Proposed Action include changes to surface water drainage, effects on water quality during construction activities, and groundwater recharge. Stormwater discharges from construction activities (such as clearing,
grading, excavating, and stockpiling) that disturb 1 or more acres, or smaller sites that are part of a larger common plan of development or sale, are regulated under the NPDES stormwater program. Prior to discharging stormwater, construction operators must obtain coverage under an NPDES permit, which is administered by either the State (if it has been authorized to operate the NPDES stormwater program) or USEPA, depending on where the construction site is located. The permit is based on a project’s overall risk and requires measures to prevent erosion and reduce sediment and other pollutants in their discharges. Compliance with this permit involves development and implementation of a Stormwater Pollution Prevention Plan (SWPPP) that includes site-specific management measures.

A.5 Biological Resources

A.5.1 Definition of the Resource

Biological resources include living, native, or naturalized plant and animal species and the habitats within which they occur. Plant associations are generally referred to as vegetation and animal species are referred to as wildlife. Habitat can be defined as the resources and conditions present in an area that produces occupancy of a plant or animal (Hall et al. 1997). Although the existence and preservation of biological resources are intrinsically valuable, these resources also provide aesthetic, recreational, and socioeconomic values to society. This analysis focuses on species or vegetation types that are important to the function of the ecosystem, of special societal importance, or are protected under federal or state law or statute. For purposes of this EIS, these resources are divided into four major categories: vegetation, wildlife, special status species, and wetlands.

Vegetation types include all existing terrestrial plant communities as well as their individual component species. The affected environment for vegetation includes only those areas potentially subject to ground disturbance.

For the purposes of this analysis, wildlife includes all fish, amphibian, reptile, bird, and mammal species with the exception of those identified as special status species (special status wildlife species are addressed separately due to their protected status). Wildlife also includes those bird species protected under the federal Migratory Bird Treaty Act, the Bald and Golden Eagle Protection Act, and other species-specific conservation legal authorities. Assessment of a project’s effect on migratory birds places an emphasis on “species of concern” as defined by EO 13186, Responsibilities of Federal Agencies to Protect Migratory Birds. Additional assessment of potential impacts to migratory birds that are regionally rare occurs under the special status species category.

Special Status Species are defined as those plant and animal species listed as endangered, threatened, and species proposed for listing by the U.S. Fish and Wildlife Service (USFWS)
under the Endangered Species Act (ESA), and by state agencies. The federal ESA protects federally listed endangered and threatened plant and animal species. Critical habitat is a term defined and used in the ESA. It is a specific geographic area(s) that contains features essential for the conservation of a threatened or endangered species and that may require special management and protection. Federally identified candidate species (species proposed for listing) are not protected under law; however, these species could become listed, and therefore, protected at any time. Their consideration early in the planning process may avoid future conflicts that could otherwise occur. Additionally, the corresponding state regulatory agencies (Kansas Department of Wildlife, Parks and Tourism; New Jersey Division of Fish and Wildlife; New Hampshire Fish and Game; Pennsylvania Department of Conservation and Natural Resources, and Ohio Department of Natural Resources) protect state-listed plant and animal species through State fish and wildlife and administrative codes.

Wetlands are considered sensitive habitats and are subject to federal regulatory authority under Section 404 of the CWA and EO 11990, *Protection of Wetlands*. Wetlands are defined by the U.S. Army Corps of Engineers (USACE) as those areas that are inundated or saturated by surface or groundwater at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions (Environmental Laboratory 1987). Wetlands generally include swamps, marshes, bogs, and similar areas.

The ROI for biological resources consists of lands within the vicinity of the airfield at the five alternative locations.

A.5.2 Methodology

Analysis of impacts to biological resources focuses on whether and how components of the Proposed Action could affect biological resources. Determination of the significance of potential impacts to biological resources is based on:

- the importance (i.e., legal, commercial, recreational, ecological, or scientific) of the resource,
- the proportion of the resource that would be affected relative to its occurrence in the region,
- the sensitivity of the resource to proposed activities, and
- the duration of ecological ramifications.

Impacts to biological resources would be considered significant if species or habitats of concern were significantly adversely affected over relatively large areas or disturbances resulted in
reductions in the population size or distribution of a special status species, or if laws, codes, or ordinances protecting special status species were violated.

A.6 CULTURAL RESOURCES

A.6.1 Definition of the Resource

Cultural resources consist of prehistoric and historic districts, sites, structures, artifacts, or any other physical evidence of human activity considered important to a culture, subculture, or community for scientific, traditional, religious, or other reasons. Cultural resources can be divided into three major categories: archaeological resources (prehistoric and historic), architectural resources, and traditional cultural resources.

Archaeological resources are locations where human activity measurably altered the earth or left deposits of physical remains (e.g., tools, arrowheads, or bottles). “Prehistoric” refers to resources that predate the advent of written records in a region. These resources can range from a scatter composed of a few artifacts to village sites and rock art. “Historic” refers to resources that postdate the advent of written records in a region. Archaeological resources can include campsites, roads, fences, trails, dumps, battlegrounds, mines, and a variety of other features.

Architectural resources include standing buildings, dams, canals, bridges, and other structures of historic or aesthetic significance. Architectural resources generally must be more than 50 years old to be considered for protection under existing cultural resource laws. However, more recent structures, such as Cold War era military buildings, may warrant protection if they have exceptional characteristics and the potential to be historically significant structures. Architectural resources must also possess integrity (i.e., its important historic features must be present and recognizable).

Traditional cultural resources can include archaeological resources, buildings, neighborhoods, prominent topographic features, habitats, plants, animals, and minerals that Native Americans or other groups consider essential for the continuance of traditional cultures.

Only cultural resources considered to be significant, known or unknown, warrant consideration with regard to adverse impacts resulting from a proposed action. To be considered significant, archaeological or architectural resources must meet one or more criteria as defined in 36 CFR 60.4 for inclusion in the National Register of Historic Places (NRHP). The quality of significance in American history, architecture, archaeology, engineering, and culture is present in districts, sites, buildings, structures and objects that possess integrity of location, design, setting, materials, workmanship, feeling, and association, and:
(a) that are associated with events that have made a significant contribution to the broad patterns of our history; or
(b) that are associated with the lives of persons significant in our past; or
(c) that embody the distinctive characteristics of a type, period, or method of construction; or
(d) that represent the work of a master, or that possess high artistic values, or that represent a significant and distinguishable entity whose components may lack individual distinction; or
(e) that have yielded, or may be likely to yield, information important in prehistory or history.

Several federal laws and regulations have been established to manage cultural resources, including the National Historic Preservation Act (NHPA) (1966), the Archaeological and Historic Preservation Act (1974), American Indian Religious Freedom Act (1978), the Archaeological Resources Protection Act (1979), and Native American Graves Protection and Repatriation Act (1990). In addition, coordination with federally recognized Native American tribes must occur in accordance with EO 13175, *Consultation and Coordination with Indian Tribal Governments.*

On November 27, 1999, the DoD promulgated its Annotated American Indian and Alaska Native Policy, which emphasizes the importance of respecting and consulting with tribal governments on a government-to-government basis in recognition of their sovereignty as a nation. This Policy requires an assessment, through consultation, of the effect of proposed DoD actions that may have the potential to significantly affect protected tribal resources, tribal rights, and Indian lands before decisions are made by the respective services (DoD American Indian/Alaska Native Policy), as does DoD Instruction 4710.02, *Interaction with Federally Recognized Tribes* (September 14, 2006).

The ROI for cultural resources includes only those locations on the specific installation where facility renovation or construction and its staging would occur and potential ground disturbance would result. The ROI does not include areas under the airspace used by the units, as there are no relevant changes to use of the airspace. There are no known tribal resources within any installation ROI that would be affected by noise.

A.6.2 Methodology

Cultural resources are subject to review under both federal and state laws and regulations. Section 106 of the NHPA of 1966 empowers the Advisory Council on Historic Preservation to comment on federally initiated, licensed, or permitted projects affecting cultural sites listed or eligible for inclusion on the NRHP. Once cultural resources have been identified, significance evaluation is the process by which resources are assessed relative to significance criteria for
scientific or historic research, for the general public, and for traditional cultural groups. Only cultural resources determined to be significant (i.e., eligible for the NRHP) are protected under the NHPA.

To complete the analysis of impacts to cultural resources, various sources of information were utilized. This included a review of previous cultural resource survey reports, Integrated Cultural Resource Management Plans, if available, and other documents available from the five installations that contained background information on the histories and the physical landscapes of the installations. Additionally, consultation with federally-recognized American Indian Tribes is in process to assist in determining impacts to traditional cultural resources. The list of Tribes being consulted was primarily compiled using two federal on-line resources: 1) the U.S. Department of Housing and Urban Development Tribal Directory Assessment Tool Version 2.0, which is designed to help users identify tribes by county and state and to provide appropriate tribal contact information to assist in consultation (U.S. Department of Housing and Urban Development 2013); and 2) the Native American Consultation Database, part of the National Native American Graves Protection and Repatriation Act Online Databases, which is a tool for identifying consultation contacts (National Park Service 2013). The JB MDL ANGS has already invited two federally-recognized tribes (Delaware Nation and Delaware Tribe of Indians) to participate in a government-to-government relationship. In the past, the Stockbridge-Munsee Community was invited by JB MDL to participate in government-to-government consultation, but declined interest in being further consulted. At Forbes ANGS, the Tribes to include in consultation were determined from a list provided in the Integrated Cultural Resource Management Plan (Air Force Center for Engineering and the Environment 2010) by the Kansas SHPO as having an interest in Shawnee County. The Federal Register was utilized to verify the federally-recognized status of each Tribe (77 Federal Register 47868 2012). Table A.6.2-1 lists the federally-recognized tribes for consultation at each installation.
Table A.6.2-1 Federally-recognized Tribes for Consultation

<table>
<thead>
<tr>
<th>Alternative #</th>
<th>Installation, State</th>
<th>Tribe(s)</th>
</tr>
</thead>
</table>
| Alternative #1| Forbes ANGS, Kansas | 1) Citizen Potawatomi Nation
 | | 2) Delaware Nation
 | | 3) Kaw Nation
 | | 4) Osage Nation of Oklahoma
 | | 5) Prairie Band of Potawatomi Nation
 | | 6) Absentee Shawnee Tribe of Oklahoma
 | | 7) Eastern Shawnee Tribe of Oklahoma
 | | 8) Wichita and Affiliated Tribes |
| Alternative #2| JB MDL, New Jersey | 1) Delaware Nation
 | | 2) Delaware Tribe of Indians
 | | 3) Stockbridge-Munsee Community² |
| Alternative #3| Pease ANGS, New Hampshire | 1) Penobscot Indian Nation |
| Alternative #4| Pittsburgh ANGS, Pennsylvania | 1) Cayuga Nation of New York
 | | 2) Onondaga Nation of New York
 | | 3) Tuscarora Nation of New York
 | | 4) Seneca Nation of Indians
 | | 5) Tonawanda Band of Seneca |
| Alternative #5| Rickenbacker ANGS, Ohio | 1) Citizen Potawatomi Nation
 | | 2) Delaware Nation
 | | 3) Prairie Band of Potawatomi Nation
 | | 4) Eastern Shawnee Tribe of Oklahoma
 | | 5) Forest County Potawatomi Community
 | | 6) Hannahville Indian Community
 | | 7) Miami Tribe of Oklahoma
 | | 8) Ottawa Tribe of Oklahoma
 | | 9) Peoria Tribe of Indians Oklahoma
 | | 10) Pokagon Band of Potawatomi Indians
 | | 11) Shawnee Tribe
 | | 12) Turtle Mountain Band of Chippewa Indians of North Dakota
 | | 13) Wyandotte Nation |

Notes: 1. Several tribes overlap with one or more installations. When this occurred only one letter was sent out discussing each installation they may have an interest in.
2. This Tribe was identified prior to knowledge that they had declined further consultation with JB MDL.

Analysis of potential impacts to cultural resources considers both direct and indirect impacts.

Direct impacts may occur by:

- physically altering, damaging, or destroying all or part of a resource;
- altering characteristics of the surrounding environment that contribute to resource significance;
- introducing visual, audible, or atmospheric elements that are out of character with the property or alter its setting; or
- neglecting the resource to the extent that it deteriorates or is destroyed.
Direct impacts can be assessed by identifying the type and location of the proposed action and by determining the exact locations of cultural resources that could be affected. Indirect impacts primarily result from the effects of project-induced population increases and the resultant need to develop new housing areas, utilities services, and other support functions necessary to accommodate population growth. These activities and subsequent use of facilities can disturb or destroy cultural resources.

A.7 LAND USE

A.7.1 Definition of the Resource

Land use comprises the natural conditions and/or human-modified activities occurring at a particular location. Human-modified land use categories generally include residential, commercial, industrial, agricultural, and other public uses. Management plans and zoning regulations determine the type and extent of land use allowable in specific areas and are often intended to protect specially designated or environmentally sensitive areas and sensitive noise receptors.

Several siting criteria have been established specifically for land development and use at commercial and military airfields. For example, APZs and RPZs, which address height restrictions, development density, and land use in and around airports, are enforced to reduce the potential for aircraft-related hazards.

The Federal Interagency Committee on Urban Noise (FICUN) and the Department of Defense have established guidelines to help assess land use compatibility with aircraft noise exposure. As shown in Table A.7.1-1, a range of noise exposure levels are associated with a given land use. The relative position of the compatibility interval is arbitrarily defined within 5 to 10 dB of an absolute level to indicate compatibility. These guidelines are intended as a planning tool and as such provide general indications as to whether particular land uses are appropriate for certain measured noise exposure levels. The designations in the table do not constitute a federal determination that any land use is acceptable or unacceptable under federal, state, or local law.

The ROI for land use is the area immediately surrounding the airfield at each alternative installation. The ROI does not include the land underneath the Special Use Airspace (SUA) proposed for use since no new airspace or changes to the existing airspace structure are proposed. The proposed increase in operations would not result in changes to the noise environment that would affect existing land uses.
Table A.7.1-1. Land-Use Compatibility With Yearly Day-Night Average Sound Levels

<table>
<thead>
<tr>
<th>Land Use</th>
<th>Yearly Day-Night Average Sound Level (DNL) in Decibels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Below 65</td>
</tr>
<tr>
<td>Residential</td>
<td></td>
</tr>
<tr>
<td>Residential, other than mobile homes and</td>
<td>Y</td>
</tr>
<tr>
<td>transientlodgings</td>
<td>Mobile home parks</td>
</tr>
<tr>
<td>Transient lodgings</td>
<td>Public Use</td>
</tr>
<tr>
<td>Schools</td>
<td></td>
</tr>
<tr>
<td>Hospitals and nursing homes</td>
<td></td>
</tr>
<tr>
<td>Churches, auditoria, and concert halls</td>
<td></td>
</tr>
<tr>
<td>Government services</td>
<td></td>
</tr>
<tr>
<td>Transportation</td>
<td></td>
</tr>
<tr>
<td>Parking</td>
<td></td>
</tr>
<tr>
<td>Commercial Use</td>
<td></td>
</tr>
<tr>
<td>Offices, business and professional</td>
<td></td>
</tr>
<tr>
<td>Wholesale and retail—building materials,</td>
<td></td>
</tr>
<tr>
<td>hardware, and farm equipment</td>
<td></td>
</tr>
<tr>
<td>Retail trade—general</td>
<td></td>
</tr>
<tr>
<td>Utilities</td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td></td>
</tr>
<tr>
<td>Manufacturing and Production</td>
<td></td>
</tr>
<tr>
<td>Manufacturing, general</td>
<td></td>
</tr>
<tr>
<td>Photographic and optical</td>
<td></td>
</tr>
<tr>
<td>Agriculture (except livestock) and forestry</td>
<td></td>
</tr>
<tr>
<td>Livestock farming and breeding</td>
<td></td>
</tr>
<tr>
<td>Mining and fishing, resource production and</td>
<td></td>
</tr>
<tr>
<td>extraction</td>
<td></td>
</tr>
<tr>
<td>Recreational</td>
<td></td>
</tr>
<tr>
<td>Outdoor sports arenas and spectator sports</td>
<td></td>
</tr>
<tr>
<td>Outdoor music shells, amphitheaters</td>
<td></td>
</tr>
<tr>
<td>Nature exhibits and zoos</td>
<td></td>
</tr>
<tr>
<td>Amusements, parks, resorts, and camps</td>
<td></td>
</tr>
<tr>
<td>Golf courses, riding stables, and water</td>
<td></td>
</tr>
<tr>
<td>recreation</td>
<td></td>
</tr>
</tbody>
</table>

Numbers in parentheses refer to notes.

* The designations contained in this table do not constitute a federal determination that any use of land covered by the program is acceptable or unacceptable under federal, state, or local law. The responsibility for determining the acceptable and permissible land uses and the relationship between specific properties and specific noise contours rests with the local authorities. FAA determinations under Part 150 are not intended to substitute federally determined land uses for those determined to be appropriate by local authorities in response to locally determined needs and values in achieving noise-compatible land uses.

KEY TO A.7.1-1

Y (YES) = Land Use and related structures compatible without restrictions.

N (No) = Land Use and related structures are not compatible and should be prohibited.

NLR = Noise Level Reduction (outdoor to indoor) to be achieved through incorporation of noise attenuation into the design and construction of the structure.

25, 30, or 35 = Land Use and related structures generally compatible; measures to achieve NLR of 25, 30, or 35 dB must be incorporated into design and construction of structures.

NOTES FOR TABLE A.7.1-1

1. Where the community determines that residential or school uses must be allowed, measures to achieve outdoor-to-indoor Noise Level Reduction (NLR) of at least 25 dB and 30 dB should be incorporated into building codes and be considered in individual approvals. Normal residential construction can be expected to provide an NLR of 20 dB; thus the reduction requirements are often stated as 5, 10, or 15 dB over standard construction and normally assume mechanical ventilation and closed windows year-round. However, the use of NLR criteria will not eliminate outdoor noise problems.

2. Measures to achieve NLR 25 dB must be incorporated into the design and construction of portions of these buildings where the public is received, office areas, noise-sensitive areas, or where the normal noise level is low.

3. Measures to achieve NLR 30 dB must be incorporated into the design and construction of portions of these buildings where the public is received, office areas, noise-sensitive areas, or where the normal noise level is low.

4. Measures to achieve NLR 35 dB must be incorporated into the design and construction of portions of these buildings where the public is received, office areas, noise-sensitive areas, or where the normal noise level is low.

5. Land-use compatible provided special sound reinforcement systems are installed.

8. Residential buildings not permitted.

Source: FICUN 1980.
A.7.2 Methodology

Impacts to land use are evaluated by identifying whether an action is incompatible with an existing land use due to noise, safety, or other issues. The significance of potential land use impacts is based on the level of land use sensitivity in areas affected by a proposed action. In general, land use impacts would be significant if the action would: (1) be inconsistent or non-compliant with applicable land use plans or policies, including the county or city plans; (2) preclude the viability of an existing land use activity within the ROI; (3) preclude continued use or occupation of an area; or (4) be incompatible with adjacent nearby land use to the extent that public health or safety is threatened.

A.8 INFRASTRUCTURE AND TRANSPORTATION

A.8.1 Definition of the Resource

Infrastructure refers to the system of public works, such as utilities and transportation, which provide the underlying framework for a community. Utilities include such amenities as water, power supply, and waste management. Transportation refers to roadway and street systems, the movement of vehicles on roadway networks, pedestrian and bicycle traffic, and mass transit. The infrastructure components to be discussed in this section include the electrical system, natural gas system, wastewater, stormwater, solid waste management, potable water system, and the transportation network.

The ROI for infrastructure primarily consists of the five alternative installations, with additional information presented for the surrounding vicinity, where relevant.

A.8.2 Methodology

Potential impacts to infrastructure elements at the five alternative installations are assessed in terms of effects of the Proposed Action on existing service levels. Impacts to transportation and utilities are assessed with respect to the potential for disruption or improvement of current circulation patterns and utility systems, deterioration or improvement of existing levels of service, and changes in existing levels of transportation and utility safety. Impacts may arise from physical changes to circulation or utility corridors, construction activity, and introduction of construction-related traffic and utility use. Adverse impacts to roadway capacities would be significant if roads with no history of capacity exceedance had to operate at or above their full design capacity as a result of an action. Transportation effects may arise from changes in traffic circulation, delays due to construction activity, or changes in traffic volumes. Utility system effects may include disruption, degradation, or improvement of existing levels of service or potential change in demand for energy or water resources.
For the range of public services discussed, the installations are required to proactively plan for and assess all specific infrastructure and utility requirements and other essential services to ensure that the proposed increase in personnel and their dependents would be accommodated under the Proposed Action. The installations routinely evaluate community facilities and services to account for fluctuations associated with new units assigned to the installation and the deployment of existing units. In addition, the installations identify infrastructure or utility needs within the scope of each corresponding project. If particular projects require additional infrastructure or utilities, they are incorporated as a part of that project. This process ensures that any infrastructure or utility deficiencies are identified in the initial planning stages.

To assess impacts to local landfills associated with solid waste generation as a result of proposed construction projects, a multiplier was used provided by the USEPA to estimate solid waste generation. The estimated pounds of waste generated each year from renovations, as described in *Building-Related Construction and Demolition Materials Amounts* (USEPA 2009), is:

\[
(Total \text{ square footage of construction renovation per year}) \times (11.79 \text{ pounds/square foot [SF]}) = X \text{ pounds of debris.}
\]

*11.79 pounds per SF is a USEPA multiplier used to estimate rate of debris generated during nonresidential renovations for an average office renovation based on sampling studies documented in *Building-Related Construction and Demolition Materials Amounts* (USEPA 2009). To estimate construction waste from nonresidential new construction (versus renovation), the USEPA uses a multiplier of 4.34 pounds per SF.*

For this analysis, potential infrastructure impacts associated with implementation of the Proposed Action are evaluated. Potential infrastructure impacts would be related to construction activity and facility operations after completion, in addition to any increase in personnel associated with the Proposed Action.

A.9 Hazardous Materials and Wastes

A.9.1 Definition of the Resource

This EIS analyzes impacts related to hazardous materials, toxic substances, hazardous waste, and contaminated sites. The potential for hazardous materials to be introduced to the alternative installations during the course of site development and construction activities; for toxic and hazardous wastes to be generated as a result of construction and demolition activities; and for encounters with contaminated media during the course of site preparation and construction/demolition activities is analyzed.
Impacts related to the continuing use of hazardous materials and generation of hazardous wastes associated with aircraft operations and maintenance as a result of the proposed aircraft conversion are also analyzed. Operational changes (increases/decreases in flying time) would affect the amount of hazardous materials used and stored at the alternative installations, as well as the amount of hazardous waste generated. In addition, changes in maintenance activities and schedules could result in a change in the use of hazardous or toxic substances or generation of hazardous wastes compared to existing conditions.

The ROI for hazardous materials and waste includes areas that could be exposed to an accidental release of a hazardous substance from construction activities, other specific areas affected by past and current hazardous waste operations, and areas where hazardous materials would be utilized or stored. Therefore, the ROI for this action is defined as the five alternative installations.

A.9.1.1 Hazardous Materials and Waste

Hazardous materials are chemical substances that pose a substantial hazard to human health or the environment. Hazardous materials include hazardous substances, extremely hazardous substances, hazardous chemicals, and toxic chemicals. In general, these materials pose hazards because of their quantity, concentration, physical, chemical, or infectious characteristics. The Resource Conservation and Recovery Act (RCRA) (42 USC 6903[5]) defines a hazardous waste as a solid waste, or combination of solid waste, which because of its quantity, concentration, or physical, chemical, or infectious characteristics may: (1) cause, or significantly contribute to, an increase in mortality or an increase in serious irreversible, or incapacitating reversible, illness; or (2) pose a substantial present or potential hazard to human health or the environment when improperly treated, stored, transported, disposed of, or otherwise managed. For the purpose of this analysis, hazardous wastes include solid wastes that are regulated as hazardous based on either direct listing by USEPA or because they exhibit certain characteristics (ignitability, reactivity, corrosivity, and toxicity), as well as those contaminants present in environmental media (e.g., soil or groundwater).

Hazardous substances are defined and regulated under the laws administered by OSHA, USEPA, and the U.S. Department of Transportation. Each of these agencies incorporates hazardous substance terminology in accordance with its unique Congressional mandate:

- OSHA regulations categorize substances in terms of their impacts to employee and workplace health and safety;
- U.S. Department of Transportation regulations categorize substances in terms of their safety in transportation; and
• USEPA regulations categorize substances in terms of protection of the environment and the public health.

With regard to environmental impacts, hazardous substances are regulated under several federal programs administered by the USEPA, including Comprehensive Environmental Response, Compensation, and Liability Act, Toxic Substances Control Act (TSCA), and RCRA. DoD installations are required to comply with these laws and Emergency Planning and Community Right-to-Know Act (per EO 15314), along with other applicable federal, state, and DoD regulations, as well as with relevant EOs.

When accumulating hazardous waste on-site, large quantity generators must comply with 40 CFR 262.34(a) and small quantity generators must comply with 40 CFR 262.34(d) to avoid the requirement to obtain a hazardous waste treatment, storage, or disposal permit. Generators of 1,000 kilograms/month of hazardous waste or >1 kilogram/month of acute hazardous waste are large quantity generators. A hazardous waste generation point is where the waste is initially created or generated. A satellite accumulation point (SAP) is an area where hazardous waste is initially accumulated at the point of generation and is under the control of the SAP manager. Wastes stored in these areas may be stored for 90 days for large quantity generators and 180 days for small quantity generators. Hazardous wastes initially accumulated at a SAP are accumulated in appropriate containers before being transferred to the installation central accumulation point (CAP).

A.9.1.2 Toxic Substances

The promulgation of TSCA (40 CFR §§ 700-766) represented an effort by the federal government to address those chemical substances and mixtures for which it was recognized that the manufacture, processing, distribution, use, or disposal may present unreasonable risk of personal injury or health of the environment, and to effectively regulate these substances and mixtures in interstate commerce. The TSCA Chemical Substances Inventory lists information on more than 62,000 chemicals and substances. Toxic chemical substances regulated by USEPA under TSCA include asbestos and lead, which for the purposes of this analysis, are evaluated in the most common forms found in buildings, namely asbestos-containing materials (ACMs) and lead-based paint (LBP). TSCA also establishes management obligations for the cleanup of polychlorinated biphenyls (PCBs).

ACMs have been classified as a HAP by the USEPA in accordance with Section 112 of the CAA. Surveys would be conducted for ACMs, as required by 40 CFR § 61.145, during the design phase of each construction project and prior to demolition or renovation of any structure. Any located ACM would be characterized, managed, transported, and disposed of according to
applicable state and federal requirements for protecting human health and safety and the environment.

LBP may also be present in buildings or other facilities that would be modified or demolished as part of the Proposed Action. Similar to ACMs, surveys would be conducted on structures to be modified or demolished for LBP during the design phase of each construction project and prior to structure demolition or renovation. LBP sampling would be conducted on the structures to be removed and analyzed in accordance with USEPA approved Toxicity Characteristic Leaching Procedure methodology. Based on this federal testing methodology, the paint would be considered hazardous if lead is detected at concentrations greater than 5 micrograms per liter. If LBP were detected at hazardous concentrations, these materials would be removed according to accepted methodologies. LBP would be characterized, managed, transported, and disposed of according to applicable state and federal requirements for protecting human health and safety and the environment.

Beginning in the 1920s, PCBs had many common household uses, including applications in electrical transformers, as coolants in refrigeration machinery, and in oil and hydraulic fluids. PCBs are toxic and have been classified as a persistent organic pollutant, acting as carcinogens that do not break down easily in the environment. Thus, the manufacture and use of PCBs in the U.S. was banned by Congress in 1979 and cleanup actions are regulated through TSCA.

A.9.1.3 Contaminated Sites

Potential hazardous waste contamination areas are being investigated as part of the Defense Environmental Restoration Program (DERP). DoD developed the DERP to identify, investigate, and remediate potentially hazardous material disposal sites on DoD property prior to 1984. There are two restoration programs under DERP, the Installation Restoration Program (now known as the Environmental Restoration Program [ERP]) and the Military Munitions Response Program. These programs were instituted to satisfy the requirements of Comprehensive Environmental Response, Compensation, and Liability Act and RCRA for former and current hazardous waste sites.

A.9.2 Methodology

The qualitative and quantitative assessment of impacts from hazardous materials and solid waste management focuses on how and to what degree the alternatives affect hazardous materials usage and management, hazardous waste generation and management, and waste disposal. A substantial increase in the quantity or toxicity of hazardous substances used or generated would be considered potentially significant. Significant impacts could result if a substantial increase in
human health risk or environmental exposure was generated at a level that cannot be mitigated to acceptable standards.

The potential increase in the throughput of petroleum substances and hazardous waste streams was estimated by evaluating the change from the baseline number of flying hours for each alternative installation and comparing that to the proposed 8,040 annual flying hours. The KC-135 has an estimated fuel flow rate to power the aircraft of approximately 2,500 pounds per hour per engine; or an average of 10,000 pounds of fuel per hour. The KC-46A aircraft has a similar estimated fuel flow rate of 4,500 pounds per hour per engine; or an average of 9,000 pounds of fuel per hour. Thus, based on the percent increase in flying hours at each alternative installation, it was assumed that there would be a commensurate increase in the throughput of petroleum substances and hazardous waste streams.

Regulatory standards and guidelines have been applied in evaluating the potential impacts that may be caused by hazardous materials and wastes. The following criteria were used to identify potentially significant impacts:

- Generation of 100 kilograms (or more) of hazardous waste or 1 kilogram (or more) of an acutely hazardous waste in a calendar month, resulting in increased regulatory requirements.
- A spill or release of a reportable quantity of a hazardous substance as defined by the USEPA in 40 CFR Part 302.
- Manufacturing, use, or storage of a compound that requires notifying the pertinent regulatory agency according to the Emergency Planning and Community Right-to-Know Act.
- Exposure of the environment or public to any hazardous material and/or waste through release or disposal practices.

A.10 SOCIOECONOMICS

A.10.1 Definition of the Resource

Socioeconomics comprises the basic attributes and resources associated with the human environment, particularly population and economic activity. Economic activity typically encompasses employment, personal income, and economic growth. Impacts to these fundamental socioeconomic components also influence other issues such as housing availability and the provision of public services. To illustrate local baseline conditions, socioeconomic data provided in this section consists primarily of county and city level data for the areas surrounding the alternative installations. Where 2010 Census data was not yet available for all demographic and economic data, American Community Survey (ACS) 2011 5-year estimates were used (data on employment and school enrollment).
The ROI for socioeconomics associated with the five alternative installations includes the counties, townships, and towns/cities that each installation lies within, as well as those that lie under or near the current and proposed noise contours. The ROI does not include the land below the airspace used since no ground disturbance would occur in these areas and the Proposed Action would generate minimal changes in noise, frequency of use, duration of use, and number of operations at these locations.

A.10.2 Methodology

Socioeconomic impacts are assessed in terms of direct effects to the local economy and population and related indirect effects on other socioeconomic resources within the ROI. Socioeconomic impacts would be considered significant if the Proposed Action resulted in a substantial shift in population trends or notably affected regional employment, earnings, or community resources such as schools.

A.11 ENVIRONMENTAL JUSTICE AND THE PROTECTION OF CHILDREN

A.11.1 Definition of the Resource

In 1994, EO 12898, *Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations*, was issued to focus the attention of federal agencies on human health and environmental conditions in minority and low-income communities. EO 12898 aims to ensure that disproportionately high and adverse human health or environmental effects to these communities are identified and addressed. This environmental justice analysis focuses on the distribution of race and poverty status in areas potentially affected by implementation of the Proposed Action.

For the purpose of this analysis, minority populations and low-income populations are defined as:

- **Minority Populations**: All categories of non-white population groups as defined in the U.S. Census, including African American, Hispanic, American Indian and Alaska Native, Asian or Pacific Islander, and other groups.
- **Low-Income Populations**: Persons living below the poverty level, as defined by the 2010 Census.

Because children may suffer disproportionately from environmental health risks and safety risks, EO 13045, *Protection of Children from Environmental Health Risks and Safety Risks*, was introduced in 1997 to prioritize the identification and assessment of environmental health and safety risks that may affect children, and to ensure that federal agency policies, programs, activities, and standards address environmental and safety risks to children. This section
identifies the distribution of children and locations where the number of children in the affected area may be disproportionately high (e.g., schools, childcare centers).

The ROI for environmental justice associated with the five alternative installations includes the counties, townships, and towns/cities that each installation lies within, as well as those that lie under or near the current and proposed noise contours. Total population, minority population, and number of children under the age of 18 were obtained from the 2010 census data. Low-income population numbers are from the 2007-2011 ACS 5-Year Estimates. The ROI does not include the land below the airspace used since no ground disturbance would occur in these areas and the Proposed Action would generate minimal changes in noise, frequency of use, duration of use, and number of operations at these locations.

A.11.2 Methodology

To comply with EO 12898, *Federal Actions to Address Environmental Justice in Minority Populations and Low-Income Populations*, and EO 13045, *Protection of Children from Environmental Health Risks and Safety Risks*, areas containing relatively high disadvantaged or youth populations are given special consideration regarding potential impacts in order to address the potential for disproportionately high or adverse human health or environmental effects to these communities. Ethnicity and poverty status in the vicinity of the Proposed Action have been examined and compared to city, county, state, and national data to determine if any minority or low-income communities could potentially be disproportionately affected by implementation of any of the alternatives. Geographic Information Systems census block data obtained from the U.S. Census Bureau was used to obtain information on minority and low-income populations located within the vicinity of the Alternative locations. A census block is the smallest geographic unit used by the U.S. Census Bureau for tabulation of 100 percent data (data collected from all houses, rather than a sample of houses).

Three criteria must be met for impacts to minority and low-income communities to be considered significant: (1) there must be one or more such populations within the ROI, (2) there must be adverse (or significant) impacts from the Proposed Action, and (3) the environmental justice populations within the ROI must bear a disproportionate burden of those adverse impacts. If any of these criteria are not met, then impacts with respect to environmental justice would not be significant.
A.12 REFERENCES

Appendix B

Correspondence
TABLE OF CONTENTS

APPENDIX B CORRESPONDENCE

APPENDIX B1 INTERAGENCY AND INTERGOVERNMENTAL COORDINATION FOR ENVIRONMENTAL PLANNING (IICEP) ...B1-1
 Scoping IICEP Letter Distribution List ..B1-1
 Sample Scoping IICEP Letter ...B1-6
 Forbes ANGS IICEP Letter Distribution ListB1-9
 Sample Forbes ANGS IICEP Letter ..B1-10
 Forbes ANGS IICEP Responses ..B1-12
 JB MDL IICEP Letter Distribution List ...B1-22
 Sample JB MDL IICEP Letter ...B1-23
 JB MDL IICEP Responses ..B1-25
 Pease ANGS IICEP Letter Distribution ListB1-30
 Sample Pease ANGS IICEP Letter ...B1-31
 Pease ANGS IICEP Responses ..B1-33
 Pittsburgh ANGS IICEP Letter Distribution ListB1-56
 Sample Pittsburgh ANGS IICEP Letter ..B1-57
 Pittsburgh ANGS IICEP Responses ...B1-59
 Rickenbacker ANGS IICEP Letter Distribution ListB1-63
 Sample Rickenbacker ANGS IICEP LetterB1-64
 Rickenbacker ANGS IICEP Responses ...B1-66

APPENDIX B2 NATIVE AMERICAN CORRESPONDENCEB2-1
 Sample Forbes, JB MDL, and Rickenbacker Tribal LetterB2-7
 Forbes and Rickenbacker Tribal Letter Distribution ListB2-18
 Sample Forbes and Rickenbacker Tribal LetterB2-19
 Forbes Tribal Letter Distribution List ...B2-27
 Sample Forbes Tribal Letter ...B2-28
 JB MDL Tribal Letter Distribution List ..B2-33
 Sample JB MDL Tribal Letter ..B2-34
 Pease Tribal Letter Distribution List ...B2-42
 Sample Pease Tribal Letter ...B2-43
 Pittsburgh Tribal Letter Distribution ListB2-48
 Sample Pittsburgh Tribal Letter ...B2-49
 Rickenbacker Tribal Letter Distribution ListB2-54
 Sample Rickenbacker Tribal Letter ..B2-55
 Tribal Letter Responses ...B2-61

APPENDIX B3 STATE HISTORIC PRESERVATION OFFICE (SHPO) CORRESPONDENCE ...B3-1
 Forbes ANGS Section 106 SHPO Consultation LetterB3-1
 Forbes ANGS Section 106 SHPO Consultation ResponseB3-7
 JB MDL Section 106 SHPO Consultation LetterB3-8
 JB MDL Section 106 SHPO Consultation ResponseB3-15
 Pease ANGS Section 106 SHPO Consultation LetterB3-19
Pease ANGS Section 106 SHPO Consultation Response..........................B3-25
Pittsburgh ANGS Section 106 SHPO Consultation Letter....................B3-28
Rickenbacker ANGS Section 106 SHPO Consultation Letter..............B3-34

APPENDIX B4 RELEVANT HISTORIC CORRESPONDENCEB4-1
APPENDIX B5 FINAL EIS DISTRIBUTION LIST..B5-1
APPENDIX B6 PUBLIC HEARING TRANSCRIPTS, RESPONSES TO
 COMMENTS, AND WRITTEN COMMENTS ON THE
 DRAFT EIS ..B6-1
Appendix B1

Interagency and Intergovernmental Coordination for Environmental Planning (IICEP)
The sample IICEP letter following was distributed to the list below:

Forbes ANGS

Director, Office of Federal Activities, U.S. Environmental Protection Agency, Region 7, 901 N 5th St, Kansas City, KS 66101

U.S. Fish and Wildlife Service, Kansas Ecological Services Field Office, 2609 Anderson Ave, Manhattan, KS 66502-2801

Federal Aviation Administration, Central Region, 901 Locust St, Kansas City, MO 64106-2641

Kansas Department of Health and Environment, Division of Environment, 1000 SW Jackson, Ste 400, Topeka, KS 66612-1367

Kansas Department of Wildlife and Parks, Region 2, 300 SW Wanamaker Rd, Topeka, KS 66606

Jennie Chinn, State Historic Preservation Officer, Kansas State Historical Society, Cultural Resources Division, 6425 SW 6th Ave, Topeka, KS 66615-1099

Director of Aviation, Kansas Department of Transportation, Dwight D. Eisenhower State Office Building, 700 SW Harrison, Topeka, KS 66603-3754

Shelly Buhler, Chair, Shawnee County Commissioner, District 1, 200 SE 7th St, Topeka, KS 66603

Shawnee County Planning Department, 1515 NW Saline St, Ste 102, Topeka, KS 66618

The Honorable Bill Bunten, Mayor of Topeka, 215 SE 7th, Room 352, Topeka, KS 66603-3914

Larry Wolgast, Councilperson, Topeka City Council District #5, 1512 SW 30th St, Topeka, KS 66611

City of Topeka Planning, 620 SE Madison, Topeka, KS 66607

Eric Johnson, Metropolitan Topeka Airport Authority, Forbes Field, Building 620, Topeka, KS 66619

Steve Ortiz, Council Chair, Prairie Band Potawatomi Tribe, 16281 Q Rd, Mayetta, KS 66509

Rick Campbell, Director, Environmental Department, Sac and Fox Nation of Missouri, 305 N Main St, Reserve, KS 66434

The Honorable Jerry Moran, U.S. Senate, 354 Russell Senate Office Bldg, Washington, DC 20510

The Honorable Pat Roberts, U.S. Senate, 109 Hart Senate Office Bldg, Washington, DC 20510

The Honorable Lynn Jenkins, House of Representatives, 1027 Longworth HOB, Washington, DC 20515

The Honorable Vicki Schmidt, Kansas Senate, 5906 SW 43rd Ct, Topeka, KS 66610-1632

The Honorable Lana Gordon, Kansas House of Representatives, 5820 SW 27th St, Topeka, KS 66614

The Honorable Sam Brownback, Office of the Governor, 300 SW 10th Ave, Ste 241S, Topeka, KS 66612-1590

Kelli Mosteller, THPO, Citizen Potawatomi Nation, 1601 S. Gordon Cooper Drive, Shawnee, OK 74801

John Barrett, Chairman, Citizen Potawatomi Nation, 1601 S. Gordon Cooper Drive, Shawnee, OK 74801

Dr. Brice Obermeyer, Delaware Nation, Dept. of Sociology and Anthropology, Emporia State University, Roosevelt Hall, Rm 121, 1200 Commercial, Box 4022, Emporia, KS 66801

Kerry Holton, President, Delaware Nation, P.O. Box 825, Anadarko, OK 73005

Guy Munroe, Chairman, Kaw Nation, Drawer 50, Kaw City, OK 74461

Dr. Andrea A. Hunter, THPO, Osage Nation of Oklahoma, 627 Grandview, Pawhuska, OK 74056

Mr. John D. Redeagle, Principal Chief, Osage Nation of Oklahoma, P.O. Box 779, 627 Grandview, Pawhuska, OK 70456

George Blanchard, Governor , Absentee Shawnee Tribe of Oklahoma, 2025 S. Gordon Cooper Drive, Shawnee, OK 74801

Henryetta Ellis, THPO, Absentee Shawnee Tribe of Oklahoma, 2025 S. Gordon Cooper Drive, Shawnee, OK 74801

Glenna Wallace, Chief, Eastern Shawnee Tribe of Oklahoma, 12755 South 705 Rd., Wyandotte, OK 74370

Leslie Standing, President, Wichita and Affiliated Tribes, P.O. Box 729, Anadarko, OK 73005

JB MDL

Eric Davis, Supervisor, U.S. Fish and Wildlife Service, New Jersey Ecological Services Field Office, 927 N Main St, Bldg D, Pleasantville, NJ 08232

Environmental Review Coordinator, U.S. Environmental Protection Agency, Region 2, 290 Broadway, New York, NY 10007-1866

Richard Shaw, State Soil Scientist, Natural Resources Conservation Service, New Jersey State Office, 220 Davidson Ave, 4th Floor, Somerset, NJ 08873

Paul Phifer, Ph.D., Assistant Regional Director, Ecological Services, U.S. Fish and Wildlife Service, Region 5, 300 Westgate Center Dr, Hadley, MA 01035-9589
Ruth W. Foster, New Jersey Department of Environmental Protection, Office of Permit Coordination and Environmental Review, 401 E State St, PO Box 420, Trenton, NJ 08625
Daniel Saunders, Administrator and Deputy State Historic Preservation Officer, New Jersey Department of Environmental Protection, Historic Preservation Office, PO Box 420, Trenton, NJ 08625-420
New Jersey Division of Fish and Wildlife, Endangered and Nongame Species Program, Department of Environmental Protection, PO Box 420, Trenton, NJ 08625-420
Ernie Deman, Supervising Environmental Specialist, New Jersey Pinelands Commission, 15 Springfield Rd, New Lisbon, NJ 08064
Coordinator, Regional Planning, Burlington County, 50 Rancocas Rd, Mount Holly, NJ 08060
Mary Pat Robbie, Director, Resource Conservation, Burlington County, PO Box 6000, Mount Holly, NJ 08060
Mark Gould, Chairperson, Nanticoke-Lenape Indians of New Jersey, 18 E Commerce St, PO Box 544, Bridgeton, NJ 08302
Dwaine Perry, Chief, Ramapough Mountain Indians, 189 Stag Hill Rd, Mahwah, NJ 07430
Joanne Bundy Hawkins, Powhatan-Renape Nation, Rankokus Indian Reservation, PO Box 225, Rancocas, NJ 08073
The Honorable Thomas Harper, Mayor of Wrightstown, 21 Saylors Pond Rd, Wrightstown, NJ 08562
The Honorable Ronald Francioli, Mayor of New Hanover Township, 1000 Route 10, PO Box 250, Whippany, NJ 07981
The Honorable Jim Durr, Mayor of North Hanover Township, 41 Schoolhouse Rd, Jacobstown, NJ 08562
The Honorable David Patriarca, Mayor of Pemberton Township, 500 Pemberton-Browns Mills Rd, Pemberton, NJ 08068-1539
The Honorable Denis McDaniel, Mayor of Springfield Township, PO Box 119, Jobstown, NJ 08041
The Honorable Michael Reina, Mayor of Jackson Township, 95 W Veterans Hwy, Jackson, NJ 08527
The Honorable Mike Fressola, Mayor of Manchester Township, 1 Colonial Dr, Manchester, NJ 08759
The Honorable David Leutwyler, Mayor of Plumsted Township, 121 Evergreen Rd, New Egypt, NJ 08533
The Honorable Frank Lautenberg, U.S. Senate, 141 Hart Senate Office Bldg, Washington, DC 20510
The Honorable Robert Menendez, U.S. Senate, 528 Hart Senate Office Bldg, Washington, DC 20510
The Honorable Jon Runyun, House of Representatives, 1239 Longworth HOB, Washington, DC 20515
The Honorable Chris Smith, House of Representatives, 2373 Rayburn House Office Building, Washington, DC 20515
The Honorable Chris Christie, Office of the Governor, PO Box 001, Trenton, NJ 08625
The Honorable Samuel Thompson, New Jersey Senate, 2501 Highway 516, Ste 101, Old Bridge, NJ 08857
The Honorable Robert Clifton, New Jersey Assembly, 516 Route 33 West, Bldg 2, Ste 2, Millstone, NJ 08535
The Honorable Ronald Dancer, New Jersey Assembly, 405 Rt 539, Cream Ridge, NJ 08514
Kerry Holton, President, Delaware Nation, PO Box 825, Anadarko, OK 73005
Wayne Stull, Trust Board Chairman
Delaware Tribe of Indians, 170 NE Barbara St., Bartlesville, OK 74006
Kimberly Vele, President, Stockbridge-Munsee Community, N8476 Mo He Con Nuck Road, Bowler, WI 54416
Sherry White, THPO, Stockbridge-Munsee Community, N8476 Mo He Con Nuck Road, Bowler, WI 54416

Pease ANGS

U.S. Environmental Protection Agency, Region 1, Environmental Impact Branch 1, Congress St, Boston, MA 02114
Northeast Coordinator, U.S. Fish and Wildlife Service Region V, 300 Westgate Center Dr, Hadley, MA 01035
New Hampshire Department of Environmental Services, 29 Hazen Dr, PO Box 95, Concord, NH 03302
New Hampshire Fish and Game Department, 11 Hazen Dr, Concord, NH 03301
New Hampshire State Port Authority, 555 Market St, Portsmouth, NH 03801
Historic Preservation Officer, New Hampshire Division of Historical Resources, 19 Pillsbury St, 2nd Fl, Concord, NH 03301
New Hampshire Department of Transportation, Bureau of Environment, JOM Building, Room 160, 7 Hazen Dr, Concord, NH 03302
New Hampshire Coastal Program, Department of Environmental Services, 50 International Dr, Ste 200, Portsmouth, NH 03801
New Hampshire Office of Energy and Planning, 57 Regional Dr, Ste 3, Concord, NH 03301
New Hampshire Department of Environmental Services, Wetlands Bureau, PO Box 95, Concord, NH 03302
Final – June 2014

Town of Newington Planning Department, 205 Nimble Hill Rd, Newington, NH 03801
Portsmouth City Hall, Community Development Department, 1 Junkins Ave, Portsmouth, NH 03801
Pease Development Authority, 360 Corporate Dr, Portsmouth, NH 03801
Kirk Francis, Tribal Chief, Penobscot Indian Nation, 12 Wabanaki Way, Indian Island, ME 04668
Bonnie Newsom, THPO, Penobscot Indian Nation, 12 Wabanaki Way, Indian Island, ME 04468
The Honorable Kelly Ayotte, U.S. Senate, 144 Russell Senate Office Bldg, Washington, DC 20510
The Honorable Jeanne Shaheen, U.S. Senate, 520 Hart Senate Office Bldg, Washington, DC 20510
The Honorable Carol Shea-Porter, House of Representatives, 1530 Longworth House Office Bldg, Washington, DC 20515
The Honorable Martha Clark, New Hampshire Senate, State House, Room 115, 107 N Main St, Concord, NH 03301
The Honorable Joe Scarlotto, New Hampshire Representative, 130 Oxford Ave, Portsmouth, NH 03801-4126
The Honorable Eric Spear, Mayor of Portsmouth, 1 Junkins Ave, Portsmouth, NH 03801
The Honorable Maggie Hassan, Office of the Governor, State House, 107 N Main St, Concord, NH 03301

Pittsburgh ANGS

Doug McLearen and Ms. Kira Heinrich, Archaeology & Protection Division, Pennsylvania Historical and Museum Commission - Bureau for Historic Preservation, Commonwealth Keystone Bldg, 400 North St, Harrisburg, PA 17120
Kathy Frankel, Natural Resource Program Supervisor, Pennsylvania Department of Conservation and Natural Resources, 301 Fifth Ave, Ste 324, Pittsburgh, PA 15222-2420
Susan McDonald, Environmental Specialist, Federal Aviation Administration, Harrisburg Airports District Office, 3905 Hartzdale Dr, Ste 508, Camp Hill, PA 17011
Jeffrey Ziegler, Assistant Township Manager, Moon Township Administration Office, 1000 Beaver Grade Rd, Moon Township, PA 15108
Christopher Caruso, Planning Administrator, Township of Findlay, 1271 Route 30, PO Box W Clinton, PA 15026
Rich Belotti, Director, Planning & Environmental Affairs, Pittsburgh International Airport, Landside Terminal, 4th Floor Mezzanine, PO Box 12370, Pittsburgh, PA 15231-0370
Craig Peters, Commander, 911th Air Wing, U.S. Air Force Reserve, Pittsburgh International Airport, 2475 Defense Ave, Coraopolis, PA 15108-2983
Bud Jameson, Jr., Commander, 316th Expeditionary Sustainment Command, 99 Soldiers Ln Coraopolis, PA 15108-2550
Barbara Rudnick, NEPA Team Leader, U.S. Environmental Protection Agency, Region 3, Office of Environmental Programs (3EA30), Environmental Assessment and Innovation Division, 1650 Arch St, Philadelphia, PA 19103-2029
Bradley D. Penrod, President and Chief Strategy Officer, Allegheny County Department of Aviation, Pittsburgh International Airport, PO Box 12370, Pittsburgh, PA 15231-0370
Sandra Etzel, Allegheny County Health Department, Air Quality Program, 301 39th St, Bldg 7, Pittsburgh, PA 15201
Lou Sito, Assistant Chief of Public Affairs, U.S. Army Corps of Engineers, North Atlantic Division, 302 General Lee Ave, Brooklyn, NY 11252
The Honorable Robert Casey, Jr., U.S. Senate, 393 Russell Senate Office Bldg, Washington, DC 20510
The Honorable Patrick Toomey, U.S. Senate, 502 Hart Senate Office Bldg, Washington, DC 20510
The Honorable Matt Smith, Pennsylvania Senate, Senate Box 203037, Harrisburg, PA 17120-3037
The Honorable Mark Mustio, Pennsylvania House of Representatives, 1009 Beaver Grade Rd, Ste 220, Moon Township, PA 15108
The Honorable Anthony Celeste, Mayor of Coraopolis, 1121 Third Ave, Coraopolis, PA 15108
The Honorable Tom Corbett, Office of the Governor, 301 5th Ave, Rm 240, Pittsburgh, PA 15222
The Honorable Tim Murphy, House of Representatives, 2332 Rayburn House Office Bldg, Washington, DC 20515
Melinda Maybee, Nation Representative, Cayuga Nation of New York, PO Box 803, Seneca Falls, NY 13148
Rickenbacker ANGS

Teresa Spagna, U.S. Army Corps of Engineers, Huntington District, 502 Eighth St, Huntington, WV 25701-2070
Lisa Adkins, Program Coordinator, Ohio Historic Preservation Office, 800 E 17th Ave, Columbus, OH 43211-2474
Ohio Environmental Protection Agency, 77 W Jackson Blvd, Chicago, IL 60604
Mary Knapp, Field Supervisor, Fish and Wildlife Service, 4625 Morse Rd, Ste 104, Columbus, OH 43230-8355
Lee Brown, Planning Administrator, Franklin County Economic Development & Planning Department, 150 S Front St, FSL Ste 10, Columbus, OH 43215
Director of Planning, Columbus Regional Airport Authority, 4600 International Gateway, Columbus, OH 43219
General Manager, Columbus Regional Airport Authority, Rickenbacker International Airport, Administrative Offices, 7161 Second St, Columbus, OH 43217
Dan Garver, District Conservationist, Ohio Natural Resource Conservation Service, Pickaway County, Circleville Service Center, 110 Island Rd, Ste D, Circleville, OH 43113-9575
Glenna Wallace, Chief, Eastern Shawnee Tribe of Oklahoma, PO Box 350, Seneca, MO 64865
Ohio Department of Health, 246 N High St, Columbus, OH 43215
Columbus Health Department, 240 Parsons Ave, Columbus, OH 43215
Ohio Department of Transportation, District 6, 400 E William St, Delaware, OH 43015
Pickaway County Office of Development and Planning, 124 W. Franklin St, Circleville, OH 43113
Ohio Department of Natural Resources, Division of Geological Survey, 2045 Morse Rd, Bldg C1, Columbus, OH 43229-6693
Ohio Department of Natural Resources, Division of Wildlife, 2045 Morse Rd, Bldg G, Columbus, OH 43229-6693
Ohio Department of Natural Resources, Division of Soil & Water, 2045 Morse Rd, Bldg B-3, Columbus, OH 43229-6693
John Ankrom, Service Director, City of Circleville Planning and Zoning Commission, 104 E Franklin St, Circleville, OH 43113
Katie Delaney, Federal Aviation Administration, 11677 S Wayne Rd, Ste 107, Romulus, MI 48174
The Honorable Sherrod Brown, U.S. Senate, 713 Hart Senate Office Bldg, Washington, DC 20510
The Honorable Rob Portman, U.S. Senate, 448 Russell Senate Office Bldg, Washington, DC 20510
The Honorable Steve Stivers, House of Representatives, 1022 Longworth HOB, Washington, DC 20515
The Honorable Heather Bishoff, Ohio House of Representatives, 77 S High St, 10th Fl, Columbus, OH 43215
The Honorable Kevin Bacon, Ohio Senate, 1 Capitol Square, Ground Floor, Columbus, OH 43215
The Honorable John Kasich, Office of the Governor, 77 S High St, 30th Fl, Columbus, OH 43215-6117
The Honorable Michael Coleman, Mayor of Columbus, City Hall, 2nd Fl, 90 W Broad St, Columbus, OH 43215
Kelli Mosteller, THPO, Citizen Potawatomi Nation, 1601 S. Gordon Cooper Drive, Shawnee, OK 74801
John Barrett, Chairman, Citizen Potawatomi Nation, 1601 S. Gordon Cooper Drive, Shawnee, OK 74801
Dr. Brice Obermeyer, Delaware Nation, Dept. of Sociology and Anthropology, Emporia State University, Roosevelt Hall, Rm 121, 1200 Commercial, Box 4022, Emporia, KS 66801
Kerry Holton, President, Delaware Nation, P.O. Box 825, Anadarko, OK 73005
Steve Ortiz, Chairperson, Prairie Band of Potawatomi Nation, 16281 Q Road, Mayetta, KS 66509
Harold Frank, Chairman, Forest County Potawatomi Community, PO Box 340, Crandon, WI 54520
Kenneth Meshigaud, Chairperson, Hannahville Indian Community, N14911 Hannahville B1 Rd., Wilson, MI 49896-9728
George Strack, THPO, Miami Tribe of Oklahoma, PO Box 1326, Miami, OK 74355
Thomas Gamble, Chairperson, Miami Tribe of Oklahoma, PO Box 1326, Miami, OK 74355-1326
Ethel E. áá Cooká, Chief, Ottawa Tribe of Oklahoma, P.O. Box 110, Miami, OK 74355
John P. Froman, Chief, Peoria Tribe of Indians of Oklahoma, P.O. Box 1527, Miami, OK 74355
Matthew J. Wesaw, Chairman, Pokagon Band of Potawatomi Indians, P.O. Box 180, Dowagiac, MI 49047
Mike Zimmerman, THPO, Pokagon Band of Potawatomi Indians, P.O. Box 180, Dowagiac, MI 49047
Jody Hayes, Tribe Administrator, Shawnee Tribe, P.O. Box 189, Miami, OK 74355
Ron Sparkman, Chairperson, Shawnee Tribe, P.O. Box 189, Miami, OK 74355
Kade Ferris, THPO, Turtle Mountain Band of Chippewa Indians of North Dakota, P.O. Box 900, Belcourt, ND 58316
Merle St. Claire, Chairman, Turtle Mountain Band of Chippewa Indians of North Dakota, P.O. Box 900, Belcourt, ND 58316
Billy Friend, Chief, Wyandotte Nation, 64700 East Highway 60, Wyandotte, OK 74370
Sherri Clemons, THPO, Wyandotte Nation, 64700 East Highway 60, Wyandotte, OK 74370
Sample IICEP Letter
NATIONAL GUARD BUREAU
3501 FETCHET AVENUE
JOINT BASE ANDREWS MD 20762-5157

NGB/A7AM 20 May 2013

Director, Office of Federal Activities
U.S. Environmental Protection Agency, Region 7
901 N 5th St
Kansas City, KS 66101

Dear Sir/Madam

The United States Air Force (USAF) plans to replace a portion of the existing KC-135 aircraft fuel fleet with the KC-46A, which will be a new aircraft to the USAF’s fleet. As such, the USAF plans to identify locations for the beddown of a formal training unit (FTU) and the first main operating base (MOB 1), which will both be led by active duty units. The USAF will also beddown the KC-46A at the second main operating base (MOB 2), which will be led by an Air National Guard (ANG) unit. The National Guard Bureau (NGB) is preparing an Environmental Impact Statement (EIS) to analyze the potential impacts of the MOB 2 KC-46A beddown. This letter references the MOB 2 beddown only, as the FTU and MOB 1 beddown are the subject of a separate action.

The NGB proposes to beddown KC-46A aircraft for MOB 2 at one of five alternative locations. The goal of KC-46A beddown is to continue to provide combat-qualified KC-46A personnel to support the regional and global air refueling mission, while replacing a portion of the KC-135 fleet. This action would involve the beddown of one KC-46A squadron consisting of 12 Primary Assigned Aircraft (PAA), and establishing a KC-46A MOB. The NGB has selected five alternative locations for this beddown:

- Forbes Air National Guard Station (ANGS), Kansas;
- Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey;
- Pease ANGS, New Hampshire;
- Pittsburgh ANGS, Pennsylvania; and,
- Rickenbacker ANGS, Ohio.

Concurrent with the beddown of the KC-46A, the existing KC-135 aircraft at the selected installation would either be relocated to another installation and/or would be retired out of the USAF inventory, depending on the age and maintenance status of each aircraft. The beddown of the MOB 2 KC-46A would follow the Total Force Integration (TFI) concept that was enacted into law through the passage of the 2008 Defense Authorization Act, pairing two USAF component units (host and associate) together to operate as one. TFI supports USAF transformation by developing, promoting, and implementing new and creative organizational constructs and by advocating changes in personnel policy that enhance the integration of active, reserve, and civilian work forces. In support of TFI, an active duty associate unit would be
Sample IICEP Letter

The NGB invites you to attend a public scoping meeting at one of the times and locations listed below. For your convenience, the NGB has set aside the 2-4 p.m. sessions for local, state, and federal agencies to attend, although you are also welcome at the 6-9 p.m. session if that meets with your schedule better. The addresses for the public scoping meetings are:

<table>
<thead>
<tr>
<th>Scoping Meeting #1</th>
<th>Scoping Meeting #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday, June 4, 2013</td>
<td>Tuesday, June 4, 2013</td>
</tr>
<tr>
<td>2-4 p.m. and 6-9 p.m.</td>
<td>2-4 p.m. and 6-9 p.m.</td>
</tr>
<tr>
<td>Township of Moon</td>
<td>Plumsted Fire District #1 Fire Station</td>
</tr>
<tr>
<td>Municipal Building</td>
<td>59 Main St.</td>
</tr>
<tr>
<td>1000 Beaver Grade Rd.</td>
<td>New Egypt, NJ</td>
</tr>
<tr>
<td>Moon Township, PA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scoping Meeting #3</th>
<th>Scoping Meeting #4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, June 6, 2013</td>
<td>Thursday, June 6, 2013</td>
</tr>
<tr>
<td>2-4 p.m. and 6-9 p.m.</td>
<td>2-4 p.m. and 6-9 p.m.</td>
</tr>
<tr>
<td>Portsmouth Public Library</td>
<td>Rickenbacker International Airport Terminal</td>
</tr>
<tr>
<td>Levensen Community Meeting Room</td>
<td>7161 Second St.</td>
</tr>
<tr>
<td>175 Parrot Ave.</td>
<td>Columbus, OH</td>
</tr>
<tr>
<td>Portsmouth, NH</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scoping Meeting #5</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wednesday, June 20, 2013</td>
<td></td>
</tr>
<tr>
<td>2-4 p.m. and 6-9 p.m.</td>
<td></td>
</tr>
<tr>
<td>Museum of the Kansas National Guard</td>
<td></td>
</tr>
<tr>
<td>6700 S.W. Topeka Blvd.</td>
<td></td>
</tr>
<tr>
<td>Topeka, KS</td>
<td></td>
</tr>
</tbody>
</table>
Sample IICEP Letter

Please forward your written comments to the KC-46A EIS Project Manager, NGB/A7AM, 3501 Fetchet Avenue, Joint Base Andrews MD 20762-5157 or ang.env.comments@ang.af.mil. You may also submit comments via the project website at www.angke46aegis.com. Submit all comments within 30 days from the date of this letter. Thank you for your assistance.

Sincerely

[Signature]

ROBERT L. DOGAN, GS-13, REM
Plans and Requirements Branch
The sample IICEP letter following was distributed to the list below:

U.S. Environmental Protection Agency, Region 7, 901 N 5th St, Kansas City, KS 66101
U.S. Fish and Wildlife Service, Kansas Ecological Services Field Office, 2609 Anderson Ave, Manhattan, KS 66502-2801
Federal Aviation Administration, Central Region, 901 Locust St, Kansas City, MO 64106-2641
Kansas Department of Health and Environment, Division of Environment, 1000 SW Jackson, Ste 400, Topeka, KS 66612-1367
Kansas Department of Wildlife and Parks, Region 2, 300 SW Wanamaker Rd, Topeka, KS 66606
Shawnee County Planning Department, 1515 NW Saline St, Ste 102, Topeka, KS 66618
Kansas Department of Transportation, Dwight D. Eisenhower State Office Building, 700 SW Harrison, Topeka, KS 66603-3754
Shelly Buhler, Shawnee County Commissioner, District 1, 200 SE 7th St, Topeka, KS 66603
City of Topeka Planning, 620 SE Madison, Topeka, KS 66607
The Honorable Bill Bunten, Mayor of Topeka, 215 SE 7th, Room 352, Topeka, KS 66603-3914
Larry Wolgast, Topeka City Council District #5, 1512 SW 30th St, Topeka, KS 66611
The Honorable Pat Roberts, U.S. Senate, 109 Hart Senate Office Bldg, Washington, DC 20510
Eric Johnson, Metropolitan Topeka Airport Authority, Forbes Field, Building 620, Topeka, KS 66619
The Honorable Jerry Moran, U.S. Senate, 354 Russell Senate Office Bldg, Washington, DC 20510
The Honorable Lana Gordon, Kansas House of Representatives, 5820 SW 27th St, Topeka, KS 66614
The Honorable Lynn Jenkins, House of Representatives, 1027 Longworth HOB, Washington, DC 20515
The Honorable Vicki Schmidt, Kansas Senate, 5906 SW 43rd Ct, Topeka, KS 66610-1632
The Honorable Sam Brownback, Office of the Governor, 300 SW 10th Ave, Ste 241S, Topeka, KS 66612-1590
Sample Forbes ANGS IICEP Letter

NATIONAL GUARD BUREAU
3501 FETCHET AVENUE
JOINT BASE ANDREWS MD 20762-5157

NGB/A7AM

16 Sep 13

Director, Office of Federal Activities
U.S. Environmental Protection Agency, Region 7
901 N 5th St
Kansas City, KS 66101

Dear Sir/Madam

The United States Air Force (USAF) plans to replace the existing KC-135 aerial refueling fleet with the KC-46A, which will be a new aircraft to the USAF’s fleet. As such, the USAF has identified locations for the beddown of a formal training unit (FTU) and the first main operating base (MOB 1), which will both be led by active duty units. The USAF will also beddown the KC-46A at the second main operating base (MOB 2), which will be led by an Air National Guard (ANG) unit.

There are two separate Environmental Impact Statements (EISs) being prepared for the MOB 1/FTU and MOB 2 aircraft beddowns. While you may be familiar with either or both of these actions, this particular letter is in reference only to the MOB 2 beddown action.

The MOB 2 alternative locations for this beddown include:

- Forbes Air National Guard Station (ANGS), Kansas;
- Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey;
- Pease ANGS, New Hampshire;
- Pittsburgh ANGS, Pennsylvania; and,
- Rickenbacker ANGS, Ohio.

The EIS is being prepared under the National Environmental Policy Act (NEPA) for the potential beddown of the KC-46A at one of the five alternative locations, including Forbes ANGS in Kansas. The EIS will assess the potential environmental consequences associated with the beddown of the KC-46A at Forbes ANGS as a replacement to the KC-135. As a result of the Proposed Action, there would be a change to the type of aircraft based at the selected installation; a change to the mix of aircraft using the associated airspace; changes to staffing and manpower at the selected location; changes to the number of airfield operations; as well as minor required construction, building renovation, and facility demolition. There would be no new or modified airspace required to support this undertaking.

1 The FTU alternative installations include Altus Air Force Base (AFB), Oklahoma and McConnell AFB, Kansas. The MOB 1 alternative installations include Altus AFB, Oklahoma; McConnell AFB, Kansas; Fairchild AFB, Washington; and Grand Forks AFB, North Dakota.
Sample Forbes ANGS IICEP Letter

At Forbes ANGS, the KC-46A would replace the KC-135 currently based at the installation. Under this alternative, the KC-46A would operate in existing airspace in a similar manner as is currently conducted. There may be a slight increase in operations in the airspace; however, use of this airspace is generally 10,000 feet above ground level and higher, and preliminary analysis indicates that noise levels under the proposal would be similar to existing noise levels with the KC-135 aircraft. Therefore, the National Guard Bureau (NGB) anticipates the area of potential effect for this action to be limited to the portion of the installation where construction, demolition, and renovation activities would occur.

Included as an attachment with this letter is a CD that contains the first two chapters of the EIS: the purpose and need for the action, and the Description of the Proposed Action and Alternatives (DOPAA). We invite you to review these two chapters and provide comments. Your comments are important to us, in that they will help us to identify potential issues associated with implementation of the proposal. We will also send you the Draft EIS upon its release, which is anticipated in early 2014. We will continue to send you updates and information related to this action unless you request otherwise.

The NGB previously sent you a letter indicating that a scoping meeting at Forbes ANGS was to be held Thursday, June 20, 2013 at both 2-4 p.m. and 6-9 p.m. in Topeka, Kansas, and invited you to attend this informational meeting. This letter also documented that the formal scoping period was May 17 through July 5, 2013. Notices for the scoping meeting were posted and published in the Topeka Capital-Journal on June 9 and June 16, 2013. If you would like the NGB to consider your comments for inclusion in the Draft EIS, please forward your comments to the KC-46A MOB2 Project Manager, Ms. Anne Rowe, at NGB/A7AM, Sheppard Hall, 3501 Fitchett Avenue, Joint Base Andrews MD 20762-5157 or email to ang.env.comments@ang.af.mil within 30 days of this notification.

If you have any questions regarding this consultation, please contact Ms. Anne Rowe. She can be reached at (240) 612-8636 or anne.rowe.ctr@ang.af.mil.

Sincerely,

ROBERT L. DOGAN, GS-13, RFM
Plans and Requirements Branch

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS
Appendix B Interagency and Intergovernmental Coordination for Environmental Planning (IICEP)
Dear Mr. Dogan:

This letter is in response to your letter received September 19, 2013 requesting comments regarding the proposed renovation and demolition activities for Forbes Air National Guard Station, in Kansas. This letter concerns asbestos-containing materials which may be present in older buildings.

Many of these older structures contain building materials which may contain asbestos. Common building materials which may be asbestos-containing materials (ACM) that are found in older public and commercial buildings include sprayed-on acoustical ceiling plasters, floor coverings such as vinyl tile and linoleum, siding, roof shingles and associated felts, as well as thermal system insulation on plumbing, boilers and steam piping, and duct work of heating and air-conditioning equipment.

Asbestos was used in more than 3600 different building materials, it is important to identify these materials prior to the start of the renovation or demolition activities. To determine if asbestos-containing materials are present in the building, an inspection for asbestos-containing materials by a trained and accredited asbestos inspector is required by federal EPA asbestos control regulations. Enclosed with this letter is a listing of firms which provide asbestos-related consultation services, including accredited inspections, for your consideration.

Asbestos-containing materials (ACM) are divided into two main categories. Non friable (hard) asbestos-containing materials are not easily damaged and do not readily release airborne asbestos fibers. Non friable ACM may include square floor tile, asphaltic roofing, and asbestos/cement (A/C) siding and shingles. These materials can become friable, and release airborne asbestos fibers, if subjected to sanding, grinding, sawing, crushing, or pulverizing to a powder.

Friable (soft) asbestos-containing materials are easily damaged and, when disturbed, can readily release airborne asbestos fibers. Friable ACM may include sprayed-on acoustical ceiling plasters, thermal insulation on heating and cooling systems, and resilient (no-wax) linoleum. If friable ACM is to be removed or disturbed by the renovation and demolition activities, they must be removed first by specially trained workers.

In Kansas, the removal of friable (soft) ACM must be performed by a Kansas licensed asbestos abatement contractor. These licensed contractors use certified asbestos workers, specialized equipment, and specific work procedures to remove friable ACM. I have enclosed a current listing of Kansas licensed asbestos abatement contractors, if friable ACM is to be removed during the construction activities of this renovation or demolition project.
Written notification of the intent to demolish public or commercial building or structures is required under the EPA asbestos NESHAP regulations (40 CFR Part 61.145). A Demolition Notification Form must be completed for each building or affected structure, and the completed form sent to KDHE, delivered or postmarked at least 10 working days prior to the start of demolition activities. Enclosed is the Asbestos Demolition Notification Form (ET-ASB10) for reporting intent to perform demolition for your use.

If you have any additional questions regarding asbestos related issues, please contact me at (785) 296-1689.

Sincerely,

Scott C. Bangert
Environmental Scientist
Radiation and Asbestos Control Section
Bureau of Environmental Health

SCB:dr
Enclosures
ARCHITECTURAL/ENGINEERING/CONSULTING FIRMS OFFERING CONSULTING SERVICES FOR ASBESTOS ABATEMENT**

APRIL, 2013

<table>
<thead>
<tr>
<th>NAME</th>
<th>ADDRESS</th>
<th>CITY</th>
<th>ST</th>
<th>ZIP</th>
<th>PHONE #</th>
<th>INSPECTIONS & SAMPLING</th>
<th>PROJECT DESIGN</th>
<th>PROJECT MONITORING</th>
</tr>
</thead>
<tbody>
<tr>
<td>*AGM Removal, LLC</td>
<td>5900 East Central, Suite 102</td>
<td>Wichita</td>
<td>KS</td>
<td>67208</td>
<td>316-218-3936</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>ACT</td>
<td>14953 W. 101st Terrace</td>
<td>Lenexa</td>
<td>KS</td>
<td>66215</td>
<td>913-492-1337</td>
<td>YES*</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Alfred Benesch & Company</td>
<td>3226 Kimball Avenue</td>
<td>Manhattan</td>
<td>KS</td>
<td>66503-2107</td>
<td>785-539-2202</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Allied Environmental Consultants, Inc.</td>
<td>PO Box 234</td>
<td>Wichita</td>
<td>KS</td>
<td>67201-0234</td>
<td>316-262-5698</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>American Metropolitan Environmental, Inc.</td>
<td>2713 W. Esthner Avenue</td>
<td>Wichita</td>
<td>KS</td>
<td>67213</td>
<td>316-342-6323</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Apex Environmental Consultants, Inc.</td>
<td>14955 W. 101st Terrace</td>
<td>Lenexa</td>
<td>KS</td>
<td>66215</td>
<td>913-338-2739</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Burns & McDonnell</td>
<td>9400 Ward Parkway</td>
<td>Kansas City</td>
<td>MO</td>
<td>64114</td>
<td>816-333-9400</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Dalrymple Consulting, Inc.</td>
<td>7641 SW 12th Street</td>
<td>Topeka</td>
<td>KS</td>
<td>66615-1406</td>
<td>785-273-0345</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Environmental Technical Services</td>
<td>7881 W 156th Street</td>
<td>Overland Park</td>
<td>KS</td>
<td>66223-2947</td>
<td>913-244-5706</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>I&I Environmental Services</td>
<td>215 S. Laura</td>
<td>Wichita</td>
<td>KS</td>
<td>67211</td>
<td>316-264-7050</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>ICI Environmental</td>
<td>3000 Youngfield St, Ste 105</td>
<td>Wheat Ridge</td>
<td>CO</td>
<td>80023</td>
<td>303-980-8749</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Kingston Environmental Services</td>
<td>ISO 14001 Certified, NVLAP & AOA Certified Laboratory</td>
<td>15450 Hangar Road</td>
<td>Kansas City</td>
<td>MO</td>
<td>64147</td>
<td>816-524-8811</td>
<td>YES*</td>
<td>YES</td>
</tr>
<tr>
<td>Milco Environmental Services, Inc.</td>
<td>320 West 4th Street</td>
<td>Olathe</td>
<td>KS</td>
<td>67701</td>
<td>785-460-1956</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Milco Environmental Services, Inc.</td>
<td>109 East 2nd Street</td>
<td>McComb</td>
<td>NE</td>
<td>69001</td>
<td>308-345-4741</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Neil H. Miller & Associates</td>
<td>5900 East Central, Suite 102</td>
<td>Wichita</td>
<td>KS</td>
<td>67208</td>
<td>316-706-5152</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Paradigm Group, LLC</td>
<td>PO Box 8200</td>
<td>Wichita</td>
<td>KS</td>
<td>67208</td>
<td>316-239-7097</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Precision Testing Laboratories</td>
<td>3703 W. Douglas</td>
<td>Wichita</td>
<td>KS</td>
<td>67213</td>
<td>316-265-0012</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Roth Environmental Consultants, Inc.</td>
<td>6600 College Blvd, Suite 220</td>
<td>Overland Park</td>
<td>KS</td>
<td>66211</td>
<td>913-664-9920</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Terrcon</td>
<td>13910 W. 96th Terrace</td>
<td>Lenexa</td>
<td>KS</td>
<td>66215</td>
<td>913-492-7777</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Triad Environmental Services</td>
<td>2000 E. Atkinson PO Box 1507</td>
<td>Pittsburg</td>
<td>KS</td>
<td>66762</td>
<td>620-231-5660</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Vac-U-Strip, Inc.</td>
<td>820-B Coronado Drive</td>
<td>Hutchinson</td>
<td>KS</td>
<td>67502</td>
<td>620-669-8791</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

*FIRMS WITH LABORATORIES WHICH ANALYZE BULK SAMPLES FOR THE PRESENCE OF ASBESTOS

**THIS LIST WAS COMPILED BY THE KANSAS DEPARTMENT OF HEALTH AND ENVIRONMENT TO ASSIST IN THE LOCATION OF FIRMS WHICH PROVIDE ASBESTOS CONSULTATION AND RELATED SERVICES. THIS LIST DOES NOT REPRESENT AN APPROVAL OR RECOMMENDATION BY THE DEPARTMENT OF THE FIRMS LISTED OR SERVICES PROVIDED. NOR DOES THIS LISTING REPRESENT A COMPLETE OR EXCLUSIVE COMPILATION OF AVAILABLE SERVICES.
Kansas Asbestos Licensed Contractors

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
<th>City</th>
<th>State</th>
<th>Zip</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACM Removal, LLC</td>
<td>5900 East Central, Suite 102</td>
<td>Wichita</td>
<td>KS</td>
<td>67208</td>
<td>316-684-1800</td>
</tr>
<tr>
<td>24/7 Enviro Solutions, Inc.</td>
<td>9312 E US 24 Highway</td>
<td>Independence</td>
<td>MO</td>
<td>64053</td>
<td>816-295-0659</td>
</tr>
<tr>
<td>Abatement Systems, Inc.</td>
<td>PO Box 773</td>
<td>Broken Arrow</td>
<td>OK</td>
<td>74013-0773</td>
<td>918-251-2504</td>
</tr>
<tr>
<td>Academy Roofing and Sheet Metal</td>
<td>6361 NE 14th Street</td>
<td>Des Moines</td>
<td>IA</td>
<td>50313</td>
<td>515-964-2345</td>
</tr>
<tr>
<td>Advanced Environmental Testing & Abatement, Inc.</td>
<td>803 Ricker Street</td>
<td>Waterloo</td>
<td>IA</td>
<td>50703</td>
<td>319-287-4447</td>
</tr>
<tr>
<td>Alamo 1</td>
<td>10843 Gulfdale</td>
<td>San Antonio</td>
<td>TX</td>
<td>78216</td>
<td>210-404-1220</td>
</tr>
<tr>
<td>ALM Environmental Services & Construction, LLC</td>
<td>1701 North 2nd Street, Suite #9</td>
<td>Clinton</td>
<td>MO</td>
<td>64735</td>
<td>660-890-8298</td>
</tr>
<tr>
<td>Allstate Environmental LLC</td>
<td>6304 E 109th Terrace</td>
<td>Kansas City</td>
<td>MO</td>
<td>64134</td>
<td>816-214-6577</td>
</tr>
<tr>
<td>American Pollution Control, Corporation</td>
<td>401 W Admiral Doyle Drive</td>
<td>New Iberia</td>
<td>LA</td>
<td>70560</td>
<td>337-365-7947</td>
</tr>
<tr>
<td>AAMX Veterans Specialty Services, LLC</td>
<td>2351 W Northwest Hwy.-Ste 2118</td>
<td>Dallas</td>
<td>TX</td>
<td>75220-8406</td>
<td>214-353-8087</td>
</tr>
<tr>
<td>Abatement Handlers, Inc.</td>
<td>6920 East Reading Place</td>
<td>Tulsa</td>
<td>OK</td>
<td>74115-4637</td>
<td>918-836-5585</td>
</tr>
<tr>
<td>Associated Insulation, Inc.</td>
<td>701 Pecan Circle</td>
<td>Manhattan</td>
<td>KS</td>
<td>66502</td>
<td>785-776-0145</td>
</tr>
<tr>
<td>A T Abatement Services, Inc.</td>
<td>4915 Stillwell</td>
<td>Kansas City</td>
<td>MO</td>
<td>64120</td>
<td>816-214-0444</td>
</tr>
<tr>
<td>B & R Insulation, Inc.</td>
<td>15001 W 101st Terrace</td>
<td>Lenexa</td>
<td>KS</td>
<td>66215</td>
<td>913-492-1346</td>
</tr>
<tr>
<td>Belfar Environmental, Inc.</td>
<td>5075 Kalamath Street</td>
<td>Denver</td>
<td>CO</td>
<td>80221</td>
<td>303-425-7526</td>
</tr>
<tr>
<td>Beckmann, Inc.</td>
<td>1420 Centerpark Road</td>
<td>Lincoln</td>
<td>NE</td>
<td>68512</td>
<td>402-423-6631</td>
</tr>
<tr>
<td>Brand Energy Solutions, LLC</td>
<td>1325 Cobb International Drive, Suite A-1</td>
<td>Kansas City</td>
<td>GA</td>
<td>30152</td>
<td>678-285-1408</td>
</tr>
<tr>
<td>Brandenburg Industrial Service Company</td>
<td>2625 S Loomis</td>
<td>Chicago</td>
<td>IL</td>
<td>60608</td>
<td>312-326-5800</td>
</tr>
<tr>
<td>Brock Services, LLC</td>
<td>10343 Sam Houston Park Drive, Ste 200</td>
<td>Houston</td>
<td>TX</td>
<td>77006</td>
<td>281-807-8200</td>
</tr>
<tr>
<td>Building Demolition Services</td>
<td>1638 West Street</td>
<td>Wichita</td>
<td>KS</td>
<td>67203</td>
<td>316-214-0905</td>
</tr>
<tr>
<td>Clearway Environmental Svs</td>
<td>7920 Ward Parkway</td>
<td>Kansas City</td>
<td>MO</td>
<td>64114</td>
<td>816-802-8480</td>
</tr>
<tr>
<td>Colorado Hazard Control, LLC</td>
<td>1775 W 95th Avenue</td>
<td>Denver</td>
<td>CO</td>
<td>80221</td>
<td>303-410-4941</td>
</tr>
<tr>
<td>Construction and Abatement Services, Inc.</td>
<td>610 NW Dunlap</td>
<td>Lees Summit</td>
<td>MO</td>
<td>64063</td>
<td>816-524-3233</td>
</tr>
<tr>
<td>Cornerstone Services Group LLC</td>
<td>PO Box 1268</td>
<td>Lancaster</td>
<td>PA</td>
<td>17803</td>
<td>717-399-5122</td>
</tr>
<tr>
<td>Envirotech, Inc.</td>
<td>PO Box 7532</td>
<td>Wichita</td>
<td>KS</td>
<td>67275</td>
<td>316-772-7235</td>
</tr>
<tr>
<td>Envirological Engineering, Inc.</td>
<td>2070 Peachtree Industrial Ct, Ste 104</td>
<td>Atlanta</td>
<td>GA</td>
<td>30341</td>
<td>770-455-0391</td>
</tr>
<tr>
<td>Environmental Action, Inc.</td>
<td>PO Box 1029</td>
<td>Jenks</td>
<td>OK</td>
<td>74037</td>
<td>918-298-4083</td>
</tr>
<tr>
<td>Environmental Assurance Co., Inc.</td>
<td>440 Hancock Street</td>
<td>Indianapolis</td>
<td>IN</td>
<td>46222</td>
<td>317-636-8500</td>
</tr>
<tr>
<td>Environmental Restoration, LLC</td>
<td>1666 Fabick Drive</td>
<td>Fenton</td>
<td>MO</td>
<td>63026</td>
<td>636-227-7477</td>
</tr>
<tr>
<td>Envirotech, Inc.</td>
<td>2737 Popin</td>
<td>St Louis</td>
<td>MO</td>
<td>63103</td>
<td>314-855-1293 ext 17</td>
</tr>
<tr>
<td>ESA, Inc.</td>
<td>116 Gateway Drive/PO Box 1370</td>
<td>North Sioux City</td>
<td>SD</td>
<td>57049-1370</td>
<td>605-232-4554</td>
</tr>
<tr>
<td>F & H Abatement Services, Inc.</td>
<td>PO Box 250/5003 E 61st North</td>
<td>Kansas City</td>
<td>KS</td>
<td>67067</td>
<td>316-264-2208</td>
</tr>
<tr>
<td>Forefront Environmental Services</td>
<td>35508 E Howell Rd</td>
<td>Oak Grove</td>
<td>MO</td>
<td>64076</td>
<td>816-918-3757</td>
</tr>
<tr>
<td>Name</td>
<td>Address</td>
<td>City</td>
<td>State</td>
<td>Zip</td>
<td>Phone</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------</td>
<td>---------------</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Gator Industries, LLC</td>
<td>300 N. Blackcat Rd</td>
<td>Joplin</td>
<td>MO</td>
<td>64801</td>
<td>417-624-4444</td>
</tr>
<tr>
<td>GenTech Construction Company, LLC</td>
<td>10350 Richmond Avenue, Ste 910</td>
<td>Houston</td>
<td>TX</td>
<td>77042</td>
<td>713-681-8486</td>
</tr>
<tr>
<td>Gerken Environmental Enterprises, Inc.</td>
<td>1528 W. Mt. Vernon</td>
<td>Springfield</td>
<td>MO</td>
<td>65802</td>
<td>417-863-7254</td>
</tr>
<tr>
<td>Great Plains Environmental Control, Inc.</td>
<td>PO Box 39/820 E Railroad Street</td>
<td>Kearney</td>
<td>NE</td>
<td>68848-0039</td>
<td>308-234-3350</td>
</tr>
<tr>
<td>Gulf Coast Dismantling, Inc.</td>
<td>PO Box 5249</td>
<td>Pasadena</td>
<td>TX</td>
<td>77508</td>
<td>281-487-0595</td>
</tr>
<tr>
<td>Harsley Specialties, Inc.</td>
<td>160 East Main St N./PO Box 1277</td>
<td>Rapid City</td>
<td>SD</td>
<td>57709</td>
<td>605-342-5634</td>
</tr>
<tr>
<td>Hudspeth & Associates, Inc.</td>
<td>4775 S. Santa Fe Circle</td>
<td>Englewood</td>
<td>CO</td>
<td>80110</td>
<td>303-791-5563</td>
</tr>
<tr>
<td>INSCO Environmental, Inc.</td>
<td>6902 Martindale Rd</td>
<td>Shawnee</td>
<td>KS</td>
<td>66218</td>
<td>913-422-8001</td>
</tr>
<tr>
<td>Integrated Solutions, Inc. (dba ISI)</td>
<td>215 S. Laura</td>
<td>Wichita</td>
<td>KS</td>
<td>67211</td>
<td>316-264-7050</td>
</tr>
<tr>
<td>Jacobson Asbestos Company</td>
<td>5527 SW 93rd Street</td>
<td>Wichita</td>
<td>KS</td>
<td>66507</td>
<td>785-272-8844</td>
</tr>
<tr>
<td>Kingston Environmental Services, Inc.</td>
<td>15450 Hangar Road</td>
<td>Kansas City</td>
<td>MO</td>
<td>66147</td>
<td>816-524-8811</td>
</tr>
<tr>
<td>Lakeshore Environmental Contractors, LLC</td>
<td>5513 Eastcliff Industrial Loop</td>
<td>Birmingham</td>
<td>AL</td>
<td>35210</td>
<td>205-943-5711</td>
</tr>
<tr>
<td>LVI Environmental Services, Inc.</td>
<td>12 Oak drive</td>
<td>Shawnee</td>
<td>OK</td>
<td>74801</td>
<td>405-273-4800</td>
</tr>
<tr>
<td>Major Abatement & Demolition, Inc.</td>
<td>PO Box 487</td>
<td>Blue Springs</td>
<td>MO</td>
<td>64013</td>
<td>816-674-4006</td>
</tr>
<tr>
<td>Mark One Electric Co., Inc.</td>
<td>909 Troost</td>
<td>Kansas City</td>
<td>MO</td>
<td>64106</td>
<td>816-842-7023</td>
</tr>
<tr>
<td>Mansfield Industrial, Inc.</td>
<td>PO Box 6205</td>
<td>Pensacola</td>
<td>FL</td>
<td>32503</td>
<td>850-477-6437</td>
</tr>
<tr>
<td>Mid-America Environmental Solutions</td>
<td>PO Box 737</td>
<td>Carthage</td>
<td>MO</td>
<td>64836</td>
<td>417-358-3599</td>
</tr>
<tr>
<td>Midwest Service Group of Midwest Abatement Corporation</td>
<td>560 Turner Blvd</td>
<td>St Peters</td>
<td>MO</td>
<td>63376</td>
<td>636-926-7800</td>
</tr>
<tr>
<td>Midwest Steel Company, Inc.</td>
<td>9825 Moers Road</td>
<td>Houston</td>
<td>TX</td>
<td>77075</td>
<td>713-991-7843</td>
</tr>
<tr>
<td>NCM Demolition and Remediation, LP</td>
<td>404 N. Berry Street</td>
<td>Brea</td>
<td>CA</td>
<td>92821-3104</td>
<td>714-672-3500</td>
</tr>
<tr>
<td>New Horizons Enterprises, LLC</td>
<td>PO Box 68183</td>
<td>Kansas City</td>
<td>MO</td>
<td>64168</td>
<td>816-569-5256</td>
</tr>
<tr>
<td>P & M Insulation</td>
<td>2607 Indiana Road</td>
<td>Ottawa</td>
<td>KS</td>
<td>66067</td>
<td>785-242-0904</td>
</tr>
<tr>
<td>Pacific Technologies, Inc.</td>
<td>PO Box 8486</td>
<td>Boise</td>
<td>ID</td>
<td>83711</td>
<td>208-344-8668</td>
</tr>
<tr>
<td>Patriot Abatement Services, LLC</td>
<td>PO Box 2226</td>
<td>Olathe</td>
<td>KS</td>
<td>66061-2226</td>
<td>913-397-6181</td>
</tr>
<tr>
<td>Performance Abatement Services, Inc.</td>
<td>16400 College</td>
<td>Lenexa</td>
<td>KS</td>
<td>66219</td>
<td>913-888-8600</td>
</tr>
<tr>
<td>Petrochem Insulation, Inc.</td>
<td>110 Corporate Place</td>
<td>Valparaiso</td>
<td>IN</td>
<td>46990</td>
<td>219-404-5456</td>
</tr>
<tr>
<td>Piping Technology Company</td>
<td>PO Box 401</td>
<td>McPherson</td>
<td>KS</td>
<td>67701</td>
<td>620-241-3592</td>
</tr>
<tr>
<td>Repair Response, Inc.</td>
<td>102 Technology Lane</td>
<td>Export</td>
<td>PA</td>
<td>15632-8903</td>
<td>724-325-3330</td>
</tr>
<tr>
<td>Remediation Contractors, Inc.</td>
<td>1114 S. Santa Fe</td>
<td>Wichita</td>
<td>KS</td>
<td>67211-2438</td>
<td>316-269-1549</td>
</tr>
<tr>
<td>Sellers & Marquis Roofing Company</td>
<td>8601 E US Highway 40</td>
<td>Kansas City</td>
<td>MO</td>
<td>64129</td>
<td>816-241-2221</td>
</tr>
<tr>
<td>SH Environmental Services, Inc.</td>
<td>2250 N Rock Road #118-281</td>
<td>Wichita</td>
<td>KS</td>
<td>67226</td>
<td>281-989-2690</td>
</tr>
<tr>
<td>Sunbelt Environmental Services, Inc.</td>
<td>621 N. Prince Lane</td>
<td>Springfield</td>
<td>MO</td>
<td>65802</td>
<td>417-831-5052</td>
</tr>
<tr>
<td>W.R. King Contracting, Inc.</td>
<td>7915 W. 51st Street</td>
<td>Overland Park</td>
<td>KS</td>
<td>66202</td>
<td>913-384-4943</td>
</tr>
</tbody>
</table>
Kansas

KANSAS DEPARTMENT OF HEALTH AND ENVIRONMENT
ASBESTOS DEMOLITION NOTIFICATION FORM

GENERAL INSTRUCTIONS: This Asbestos Demolition Notification Form is to be completed and submitted before a building or structure is to be demolished. NOTE: IF THE BUILDING OR STRUCTURE CONTAINS FRIABLE ASBESTOS-CONTAINING MATERIALS, THE ASBESTOS NOTIFICATION FORM (ET-ASB8) MUST BE COMPLETED AND SUBMITTED TO THE DEPARTMENT. THIS ASBESTOS DEMOLITION FORM WILL NOT BE ACCEPTED FOR REPORTING THE REMOVAL OF FRIABLE ASBESTOS-CONTAINING MATERIALS FROM BUILDINGS SCHEDULED FOR DEMOLITION. This form is to be received by the Department not less than 10 working days before the demolition project is scheduled to start. Any notification that is incomplete or any notification indicating site activities to be in violation of applicable regulations will be considered an invalid notification.

Separate notifications must be provided for each building or other individual facility where demolition of said building or facility is to be demolished. Additional copies of this form should be reproduced as needed.

Under most circumstances, the removal of Category I nonfriable asbestos-containing materials will not be required prior to demolition unless the building is to be burned or the materials are considered to be friable. Category II nonfriable asbestos-containing materials must be removed prior to demolition if the materials would be subject to crushing, crumbling or pulverizing during the process of demolition of the building or structure.

Mail the original, signed and completed form to:
KANSAS DEPARTMENT OF HEALTH AND ENVIRONMENT
BUREAU OF ENVIRONMENTAL HEALTH
ASBESTOS CONTROL SECTION
1000 SW JACKSON, SUITE 330
TOPEKA, KANSAS 66612-1365
(785) 296-1560

PART A AUTHENTICATION

I hereby certify that, to the best of my knowledge and understanding, the information provided is complete, true and correct.

Please type or PRINT NAME LEGIBLE __________________ Title __________________

Signature __________________ Date __________________

Name of Firm __________________

Telephone No. ()

PART B PROJECT DESCRIPTION

Building/Structure Owner: __________________

Owner Address: Street __________________

City __________________ State __________ Zip __________

Owner Contact: Name __________________

Telephone No. ()

Building Address: Street __________________

City __________________ County __________

Present Use: __________________

Past Use: __________________

Age of Building: __________________

Building Floor Space: (sq ft) __________________

No. of Floors: __________________

Scheduled Demolition Start __________/________/________

Completion __________/________/________

Describe how building will be demolished: __________________
PART C INSPECTION INFORMATION
Was an inspection for asbestos conducted for this project? ______ Yes ______ No
If yes, provide the following information:
Inspector Name __ Date Inspected ________________
Address __ City __________________________ State ____________
Telephone No. (_____) ________________ Exp. Date __________________________
Accreditation by __
Provide method used to detect the presence of asbestos material, including analytical methods:
__
__
PART D DEMOLITION CONTRACTOR INFORMATION
Contractor: __
Address: __
City: __________________________ State ____________ Zip ______
Contact: __ Telephone No. (_____) ________________
PART E IDENTIFIED ASBESTOS CONTAINING MATERIALS
Nonfriable Category I: ___________ s.f. ___________ l.f. ___________ c. yd.
Nonfriable Category II: ___________ s.f. ___________ l.f. ___________ c. yd.
Friable Asbestos ___________ s.f. ___________ l.f. ___________ c. yd.
If friable asbestos-containing materials are present state who will be removing the material and when it will be removed:
__
If nonfriable Category II asbestos-containing materials are present, briefly state the work practices intended to be used to
insure these materials do not become friable (crushed, crumbled, or pulverized):
__
__
Is building or structure to be burned? ______ Yes ______ No ______
If yes, attach a copy of the required approval letter from KDHE. NOTE: All asbestos-containing materials and any additional materials, as required by the Department, must be
removed prior to burning.
Was demolition ordered by a Local Government because the structure is structurally unsafe and in danger of imminent collapse?
_______ Yes ______ No ______
If yes, attach copy of the order
PART F WASTE DISPOSAL
Disposal Site: __
KDHE Licensed Municipal Solid Waste (Sanitary) or Construction/Demolition (C&D) Landfill Permit Number ________________
Location: City __ County __________________________ State ____________
Waste Transporter: __
Comments by: KDHE
Transmittal Date: October 16, 2013

This form provides notification and the opportunity for your agency to review and comments on this proposed project as required by Executive Order 12372. Review Agency, please complete Parts II and III as appropriate and return to contact person listed below. Your prompt response will be appreciated.

Return To: Ms. Anne Rowe
KC-46A MOB2 Project Manager
NBG/A7AM
Shepperd Hall
3501 Fetchet Ave.
Joint Base Andrews, MD 20762-5157

PART I
_ Aging
_ Agriculture
_ Biological Survey
_ Conservation Commission
_ Corporation Commission

REVIEW AGENCIES/COMMISSION
_ Education
_ Geological Survey, KS
_ Health & Environment
_ Historical Society
_ Social & Rehabilitation
_ State Forester
_ Transportation
_ Water Office, KS
_ Wildlife & Parks
_ Commerce

PART II
AGENCY REVIEW COMMENTS
COMMENTS: (Attach additional sheet if necessary) Re: KC-46A and MOB 2 location at Forbes Air National Guard Station
Please see the enclosed comments submitted by Jacqueline Grunau, Bureau of Environmental Remediation and Don Carlson, Bureau of Water. Scott Bausert, Asbestos Section will be sending a letter regarding asbestos information. Travis Daneke noted that BER/Federal Facilities wrote a memo dated May 28, 2013, which outlined the sites in vicinity of the proposed project.

PART III
RECOMMENDED ACTION COMMENTS:
_ Clearance of the project should be granted.
_ Clearance of the project should not be granted.
_ Clearance of the project should be delayed until the issues or questions above have been clarified.
_ Request a State Process Recommendation in concurrence with the above comments.

DIVISIONS/ AGENCY/ COMMISSION

John W. Mitchell, Director
Division of Environment

JWM/4f
MEMORANDUM

TO: Donna Fisher
FROM: Jacqueline Grunau
DATE: September 30, 2013
RE: Intergovernmental Agency Review requested by the National Guard Bureau in regards to the potential Beddown Location at Forbes Air National Guard Station in Topeka, Kansas

The Kansas Department of Health and Environment (KDHE), Bureau of Environmental Remediation (BER), Assessment and Restoration Section, Superfund and Drycleaner Remediation Unit has identified one (1) known contaminated drycleaner facility within about three (3) miles of the proposed project.

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Address</th>
<th>Site ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yong’s Cleaners</td>
<td>3601 SW Topeka Blvd.</td>
<td>C4-089-70730</td>
</tr>
</tbody>
</table>

Staff member(s) from the National Guard Bureau are welcome to come and view the KDHE-BER files in accordance with the Kansas Open Records Act. If you have any questions, please contact me by telephone at (785) 296-1682 or by e-mail at jgrunau@kdheks.gov.
October 16, 2013

Ms. Anne Rowe
KC-46A MOB2 Project Manager
NBG/A7AM
Shepperd Hill
3501 Fetchet Ave.
Joint Base Andrews, MD 20762-5157

Re: Proposed Action KC-46 Bedown at Air National

Dear Ms. Rowe:

Please see the following comments submitted by Don Carlson, Bureau of Water.

I have no objection to the proposal but offer the following comment for review and consideration:

Any construction activity which disturbs one acre or more is required to file a National Pollutant Discharge Elimination System (NPDES) permit application for stormwater runoff resulting from construction activities. The project owner (party responsible for the project) must obtain authorization from KDHE to discharge stormwater runoff associated with construction activities prior to commencing construction. The Kansas construction stormwater general permit, a Notice of Intent (application form), a frequently asked questions file and supplemental materials are on-line on the KDHE Stormwater Program webpage at www.kdhe.state.ks.us/stormwater. Answers to questions regarding or additional information concerning construction stormwater permitting requirements can be obtained by calling 785.296.5549.

Sincerely,

Donna Fisher
Director’s Office

DC/df
The sample IICEP letter following was distributed to the list below:

Eric Davis, U.S. Fish and Wildlife Service, New Jersey Ecological Services Field Office, 927 N Main St, Bldg D, Pleasantville, NJ 08232
Paul Phifer, Ph.D., U.S. Fish and Wildlife Service, Region 5, 300 Westgate Center Dr, Hadley, MA 01035-9589
Ruth W. Foster, New Jersey Dept of Environmental Protection, Office of Permit Coordination and Environmental Review, 401 E State St, PO Box 420, Trenton, NJ 08625
New Jersey Division of Fish and Wildlife, Endangered and Nongame Species Program, Department of Environmental Protection, PO Box 420, Trenton, NJ 08625-0420
Ernie Deman, New Jersey Pinelands Commission, 15 Springfield Rd, New Lisbon, NJ 08064
Burlington County, 50 Rancocas Rd, Mount Holly, NJ 08060
Mary Pat Robbie, Burlington County, PO Box 6000, Mount Holly, NJ 08060
Mark Gould, Nanticoke-Lenni-Lenape Indians of New Jersey, 18 E Commerce St, PO Box 544, Bridgeton, NJ 08302
Dwaine Perry, Ramapough Mountain Indians, 189 Stag Hill Rd, Mahwah, NJ 07430
Crown Prince Emperor El Bey Bagby Pamunkey Chief, Powhatan-Renape Nation, Rankokus Indian Reservation, PO Box 255, Westampton Township, NJ 08073
The Honorable Thomas Harper, Mayor of Wrightstown, 21 Saylors Pond Rd, Wrightstown, NJ 08562
The Honorable Ronald Francioli, Mayor of New Hanover Township, 1000 Route 10, PO Box 250, Whippany, NJ 07981
The Honorable Jim Durr, Mayor of North Hanover Township, 41 Schoolhouse Rd, Jacobstown, NJ 08562
The Honorable David Patriarca, Mayor of Pemberton Township, 500 Pemberton-Browns Mills Rd, Pemberton, NJ 08068-1539
The Honorable Denis McDaniel, Mayor of Springfield Township, PO Box 119, Jobstown, NJ 08041
The Honorable Michael Reina, Mayor of Jackson Township, 95 W Veterans Hwy, Jackson, NJ 08527
The Honorable Mike Fressola, Mayor of Manchester Township, 1 Colonial Dr, Manchester, NJ 08759
The Honorable David Leutwyler, Mayor of Plumsted Township, 121 Evergreen Rd, New Egypt, NJ 08533
The Honorable Frank Lautenberg, U.S. Senate, 141 Hart Senate Office Bldg, Washington, DC 20510
The Honorable Robert Menendez, U.S. Senate, 528 Hart Senate Office Bldg, Washington, DC 20510
The Honorable Jon Runyun, House of Representatives, 1239 Longworth HOB, Washington, DC 20515
The Honorable Chris Smith, House of Representatives, 2373 Rayburn House Office Building, Washington, DC 20515
The Honorable Chris Christie, Office of the Governor, PO Box 001, Trenton, NJ 08625
The Honorable Samuel Thompson, New Jersey Senate, 2501 Highway 516, Ste 101, Old Bridge, NJ 08857
The Honorable Robert Clifton, New Jersey Assembly, 516 Route 33 West, Bldg 2, Ste 2, Millstone, NJ 08535
The Honorable Ronald Dancer, New Jersey Assembly, 405 Rt 539, Cream Ridge, NJ 08514
Sample JB MDL IICEP Letter

NATIONAL GUARD BUREAU
3501 FETCHET AVENUE
JOINT BASE ANDREWS MD 20762-5157

NGB/A7AM 16 Sep 13

Environmental Review Coordinator
U.S. Environmental Protection Agency, Region 2
290 Broadway
New York, NY 10007-1866

Dear Sir/Madam

The United States Air Force (USAF) plans to replace the existing KC-135 aerial refueling fleet with the KC-46A, which will be a new aircraft to the USAF’s fleet. As such, the USAF has identified locations for the beddown of a formal training unit (FTU) and the first main operating base (MOB 1), which will both be led by active duty units. The USAF will also beddown the KC-46A at the second main operating base (MOB 2), which will be led by an Air National Guard (ANG) unit.

There are two separate Environmental Impact Statements (EISs) being prepared for the MOB 1/FTU and MOB 2 aircraft beddowns. While you may be familiar with either or both of these actions, this particular letter is in reference only to the MOB 2 beddown action.

The MOB 2 alternative locations for this beddown include:

- Forbes Air National Guard Station (ANGS), Kansas;
- Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey;
- Pease ANGS, New Hampshire;
- Pittsburgh ANGS, Pennsylvania; and,
- Rickenbacker ANGS, Ohio.

The EIS is being prepared under the National Environmental Policy Act (NEPA) for the potential beddown of the KC-46A at one of the five alternative locations, including JB MDL in New Jersey. The EIS will assess the potential environmental consequences associated with the beddown of the KC-46A at JB MDL as a replacement to the KC-135. As a result of the Proposed Action, there would be a change to the type of aircraft based at the selected installation; a change to the mix of aircraft using the associated airspace; changes to staffing and manpower at the selected location; changes to the number of airfield operations; as well as minor required construction, building renovation, and facility demolition. There would be no new or modified airspace required to support this undertaking.

1 The FTU alternative installations include Altus Air Force Base (AFB), Oklahoma and McConnell AFB, Kansas. The MOB 1 alternative installations include Altus AFB, Oklahoma; McConnell AFB, Kansas; Fairchild AFB, Washington; and Grand Forks AFB, North Dakota.
Sample JB MDL IICEP Letter

At JB MDL, the KC-46A would replace the KC-135 currently based at the installation. Under this alternative, the KC-46A would operate in existing airspace in a similar manner as is currently conducted. There may be a slight increase in operations in the airspace; however, use of this airspace is generally 10,000 feet above ground level and higher, and preliminary analysis indicates that noise levels under the proposal would be similar to existing noise levels with the KC-135 aircraft. Therefore, the National Guard Bureau (NGB) anticipates the area of potential effect for this action to be limited to the portion of the installation where construction, demolition, and renovation activities would occur.

Included as an attachment with this letter is a CD that contains the first two chapters of the EIS: the purpose and need for the action, and the Description of the Proposed Action and Alternatives (DOPAA). We invite you to review these two chapters and provide comments. Your comments are important to us, in that they will help us to identify potential issues associated with implementation of the proposal. We will also send you the Draft EIS upon its release, which is anticipated in early 2014. We will continue to send you updates and information related to this action unless you request otherwise.

The NGB previously sent you a letter indicating that a scoping meeting at JB MDL was to be held Tuesday, June 4, 2013 at both 2-4 p.m. and 6-9 p.m. in New Egypt, New Jersey, and invited you to attend this informational meeting. This letter also documented that the formal scoping period was May 17 through July 5, 2013. Notices for the scoping meeting were posted and published in the *Ashbury Park Press* and *Burlington County Times* on May 26 and June 2, 2013. If you would like the NGB to consider your comments for inclusion in the Draft EIS, please forward your comments to the KC-46A MOB2 Project Manager, Ms. Anne Rowe, at NGB/A7AM, Sheppard Hall, 3501 Fetchet Avenue, Joint Base Andrews MD 20762-5157 or email to ang.env.comments@ang.af.mil within 30 days of this notification.

If you have any questions regarding this consultation, please contact Ms. Anne Rowe. She can be reached at (240) 612-8636 or anne.rowe.ctr@ang.af.mil.

Sincerely,

ROBERT L. DOGAN, GS-13, RFM
Plans and Requirements Branch
-----Original Message-----
From: Popolizio, Carlo [mailto:carlo_popolizio@fws.gov]
Sent: Friday, September 27, 2013 10:03 AM
To: Rowe, Anne M CTR USAF ANG NG&B/TAM
Subject: National Guard Bureau - Draft EIS - KC-46A refueling tanker

Dear Ms. Rowe:

the USFWS - New Jersey Field Office has no objection to selecting Pease ANGS as the preferred alternative for bed-down of the KC-46A refueling tanker.
If you need to contact this office for further coordination on this project, please refer to our project log number 13-CPA-0303.

Best regards, Carlo

Carlo Popolizio, Biologist
USFWS-NJFO
927 N. Main Street, Pleasantville NJ 08232
Phone: (609) 383-3938 x 32
Fax: (609) 646-0352
"Sell your cleverness and buy bewilderment." Rumi
KC-46A MOB2 Project Manager, NGB/A7AM
Shepperd Hall
3501 Fetchet Avenue
Joint Base Andrews, MD 20762-5157

Re: Application # 1991-1149.059
Joint Base McGuire-Dix-Lakehurst

Dear Applicant:

Thank you for your September 16, 2013 letter asking that the Commission submit comments regarding a proposed Environmental Impact Statement related to the potential location of aerial refueling aircraft at Joint Base McGuire-Dix-Lakehurst (JBMDL). The location of aircraft at JBMDL would not require the completion of an application with the Pinelands Commission. However, the submitted letter indicates that the location of the aircraft at JBMDL may require minor construction, renovation and demolition. Those activities may require the completion of an application with the Pinelands Commission.

The Pinelands Comprehensive Management Plan (CMP) contains many land use and environmental standards. For example, the land use standards of the CMP require that, where feasible, development at military and federal installations be located in that portion of the installation located within the Pinelands Protection Area and avoid the Pinelands Preservation Area District and Forest Area. Examples of CMP environmental standards include a prohibition on most development in wetlands and a required buffer to wetlands, the protection of threatened and endangered plants and animals and stormwater management.

To discuss these standards, you may wish to schedule a pre-application conference with our staff. During this conference we can discuss the proposed development and advise of the specific standards of the CMP that appear to be of concern. There is no fee required for a pre-application conference.

Please note that the proposed development requires the completion of an application with the Commission. The CMP requires an application review fee. Applications filed with the Pinelands Commission may not be reviewed or considered complete unless the application review fee and supporting documentation required by the CMP (N.J.A.C. 7:50-1.6) have been submitted.

For your convenience, application submissions consisting of letter or legal sized documents and electronically notarized application forms may now be submitted via email to Applinfo@njpinelands.state.nj.us. Large reports, plans, checks, and items that have a manually applied seal (i.e., plans, manually notarized items, etc.) must still be submitted as hard copies.
If you have any questions, please contact the Regulatory Programs staff.

Sincerely,

[Signature]

Ernest M. Derman
Supervising Environmental Specialist
October 16, 2013

Ms. Anne Rowe
NGB/A7AM
Shepperd Hall
3501 Fetchet Avenue
Joint Base Andrews, MD 20762-5157

Dear Ms. Rowe,

Please accept this letter on behalf of the Springfield Township Council as a response to your correspondence dated September 16, 2013. Springfield Township Council would like to offer its support of the beddown of the KC-46A at the JB MDL and further offers its support to the National Guard as well.

After review of your correspondence and the EIS that was provided to the Township, Council agrees that there will be no further environmental impact due to the beddown of the KC-46A in place of the KC-135 at the JB MDL.

Please feel free to contact my office if you need anything further.

Sincerely,

[Signature]
Patricia Clayton, RMC
Township Clerk
Divison of Fish and Wildlife
P.O. Box 400
Trenton, NJ 08625-0400
Dave Chanda, Director

October 21, 2013

Ms. Anne Rowe,
KC-46A MOB2 Project Manager,
NGB/A7AM,
Shepperd Hall,
3501 Fetchet Avenue,
Joint Base Andrews, MD 20762-5157

Dear Ms. Rowe:

The NJ Division of Fish & Wildlife (DFW) appreciates the opportunity to provide comment for the Environmental Impact Statements (EIS’s) being prepared for the MOB 1/FTU1 and MOB 2 aircraft beddowns. The NJ DFW feels that the proposed facility additions, new impervious surface areas and changes to the existing fueling infrastructure shown in the “Final Description of the Proposed Action and Alternatives Environmental Impact Statement KC-46A Beddown at Alternative Air National Guard Installations Main Operating Base 2” should have little to no effect on the known nesting area of the Upland Sandpipers, Grasshopper Sparrows and Savannah Sparrows near the center of the runways at McGuire AFB.

In the EIS, a description of other larger aircraft with similar engines using the same runways would be helpful in determining whether or not the replacement the existing KC-135 aerial refueling fleet with the KC-46A would have any effect on the T&E species present.

If we may be of further service, please contact me at (908) 236-2118 or by Email at kelly.davis@dep.state.nj.us

Sincerely,

Kelly Davis
NJ Division of Fish & Wildlife
Office of Environmental Review
The sample IICEP letter following was distributed to the list below:

U.S. Environmental Protection Agency, Region 1, 5 Post Office Square, Ste. 100, Boston, MA 02109-3912
U.S. Fish and Wildlife Service Region V, 300 Westgate Center Dr, Hadley, MA 01035
New Hampshire Department of Environmental Services, 29 Hazen Dr, PO Box 95, Concord, NH 03302
New Hampshire Fish and Game Department, 11 Hazen Dr, Concord, NH 03301
New Hampshire State Port Authority, 555 Market St, Portsmouth, NH 03801
New Hampshire Department of Transportation, Bureau of Environment, JOM Building, Room 160, 7 Hazen Dr, Concord, NH 03302
New Hampshire Coastal Program, Department of Environmental Services, 50 International Dr, Ste 200, Portsmouth, NH 03801
New Hampshire Office of Energy and Planning, 57 Regional Dr, Ste 3, Concord, NH 03301
New Hampshire Department of Environmental Services, Wetlands Bureau, PO Box 95, Concord, NH 03302
Town of Newington Planning Department, 205 Nimble Hill Rd, Newington, NH 03801
Portsmouth City Hall, Community Development Department, 1 Junkins Ave, Portsmouth, NH 03801
Pease Development Authority, 360 Corporate Dr, Portsmouth, NH 03801
The Honorable Kelly Ayotte, U.S. Senate, 144 Russell Senate Office Bldg, Washington, DC 20510
The Honorable Jeanne Shaheen, U.S. Senate, 520 Hart Senate Office Bldg, Washington, DC 20510
The Honorable Carol Shea-Porter, House of Representatives, 1530 Longworth House Office Bldg, Washington, DC 20515
The Honorable Martha Clark, New Hampshire Senate, State House, Room 115, 107 N Main St, Concord, NH 03301
The Honorable Joe Scarlotto, New Hampshire Representative, 130 Oxford Ave, Portsmouth, NH 03801-4126
The Honorable Eric Spear, Mayor of Portsmouth, 1 Junkins Ave, Portsmouth, NH 03801
The Honorable Maggie Hassan, Office of the Governor, State House, 107 N Main St, Concord, NH 03301
Sample Pease ANGS IICEP Letter
NATIONAL GUARD BUREAU
3501 FETCHET AVENUE
JOINT BASE ANDREWS MD 20762-5157

NGB/A7AM 16 Sep 13

U.S. Environmental Protection Agency, Region 1
5 Post Office Square, Ste. 100
Boston, MA 02109-3912

Dear Sir/Madam

The United States Air Force (USAF) plans to replace the existing KC-135 aerial refueling fleet with the KC-46A, which will be a new aircraft to the USAF’s fleet. As such, the USAF has identified locations for the beddown of a formal training unit (FTU) and the first main operating base (MOB 1), which will both be led by active duty units. The USAF will also beddown the KC-46A at the second main operating base (MOB 2), which will be led by an Air National Guard (ANG) unit.

There are two separate Environmental Impact Statements (EISs) being prepared for the MOB 1/FTU\(^1\) and MOB 2 aircraft beddowns. While you may be familiar with either or both of these actions, this particular letter is in reference only to the MOB 2 beddown action.

The MOB 2 alternative locations for this beddown include:

- Forbes Air National Guard Station (ANGS), Kansas;
- Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey;
- Pease ANGS, New Hampshire;
- Pittsburgh ANGS, Pennsylvania; and,
- Rickenbacker ANGS, Ohio.

The EIS is being prepared under the National Environmental Policy Act (NEPA) for the potential beddown of the KC-46A at one of the five alternative locations, including Pease ANGS in New Hampshire. The EIS will assess the potential environmental consequences associated with the beddown of the KC-46A at Pease ANGS as a replacement to the KC-135. As a result of the Proposed Action, there would be a change to the type of aircraft based at the selected installation; a change to the mix of aircraft using the associated airspace; changes to staffing and manpower at the selected location; changes to the number of airfield operations; as well as minor required construction, building renovation, and facility demolition. There would be no new or modified airspace required to support this undertaking.

\(^1\) The FTU alternative installations include Altus Air Force Base (AFB), Oklahoma and McConnell AFB, Kansas. The MOB 1 alternative installations include Altus AFB, Oklahoma; McConnell AFB, Kansas; Fairchild AFB, Washington; and Grand Forks AFB, North Dakota.
Sample Pease ANGS IICEP Letter

At Pease ANGS, the KC-46A would replace the KC-135 currently based at the installation. Under this alternative, the KC-46A would operate in existing airspace in a similar manner as is currently conducted. There may be a slight increase in operations in the airspace; however, use of this airspace is generally 10,000 feet above ground level and higher, and preliminary analysis indicates that noise levels under the proposal would be similar to existing noise levels with the KC-135 aircraft. Therefore, the National Guard Bureau (NGB) anticipates the area of potential effect for this action to be limited to the portion of the installation where construction, demolition, and renovation activities would occur.

Included as an attachment with this letter is a CD that contains the first two chapters of the EIS: the purpose and need for the action, and the Description of the Proposed Action and Alternatives (DOPAA). We invite you to review these two chapters and provide comments. Your comments are important to us, in that they will help us to identify potential issues associated with implementation of the proposal. We will also send you the Draft EIS upon its release, which is anticipated in early 2014. We will continue to send you updates and information related to this action unless you request otherwise.

The NGB previously sent you a letter indicating that a scoping meeting at Pease ANGS was to be held Thursday, June 6, 2013 at both 2-4 p.m. and 6-9 p.m. in Portsmouth, New Hampshire, and invited you to attend this informational meeting. This letter also documented that the formal scoping period was May 17 through July 5, 2013. Notices for the scoping meeting were posted and published in the Portsmouth Herald on May 26 and June 2, 2013. If you would like the NGB to consider your comments for inclusion in the Draft EIS, please forward your comments to the KC-46A MOB2 Project Manager, Ms. Anne Rowe, at NGW/A7AM, Shepperd Hall, 3501 Fetchet Avenue, Joint Base Andrews MD 20762-5157 or email to ang.env.comments@ang.af.mil within 30 days of this notification.

If you have any questions regarding this consultation, please contact Ms. Anne Rowe. She can be reached at (240) 612-8636 or anne.rowe.ctr@ang.af.mil.

Sincerely,

ROBERT L. DOGAN, GS-13, RFM
Plans and Requirements Branch
October 15, 2013

Ms. Anne Rowe
NGB/AZAM, Shepperd Hall
3501 Fetchet Avenue
Joint Base Andrews, MD 20162-5157

Dear Ms. Rowe:

Thank you for the opportunity to comment on the United States Air Force effort to replace the existing KC-135 aerial refueling fleet with the KC-46A. We are pleased that the U.S. Air Force has identified the Pease Air National Guard Station as one of the sites for beddown of this aircraft in the second main operating base (MOB 2) EIS.

Upon review of this document with my staff, this action has the effect of bringing a more modernized tanker fleet and airborne refueling technology to the Pease ANGS and with it upgrades and renovations to the Pease facility, where these aircraft would be stationed under this alternative.

By way of this letter, I would like to extend the City's support of the proposed MOB-2 beddown by an Air National Guard unit here in Portsmouth at Pease. It is our understanding that this new aircraft will provide a more effective and versatile tanker design that will better serve the current fleet of aircraft which rely on airborne refueling. The City of Portsmouth has a long tradition of supporting our nation's military and believes the changes proposed with the addition of the KC-46A will continue that proud tradition.

Please let me know if you have any questions as you move ahead with the EIS process and if you require any additional information, please do not hesitate to contact me at (603) 610-7202.

Sincerely,

John P. Bohenko
City Manager

c.: Honorable Mayor Eric Spear and City Council Members
Ms. Anne Rowe
KC-46A MOB2 Project Manager
NGB/A7AM, Shepperd Hall
3501 Fetchet Avenue
Joint Base Andrews, MD 20762-5157

RE: NHDES COMMENTS – DRAFT CHAPTERS 1 & 2 - NEPA DRAFT ENVIRONMENTAL IMPACT STATEMENT (DEIS) – KC-46A BEDDOWN (MOB2) – PEASE AIR NATIONAL GUARD STATION (ANGS), PORTSMOUTH, NEW HAMPSHIRE – SEPTEMBER 2013

Dear Ms. Rowe:

The New Hampshire Department of Environmental Services (DES) has completed its review of the subject chapters and provides the enclosed comments for your consideration. The initial drafts of chapters one and two represented the focus of the agency's review. Topics addressed included storm water management, aboveground petroleum management systems and air emissions modeling.

DES would like to thank you for the opportunity to comment on the early stages of the DEIS. It is our intent to continue to serve as a partner in your effort to evaluate the Pease ANGS in Portsmouth, New Hampshire as a beddown site for the KC-46As. If there are questions, please contact me as needed.

Sincerely,

Timothy W. Drew
Administrator
Public Information & Permitting
Office of the Commissioner

Enc.
Cc: Thomas S. Burack, Commissioner, NH DES
Vicki V. Quiram, Assistant Commissioner, NH DES
Harry T. Stewart, Director, Water Division, NH DES
Michael Wimsatt, Director, Waste Management Division, NH DES
Craig Wright, Director, Air Resources Division, NH DES
Jeffrey Andrews, Water Division, NH DES
Gregg Comstock, Water Division, NH DES
Michael Juranty, Waste Management Division, NH DES
Michael Fitzgerald, Air Resources Division, NH DES
Thomas P. Ballestero, Director, Storm Water Center, UNH, Durham NH

DES Website: www.des.nh.gov
P.O. Box 95, 29 Hazen Drive, Concord, New Hampshire 03302-0095
Telephone: (603) 271-3503 • Fax: (603) 271-2867 • TDD Access: Relay NH 1-800-735-2964
Comment 1. Storm Water Management

Based on the figures in Table 2.3 (total disturbance 117,173 square feet and total new impervious surface 26,865 square feet), the Air National Guard Station (ANGS) will need both the U.S. Environmental Protection Agency (U.S. EPA) Construction General Permit (http://des.nh.gov/organization/divisions/water/stormwater/construction.htm) and an NH DES Alteration of Terrain Permit (http://des.nh.gov/organization/divisions/water/aot/permit_aot.htm). If the project includes construction dewatering, the ANGS may also need either the Dewatering General Permit (DGP - see http://www.epa.gov/region1/npdes/dewatering.html) or the Remediation General Permit (RGP - see http://www.epa.gov/region1/npdes/rgp.html), which are typically required for dewatering groundwater containing contaminants. ANGS would not need to address U.S. EPA Municipal Separate Storm Sewer System General Permit (MS4 GP) requirements since Newington is not an MS4, but would need to meet any applicable requirements in the Pease Tradeport’s individual National Pollutant Discharge Elimination System Permit (NH0090000) that contains conditions on several storm water outfalls (see attached NPDES Permit).

This additional impervious surface will create the potential for additional pollutant loads to be discharged to the impaired waters in the vicinity, including Great Bay. NH DES suggests that the ANGS’s goal should be “hold the loads” for any pollutants for which nearby waters are impaired. This could mean deploying structural Best Management Practices such as the University of New Hampshire’s subsurface gravel wetlands or a bioretention hybrid (internal storage volume). If this is considered a federal site or construction project, the ANGS would also need to comply with the storm water management requirements of Section 438 of the
Energy Independence and Security Act (see http://water.epa.gov/polwaste/nps/section438.cfm). Information on subsurface gravel wetlands can be found in the UNH Stormwater Center’s annual report (see http://unh.edu/unhsc/sites/unh.edu.unhsc/files/docs/UNHSC.2012Report.10.10.12.pdf) or by contacting the Center (see http://www.unh.edu/unhsc/contact). For information on the bioretention hybrids, which are a fairly recent design, however some exist presently in seacoast New Hampshire, contact Dr. Thomas Ballestero by telephone at (603) 862-1405 or by email at tom.ballestero@unh.edu.

Comment 2. Petroleum Management

The proposed project for modifying the refueling hydrants and lines would be regulated by the NH DES Aboveground Storage Tank (AST) Program (http://des.nh.gov/organization/divisions/waste/oreb/ocs/astp/index.htm). This project is detailed on page 2-32 “Project #7”, shown on page 2-33 of the DEIS, and discussed at the top of page 2-36. The New Hampshire Air National Guard, Civil Engineering Squadron, is aware of the NH DES AST Program requirements and has been in preliminary contact with Bob Daniel in the Plan Review Subsection to discuss the scope of future improvements. The AST Program welcomes the proposed modifications that would add interstitial monitoring and secondary containment to the hydrants and lines.

Comment 3. Air Emissions Analysis

Based on the NH DES Air Resources Division’s (ARD) review of the above referenced project description, we concur that the project is compatible with the plans, programs, and objectives of ARD, and that the project should have no significant environmental impact to local or regional air quality.

ARD conducted modeling to determine potential air emissions, based on the type of aircraft to be used and the number of sorties as noted in the description of the proposed action using the FAA’s Emission and Dispersion Modeling System (EDMS). Results are shown below:

Pease Air National Guard Base

<table>
<thead>
<tr>
<th>Emissions for KC-135 vs. Proposed KC-46As</th>
<th>Emissions in Tons Per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft Scenario</td>
<td>CO</td>
</tr>
<tr>
<td>KC-135R, CFM56-2A engines, 10,204 sorties</td>
<td>259.9</td>
</tr>
<tr>
<td>KC-46A, PW4062 engines, 12,769 sorties</td>
<td>487.4</td>
</tr>
<tr>
<td>Difference</td>
<td>207.4</td>
</tr>
<tr>
<td>Rockingham county total, tons per year*</td>
<td>50,578</td>
</tr>
</tbody>
</table>

DRAFT CHAPTERS 1 & 2 - NEPA DRAFT ENVIRONMENTAL IMPACT STATEMENT (DEIS) – KC-46A BEDDOWN (MOB2) – PEASE AIR NATIONAL GUARD STATION (ANGS) – PORTSMOUTH, NEW HAMPSHIRE - SEPTEMBER 2013

NH DES Comments

October 16, 2013
Page 2 of 3
% change in Rockingham county emissions with KC-46A aircraft and 2,595 additional sorties

Notes:
1) Emissions were estimated with EDMS 5.1.4.1
2) A Boeing 707-200ER with PW4062 engines was used to represent the KC-46A
3) A sortie was considered equal to a complete landing-takeoff operation (LTO)

As shown, emissions for oxides of nitrogen and sulfate (NOx and SOx) are expected to decrease, while carbon monoxide (CO), particulate matter (PM) and volatile organic compounds (VOC) emission will increase. However, based on their contribution to area-wide emissions, those originating from aircraft are not expected to have a significant impact on area air quality or attainment status.

During proposed construction activities, we advise that appropriate measures be taken to limit emissions from diesel fueled vehicles. These measures include, but are not limited to:

- Preventing, abating and controlling fugitive dust;
- Limiting idling of construction vehicles.

Potential traffic related impacts due to construction vehicles will be evaluated via the Interagency Consultation Process as outlined in the federal Clean Air Act.

###
AUTHORIZATION TO DISCHARGE UNDER THE
NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM

In compliance with the provisions of the Federal Clean Water Act, as amended, (33 U.S.C. §§1251 et seq.; the "CWA"),

Pease Development Authority

is authorized to discharge from a facility located at

135 Corporate Drive
Portsmouth, NH

to receiving waters named: Piscataqua River, Hodgkins Brook, Flagstone Creek, McIntyre Brook, and Harvey’s Creek, (Hydrologic Unit code 01060003), all class B waters,

in accordance with effluent limitations, monitoring requirements and other conditions set forth herein.

This permit shall become effective on 30 days from the date of signature.

This permit and the authorization to discharge expire at midnight, 5 years from the date of issuance.

This permit supersedes the permit issued on September 30, 1992.

This permit consists of 18 pages in Part I including effluent limitations, monitoring requirements, etc., Attachments A and B, (8 pages and 1 page, respectively); Sludge Compliance Guidance (72 pages) and 35 pages in Part II including General Conditions and Definitions.

Signed this 8 day of August, 2000

[Signature]

Director
Office of Ecosystem Protection
Environmental Protection Agency
Boston, MA
PART I

A. EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS

1. During the period beginning on the effective date and lasting through the expiration date, the permittee is authorized to discharge from outfall 005 (treated wastewater) to the Piscataqua River. This discharge shall be limited and monitored by the permittee as specified below:

<table>
<thead>
<tr>
<th>Effluent Characteristics</th>
<th>Discharge Limitations</th>
<th>Monitoring Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Monthly</td>
<td>Average Weekly</td>
</tr>
<tr>
<td>Flow (MGD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOD</td>
<td>300 lbs/day</td>
<td>450 lbs/day</td>
</tr>
<tr>
<td>TSS</td>
<td>300 lbs/day</td>
<td>450 lbs/day</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fecal Coliform, E. coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Coliform Residuals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole Effluent Toxicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC50<sub>a</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia Nitrogen as Nitrogen (mg/l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Recoverable Aluminum (mg/l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Recoverable Cadmium (mg/l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Recoverable Chromium (mg/l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Recoverable Copper (mg/l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Recoverable Nickel (mg/l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Recoverable Lead (mg/l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Recoverable Zinc (mg/l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Samples shall be taken after treatment, but prior to discharge combining with other streams.

See Page 3 for explanation of subscripts.
Explanation of subscripts on page 2

(1) - The effluent flow shall be continuously measured and recorded using a flow meter and totalizer.

(2) - State certification requirement.

(3) - Fecal Coliform shall be tested using test method 9222 D or 9221 C E found in Standard Methods for the Examination of Water and Wastewater, 18th or subsequent Edition(s), as approved in 40 CFR part 136, after it has been demonstrated to the satisfaction of the NHDES-WD that method 9222 D generates comparable results, as per detailed in Standard Methods 9222 D.

The average monthly and average weekly values for fecal coliform shall be determined by calculating the geometric mean and the results reported. Not more than 10 percent of the collected samples (over a monthly period) shall exceed a Most Probable Number (MPN) of 43 per 100 ml for a 5-tube decimal dilution test. Furthermore, all fecal coliform data collected must be submitted with the monthly Discharge Monitoring Reports (DMRs).

(4) Total Chlorine Residual shall be measured using any one of the following three methods listed below:

(a) DPD spectrophotometric (colorimetric). EPA no. 330.5 or Standard Methods [18th or subsequent edition(s), as approved in 40 Code of Federal Regulations (CFR) part 136], no 4500-CI G.

(b) DPD titrimetric (ferrous titrimetric) EPA no. 330.4 or Standard Methods [18th or subsequent edition(s), as approved in 40 CFR part 136], no 4500-CI F.

(c) Amperometric titration. EPA no. 330.1 or Standard Methods [18th or subsequent edition(s), as approved in 40 CFR part 136], no 4500-CI D, or ASTM no. D1253-86(92).

(5) The whole effluent toxicity (WET) sample shall be taken prior to mixing with the effluent from any other source (the Town of Newington). The permittee shall conduct 48-hour static acute toxicity test on effluent samples using two species, Mysispomus bahia and Menidia beryllina following the protocol in Attachment A. Toxicity test samples shall be collected and test completed during the 3 month periods ending June 30th and September 30th, respectively, each year. Toxicity test results are to be submitted by the 15th day of the month following the end of the quarter sampled.

This permit shall be modified, or alternatively, revoked and reissued to incorporate additional toxicity testing requirements, including chemical specific limitations, if the results of these toxicity tests indicate the discharge causes an exceedance of any state water quality criterion. Results from these toxicity tests are considered "new information" and the permit may be modified as provided in 40 CFR §122.62(a)(2).

(6) LC50 is defined as the concentration of wastewater (effluent) that cause mortality to 50 percent of the test organisms. The "50 percent or greater" limitation is defined as a sample which is composed 50% or greater effluent. A sample composed of 50% or greater effluent shall cause no greater than a 50% mortality rate in the effluent sample. This is a maximum daily limit.

(7) For each whole effluent toxicity test the permittee shall report on the appropriate Discharge Monitoring Report (DMR), the concentrations of the following pollutants: Ammonia Nitrogen as Nitrogen, total recoverable aluminum, cadmium, chromium, copper, lead, nickel, and zinc found in the 100 percent effluent sample. All these aforementioned chemical parameters shall be determined to have at least the minimum quantification level shown in Attachment A on page A-7, or as amended. Also the permittee should note that all chemical parameter results must still be reported in the appropriate toxicity report.
A. **EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS (CONT.)**

2. The discharge shall not cause a violation of the water quality standards of the receiving water.

3. The discharge shall be adequately treated to insure that the surface water remains free from pollutants in concentrations or combinations that settle to form harmful deposits, float as foam, debris, scum, or other visible pollutants. It shall be adequately treated to insure that the surface waters remain free from pollutants which produce odor, color, taste or turbidity in the receiving waters which is not naturally occurring and would render it unsuitable for its designated uses.

4. The permittee's treatment facility shall maintain a minimum of 85 percent removal of both BOD and TSS. The percent removal shall be based on a comparison of average monthly influent versus effluent concentrations.

5. When the effluent discharged for a period of 90 consecutive days exceeds 80 percent of the 1.2 MGD design flow (0.96 MGD), the permittee shall submit to the permitting authorities a projection of loadings up to the time when the design capacity of the treatment facility will be reached, and a program for maintaining satisfactory treatment levels consistent with approved water quality management plans. Before the design flow will be reached, or whenever treatment necessary to achieve permit limits cannot be assured, the permittee may be required to submit plans for facility improvements.

6. All POTWs must provide adequate notice to both EPA and New Hampshire Department of Environmental Services-Water Division (NHDES-WD) of the following:
 a. Any new introduction of pollutants into the POTW from an indirect discharger in a primary industrial category (see 40 CFR §122 Appendix A, as amended) discharging process water; and
 b. Any substantial change in the volume or character of pollutants being introduced into that POTW by a source introducing pollutants into the treatment works at the time of issuance of the permit.
 c. For purposes of this paragraph, adequate notice shall include information on:
 i. The quality and quantity of effluent introduced into the facility; and
 ii. any anticipated impact of the change on the quantity or quality of effluent to be discharge from the facility.

7. A user may not introduce into any POTW any pollutant(s) which cause pass through or interference. The terms "user", "pass through" and "interference" are defined in 40 CFR §403.3.
8. Within 90 days of the effective date of this permit, the permittee shall submit to EPA and NHDES-WD a current list of all industries discharging industrial waste to the municipal wastewater treatment plant. At a minimum, the list shall indicate the name and address of each industry, along with the following information: telephone number; contact person; facility description; production quantity; products manufactured; industrial processes used; chemicals used in processes; existing level of pretreatment; and list of existing discharge permits.

9. Within 90 days of the effective date of this permit, the permittee shall submit to EPA and NHDES-WD a copy of discharge permit(s) issued to each industry discharging industrial waste to the municipal wastewater treatment plant. At a minimum, each permit shall contain the following: effective dates; flow and applicable pollutant limits; self monitoring, reporting, compliance monitoring and inspection provisions; and enforcement criteria. In addition, the permittee shall submit to EPA and NHDES-WD a copy of its current sewer use ordinance and a copy of any other document granting legal authority to issue permits to industries discharging industrial waste to the municipal wastewater treatment plant. If industrial permitting authority does not exist as of the effective date of this permit, the permittee is requested to submit to the NHDES-WD a proposed plan and implementation schedule for adopting such authority and implementing an industrial permitting system. The permittee shall also submit to NHDES and EPA a copy of any agreement between PDA and the City of Portsmouth regarding the responsibility for the operation of the Industrial Pretreatment Program.

10. The permittee shall submit to EPA and NHDES-WD the name of any Industrial User (IU) subject to Categorical Pretreatment Standards pursuant to 40 CFR §403.6 and 40 CFR Chapter I, Subchapter N (Parts 405-415; 417-436; 439-440; 443; 446-447; 454-455; 457-461; 463-469; and 471, as amended) who commences discharge to the POTW after the effective date of this permit. This reporting requirement also applies to any other IU that discharges an average of 25,000 gallons per day or more of process wastewater in the POTW (excluding sanitary; noncontact cooling; and boiler blowdown wastewater) or contributes a process wastewater which makes up five (5) percent or more of the average dry weather hydraulic or organic capacity of the POTW; or is designated as such by the control authority as defined in 40 CFR §403.12(a) on the basis that the industrial user has a reasonable potential for adversely affecting the POTW's operation or for violating any pretreatment standard or requirement (in accordance with 40 CFR §403.8(1)(6)).

11. In the event that the permittee receives reports (baseline monitoring reports; 90-day compliance reports; periodic reports on continued compliance, etc.) from users subject to Categorical Pretreatment Standards, the permittee shall forward all copies of these reports within ninety (90) days of their receipt to EPA and NHDES-WD.

12. The permittee shall not discharge into the receiving water any pollutant or combination of pollutants in toxic amounts.
13. The permittee shall provide a copy of the available reports on the effluent concentration from all Groundwater Treatment Systems to the sanitary sewer. If the concentrations of the pollutants in these discharges to the sanitary sewer are less than the Maximum Contaminant Levels required by the Drinking Water regulations, the permittee may certify this condition in writing in lieu of reporting analytical results.

a. Quarterly reporting shall begin within 90 days following the effective date of this permit and provide the most current results available.

b. Estimates of the average monthly flow and the maximum daily flow at each groundwater treatment system shall be reported for each month.

14. All existing manufacturing, commercial, mining, and silvicultural dischargers must notify the Director as soon as they know or have reason to believe (40 CFR §122.42):

a. That any activity has occurred or will occur which would result in the discharge of any toxic pollutant which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":
 i. One hundred micrograms per liter (100 µg/l);
 ii. Two hundred micrograms per liter (200 µg/l) for acrolein and acrylonitrile; five hundred micrograms per liter (500 µg/l) for 2,4-dinitrophenol and 2-methyl-4,6-dinitrophenol; and one milligram per liter (1 mg/l) for antimony;
 iii. Five (5) times the maximum concentration value reported for that pollutant in the permit application in accordance with 40 CFR §122.21(g)(7); or
 iv. Any other notification level established by the Director in accordance with 40 CFR §122.44(1) and New Hampshire regulations.

b. That any activity has occurred or will occur which would result in the discharge, on a non routine or infrequent basis of any toxic pollutant which is not limited in the permit, if that discharge will exceed the highest of the following "notification levels":
 i. Five hundred micrograms per liter (500 µg/l);
 ii. One milligram per liter (1 mg/l) for antimony;
 iii. Ten (10) times the maximum concentration value reported for that pollutant in the permit application in accordance with 40 CFR §122.21(g)(7); or
 iv. Any other notification level established by the Director in accordance with 40 CFR §122.44(1) and New Hampshire regulations.

c. That they have begun or expect to begin to use or manufacture as an intermediate of final product or byproduct any toxic pollutant which was not reported in the permit application.

15. This permit shall be modified, or alternatively, revoked and reissued to include effluent standards or limitation on any pollutants not limited in the permit if the results of an ongoing or future investigation indicates the presence of any toxic pollutant with the reasonable potential to cause water quality violations.
PART I

B. STORM WATER LIMITATIONS AND MONITORING REQUIREMENTS

1. During the period beginning on the effective date and lasting through the expiration date, the permittee is authorized to discharge from outfall 001 (storm water runoff from industrial activity) to Hodgkins Brook. Samples shall be collected downstream from the confluence of the two streams near the intersection of Rye Street and Rockingham Drive. This discharge shall be limited and monitored by the permittee as specified below:

<table>
<thead>
<tr>
<th>Effluent Characteristics</th>
<th>Discharge Limitations</th>
<th>Monitoring Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Monthly</td>
<td>Average Weekly</td>
</tr>
<tr>
<td>Flow (MGD)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BOD (mg/l)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Volatile Organic Scan (mg/l)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Polynuclear Aromatic Hydrocarbon (PAHs) (mg/l)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>pH</td>
<td>Range of 6.5 - 8.0 standard units</td>
<td></td>
</tr>
<tr>
<td>Oil & Grease (mg/l)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Surfactants (mg/l)</td>
<td>0.2</td>
<td>---</td>
</tr>
<tr>
<td>Total Recoverable Iron (mg/l)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Total Recoverable Lead (mg/l)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Trichloroethylene (mg/l)</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

There shall be no discharge of floating solids or visible foam. See page 11 for explanation of subscripts.
PART I

B. STORM WATER LIMITATIONS AND MONITORING REQUIREMENTS

2. During the period beginning on the effective date and lasting through the expiration date, the permittee is authorized to discharge from outfall 002 (storm water runoff from industrial activity) to Flagstone Creek. Samples shall be taken at the culvert outlet at the end of the aircraft apron. This discharge shall be limited and monitored by the permittee as specified below:

<table>
<thead>
<tr>
<th>Effluent Characteristics</th>
<th>Discharge Limitations</th>
<th>Monitoring Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Monthly</td>
<td>Average Weekly</td>
</tr>
<tr>
<td>Flow (MGD)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BOD (mg/l)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Volatile Organics Scan (mg/l)_3</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Polycyclic Aromatic Hydrocarbons (PAHs) (mg/l)_4</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>pH</td>
<td>Range of 6.5 - 8.0 standard units</td>
<td></td>
</tr>
<tr>
<td>Oil & Grease (mg/l)_5</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Surfactants (mg/l)</td>
<td>0.2</td>
<td>---</td>
</tr>
<tr>
<td>Trichloroethylene (mg/l)_6</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>TSS (mg/l)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>COD (mg/l)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Primary Deicing Chemical (mg/l)_7</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Total Recoverable Arsenic, Iron, and Zinc</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

There shall be no discharge of floating solids or visible foam. See Page 11 for explanation of subscripts.
PART I

B. STORM WATER LIMITATIONS AND MONITORING REQUIREMENTS

3. During the period beginning on the effective date and lasting through the expiration date, the permittee is authorized to discharge from outfall 003 (storm water runoff from industrial activity) to McIntyre Brook. Samples shall be taken at the overflow from the oil water separator and when flow occurs in the bypass channel, collect an additional representative sample downstream for the confluence of both channels. This discharge shall be limited and monitored by the permittee as specified below:

<table>
<thead>
<tr>
<th>Effluent Characteristics</th>
<th>Discharge Limitations</th>
<th>Monitoring Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Monthly</td>
<td>Average Weekly</td>
</tr>
<tr>
<td>Flow (MGD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOD (mg/l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile Organics Scan (mg/l)</td>
<td></td>
<td>Report</td>
</tr>
<tr>
<td>Polynuclear Aromatic Hydrocarbons (PAHs) (µg/l)</td>
<td>Report</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>Range of 6.5 - 8.0 standard units</td>
<td>Monthly, Grab</td>
</tr>
<tr>
<td>Oil & Grease (mg/l)</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Surfactants (mg/l)</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Trichloroethylene (mg/l)</td>
<td></td>
<td>Report</td>
</tr>
<tr>
<td>COD and TSS (mg/l)</td>
<td></td>
<td>Report</td>
</tr>
<tr>
<td>Primary Deicing Chemical (mg/l)</td>
<td></td>
<td>Report</td>
</tr>
<tr>
<td>Total Recoverable Iron and Zinc (mg/l)</td>
<td>Report</td>
<td></td>
</tr>
</tbody>
</table>

There shall be no discharge of floating solids or visible foam. See page 11 for explanation of subscripts.
PART I

B. STORM WATER LIMITATIONS AND MONITORING REQUIREMENTS

4. During the period beginning on the effective date and lasting through the expiration date, the permittee is authorized to discharge from outfall 004 (storm water runoff from industrial activity) to Harveys Creek. This discharge shall be limited and monitored by the permittee as specified below:

<table>
<thead>
<tr>
<th>Effluent Characteristics</th>
<th>Discharge Limitations</th>
<th>Monitoring Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Monthly</td>
<td>Average Weekly</td>
</tr>
<tr>
<td>Flow (MGD)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BOD (mg/l)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Volatile Organics Scan (mg/l)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Polynuclear Aromatic Hydrocarbons (PAHs) (µg/l)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>Range of 6.5 - 8.0 standard units</td>
</tr>
<tr>
<td>Oil & Grease (mg/l)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Surfactants (mg/l)</td>
<td>0.2</td>
<td>---</td>
</tr>
<tr>
<td>Trichloroethylene (mg/l)</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Total Recoverable Cyanide, Iron, Lead, Nickel and Zinc (mg/l)</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

There shall be no discharge of floating solids or visible foam. See page 11 for explanation of subscripts.
Explanation of subscripts on pages 7 - 10

(1) If a sample cannot be collected due to adverse weather conditions, the permittee shall submit with the monthly DMR an explanation of why the sample could not be collected. Adverse conditions that may prohibit the collection of samples include weather conditions that create dangerous conditions for personnel (such as high winds, blizzard conditions, ice storms etc) or otherwise make the collection of a sample impractical.

(2) Grab samples shall be collected from a discharge resulting from a precipitation event that is greater than 0.1 inches in magnitude and that occurs at least 72 hours from the previously measurable precipitation event. The grab sample should be taken when pollutant concentrations in the storm water are expected to be at a maximum.

(3) Samples for the Volatile Organics Scan shall be taken during April and September. Volatile Organics are listed in 40 CFR §122, Appendix D, Table II.

(4) The sample for the Polynuclear Aromatic Hydrocarbons (PAHs) shall be taken concurrently with that for the Volatile Organics Scan. Attachment B contains a list of PAHs for analysis.

(5) Oil and Grease shall be tested using EPA Method 1664, Revision A. This method was newly approved by EPA on May 14, 1999, and became effective on June 14, 1999, for inclusion in 40 CFR part 136.

(6) Results from the Volatile Organics Scan for trichloroethylene may be used to satisfy the trichloroethylene sampling for two of the four required sampling events.

(7) At least two of the sampling events each year shall be designed to occur during the application of deicing materials. These events shall attempt to collect a sample containing the maximum concentrations of deicing agents in the storm water.

(8) The permittee shall report the primary deicing chemical on the DMR and shall monitor for that chemical when deicing occurs at the facility. The permittee shall also report when the deicing materials are not used.
B. STORM WATER REQUIREMENTS - continued

5. The permittee shall maintain the oil/water separators to ensure proper operation. This shall include controlling the storm water flow rate through each oil/water separator to its maximum design flow rate by installing a continuous recording flow meter and manually controlling the flow through the separator within 180 days after the permit’s effective date. Alternately, the permittee may request in writing that the Regional Administrator accept substitution of an alternative method of control for the continuous recording device within 180 days after the permit’s effective date.

 a. By installing a flow reduction or constriction device to prevent the flow through the separator from ever exceeding its maximum design flow rate or,

 b. By demonstrating to EPA-New England that the operation procedures are sufficiently clear and rigid such that the operators will not exceed the separator’s maximum design flow rate by concurrently draining more area(s) into the separator than prescribed in the procedures or;

 c. By any other means of control that prevents the flow rate from exceeding the maximum design flow rate.

In addition, the permittee shall periodically clean, at a minimum annually, both the sediment/residuals (on the bottom of the separator) and the oil layers (on the top of the water within the separator) to prevent carryover of either layer in the effluent discharged from the oil/water separator. More frequent cleaning as necessary to ensure proper operation.

The permittee shall continue to implement the Storm Water Pollution Prevention Plan (SWPPP) at the facility. The permittee shall maintain a SWPPP which includes Best Management Practices. The following minimum components shall be addressed in the plan:

6. The SWPPP shall be prepared in accordance with good engineering practice and shall identify potential sources of pollution which may reasonably be expected to affect the quality of storm water discharges authorized by this permit.

7. The discharges from outfalls 001-004 shall be composed entirely of storm water. The following non-storm water discharges are authorized by this permit provided they are addressed in the SWPPP: fire fighting activities; fire hydrant flushings; potable water sources including waterline flushings; drinking fountain water, uncontaminated compressor condensate; irrigation drainage; lawn watering; routine external building washdown that does not use detergents or other compounds; pavement washwaters where spills or leaks of toxic or hazardous materials have occurred (unless all spilled material has been removed) and where detergents are not used; air conditioning condensates; compressor condensate; uncontaminated springs; uncontaminated ground water; and foundation or footing drains where flows are not contaminated with process materials such as solvents.

6. The SWPPP shall be signed in accordance with the requirements of Part II and be retained on site.
9. The Director, or authorized representative, may notify the permittee at any time that the plan does not meet one or more of the minimum requirements detailed below. Any notification shall identify those provisions of the permit that are not being met by the plan, and identify which provisions of the plan require modification in order to meet the minimum requirements of this permit. The permittee shall make the required changes within 30 days of the notification and submit to EPA and NHDES a written certification that the required changes have been made.

10. The permittee shall amend the plan whenever there is a change in design, construction, operation or maintenance, that has a significant effect on the potential for the discharge of pollutants or if the SWPPP is ineffective in eliminating or significantly minimizing pollutants from the sources identified in the SWPPP.

11. The SWPPP shall consider the following components as a minimum. The permittee may use the EPA's Storm Water Multi-Sector General Permit for Industrial Activities, Federal Register vol. 60, no. 189, Friday September 29, 1995, pgs 51215-51219 as guidance. The SWPPP shall contain the following minimum elements:

 a. Pollution Prevention Team
 b. Description of potential pollutant sources including information on:
 i. Drainage
 ii. Inventory of exposed materials
 iii. Spills and leaks
 iv. Sampling data
 v. Risk identification and summary of potential pollutant sources
 c. Description of storm water measures and controls including:
 i. Good house keeping
 ii. Preventive maintenance
 iii. Spill prevention and response procedures
 iv. Source reduction
 v. Management of runoff
 vi. Inspections
 vii. Pollution prevention training
 viii. Record keeping and internal reporting procedures
 ix. Identification of non-storm water discharges
 x. Sediment and erosion control

12. Comprehensive site compliance evaluation shall be performed annually. The evaluation shall include the following:

 a. Areas contributing to storm water discharges shall be inspected visually for evidence of, or the potential for, pollutants to enter the drainage system. Structural storm water management measures etc. shall be evaluated to ensure proper operation.
 b. Based on the results of the evaluation, the SWPPP shall be revised, if appropriate, within 2 weeks of the evaluation and shall provide a schedule for timely implementation of any changes to the plan.
 c. A report of the results of the evaluation shall be made and retained as part of the SWPPP.
C. SLUDGE CONDITIONS

1. The permittee shall comply with all existing federal (40 CFR part 503) and state (Env-Ws 800) laws and regulations that apply to sewage sludge use and disposal practices and with the Clean Water Act Section 405(d) technical standards.

If an applicable management practice or numerical limitation for pollutants in sewage sludge more stringent than existing federal and state regulations is promulgated under section 405(d) of the CWA, this permit shall be modified or revoked and reissued to conform to the promulgated regulations.

2. The permittee shall comply with the more stringent of either the state or federal (40 CFR part 503) requirements.

3. The requirements and technical standards of 40 CFR Part 503 apply to facilities which perform one or more of the following use or disposal practices.
 a. Land application - the use of sewage sludge to conditions or fertilize the soil
 b. Surface disposal - the placement of sewage sludge in a sludge only landfill.
 c. Placement of sludge in a municipal solid waste landfill (see 40 CFR §503.4).
 d. Sewage sludge incineration in a sludge incinerator.

4. The 40 CFR part 503 conditions do not apply to facilities which place sludge within a municipal solid waste landfill. These conditions also do not apply to facilities which do not dispose of sewage sludge during the life of the permit, but rather treat the sludge (lagoons, reed beds); or are otherwise excluded under 40 CFR §503.6.

5. The permittee shall use and comply with the attached Sludge Compliance Guidance document to determine appropriate conditions. Appropriate conditions contain the following elements:
 - General requirements
 - Pollutant limitations
 - Operation standards (pathogen reduction requirements and vector attraction reduction requirements)
 - Management practices
 - Record keeping
 - Monitoring
 - Reporting

Depending on the quality of material produced by a facility all conditions may not apply to the facility.
6. The permittee shall monitor the pollutant concentrations; pathogen reduction; and vector attraction reduction at the following frequency. This frequency is based upon the volume of sewage sludge generated at the facility in dry metric tons per year.

<table>
<thead>
<tr>
<th>Volume Range</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>less than 290</td>
<td>1/quarter</td>
</tr>
<tr>
<td>290 to less than 1,500</td>
<td>6/year</td>
</tr>
<tr>
<td>1,500 to less than 15,000</td>
<td>1/month</td>
</tr>
<tr>
<td>15,000 or more</td>
<td>1/month</td>
</tr>
</tbody>
</table>

7. The permittee shall sample the sewage sludge using the procedures detailed in 40 CFR §503.8.

8. The permittee shall submit an annual report containing the information specified in the Sludge Compliance Guidance document. Reports are due annually by February 19th. Reports shall be submitted to the addresses contained in Section D of the permit.
D. MONITORING AND REPORTING

Monitoring results obtained during the previous month shall be summarized for each month and reported on separate Discharge Monitoring Form(s) (DMRs) postmarked no later than the 15th day of the month following the completed period.

A signed and dated original DMRs and all other reports required herein, shall be submitted to the Director at the following address:

U.S. Environmental Protection Agency
Water Technical Unit (SEW)
P.O. Box 8127
Boston, Massachusetts 02114-8127

Duplicate signed copies of all reports and information required herein shall be submitted to the State of New Hampshire at:

New Hampshire Department of Environmental Services
Water Division
Wastewater Engineering Bureau
6 Hazen Drive, P.O. Box 95
Concord, NH 03302-0095
E. STATE PERMIT CONDITIONS

1. The permittee shall comply with the following conditions which are included as State Certification requirements.

 a. The pH range of 6.5-8.0 Standard Units (S.U.) must be achieved in the final effluent unless the permittee can demonstrate to NHDES-WD: (1) that the range should be widened due to naturally occurring conditions in the receiving water or (2) that the naturally occurring receiving water pH is not significantly altered by the permittee's discharge. The scope of any demonstration project must receive prior approval from NHDES-WD. In no case, shall the above procedure result in pH limits outside of the range of 6.0 to 9.0 S.U., which is the federal effluent limitation guideline regulation for pH for secondary treatment and is found in 40 CFR §133.102(c).

 b. Pursuant to State Law NH RSA 485-A:13 and the New Hampshire Code of Administrative Rules, Env-Ws 706.08(b) and Env-Ws 904.08 the following submissions shall be made to the NHDES-WD by a municipality proposing to accept into its POTW (including sewers and interceptors):

 (1) A ‘Sewer Connection Permit’ request form for:
 i. Any proposed sewerage, whether public or private;
 ii. Any proposed wastewater connection or other discharge in excess of 5,000 gallons per day;
 iii. Any proposed wastewater connection or other discharge to a wastewater treatment facility operating in excess of 80% of design flow capacity; and
 iv. Any proposed connection or other discharge of industrial wastewater, regardless of quality or quantity.

 (2) An ‘Industrial Discharge Permit Request Application’ for any new or increased loadings of industrial waste, as defined in RSA 485-A:2, VI.

 c. The permittee shall not at any time, either alone or in conjunction with any person or persons, cause directly or indirectly the discharge of waste into the said receiving water unless it has been treated in such a manner as will not lower the legislated water quality classification or interfere with the uses assigned to said water by the New Hampshire Legislature (RSA 485-A:12).

 d. Any modifications of the Permittee’s Sewer-Use Ordinance, including local limitations on pollutant concentrations, shall be submitted to the NHDES-WD for approval prior to adoption by the permittee.

 e. Within 90 days of the effective date of this permit, the permittee shall submit to NHDES-WD a copy of its current sewer-use ordinance and a copy of any other document granting legal authority to issue permits to industries discharging industrial waste to the municipal wastewater treatment plant.
F. SPECIAL CONDITIONS

1. Whole Effluent Toxicity Test Frequency Adjustment

The permittee may submit a written request to the EPA requesting a reduction in the frequency (to not less than once per year) of the required toxicity testing. This request may be made after completion of a minimum of four successive (4) toxicity tests on the effluent. All of the tests must be valid tests and must demonstrate compliance with the permit limits for whole effluent toxicity. The permittee must continue to perform the testing at the frequency specified in the permit until written notification is received by certified mail from the EPA which indicates that the whole effluent toxicity testing requirement has been changed.

2. pH Limit Adjustment

The permittee may submit a written request to EPA requesting a change in the permitted pH range. The permittee may not request a change which is less restrictive than 6.0 to 9.0 standard units range found in the National Effluent Limitation Guideline for this facility (secondary treatment regulations at 40 CFR part 132). The permittee’s written request must include the State’s approval letter containing an original signature (no copies). The State’s letter shall assert that the permittee has demonstrated to the State’s satisfaction that as long as discharges to the receiving water from a specific outfall are within a specific numeric pH range, the naturally occurring receiving water pH will be unaltered. The letter must specify for each outfall the associated numeric pH limit range. The permittee must continue to meet the pH limit contained in the permit until written notification is received by certified mail from the EPA indicating the pH limit has been changed.
The sample IICEP letter following was distributed to the list below:

Carole Copeyon, U.S. Fish and Wildlife Service, Pennsylvania Field Office, 315 S Allen St, Ste 322, State College, PA 16801
Kathy Frankel, Pennsylvania Department of Conservation and Natural Resources, 301 Fifth Ave, Ste 324, Pittsburgh, PA 15222-2420
Susan McDonald, Federal Aviation Administration, Harrisburg Airports District Office, 3905 Hartzdale Dr, Ste 508, Camp Hill, PA 17011
Jeffrey Ziegler, Moon Township Administration Office, 1000 Beaver Grade Rd, Moon Township, PA 15108
Christopher Caruso, Township of Findlay, 1271 Route 30, PO Box W, Clinton, PA 15026
Rich Belotti, Pittsburgh International Airport, Landside Terminal, 4th Floor Mezzanine, PO Box 12370, Pittsburgh, PA 15231-0370
Craig Peters, 911th Air Wing, U.S. Air Force Reserve, Pittsburgh International Airport, 2475 Defense Ave, Coraopolis, PA 15108-2983
Bud Jameson, Jr., 316th Expeditionary Sustainment Command, 99 Soldiers Ln, Coraopolis, PA 15108-2550
Barbara Rudnick, U.S. EPA, Region 3, Office of Environmental Programs (3EA30), Environmental Assessment and Innovation Div, 1650 Arch St, Philadelphia, PA 19103-2029
Bradley D. Penrod, Allegheny County Department of Aviation, Pittsburgh International Airport, PO Box 12370, Pittsburgh, PA 15231-0370
Sandra Etzel, Allegheny County Health Department, Air Quality Program, 301 39th St, Bldg 7, Pittsburgh, PA 15201
Lou Sitio, U.S. Army Corps of Engineers, North Atlantic Division, 302 General Lee Ave, Brooklyn, NY 11252
The Honorable Robert Casey, Jr., U.S. Senate, 393 Russell Senate Office Bldg, Washington, DC 20510
The Honorable Patrick Toomey, U.S. Senate, 502 Hart Senate Office Bldg, Washington, DC 20510
The Honorable Matt Smith, Pennsylvania Senate, Senate Box 203037, Harrisburg, PA 17120-3037
The Honorable Mark Mustio, Pennsylvania House of Representatives, 1009 Beaver Grade Rd, Ste 220, Moon Township, PA 15108
The Honorable Anthony Celeste, Mayor of Coraopolis, 1121 Third Ave, Coraopolis, PA 15108
The Honorable Tom Corbett, Office of the Governor, 301 5th Ave, Rm 240, Pittsburgh, PA 15222
The Honorable Tim Murphy, House of Representatives, 2332 Rayburn House Office Bldg, Washington, DC 20515
Kathy Frankel
Natural Resource Program Supervisor
Pennsylvania Department of Conservation and Natural Resources
301 Fifth Ave, Ste 324
Pittsburgh, PA 15222-2420

Dear Ms. Frankel,

The United States Air Force (USAF) plans to replace the existing KC-135 aerial refueling fleet with the KC-46A, which will be a new aircraft to the USAF’s fleet. As such, the USAF has identified locations for the beddown of a formal training unit (FTU) and the first main operating base (MOB 1), which will both be led by active duty units. The USAF will also beddown the KC-46A at the second main operating base (MOB 2), which will be led by an Air National Guard (ANG) unit.

There are two separate Environmental Impact Statements (EISs) being prepared for the MOB 1/FTU and MOB 2 aircraft beddowns. While you may be familiar with either or both of these actions, this particular letter is in reference only to the MOB 2 beddown action.

The MOB 2 alternative locations for this beddown include:

- Forbes Air National Guard Station (ANGS), Kansas;
- Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey;
- Pease ANGS, New Hampshire;
- Pittsburgh ANGS, Pennsylvania; and,
- Rickenbacker ANGS, Ohio.

The EIS is being prepared under the National Environmental Policy Act (NEPA) for the potential beddown of the KC-46A at one of the five alternative locations, including Pittsburgh ANGS in Pennsylvania. The EIS will assess the potential environmental consequences associated with the beddown of the KC-46A at Pittsburgh ANGS as a replacement to the KC-135. As a result of the Proposed Action, there would be a change to the type of aircraft based at the selected installation; a change to the mix of aircraft using the associated airspace; changes to staffing and manpower at the selected location; changes to the number of airfield operations; as well as minor required construction, building renovation, and facility demolition. There would be no new or modified airspace required to support this undertaking.

1 The FTU alternative installations include Altus Air Force Base (AFB), Oklahoma and McConnell AFB, Kansas. The MOB 1 alternative installations include Altus AFB, Oklahoma; McConnell AFB, Kansas; Fairchild AFB, Washington; and Grand Forks AFB, North Dakota.
At Pittsburgh ANGS, the KC-46A would replace the KC-135 currently based at the installation. Under this alternative, the KC-46A would operate in existing airspace in a similar manner as is currently conducted. There may be a slight increase in operations in the airspace; however, use of this airspace is generally 10,000 feet above ground level and higher, and preliminary analysis indicates that noise levels under the proposal would be similar to existing noise levels with the KC-135 aircraft. Therefore, the National Guard Bureau (NGB) anticipates the area of potential effect for this action to be limited to the portion of the installation where construction, demolition, and renovation activities would occur.

Included as an attachment with this letter is a CD that contains the first two chapters of the EIS: the purpose and need for the action, and the Description of the Proposed Action and Alternatives (DOPAA). We invite you to review these two chapters and provide comments. Your comments are important to us, in that they will help us to identify potential issues associated with implementation of the proposal. We will also send you the Draft EIS upon its release, which is anticipated in early 2014. We will continue to send you updates and information related to this action unless you request otherwise.

The NGB previously sent you a letter indicating that a scoping meeting at Pittsburgh ANGS was to be held Tuesday, June 4, 2013 at both 2-4 p.m. and 6-9 p.m. in Moon Township, Pennsylvania and invited you to attend this informational meeting. This letter also documented that the formal scoping period was May 17 through July 5, 2013. Notices for the scoping meeting were posted and published in the Tribune Review on May 26 and June 2, 2013. If you would like the NGB to consider your comments for inclusion in the Draft EIS, please forward your comments to the KC-46A MOB2 Project Manager, Ms. Anne Rowe, at NGB/A7AM, Shepperd Hall, 3501 Fetchet Avenue, Joint Base Andrews MD 20762-5157 or email to ang.env.comments@ang.af.mil within 30 days of this notification.

If you have any questions regarding this consultation, please contact Ms. Anne Rowe. She can be reached at (240) 612-8636 or anne.rowe.ctr@ang.af.mil.

Sincerely

[Signature]

ROBERT J. DOGAN, GS-13, RFM
Plans and Requirements Branch
Congress of the United States
House of Representatives
Washington, DC 20515
October 11, 2013

Lt. Gen. Stanley Clarke
Director
U.S. Air Force National Guard Bureau
1000 Air Force Pentagon
Washington, D.C. 20330

Dear Lt. Gen. Clarke,

As the National Guard Bureau solicits public comment pursuant to an Environmental Impact Statement for selection of the second main operating base (MOB-2) for the KC-46A refueling tanker, I offer my input on the advantages of the 171st Pennsylvania Air National Guard station at Pittsburgh International Airport. As it is located in the 18th congressional district, which I have the honor of representing in Congress, I have long worked on issues related to the 171st and appreciate the opportunity to offer my insight.

Choosing the 171st as the MOB-2 for the KC-46A will not result in a negative impact on the environment for a number of reasons. First, the land surrounding both the 171st and the airfield has already been prepared for development, and a significant buffer zone exists between the airport and residential neighborhoods. Since the installation is located within one of the fifty busiest commercial airports in the country, flight paths for the KC-46A are already in place to minimize noise and disruption. As well, the Air Force is unlikely to incur any significant costs related to land acquisition or infrastructure needs. The Allegheny County Airport Authority is reviewing the possibility of widening T-ramps to accommodate larger KC-46As and building a direct access road between the 171st and 911th Air Reserve Station, which has additional dining and lodging facilities.

At the federal, state, and local levels, elected officials and the community have worked vigorously to build a favorable climate for the military to remain and thrive in the region. Western Pennsylvania demonstrates unrivaled support for the 171st and our nation's Air Force. The airport property is now home to several military installations and disaster response units, helping to facilitate emergency preparedness operations with local law enforcement and joint-training exercises required by military planners. For example, the 171st works cooperatively with the adjacent Air Reserve unit: the 911th Airlift Wing. The 316th Army Reserve is also located on airport property and a new Navy Operations and Support Center is under construction on the grounds of the 911th. In addition, a new DECA Commissary and a new Post Exchange serving tens of thousands of eligible and retired military families are opening in May 2014. These projects illustrate that both
Lt. Gen. Stanley Clarke
October 11, 2013
Page 2

community support and the required military infrastructure are in place for the 171st to serve as the future home of the KC-46A.

I welcome the opportunity to discuss further with you why the 171st is uniquely situated to serve as MOB-2, and stand ready to provide any additional information to assist in your decision-making process.

Thank you for your service to the nation.

Sincerely,

Tim Murphy
Member of Congress

TM:bdg

CC: Ms. Anne Rowe, National Guard Bureau
Ms. Anne Rowe
KC-46A MOB2 Project Manager
NGB/A7AM
Shepperd Hall
3501 Fetchet Avenue
Joint Base Andrews, MD 20762-5157

RE: Description of the Proposed Action and Alternatives Environmental Impact Statement
Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installation

Dear Ms. Rowe:

In accordance with the National Environmental Policy Act (NEPA) of 1969 and Section 309 of the Clean Air Act and Council on Environmental Quality regulations implementing NEPA (40 CFR 1500-1508), the U.S. Environmental Protection Agency (EPA) has reviewed the Description of Proposed Action and Alternatives (DOPAA) for the Proposed Draft Environmental Impact Statement for the Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations. EPA has comments on the DOPAA which are enclosed in the “Technical Comment” document.

Thank you for providing EPA with the opportunity to review this project. If you need assistance in the future, the staff contact for this project is Karen DelGrosso; she can be reached at 215-814-2765.

Sincerely,

Barbara Rudnick
NEPA Team Leader
Office of Environmental Programs

Enclosure (1)
CHAPTER 1

Page 1-3 states, “In support of TF1 (total force integration), an active duty associate unit would be integrated with ANG personnel and equipment under any of the action alternatives, enabling joint training and execution of missions using ANG-assigned aircraft.” Please explain what this means as it relates to the requirements of the Proposed Action. Is the active duty associate unit (and all that it involves) included in the Proposed Action? Will the active duty associate unit require more staff/personnel, resources, etc.? If this is a necessary component to the Proposed Action, please distinguish and describe its requirements and address if it is accounted for and included in the environmental analysis at each of the proposed sites.

Page 1-5, Table 1.3-1 (Comparison of KC-135 and KC-46A) indicates 3 crewmembers for the KC-46A. However, Fact Sheet #2 for KC-46A Tanker (page 1-7) states that the aircrew compartment includes 15 permanent seats per aircrew which includes permanent seating for the Boom Operator and an air refueling instructor. It can be assumed that a minimum of 3 crewmembers are necessary for each operation, but more crewmembers can participate in the operation. To better understand the operation and military personnel needed per operation, please specify required crewmembers for each KC-46A operation and the possibility of additional crewmembers that may likely participate in each operation.

Page 1-8 states, “KC-46A aircrews at the selected MOB 2 installation would complete operational sorties as part of their global reach missions and local training sorties to maintain proficiency in the aircraft.” Can it be assumed then that the number of sorties would be different depending on the alternative site location? Please confirm/explain.

CHAPTER 2

Page 2-3 states, “Under the Proposed Action, the 12 PAA KC-46A aircraft would fly 670 hours per aircraft, per year, for a total of 8,040 hours annually. Thus, with an average sortie duration (ASD) of 4.0 hours, the KC-46A aircraft would fly 2,010 sorties annually.” When reviewing the tables for each of the action alternatives (Tables 2.3-2, 2.3-8, 2.3-14, 2.3-19, 2.3-26 and Tables 2.3-3, 2.3-9, 2.3-15, 2.3-20, 2.3-27), “operations” not “sorties” are measured for comparing site locations. In addition, the “Total Proposed KC-46A Annual Airfield Operations” for each site is different. Can sorties be added to these tables or used in additional tables since it is the criteria used to describe the KC-46A Operations as stated above and outlined in 2.1.2.4?

Page 2-44 and 2-45: Please mention within Chapter 2 and/or discuss in detail in subsequent chapters the historical significance of Hangar 302 and Hangar 320 and if/how the additions proposed would affect hangars if found to be historically significant.
The sample IICEP letter following was distributed to the list below:

Teresa Spagna, U.S. Army Corps of Engineers, Huntington District, 502 Eighth St, Huntington, WV 25701-2070
Ohio Environmental Protection Agency, Lazarus Government Center, 50 W Town St, Ste 700, Columbus, OH 43215
U.S. Environmental Protection Agency, Region 5, 77 W Jackson Blvd, Chicago, IL 60604
Mary Knapp, Fish and Wildlife Service, 4625 Morse Rd, Ste 104, Columbus, OH 43230-8355
Lee Brown, Franklin County Economic Development & Planning Department, 150 S Front St, FSL Ste 10, Columbus, OH 43215
Columbus Regional Airport Authority, 4600 International Gateway, Columbus, OH 43219
Columbus Regional Airport Authority, Rickenbacker International Airport, Administrative Offices, 7161 Second St, Columbus, OH 43217
Dan Garver, Ohio Natural Resource Conservation Service, Pickaway County, Circleville Service Center, 110 Island Rd, Ste D, Circleville, OH 43113-9575
Ohio Department of Health, 246 N High St, Columbus, OH 43215
Columbus Health Department, 240 Parsons Ave, Columbus, OH 43215
Ohio Department of Transportation, District 6, 400 E William St, Delaware, OH 43015
Pickaway County Office of Development and Planning, 124 W. Franklin St, Circleville, OH 43113
Ohio Department of Natural Resources, Division of Geological Survey, 2045 Morse Rd, Bldg C1, Columbus, OH 43229-6693
Ohio Department of Natural Resources, Division of Wildlife, 2045 Morse Rd, Bldg G, Columbus, OH 43229-6693
Ohio Department of Natural Resources, Division of Soil & Water, 2045 Morse Rd, Bldg B-3, Columbus, OH 43229-6693
John Ankrom, City of Circleville Planning and Zoning Commission, 104 E Franklin St, Circleville, OH 43113
Katie Delaney, Federal Aviation Administration, 11677 S Wayne Rd, Ste 107, Romulus, MI 48174
The Honorable Sherrod Brown, U.S. Senate, 713 Hart Senate Office Bldg, Washington, DC 20510
The Honorable Rob Portman, U.S. Senate, 448 Russell Senate Office Bldg, Washington, DC 20510
The Honorable Steve Stivers, House of Representatives, 1022 Longworth HOB, Washington, DC 20515
The Honorable Heather Bishoff, Ohio House of Representatives, 77 S High St, 10th Fl, Columbus, OH 43215
The Honorable Kevin Bacon, Ohio Senate, 1 Capitol Square, Ground Floor, Columbus, OH 43215
The Honorable John Kasich, Office of the Governor, 77 S High St, 30th Fl, Columbus, OH 43215-6117
The Honorable Michael Coleman, Mayor of Columbus, City Hall, 2nd Fl, 90 W Broad St, Columbus, OH 43215
Sample Rickenbacker ANGS IICEP Letter

NATIONAL GUARD BUREAU
3501 FETCHET AVENUE
JOINT BASE ANDREWS MD 20762-5157

NGB/A7AM 16 Sep 13

Teresa Spagna
U.S. Army Corps of Engineers
Huntington District
502 Eighth St
Huntington, WV 25701-2070

Dear Ms. Spagna

The United States Air Force (USAF) plans to replace the existing KC-135 aerial refueling fleet with the KC-46A, which will be a new aircraft to the USAF’s fleet. As such, the USAF has identified locations for the beddown of a formal training unit (FTU) and the first main operating base (MOB 1), which will both be led by active duty units. The USAF will also beddown the KC-46A at the second main operating base (MOB 2), which will be led by an Air National Guard (ANG) unit.

There are two separate Environmental Impact Statements (EISs) being prepared for the MOB 1/FTU and MOB 2 aircraft beddowns. While you may be familiar with either or both of these actions, this particular letter is in reference only to the MOB 2 beddown action.

The MOB 2 alternative locations for this beddown include:

- Forbes Air National Guard Station (ANGS), Kansas;
- Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey;
- Pease ANGS, New Hampshire;
- Pittsburgh ANGS, Pennsylvania; and,
- Rickenbacker ANGS, Ohio.

The EIS is being prepared under the National Environmental Policy Act (NEPA) for the potential beddown of the KC-46A at one of the five alternative locations, including Rickenbacker ANGS in Ohio. The EIS will assess the potential environmental consequences associated with the beddown of the KC-46A at Rickenbacker ANGS as a replacement to the KC-135. As a result of the Proposed Action, there would be a change to the type of aircraft based at the selected installation; a change to the mix of aircraft using the associated airspace; changes to staffing and manpower at the selected location; changes to the number of airfield operations; as well as minor required construction, building renovation, and facility demolition. There would be no new or modified airspace required to support this undertaking.

1 The FTU alternative installations include Altus Air Force Base (AFB), Oklahoma and McConnell AFB, Kansas. The MOB 1 alternative installations include Altus AFB, Oklahoma; McConnell AFB, Kansas; Fairchild AFB, Washington; and Grand Forks AFB, North Dakota.
Sample Rickenbacker ANGS IICEP Letter

At Rickenbacker ANGS, the KC-46A would replace the KC-135 currently based at the installation. Under this alternative, the KC-46A would operate in existing airspace in a similar manner as is currently conducted. There may be a slight increase in operations in the airspace; however, use of this airspace is generally 10,000 feet above ground level and higher, and preliminary analysis indicates that noise levels under the proposal would be similar to existing noise levels with the KC-135 aircraft. Therefore, the National Guard Bureau (NGB) anticipates the area of potential effect for this action to be limited to the portion of the installation where construction, demolition, and renovation activities would occur.

Included as an attachment with this letter is a CD that contains the first two chapters of the EIS: the purpose and need for the action, and the Description of the Proposed Action and Alternatives (DOPAA). We invite you to review these two chapters and provide comments. Your comments are important to us, in that they will help us to identify potential issues associated with implementation of the proposal. We will also send you the Draft EIS upon its release, which is anticipated in early 2014. We will continue to send you updates and information related to this action unless you request otherwise.

The NGB previously sent you a letter indicating that a scoping meeting at Rickenbacker ANGS was to be held Thursday, June 6, 2013 at both 2-4 p.m. and 6-9 p.m. in Columbus, Ohio and invited you to attend this informational meeting. This letter also documented that the formal scoping period was May 17 through July 5, 2013. Notices for the scoping meeting were posted and published in the Columbus Dispatch on May 26 and June 2, 2013. If you would like the NGB to consider your comments for inclusion in the Draft EIS, please forward your comments to the KC-46A MOB2 Project Manager, Ms. Anne Rowe, at NGB/A7AM, Sheppard Hall, 3501 Fitchett Avenue, Joint Base Andrews MD 20762-5157 or email to ang.env.comments@ang.af.mil within 30 days of this notification.

If you have any questions regarding this consultation, please contact Ms. Anne Rowe. She can be reached at (240) 612-8636 or anne.rowe.ctr@ang.af.mil.

Sincerely

ROBERT L. DOGAN, GS-13, RFM
Plans and Requirements Branch

-----Original Message-----
From: Spagna, Teresa D LRH [mailto:Teresa.D.Spagna@usace.army.mil]
Sent: Tuesday, October 01, 2013 11:29 AM
To: ANGRc/NGB/A7A NEPA COMMENTS
Subject: review of United States Air Force document (UNCLASSIFIED)

Classification: UNCLASSIFIED
Caveats: NONE

Ms. Anna Rowe
National Guard Bureau/A7AM
Sheppard Hall
3501 Fetchet Avenue
Joint Base Andrews, MD 20762-5157

Dear Ms. Rowe:

I refer to the document titled "Description of the Proposed Action and
Alternatives Environmental Impact Statement Second Main Operating Base
KC-46A Beddown at Alternative Air National Guard Installations" and dated
September 2013. The Environmental Impact Statement (EIS) is being prepared
under the National Environmental Policy Act (NEPA) for the potential beddown
of the KC-46A at one of the five alternative locations, including the
Rickenbacker Air National Guard Station (ANGS) in Ohio. The provided
document describes the United States Air Force purpose and need for the
proposed action and the description of the proposed action and alternatives.
You have requested the United States Army Corps of Engineers (Corps) review
the provided document and provide comments.

The Corps has completed its review of the provided document. The EIS should
thoroughly evaluate the effects of the project on areas within the Corps’
regulatory jurisdiction. The Corps’ authority to regulate waters of the
United States is based, in part, on the definitions and limits of
jurisdiction contained in 33 CFR 328 and 33 CFR 329. Section 404 of the
Clean Water Act requires that a Department of the Army permit be obtained
prior to the discharge of dredged or fill material into waters of the United
States, including wetlands. Section 10 of the Rivers and Harbors Act of
1899 requires that a Department of the Army permit be obtained for any work
in, on, over or under a navigable water. If is determined that the proposed
action would result in the discharge of dredged and/or fill material into
waters of the United States or work in, on, over or under a navigable water,
Corps’ authorization under Section 404 of the Clean Water Act and/or Section
10 of the Rivers and Harbors Act of 1899 would be required. In this regard,
to ensure the information presented in EIS is adequate to fulfill the Corps’
statutory requirements, including the requirements of 404(b)(1) of the Clean
Water Act and the Corps’ public interest review, the Corps the topics listed
in Enclosure 1 should be scoped and evaluated in the EIS.
Thank you for allowing the Corps to provide comments on the provided document. We look forward to working with the United States Air Force as a cooperating agency for any NEPA document where Huntington District Corps has jurisdiction by law. If you have any questions, please give me a call at 304-399-5210 or by email at teresa.d.spagna@usace.army.mil.

Sincerely,

Teresa D. Spagna
Regulatory Project Manager
North Branch

Classification: UNCLASSIFIED
Caveats: NONE
Enclosure 1

1) Aquatic Resource Identification. The NEPA documents(s) must include a site-specific identification of all aquatic resources within the proposed project areas, including any aquatic resources within proposed construction, building renovation, and facility demolition areas. The identification should include a description of any streams, open water features and wetlands. The identification of aquatic resources within the project area must be based on field observations and field data. The identification must include a wetland delineation for each site prepared in accordance with the Corps' 1987 Wetland Delineation Manual (87 Manual) and any applicable Regional Supplement to the 87 Manual. This information would be required to determine the effects of the projects on aquatic resources.

2) Avoidance and minimization. A fundamental precept of the Corps' Regulatory Program under Section 404 of the Clean Water Act is that the discharge of dredged and/or fill material into waters of the United States will be avoided and minimized, where it is practicable to do so. Under Section 404 of the Clean Water Act, only the least environmentally damaging practicable alternative would receive Corps authorization. An alternative is practicable if it is available and capable of being done after taking into consideration cost, logistics and existing technology in light of overall project purposes. The NEPA document(s) should evaluate how the projects were designed to avoid and minimize the discharge of dredged and/or fill material into waters of the United States. The alternatives analysis section of the NEPA document(s) should analyze on-site avoidance and minimization alternatives and avoidance and minimization alternatives for any off-site borrow, spoil and mitigation areas.

3) Compliance with the 404(b)(1) Guidelines. The Section 404(b)(1) Guidelines (Guidelines) are the substantive criteria used in evaluating discharges of dredged and/or fill material under Section 404 of the Clean Water Act. The Guidelines are published at 40 CFR Part 230. The fundamental precept of the Guidelines is that discharges of dredged and/or fill material into waters of the United States, including wetlands, should not occur unless it can be demonstrated that such discharges, either individually or cumulatively, will not result in unacceptable adverse effects on the aquatic ecosystem. Subpart B of the Guidelines establishes the four conditions which must be satisfied in order to make a finding that a proposed discharge of dredged or fill material complies with the Guidelines. These conditions generally state:

a. No discharge of dredged or fill material shall be permitted if there is a practicable alternative to the proposed discharge which would have less adverse impact on the aquatic ecosystem, so long as the alternative does not have other significant adverse environmental consequences;

b. No discharge of dredged or fill material shall be permitted if it:

i. Causes or contributes, after consideration of disposal site dilution and dispersion, to violations of any applicable State water quality standard, Violates any applicable toxic effluent standard or prohibition under section 307 of the Act,
ii. Jeopardizes the continued existence of species listed as endangered or threatened under the Endangered Species Act of 1973, as amended, or results in likelihood of the destruction or adverse modification of a habitat which is determined by the Secretary of Interior or Commerce, as appropriate, to be a critical habitat under the Endangered Species Act of 1973, as amended; and

iii. Violates any requirement imposed by the Secretary of Commerce to protect any marine sanctuary designated under title III of the Marine Protection, Research, and Sanctuaries Act of 1972;

c. No discharge of dredged or fill material shall be permitted which will cause or contribute to significant degradation of the waters of the United States. Under these Guidelines, effects contributing to significant degradation considered individually or collectively, include:

i. Significant adverse effects of the discharge of pollutants on human health or welfare, including but not limited to effects on municipal water supplies, plankton, fish, shellfish, wildlife, and special aquatic sites;

ii. Significant adverse effects of the discharge of pollutants on life stages of aquatic life and other wildlife dependent on aquatic ecosystems, including the transfer, concentration, and spread of pollutants or their byproducts outside of the disposal site through biological, physical and chemical processes;

iii. Significant adverse effects of the discharge of pollutants on aquatic ecosystem diversity, productivity, and stability. Such effects may include, but are not limited to, loss of fish and wildlife habitat or loss of the capacity of a wetland to assimilate nutrients, purify water, or reduce wave energy; or

iv. Significant adverse effects of discharge of pollutants on recreational, aesthetic and economic values.

Findings of significant degradation related to the proposed discharge are based upon appropriate factual determinations, evaluations, and tests required by Subparts B and G of the Guidelines, after consideration of subparts C through F, with special emphasis on the persistence and permanence of the effects outlined in those subparts; and

d. No discharge of dredged or fill material shall be permitted unless appropriate and practicable steps have been taken which will minimize potential adverse impacts of the discharge on the aquatic ecosystem.

4) Corps public interest review factors. The Corps must evaluate the probable impacts, including cumulative impacts, of the proposed activity and its intended use on the public interest. Among the factors that must be evaluated as part of the Corps' public interest review include: conservation, economics, aesthetics, general environmental concerns, wetlands, historic properties, fish and wildlife values, flood hazards, floodplains values, land use, navigation, shore erosion and accretion, recreation, water supply and conservation, energy needs, safety, food and fiber production, mineral needs, water quality, considerations of property ownership, air and noise impacts, and, in general, the needs and welfare of the
people. (See 33 CFR 320.4) These factors should be scoped and evaluated in the NEPA document(s);

5) **Effects to Aquatic Resources.** The NEPA document(s) should quantify the anticipated impacts to waters of the United States, both temporary and permanent, resulting from activities within the Corps jurisdiction. Waters of the United States could include: perennial, intermittent and ephemeral streams; rivers; lakes; ponds; and wetlands. For rivers and streams, the quantity should be described in linear feet and in acreage. For wetlands, this quantity should be described by acreage. The NEPA document(s) should also describe the wetland classification (e.g. palustrine, forested, scrub-shrub or emergent). The NEPA document should differentiate between permanent and temporary impacts and must describe any permanent conversion in the wetland classification (e.g. palustrine forested to palustrine emergent, etc.);

6) **Cumulative and Indirect Effects.** The cumulative and indirect impacts on aquatic resources resulting from the projects should be scoped and evaluated in the NEPA document(s);

7) **Off-Site Areas.** The NEPA document(s) should include an analysis of the environmental effects to any off-site borrow, spoil or mitigation areas;

8) **Compliance with Other Federal Laws.** The NEPA document(s) should document compliance with:

 a. **Section 106 of the National Historic Preservation Act (NHPA).** The NEPA document(s) must describe compliance with Section 106 of the NHPA and must describe the research efforts undertaken to identify historic properties within the project areas, including any off-site borrow, spoil and mitigation areas. The NEPA document(s) should use site-specific collected data in the identification of historic properties within the project areas;

 b. **Section 7 of the Endangered Species Act.** The Corps suggests United States Air Force contact the United States Fish and Wildlife Service for a list of federally-protected species; and

 c. **Section 401 of the Clean Water Act.** The NEPA document(s) must describe compliance with Section 401 of the Clean Water Act.
-----Original Message-----
From: Tebbe, Sarah [mailto:Sarah.Tebbe@dnr.state.oh.us]
Sent: Wednesday, October 02, 2013 5:03 PM
To: Rowe, Anne M CTR USAF ANG NGB/A7AM; ANGRC/NGB/A7A NEPA COMMENTS
Cc: Kessler, John
Subject: KC-46A MOB 2 Replacement EIS Rickenbacker ANGS

Hi Anne,

We have received your notification and have no further comments on the proposed action.

Thanks,

Sarah Tebbe

ODNR office of REALM

Phone: 614 265 6397
Appendix B2

Native American Correspondence
<table>
<thead>
<tr>
<th>Tribe</th>
<th>Point of Contact(s)</th>
<th>Consultation Letters Sent (Yes/No)</th>
<th>Response Received (Yes/No)</th>
<th>Concurrence (Yes/No)</th>
<th>Comment/Follow-Up</th>
</tr>
</thead>
</table>
| Delaware Nation | Letter Sent to: Tamara Francis, THPO 31064 US Highway 281, Bldg. 100, Anadarko, OK 73005
 | Letter Sent to: Kerry Holton, President Delaware Nation PO Box 825, Anadarko, OK 73005 | Yes | No | N/A* | E-mailed tribe on 11/22/13 and telephoned on 11/22/13 and left message. |
| Prairie Band of Potawatomi Tribe | Letter Sent to: Steve Ortiz, Chairperson Prairie Band of Potawatomi Tribe, 16281 Q Rd, Mayetta, KS 66509 | Yes | No | N/A* | E-mailed tribe on 11/22/13 and telephoned on 11/22/13 and left message. |
| Citizen Potawatomi Nation | Letter Sent to: Kelli Mosteller, THPO 1601 S Gordon Cooper Dr, Shawnee, OK 74801
 | Letter Sent to: John Barrett, Chairman 1601 S Gordon Cooper Dr Shawnee, OK 74801 | Yes | No | N/A* | E-mailed tribe on 11/22/13 and telephoned on 11/22/13 and left message. |
| Eastern Shawnee Tribe of Oklahoma | Letter Sent to: Glenna Wallace, Chief 12755 S 705 Rd, Wyandotte, OK 74370 | Yes | No | N/A* | E-mailed tribe on 11/22/13 and telephoned on 11/22/13 and left message. |
| Kaw Nation | Letter Sent to: Guy Munroe, Chairman Kaw Nation, Drawer 50, Kaw City, OK 74641
 | Response From: Clint Halftown | Yes | Yes | Yes | Consultation Completed via e-mail |

Letters and written correspondence to Tribes were followed up with telephone calls and e-mails in an effort to increase accessibility and encourage communication in the event a Tribe would have any concerns regarding the Proposed Action or land below the affected or proposed airspace areas. Additional efforts were made to contact non-responsive tribes without success. While the NGB and the USAF values its relationship with all tribes and will continue to consult on other planning efforts or matters of known or potential interest to tribes, Section 106 consultation on the KC-46A MOB 2 proposed alternatives is now complete.

Final – June 2014

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS

Appendix B2 Native American Correspondence

B2-1
Table B2-1. Forbes ANGS Government-to-Government Consultation

<table>
<thead>
<tr>
<th>Tribe</th>
<th>Point of Contact(s)</th>
<th>Consultation Letters Sent (Yes/No)</th>
<th>Response Received (Yes/No)</th>
<th>Concurrence (Yes/No)</th>
<th>Comment/Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Osage Nation of Oklahoma</td>
<td>Letter Sent to: Andrea Hunter, THPO Osage Nation of Oklahoma 627 Grandview, Pawhuska, OK 74056</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>has to: John Redeagle, Principal Chief PO Box 779, 627 Grandview Pawhuska, OK 74056</td>
<td>Yes</td>
<td>No</td>
<td>N/A*</td>
<td>E-mailed tribe on 11/22/13 and telephoned on 11/22/13 and left message. Telephoned on 4/4/14 and left message.</td>
<td></td>
</tr>
<tr>
<td>Absentee Shawnee Tribe of Oklahoma</td>
<td>Letter Sent to: George Blanchard 2025 S Gordon Cooper Dr, Shawnee, OK 74801</td>
<td>Yes</td>
<td>No</td>
<td>N/A*</td>
<td>E-mailed tribe on 11/22/13 and telephoned on 11/22/13 and left message. Telephoned on 4/3/14 and left message.</td>
</tr>
<tr>
<td></td>
<td>Letter Sent to: Henryetta Ellis, THPO 2025 S Gordon Cooper Dr, Shawnee, OK 74801</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wichita and Affiliated Tribes</td>
<td>Letter Sent to: Leslie Standing, President PO Box 729, Anadarko, OK 73005</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Consultation Completed via telephone call.</td>
</tr>
<tr>
<td>Response From: Unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Letters and written correspondence to Tribes were followed up with telephone calls and e-mails in an effort to increase accessibility and encourage communication in the event a Tribe would have any concerns regarding the Proposed Action or land below the affected or proposed airspace areas. Additional efforts were made to contact non-responsive tribes without success. While the NGB and the USAF values its relationship with all tribes and will continue to consult on other planning efforts or matters of known or potential interest to tribes, Section 106 consultation on the KC-46A MOB 2 proposed alternatives is now complete.
Table B2-2. JB MDL Government-to-Government Consultation

<table>
<thead>
<tr>
<th>Tribe</th>
<th>Point of Contact(s)</th>
<th>Consultation Letters Sent (Yes/No)</th>
<th>Response Received (Yes/No)</th>
<th>Concurrence (Yes/No)</th>
<th>Comment/Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delaware Tribe of Indians</td>
<td>Letter Sent to and Response From: Brice Obermeyer, THPO Department of Sociology and Anthropology, Emporia State University, Roosevelt Hall, Rm 212, 1200 Commercial St, Emporia, KS 66801 Letter Sent to: Paula Pechonick, Chief 170 NE Barbara St, Bartlesville, OK 74006 Letter Sent to: Chester Brooks, Trust Board Chairman 170 NE Barbara St, Bartlesville, OK 74006</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Consultation Completed via letter.</td>
</tr>
<tr>
<td>Delaware Nation</td>
<td>Letter Sent to: Tamara Francis, THPO 31064 US Highway 281, Bldg. 100, Anadarko, OK 73005 Letter Sent to: Kerry Holton, President PO Box 825, Anadarko, OK 73005 Response From: Unknown</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Consultation Completed via telephone</td>
</tr>
<tr>
<td>Stockbridge-Munsee Community</td>
<td>Letter Sent to and Response From: Sherry White, THPO, N8476 Mo He Con Nuck Road, Bowler, WY 54416</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Consultation Completed via e-mail.</td>
</tr>
</tbody>
</table>

Table B2-3. Pease ANGS Government-to-Government Consultation

<table>
<thead>
<tr>
<th>Tribe</th>
<th>Point of Contact(s)</th>
<th>Consultation Letters Sent (Yes/No)</th>
<th>Response Received (Yes/No)</th>
<th>Concurrence (Yes/No)</th>
<th>Comment/Follow-Up</th>
</tr>
</thead>
</table>
Table B2-4. Pittsburgh ANGS Government-to-Government Consultation

<table>
<thead>
<tr>
<th>Tribe</th>
<th>Point of Contact(s)</th>
<th>Consultation Letters Sent (Yes/No)</th>
<th>Response Received (Yes/No)</th>
<th>Concurrence (Yes/No)</th>
<th>Comment/Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cayuga Nation of New York</td>
<td>Letter Sent to: Melinda Maybee, Nation Representative PO Box 803, Seneca Falls, NY 13148</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Consultation Completed via E-mail.</td>
</tr>
<tr>
<td>Onondaga Nation of New York</td>
<td>Letter Sent to: Irving Powless, Chief RRT#1, PO Box 319-B, Nedrow, NY 13120</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Consultation Completed via telephone call.</td>
</tr>
<tr>
<td>Tuscarora Nation of New York</td>
<td>Letter Sent to: Leo Henry, Chief 2006 Mt Hope Rd, Lewiston, NY 14092</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Consultation Completed via letter.</td>
</tr>
<tr>
<td>Seneca Nation of Indians</td>
<td>Letter Sent to: Robert Odawi Porter, President 12837 Rte. 438, Irving, NY 14081</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Consultation Completed via e-mail.</td>
</tr>
<tr>
<td></td>
<td>Letter Sent to: Lana Watt, THPO 90 Ohiyo Way, Salamanca, NY 14779</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Response From: Jay Toth, Tribal Archeologist 90 OHI:WAY Salamanca, NY 14779</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tonawanda Band of Seneca</td>
<td>Letter Sent to: Roger Hill, Chief 7027 Meadville Rd, Basom, NY 14013</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Consultation Completed via telephone call.</td>
</tr>
</tbody>
</table>
Table B2-5. Rickenbacker ANGS Government-to-Government Consultation

<table>
<thead>
<tr>
<th>Tribe</th>
<th>Point of Contact(s)</th>
<th>Consultation Letters Sent (Yes/No)</th>
<th>Response Received (Yes/No)</th>
<th>Concurrence (Yes/No)</th>
<th>Comment/Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shawnee Tribe</td>
<td>Letter Sent to: Ron Sparkman, Chief</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Consultation Completed via telephone call.</td>
</tr>
<tr>
<td></td>
<td>PO Box 189, Miami, OK 74355</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Letter Sent to: Jodi Hayes, Tribe Administrator</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PO Box 189, Miami, OK 74355</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Response From: THPO (name unknown)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forest County Potawatomi Community</td>
<td>Letter Sent to: Harold Frank, Chairman</td>
<td>Yes</td>
<td>No</td>
<td>N/A*</td>
<td>E-mailed on 1/17/14 and telephoned on 1/17/14 and left message. Telephoned on 4/3/14 and left message.</td>
</tr>
<tr>
<td></td>
<td>PO Box 340, Crandon, WI 54520</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hannahville Indian Community</td>
<td>Letter Sent to: Kenneth Meshigaud, Chairperson</td>
<td>Yes</td>
<td>No</td>
<td>N/A*</td>
<td>E-mailed on 1/17/14 and telephoned on 1/17/14, no answer. Telephoned on 4/3/14 and left message.</td>
</tr>
<tr>
<td></td>
<td>N14911 Hannahville B1 Rd, Wilson, MI 49896-9728</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miami Tribe of Oklahoma</td>
<td>Letter Sent to: George Strack, THPO</td>
<td>Yes</td>
<td>No</td>
<td>N/A*</td>
<td>E-mailed on 1/17/14 and telephoned on 1/17/14 and left message. Telephoned on 4/3/14 and left message.</td>
</tr>
<tr>
<td></td>
<td>PO Box 1326, Miami, OK 74355-1326</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Letter Sent to: Thomas Gamble, Chairperson</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PO Box 1326, Miami, OK 74355-1326</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ottawa Tribe of Oklahoma</td>
<td>Letter Sent to: Ethel áá Cooká, Chief</td>
<td>Yes</td>
<td>No</td>
<td>N/A*</td>
<td>E-mailed on 1/17/14 and telephoned on 1/17/14, no answer. Telephoned on 4/4/14 and left message.</td>
</tr>
<tr>
<td></td>
<td>PO Box 110, Miami, OK 74355</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peoria Tribe of Indians of Oklahoma</td>
<td>Letter Sent to: John Froman, Chief</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Consultation Completed via letter.</td>
</tr>
<tr>
<td></td>
<td>PO Box 1527, Miami, OK 74355</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Response From: Cynthia Stacy Special Projects Manager</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>118 S. Eight Tribes Trail Miami, OK 74355</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Letters and written correspondence to Tribes were followed up with telephone calls and e-mails in an effort to increase accessibility and encourage communication in the event a Tribe would have any concerns regarding the Proposed Action or land below the affected or proposed airspace areas. Additional efforts were made to contact non-responsive tribes without success. While the NGB and the USAF values its relationship with all tribes and will continue to consult on other planning efforts or matters of known or potential interest to tribes, Section 106 consultation on the KC-46A MOB 2 proposed alternatives is now complete.
Table B2-5. Rickenbacker ANGS Government-to-Government Consultation

<table>
<thead>
<tr>
<th>Tribe</th>
<th>Point of Contact(s)</th>
<th>Consultation Letters Sent (Yes/No)</th>
<th>Response Received (Yes/No)</th>
<th>Concurrence (Yes/No)</th>
<th>Comment/Follow-Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pokagon Band of Potawatomi Indians</td>
<td>Letter Sent to: Matthew Wesaw, Chairman PO Box 180, Dowagiac, MI 49047</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Consultation Completed via telephone call.</td>
</tr>
<tr>
<td></td>
<td>Letter Sent to: Marcus Winchester, THPO PO Box 180, Dowagiac, MI 49047</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Response From: Unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turtle Mountain Band of Chippewa Indians of North Dakota</td>
<td>Letter Sent to: Kade Ferris, THPO PO Box 900, Belcourt, ND 58316</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Consultation Completed via telephone call.</td>
</tr>
<tr>
<td></td>
<td>Letter Sent to: Merle St. Claire, Chairman PO Box 900, Belcourt, ND 58316</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Response From: Unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wyandotte Nation</td>
<td>Letter Sent to: Billy Friend, Chief 64700 E Highway 60, Wyandotte, OK 74370</td>
<td>Yes</td>
<td>No</td>
<td>N/A*</td>
<td>E-mailed on 1/22/14 and telephoned on 1/17/14 and left message. Telephoned on 4/4/14 and left message.</td>
</tr>
<tr>
<td></td>
<td>Letter Sent to: Sherri Clemons, THPO 64700 E Highway 60, Wyandotte, OK 74370</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delaware Nation</td>
<td>Letter Sent to: Tamara Francis, THPO 31064 US Highway 281, Bldg. 100, Anadarko, OK 73005</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Consultation Completed via telephone call.</td>
</tr>
<tr>
<td></td>
<td>Letter Sent to: Kerry Holton, President PO Box 825, Anadarko, OK 73005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Response From: Unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Letters and written correspondence to Tribes were followed up with telephone calls and e-mails in an effort to increase accessibility and encourage communication in the event a Tribe would have any concerns regarding the Proposed Action or land below the affected or proposed airspace areas. Additional efforts were made to contact non-responsive tribes without success. While the NGB and the USAF values its relationship with all tribes and will continue to consult on other planning efforts or matters of known or potential interest to tribes, Section 106 consultation on the KC-46A MOB 2 proposed alternatives is now complete.
Table B2-5. Rickenbacker ANGS Government-to-Government Consultation

<table>
<thead>
<tr>
<th>Tribe</th>
<th>Point of Contact(s)</th>
<th>Consultation Letters Sent (Yes/No)</th>
<th>Response Received (Yes/No)</th>
<th>Concurrence (Yes/No)</th>
<th>Comment/Follow-Up</th>
</tr>
</thead>
</table>
| Prairie Band of Potawatomi Tribe | Letter Sent to: Steve Ortiz, Chairperson 16281 Q Rd, Mayetta, KS 66509 | Yes | No | N/A* | E-mailed tribe on 11/22/13 and telephoned on 11/22/13 and left message.
 | | | | | Telephoned on 4/4/14 and left messages with Chairman and THPO. | |
| Citizen Potawatomi Nation | Kelli Mosteller, THPO 1601 S Gordon Cooper Dr, Shawnee, OK 74801 | Yes | No | N/A* | E-mailed tribe on 11/22/13 and telephoned on 11/22/13 and left message. |
| | John Barrett, Chairman 1601 S Gordon Cooper Dr, Shawnee, OK 74801 | | | | |
| Eastern Shawnee Tribe of Oklahoma | Glenna Wallace, Chief 12755 S 705 Rd, Wyandotte, OK 74370 | Yes | No | N/A* | E-mailed tribe on 11/22/13 and telephoned on 11/22/13 and left message. |

Letters and written correspondence to Tribes were followed up with telephone calls and e-mails in an effort to increase accessibility and encourage communication in the event a Tribe would have any concerns regarding the Proposed Action or land below the affected or proposed airspace areas. Additional efforts were made to contact non-responsive tribes without success. While the NGB and the USAF values its relationship with all tribes and will continue to consult on other planning efforts or matters of known or potential interest to tribes, Section 106 consultation on the KC-46A MOB 2 proposed alternatives is now complete.
The sample tribal letter following was distributed to the list below:

Tamara Francis, THPO, Delaware Nation, 31064 US Highway 281, Bldg. 100, Anadarko, OK 73005
Kerry Holton, President, Delaware Nation, PO Box 825, Anadarko, OK 73005
Forbes, JB MDL, and Rickenbacker Sample Tribal Letter

NATIONAL GUARD BUREAU
3601 FETCHET AVENUE
JOINT BASE ANDREWS MD 20762-5157

24 September 2013

NGB/A7A

Tamara Francis
THPO
Delaware Nation
31064 US Highway 281
Bldg. 100
Anadarko, OK 73005

Dear Ms. Francis

The United States Air Force (USAF) plans to replace the existing KC-135 air refueling fleet with the KC-46A, which will be a new aircraft to the USAF’s fleet. As such, the USAF has identified locations for the beddown of a Formal Training Unit (FTU) and the first Main Operating Base (MOB 1*), which will both be led by active duty units. The USAF will also beddown the KC-46A at the second Main Operating Base (MOB 2), which will be led by an Air National Guard (ANG) unit.

Two separate Environmental Impact Statements (EISs) are being prepared for the MOB 1/FTU, and MOB 2 beddowns. While you may be familiar with either or both of these actions, this particular letter is in reference only to the MOB 2 beddown action.

The MOB 2 alternative locations for this beddown include:

- Forbes Air National Guard Station (ANGS), Kansas;
- Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey;
- Pease ANGS, New Hampshire;
- Pittsburgh ANGS, Pennsylvania; and,
- Rickenbacker ANGS, Ohio.

The EIS is being prepared under the National Environmental Policy Act (NEPA) for the potential beddown of the KC-46A at one of the five alternative locations, including Forbes ANGS in Kansas, Rickenbacker ANGS in Ohio, and Joint Base McGuire-Dix-Lakehurst (Attachments 1, 2, 3). The EIS will assess the potential environmental consequences associated with the beddown of the KC-46A as a replacement to the KC-135. As a result of the Proposed Action, there would be a change to the type of aircraft based at the selected installation; a change

* The FTU alternative installations include Altus Air Force Base (AFB), Oklahoma and McConnell AFB, Kansas. The MOB 1 alternative installations include Altus AFB, Oklahoma; McConnell AFB, Kansas; Fairchild AFB, Washington; and Grand Forks AFB, North Dakota.
to the mix of aircraft using the associated airspace; changes to staffing and manpower at the selected location; changes to the number of airfield operations; as well as minor required construction, building renovation, and facility demolition. There would be no new or modified airspace required to support this action.

At Forbes ANGS, Rickenbacker ANGS, or JB MDL, the KC-46A would replace the KC-135 currently based at the installation. Under this alternative, the KC-46A would operate in existing airspace in a similar manner as is currently conducted. There may be a slight increase in operations in the airspace; however, use of this airspace is generally 10,000 feet above ground level and higher, and preliminary analysis indicates that noise levels under the proposal would be similar to existing noise levels with the KC-135 aircraft. Therefore, the National Guard Bureau (NGB) anticipates the areas of potential effect (APE) for this action to be limited to the portions of the installations where construction, demolition, and renovation activities would occur (Attachments 4, 5, 6).

At Forbes ANGS, construction includes options for some of the facilities, but in general there would be an addition to Hangar 662; either interior modifications or an addition to Hangar 665; internal renovations to Building 679; and an addition and demolition of fuel hydrants and associated fuel lines on the aircraft parking apron (Attachment 4).

At Rickenbacker ANGS, construction activities would include: additions and renovations to Hangar 885, an addition to Hangar 883, interior renovations to Hangar 888, modifications to the aircraft ramp and taxiway, and addition and demolition of fuel hydrants and associated fuel lines on the aircraft parking apron (Attachment 5).

At JB MDL, the construction activities would include an addition to Hangar 3333, an addition to Hangar 3336, interior renovations to Hangar 3332, construction of a new 6,700 square foot simulator building west of Building 3390, modifications/additions to the existing aircraft ramp and taxiway, and the addition of eight new fuel hydrants and associated fuel lines on the aircraft parking apron (Attachment 6).

The Delaware Nation has been identified as potentially having historic ties to these locations. In accordance with Section 106 of the National Historic Preservation Act (NHPA) (36 Code of Federal Regulations Parts 800.2, 800.3, and 800.4) and in deference to Executive Order 13175, Consultation and Coordination with Indian Tribal Governments, the 190th Air Refueling Wing (190 ARW), the 121st Air Refueling Wing (121 ARW), and the 108th Wing (108 WG) would like to initiate government-to-government consultation regarding the aircraft beddown. In May 2013, as part of the NEPA process, a public participation letter was sent informing various Tribes of the Proposed Action and the locations and times of public information and input meetings. This letter reflects an initiation of the NHPA consultation process under Section 106 for the same action.
Forbes, JB MDL, and Rickenbacker Sample Tribal Letter

Page 3

The 190 ARW, 121 ARW, and 108 WG would like to discuss the proposed undertaking in detail with you, and to understand and consider any comments, concerns, and suggestions you may have. In particular, the NGHB requests your input as to the status of any traditional resources or historic properties that may be located in or near the proposed APEs for this undertaking on any of these three installations (see attached maps). All three of these installations have been surveyed for archaeological resources.

At Forbes ANGS, no archaeological resources have been identified (KS ANG 2008). At Rickenbacker ANGS, no archaeological resources were encountered during the recent comprehensive surveys of the installation (National Guard Bureau [NGB] 2007, NGB 2008, Snyder 2007). However, a few decades previous to the 2008 inventory during excavations for Building 911, a multi-component site (33FR2844) was uncovered. Site 33FR2844 consisted of a historic burial and a prehistoric lithic scatter. This site was recommended eligible for inclusion on the NRHP when it was discovered in 1985 (121 ARW 2011). This site is the only known significant archaeological resource present within the boundaries of the ANGS and it is well outside the proposed APE for the undertaking.

At JB MDL, no archaeological resources have been identified within the proposed APE (Headquarters Air Mobility Command [HQ AMC] 1995, AMC 1996, Holmes 1996, Holmes et al. 1997, McGuire AFB 2003, Holmes and Goar 1998). Three historic archaeological sites were recommended eligible for inclusion in the National Register of Historic Places (NRHP). These sites are all well outside the proposed APE for this undertaking.

However, within the proposed APEs at each of the three installations or the vicinity of these APEs, there may be other cultural resources, including traditional resources, known to the Delaware Nation that would need to be considered in relation to the proposed undertaking.

We have attached the Draft Description of the Proposed Action and Alternatives (Attachment 7), which will become the first chapters of the Draft EIS so that you may review the proposal and provide us any concerns that you may have regarding the proposal. Upon release of the Draft EIS (expected in early 2014), we will send that to you for your further review and comment.

Please let us know when you would like to meet to discuss the aircraft beddown proposal and your expectations on how we will accomplish the consultations. You may contact 2d Lt Jarrod Brunkow, Environmental Manager for Forbes ANGS, at (785) 861-4402 or jarrod.brunkow@ang.af.mil; or Roger Jones, Environmental Manager for Rickenbacker ANGS, at (614) 492-4110 or roger.jones@ang.af.mil; or Lt Robert Mendez, Environmental Manager for JB MDL, at (609) 754-3718 or robert.mendez@ang.af.mil. You also may request an individual or group meeting with your Tribe.
Forbes, JB MDL, and Rickenbacker Sample Tribal Letter

Page 4

We look forward to working with the Delaware Nation in the NHPA Section 106 and government-to-government consultation processes.

Sincerely

[Signature]

WILLIAM P. ALBRO, P.E., GS-15
Associate Director, Installations and Mission Support

cc:
2d Lt Jarrod Brunkow, KS ANG
Colonel Ron Krueger, Wing Commander
Colonel James Jones, 121st Wing Commander, OH ANGS
Mr. Roger Jones, OH ANGS
Colonel Kevin Keehn, 108th Wing Commander, JB MDL
Lt Robert Mendez, JB MDL

Attachments:
1. Vicinity Map of Forbes ANGS
2. Vicinity Map of Rickenbacker ANGS
3. Vicinity Map of JB MDL
4. Map of Forbes ANGS Area of Potential Effect
5. Map of Rickenbacker ANGS Area of Potential Effect
7. Draft Description of the Proposed Action and Alternatives

References:

121st Air Refueling Wing (121 ARW)

Air Mobility Command (AMC)

Headquarters Air Mobility Command (HQ AMC)
Forbes, JB MDL, and Rickenbacker Sample Tribal Letter

Holmes, Richard D.

Holmes, Richard D., Toni R. Goar, and Katherine J. Roxliau

Holmes, Richard D. and Toni R. Goar

Joint Base McGuire-Dix-Lakehurst (JB MDL)

Kansas Air National Guard (KS ANG)

McGuire Air Force Base (AFB)

National Guard Bureau (NGB)
2007 *Cultural Resources Survey of the 121st Air Refueling Wing, Ohio Air National Guard, Rickenbacker International Airport, Columbus, Franklin County, Ohio.* Prepared for the National Guard Bureau, Air National Guard Readiness Center NGB/A7CVN, Andrews Air Force Base, Maryland. December 2007.

2008 *Cultural Resources Survey of the 121st Air Refueling Wing, Ohio Air National Guard, Rickenbacker International Airport, Columbus, Franklin County, Ohio.* Prepared for the National Guard Bureau, Air National Guard Readiness Center NGB/A7CVN, Andrews Air Force Base, Maryland. January 2008.
Forbes, JB MDL, and Rickenbacker Sample Tribal Letter

LEGEND
- - - - - Country Line

COLUMBUS

RICKENBACKER AIR NATIONAL GUARD STATION

RICKENBACKER INTERNATIONAL AIRPORT

Regional Location
Rickenbacker ANGS
Forbes, JB MDL, and Rickenbacker Sample Tribal Letter

Legend:
- Forbes Air National Guard Station
- Proposed Ramp Modifications
- Proposed Facility Additions – Option 1
- Proposed Facility Additions – Option 2
- Renovation of Existing Improvements Surface – Option 1
- Renovation of Existing Improvements Surface – Option 2
- Surface Water
- Existing Fuel Dispense Line
- Existing Ramp
- Airfield Surface
- Existing Facility
- Fence Line
- Parking Area

Construction Associated with Alternative #1,
190 ARW, Forbes ANGS
The sample tribal letter following was distributed to the list below:

Steve Ortiz, Chairperson, Prairie Band of Potawatomi Tribe, 16281 Q Rd, Mayetta, KS 66509
Kelli Mosteller, THPO, Citizen Potawatomi Nation, 1601 S Gordon Cooper Dr, Shawnee, OK 74801
John Barrett, Chairman, Citizen Potawatomi Nation, 1601 S Gordon Cooper Dr, Shawnee, OK 74801
Glenna Wallace, Chief, Eastern Shawnee Tribe of Oklahoma, 12755 S 705 Rd, Wyandotte, OK 74370
Forbes and Rickenbacker Sample Tribal Letter

NATIONAL GUARD BUREAU
3501 FETCHET AVENUE
JOINT BASE ANDREWS MD 20762-5157

24 September 2013

NGB/A7A

Steve Ortiz
Chairperson
Prairie Band of Potawatomi Tribe
16281 Q Rd
Mayetta, KS 66509

Dear Chairperson Ortiz,

The United States Air Force (USAF) plans to replace the existing KC-135 air refueling fleet with the KC-46A, which will be a new aircraft to the USAF’s fleet. As such, the USAF has identified locations for the beddown of a Formal Training Unit (FTU) and the first Main Operating Base (MOB 1*), which will both be led by active duty units. The USAF will also beddown the KC-46A at the second Main Operating Base (MOB 2), which will be led by an Air National Guard (ANG) unit.

Two separate Environmental Impact Statements (EISs) are being prepared for the MOB 1/FTU, and MOB 2 beddowns. While you may be familiar with either or both of these actions, this particular letter is in reference only to the MOB 2 beddown action.

The MOB 2 alternative locations for this beddown include:

- Forbes Air National Guard Station (ANGS), Kansas;
- Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey;
- Pease ANGS, New Hampshire;
- Pittsburgh ANGS, Pennsylvania; and,
- Rickenbacker ANGS, Ohio.

The EIS is being prepared under the National Environmental Policy Act (NEPA) for the potential beddown of the KC-46A at one of the five alternative locations, including both Forbes ANGS in Kansas and Rickenbacker ANGS in Ohio (Attachments 1 and 2). The EIS will assess the potential environmental consequences associated with the beddown of the KC-46A as a replacement to the KC-135. As a result of the Proposed Action, there would be a change to the type of aircraft based at the selected installation; a change to the mix of aircraft using the associated airspace; changes to staffing and manpower at the selected location; changes to the number of airfield operations; as well as minor required construction, building renovation, and facility demolition. There would be no new or modified airspace required to support this action.

* The FTU alternative installations include Altus Air Force Base (AFB), Oklahoma and McConnell AFB, Kansas. The MOB 1 alternative installations include Altus AFB, Oklahoma; McConnell AFB, Kansas; Fairchild AFB, Washington; and Grand Forks AFB, North Dakota.
Forbes and Rickenbacker Sample Tribal Letter

At either Forbes ANGS or Rickenbacker ANGS, the KC-46A would replace the KC-135 currently based at the installation. Under this alternative, the KC-46A would operate in existing airspace in a similar manner as is currently conducted. There may be a slight increase in operations in the airspace; however, use of this airspace is generally 10,000 feet above ground level and higher, and preliminary analysis indicates that noise levels under the proposal would be similar to existing noise levels with the KC-135 aircraft. Therefore, the National Guard Bureau (NGB) anticipates the areas of potential effect (APE) for this action to be limited to the portions of the installations where construction, demolition, and renovation activities would occur (Attachments 3 and 4).

At Forbes ANGS, construction includes options for some of the facilities, but in general consists of: an addition to Hangar 662; either interior modifications or an addition to Hangar 665; internal renovations to Building 679; and an addition and demolition of fuel hydrants and associated fuel lines on the aircraft parking apron (see Attachment 3).

At Rickenbacker ANGS, construction activities would include: additions and renovations to Hangar 885; an addition to Hangar 883; interior renovations to Hangar 888; modifications to the aircraft ramp and taxiway; and addition and demolition of fuel hydrants and associated fuel lines on the aircraft parking apron (see Attachment 4).

The Prairie Band of Potawatomi Tribe has been identified as potentially having historic ties to these locations. In accordance with Section 106 of the National Historic Preservation Act (NHPA) (36 Code of Federal Regulations Parts 800.2, 800.3, and 800.4) and in deference to Executive Order 13175, Consultation and Coordination with Indian Tribal Governments, the 190th Air Refueling Wing (190 ARW) and the 121st Air Refueling Wing (121 ARW) would like to initiate government-to-government consultation regarding the aircraft beddown. In May 2013, as part of the NEPA process, a public participation letter was sent informing various Tribes of the Proposed Action and the locations and times of public information and input meetings. This letter reflects an initiation of the NHPA consultation process under Section 106 for the same action.

Both Forbes ANGS and Rickenbacker ANGS have been surveyed for archaeological resources. At Forbes ANGS no archaeological resources have been identified (KS ANG 2008). At Rickenbacker ANGS no archaeological resources were encountered during the recent comprehensive surveys of the installation (National Guard Bureau [NGB] 2007, NGB 2008, Snyder 2007). However, a few decades previous to the 2008 inventory during excavations for Building 911, a multi-component site (33FR2844) was uncovered. Site 33FR2844 consisted of a historic burial and a prehistoric lithic scatter. This site was recommended eligible for inclusion on the NRHP when it was discovered in 1985 (121 ARW 2011). This site is the only known significant archaeological resource present within the boundaries of the ANGS and it is well outside the proposed APE for the undertaking. However, within the proposed APEs or the vicinity of these APEs at either ANGS, there may be other cultural resources, including
Forbes and Rickenbacker Sample Tribal Letter

Page 3

traditional resources, known to the Prairie Band of Potawatomi Tribe that would need to be considered in relation to the proposed undertaking.

We have attached the Draft Description of the Proposed Action and Alternatives (Attachment 5), which will become the first chapters of the Draft EIS so that you may review the proposal and provide us any concerns that you may have regarding the proposal. Upon release of the Draft EIS (expected in early 2014), we will send that to you for your further review and comment.

The 190 ARW and 121 ARW would like to discuss the proposed undertaking in detail with you, and to understand and consider any comments, concerns, and suggestions you may have. In particular, the NGB requests your input as to the status of any traditional resources or historic properties that may be located in or near the proposed APEs for this undertaking at either of these two installations (see attached maps).

Please let us know when you would like to meet to discuss the aircraft beddown proposal and your expectations on how we will accomplish the consultations. You may contact 2d Lt Jarrod Brunkow, Environmental Manager for Forbes ANGS, at (785) 861-4402 or jarrod.brunkow@ang.af.mil; or Roger Jones, Environmental Manager for Rickenbacker ANGS, at (614) 492-4110 or roger.jones@ang.af.mil. You also may request an individual or group meeting with your Tribe.

We look forward to working with the Prairie Band of Potawatomi Tribe in the NHPA Section 106 and government-to-government consultation processes.

Sincerely

WILLIAM P. ALBRO, P.E., GS-15
Associate Director, Installations and Mission Support

cc:
2d Lt Jarrod Brunkow, KS ANG
Colonel James Jones, 121st Wing Commander, OH ANG
Mr. Roger Jones, OH ANG
Colonel Ron Krueger, Wing Commander, KS ANG
Forbes and Rickenbacker Sample Tribal Letter

Attachments:
1. Vicinity map of Forbes ANGS
2. Vicinity map of Rickenbacker ANGS
3. Map of Forbes ANGS Area of Potential Effect
4. Map of Rickenbacker ANGS Area of Potential Effect
5. Draft Description of the Proposed Action and Alternatives

References:

National Guard Bureau (NGB) 2007 Cultural Resources Survey of the 121st Air Refueling Wing, Ohio Air National Guard, Rickenbacker International Airport, Columbus, Franklin County, Ohio. Prepared for the National Guard Bureau, Air National Guard Readiness Center NGB/A7CVN, Andrews Air Force Base, Maryland. December 2007.

Forbes and Rickenbacker Sample Tribal Letter

LEGEND
- Forbes Air National Guard Station
- Paved Roadway/Parking
- Airel Surface
- Existing Facility
- FenceLine
- Surface Water
- Existing Fuel Hydorline
- Proposed Facility Additions - Option 1
- Proposed Facility Additions - Options 1 and 2
- Proposed Ramp Modifications

Construction Associated with
Alternative #1,
190 ARW, Forbes ANGS
Forbes and Rickenbacker Sample Tribal Letter

LEGEND
Rickenbacker International Airport
Urban Area
County Line

RICKENBACKER
AIR NATIONAL
GUARD STATION

RICKENBACKER
INTERNATIONAL
AIRPORT

Regional Location
Rickenbacker ANGS
Forbes and Rickenbacker Sample Tribal Letter

Construction Associated with Alternative #5,
121 ARW Installation, Rickenbacker ANGS

Legend:
- Existing Facilities
- Proposed Facilities
- Proposed Improvements to Existing Facilities
- Proposed Buffer

0 100 200 300 400 500 Feet

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS
Appendix B2 Native American Correspondence
The sample tribal letter following was distributed to the list below:

Guy Munroe, Chairman, Kaw Nation, Drawer 50, Kaw City, OK 74641
Andrea Hunter, THPO, Osage Nation of Oklahoma, 627 Grandview, Pawhuska, OK 74056
John Redeagle, Principal Chief, Osage Nation of Oklahoma, PO Box 779, 627 Grandview, Pawhuska, OK 74056
George Blanchard, Absentee Shawnee Tribe of Oklahoma, 2025 S Gordon Cooper Dr, Shawnee, OK 74801
Henryetta Ellis, THPO, Absentee Shawnee Tribe of Oklahoma, 2025 S Gordon Cooper Dr, Shawnee, OK 74801
Leslie Standing, President, Wichita and Affiliated Tribes, PO Box 729, Anadarko, OK 73005
Final – June 2014

Forbes Sample Tribal Letter
NATIONAL GUARD BUREAU
3501 FETCHET AVENUE
JOINT BASE ANDREWS MD 20762-5157

NGB/A7A

Guy Munroe
Chairman
Kaw Nation
Drawer 50
Kaw City, OK 74641

Dear Chairman Munroe

The United States Air Force (USAF) plans to replace the existing KC-135 air refueling fleet with the KC-46A, which will be a new aircraft to the USAF’s fleet. As such, the USAF has identified locations for the beddown of a formal training unit (FTU) and the first Main Operating Base (MOB 1), which will both be led by active duty units. The USAF will also beddown the KC-46A at the second Main Operating Base (MOB 2), which will be led by an Air National Guard (ANG) unit.

Two separate Environmental Impact Statements (EISs) are being prepared for the MOB 1/FTU, and MOB 2 beddowns. While you may be familiar with either or both of these actions, this particular letter is in reference only to the MOB 2 beddown action.

The MOB 2 alternative locations for this beddown include:

- Forbes Air National Guard Station (ANGS), Kansas;
- Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey;
- Pease ANGS, New Hampshire;
- Pittsburgh ANGS, Pennsylvania; and,
- Rickenbacker ANGS, Ohio.

The EIS is being prepared under the National Environmental Policy Act (NEPA) for the potential beddown of the KC-46A at one of the five alternative locations, including Forbes ANGS in Kansas (Attachment 1). The EIS will assess the potential environmental consequences associated with the beddown of the KC-46A at Forbes ANGS as a replacement to the KC-135. As a result of the Proposed Action, there would be a change to the type of aircraft based at the selected installation; a change to the mix of aircraft using the associated airspace; changes to staffing and manpower at the selected location; changes to the number of airfield operations; as well as minor required construction, building renovation, and facility demolition. There would be no new or modified airspace required to support this action.

* The FTU alternative installations include Altus Air Force Base (AFB), Oklahoma and McConnell AFB, Kansas. The MOB 1 alternative installations include Altus AFB, Oklahoma; McConnell AFB, Kansas; Fairchild AFB, Washington; and Grand Forks AFB, North Dakota.
At Forbes ANGS, the KC-46A would replace the KC-135 currently based at the installation. Under this alternative, the KC-46A would operate in existing airspace in a similar manner as is currently conducted. There may be a slight increase in operations in the airspace; however, use of this airspace is generally 10,000 feet above ground level and higher, and preliminary analysis indicates that noise levels under the proposal would be similar to existing noise levels with the KC-135 aircraft. Therefore, the National Guard Bureau (NGB) anticipates the area of potential effect (APE) for this action to be limited to the portion of the installation where construction, demolition, and renovation activities would occur (Attachment 2). Construction includes options for some of the facilities, but in general there would be an addition to Hangar 662; either interior modifications or an addition to Hangar 665; internal renovations to Building 679; and an addition and demolition of fuel hydrants and associated fuel lines on the aircraft parking apron.

Kaw Nation has been identified as potentially having historic ties to this location. In accordance with Section 106 of the National Historic Preservation Act (NHPA) (36 Code of Federal Regulations Parts 800.2, 800.3, and 800.4), and in deference to Executive Order 13175, Consultation and Coordination with Indian Tribal Governments, the 190th Air Refueling Wing (190 ARW) would like to initiate government-to-government consultation regarding the aircraft beddown. In May 2013, as part of the NEPA process, a public participation letter was sent informing various Tribes of the Proposed Action and the locations and times of public information and input meetings. This letter reflects an initiation of the NHPA consultation process under Section 106 for the same action.

The 190 ARW would like to discuss the proposed undertaking in detail with you, and to understand and consider any comments, concerns, and suggestions you may have. In particular, the NGB requests your input as to the status of any traditional resources or historic properties that may be located in or near the proposed APE for this undertaking at the Forbes ANGS (Attachment 2).

The entire Forbes ANGS has been surveyed for archaeological resources and none have been identified (KS ANG 2008). However, within the proposed APE or the vicinity of this APE, there may be other cultural resources, including traditional resources, known to the Kaw Nation that would need to be considered in relation to the proposed undertaking.

We have attached the Draft Description of the Proposed Action and Alternatives (Attachment 3), which will become the first chapters of the Draft EIS so that you may review the proposal and provide us any concerns that you may have regarding the proposal. Upon release of the Draft EIS (expected in early 2014), we will send that to you for your further review and comment.
Forbes Sample Tribal Letter

Please let us know when you would like to meet to discuss the proposed aircraft beddown and your expectations on how we will accomplish the consultations. You may contact 2d Lt Jarrod Brunkow, Environmental Manager for Forbes ANGS, at (785) 861-4402 or jarrod.brunkow@ang.af.mil. You also may request an individual or group meeting with your Tribe.

We look forward to working with the Kaw Nation in the NHPA Section 106 and government-to-government consultation processes.

Sincerely

[Signature]

WILLIAM P. ALBRO, P.E., GS-15
Associate Director, Installations and Mission Support

cc:
2d Lt Jarrod Brunkow, KS ANG
Colonel Ron Krueger, Wing Commander

Attachments:
1. Vicinity Map of Forbes ANGS
2. Map of Area of Potential Effect
3. Draft Description of the Proposed Action and Alternatives

Reference:
Kansas Air National Guard (KS ANG)
The sample tribal letter following was distributed to the list below:

Brice Obermeyer, THPO, Delaware Tribe of Indians, Department of Sociology and Anthropology, Emporia State University, Roosevelt Hall, Rm 212, 1200 Commercial St, Emporia, KS 66801
Paula Pechonick, Chief, Delaware Tribe of Indians, 170 NE Barbara St, Bartlesville, OK 74006
Chester Brooks, Trust Board Chairman, Delaware Tribe of Indians, 170 NE Barbara St, Bartlesville, OK 74006
Dear Dr. Obermeyer,

The United States Air Force (USAF) plans to replace the existing KC-135 air refueling fleet with the KC-46A, which will be a new aircraft to the USAF’s fleet. As such, the USAF has identified alternatives for the beddown of a Formal Training Unit (FTU) and the first Main Operating Base (MOB 1*), which will both be led by active duty units. The USAF will also beddown the KC-46A at the second Main Operating Base (MOB 2), which will be led by an Air National Guard (ANG) unit.

Two separate Environmental Impact Statements (EISs) are being prepared for the MOB 1/FTU, and MOB 2 beddowns. While you may be familiar with either or both of these actions, this particular letter is in reference only to the MOB 2 beddown action.

The MOB 2 alternative locations for this beddown include:

- Forbes Air National Guard Station (ANGS), Kansas;
- Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey;
- Pease ANGS, New Hampshire;
- Pittsburgh ANGS, Pennsylvania; and,
- Rickenbacker ANGS, Ohio.

The EIS is being prepared under the National Environmental Policy Act (NEPA) for the potential beddown of the KC-46A at one of the five alternative locations, including JB MDL in New Jersey (Attachment 1). The EIS will assess the potential environmental consequences associated with the beddown of the KC-46A at JB MDL as a replacement to the KC-135. As a result of the Proposed Action, there would be a change to the type of aircraft based at the selected installation; a change to the mix of aircraft using the associated airspace; changes to

* The FTU alternative installations include Altus Air Force Base (AFB), Oklahoma and McConnell AFB, Kansas. The MOB 1 alternative installations include Altus AFB, Oklahoma; McConnell AFB, Kansas; Fairchild AFB, Washington; and Grand Forks AFB, North Dakota.
staffing and manpower at the selected location; changes to the number of airfield operations; as well as minor required construction, building renovation, and facility demolition. There would be no new or modified airspace required to support this action.

At JB MDL, the KC-46A would replace the KC-135 currently based at the installation. Under this alternative, the KC-46A would operate in existing airspace in a similar manner as is currently conducted. There may be a slight increase in operations in the airspace; however, use of this airspace is generally 10,000 feet above ground level and higher, and preliminary analysis indicates that noise levels under the proposal would be similar to existing noise levels with the KC-135 aircraft. Therefore, the National Guard Bureau (NGB) anticipates the area of potential effect (APE) for this action to be limited to the portion of the installation where construction, demolition, and renovation activities would occur (Attachment 2). Specifically, these activities would include an addition to Hangar 3333, an addition to Hangar 3336, interior renovations to Hangar 3332, construction of a new 6,700 square foot simulator building west of Building 3390, modifications/additions to the existing aircraft ramp and taxiway, and the addition of eight new fuel hydrants and associated fuel lines on the aircraft parking apron.

The Delaware Tribe of Indians has been identified as potentially having historic ties to this location. In accordance with Section 106 of the National Historic Preservation Act (NHPA) (36 Code of Federal Regulations Parts 800.2, 800.3, and 800.4), and Executive Order 13175, Consultation and Coordination with Indian Tribal Governments, the 108th Wing (108 WG) would like to initiate government-to-government consultation regarding the aircraft beddown. In May 2013, as part of the NEPA process, a public participation letter was sent informing various Tribes of the Proposed Action and the locations and times of public information and input meetings. This letter reflects an initiation of the NHPA consultation process under Section 106 for the same action.

JB MDL has been surveyed for archaeological resources and none have been identified within the proposed APE (Headquarters Air Mobility Command [HQ AMC] 1995, AMC 1996, Holmes 1996, Holmes et al. 1997, McGuire AFB 2003, Holmes and Goar 1998). Three historic archaeological sites were recommended eligible for inclusion in the National Register of Historic Places (NRHP). These sites are all well outside the proposed APE for this undertaking.

However, within the proposed APE or the vicinity of this APE, there may be other cultural resources, including traditional resources, known to the Delaware Tribe of Indians that would need to be considered in relation to the proposed undertaking.
JB MDL Sample Tribal Letter

We have attached the Draft Description of the Proposed Action and Alternatives (Attachment 3), which will become the first chapters of the Draft EIS so that you may review the proposal and provide us any concerns that you may have regarding the proposal. Upon release of the Draft EIS (expected in early 2014), we will send that to you for your further review and comment.

Please let us know when you would like to meet to discuss the proposed aircraft beddown and your expectations on how we will accomplish the consultations. You may contact Lt Robert Mendez, Environmental Manager for JB MDL, at (609) 754-3718 or robert.mendez@ang.af.mil. You also may request an individual or group meeting with your Tribe.

We look forward to working with the Delaware Tribe of Indians in the NHPA Section 106 and government-to-government consultation processes.

Sincerely

WILLIAM P. ALBRO, P.E., GS-15
Associate Director, Installations and Mission Support

cc:
Colonel Kevin Keehn, 108th Wing Commander, JB MDL
Lt Robert Mendez, JB MDL

Attachments:
1. Vicinity Map of JB MDL
2. Map of Area of Potential Effect
3. Draft Description of the Proposed Action and Alternatives

References:

Air Mobility Command (AMC)

Headquarters Air Mobility Command (HQ AMC)
JB MDL Sample Tribal Letter

Holmes, Richard D.

Holmes, Richard D., Toni R. Goar, and Katherine J. Roxlau

Holmes, Richard D. and Toni R. Goar

Joint Base McGuire-Dix-Lakehurst (JB MDL)
2013 *Draft Integrated Cultural Resources Management Plan.*

McGuire Air Force Base (AFB)
Regional Location, JB MDL
Stockbridge-Munsee Tribal Historic Preservation Office
Sherry White - Tribal Historic Preservation Officer
WL3447 Camp 14 Road
P.O. Box 70
Bowler, WI 54416

Date: 5/13/11

We have received your letter for the above listed project. Before we can process the request we need more information. The additional items needed are checked below.

Additional Information Required:

- Site visit by Tribal Historic Preservation Officer
- Archeological survey, Phase I
- Literature record search including colored maps
- Pictures of the site
- Any reports the State Historic Preservation Office may have
- Has the site been previously disturbed
- Review fee must be included with letter

If site has been previously disturbed please explain what the use was and when it was disturbed.

Other comments or information needed

After reviewing your letter we find that:

“No Properties” the Tribe concurs with a Federal agency’s finding that there are no National Register eligible or listed properties within the Federal undertaking’s area of potential effect or APE 36 CFR 800.4 (d) (1)

“No Effect” historic or prehistoric properties are present but the Federal undertaking will have no effect on the National Register eligible or listed properties as defined in Sec. 800.160(c)

“No Adverse Effect” refers to written opinions provided to a Federal agency as to whether or not the Tribe agrees with or believes that there should be a Federal agency finding that its Federal undertaking would have “No Adverse Effect” 36 CFR 800.5(b)

(715) 793-3970

Email: sherry.white@mohican-nsn.gov
“Adverse Effect” refers to written opinions provided to a Federal Agency that undertaking would cause Adverse Effects to the area of potential effect on National Register or eligible properties according to the criteria set forth in 36 CFR 800.5(a) (1), (2) (i)-(vii).

Project not within a county the Mohican Tribe has interest in

Should this project inadvertently uncover a Native American site, we ask that you halt all construction and notify the Stockbridge-Munsee Tribe immediately.

Please do not resubmit project for changes that are not ground disturbance.

Sincerely,

[Signature]
Sherry White
Tribal Historic Preservation Officer
The sample tribal letter following was distributed to the list below:

Kirk Francis, Tribal Chief, Penobscot Indian Nation, 12 Wabanaki Way, Indian Island, ME 04668
Bonnie Newsom, THPO, Penobscot Indian Nation, 12 Wabanaki Way, Indian Island, ME 04468
Dear Chief Francis

The United States Air Force (USAF) plans to replace the existing KC-135 air refueling fleet with the KC-46A, which will be a new aircraft to the USAF’s fleet. As such, the USAF has identified alternatives for the beddown of a Formal Training Unit (FTU) and the first Main Operating Base (MOB 1*), which will both be led by active duty units. The USAF will also beddown the KC-46A at the second Main Operating Base (MOB 2), which will be led by an Air National Guard (ANG) unit.

Two separate Environmental Impact Statements (EISs) are being prepared for the MOB 1/FTU, and MOB 2 beddowns. While you may be familiar with either or both of these actions, this particular letter is in reference only to the MOB 2 beddown action.

The MOB 2 alternative locations for this beddown include:

- Forbes Air National Guard Station (ANGS), Kansas;
- Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey;
- Pease ANGS, New Hampshire;
- Pittsburgh ANGS, Pennsylvania; and,
- Rickenbacker ANGS, Ohio.

The EIS is being prepared under the National Environmental Policy Act (NEPA) for the potential beddown of the KC-46A at one of the five alternative locations, including Pease ANGS in New Hampshire (Attachment 1). The EIS will assess the potential environmental consequences associated with the beddown of the KC-46A at Pease ANGS as a replacement to the KC-135. As a result of the Proposed Action, there would be a change to the type of aircraft based at the selected installation; a change to the mix of aircraft using the associated airspace; changes to staffing and manpower at the selected location; changes to the number of airfield

* The FTU alternative installations include Altus Air Force Base (AFB), Oklahoma and McConnell AFB, Kansas. The MOB 1 alternative installations include Altus AFB, Oklahoma; McConnell AFB, Kansas; Fairchild AFB, Washington; and Grand Forks AFB, North Dakota.
operations; as well as minor required construction, building renovation, and facility demolition. There would be no new or modified airspace required to support this action.

At Pease ANGS, the KC-46A would replace the KC-135 currently based at the installation. Under this alternative, the KC-46A would operate in existing airspace in a similar manner as is currently conducted. There may be a slight increase in operations in the airspace; however, use of this airspace is generally 10,000 feet above ground level and higher, and preliminary analysis indicates that noise levels under the proposal would be similar to existing noise levels with the KC-135 aircraft. Therefore, the National Guard Bureau (NGB) anticipates the area of potential effect (APE) for this action to be limited to the portion of the installation where construction, demolition, and renovation activities would occur (Attachment 2). Construction activities would include: renovations and additions to Hangars 251, 252, 253, and 254; construction and upgrade of the aircraft taxiway; repaving of the quad apron; and demolition of existing fuel hydrants and associated fuel lines and installation of new hydrants and lines on the aircraft parking apron.

The Penobscot Indian Nation has been identified as potentially having historic ties to this location. In accordance with Section 106 of the National Historic Preservation Act (NHPA) (36 Code of Federal Regulations Parts 800.2, 800.3, and 800.4), and in deference to Executive Order 13175, Consultation and Coordination with Indian Tribal Governments, the 157th Air Refueling Wing (157 ARW) would like to initiate government-to-government consultation regarding the aircraft beddown. In May 2013, as part of the NEPA process, a public participation letter was sent informing various Tribes of the proposed action and the locations and times of public information and input meetings. This letter reflects an initiation of the NHPA consultation process under Section 106 for the same action.

The 157 ARW would like to discuss the proposed undertaking in detail with you, and to understand and consider any comments, concerns, and suggestions you may have. In particular, the NGB requests your input as to the status of any traditional resources or historic properties that may be located in or near the proposed APE for this undertaking at the Pease ANGS (see attached map).

Pease ANGS has been surveyed for archaeological resources and none have been identified (157th Air Refueling Wing [157 ARW] 2009). However, within the proposed APE or the vicinity of this APE, there may be other cultural resources, including traditional resources, known to the Penobscot Indian Nation that would need to be considered in relation to the proposed undertaking.

We have attached the Draft Description of the Proposed Action and Alternatives (Attachment 3), which will become the first chapters of the Draft EIS so that you may review the proposal and provide us any concerns that you may have regarding the proposal. Upon release of the Draft EIS (expected in early 2014), we will send that to you for your further review and comment.
Pease Sample Tribal Letter

Page 3

Please let us know when you would like to meet to discuss the aircraft beddown proposal and your expectations on how we will accomplish the consultations. You may contact Andy Smith, Environmental Manager for Pease ANGS, at (603) 430-2336 or andrew.smith.7@ang.af.mil. You also may request an individual or group meeting with your Tribe.

We look forward to working with the Penobscot Indian Nation in the NHPA Section 106, and government-to-government consultation processes.

Sincerely

WILLIAM P. ALBRO, P.E., GS-15
Associate Director, Installations and Mission Support

cc: Colonel Paul Hutchinson, 157th Wing Commander, Pease ANGS
Mr. Andy Smith, Pease ANGS

Attachments:
1. Vicinity Map of Pease ANGS
2. Map of Area of Potential Effect
3. Draft Description of the Proposed Action and Alternatives

Reference:

157th Air Refueling Wing (157 ARW)
The sample tribal letter following was distributed to the list below:

Melinda Maybee, Nation Representative, Cayuga Nation of New York, PO Box 803, Seneca Falls, NY 13148
Irving Powless, Chief, Onondaga Nation of New York, RRT#1, PO Box 319-B, Nedrow, NY 13120
Leo Henry, Chief, Tuscarora Nation of New York, 2006 Mt Hope Rd, Lewiston, NY 14092
Robert Odawi Porter, President, Seneca Nation of Indians, 12837 Rte. 438, Irving, NY 14081
Lana Watt, THPO, Seneca Nation of Indians, 90 Ohiyo Way, Salamanca, NY 14779
Roger Hill, Chief, Tonawanda Band of Seneca, 7027 Meadville Rd, Basom, NY 14013
Pittsburgh Sample Tribal Letter
NATIONAL GUARD BUREAU
3501 FETCHET AVENUE
JOINT BASE ANDREWS MD 20762-5157

24 September 2013

NGB/A7A

Melinda Maybee
Nation Representative
Cayuga Nation of New York
PO Box 803
Seneca Falls, NY 13148

Dear Ms. Maybee

The United States Air Force (USAF) plans to replace the existing KC-135 air refueling fleet with the KC-46A, which will be a new aircraft to the USAF’s fleet. As such, the USAF has identified locations for the beddown of a Formal Training Unit (FTU) and the first Main Operating Base (MOB 1’), which will both be led by active duty units. The USAF will also beddown the KC-46A at the second Main Operating Base (MOB 2), which will be led by an Air National Guard (ANG) unit.

Two separate Environmental Impact Statements (EISs) are being prepared for the MOB 1/FTU, and MOB 2 beddowns. While you may be familiar with either or both of these actions, this particular letter is in reference only to the MOB 2 beddown action.

The MOB 2 alternative locations for this beddown include:

- Forbes Air National Guard Station (ANGS), Kansas;
- Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey;
- Pease ANGS, New Hampshire;
- Pittsburgh ANGS, Pennsylvania; and,
- Rickenbacker ANGS, Ohio.

The EIS is being prepared under the National Environmental Policy Act (NEPA) for the potential beddown of the KC-46A at one of the five alternative locations, including Pittsburgh ANGS in Pennsylvania (Attachment 1). The EIS will assess the potential environmental consequences associated with the beddown of the KC-46A at Pittsburgh ANGS as a replacement to the KC-135. As a result of the Proposed Action, there would be a change to the type of aircraft based at the selected installation; a change to the mix of aircraft using the associated airspace; changes to staffing and manpower at the selected location; changes to the number of

* The FTU alternative installations include Altus Air Force Base (AFB), Oklahoma and McConnell AFB, Kansas. The MOB 1 alternative installations include Altus AFB, Oklahoma; McConnell AFB, Kansas; Fairchild AFB, Washington; and Grand Forks AFB, North Dakota.
Pittsburgh Sample Tribal Letter

Page 2

airfield operations; as well as minor required construction, building renovation, and facility demolition. There would be no new or modified airspace required to support this action.

At Pittsburgh ANGS, the KC-46A would replace the KC-135 currently based at the installation. Under this alternative, the KC-46A would operate in existing airspace in a similar manner as is currently conducted. There may be a slight increase in operations in the airspace; however, use of this airspace is generally 10,000 feet above ground level and higher, and preliminary analysis indicates that noise levels under the proposal would be similar to existing noise levels with the KC-135 aircraft. Therefore, the National Guard Bureau (NGB) anticipates the area of potential effect (APE) for this action to be limited to the portion of the installation where construction, demolition, and renovation activities would occur (Attachment 2). Construction activities would include: an addition to Hangar 302; an addition to hangar 320; interior renovations to hangar 301; modifications to the aircraft ramp and taxiway; and the addition of eight new fuel hydrants and associated fuel lines on the aircraft parking apron; and possible demolition or capping of existing fuel hydrants and lines on the parking apron.

The Cayuga Nation of New York has been identified as potentially having historic ties to this location. In accordance with Section 106 of the National Historic Preservation Act (NHPA) (36 Code of Federal Regulations Parts 800.2, 800.3, and 800.4), and in deference to Executive Order 13175, Consultation and Coordination with Indian Tribal Governments, the 171st Air Refueling Wing (171 ARW) would like to initiate government-to-government consultation regarding the aircraft beddown. In May 2013, as part of the NEPA process, a public participation letter was sent informing various Tribes of the Proposed Action and the locations and times of public information and input meetings. This letter reflects an initiation of the NHPA consultation process under Section 106 for the same action.

The 171 ARW would like to discuss the proposed undertaking in detail with you, and to understand and consider any comments, concerns, and suggestions you may have. In particular, the NGB requests your input as to the status of any traditional resources or historic properties that may be located in or near the proposed APE for this undertaking at the Pittsburgh ANGS (see attached map).

The entire Pittsburgh ANGS has been surveyed for archaeological resources and none have been identified (Cardno TEC, Inc. 2011). Therefore, it is anticipated that no archaeological sites would be affected by the proposed undertaking. However, within the proposed APE or the vicinity of this APE, there may be other cultural resources, including traditional resources, known to the Cayuga Nation of New York that would need to be considered in relation to the proposed undertaking.

We have attached the Draft Description of the Proposed Action and Alternatives (Attachment 3), which will become the first chapters of the Draft EIS so that you may review the proposal and provide us any concerns that you may have regarding the proposal. Upon release of
the Draft EIS (expected in early 2014), we will send that to you for your further review and comment.

Please let us know when you would like to meet to discuss the proposed aircraft beddown and your expectations on how we will accomplish the consultations. You may contact Lt Col John Tower, Environmental Manager for Pittsburgh ANGS, at (412) 776-7640 or john.tower@ang.af.mil. You also may request an individual or group meeting with your Tribe.

We look forward to working with the Cayuga Nation of New York in the NHPA Section 106 and government-to-government consultation processes.

Sincerely

cc:
Colonel Steven Painter, 171st Wing Commander, Pittsburgh ANGS
Lt Col John Tower, Pittsburgh ANGS

Attachments:
1. Vicinity Map of Pittsburgh ANGS
2. Map of Area of Potential Effect
3. Draft Description of the Proposed Action and Alternatives

Reference:
Cardno TEC, Inc.
2011 Cultural Resources Survey at the 171 Air Refueling Wing, Pittsburgh, Pennsylvania.
Prepared by TEC
The sample tribal letter following was distributed to the list below:

Ron Sparkman, Chief, Shawnee Tribe, PO Box 189, Miami, OK 74355
Jodi Hayes, Tribe Administrator, Shawnee Tribe, PO Box 189, Miami, OK 74355
Harold Frank, Chairman, Forest County Potawatomi Community, PO Box 340, Crandon, WI 54520
Kenneth Meshigaud, Chairperson, Hannahville Indian Community, N14911 Hannahville B1 Rd, Wilson, MI 49896-9728
George Strack, THPO, Miami Tribe of Oklahoma, PO Box 1326, Miami, OK 74355-1326
Thomas Gamble, Chairperson, Miami Tribe of Oklahoma, PO Box 1326, Miami, OK 74355-1326
Ethel áá Cooká, Chief, Ottawa Tribe of Oklahoma, PO Box 110, Miami, OK 74355
John Froman, Chief, Peoria Tribe of Indians of Oklahoma, PO Box 1527, Miami, OK 74355
Matthew Wesaw, Chairman, Pokagon Band of Potawatomi Indians, PO Box 180, Dowagiac, MI 49047
Mike Zimmerman, THPO, Pokagon Band of Potawatomi Indians, PO Box 180, Dowagiac, MI 49047
Kade Ferris, THPO, Turtle Mountain Band of Chippewa Indians of North Dakota, PO Box 900, Belcourt, ND 58316
Merle St. Claire, Chairman, Turtle Mountain Band of Chippewa Indians of North Dakota, PO Box 900, Belcourt, ND 58316
Billy Friend, Chief, Wyandotte Nation, 64700 E Highway 60, Wyandotte, OK 74370
Sherri Clemons, THPO, Wyandotte Nation, 64700 E Highway 60, Wyandotte, OK 74370
Dear Chief Sparkman,

The United States Air Force (USAF) plans to replace the existing KC-135 air refueling fleet with the KC-46A, which will be a new aircraft to the USAF’s fleet. As such, the USAF has identified alternatives for the beddown of a Formal Training Unit (FTU) and the first Main Operating Base (MOB 1*), which will both be led by active duty units. The USAF will also beddown the KC-46A at the second Main Operating Base (MOB 2), which will be led by an Air National Guard (ANG) unit.

Two separate Environmental Impact Statements (EISs) are being prepared for the MOB 1/FTU, and MOB 2 beddowns. While you may be familiar with either or both of these actions, this particular letter is in reference only to the MOB 2 beddown action.

The MOB 2 alternative locations for this beddown include:

- Forbes Air National Guard Station (ANGS), Kansas;
- Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey;
- Pease ANGS, New Hampshire;
- Pittsburgh ANGS, Pennsylvania; and,
- Rickenbacker ANGS, Ohio.

The EIS is being prepared under the National Environmental Policy Act (NEPA) for the potential beddown of the KC-46A at one of the five alternative locations, including Rickenbacker ANGS in Ohio (Attachment 1). The EIS will assess the potential environmental consequences associated with the beddown of the KC-46A at Rickenbacker ANGS as a replacement to the KC-135. As a result of the Proposed Action, there would be a change to the type of aircraft based at the selected installation; a change to the mix of aircraft using the associated airspace; changes to staffing and manpower at the selected location; changes to the

* The FTU alternative installations include Altus Air Force Base (AFB), Oklahoma and McConnell AFB, Kansas. The MOB 1 alternative installations include Altus AFB, Oklahoma; McConnell AFB, Kansas; Fairchild AFB, Washington; and Grand Forks AFB, North Dakota.
number of airfield operations; as well as minor required construction, building renovation, and facility demolition. There would be no new or modified airspace required to support this action.

At Rickenbacker ANGS, the KC-46A would replace the KC-135 currently based at the installation. Under this alternative, the KC-46A would operate in existing airspace in a similar manner as is currently conducted. There may be a slight increase in operations in the airspace; however, use of this airspace is generally 10,000 feet above ground level and higher, and preliminary analysis indicates that noise levels under the proposal would be similar to existing noise levels with the KC-135 aircraft. Therefore, the National Guard Bureau (NGB) anticipates the area of potential effect (APE) for this action to be limited to the portion of the installation where construction, demolition, and renovation activities would occur (Attachment 2). Construction activities would include: additions and renovations to Hangar 885; an addition to Hangar 883; interior renovations to Hangar 888; modifications to the aircraft ramp and taxiway; and addition and demolition of fuel hydrants and associated fuel lines on the aircraft parking apron.

The Shawnee Tribe has been identified as potentially having historic ties to this location. In accordance with Section 106 of the National Historic Preservation Act (NHPA) (36 Code of Federal Regulations Parts 800.2, 800.3, and 800.4), and in deference to Executive Order 13175, Consultation and Coordination with Indian Tribal Governments, the 121st Air Refueling Wing (121 ARW) would like to initiate government-to-government consultation regarding the aircraft beddown. In May 2013, as part of the NEPA process, a public participation letter was sent informing various Tribes of the Proposed Action and the locations and times of public information and input meetings. This letter reflects an initiation of the NHPA consultation process under Section 106 for the same action.

The 121 ARW would like to discuss the proposed undertaking in detail with you, and to understand and consider any comments, concerns, and suggestions you may have. In particular, the NGB requests your input as to the status of any traditional resources or historic properties that may be located in or near the proposed APE for this undertaking at the Rickenbacker ANGS (see attached map).

The entire Rickenbacker ANGS has been surveyed for archaeological resources and no significant archaeological resources were encountered (National Guard Bureau [NGB] 2007, NGB 2008, Snyder 2007). However, a few decades previous to the 2008 inventory, during excavations for Building 911 a multi-component site (33FR2844) was uncovered. Site 33FR2844 consisted of a historic burial and a prehistoric lithic scatter. This site was recommended eligible for inclusion on the NRHP when it was discovered in 1985 (121 ARW 2011). This site is the only known significant archaeological resource present within the boundaries of the ANGS and it is well outside the proposed APE for the undertaking. However, within the proposed APE or the vicinity of this APE, there may be other cultural resources, including traditional resources, known to the Shawnee Tribe that would need to be considered in relation to the proposed undertaking.
We have attached the Draft Description of the Proposed Action and Alternatives (Attachment 3), which will become the first chapters of the Draft EIS so that you may review the proposal and provide us any concerns that you may have regarding the proposal. Upon release of the Draft EIS (expected in early 2014), we will send that to you for your further review and comment.

Please let us know when you would like to meet to discuss the proposed aircraft beddown and your expectations on how we will accomplish the consultations. You may contact Roger Jones, Environmental Manager for Rickenbacker ANGS, at (614) 492-4110 or roger.jones@ang.af.mil. You also may request an individual or group meeting with your Tribe.

We look forward to working with the Shawnee Tribe in the NHPA Section 106 and government-to-government consultation processes.

Sincerely

WILLIAM P. ALBRO, P.E., GS-15
Associate Director, Installations and Mission Support

cc:
Colonel James Jones, 121st Wing Commander, OH ANGS
Mr. Roger Jones, OH ANGS

Attachments:
1. Vicinity Map of Rickenbacker ANGS
2. Map of Area of Potential Effect
3. Draft Description of the Proposed Action and Alternatives

References:

2007 Cultural Resources Survey of the 121st Air Refueling Wing, Ohio Air National Guard, Rickenbacker International Airport, Columbus, Franklin County, Ohio. Prepared for the National Guard Bureau, Air National Guard Readiness Center NGB/A7CVN, Andrews Air Force Base, Maryland. December 2007.
Rickenbacker Sample Tribal Letter

Page 4

Snyder, David

October 2, 2013

William P. Albro, P.E., GS-15
Associate Director, Installations and Mission Support
National Guard Bureau
3501 Fetchet Avenue
Joint Base Andrews, MD 20762-5157

Re: KC-46A Beddown at Possible Location of Rickenbacker ANGS, Ohio (MOB 2)

Thank you for notice of the referenced project. The Peoria Tribe of Indians of Oklahoma is currently unaware of any documentation directly linking Indian Religious Sites to Rickenbacker ANGS. In the event any items falling under the Native American Graves Protection and Repatriation Act (NAGPRA) are discovered during construction, the Peoria Tribe request notification and further consultation.

The Peoria Tribe has no objection to the proposed construction, demolition, and renovation activities. However, if any human skeletal remains and/or any objects falling under NAGPRA are uncovered during construction, the construction should stop immediately, and the appropriate persons, including state and tribal NAGPRA representatives contacted.

Cynthia Stacy
Special Projects Manager/NAGPRA
Peoria Tribe of Indians of Oklahoma
918-540-2535 Ext. 31
FAX: 918-540-2538
cstacy@peoriatribe.com
-----Original Message-----
From: Jay Toth [mailto:jay.toth@sni.org]
Sent: Thursday, October 03, 2013 9:36 AM
To: Tower, John LtCol USAF ANG 171 MDG/SGPB
Subject: MOB 1&2/sec. 106

Seneca HP has no issue regarding the EIS for the MOBs.

JAY toth., MA., MS.
Seneca Nation Tribal archeologist
90 OHI:WAY
Salamanca, NY 14779

(716)945-1790/ ext. 3582
October 4, 2013

National Guard Bureau
3501 Fetchett Avenue
Joint Base Andrews, MD 20762-5157

Re: Replacement of KC-135 Fleet with KC-46A fleet

Dear Michael B. Hornum:

Thank you for providing the survey report for the above referenced project. Our review also indicates that there are no religious or culturally significant sites in this project area and we have no objection to the proposed project. We defer comment to your office as well as to the State Historic Preservation Office and/or the State Archaeologist.

However, we ask that if any human remains are accidentally unearthed during the course of the project that you cease development immediately and inform the Delaware Tribe of Indians of the inadvertent discovery.

If you have any questions, feel free to contact this office by phone at (620) 341-6699 or by e-mail at bobermeyer@delawaretribe.org.

Sincerely,

Brice Obermeyer
Delaware Tribe Historic Preservation Office
1200 Commercial St
Roosevelt Hall, RM 212
Emporia State University
Emporia, KS 66801
-----Original Message-----
From: Chris Sockalexis [mailto:Chris.Sockalexis@penobscotnation.org]
Sent: Tuesday, December 31, 2013 11:24 AM
To: Eck, Christopher R Civ USAF ANG NGB/A7AM
Subject: RE: US Air Force Replacement of KC-135 Air Refueling fleet with
KC-46A Aircraft, Pease Air National Guard Base, New Hampshire

Good Afternoon,

I have reviewed the proposed project by the United States Air Force National
Guard Bureau. This includes the replacement of the existing KC-135 air
refueling fleet with the KC-46A fleet. This project consists of the beddown
of the new KC-46A fleet at Pease Air National Guard Station in Portsmouth,
NH.

I have attached my "No Objection" letter to this email.

Thank you for consulting with the Penobscot Nation on this project.

Sincerely,

Chris Sockalexis, THPO
Penobscot Nation
PENOBSOT NATION
CULTURAL & HISTORIC PRESERVATION DEPARTMENT
12 WABANAKI WAY, INDIAN ISLAND, ME 04468
CHRIS SOCKALEXIS – TRIBAL HISTORIC PRESERVATION OFFICER
E-MAIL: christsockalexis@penobscotnation.org FAX: 207-817-7450

<table>
<thead>
<tr>
<th>NAME</th>
<th>Christopher Eck</th>
</tr>
</thead>
</table>
| ADDRESS | Air National Guard
| | NG/BA7AM
| | Shepperd Hall
| | 3501 Fetchet Avenue
| | Joint Base Andrews, MD 20762 |
| OWNER’S NAME | United States Air Force |
| TELEPHONE | (240) 612-7482 |
| EMAIL | Christopher.Eck.1@ang.af.mil |
| PROJECT NAME | Replace existing KC-135 air refueling fleet with the KC-46A at Pease ANGS, New Hampshire |
| PROJECT SITE | Portsmouth, NH |
| DATE OF REQUEST| September 24, 2013 |
| DATE REVIEWED | December 31, 2013 |

Thank you for the opportunity to comment on the above referenced project. This project appears to have no impact on a structure or site of historic, architectural or archaeological significance to the Penobscot Nation as defined by the National Historic Preservation Act of 1966, and subsequent updates.

Also, if Native American cultural materials are encountered during the course of the project, please contact me at (207) 817-7471. Thank you.

CHRIS SOCKALEXIS, THPO
Penobscot Nation
-----Original Message-----
From: Crystal Douglas [mailto:crystal_douglas@kawnation.com]
Sent: Friday, November 22, 2013 5:09 PM
To: Eck, Christopher R Civ USAF ANG NGB/A7AM
Subject: [MALWARE FREE]RE: Air National Guard KC-46A Follow-Up

Thank you for the information, The Kaw Nation was in this area in the late 1700s and early 1800s. We would like you to notify us if you discover any human remains or culturally affiliated artifacts. We have no objecting to this endeavor we hope you will be able to progress on schedule.

Crystal Douglas
Tribal Historic Preservation Officer
Kaw Nation
-----Original Message-----
From: Clint [mailto:clint.halftown@gmail.com]
Sent: Saturday, January 11, 2014 1:24 AM
To: Eck, Christopher R Civ USAF ANG NGB/A7AM
Subject: Re: Air National Guard KC-46A Follow-Up

Dear Mr. ECM,

Greetings from the Cayuga Nation.

While I believe the proposed project will not have an adverse impact upon cultural items possible related to the Cayuga Nation.

If you should come into contact with any items, I wish for you to contact me immediately.

If possible, I would like to view this proposed site.

Any questions, please contact me at 315-568-0750.

Oneh,

Clint Halftown
Cayuga Nation

Sent from my iPad
-----Original Message-----
From: Sherry White [mailto:sherry.white@mohican-nsn.gov]
Sent: Wednesday, January 22, 2014 5:12 PM
To: Eck, Christopher R Civ USAF ANG NGB/A7AM
Subject: RE: US Air Force Replacement of KC-135 Air Refueling Fleet Aircraft
with KC-46A Aircraft

Mr. Eck
Thank you for providing me this information. The Stockbridge-Munsee Tribe has
no concern with this project and agrees that no adverse effect will take
place.
Sherry White
Tribal Historic Preservation Officer
NATIONAL GUARD BUREAU
3501 FETCHET AVENUE
JOINT BASE ANDREWS MD 20762-5157

NGB/A7AM 12 September 2013

Jennie Chinn
Kansas State Historical Society
Cultural Resources Division
6425 SW 6th Ave
Topeka, KS 66615-1099

Dear Ms. Chinn

The United States Air Force (USAF) plans to replace the existing KC-135 air refueling fleet with the KC-46A, which will be a new aircraft to the USAF’s fleet. As such, the USAF has identified locations for the beddown of a formal training unit (FTU) and the first main operating base (MOB 1), which will both be led by active duty units. The USAF will also beddown the KC-46A at the second main operating base (MOB 2), which will be led by an Air National Guard (ANG) unit.

There are two separate Environmental Impact Statements (EISs) being prepared for the MOB 1/FTUs and MOB 2 beddowns. While you may be familiar with either or both of these actions, this particular letter is in reference only to the MOB 2 beddown action. This correspondence is provided to initiate consultation with your office, pursuant to 36 Code of Federal Regulations (CFR) 800.3 for the Undertaking. Section 106 consultation for this project will be parallel to, but conducted separately from the EIS.

The MOB 2 alternative locations for this beddown include:

- Forbes Air National Guard Station (ANGS), Kansas;
- Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey;
- Pease ANGS, New Hampshire;
- Pittsburgh ANGS, Pennsylvania; and,
- Rickenbacker ANGS, Ohio.

The EIS is being prepared under the National Environmental Policy Act (NEPA) for the potential beddown of the KC-46A at one of the five alternative locations, including Forbes ANGS in Kansas (Attachment 1). The EIS will assess the potential environmental consequences associated with the beddown of the KC-46A at Forbes ANGS as a replacement to the KC-135. As a result of the Proposed Action, there would be a change to the type of aircraft based at the selected installation; a change to the mix of aircraft using the associated airspace; changes to

1 The FTU alternative installations include Altus Air Force Base (AFB), Oklahoma and McConnell AFB, Kansas. The MOB 1 alternative installations include Altus AFB, Oklahoma; McConnell AFB, Kansas; Fairchild AFB, Washington; and Grand Forks AFB, North Dakota.
staffing and manpower at the selected location; changes to the number of airfield operations; as well as minor required construction, building renovation, and facility demolition. There would be no new or modified airspace required to support this undertaking.

At Forbes ANGS, the KC-46A would replace the KC-135 currently based at the installation. Under this alternative, the KC-46A would operate in existing airspace in a similar manner as is currently conducted. There may be a slight increase in operations in the airspace; however, use of this airspace is generally 10,000 feet above ground level and higher and preliminary analysis indicates that noise levels under the proposal would be similar to existing noise levels with the KC-135 aircraft. The purpose of this correspondence is to initiate the Section 106 process of the National Historic Preservation Act (NHPA) as outlined in 36 CFR 800.3.

The National Guard Bureau (NGB) anticipates the area of potential effect (APE) for this undertaking to be limited to the portion of the installation where construction, demolition, and renovation activities would occur (Attachment 2). Construction includes options for some of the facilities, but in general there would be an addition to Hangar 662; either interior modifications or an addition to Hangar 665; internal renovations to Building 679; and an addition and demolition of fuel hydrants and associated fuel lines on the aircraft parking apron. Specific interior renovations to Building 679 include adding shelving, altering ceiling panels, removing and constructing interior walls, and addition of stairs and railings.

The entire Forbes ANGS has been surveyed for archaeological resources (KS ANG 2008). This cultural resources survey also included an inventory and evaluations of architectural resources at the Forbes ANGS and as a result, one building (Building 679) was determined eligible for inclusion in the NRHP under Criteria A and C for its contributions to the US military Cold War mission (Zollner 2008). A Memorandum of Agreement was signed regarding Building 679 in 2009 and in 2010 the building was entirely remodeled following the completion of mitigation measures suggested and approved by your office. For this undertaking, minor interior renovations are proposed to Building 679, which would not affect the current displays erected as part of the earlier mitigation for this building (Attachment 3).

The NGB has identified no potential adverse effects to Building 679. Therefore, it is anticipated that no sites or buildings considered eligible for the NRHP would be affected by the proposed undertaking. We request your concurrence with the proposed APE, our identification of historic properties, and our assessment on the effects of this proposal on historic properties.

We have attached the Draft Description of the Proposed Action and Alternatives (Attachment 4), which will become the first chapters of the Draft EIS so that you may review the proposal and provide us any concerns that you may have regarding the proposal. Upon release of the Draft EIS (expected in early 2014), we will send that to you for your further review and comment.
The NGB is in the process of consulting with federally recognized American Indian Tribes concerning the Undertaking (Attachment 5). We are also contacting the public and relevant regional Archaeological Society offices both through the NEPA process and through Section 106 of the NHPA. All comments we receive, and any concerns expressed to the NGB, will be taken into consideration while planning for this undertaking. Please send your recommendations to the KC-46A MOB 2 Project Manager, Ms. Anne Rowe, at anne.rowe.ctr@ang.af.mil. If you have any questions regarding this consultation, Ms. Rowe can also be reached at (240) 612-8636.

Sincerely

ROBERT L. DOGAN, REM, GS-13
Plans and Requirements Branch

Attachments: 1 – Vicinity map of Forbes ANGS
2 – Map of Area of Potential Effect
3 – Plans of interior renovations to Building 679
4 – Draft Description of the Proposed Action and Alternatives
5 – Federally Recognized Tribes Associated with Forbes ANGS

References:

Kansas Air National Guard (KS ANG)

Zollner, Patrick
Final – June 2014

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS

Appendix B3 State Historic Preservation Office (SHPO) Correspondence
Appendix B3 State Historic Preservation Office (SHPO) Correspondence
Forbes ANGS Federally-recognized Tribes:

Citizen Potawatomi Nation
Kelli Mosteller, THPO
1601 S. Gordon Cooper Drive
Shawnee, OK 74801
(405) 878-5830
kelli.mosteller@potawatomi.org

John Barrett, Chairman
1601 S. Gordon Cooper Drive
Shawnee, OK 74801
(405) 275-3121
jbarrett@potawatomi.org

Delaware Nation
Tamara Francis, THPO
31064 US Highway 281, Bldg. 100
Anadarko, OK 73005

Kerry Holton, President
P.O. Box 825
Anadarko, OK 73005
(405) 247-2448
nhorn@delawarenation.com

Kaw Nation
Guy Munroe, Chairman
Drawer 50
Kaw City, OK 74641
(580) 269-2552
gmunroe@kawnation.com

Osage Nation of Oklahoma
Dr. Andrea A. Hunter, THPO
627 Grandview
Pawhuska, OK 74056
Office - 918-287-5328

Mr. John D. Redeagle, Principal Chief
P.O. Box 779
627 Grandview
Pawhuska, OK 74056
918-287-5555
jredeagle@osagetreibe.org

Prairie Band of Potawatomi Nation
Steve Ortiz, Chairperson
16281 Q Road
Mayetta, KS 66509
(785) 966-4007
steveo@pbpnation.org

Absentee Shawnee Tribe of Oklahoma
George Blanchard, Governor
2025 S. Gordon Cooper Drive
Shawnee, OK 74801
(405) 275-4030 (405) 273-4534
gblanchard@astribe.com

Henryetta Ellis, THPO
2025 S. Gordon Cooper Drive
Shawnee, OK 74801
(405) 275-4030 ext. 199
hellis@astribe.com

Eastern Shawnee Tribe of Oklahoma
Glenna Wallace, Chief
12755 South 705 Rd.
Wyandotte, OK 74370
(918) 666-2435
gjwallace@estoo.net

Wichita and Affiliated Tribes
Leslie Standing, President
P.O. Box 729
Anadarko, OK 73005
(405) 247-2425 ext. 3
leslie.standing@wichitatribe.com
KSR&C # 13-09-125
September 17, 2013

Ms. Anne Rowe
National Guard Bureau
Via Email

Re: KC-46A MOB 2 Forbes Field, Topeka – Shawnee County

We have reviewed the materials received September 17, 2013 regarding the above-referenced project in accordance with 36 CFR Part 800. In reviews of this nature, the SHPO determines whether a federally funded, licensed, or permitted project will adversely affect properties that are listed or determined eligible for listing in the National Register of Historic Places. The SHPO concurs with the proposed APE and that no historic properties will be affected by the project. As far as this office is concerned, the project may proceed.

Thank you for giving us the opportunity to comment on this proposal. Please refer to the Kansas State Review & Compliance number (KSR&C#) listed above on any future correspondence. Please submit any comments or questions regarding this review to Kim Gant at 785-272-8681, ext. 225 or kgant@kshs.org.

Sincerely,

Jennie Chinn
State Historic Preservation Officer

Patrick Zollner
Director, Cultural Resources Division
Deputy State Historic Preservation Officer
Mr. Daniel Saunders
New Jersey Department of Environmental Protection
Historic Preservation Office
PO Box 420
Trenton, NJ 08625-420

Dear Mr. Saunders

The United States Air Force (USAF) plans to replace the existing KC-135 air refueling fleet with the KC-46A, which will be a new aircraft to the USAF’s fleet. As such, the USAF has identified locations for the beddown of a formal training unit (FTU) and the first main operating base (MOB 1), which will both be led by active duty units. The USAF will also beddown the KC-46A at the second main operating base (MOB 2), which will be led by an Air National Guard (ANG) unit.

There are two separate Environmental Impact Statements (EISs) being prepared for the MOB 1/FTU and MOB 2 beddowns. While you may be familiar with either or both of these actions, this particular letter is in reference only to the MOB 2 beddown action. This correspondence is provided to initiate consultation with your office, pursuant to 36 Code of Federal Regulations (CFR) 800.3 for the Undertaking. Section 106 consultation for this project will be parallel to, but conducted separately from the EIS.

The MOB 2 alternative locations for this beddown include:

- Forbes Air National Guard Station (ANGS), Kansas;
- Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey;
- Pease ANGS, New Hampshire;
- Pittsburgh ANGS, Pennsylvania; and,
- Rickenbacker ANGS, Ohio.

The EIS is being prepared under the National Environmental Policy Act (NEPA) for the potential beddown of the KC-46A at one of the five alternative locations, including JB MDL in New Jersey (Attachment 1). The EIS will assess the potential environmental consequences associated with the beddown of the KC-46A at JB MDL as a replacement to the KC-135. As a result of the Proposed Action, there would be a change to the type of aircraft based at the

1 The FTU alternative installations include Altus Air Force Base (AFB), Oklahoma and McConnell AFB, Kansas. The MOB 1 alternative installations include Altus AFB, Oklahoma; McConnell AFB, Kansas; Fairchild AFB, Washington; and Grand Forks AFB, North Dakota.
selected installation; a change to the mix of aircraft using the associated airspace; changes to staffing and manpower at the selected location; changes to the number of airfield operations; as well as minor required construction, building renovation, and facility demolition. There would be no new or modified airspace required to support this undertaking.

At JB MDL, the KC-46A would replace the KC-135 currently based at the installation. The KC-46A would operate in existing airspace in a similar manner as is currently conducted. There may be a slight increase in operations in the airspace; however, use of this airspace is generally 10,000 feet above ground level and higher and preliminary analysis indicates that noise levels under the proposal would be similar to existing noise levels with the KC-135 aircraft. The purpose of this correspondence is to initiate the Section 106 process of the National Historic Preservation Act (NHPA) as outlined in 36 CFR 800.3.

The National Guard Bureau (NGB) anticipates the area of potential effect (APE) for this undertaking to be limited to the portion of the installation where construction, demolition, and renovation activities would occur (Attachment 2). Specifically, these activities would include an addition to Hangar 3333, an addition to Hangar 3336, interior renovations to Hangar 3352, construction of a new 6,700 square foot simulator building west of Building 3390, modifications/additions to the existing aircraft ramp and taxiway, and the addition of eight new fuel hydrants and associated fuel lines on the aircraft parking apron.

The entire McGuire AFB and associated off-base facilities have been surveyed for archaeological resources (Headquarters Air Mobility Command [HQ AMC] 1995). The 1995 survey also included an architectural survey of all buildings and structures built prior to 1947, and the Semi-Automatic Ground Environmental (SAGE) complex built in 1956. As a result of this survey and follow up surveys conducted in 1996 (AMC 1996, Holmes 1996), 1997 (Holmes et al. 1997, McGuire AFB 2003), and 1998 (Holmes and Goar 1998), the SAGE complex, the Boeing Michigan Aeronautical Research Center (BOMARC) complex at Fort Dix, and three historic archaeological sites were recommended eligible for inclusion in the National Register of Historic Places (NRHP). No other buildings or sites were recommended eligible. The cultural resources recommended eligible for the NRHP at McGuire AFB are all well outside the proposed APE for the undertaking. Additionally, according to the McGuire AFB Integrated Cultural Resources Management Plan (JB MDL 2013) the proposed APE occurs in an area of low archaeological sensitivity.

The NGB has identified no potential adverse effects as a result of this undertaking. We request your concurrence with the proposed APE, our identification of historic properties, and our assessment on the effects of this proposal on historic properties.
We have attached the Draft Description of the Proposed Action and Alternatives (Attachment 3), which will become the first chapters of the Draft EIS so that you may review the proposal and provide us any concerns that you may have regarding the proposal. Upon release of the Draft EIS (expected in early 2014), we will send that to you for your further review and comment.

The NGB is in the process of consulting with federally recognized American Indian Tribes concerning the Undertaking (Attachment 4). We are also contacting the public and relevant regional Archaeological Society offices both through the NEPA process and through Section 106 of the NHPA. All comments we receive, and any concerns expressed to the NGB, will be taken into consideration while planning for this undertaking. Please send your recommendations to the KC-46A MOB 2 Project Manager, Ms. Anne Rowe, at anne.rowe.ctr@ang.af.mil. If you have any questions regarding this consultation, Ms. Rowe can also be reached at (240) 612-8636.

Sincerely,

ROBERT L. DOGAN, REM, GS-13
Plans and Requirements Branch

Attachments: 1 – Vicinity map
 2 – Map of Area of Potential Effect
 3 – Draft Description of the Proposed Action and Alternatives
 4 – Federally Recognized Tribes associated with JB MDL

References:

Air Mobility Command (AMC)

Headquarters Air Mobility Command (HQ AMC)

Holmes, Richard D.
Holmes, Richard D., Toni R. Goar, and Katherine J. Roxlau

Holmes, Richard D. and Toni R. Goar

Joint Base McGuire-Dix-Lakehurst (JB MDL)

McGuire Air Force Base (AFB)
Construction Associated with Alternative #2, 108 WG Installation, JB MDL
McGuire Federally-Recognized Tribes:

Delaware Nation
Tamara Francis, THPO
31064 US Highway 281, Bldg. 100
Anadarko, OK 73005

Kerry Holton, President
PO Box 825
Anadarko, OK 73005
(405) 247-2448
nhorn@delawarenation.com

Delaware Tribe of Indians
Dr. Brice Obermeyer, THPO
Department of Sociology and Anthropology, Emporia State University
Roosevelt Hall, Rm. 212
1200 Commercial St.
Emporia, KS 66801

Paula Pechonick, Chief
170 NE Barbara
Bartlesville, OK 74006
(918) 337-6593
ppechonick@delawaretribe.org

Chester Brooks, Trust Board Chairman
170 NE Barbara
Bartlesville, OK 74006
(918) 337-6590
cbrooks@delawaretribe.org
The United States Air Force (USAF) plans to replace the existing KC-135 air refueling fleet with the KC-46A, which will be a new aircraft to the USAF's fleet. As such, the USAF has identified locations for the beddown of a formal training unit (FTU) and the first main operating base (MOB 1), which will both be led by active duty units. The USAF will also beddown the KC-46A at the second main operating base (MOB 2), which will be led by an Air National Guard (ANG) unit.

There are two separate Environmental Impact Statements (EISs) being prepared for the MOB 1/FTU and MOB 2 beddowns. While you may be familiar with either or both of these actions, this particular letter is in reference only to the MOB 2 beddown action. This correspondence is provided to initiate consultation with your office, pursuant to 36 Code of Federal Regulations (CFR) 800.3 for the Undertaking. Section 106 consultation for this project will be parallel to, but conducted separately from the EIS.

The MOB 2 alternative locations for this beddown include:

- Forbes Air National Guard Station (ANGS), Kansas;
- Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey;
- Pease ANGS, New Hampshire;
- Pittsburgh ANGS, Pennsylvania; and,
- Rickenbacker ANGS, Ohio.

The EIS is being prepared under the National Environmental Policy Act (NEPA) for the potential beddown of the KC-46A at one of the five alternative locations, including JB MDL in New Jersey (Attachment 1). The EIS will assess the potential environmental consequences associated with the beddown of the KC-46A at JB MDL as a replacement to the KC-135. As a result of the Proposed Action, there would be a change to the type of aircraft based at the

1 The FTU alternative installations include Altus Air Force Base (AFB), Oklahoma and McConnell AFB, Kansas. The MOB 1 alternative installations include Altus AFB, Oklahoma; McConnell AFB, Kansas; Fairchild AFB, Washington; and Grand Forks AFB, North Dakota.
selected installation; a change to the mix of aircraft using the associated airspace; changes to staffing and manpower at the selected location; changes to the number of airfield operations; as well as minor required construction, building renovation, and facility demolition. There would be no new or modified airspace required to support this undertaking.

At JB MDL, the KC-46A would replace the KC-135 currently based at the installation. The KC-46A would operate in existing airspace in a similar manner as is currently conducted. There may be a slight increase in operations in the airspace; however, use of this airspace is generally 10,000 feet above ground level and higher and preliminary analysis indicates that noise levels under the proposal would be similar to existing noise levels with the KC-135 aircraft. The purpose of this correspondence is to initiate the Section 106 process of the National Historic Preservation Act (NHPA) as outlined in 36 CFR 800.3.

The National Guard Bureau (NGB) anticipates the area of potential effect (APE) for this undertaking to be limited to the portion of the installation where construction, demolition, and renovation activities would occur (Attachment 2). Specifically, these activities would include an addition to Hangar 3333, an addition to Hangar 3336, interior renovations to Hangar 3332, construction of a new 6,700 square foot simulator building west of Building 3390, modifications/additions to the existing aircraft ramp and taxiway, and the addition of eight new fuel hydrants and associated fuel lines on the aircraft parking apron.

The entire McGuire AFB and associated off-base facilities have been surveyed for archaeological resources (Headquarters Air Mobility Command [HQ AMC] 1995). The 1995 survey also included an architectural survey of all buildings and structures built prior to 1947, and the Semi-Automatic Ground Environmental (SAGE) complex built in 1956. As a result of this survey and follow up surveys conducted in 1996 (AMC 1996, Holmes 1996), 1997 (Holmes et al. 1997, McGuire AFB 2003), and 1998 (Holmes and Gour 1998), the SAGE complex, the Boeing Michigan Aeronautical Research Center (BOMARC) complex at Fort Dix, and three historic archaeological sites were recommended eligible for inclusion in the National Register of Historic Places (NRHP). No other buildings or sites were recommended eligible. The cultural resources recommended eligible for the NRHP at McGuire AFB are all well outside the proposed APE for the undertaking. Additionally, according to the McGuire AFB Integrated Cultural Resources Management Plan (JB MDL 2013) the proposed APE occurs in an area of low archaeological sensitivity.

The NGB has identified no potential adverse effects as a result of this undertaking. We request your concurrence with the proposed APE, our identification of historic properties, and our assessment on the effects of this proposal on historic properties.
We have attached the Draft Description of the Proposed Action and Alternatives (Attachment 3), which will become the first chapters of the Draft EIS so that you may review the proposal and provide us any concerns that you may have regarding the proposal. Upon release of the Draft EIS (expected in early 2014), we will send that to you for your further review and comment.

The NGB is in the process of consulting with federally recognized American Indian Tribes concerning the Undertaking (Attachment 4). We are also contacting the public and relevant regional Archaeological Society offices both through the NEPA process and through Section 106 of the NHPA. All comments we receive, and any concerns expressed to the NGB, will be taken into consideration while planning for this undertaking. Please send your recommendations to the KC-46A MOB 2 Project Manager, Ms. Anne Rowe, at anne.rowe.ctr@ang.af.mil. If you have any questions regarding this consultation, Ms. Rowe can also be reached at (240) 612-8636.

Sincerely

ROBERT L. DOGAN, REM, GS-13
Plans and Requirements Branch

Attachments: 1 – Vicinity map
2 – Map of Area of Potential Effect
3 – Draft Description of the Proposed Action and Alternatives
4 – Federally Recognized Tribes associated with JB MDL

References:

Air Mobility Command (AMC)

Headquarters Air Mobility Command (HQ AMC)

Holmes, Richard D.
Holmes, Richard D., Toni R. Goar, and Katherine J. Roxlau
1997 Phase I Archaeological Survey of Areas 4100 and 4200 McGuire Air Force Base, New

Holmes, Richard D. and Toni R. Goar
1998 Phase II Site Testing of Four Historic Site McGuire Air Force Base Burlington County,
Air Force/Air Mobility Command, Scott Air Force Base.

Joint Base McGuire-Dix-Lakehurst (JB MDL)
2013 Draft Integrated Cultural Resources Management Plan. 87 CES/CEAN, JB MDL, New

McGuire Air Force Base (AFB)
2005.

I concur with your finding that there are no historic properties affected within the project’s area of potential effects. Consequently, pursuant to 36 CFR 800.4(d)(1), no further Section 106 consultation is required unless additional resources are discovered during project implementation pursuant to 36 CFR 800.13.

[Signature]

Date: 10/3/13

[State Historic Preservation Officer]

DANIEL L. SAUNDERS

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS

Appendix B3 State Historic Preservation Office (SHPO) Correspondence
NATIONAL GUARD BUREAU
3501 FETCHER AVENUE
JOINT BASE ANDREWS MD 20762-5157

NGB/A7AM 12 September 2013

Nadine Peterson
New Hampshire Division of Historical Resources
19 Pillsbury St, 2nd Floor
Concord, NH 03301

Dear Ms. Peterson

The United States Air Force (USAF) plans to replace the existing KC-135 air refueling fleet with the KC-46A, which will be a new aircraft to the USAF’s fleet. As such, the USAF has identified locations for the beddown of a formal training unit (FTU) and the first main operating base (MOB 1), which will both be led by active duty units. The USAF will also beddown the KC-46A at the second main operating base (MOB 2), which will be led by an Air National Guard (ANG) unit.

There are two separate Environmental Impact Statements (EISs) being prepared for the MOB 1/FTU and MOB 2 beddowns. While you may be familiar with either or both of these actions, this particular letter is in reference only to the MOB 2 beddown action. This correspondence is provided to initiate consultation with your office, pursuant to 36 Code of Federal Regulations (CFR) 800.3 for the Undertaking. Section 106 consultation for this project will be parallel to, but conducted separately from the EIS.

The MOB 2 alternative locations for this beddown include:

- Forbes Air National Guard Station (ANGS), Kansas;
- Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey;
- Pease ANGS, New Hampshire;
- Pittsburgh ANGS, Pennsylvania; and,
- Rickenbacker ANGS, Ohio.

The EIS is being prepared under the National Environmental Policy Act (NEPA) for the potential beddown of the KC-46A at one of the five alternative locations, including Pease ANGS in New Hampshire (Attachment 1). The EIS will assess the potential environmental consequences associated with the beddown of the KC-46A at Pease ANGS as a replacement to the KC-135. As a result of the Proposed Action, there would be a change to the type of aircraft based at the selected installation; a change to the mix of aircraft using the associated airspace;

1 The FTU alternative installations include Altus Air Force Base (AFB), Oklahoma and McConnell AFB, Kansas. The MOB 1 alternative installations include Altus AFB, Oklahoma; McConnell AFB, Kansas; Fairchild AFB, Washington; and Grand Forks AFB, North Dakota.
changes to staffing and manpower at the selected location; changes to the number of airfield operations; as well as minor required construction, building renovation, and facility demolition. There would be no new or modified airspace required to support this action.

At Pease ANGS, the KC-46A would replace the KC-135 currently based at the installation. Under this alternative, the KC-46A would operate in existing airspace in a similar manner as is currently conducted. There may be a slight increase in operations in the airspace; however, use of this airspace is generally 10,000 feet above ground level and higher and preliminary analysis indicates that noise levels under the proposal would be similar to existing noise levels with the KC-135 aircraft. The purpose of this correspondence is to initiate the Section 106 process of the National Historic Preservation Act (NHPA) as outlined in 36 CFR 800.3.

The National Guard Bureau (NGB) anticipates the area of potential effect (APE) for this action to be limited to the portion of the installation where construction, demolition, and renovation activities would occur (Attachment 2). Construction activities would include: renovations and additions to Hangars 251, 252, 253, and 254; construction and upgrade of the aircraft taxiway; repaving of the quad apron; and demolition of existing fuel hydrants and associated fuel lines and installation of new hydrants and lines on the aircraft parking apron.

The entire ANGS at Pease has been surveyed for archaeological and architectural resources and no historic properties were identified (157th Air Refueling Wing [157 ARW] 2009). The NGB has identified no potential adverse effects to cultural resources as a result from this undertaking. We request your concurrence with the proposed APE, our identification of historic properties, and our assessment on the effects of this proposal on historic properties.

We have attached the Draft Description of the Proposed Action and Alternatives (Attachment 3), which will become the first chapters of the Draft EIS so that you may review the proposal and provide us any concerns that you may have regarding the proposal. Upon release of the Draft EIS (expected in early 2014), we will send that to you for your further review and comment.

The NGB is in the process of consulting with federally recognized American Indian Tribes concerning the Undertaking (Attachment 4). We are also contacting the public and relevant regional Archaeological Society offices both through the NEPA process and through Section 106 of the NHPA. All comments we receive, and any concerns expressed to the NGB,
will be taken into consideration while planning for this undertaking. Please send your recommendations to the KC-46A MOB 2 Project Manager, Ms. Anne Rowe, at anne.rowe.ctr@ang.af.mil. If you have any questions regarding this consultation, Ms. Rowe can also be reached at (240) 612-8636.

Sincerely,

ROBERT L. DOGAN, REM, GS-13
Plans and Requirements Branch

Attachments: 1 – Vicinity Map of Pease ANGS
2 – Map of the Area of Potential Effect
3 – Draft Description of the Proposed Action and Alternatives
4 – Federally Recognized Tribes associated with Pease ANGS

Reference:

157th Air Refueling Wing (157 ARW)
Regional Location
Pease ANGS
CONSTRUCTION ASSOCIATED WITH ALTERNATIVE #3
157 ARW INSTALLATION, PEASE ANGS
Pease ANGS Federally-recognized Tribe:

Penobscot Indian Nation
Kirk Francis, Chief
12 Wabanaki Way
Indian Island, ME 04668
(207) 827-7776
kirk.francis@Penobscotnation.org

Bonnie Newsom, THPO
12 Wabanaki Way
Indian Island, ME 04468
(207) 817-7332
Bonnie.Newsom@penobscotnation.org
Dear Ms. Peterson,

The United States Air Force (USAF) plans to replace the existing KC-135 air refueling fleet with the KC-46A, which will be a new aircraft to the USAF’s fleet. As such, the USAF has identified locations for the beddown of a formal training unit (FTU) and the first main operating base (MOB 1), which will both be led by active duty units. The USAF will also beddown the KC-46A at the second main operating base (MOB 2), which will be led by an Air National Guard (ANG) unit.

There are two separate Environmental Impact Statements (EISs) being prepared for the MOB 1/FTU1 and MOB 2 beddowns. While you may be familiar with either or both of these actions, this particular letter is in reference only to the MOB 2 beddown action. This correspondence is provided to initiate consultation with your office, pursuant to 36 Code of Federal Regulations (CFR) 800.3 for the Undertaking. Section 106 consultation for this project will be parallel to, but conducted separately from the EIS.

The MOB 2 alternative locations for this beddown include:

- Forbes Air National Guard Station (ANGS), Kansas;
- Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey;
- Pease ANGS, New Hampshire;
- Pittsburgh ANGS, Pennsylvania; and,
- Rickenbacker ANGS, Ohio.

The EIS is being prepared under the National Environmental Policy Act (NEPA) for the potential beddown of the KC-46A at one of the five alternative locations, including Pease ANGS in New Hampshire (Attachment 1). The EIS will assess the potential environmental consequences associated with the beddown of the KC-46A at Pease ANGS as a replacement to the KC-135. As a result of the Proposed Action, there would be a change to the type of aircraft based at the selected installation; a change to the mix of aircraft using the associated airspace;

1 The FTU alternative installations include Altus Air Force Base (AFB), Oklahoma and McConnell AFB, Kansas. The MOB 1 alternative installations include Altus AFB, Oklahoma; McConnell AFB, Kansas; Fairchild AFB, Washington; and Grand Forks AFB, North Dakota.
changes to staffing and manpower at the selected location; changes to the number of airfield operations; as well as minor required construction, building renovation, and facility demolition. There would be no new or modified airspace required to support this action.

At Pease ANGS, the KC-46A would replace the KC-135 currently based at the installation. Under this alternative, the KC-46A would operate in existing airspace in a similar manner as is currently conducted. There may be a slight increase in operations in the airspace; however, use of this airspace is generally 10,000 feet above ground level and higher and preliminary analysis indicates that noise levels under the proposal would be similar to existing noise levels with the KC-135 aircraft. The purpose of this correspondence is to initiate the Section 106 process of the National Historic Preservation Act (NHPA) as outlined in 36 CFR 800.3.

The National Guard Bureau (NGB) anticipates the area of potential effect (APE) for this action to be limited to the portion of the installation where construction, demolition, and renovation activities would occur (Attachment 2). Construction activities would include: renovations and additions to Hangars 251, 252, 253, and 254; construction and upgrade of the aircraft taxiway; repaving of the quad apron; and demolition of existing fuel hydrants and associated fuel lines and installation of new hydrants and lines on the aircraft parking apron.

The entire ANGS at Pease has been surveyed for archaeological and architectural resources and no historic properties were identified (157th Air Refueling Wing [157 ARW] 2009). The NGB has identified no potential adverse effects to cultural resources as a result from this undertaking. We request your concurrence with the proposed APE, our identification of historic properties, and our assessment on the effects of this proposal on historic properties.

We have attached the Draft Description of the Proposed Action and Alternatives (Attachment 3), which will become the first chapters of the Draft EIS so that you may review the proposal and provide us any concerns that you may have regarding the proposal. Upon release of the Draft EIS (expected in early 2014), we will send that to you for your further review and comment.

The NGB is in the process of consulting with federally recognized American Indian Tribes concerning the Undertaking (Attachment 4). We are also contacting the public and relevant regional Archaeological Society offices both through the NEPA process and through Section 106 of the NHPA. All comments we receive, and any concerns expressed to the NGB,
will be taken into consideration while planning for this undertaking. Please send your recommendations to the KC-46A MOB 2 Project Manager, Ms. Anne Rowe, at anne.rowe.ctr@ang.af.mil. If you have any questions regarding this consultation, Ms. Rowe can also be reached at (240) 612-8636.

Sincerely,

ROBERT L. DOGAN, REM, GS-13
Plans and Requirements Branch

Attachments: 1 – Vicinity Map of Pease ANGS
2 – Map of the Area of Potential Effect
3 – Draft Description of the Proposed Action and Alternatives
4 – Federally Recognized Tribes associated with Pease ANGS

Reference:
157th Air Refueling Wing (157 ARW)

Conditions required for NEPA & Section 106 of the NHPA have been met.
- No Known Historic Resources
- No Resources Present
- No Adverse Effect

If plans change or resources are discovered in the course of this project, you must contact the Division of Historical Resources as required by federal law and regulation.

NH State Historic Preservation Officer
NATIONAL GUARD BUREAU
3501 FETCHER AVENUE
JOINT BASE ANDREWS MD 20762-5157

NGB/A7AM 12 September 2013

Doug McLearon and Kira Heinrich
Archaeology & Protection Division
Pennsylvania Historical and Museum Commission
Bureau for Historic Preservation
Commonwealth Keystone Building
400 North St
Harrisburg, PA 17120

Dear Mr. McLearon and Ms. Heinrich

The United States Air Force (USAF) plans to replace the existing KC-135 air refueling fleet with the KC-46A, which will be a new aircraft to the USAF’s fleet. As such, the USAF has identified locations for the beddown of a formal training unit (FTU) and the first main operating base (MOB 1), which will both be led by active duty units. The USAF will also beddown the KC-46A at the second main operating base (MOB 2), which will be led by an Air National Guard (ANG) unit.

There are two separate Environmental Impact Statements (EISs) being prepared for the MOB 1/FTU1 and MOB 2 beddowns. While you may be familiar with either or both of these actions, this particular letter is in reference only to the MOB 2 beddown action. This correspondence is provided to initiate consultation with your office, pursuant to 36 Code of Federal Regulations (CFR) 800.3 for the Undertaking. Section 106 consultation for this project will be parallel to, but conducted separately from the EIS.

The MOB 2 alternative locations for this beddown include:

- Forbes Air National Guard Station (ANGS), Kansas;
- Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey;
- Pease ANGS, New Hampshire;
- Pittsburgh ANGS, Pennsylvania; and,
- Rickenbacker ANGS, Ohio.

The EIS is being prepared under the National Environmental Policy Act (NEPA) for the potential beddown of the KC-46A at one of the five alternative locations, including Pittsburgh ANGS in Pennsylvania (Attachment 1). The EIS will assess the potential environmental consequences associated with the beddown of the KC-46A at Pittsburgh ANGS as a replacement

1 The FTU alternative installations include Altus Air Force Base (AFB), Oklahoma and McConnell AFB, Kansas. The MOB 1 alternative installations include Altus AFB, Oklahoma; McConnell AFB, Kansas; Fairchild AFB, Washington; and Grand Forks AFB, North Dakota.
to the KC-135. As a result of the Proposed Action, there would be a change to the type of aircraft based at the selected installation; a change to the mix of aircraft using the associated airspace; changes to staffing and manpower at the selected location; changes to the number of airfield operations; as well as minor required construction, building renovation, and facility demolition. There would be no new or modified airspace required to support this undertaking.

At Pittsburgh ANGS, the KC-46A would replace the KC-135 currently based at the installation. Under this alternative, the KC-46A would operate in existing airspace in a similar manner as is currently conducted. There may be a slight increase in operations in the airspace; however, use of this airspace is generally 10,000 feet above ground level and higher and preliminary analysis indicates that noise levels under the proposal would be similar to existing noise levels with the KC-135 aircraft. The purpose of this correspondence is to initiate the Section 106 process of the National Historic Preservation Act (NHPA) as outlined in 36 CFR 800.3.

The National Guard Bureau (NGB) anticipates the area of potential effect (APE) for this undertaking to be limited to the portion of the installation where construction, demolition, and renovation activities would occur (Attachment 2). Construction activities would include: an addition to Hangar 302; an addition to Hangar 320; interior renovations to Hangar 301; modifications to the aircraft ramp and taxiway; and the addition of eight new fuel hydrants and associated fuel lines on the aircraft parking apron; and possible demolition or capping of existing fuel hydrants and lines on the parking apron.

The entire Pittsburgh ANGS has been surveyed for archaeological and architectural resources and no historic properties were identified (Cardno IEC, Inc. 2011). Therefore, it is anticipated that no sites or buildings considered eligible for the NRHP would be affected by the proposed undertaking. We request your concurrence with the proposed APE, our identification of historic properties, and our assessment on the effects of this proposal on historic properties.

We have attached the Draft Description of the Proposed Action and Alternatives (Attachment 3), which will become the first chapters of the Draft EIS so that you may review the proposal and provide us any concerns that you may have regarding the proposal. Upon release of the Draft EIS (expected in early 2014), we will send that to you for your further review and comment.

The NGB is in the process of consulting with federally-recognized American Indian Tribes concerning the Undertaking (Attachment 4). We are also contacting the public and relevant regional Archaeological Society offices both through the NEPA process and through Section 106 of the NHPA. All comments we receive, and any concerns expressed to the NGB,
will be taken into consideration while planning for this undertaking. Please send your recommendations to the KC-46A MOB 2 Project Manager, Ms. Anne Rowe, at anne.rowe.ctr@ang.af.mil. If you have any questions regarding this consultation, Ms. Rowe can also be reached at (240) 612-8636.

Sincerely,

ROBERT L. DOGAN, REM, GS-13
Plans and Requirements Branch

Attachments: 1 – Vicinity Map of Pittsburgh ANGS
2 – Map of the Area of Potential Effect
3 – Draft Description of the Proposed Action and Alternatives
4 – Federally Recognized Tribes associated with Pittsburgh ANGS

Reference:
Cardno TEC, Inc.
2011 Cultural Resources Survey at the 171 Air Refueling Wing, Pittsburgh, Pennsylvania. Prepared by TEC.
Pittsburgh ANGS Federally-recognized Tribes:

Cayuga Nation of New York
Melinda Maybee, Nation Representative
PO Box 803
Seneca Falls, NY
13148
(315) 586-0750

Onondaga Nation of New York
Irving Powless, Chief
RRT#1, PO Box 319-B
Nedrow, NY 13120
(315) 492-1922

Tuscarora Nation of New York
Leo Henry, Chief
2006 Mt. Hope Rd.
Lewiston, NY 14092
(716) 297-1148

Seneca Nation of Indians
Robert Odawi Porter, President
12837 Rte. 438
Irving, NY 14081
(716) 532-4900
robert.porter@sni.org

Lana Watt, THPO
90 Ohi Yoho Way
Salamanca, NY 14779
(716) 945-1790 ext. 3580
Lana.watt5@sni.org

Tonawanda Band of Seneca
Roger Hill, Chief
7027 Meadville Road
Basom, NY 14013
(716) 542-4244
tonseneca@aol.com
Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS

B3-34
Appendix B3 State Historic Preservation Office (SHPO) Correspondence
number of airfield operations; as well as minor required construction, building renovation, and facility demolition. There would be no new or modified airspace required to support this undertaking.

At Rickenbacker ANGS, the KC-46A would replace the KC-135 currently based at the installation (Attachment 1). Under this alternative, the KC-46A would operate in existing airspace in a similar manner as is currently conducted. There may be a slight increase in operations in the airspace; however, use of this airspace is generally 10,000 feet above ground level and higher and preliminary analysis indicates that noise levels under the proposal would be similar to existing noise levels with the KC-135 aircraft. The purpose of this correspondence is to initiate the Section 106 process of the National Historic Preservation Act (NHPA) as outlined in 36 CFR 800.3.

The National Guard Bureau (NGB) anticipates the area of potential effect (APE) for this undertaking to be limited to the portion of the installation where construction, demolition, and renovation activities would occur (Attachment 2). Construction activities would include: additions and renovations to Hangar 885; an addition to Hangar 883; interior renovations to Hangar 888; modifications to the aircraft ramp and taxiway; and addition and demolition of fuel hydrants and associated fuel lines on the aircraft parking apron.

According to cultural resources surveys conducted between 2007 and 2008, there are no archaeological sites located within the proposed APE (National Guard Bureau [NGB] 2007, NGB 2008). These surveys covered the entire Rickenbacker ANGS, including an inventory and evaluations of all buildings and structures and no significant archaeological resources were encountered. Two buildings (Hangars 883 and 888) were recommended eligible for listing on the National Register of Historic Places. Hangars 885 and 888 have been determined eligible to the NRHP under Criteria A and C (Snyder 2007). Specific changes to Hangar 885 proposed for this undertaking include a 4,000 square foot addition to provide adequate space for the larger KC-46A aircraft. Specific changes to Hangar 888 proposed for this undertaking include interior modifications only with no changes to the exterior.

The NGB has identified that a potential adverse effect to Hangar 885 may result from this undertaking. For Hangar 888, the NGB has identified no potential adverse effect from this undertaking as the renovations are interior only; however, we first request your concurrence with the proposed APE and with our identification of historic properties.

We have attached the Draft Description of the Proposed Action and Alternatives (Attachment 3), which will become the first chapters of the Draft EIS so that you may review the proposal and provide us any concerns that you may have regarding the proposal. Upon release of the Draft EIS (expected in early 2014), we will send that to you for your further review and comment.
The NGB is in the process of consulting with federally-recognized American Indian Tribes concerning the Undertaking (Attachment 4). We are also contacting the public and relevant regional Archaeological Society offices both through the NEPA process and through Section 106 of the NHPA. All comments we receive, and any concerns expressed to the NGB, will be taken into consideration while planning for this undertaking. Please send your recommendations to the KC-46A MOB 2 Project Manager, Ms. Anne Rowe, at anne.rowe.ctr@ang.af.mil. If you have any questions regarding this consultation, Ms. Rowe can also be reached at (240) 612-8636.

Sincerely

ROBERT L. DOGAN, REM, GS-13
Plans and Requirements Branch

Attachments: 1 – Vicinity Map of Rickenbacker ANGS
2 – Map of Area of Potential Effect
3 – Draft Description of the Proposed Action and Alternatives
4 – Federally Recognized Tribes Associated with Rickenbacker ANGS

References:

National Guard Bureau (NGB)
2007 Cultural Resources Survey of the 121st Air Refueling Wing, Ohio Air National Guard, Rickenbacker International Airport, Columbus, Franklin County, Ohio. Prepared for the National Guard Bureau, Air National Guard Readiness Center NGB/A7CVN, Andrews Air Force Base, Maryland. December 2007.

Snyder, David
Appendix B3 State Historic Preservation Office (SHPO) Correspondence
Rickenbacker Federally-recognized Tribes

Citizen Potawatomi Nation
Kelli Mosteller, THPO
1601 S. Gordon Cooper Drive
Shawnee, OK 74801
Ph (405) 878-5830
kelli.mosteller@potawatomi.org

John Barrett, Chairman
1601 S. Gordon Cooper Drive
Shawnee, OK 74801
Ph (405) 275-3121
jbarrett@potawatomi.org

Delaware Nation
Tamara Francis, THPO
31064 US Highway 281, Bldg. 100
Anadarko, OK 73005

Kerry Holton, President
P.O. Box 825
Anadarko, OK 73005
Ph (405) 247-2448
hhorn@delawarenation.com

Prairie Band of Potawatomi Nation
Steve Ortiz, Chairperson
16281 Q Road
Mayetta, KS 66509
Ph (785) 966-4007
steveo@pbpnation.org

Eastern Shawnee Tribe of Oklahoma
Glenna Wallace, Chief
12755 South 705 Rd.
Wynadotte, OK 74370
Ph (918) 666-2435
gjwallace@estoo.net

Forest County Potawatomi Community
Harold Frank, Chairman
PO Box 340
Crandon, WI 54520
Ph (715) 478-2903
jessica.gouge2@fcpotawatomi-nsn.gov

Hannahville Indian Community
Kenneth Meshigaud, Chairperson
N14911 Hannahville B1 Rd.
Wilson, MI 49896-9728
Ph (906) 723-2600
Fax (906) 466-2933
tyderyien@hannahville.org

Miami Tribe of Oklahoma
George Strack, THPO
PO Box 1326
Miami, OK 74355
(918) 542-1445

Thomas Gamble, Chairperson
PO Box 1326
Miami, OK 74355-1326
(918) 542-1445

Ottawa Tribe of Oklahoma
Ethel E. aa Cooka, Chief
PO Box 110
Miami, OK 74355
Ph (918) 540-1536
Fax (918) 542-3214
Dixon_rhonda@sbcglobal.net

Peoria Tribe of Indians of Oklahoma
John P. Froman, Chief
PO Box 1527
Miami, OK 74355
Ph (918) 540-2535, ext. 12
Fax (918) 540-2538
jfroman@peoriatribe.com

Pokagon Band of Potawatomi Indians
Matthew J. Wesaw, Chairman
PO Box 180
Dowagiac, MI 49047
Ph (517) 719-5579
Fax (269) 782-9625
Matthew.wesaw@pokagonbank-nsn.gov

Mike Zimmerman, THPO
PO Box 180
Dowagiac, MI 49047
Ph (269) 782-9602
Fax (269) 782-1817
Michael.zimmerman@pokagonband-nsn.gov
Shawnee Tribe
Jody Hayes, Tribe Administrator
PO Box 189
Miami, OK 74355
Ph (918) 542-2441
shawneetribes@shawnee-tribe.com

Ron Sparkman, Chairperson
PO Box 189
Miami, OK 74355
Ph (918) 542-2441
Fax (918) 542-2922
shawneetribes@shawnee-tribe.com

Turtle Mountain Band of Chippewa
Indians of North Dakota
Kade Ferris, THPO
PO Box 900
Belcourt, ND 58316
Ph (701) 477-2604
Fax (701) 477-3593
kade@tribalresources.com

Merle St. Claire, Chairman
PO Box 900
Belcourt, ND 58316
Ph (701) 477-2600
Fax (701) 477-6836
Merle.stclaire@yahoo.com

Wyandotte Nation
Billy Friend, Chief
64700 East Highway 60
Wyandotte, OK 74370
Ph (918) 678-2297
Fax (918) 678-2944
bfriend@wyandotte-nation.org

Sherri Clemons, THPO
64700 East Highway 60
Wyandotte, OK 74370
Ph (918) 678-2297, ext. 244
Fax (918) 678-2944
sclemons@wyandotte-nation.org
PROGRAMMATIC AGREEMENT
BETWEEN
NATIONAL GUARD BUREAU,
THE OHIO STATE HISTORIC PRESERVATION OFFICE,
AND RICKENBACKER AIR NATIONAL GUARD STATION,
REGARDING CONSTRUCTION PROJECTS ASSOCIATED WITH THE PROPOSED KC-46A BEDDOWN,
RICKENBACKER AIR NATIONAL GUARD STATION, FRANKLIN COUNTY, OHIO

WHEREAS, the National Guard Bureau (NGB), as a Federal Agency, is required to comply with Section 106 of the National Historic Preservation Act (16 U.S.C. § 4701) (NHPA), as amended and its implementing regulations (36 CFR Part 800) Protection of Historic Properties; and NGB provides federal funding and guidance to Rickenbacker Air National Guard Station in fulfillment of its Federal mission; and

WHEREAS, the NGB proposes to beddown one squadron of 12 KC-46A aircraft at one of five alternative locations - Forbes Air National Guard Station (ANGS), Kansas; Joint Base McGuire-Dix-Lakehurst, New Jersey; Pease ANGS, New Hampshire; Pittsburgh ANGS, Pennsylvania; or Rickenbacker ANGS, Ohio - which will require an active duty associate unit to be integrated with Air National Guard (ANG) personnel and equipment, enabling joint training and execution of missions using ANG-assigned aircraft; and

WHEREAS, the NGB will implement construction projects associated with the aircraft beddown at the selected installation (Undertaking); at Rickenbacker Air National Guard Station (ANGS), buildings 885 and 888, facilities that have been determined to be eligible for listing in the National Register of Historic Places, have been identified in the Area of Potential Effects (APE) and may be adversely affected by required alterations to support the KC-46A beddown; and

WHEREAS, due to the timing of the selection process for the KC-46A beddown location, and pursuant to Air Force Instruction 32-7065, Chapter 1.3.6, final design of the construction projects cannot be undertaken prior to the completion of the Section 106 process; and

WHEREAS, pursuant to 36 CFR Part 800, the NGB has consulted with the Ohio State Historic Preservation Office (Ohio SHPO) regarding the Undertaking and its possible effects on historic properties; and

WHEREAS, the NGB has consulted with Rickenbacker ANGS regarding the Undertaking and its possible effects on historic properties and has invited it to sign this agreement as an invited signatory; and

WHEREAS, the NGB has made a reasonable and good faith effort to identify Indian Tribes entitled to be consulting parties, and those invited by the NGB to participate in the Section 106 process have chosen not to do so; and
WHEREAS, in accordance with 36 C.F.R. § 800.6(a)(1), the NGB has notified the Advisory Council on Historic Preservation (ACHP) of its intent to develop this agreement, and the ACHP has chosen not to participate in consultation pursuant to 36 C.F.R. § 800.6(a)(1)(ii); and

NOW, THEREFORE, NGB, the Ohio SHPO, and Rickenbacker ANGS agree that this agreement shall be implemented in accordance with the following stipulations in order to take into account the effects of undertakings on historic properties.

STIPULATIONS

I. CONSULTATION

A. If Rickenbacker ANGS is selected to be the KC-46A MOB2 base, then the NGB shall consult with the Ohio SHPO to evaluate the effects of the Undertaking on historic properties.

B. Consultation shall begin upon selection of Rickenbacker ANGS, if it is to occur.

C. If Rickenbacker ANGS is selected, NGB staff meeting Professional Qualification Standards (48 FR 44716) in a relevant discipline shall analyze project designs for construction projects associated with the Undertaking and apply the criteria of adverse effect (36 CFR Section 800.6(a)(1)]. The NGB will then submit its finding regarding the effects of the Undertaking on historic properties to the Ohio SHPO, providing the information and analysis required by 36 CFR Section 800.11, and request its concurrence in accordance with 36 CFR Sections 800.5-6.

1. If the NGB and the Ohio SHPO concur that the Undertaking will have no adverse effect on historic properties, the Section 106 process will have been completed.

2. If the NGB and the Ohio SHPO concur that the Undertaking will adversely affect historic properties, the NGB, the Ohio SHPO, and Rickenbacker ANGS shall continue consultation to consider alternatives that would avoid, minimize, or mitigate adverse effects in accordance with 36 CFR Section 800.6.

D. No construction projects related to this Undertaking shall take place before either the NGB and the Ohio SHPO concur that the Undertaking will have no adverse effect on historic properties or adverse effects resulting from the Undertaking have been mitigated through the execution of a Memorandum of Agreement in accordance with 36 CFR Section 800.6(b).

II. DISPUTE RESOLUTION

Should any signatory to this agreement object at any time to any actions proposed or the manner in which the terms of this agreement are implemented, the NGB shall consult with the objecting
party to resolve the objection. If the NGB determines that such objection cannot be resolved, the
NGB shall:

A. Forward all documentation relevant to the dispute, including the NGB's proposed
resolution, to the ACHP. The ACHP shall provide the NGB with its advice on the resolution
of the objection within thirty (30) days of receiving adequate documentation. Prior to
reaching a final decision on the dispute, the NGB shall prepare a written response that
takes into account any timely advice or comments regarding the dispute from the ACHP,
the Ohio SHPO, and Rickenbacker ANGS and provide them with a copy of this written
response. The NGB will then proceed according to its final decision.

B. If the ACHP does not provide its advice regarding the dispute within the thirty (30) day time
period, the NGB may make a final decision on the dispute and proceed accordingly. Prior
to reaching such a final decision, the NGB shall prepare a written response that takes into
account any timely comments regarding the dispute from the Ohio SHPO and Rickenbacker
ANGS to the agreement, and provide it and the ACHP with a copy of such written response.

C. The NGB's responsibility to carry out all other actions subject to the terms of this
agreement that are not the subject of the dispute remain unchanged.

III. DURATION

This agreement will continue in full force until December 31, 2019, and may be reviewed for
modifications, termination, or renewal before this date has passed.

IV. AMENDMENT

At the request of the NGB, the Ohio SHPO, or Rickenbacker ANGS, this agreement may be
reviewed for modifications at any time. This agreement may be amended when such an
amendment is agreed to in writing by all signatories. The amendment will be effective on the date
the NGB files a copy signed by all of the signatories with the ACHP.

V. TERMINATION

If any signatory to this agreement determines that its terms will not or cannot be carried out, that
party shall immediately consult with the other parties to attempt to develop an amendment per
Stipulation IV, above. If within thirty (30) days an amendment cannot be reached, any signatory
may terminate the agreement upon written notification to the other signatories.

EXECUTION of this agreement by the NGB, the Ohio SHPO, and Rickenbacker ANGS and
implementation of its terms evidence that the NGB has taken into account the effects of this
proposed Undertaking on historic properties and has afforded the ACHP an opportunity to
comment
RICKENBACKER ANGS MEMORANDUM OF AGREEMENT
SIGNATURE PAGE

NATIONAL GUARD BUREAU

SARTORI, PETE
R.A: 1008104120

PETER A. SARTORI, Colonel, USAF
Director, Installations and Mission Support
RICKENBACKER ANGS MEMORANDUM OF AGREEMENT
SIGNATURE PAGE

FOR RICKENBACKER AIR NATIONAL GUARD STATION

Digitally signed by
JAMES JONES V "00796221B2
Date: 2014.05.06 15:06:18 -04'00"

JAMES JONES, COLONEL, OHANG
Wing Commander, 121 Air Refueling Wing
RICKENBACKER ANGS MEMORANDUM OF AGREEMENT
SIGNATURE PAGE

FOR THE OHIO STATE HISTORIC PRESERVATION OFFICE

Date 5.7.14

MARK EPSTEIN
Deputy State Historic Preservation Officer for Resource Protection
and Review Ohio State Historic Preservation Office
Appendix B4

Relevant Historic Correspondence
MEMORANDUM OF AGREEMENT
Among the
Air National Guard Readiness Center,
190th Air Refueling Wing, Kansas Air National Guard
and
Kansas State Historic Preservation Officer
Pursuant to 36 CFR 800.6(c)
Regarding modifications and changes to
Building 679 Squad Operations
Forbes Field Air National Guard Base, Topeka, Kansas

WHEREAS, The Kansas Air National Guard (KS ANG) is a component of the Air National Guard Directorate within the National Guard Bureau, and Sec. 106 of the National Historic Preservation Act (16 USC Sec. 470F) (NHPA) and associated Federal regulations (36 CFR Part 800) apply to Air National Guard “undertakings” as defined in the NHPA and 36 CFR Sec. 800.16(y); and

WHEREAS, The Air National Guard Readiness Center (ANGRC) serves as Headquarters for the Federal entity initiating consultation under Sec. 106 for this proposed action; and

WHEREAS, Building 679, located at Forbes Field Air National Guard Base, Topeka, KS, was constructed in 1958 during the Cold War for the Strategic Air Command as an Alert Mission Readiness Crew Building (31,044 square feet) is now used as an Operations Building; and

WHEREAS, The Area of Potential Effect (APE) is the current Building 679 footprint; as shown in attachment 3; and

WHEREAS, the 190th Air Refueling Wing (ARW) is stationed at Forbes Field Air National Guard Base and has sought to contact the public regarding this undertaking through its retirees’ organization, the “Past & Active Kansas Coyotes” and having received no public comment; and

WHEREAS, The 190th ARW complies with NHPA requirements pursuant to Air Force Instruction 32-7065, Cultural Resources Management; and

WHEREAS, The 190th ARW has determined that there are no Federally-recognized Indian Tribes that attach traditional religious and cultural importance to the structure and landscape within the APE; and

WHEREAS, The 190th ARW intends to modify and alter Building 679, an undertaking that will constitute an adverse effect on the building, which the KS ANG has determined eligible for inclusion in the National Register of Historical
Places under criteria A and C and the 190th ARW has consulted with the Kansas State Historic Preservation Officer (KS SHPO) pursuant to 36 CFR Part 800, and

WHEREAS, In accordance with 36 CFR Sec. 800.6(a)(1), the 190th ARW notified the Advisory Council on Historic Preservation (Council) of this consultation on October 8, 2008 and on October 24, 2008, the Council responded in writing that it did not wish to participate in consultation pursuant to 36 CFR Sec. 800.6(a)(1)(iii).

NOW, THEREFORE, the ANGRC, KS SHPO and the 190th ARW agree that the undertaking shall be implemented in accordance with the following stipulations.

STIPULATIONS

The 190th ARW shall:

I. INTERPRETATION - Create a display case to house the original Building 679 architectural documents and photographs, as well as a history of the building developed from the "Cultural Resources Survey and Evaluation Report for Kansas Air National Guard Properties at Forbes Field, Topeka, Kansas" (ANG 2008). This display will be located in the building's entry corridor to facilitate access. The 190th ARW shall afford the KS SHPO an opportunity to comment on the conceptual drawings for the display prior to design completion. The KS SHPO will have 30 days from date of receipt to comment on the display design.

II. UNANTICIPATED DISCOVERIES - If historic properties are discovered or unanticipated effects on historic properties are found during the implementation of this undertaking, the 190th ARW shall consult with the KS SHPO pursuant to 36 CFR §800.4 to determine appropriate measures to treat the discovery.

ADMINISTRATIVE STIPULATIONS

I. The State of Kansas and the 190th ARW do not waive their sovereign immunity by entering into this Memorandum of Agreement (MOA), and each fully retains all immunities and defenses with respect to any action based on, or occurring as a result of, this MOA;

II. This MOA represents the entire and integrated agreement between the parties and supersedes all prior negotiations, representations and agreements, whether written or oral, regarding Section 106 review of the effects of the undertaking on Building 679 and the integrity of setting.

MEMORANDUM OF AGREEMENT
between FORBES FIELD AIR NATIONAL GUARD BASE and
the KANSAS STATE HISTORIC PRESERVATION OFFICER
regarding modifications and changes to BUILDING 679

2 of 5
III. DISPUTE RESOLUTION – Should the KS SHPO object within thirty (30) days to any actions proposed or carried out pursuant to this agreement, the 190th ARW shall consult with the KS SHPO to resolve the objection.

A. At any time during the implementation of the measures stipulated in this agreement, should an objection to any such measure or its manner of implementation be raised by a member of the public or one of the parties to this agreement, the 190th ARW shall take the objection into account and consult as needed with the objecting party and if necessary, the KS SHPO.

B. If a dispute as described in III. A. above cannot be resolved, then the 190th ARW will notify the ANGRC and the Council, to resolve the objection. The 190th ARW and ANGRC shall request further comments from the Council pursuant to 36 CFR 800.6(b). Any Council comment provided in response to such a request shall be taken into account by the 190th ARW in accordance with 36 CFR Part 800 with reference only to the subject of the dispute. The 190th ARW’s responsibility to carry out all actions under this agreement that are not the subject of the dispute will remain unchanged.

C. The 190th ARW shall consider non-signatory objections to the manner in which the terms of the agreement are implemented. If the objection cannot be resolved to the satisfaction of the 190th ARW and the objecting party, the 190th ARW shall request the signatories to provide their opinion on the matter. Prior to making a final decision on the matter, the 190th ARW shall take into account all the signatory opinions received within 15 days of the request.

C. Nothing in this Section shall be construed or interpreted as a waiver of any judicial remedy that would be available to any party to this MOA.

IV. AMENDMENTS - Any signatory to this MOA may request that the other signatories consider amending it if circumstances change over time and warrant revision of the stipulations. Amendments will be executed in the same manner as the original MOA and shall be governed by 36 CFR 800.6.

V. EXECUTION - Execution of this MOA by the 190th ARW and the KS SHPO through the submission of documentation and filing of a final copy of this MOA with the Council pursuant to 36 CFR Sec. 800.6(b)(1)(iv) and implementation of its terms is evidence that the Council has taken into account the effects of this undertaking on historic properties and has been afforded an opportunity to comment.

VI. ANTI-DEFICIENCY ACT COMPLIANCE- All requirements set forth in this MOA requiring expenditure of Federal funds are expressly subject to the availability of appropriations and the requirements of the Anti-Deficiency Act (31
USC Section 1341) No obligation undertaken by the 190th ARW under the terms of this MOA shall require or be interpreted to require a commitment to expend funds not appropriated for that purpose.

VII. TERMINATION - A. Any party to this agreement may terminate it by providing thirty (30) days written notice to the other parties, provided that the parties consult during the period prior to termination to seek agreement on amendments or other actions that will avoid termination.

B. In the event of termination, the 190th ARW, in consultation with the KS SHPO, will determine how to carry out the 190th ARW’s responsibilities under Section 106 in a manner consistent with applicable provisions of 36 CFR Part 800.

VIII. SUNSET TERMS - This MOA will remain in effect for ten (10) years from the date of execution.

SIGNATORIES

Air National Guard Readiness Center
By: CRAIG A. REZAD, Lt Col, USAF
Deputy Chief, Asset Management Division

Forbes Field Air National Guard Base
By: KEITH I. LANG, Colonel, KSANG
Commander

Kansas State Historic Preservation Officer
By: Jennie Chinn, Executive Director
Kansas State Historic Society

MEMORANDUM OF AGREEMENT
between FORBES FIELD AIR NATIONAL GUARD BASE and the KANSAS STATE HISTORIC PRESERVATION OFFICER
regarding modifications and changes to BUILDING 679
4 of 5
MEMORANDUM OF AGREEMENT
between FORBES FIELD AIR NATIONAL GUARD BASE and
the KANSAS STATE HISTORIC PRESERVATION OFFICER
regarding modifications and changes to BUILDING 679

5 of 5
Memorandum of Agreement: 150 ARW & KS SHFO

Attachment 1
June 18, 2008

Marjorie Nowick
Engineering-Environmental Management, Inc.
9563 South Kingston Court
Englewood, CO 80112

Re: Cultural Resources Survey of Forbes Field Air National Guard Base
Shawnee County

Dear Ms. Nowick:

In accordance with 36 CFR 800, the Kansas State Historic Preservation Office has reviewed a report entitled Cultural Resources Survey and Evaluation Report for Kansas Air National Guard Properties at Forbes Field, Topeka, Kansas, by Marjorie Nowick of Engineering-Environmental Management, Inc. We find the report to be acceptable and concur with its conclusion that Building 679 is potentially eligible for listing in the National Register of Historic Places. Our office also concurs with the determination that the other buildings surveyed are not eligible at this time.

We further conclude that the archeological investigations described in the report are sufficient and concur with the recommendation that no further survey or testing will be necessary.

Before receiving your survey and report, our office reviewed and cleared a proposed renovation project for Building 679 in a letter dated May 6, 2008. Upon receipt of your report with new information regarding the eligibility of Building 679, we contacted Mark Green at the Kansas Air National Guard and asked that the project be placed on hold. Since the proposed project will drastically alter Building 679, we have determined that it will constitute an adverse effect. At this point, we would like to consult with the Kansas Air National Guard to explore ways to avoid or minimize the adverse effect.

Thank you for giving us the opportunity to comment. Please submit any comments to Julie Weisgerber at 785-272-8681, ext 226.
Sincerely,
Jennie Chinn
State Historic Preservation Officer

Patrick Zollner
Director, Cultural Resources Division
Deputy State Historic Preservation Officer

CC: Jan Gray Yagley, Cultural Resources Program Manager, Air National Guard
 Matt Nowakowski, NEPA and Cultural Resources Technical Advisor
 Major Mark Green, KSANG, Forbes Field Air National Guard Base
February 5, 2009

David A. Nylund, GS-12
NH Air National Guard
157 ARW/EM
302 Newmarket Street
Pease ANGB, NH 03802-0157

Dear Mr. Nylund,

Thank you for requesting a determination of National Register eligibility for the area listed below. As requested, the Division of Historical Resources’ Determination of Eligibility Committee has reviewed the DHR Area Form prepared by you; based on the information available, the DOE Committee’s evaluation of National Register eligibility is:

TOWN/CITY **PROPERTY** **DETERMINATION**

Newington Pease International Tradeport, NWN-PAFB Not Eligible

A copy of the DHR evaluation form is attached for your use. The inventory data and the evaluation will also be added to the statewide survey database for historic properties in New Hampshire.

Please call Mary Kate Ryan (271-6433) if you have questions.

Sincerely,

Christina St. Louis
Program Specialist

Enclosure

cc: Elizabeth Muzzey, Director / State Historic Preservation Officer
 William Rutter, SAIC, Inc.
NH Division of Historical Resources
Determination of Eligibility (DOE)

Date received: 12/24/2008
Inventory #: NWN-PAFB

Date of group review: 1/14/2009
Area: Pease AFB

DHR staff: Nadine
Town/City: Newington

Property name: Pease Air Force Base
County: Rockingham

Address: Pease International Tradeport Pease Blvd./Newington Road, Aboretum Dr.

Reviewed for: [] R&C [] PTI [] NR [] SR [] Survey [] Other

NH Air National Guard

Individual Properties

<table>
<thead>
<tr>
<th>NR</th>
<th>SR</th>
<th>Eligible</th>
<th>Eligible, also in district</th>
<th>Eligible, in district</th>
<th>Not eligible</th>
<th>More information needed</th>
<th>Not evaluated for individual eligibility</th>
</tr>
</thead>
</table>

Districts

<table>
<thead>
<tr>
<th>NR</th>
<th>SR</th>
<th>Eligible</th>
<th>Not eligible</th>
<th>More information needed</th>
<th>Not evaluated in district</th>
</tr>
</thead>
</table>

Integrity: [] Location [] Design [] Setting [] Materials

[] Workmanship [] Feeling [] Association

Level: [] Local [] State [] National

STATEMENT OF SIGNIFICANCE:

If this property is reviewed in the future, additional documentation will be needed.

This area form evaluates 218 acres of a former air base originally containing 4,300+ acres, consisting of functional military buildings and structures clustering in the northeast quadrant of the Pease International Tradeport, a commercial park redeveloped across most of the former air force base. Field reconnaissance, archival and literature research, photography, and assessment of the Pease building assemblage dating to the Cold War period (prior to 1998) resulted in the determination that none of the structures meet the criteria for listing in the National Register of Historic Places either individually or as a historic district. The area is characterized by its incomplete, scattered and incohesive character of surviving buildings and structures, many of which have been heavily altered or removed.

ENTERED INTO DATABASE

ACREAGE: 218
PERIOD OF SIGNIFICANCE: N/A
AREA OF SIGNIFICANCE: N/A
BOUNDARY:
SURVEYOR: William Rutter, SAIC, Inc.

FOLLOW-UP: Notify agency and consultant. Thank you for the high-quality submittal. Following NH-DHR guidelines.

Final DOE approved by

Mary [Signature]
February 19, 2009

David Nylund
Environmental Manager
NHANG
157 ARW/EM
302 Newmarket Street
Pease ANGB, NH 03803-0157

Re: Review of Draft Final Cultural Resources Survey (CRS)
 Historic District Area Form Pease AFB
 Pease ANGB, NH

Dear Mr. Nylund:

In accordance with Section 106 of the National Historic Preservation Act (16 U.S.C. 470), and with federal
Advisory Council on Historic Preservation regulations, Protection of Historic Properties (36 CFR Part 800), the
New Hampshire Division of Historical Resources (DHR)/State Historic Preservation Office has reviewed the
information submitted on December 3, 2008 and December 24, 2008 in regards to the above-referenced property.
A Cultural Resources Survey and a Historic District Area Form for Pease AFB were submitted. The area form
evaluated 218 acres of the former air base originally containing 4,300+ acres, consisting of functional military
buildings and structures clustering in the northeast quadrant of the Pease International Tradeport, a commercial
park redeveloped across most of the former air force base. The DHR concluded that none of the structures meet
the criteria for listing in the National Register of Historic Places either individually or as a historic district. With
respect to archaeological resources, DHR staff concurs with the findings in the Cultural Resources Survey.

Thank you for the opportunity to comment.

Sincerely,

[Signature]

Elizabeth H. Muzzey
Director/State Historic Preservation Officer
April 22, 2011

John Tower, LTC, PA ANG
Pennsylvania Air National Guard
Headquarters 171st Air Refueling Wing
Pittsburgh International Airport
Coraopolis, PA 15108

Re: ER 85-1695-003-OOO
DOD: Renovation of Maintenance Hangers, Buildings 301 and 302
171st Air Refueling Wing, Pennsylvania Air National Guard,
Pittsburgh International Airport, Findley Township, Allegheny County

Dear LTC. Tower:

The Bureau for Historic Preservation (the State Historic Preservation Office) has reviewed the above named project in accordance with Section 106 of the National Historic Preservation Act of 1966, as amended in 1980 and 1992, and the regulations (36 CFR Part 800) of the Advisory Council on Historic Preservation as revised in 1999 and 2004. These regulations require consideration of the project’s potential effect upon both historic and archaeological resources.

We concur with the findings of the agency that the following properties are not eligible for listing in the National Register of Historic Places due to a loss of integrity.

Hangers 301 and 302, Pittsburgh International Airport
Findley Township, Allegheny County

If you need further information in this matter please consult Susan Zacher at (717) 783-9920.

Sincerely,

Andrea L. MacDonald, Chief
Division of Preservation Services

AM/smz
Re: ER# 1985-1695-003-RRR
DOD: Draft Final Cultural Resource Survey,
171st Air Refueling Wing, Findlay
Township, Allegheny County

Dear Ms. Rudolph:

The Bureau for Historic Preservation (the State Historic Preservation Office) has reviewed the above named project in accordance with Section 106 of the National Historic Preservation Act of 1966, as amended in 1980 and 1992, and the regulations (36 CFR Part 800) of the Advisory Council on Historic Preservation as revised in 1999 and 2004. These regulations require consideration of the project’s potential effect upon both historic and archaeological resources.

Archaeology

This report meets our standards and specifications as outlined in Guidelines for Archaeological Investigations in Pennsylvania (BHP 2008) and the Secretary of the Interior’s Guidelines for Archaeological Documentation. It is our opinion that the portion of the Colfer/Rieck Farm Site (36AL0626) within the area-of-potential-effect (APE) would not contribute to the eligibility of the overall resource and no further archaeological work is necessary for this project. Should the scope of the project change and ground disturbance outside of the current facility fencing be undertaken, additional archaeological investigation may be necessary.

Please send three copies of the final report (one unbound and all with original photographs) for our files and distribution to the various repositories.

Historic Structures

Thank you for including a Historic Resource Survey form for the facility in your archaeological report. We are unable to process this bound copy cannot be forwarded for National Register review. Please submit an unbound copy of the form, maps and any photos showing the buildings.
Page 2
12/13/2011
Ms. Rudolph
ER 1985-1695-003-RRR

If you need further information regarding archaeological resources, please contact Kira Heinrich at (717) 705-0700. If you need further information concerning historic structures, please contact Susan Zacher at (717) 783-9920.

Sincerely,

[Signature]

Douglas C. McLearen, Chief
Division of Archaeology & Protection

DCM/kmh
August 23, 2007

Matt Nowakowski
National Guard Bureau NGB/A7CVN
Conaway Hall – Air National Guard Readiness Center
3500 Fetchet Avenue
Andrews AFB, MD 20762

Re: 121 ARW Ohio ANG, Rickenbacker IAP, Draft Final Cultural Resources Survey
Hamilton Township, Franklin County, Ohio

Dear Mr. Nowakowski,

This is in response to correspondence from Roger A. Jones, Ohio Air National Guard, dated May
16, 2007 (received May 18) regarding cultural resource management program development at
Rickenbacker IAP. The comments of the Ohio Historic Preservation Office (OHPO) are submitted
in accordance with provisions of the National Historic Preservation Act of 1966, as amended (16

The report documents archaeological and architectural surveys of the portion of Rickenbacker that
is occupied by the 121st Air Refueling Wing, Ohio Air National Guard. We have further comments
on this, below. We agree that the surveys fulfill National Guard Bureau responsibilities to identify
historic properties in this portion of Rickenbacker. We also agree that the buildings and structures
included in and evaluated as part of this survey within this portion are not part of a larger historic
district. The archaeological survey included background review, pedestrian walk-over, and shovel
testing. The results of the archaeological survey include the identification of 2 archaeological sites,
both isolated finds. We concur that sites 33-FR-2652 and 33-FR-2653 do not meet National
Register eligibility criteria and do not warrant further investigations. We agree that no further
archaeological survey is necessary for this portion of Rickenbacker. We recommend that the
Cultural Resources Management Plan should provide for contingencies if archaeological deposits
are identified in the future. The architectural survey included systematic recording of 18 buildings
and structures within the 121st AFW portion of Rickenbacker. Recordation and evaluation was
based on the context developed for this survey. We agree that the two maintenance hangars,
Building 885 and Building 888 should be regarded as eligible for inclusion in the National Register
of Historic Places. These two buildings are recorded as Ohio Historic Inventory FRA-9632-25 and
FRA-9634-25. We also agree that the following buildings and structures do not meet National
Register eligibility criteria: 670, 846, 849, 872, 873, 875, 879, 880, 882, 887, 911, 913, and 916.
(See attached list that provides corresponding Ohio Historic Inventory numbers for building
numbers.)
Mr. Matt Nowakowski
August 23, 2007
Page 2

The Pilots’ Memorial Monuments site (described in the draft report as Building 805) is a modern commemorative memorial that includes static, and sometimes temporary, displays. These kinds of cultural resources are difficult to deal with under the National Historic Preservation Act. This memorial is important. We recommend that this memorial site should be specifically included and given separate consideration in the Cultural Resources Management Plan.

As shown in Figure 5-1 on Page 5-3, the 121st Air Refueling Wing (ARW) occupies a portion of the Rickenbacker International Airport (Rickenbacker IAP). Rickenbacker IAP is a relatively recent redesignation and many folks still commonly refer to this as Rickenbacker Air Force Base. At several places the draft report appears to use almost interchangeably the terms 121st ARW and Rickenbacker and we are concerned that this can cause confusion. For example, see the opening sentence on Page 5-1. There have been several surveys that included recordation of architectural properties within or adjacent to Rickenbacker, but this current survey only included 18 buildings and structures within the 121st ARW portion of Rickenbacker. Because this interchanging use of Rickenbacker and 121st ARW occurs in several places we recommend some editing to make sure that the scope of the present survey is clearly distinguished. As noted above, we agree that the scope of the current archaeological and architectural survey is appropriate and fulfills National Guard Bureau responsibilities to complete the inventory of cultural resources within the 121st ARW, Ohio Air Force National Guard, portion of Rickenbacker IAP.

The report is readable and relatively free of typographical errors. In order to improve a little bit the readability and to provide some minor clarification, we suggest a number of editorial changes to assist in final editing. As previously noted, it is important to clarify the scope of the survey versus the extent of the entire airport. And we have also noted that Building 805 is a site. The township, Hamilton, should be added to the title. In the Abstract, in the third sentence of the second paragraph, we suggest adding that the assessment is of the 18 buildings of the 121st ARW building assemblage. As currently written it appears that there were 121 buildings assessed. On Page 1-1, as noted in copy, clarification is needed for the “...104 FW” reference. And, beginning on Page 1-1 and throughout, it would be helpful to make sure that 121 ARW is 121st ARW. You have noted the change on Page 2-7. On Page 2-15, the end of the first paragraph (lines 10-14) is confusing. We recommend shortening this section considerably. Your change on Page 2-20 is noted. On Page 2-24, line 7, change undermine to another word – perhaps dispel. On Page 3-1 there is a reference to massive ground disturbance throughout virtually all of Rickenbacker. We are not certain that this is true. It is certainly true for the 121st ARW portion. It still appears to us that there are strips of land along the southeast corner of Rickenbacker where archaeological survey has not been conducted, or even considered. On Page 5-13, Figure 5-9, it appears that the photograph shows the southwest and southeast elevations. On Page 5-19, Building 882 is a structure. On Page 5-23, Figure 5-18, photograph appears to show the northwest and southwest elevations. On Page 5-23, bottom, line 17, ...its appearance and plan have (not has) been... On
Page 5-24, Figure 5-19, photograph appears to show northeast and southeast elevations. On Page 5-34, the light poles (Building 81004) are structures. On Page 6-1, line 13, the guidelines have been consulted (maybe some other word? “Employed” doesn’t sound right to our ears.) Your change on Page 7-3 is noted. Figure 7-1 doesn’t include options for seeking public input, it should.

Please make sure that original inventory forms have been submitted to the Ohio Historic Preservation Office. We don’t have an inventory form for Building 886 (see in text and appendix). From the description we don’t need a form for Building 886, but a form for Building 887 would be helpful (see attached). From the description (a small, plain, electrical utility shed) we don’t need a photograph of Building 886.

In addition to providing a report of a cultural resources management survey, the report also offers a good deal of information on maintaining cultural resources as an integral part of the environmental review process within the 121st ARW, Ohio Air Force National Guard. And, it is our understanding that this part of the report will provide the foundation for developing an agreement with the Ohio Historic Preservation Office that establishes authority for the Ohio Air Force National Guard to complete, as stipulated in the agreement, Section 106 reviews without requiring separate OHPO concurrence. Provided that we follow the provisions of the National Historic Preservation Act, we believe that it is appropriate and beneficial for agencies to assume responsibility for managing historic properties and for directing Section 106 reviews. We encourage the National Guard Bureau and the Ohio Air Force National Guard to continue the development of a programmatic agreement towards these ends.

One of the reasons that we stress the importance of completing Ohio Historic Inventory forms for historic properties is that these inventory forms provide a vitally important foundation that will support future decisions. Reaching decisions on maintenance will be facilitated by careful attention to detail in these beginning steps. We are not providing here final comments on the Ohio Historic Inventory forms or on the descriptions of Buildings 885 and 888. Additional comments on inventory forms will be provided in the near future under separate cover.

In many ways the report succeeds in laying out some broad preservation objectives, but we believe that much more work is needed to complete a Cultural Resources Management Plan. The additional work needs to emphasize specificity. For example, the report indicates that an annual inspection of historic properties is desirable, but it doesn’t tell us who is to conduct the inspection,
what information is to be recorded, and how the results of the inspection will be processed and disseminated. Does some peeling of paint on one of the cantilevered door panels on one of the hangars indicate a problem that requires action? In sum, there are too many general statements from the Secretary of the Interior's Standards (36 CFR 67) and not enough actions statements that tell us how these will be applied at Rickenbacker.

Any questions concerning this matter should be addressed to Lisa Adkins or David Snyder at (614) 298-2000, between the hours of 8 am. to 5 pm. Thank you for your cooperation.

Sincerely,

David Snyder, Ph.D., Archaeology Reviews Manager
Resource Protection and Review

DMS/ds (OHPO Serial Number 101305)

Attachment

David Snyder, Ph.D., Archaeology Reviews Manager
Resource Protection and Review
[This page intentionally left blank.]
Appendix B5

Final EIS Distribution List
Forbes ANGS

Joe Summerlin, NEPA Reviewer, U.S. Environmental Protection Agency, Region 7, 11201 Renner Blvd, Lenexa, KS 66219
U.S. Fish and Wildlife Service, Kansas Ecological Services Field Office, 2609 Anderson Ave, Manhattan, KS 66502-2801
Federal Aviation Administration, Central Region, 901 Locust St, Kansas City, MO 64106-2641
John Mitchell, Kansas Department of Health and Environment, Division of Environment, 1000 SW Jackson, Ste 400, Topeka, KS 66612-1367
Kansas Department of Wildlife and Parks, Region 2, 300 SW Wanamaker Rd, Topeka, KS 66606
Jennie Chinn, State Historic Preservation Officer, Kansas State Historical Society, Cultural Resources Division, 6425 SW 6th Ave, Topeka, KS 66615-1099
Director of Aviation, Kansas Department of Transportation, Dwight D. Eisenhower State Office Building, 700 SW Harrison, Topeka, KS 66603-3754
Shelly Buhler, Chair, Shawnee County Commissioner, District 1, 200 SE 7th St, Topeka, KS 66603
Shawnee County Planning Department, 1515 NW Saline St, Ste 102, Topeka, KS 66618
The Honorable Larry Wolgast, Mayor of Topeka, 215 SE 7th, Room 350, Topeka, KS 66603-3914
City of Topeka Planning, 620 SW Madison, Topeka, KS 66607
Eric Johnson, Metropolitan Topeka Airport Authority, Forbes Field, Building 620, Topeka, KS 66619
Steve Ortiz, Council Chair, Prairie Band Potawatomi Tribe, 16281 Q Rd, Mayetta, KS 66509
Rick Campbell, Director, Environmental Department, Sac and Fox Nation of Missouri, 305 N Main St, Reserve, KS 66434
The Honorable Jerry Moran, U.S. Senate, 354 Russell Senate Office Bldg, Washington, DC 20510
The Honorable Pat Roberts, U.S. Senate, 109 Hart Senate Office Bldg, Washington, DC 20510
The Honorable Lynn Jenkins, House of Representatives, 1027 Longworth HOB, Washington, DC 20515
The Honorable Vicki Schmidt, Kansas Senate, 5906 SW 43rd Ct, Topeka, KS 66610-1632
The Honorable Lana Gordon, Kansas House of Representatives, 5820 SW 27th St, Topeka, KS 66614
The Honorable Sam Brownback, Office of the Governor, 300 SW 10th Ave, Ste 241S, Topeka, KS 66612-1590
Kelli Mosteller, THPO, Citizen Potawatomi Nation, 1601 S Gordon Cooper Dr, Shawnee, OK 74801
John Barrett, Chairman, Citizen Potawatomi Nation, 1601 S Gordon Cooper Dr, Shawnee, OK 74801
Tamara Francis, THPO, Delaware Nation, 31064 US Highway 281, Bldg. 100, Anadarko, OK 73005
Kerry Holton, President, Delaware Nation, PO Box 825, Anadarko, OK 73005
Guy Munroe, Chairman, Kaw Nation, Drawer 50, Kaw City, OK 74641
Andrea Hunter, THPO, Osage Nation of Oklahoma, 627 Grandview, Pawhuska, OK 74056
John Redeagle, Principal Chief, Osage Nation of Oklahoma, PO Box 779, 627 Grandview, Pawhuska, OK 74056
George Blanchard, Absentee Shawnee Tribe of Oklahoma, 2025 S Gordon Cooper Dr, Shawnee, OK 74801
Henryetta Ellis, THPO, Absentee Shawnee Tribe of Oklahoma, 2025 S Gordon Cooper Dr, Shawnee, OK 74801
Glenna Wallace, Chief, Eastern Shawnee Tribe of Oklahoma, 12755 S 705 Rd, Wayandotte, OK 74370
Leslie Standing, President, Wichita and Affiliated Tribes, PO Box 729, Anadarko, OK 73005
John Armbrust, Governor's Military Council, 501 Poyntz Ave, Manhattan, KS 66502
Rick Taylor, Topeka, KS 66614
Neil Dobbler, Chamber of Commerce, 1200 SW Executive Dr, Topeka, KS 66615
Elizabeth Patton, Manhattan, KS 66502
Gina Penzig, Westar Energy, PO Box 889, Topeka, KS 66601
Allan Towl, Topeka, KS 66614
Christine Tipton, Topeka, KS 66617
Bob Archer, Shawnee County Commission, District 3, 3522 SW Westport Ct., Topeka, KS 66614

JB MDL

Eric Davis, Supervisor, U.S. Fish and Wildlife Service, New Jersey Ecological Services Field Office, 927 N Main St, Bldg D, Pleasantville, NJ 08232
Environmental Review Coordinator, U.S. Environmental Protection Agency, Region 2, 290 Broadway, New York, NY 10007-1866
Appendix B5 Draft EIS Distribution List

Richard Shaw, State Soil Scientist, Natural Resources Conservation Service, New Jersey State Office, 220 Davidson Ave, 4th Floor, Somerset, NJ 08873
Paul Phifer, Ph.D., Assistant Regional Director, Ecological Services, U.S. Fish and Wildlife Service, Region 5, 300 Westgate Center Dr, Hadley, MA 01035-9589
Ruth W. Foster, PhD, Supervisor, New Jersey Department of Environmental Protection, Office of Permit Coordination and Environmental Review, 401 E State St, 7th Floor, PO Box 420, Trenton, NJ 08625-0420
Daniel Saunders, Administrator and Deputy State Historic Preservation Officer, New Jersey Department of Environmental Protection, Historic Preservation Office, PO Box 420, Trenton, NJ 08625-420
New Jersey Division of Fish and Wildlife, Endangered and Nongame Species Program, Department of Environmental Protection, PO Box 420, Trenton, NJ 08625-420
Ernie Deman, Supervising Environmental Specialist, New Jersey Pinelands Commission, 15 Springfield Rd, New Lisbon, NJ 08064
Coordinator, Regional Planning, Burlington County, 50 Rancocas Rd, Mount Holly, NJ 08060
Mary Pat Robbie, Director, Resource Conservation, Burlington County, PO Box 6000, Mount Holly, NJ 08060
Mark Gould, Chairperson, Nanticoke-Lenwi Lenape Indians of New Jersey, 18 E Commerce St, PO Box 544, Bridgeton, NJ 08302
Dwaine Perry, Chief, Ramapough Mountain Indians, 189 Stag Hill Rd, Mahwah, NJ 07430
Joanne Bundy Hawkins, Powhatan-Renape Nation, Rankokus Indian Reservation, PO Box 225, Rancocas, NJ 08703
The Honorable Thomas Harper, Mayor of Wrightstown, 21 Saylor's Pond Rd, Wrightstown, NJ 08562
The Honorable Ronald Francioli, Mayor of New Hanover Township, 1000 Route 10, PO Box 250, Whippany, NJ 07981
The Honorable Jim Durr, Mayor of North Hanover Township, 41 Schoolhouse Rd, Jacobstown, NJ 08562
The Honorable David Patriarca, Mayor of Pemberton Township, 500 Pemberton-Browns Mills Rd, Pemberton, NJ 08068-1539
The Honorable Denis McDaniel, Mayor of Springfield Township, PO Box 119, Jobstown, NJ 08041
The Honorable Michael Reina, Mayor of Jackson Township, 95 W Veterans Hwy, Jackson, NJ 08527
The Honorable Mike Fressola, Mayor of Manchester Township, 1 Colonial Dr, Manchester, NJ 08759
The Honorable David Leutwyler, Mayor of Plumsted Township, 121 Evergreen Rd, New Egypt, NJ 08533
The Honorable Jeff Chiesa, U.S. Senate, 141 Hart Senate Office Bldg, Washington, DC 20510
The Honorable Robert Menendez, U.S. Senate, 528 Hart Senate Office Bldg, Washington, DC 20510
The Honorable Jon Runyun, House of Representatives, 1239 Longworth HOB, Washington, DC 20515
The Honorable Chris Smith, House of Representatives, 2373 Rayburn House Office Building, Washington, DC 20515
The Honorable Chris Christie, Office of the Governor, PO Box 001, Trenton, NJ 08625
The Honorable Samuel Thompson, New Jersey Senate, 2501 Highway 516, Ste 101, Old Bridge, NJ 08857
The Honorable Robert Clifton, New Jersey Assembly, 516 Route 33 West, Bldg 2, Ste 2, Millstone, NJ 08535
The Honorable Ronald Dancer, New Jersey Assembly, 405 Rt 539, Cream Ridge, NJ 08514
Megan Branetti, New Jersey Department of Environmental Protection, 401 E State St, Trenton, NJ 08625
Ian Marquez, U.S. Marine Corps, 15 Brymore Rd, New Egypt, NJ 08533
Mark Villinger, Ocean County Planning, 129 Hooper Ave, Toms River, NJ 08753
Emil Kaunitz, Def Enhancement Coalition, 1451 Rt 37 W, Toms River, NJ 08755
Tamara Francis, THPO, Delaware Nation, 31064 US Highway 281, Bldg 100, Anadarko, OK 73005
Kerry Holton, President, Delaware Nation, PO Box 825, Anadarko, OK 73005
Brice Obermeyer, THPO, Delaware Tribe of Indians, Department of Sociology and Anthropology, Emporia State University, Roosevelt Hall, Rm. 212, 1200 Commercial St., Emporia, KS 66801
Paula Pechonick, Chief, Delaware Tribe of Indians, 170 NE Barbara St, Bartlesville, OK 74006
Chester Brooks, Trust Board Chairman, Delaware Tribe of Indians, 170 NE Barbara St, Bartlesville, OK 74006
Catherine Costa, Chairwoman, Burlington County Soil Conservation District, 1971 Jacksonville-Jobstown Road, Columbus, NJ 08022
Emil Kaunitz, Toms River, NJ 08753
Mike Warner, Mt Laurel, NJ 08054
Pease ANGS

H. Curtis Spaulding, U.S. Environmental Protection Agency, Region 1, 5 Post Office Square, Ste 100, Boston, MA 02109-3912
Anthony Tur, U.S. Fish and Wildlife Service, Ecological Services Field Office, 70 Commercial St, Ste 300, Concord, MA 03301-5087
Timothy Drew, New Hampshire Department of Environmental Services, 29 Hazen Dr, PO Box 95, Concord, NH 03302
New Hampshire Fish and Game Department, 11 Hazen Dr, Concord, NH 03301
New Hampshire State Port Authority, 555 Market St, Portsmouth, NH 03801
Nadine Peterson, Preservation Planner, New Hampshire Division of Historical Resources, 19 Pillsbury St, 2nd Fl, Concord, NH 03301
New Hampshire Department of Transportation, Bureau of Environment, JOM Building, Room 160, 7 Hazen Dr, Concord, NH 03302
New Hampshire Coastal Program, Department of Environmental Services, 222 International Dr, Ste 175, Pease Tradeport, Portsmouth, NH 03801
Meredith Hatfield, New Hampshire Office of Energy and Planning, Johnson Hall, 107 Pleasant St., Concord, NH 03301
New Hampshire Department of Environmental Services, Wetlands Bureau, PO Box 95, Concord, NH 03302
Town of Newington Planning Department, 205 Nimble Hill Rd, Newington, NH 03801
Portsmouth City Hall, Community Development Department, 1 Junkins Ave, Portsmouth, NH 03801
Maria Stowell, Pease Development Authority, 360 Corporate Dr, Portsmouth, NH 03801
Kirk Francis, Tribal Chief, Penobscot Indian Nation, 12 Wabanaki Way, Indian Island, ME 04668
Chris Sockalexis, THPO, Penobscot Indian Nation, 12 Wabanaki Way, Indian Island, ME 04468
The Honorable Kelly Ayotte, U.S. Senate, 144 Russell Senate Office Bldg, Washington, DC 20510
The Honorable Jeanne Shaheen, U.S. Senate, 520 Hart Senate Office Bldg, Washington, DC 20510
The Honorable Carol Shea-Porter, House of Representatives, 1530 Longworth House Office Bldg, Washington, DC 20515
The Honorable Martha Clark, New Hampshire Senate, State House, Room 115, 107 N Main St, Concord, NH 03301
The Honorable Joe Scarlotto, New Hampshire Representative, 130 Oxford Ave, Portsmouth, NH 03801-4126
The Honorable Eric Spear, Mayor of Portsmouth, 1 Junkins Ave, Portsmouth, NH 03801
The Honorable Maggie Hassan, Office of the Governor, State House, 107 N Main St, Concord, NH 03301
Lulu Pickering, Newington, NH 03801
John & Nan Craig, Portsmouth, NH 03801
Denis Hebert, Newington Planning BD, Newington, NH 03801
Marga Coup, Dover, NH 03269
Pauline Chebet, NH Div Human Services, 83 Stage Rd, PO Box 133, Sanbornton, NH 03269
Melvin Prostkoff, M.D., New Market, NH 03857
Peter Rice, Portsmouth, NH 03801
Dave Nylund, Rollinsford, NH 0362
Roger Groux, Dover, NH 03269
Steve Moyer, U.S. Senator Ayotte, 1200 Elm St, Manchester, NH 03101
Don & Bev Philbach, Dover, NH 03801
Joe Simeone, Stratton, NH 03885
Elaina & Ric Jack Dorto, Newington, NH 03801
The Honorable Dean Trefethen, Mayor of City of Dover, 288 Central Ave, Dover, NH 03820-4169
Sandra McDonough, Airport Operations Community Liaison, Pease Development Authority, 36 Airline Ave, Portsmouth, NH 03801
Maurice Foster, Portsmouth, NH 03801
Bryan Clemens, Concord, NH 03301-5607
Jean Demorest, Portsmouth, NH 03801
Bob Jefson, Rochester, NH 03867
Deb Harvey, Port City Air, 104 Grafton Dr, Portsmouth, NH 3801
John Cuddihie, Terracon, 24 Hayes Rd, Madbury, NH 03823
Glen & June Palmer, Greenland, NH 03840

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS

Appendix B5 Draft EIS Distribution List
Rachel Wood, Portsmouth, NH 03801
Bob Lister, City of Portsmouth, 69 Diamond Dr, Portsmouth, NH 03801
Al Gagne, Bow, NH 03304
John Frink, Newington, NH 03801

Pittsburgh ANGS
Doug McLearen and Ms. Kira Heinrich, Archaeology & Protection Division, Pennsylvania Historical and Museum Commission - Bureau for Historic Preservation, Commonwealth Keystone Bldg, 400 North St, Harrisburg, PA 17120
Kathy Frankel, Natural Resource Program Supervisor, Pennsylvania Department of Conservation and Natural Resources, 301 Fifth Ave, Ste 324, Pittsburgh, PA 15222-2420
Susan McDonald, Environmental Specialist, Federal Aviation Administration, Harrisburg Airports District Office, 3905 Hartzdale Dr, Ste 508, Camp Hill, PA 17011
Jeanne Creese, Township Manager, Moon Township Administration Office, 1000 Beaver Grade Rd, Moon Township, PA 15108
Christopher Caruso, Planning Administrator, Township of Findlay, 1271 Route 30, PO Box W, Clinton, PA 15026
Rich Belotti, Director, Planning & Environmental Affairs, Pittsburgh International Airport, Landside Terminal, 4th Floor Mezzanine, PO Box 12370, Pittsburgh, PA 15231-0370
Craig Peters, Commander, 911th Air Wing, U.S. Air Force Reserve, Pittsburgh International Airport, 2475 Defense Ave, Coraopolis, PA 15108-2983
Bud Jameson, Jr., Commander, 316th Expeditionary Sustainment Command, 99 Soldiers Ln, Coraopolis, PA 15108-2550
John Coleman, Chief, South Section, Regulatory Branch, U.S. Army Corps of Engineers, William S. Moorhead Federal Building, 1000 Liberty Ave, Pittsburgh, PA 15222-4186
Barbara Rudnick, NEPA Team Leader, U.S. Environmental Protection Agency, Region 3, Office of Environmental Programs (3EA30), Environmental Assessment and Innovation Division, 1650 Arch St, Philadelphia, PA 19103-2029
Bradley D. Penrod, President and Chief Strategy Officer, Allegheny County Department of Aviation, Pittsburgh International Airport, PO Box 12370, Pittsburgh, PA 15231-0370
Sandra Etzel, Allegheny County Health Department, Air Quality Program, 301 39th St, Bldg 7, Pittsburgh, PA 15201
Lou Sitti, Assistant Chief of Public Affairs, U.S. Army Corps of Engineers, North Atlantic Division, 302 General Lee Ave, Brooklyn, NY 11252
The Honorable Robert Casey, Jr., U.S. Senate, 393 Russell Senate Office Bldg, Washington, DC 20510
The Honorable Patrick Toomey, U.S. Senate, 502 Hart Senate Office Bldg, Washington, DC 20510
The Honorable Matt Smith, Pennsylvania Senate, Senate Box 203037, Harrisburg, PA 17120-3037
The Honorable Mark Mustio, Pennsylvania House of Representatives, 1009 Beaver Grade Rd, Ste 220, Moon Township, PA 15108
The Honorable Anthony Celeste, Mayor of Coraopolis, 1121 Third Ave, Coraopolis, PA 15108
The Honorable Tom Corbett, Office of the Governor, 301 5th Ave, Rm 240, Pittsburgh, PA 15222
The Honorable Tim Murphy, House of Representatives, 2332 Rayburn House Office Bldg, Washington, DC 20515
Dan Alwine, Senator Matt Smith, 319 Castle Shannon Blvd, Pittsburgh, PA 15234
Jeanne Creese, Township of Moon, 1000 Beaver Grade Rd, Moon Township, PA 15108
Charles Holsworth, Military Affairs Council, 5801 Brownsville Rd, Pittsburgh, PA 15236
Randy Forister, Allegheny County Airport Authority, PO Box 12370, Pittsburgh, PA 15231
Tony Carrelli, N. Wales, PA 19454
Vic Guerra, Pittsburgh, PA 15228
Rochelle Stachel, Pittsburgh Airport Area Chamber, 850 Beaver Grade Rd, Moon Township, PA 15108
Melinda Maybee, Nation Representative, Cayuga Nation of New York, PO Box 803, Seneca Falls, NY 13148
Irving Powless, Chief, Onondaga Nation of New York, RRT#1, PO Box 319-B, Nedrow, NY 13120
Leo Henry, Chief, Tuscarora Nation of New York, 2006 Mt Hope Rd, Lewiston, NY 14092
Robert Odawi Porter, President, Seneca Nation of Indians, 12837 Rte. 438, Irving, NY 14081

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS
Appendix B5 Draft EIS Distribution List

B5-4
Lana Watt, THPO, Seneca Nation of Indians, 90 Ohiyo Way, Salamanca, NY 14779
Roger Hill, Chief, Tonawanda Band of Seneca, 7027 Meadow Rd, Basom, NY 14013
Caitlin O’Connor, Pittsburgh, PA 15228

Rickenbacker ANGS

Teresa Spagna, U.S. Army Corps of Engineers, Huntington District, 502 Eighth St, Huntington, WV 25701-2070
Lisa Adkins, Program Coordinator, Ohio Historic Preservation Office, 800 E 17th Ave, Columbus, OH 43211-2474
Ohio Environmental Protection Agency, Lazarus Government Center, 50 W Town St, Ste 700, Columbus, OH 43215
U.S. Environmental Protection Agency, Region 5, 77 W Jackson Blvd, Chicago, IL 60604
Mary Knapp, Field Supervisor, Fish and Wildlife Service, 4625 Morse Rd, Ste 104, Columbus, OH 43230-8355
Lee Brown, Planning Administrator, Franklin County Economic Development & Planning Department, 150 S Front St, FSL Ste 10, Columbus, OH 43215
Director of Planning, Columbus Regional Airport Authority, 4600 International Gateway, Columbus, OH 43219
General Manager, Columbus Regional Airport Authority, Rickenbacker International Airport, Administrative Offices, 7161 Second St, Columbus, OH 43217
Dan Garver, District Conservationist, Ohio Natural Resource Conservation Service, Pickaway County, Circleville Service Center, 110 Island Rd, Ste D, Circleville, OH 43113-9575
Glenna Wallace, Chief, Eastern Shawnee Tribe of Oklahoma, PO Box 350, Seneca, MO 64865
Ron Sparkman, Chief, Shawnee Tribe, PO Box 189, Miami, OK 74355
Jodi Hayes, Tribe Administrator, Shawnee Tribe, PO Box 189, Miami, OK 74355
Ohio Department of Health, 246 N High St, Columbus, OH 43215
Columbus Health Department, 240 Parsons Ave, Columbus, OH 43215
Ohio Department of Transportation, District 6, 400 E William St, Delaware, OH 43015
Pickaway County Office of Development and Planning, 124 W. Franklin St, Circleville, OH 43113
Ohio Department of Natural Resources, Division of Geological Survey, 2045 Morse Rd, Bldg C1, Columbus, OH 43229-6693
Ron Carter, Ohio Department of Natural Resources, Division of Wildlife, 2045 Morse Rd, Bldg G, Columbus, OH 43229-6693
Ohio Department of Natural Resources, Division of Soil & Water, 2045 Morse Rd, Bldg B-3, Columbus, OH 43229-6693
John Ankrom, Service Director, City of Circleville Planning and Zoning Commission, 104 E Franklin St, Circleville, OH 43113
Katie Delaney, Federal Aviation Administration, 11677 S Wayne Rd, Ste 107, Romulus, MI 48174
The Honorable Sherrod Brown, U.S. Senate, 713 Hart Senate Office Bldg, Washington, DC 20510
The Honorable Rob Portman, U.S. Senate, 448 Russell Senate Office Bldg, Washington, DC 20510
The Honorable Steve Stivers, House of Representatives, 1022 Longworth HOB, Washington, DC 20515
The Honorable Heather Bishoff, Ohio House of Representatives, 77 S High St, 10th Fl, Columbus, OH 43215
The Honorable Kevin Bacon, Ohio Senate, 1 Capitol Square, Ground Floor, Columbus, OH 43215
The Honorable John Kasich, Office of the Governor, 77 S High St, 30th Fl, Columbus, OH 43215-6117
The Honorable Michael Coleman, Mayor of Columbus, City Hall, 2nd Fl, 90 W Broad St, Columbus, OH 43215
Rod Borden, Chief Operating Officer, Columbus Regional Airport Authority, 4600 International Gateway, Columbus, OH 43219
Dave Wallace, Sr. Manager, Columbus Regional Airport Authority, 4600 International Gateway, Columbus, OH 43219
Mark Kelby, Airport Planner, Columbus Regional Airport Authority, 4600 International Gateway, Columbus, OH 43219
Phil Gwiner, Columbus Regional Airport Authority, 4600 International Gateway, Columbus, OH 43219
Franklin Christman, Village Administrator St. Commissioner, Ashville, 200 E Station, Ashville, OH 43103
Barbara Myers, London, OH 43140
The Honorable Michael Ebert, Mayor of Canal Winchester, 36 S High St, Canal Winchester, OH 43110
Steve Tugend, Kegler Brown, 65 E State St, Columbus, OH 43215
Michael Hartley, Columbus Chamber of Commerce, 150 S Front St, Ste 200, Columbus, OH 43215
Tom Foster, Columbus, OH 43207

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS

Appendix B5 Draft EIS Distribution List
Carolyn Eberts, Canal Winchester, OH 43110
Joseph Carr, Columbus, OH 43213
Paul Pence, Lockbourne, OH 43137
Michael Dustman, Senator Rob Portman, 37 W Broad St, Columbus, OH 43215
Victor Wilson, Columbus, OH 43215
Kelli Mosteller, THPO, Citizen Potawatomi Nation, 1601 S Gordon Cooper Dr, Shawnee, OK 74801
John Barrett, Chairman, Citizen Potawatomi Nation, 1601 S Gordon Cooper Dr, Shawnee, OK 74801
Tamara Francis, THPO, Delaware Nation, 31064 US Highway 281, Bldg 100, Anadarko, OK 73005
Kerry Holton, President, Delaware Nation, PO Box 825, Anadarko, OK 73005
Steve Ortiz, Chairperson, Prairie Band of Potawatomi Tribe, 16281 Q Rd, Mayetta, KS 66509
Harold Frank, Chairman, Forest County Potawatomi Community, PO Box 340, Crandon, WI 54520
Kenneth Meshigaud, Chairperson, Hannahville Indian Community, N14911 Hannahville B1 Rd, Wilson, MI 49896-9728
George Strack, THPO, Miami Tribe of Oklahoma, PO Box 1326, Miami, OK 74355-1326
Thomas Gamble, Chairperson, Miami Tribe of Oklahoma, PO Box 1326, Miami, OK 74355-1326
Ethel áá Cooká, Chief, Ottawa Tribe of Oklahoma, PO Box 110, Miami, OK 74355
John Froman, Chief, Peoria Tribe of Indians of Oklahoma, PO Box 1527, Miami, OK 74355
Matthew Wesaw, Chairman, Pokagon Band of Potawatomi Indians, PO Box 180, Dowagiac, MI 49047
Mike Zimmerman, THPO, Pokagon Band of Potawatomi Indians, PO Box 180, Dowagiac, MI 49047
Kade Ferris, THPO, Turtle Mountain Band of Chippewa Indians of North Dakota, PO Box 900, Belcourt, ND 58316
Merle St. Claire, Chairman, Turtle Mountain Band of Chippewa Indians of North Dakota, PO Box 900, Belcourt, ND 58316
Billy Friend, Chief, Wyandotte Nation, 64700 E Highway 60, Wyandotte, OK 74370
Sheri Clemmons, THPO, Wyandotte Nation, 64700 E Highway 60, Wyandotte, OK 74370
David Schmitt, Columbus, OH 43706
Jeff Campbell, South Central Power, 2780 Coonpath Rd NE, Lancaster, OH 43130
Ronald Manuel, Columbus, OH 43207
Linda Dillman, SE Messenger, 2255 Rohr Rd, Lockbourne, OH 43137
Laura Keprowski, Mid-Ohio Regional Planning Commission, 111 Liberty St, Ste 100, Columbus, OH 43215
Tory Richardson, Columbus Regional Airport Authority, 4600 International Gateway, Columbus, OH 43219
Nancy Reger, Mid-Ohio Regional Planning Commission, 111 Liberty St, Ste 100, Columbus, OH 43215
Mike McHenry, Columbus, OH 43212
Scott Clidac, Canal Winchester, OH 43110
Tom Niklas, Columbus, OH 43206
Nelson Spitler, Westerville, OH 43081
Yvette Werstall, Lancaster, OH 43130
Suzanne Cox, U.S. Senator Rob Portman, 37 W Broad St, Rm 300, Columbus, OH 43215
Andrew Miller, This Weeks News, 1981 Fishinger Rd, Columbus, OH 43221
Robert Paley, OHARNG, 7533 Walnut Dr, Canal Winchester, OH 43110
Public Hearing Transcripts, Responses to Comments, and Written Comments on the Draft EIS
DRAFT ENVIRONMENTAL IMPACT STATEMENT

HEARING PROCEEDINGS

MARCH 12, 2014

MUSEUM OF THE KANSAS AIR NATIONAL GUARD
6700 SOUTH TOPEKA BOULEVARD
TOPEKA, KANSAS
MAJOR BLUBAUGH: Good evening ladies and gentlemen, and welcome to the public hearing for the Draft Environmental Impact Statement for the Second Main Operating Base Beddown of the KC-46A Tanker Aircraft. I am Major Joe Blubaugh, with the 190th Air Refueling Wing's Public Affairs Office, located at Forbes Field, Topeka, Kansas.

First of all, we'd like for you to make sure that you take advantage of the refreshments that we have that are over here on the table. And if you need to use the restrooms, they're out these back doors and around to the left.

Before starting the formal portion of tonight's hearing, I ask that all cell phones be turned off or placed on silent mode. And during the proceedings, please do not interrupt the speakers and please be respectful to those providing oral comments. We will do our best to give everyone an opportunity to speak in the time that we have allotted tonight.

And at this time, Colonel Wendy Sherman will now begin the formal portion of tonight's hearing.
COLONEL SHERMAN: Good evening, and thank you Major Blubaugh. I'm Colonel Wendy Sherman and I am a Military Judge for the United States Air Force from Randolph Air Force Base, Texas. I'd like to make clear from the outset that I am here in my capacity as a federal judge solely to act as a moderator for this hearing. The United States Trial Judiciary is an independent organization. I do not work for, or with, anyone in this room. I'm not a member of this command or assigned to this installation. I report directly to the Chief Trial Judge of the United States Air Force and to the Judge Advocate General of the Air Force. I have had no involvement with the preparation of this proposed action or the Environmental Impact Statement. I have not rendered legal advice or assistance with respect to this action. I'm here tonight to serve as an independent public hearing officer regarding the Draft Environmental Impact Statement. I am responsible for providing everyone an opportunity to comment tonight on the proposed action, alternatives, and associated environmental analysis. This public
1 hearing provides you with the formal
2 opportunity for comment. I do not make any
3 recommendation or decision on whether the
4 proposed project should be continued, or
5 modified, or abandoned or how the Environmental
6 Impact Statement should be prepared.
7 Therefore, during the public comment portion of
8 this hearing I urge you to direct your comments
9 to the individuals on our panel.
10
11 The purpose of this public hearing is to
12 provide you with an opportunity to comment on
13 the findings of the Draft Environmental Impact
14 Statement. More importantly, this hearing is a
15 formal opportunity for you to get involved in
16 the NEPA Process. This hearing is scheduled to
17 conclude at 8:00 p.m., but if necessary, will
18 continue until all comments have been received.
19 This formal session may end before 8:00 p.m.,
20 if there are no more comments. However, the
21 overall hearing, including materials to be
22 viewed and discussion with team members
23 individually, will continue until 8:00 p.m.,
24 unless all interested parties have left the
25 meeting.
26 If following the presentation any members
of the audience have questions regarding
clarification of any points you may not have
understood, you may fill out a question card,
which can be found at the registration desk or
on several tables scattered throughout the
room, or you may raise your hand now and
someone will bring a card to you. Once you
have filled out your question on the card,
please raise your hand again and one of our
staff will collect it from you. Only questions
regarding clarification of the topics presented
will be entertained. General comments on the
action will not be read by our panel, but you
may present your comment orally later in this
hearing or submit it on one of our comment
cards found throughout the room.

We will take a ten-minute break to allow
Colonel Krueger, the 190th Air Refueling Wing
staff, National Guard Bureau staff, and the
environmental consultants to review any
questions submitted and identify the best
person to answer each.

After the break, we will answer any
questions we have received on the question
cards from the audience. Once questions have
been answered, members of the audience who
check the box on the registration cards
indicating their desire to provide oral
comments will be asked to come forward.

Registration cards were available at the
registration table as you came in. If you have
not filled out a card or indicated your desire
to speak and wish to do so, please raise your
hand and a card will be provided to you now.

In addition, there are materials at the
door describing the official Air National Guard
proposal, the description of the proposed
action and alternatives, and information on the
locations where you can review the Draft
Environmental Impact Statement after tonight,
if you have not already done so.

To ensure that all interested citizens
have an opportunity to speak, I will limit the
comments to ten minutes per person. If time
allows after everyone has had an opportunity to
provide their comments, you may have more time.
You will only be allowed to comment when your
name is called. Elected officials and
individuals representing organizations will be
called upon first.
A court reporter is recording this proceeding for the record. We will take a ten-minute break every hour to allow the court reporter to take a break.

At this time I would like to introduce and recognize public officials that are present at the hearing. Mr. Larry Wolgast, the Mayor; Elizabeth Patton representing U. S. Senator Jerry Moran; Bob Archer, Chairman of the Shawnee County Commission; and Kevin Cook, Shawnee County Commissioner.

As mentioned earlier, restrooms are located outside those doors in the back just off to the left, and refreshments can be found near the check-in desk.

Throughout this hearing, I ask that you keep in mind that this public hearing is not a debate, or any type of vote on the Draft Environmental Impact Statement, nor is it primarily designed as a question-and-answer session, although legitimate, clarifying questions may be asked. At the conclusion of this hearing you may discuss the findings of the Draft Environmental Impact Statement in greater detail with the staff members from the
If you do not wish to provide oral comments, written comments will be accepted and will be given equal consideration. Even if you do make an oral statement, you are welcome to provide a written statement to reaffirm the comments you made and any additional comments you would like to make.

Written comments should be sent to the National Guard Bureau at the address printed on the comment form that you filled out, or on the website. The address is also provided on the comment sheets.

All relevant, substantive comments will be included in the administrative record and will be addressed in the Final Environmental Impact Statement. The formal comment period for the Draft Environmental Impact Statement ends on March 24th, 2014. It is very important for you to realize that the Kansas Air National Guard and the National Guard Bureau will be open and responsive to your comments and concerns throughout the NEPA Process.
It is a requirement to inform you that under the Privacy Act of 1974, your name, address, and comments, if provided during this NEPA Process, will be:

Used to compile mailing lists for sending project reports, brochures, and other information concerning the environmental impact statement to those individuals and groups who might be interested.

Forwarded to federal, state, and local agencies, and elected officials.

The addresses of private individuals will not, again I repeat "will not," be published in documents released to the public.

Failure to provide the information requested would prevent delivery of documents and notification of further developments.

However, documents are available on the project website and in select libraries, with locations published in local newspapers.

Now, before we proceed with the presentation, if you have not reviewed a copy of the Draft Environmental Impact Statement, copies are available for you to review while in attendance at this hearing at each of the
information booths. Further, you may pick up a CD with the document on it at the check-in desk. There is also a list of locations where the Environmental Impact Statement is provided for public review after this meeting in the informational handouts. If you did not receive other informational materials that were available at the entrance, please raise your hand and someone will provide them to you.

Okay, at this point, I will turn this over to Colonel Krueger, the Commander for the 190th Air Refuelling Wing.

COLONEL KRUEGER: Thank you, Your Honor. Good evening, my name is Colonel Ron Krueger, and I'm the Wing Commander of the Kansas Air National Guard's 190th Air Refuelling Wing at the Forbes Field Airport. On behalf of the Kansas Air National Guard, I want to welcome all of you to this important public hearing regarding the Draft Environmental Impact Statement for the proposed beddown of the KC-46A tanker aircraft. It is our goal this evening to provide you with information about the proposed aircraft beddown and the National Environmental Policy Act,
commonly referred to as NEPA, and to ensure your maximum participation and understanding of this process.

I would like to introduce you to individuals who are here this evening to assist in answering questions about the aircraft conversion and to facilitate your participation in commenting on the findings of the Draft Environmental Impact Statement.

You have already met Colonel Wendy Sherman, Judge Advocate, from Randolph Air Force Base, Texas. She will be presiding over this evening’s hearing. Next, we have First Lieutenant Jarrod Brunkow, the 190th Air Refuelling Wing’s Environmental Manager, who will provide you with an overview of the proposed action and alternatives; and Anne Rowe, from the National Guard Bureau, who will be explaining some key considerations regarding the National Environmental Policy Act.

We have also have a number of other individuals who have been involved in the development of the Environmental Impact Statement. They are from the Kansas Air National Guard, the National Guard Bureau, and
Cardno TEC, our environmental consultants.

They will be available after the current formal session to answer questions and to help facilitate this process. You will find that any member in uniform or with an EIS name tag can either answer your questions or direct you to the right individual to answer your questions.

The greater Topeka community is important to the 190th Air Refuelling Wing, and community input is valuable to the environmental analysis. Forbes Field Airport is the current home of the 190th Air Refuelling Wing. Many of our current, as well as retired, members live in the Topeka area. We are a part of this community.

Many of you have been consistently supportive of the military and of the 190th Air Refuelling Wing. This community helped foster the development of the Kansas Air National Guard as well as the 190th Air Refuelling Wing over the years. This support is and has been deeply appreciated. Like you, our members live and work in this community and care deeply about its future. This is home to us all.
The proposed action is for the Air Force to replace a portion of the existing KC-135 aerial refuelling fleet with the KC-46A, which will be a new aircraft to the Air Force’s fleet. As such, the Air Force plans to identify locations for the beddown of a formal training unit (also known as "FTU") and the First Main Operating Base (also known as "MOB 1"), which will both be led by active duty units. This has been the subject of a separate Environmental Impact Statement and is not part of this discussion tonight. The Air Force will also beddown the KC-46A at a Second Main Operating Base (also known as "MOB 2"), which will be led by an Air National Guard unit. This hearing is regarding the Second Main Operating Base beddown only, as the FTU and MOB 1 beddown are the subject of a separate action.

The National Guard Bureau has prepared the Draft Environmental Impact Statement to analyze the potential impacts of the MOB 2 KC-46A beddown. The Draft Environmental Impact Statement analyzes potential environmental consequences that could result from the proposed beddown of 12 KC-46A aircraft at any
of five alternative Air National Guard installations, including:

Forbes Air National Guard Station, Kansas;
Joint Base McGuire-Dix-Lakehurst, New Jersey;
Pease Air National Guard Station, New Hampshire;
Pittsburgh Air National Guard Station, Pennsylvania; and
Rickenbacker Air National Guard Station, Ohio.

The no-action alternative is required by the National Environmental Policy Act, and was evaluated also to provide a baseline for decision-makers. The no-action alternative evaluates the environmental consequences of not basing the KC-46A aircraft at any installation.

Under the no-action alternative, no installation would be selected to host the KC-46A for the Second Main Operating Base.

In 2013, the Secretary of the Air Force announced Pease Air National Guard Station as the preferred alternative for the KC-46A Second Main Operating Base. The United States Air
Force selected Pease Air National Guard Station based on an operational analysis, results of site surveys, and military judgment factors. We would like to emphasize that although the preferred alternative for the beddown has been announced, no final decision has been made on the basing of the KC-46A aircraft currently under analysis in this draft EIS. Until a decision is made by the Secretary of the Air Force, all alternatives are still under consideration and are treated equally.

As shown on the poster boards, as a result of the Proposed Action, there would be a change to the type of aircraft based at the selected installation; a change to the mix of aircraft using the associated airspace; changes to staffing and manpower at the selected location; changes to the number of airfield operations; as well as minor required construction, building renovation, and facility demolition. There would be no new or modified airspace required to support this action. The proposed aircraft beddown is estimated to begin in late 2017 or 2018 for the National Guard Bureau.
If Forbes Air National Guard Station is selected for the MOB 2 KC-46A beddown, 12 KC-135 aircraft would be replaced by 12 KC-46A aircraft, personnel would increase by 194 individuals, total airfield operations would increase by 17 percent, and the acreage off airport-controlled property within the 65 decibel Day-Night Average Sound Level noise contour would decrease by 55 acres. If Forbes is not chosen for the beddown of the KC-46A tanker aircraft, the existing KC-135 will remain at the base for the foreseeable future.

Again, I want to thank you for your attendance and your interest this evening. Please let me know if I can be of further assistance, either during or after tonight's formal proceedings conclude. With that, I will turn over the hearing to First Lieutenant Brunkow, Environmental Manager for the 190th Air Refuelling Wing.

FIRST LIEUTENANT BRUNKOW: Thank you, Colonel Krueger. Good evening ladies and gentlemen and welcome to the public hearing for the Draft Environmental Impact Statement. As the Commander indicated, I am First Lieutenant
Jarrod Brunkow, and I serve as the environmental manager for the 190 Air Refuelling Wing. As a member of the Air Refuelling Wing and the local community I'm very interested in what happens here as well. This is an important occasion to discuss this topic and I appreciate your interest, your participation, and your comments.

The Draft Environmental Impact Statement evaluates impacts to 11 resources by the proposed action to include Noise, Air Quality, Safety, Biological Resources, and cultural resources. Other resources evaluated can be reviewed in the Draft Environmental Impact Statement. As a result of the draft environmental analysis, we do not expect the proposed action to have any significant impacts to any resources.

I will speak briefly to most of the resources I just mentioned. However, more in-depth information is provided in the Draft EIS document for all 11 resources.

The noise poster board shows baseline noise contours for the existing KC-135 aircraft operations and proposed noise contours from
KC-46A aircraft operations of Forbes. The analysis was based on 8,040 allocated flying hours for each unit, which is a conservative estimate, meaning the flying hours would most certainly be below that number for each alternative.

As you can see the noise contours would be reduced slightly with a reduction of 55 acres off the airport-controlled property. Forbes Air National Guard Station is located in an area that does not exceed the standard for all criteria pollutants. Any increases in emissions from the proposed action would be well below the established thresholds for our area and would not be significant.

Under this Alternative, minor construction and renovation of facilities would be required resulting in approximately five acres of temporary soil disturbance and no new impervious surfaces. There would be no impacts to wetlands, floodplains, federally listed species, or culture resources. In addition, the Air National Guard has initiated government-to-government coordination with all federally recognized tribes affiliated with the
area. To date, from the responses we have received, no tribe has indicated that any traditional resources occur in the project area.

We look forward to input provided from the public and affected communities as we proceed through the NEPA Process. Once the requirements of NEPA are complete, the Air Force will make its final basing decision.

Thank you for your attention, and I will now turn the presentation over to Ms. Anne Rowe, the National Guard Bureau Project Manager for the Environmental Impact Statement, to discuss the NEPA Process.

MS. ROWE: I will briefly summarize the NEPA Process. The National Environmental Policy Act, commonly referred to as NEPA, aids federal agency decision-makers in determining the future course of federal actions. It's the objective of NEPA to ensure that decision-makers have the environmental information and public input to facilitate informed decisions. The goal of preparing the Environmental Impact Statement is to support sound decisions throughout the assessment of potential
environmental impacts, as well as involving the
could be.

The Draft Environmental Impact Statement,
or Draft EIS, which was made available for your
reviewing at a number of public locations
beginning on February 7, 2014, presents the
findings and analysis of the proposed action
and alternatives on the environmental criteria
set forth in NEPA. Tonight's public hearing is
the second of two public comment forums that
provide the public an opportunity to comment on
the scope and content of the Environmental
Impact Statement. The first forum, called a
scoping meeting, was held here and at other
alternative locations in June of 2013.

Comments have also been solicited from
local, state, and federal agencies that have
jurisdiction over a particular resource, such
as air and water quality. That process began
with a release of the Notice of Intent to
prepare an Environmental Impact Statement on
May 17th, 2013, and continues today with public

This hearing gives the potentially affected communities an opportunity to comment on the analysis that has been presented in the Draft Environmental Impact Statement.

The formal public comment period ends on March 24th, 2014. Following this period, oral and written comments received from both the public and government agencies will be reviewed by the Air Force and the National Guard Bureau. We will continue to accept comments throughout the NEPA Process. However, it is more difficult to give your comments the consideration they deserve as the process winds down closer to the release of the Final Environmental Impact Statement, or Final EIS.

After all comments on the Draft Environmental Impact Statement have been addressed, substantive comments will be reviewed and responded to in the Final EIS. The Final Environmental Impact Statement will be released to the public for a 30-day period before a record of decision is signed by the Secretary of the Air Force or their designee.
The Record of Decision is scheduled to be signed in June of 2014.

This concludes the explanation of both the KC-46A beddown proposal, as well as the NEPA Process. I now return the program back to our hearing officer. Thank you.

COLONEL SHERMAN: Does anyone have any questions? If so, we would ask that you please raise your hand. There does not appear to be any questions. So since there are no questions, I would like to begin the formal public comment portion of the hearing. I will call the speakers in the order in which they signed up, with any elected officials having the opportunity to speak first.

So the court reporter can accurately capture your comments, please clearly state your full name and the full name of the organization you represent, if any. Do not provide any other personal information, such as your home address or phone number. Your oral comments will be used to develop a transcript and permanent record of this meeting. Again, as a courtesy to those others who have registered to speak, please limit your comments
to ten minutes. This applies to all of our
speakers. Keep in mind you are welcome to
submit written comments and there are no page
limits. The Air Force shall give equal weight
to all comments, whether they are oral, or
written, or both.

You do not have to speak for the full ten
minutes. However, if you choose to speak for
the full ten minutes, I will advise you when
your ten minutes are almost up. Following our
c comment, I ask that you sit down so that I may
call on the next speaker. If you think you’ll
have more comments than you can present in the
time allotted, make the most important comments
first, and then follow up by submitting the
remainder of your comments in writing, if you
wish.

Again, please understand there is no page
limit to written comments. Equal weight will
be given to both oral and written comments.
They will all become a part of the official
record and be included in the Final
Environmental Impact Statement.

I would now like to begin. The first
speaker is Mayor Larry Wolgast.
MAYOR WOLGAST: Colonel Sanders (sic) and Krueger, my name is Larry Wolgast. I'm Mayor of the City of Topeka. I have a letter that we have presented that -- it is a -- it's not a long letter. Actually, we speak in support of the Greater Topeka Chamber of Commerce, who has a more detailed letter looking at the various ramifications of the relocation and the motives for it.

I am writing in support of bringing the First Air National Guard KC-46A Main Operating Base with the 190th Air Refuelling Wing to the Forbes Field Air National Guard Base in Topeka, Kansas. The City of Topeka has been honored to be the home of the 190th Air Refuelling Wing, and our community has demonstrated that it is well suited to support the men and women who will be serving the new KC-46A. Topeka is home to multi-generational military families whose parents or grandparents came to Forbes Air Force Base as part of the Strategic Air Command, men and women who stayed to start a family, buy a home, join the work force. These men and women brought talent, energy and leadership skills which melted well with our
goals, and Topeka has prospered because of
their contributions. We are a better city
because of their presence, and our community
remembers their role. The ties that bind us
together, Topeka and Forbes, are strong, and
the lines between civilian and military are
indistinguishable. This indelible
characteristic can't be measured, but we know
it is the heart and soul of who we are as
Topeka and members of the military service in
this community.

Then I say, the Greater Topeka Chamber of
Commerce has done an outstanding job providing
the facts and backgrounds. I proudly endorse
their comment on behalf of the City of Topeka
and am especially honored to extoll the
attributes of this community and its people.
We are excited about the opportunities we have
to offer, and I personally encourage you to
consider Forbes Field Air National Guard Base
as the new home for the Air National Guard
KC-46A Main Operating Base. We are ready to
provide support in any way possible. Thank you
for your consideration. We look forward to
working with you.
I want to add two other comments. First, the City of Topeka, in partnership with the Topeka Military Relations Committee, recognizes military personnel each year. Each of the services in the community selects an outstanding person in their units, and they are presented at the City Council meeting. On April 4th this year, the City is recognizing these outstanding service members and including a member of the Kansas Air National Guard. I think this speaks to the role that this community places on the military service and everything that it means to this community. I appreciated hearing the -- the environmental study and the background, and although not a personal note, I will say that I have lived in the flight line for a number of years -- and I'm speaking only for myself -- have never thought it a problem, but have thought it a very good sound to hear the planes flying over.

Thank you very much.

COLONEL SHERMAN: Next is Mr. Bob Archer, Chairman, Shawnee County Commission.

CHAIRMAN ARCHER: Thank you, and welcome. Welcome everyone. I'm going to begin
by reading the official letter, and then I have
a personal comment to make. The Shawnee County
Board of Commissioners would like to encourage
the U. S. Air Force to bring the First Air
National Guard KC-46A Main Operating Base to
the Forbes Field Air National Guard Base in
Topeka. The 190th Air Refuelling Wing has
called Forbes home for many years, and with
leadership from the Air Force and the Air
National Guard, it has become one of the most
significant tanker operations in the country.
Forbes Field has excellent facilities and would
easily house the KC-46A and the additional
personnel. In addition to the excellent
facilities at Forbes Field, Topeka also offers
some of the most affordable housing in the
country. Topeka has first class medical
facilities, an abundance of shopping throughout
the community, and a wide variety of
entertainment. We have first rate schools, and
we are home to Washburn University, which draws
many students from throughout the world, as
well as our local students. We have always
been proud to be the home of the Air National
Guard 190th and would be equally proud to be
home of the new KC-46A. The airmen from the
190th are active in our community, and they are
highly represented by the citizens in our
community. The active duty airmen and their
families with the KC-46A operating base would
equally be welcome and would quickly become a
part of our family. The Board of County
Commissioners strongly encourages you to
consider Forbes Field Air National Guard Base
as the new home for the Air National Guard
KC-46A Main Operating Base. We stand ready to
provide whatever assistance we can to assure a
smooth transition and move to Topeka. Signed
Bob Archer, Chair; Kevin Cook, Vice Chair; and
Shelly Buhler, Member of the Commission.

COLONEL SHERMAN: Thank you, sir.
CHAIRMAN ARCHER: Now, on a personal
note, as an elected official, I get a lot of
different assignments and requests, and one
that I got for the Visit Topeka magazine was to
say in your own words what makes Topeka unique.
And I submitted the following: The small town
charm, friendliness and cooperation of a
capital city with great education, arts and
livability make Topeka one of a kind. I hope
you'll locate here. We'd really love to have
the fueler. Thank you very much.

COLONEL SHERMAN: Next we have Mr.
Neil Dobler from the Chamber of Commerce. Sir.

MR. DOBLER: Thank you. Thank you
and welcome. My name is Neil Dobler. I
represent the Chamber of Commerce in the
capacity of the chairman of the board for 2014.
I have some prepared comments which I will
leave.

The Greater Topeka Chamber of Commerce
strongly urges the U. S. Air Force to place the
First Air National Guard KC-46A Main Operating
Base with the 190th Air Refuelling Wing at
Forbes Field Air National Guard Base, Topeka,
Kansas. The 190th has worked diligently over
the years along with the leadership from the
Air Force and Air National guard to create one
of the highest-quality and most cost effective
tanker operations in the country. They have
done that with the strong support of this
community, as you have heard from the Mayor and
Chairman Archer. This community has been home
to Forbes Field since 1942, so we have a long,
long history.
Forbes Field is optimally located to support the air refuelling needs of the Department of Defense, as well as having first class facilities that would require very little investment to house the KC-46A and additional active duty airmen. The existing ramp space will accommodate the larger aircraft with room to spare. Furthermore, a recent collaborative effort by the 190th Air Refuelling Wing, the City of Topeka, Shawnee County, Topeka Chamber, and local industry was successful in rezoning areas around the base that will help protect the runway from encroachment for years to come. In addition to the many positives Forbes Field has to offer, the greater Topeka community is also well positioned to meet the needs of active duty airmen and their families assigned to the base. The Topeka community has the necessary quality housing to accommodate additional personnel and their families. Topeka is consistently ranked as one of the most affordable metropolitan areas in the country for housing; additionally, in 2011, Topeka's housing was ranked as number six in affordable housing for veterans in the country.
Topeka has also benefited from several large corporations that have recently built facilities near Forbes Field that provide well-paying jobs that military dependents may be interested in. We have high achieving, strong K through 12 public and parochial private schools throughout the communities. These schools have innovative programs, newer facilities, and are technology rich. As Mr. Archer mentioned, Topeka is also home to Washburn University, which is just a few minutes' drive from the base and will provide airmen and their dependents with the opportunity to receive a college degree while stationed at Forbes Field. Additionally, the University of Kansas and Kansas State University are both located less than an hour from Topeka.

Finally, the 190th Air Refuelling Wing has built a strong and positive working relationship with the Metropolitan Topeka Airport Authority created through strong commitment to public and private partnerships. This lasting relationship gives the 190th the
ability to maintain a secure and low-cost
installation by sharing infrastructure and cost
for dual use facilities and functions. It is a
true public/private partnership.

The Topeka community actively embraces
the 190th, not only for the economic impact,
but for the many intangible impacts military
service has on our community. 190th personnel
are locally regarded as the highest quality
community members, respected by both the
business community and the citizens of Topeka
and Kansas. The Greater Topeka Chamber of
Commerce places such importance in the 190th's
presence in Topeka that a permanent position
was created in 2004 on the Chamber board of
directors for the 190th Commander to be assured
that the needs of the 190th and their mission
are always supported by the business community.

Additionally, the citizen airmen of the
190th are our neighbors and friends. They
provide community -- the community with
leadership and core values instilled by the Air
Force. We are proud to be the home of the Air
National Guard's 190th.

Topeka Chamber of Commerce and the
community stand with the 190th Air Refuelling
Wing, the Adjutant General, and the Governor of
Kansas to encourage your attention to their
capabilities and readiness to accept the new
assignment of KC-46A tankers. We are always
ready to provide assistance and partnership
with the 190th and express our desire to the
new Air National Guard KC-46A Main Operating
Base at Forbes Field Air National Guard Base,
Topeka, Kansas.

This letter has been signed by the board
of directors, and I'll leave that with you.
And I appreciate your time. Thank you very
much.

COLONEL SHERMAN: Our next speaker is
Gina Pensick (spelled phonetically).

MS. PENSICK: I'm simply going to
submit written comments, ma'am.

COLONEL SHERMAN: Thank you. And Mr.
Allan Towle. Sir.

MR. TOWLE: I apologize. I did not
write my comment. Most of what I have to say
has already been said, but I think it's
important -- I apologize. I am Allan Towle,
president of Fidelity State Bank & Trust
Company and chairman of the board of Go Topeka.

Most of what I've already said has been said by
the distinguished gentlemen that got to speak
ahead of me. And I appreciate them going
through all of that.

I do want to add that the Topeka business
community -- and I see this in my work life,
and I see this in being involved in Go Topeka
-- is very supportive of the military, very
supportive of the 190th. The 190th adds great
economic value to Topeka, and I believe Topeka
adds great economic value to the 190th. One of
the advantages of bringing the aircraft here is
that we do have a very large Air Force base
runway so it can accommodate those. The
facilities here and the infrastructure here are
already in place, with minor adjustments for
the military to be able to use our facilities
here in Topeka. Our community has very strong
support. We've got the housing, we've got the
schools, we've got some great opportunities for
education and great opportunities for jobs for
the family members of the military that would
be coming to Topeka should this happen. So it
would be a great opportunity for the military
as well to come to Topeka with these additional aircraft.

A few years ago my son joined the Marine Reserves; and with that, I have had an opportunity to get a little more first hand knowledge and observation, I should probably say, of how the public supports the military in Topeka. And it is just outstanding when he goes places, the reactions that he gets because of his service to our country. And we certainly appreciate your service to our country and everything that you have done for us through today. We certainly encourage you to bring the KC-46A here to Topeka. Thank you very much.

COLONEL SHERMAN: You're welcome, sir. This evening's goal was to provide you with open communication and accurate information to ensure your informed participation in the NEPA Process. I hope that we have achieved that goal. Please feel free to visit the information booths and ask any additional questions you may have regarding this proposed action. You have an opportunity during the formal comment period ending March
24th, 2014, to provide written comments.

Please stop by the registration booth to get any additional materials you may need.

Thank you and have a good evening.
CERTIFICATE

STATE OF KANSAS
COUNTY OF SHAWNEE

I, Roxana S. Montgomery, a Certified Shorthand Reporter in and for the State of Kansas, duly commissioned as such by the Supreme Court of the State of Kansas, do hereby certify that I was present at and reported in shorthand the foregoing proceedings had at the aforementioned time and place; further that the foregoing 35 pages is a true and correct transcript of my notes requested transcribed.

IN WITNESS WHEREOF, I have hereunto affixed my Official Seal this ______ day of ____________, 2014.

Roxana S. Montgomery
CERTIFIED SHORTHAND REPORTER
Registration No. 1409
AIR NATIONAL GUARD PUBLIC HEARING......
EIS HEARING PROCEEDINGS......

IN RE: Public hearing for the Draft Environmental Impact Statement for the Second Main Operating Base Beddown of the KC-46A Tanker Aircraft....

HELD BEFORE:
Colonel William Muldoon
Captain April Doolittle
Colonel Robert Meyer
Captain Robert Mendez
Anne Rowe, Project Manager

HELD ON: Tuesday, March 4, 2014
REPORTED BY:

PATRICIA A. TERRACCIANO, Certified Court Reporter (License No. 1158) and Notary Public of New Jersey, on the above date, commencing at five o'clock p.m., at the offices of Plumbsted Fire District #1 Fire Station, 59 Main Street, New Egypt, New Jersey.

NATIONAL COURT REPORTERS, INC
7835 Freeway Circle
Middleburg Heights, Ohio 44130-6318
888-800-9656

National Court Reporters, Inc 888.800.9656
EIS Hearing Proceedings:

CAPTAIN APRIL DOOLITTLE, (the BASE Public Affairs Officer): Good evening ladies and gentlemen, and welcome to the public hearing for the Draft Environmental Impact Statement for the Second Main Operating Base Beddown of the KC-46A Tanker Aircraft. I am Captain April Doolittle with the 108th Wing Public Affairs Office, located in central New Jersey.

Please enjoy the refreshments provided. Restrooms are outside in the lobby, and smoking in the facility is prohibited.

Before starting the formal portion of tonight’s hearing, I ask that cell phones be turned off or placed in the silent mode. During the proceedings, please do not interrupt the speakers and please be respectful to those providing oral comments. We will do our best to give everyone an opportunity to speak, in the time we have.

Colonel William Muldoon (Judge
Advocate) will now begin the formal portion of tonight's hearing.

COLONEL WILLIAM MULDOON (Judge Advocate): Good evening and thank you Captain Doolittle. I am Judge Colonel Bill Muldoon and I am a Chief Regional Military Judge of the United States Air Force from Nellis Air Force Base, Nevada.

I'd like to make clear from the outset that I'm here in my capacity as a federal judge solely to act as a moderator in this hearing. The United States Trial Judiciary is an independent organization. I do not work for, or with, anyone in this room. I am not a member of this command or assigned to this installation. I report directly to the Chief Trial Judge of the United States Air Force and to the Judge Advocate General of the Air Force. I have had no involvement with the preparation of this proposed action or the Environmental Impact Statement. I have not rendered legal advice or assistance with respect to this action. I'm here tonight to serve as an
independent public hearing officer
regarding the Draft Environmental Impact
Statement. I am responsible for
providing everyone an opportunity to
comment tonight on the proposed action,
alternatives, and associated
environmental analysis.

This public hearing provides
you with the formal opportunity for
comment. I do not make any
recommendation or decision on whether the
proposed project should be continued,
modified, or abandoned or how the
Environmental Impact Statement should be
prepared. Therefore, during the public
comment portion of this hearing I urge
you to direct your comments to the
individuals on our panel.

The purpose of this public
hearing is to provide you with an
opportunity to comment on the findings of
the Draft Environmental Impact Statement.
More importantly, this hearing is a
formal opportunity for you to get
involved in the NEPA Process.
This hearing is scheduled to conclude at 8:00 p.m., but if necessary, will continue until all comments have been received. This formal session may end before 8:00 p.m., if there are no more comments. However, the overall hearing, including materials to be viewed and discussion with team members individually, will continue until 8:00 p.m., unless all interested parties have left the meeting.

If following the presentation any members of the audience have questions regarding clarification of any points you may not have understood, you may fill out a question card, which can be found at the registration desk or on several tables scattered throughout the room, or you may raise your hand now and someone will bring a card to you.

Once you have filled out your question on the card, please raise your hand again and one of our staff will collect it from you. Only questions regarding clarification of the topics...
presented will be entertained. General comments on the action will not be read by our panel, but you may present your comment orally later in this evening or submit it on one of the comment cards found throughout the room.

Once questions have been answered, members of the audience who checked the box on their registration cards indicating their desire to provide oral comments will be asked to come forward.

Registration cards were available at the registration table as you came in. If you have not filled out a card or indicated your desire to speak and wish to do so, please raise your hand and a card will be provided to you now.

In addition, there are materials at the door describing the official Air National Guard proposal, the description of the proposed action and alternatives, and information on locations where you can review the draft Environmental Impact Statement after

National Court Reporters, Inc 888.800.9656
tonight, if you have not already done so.

To ensure that all interested citizens have an opportunity to speak, I will limit the comments to ten minutes per person. If time allows after everyone has had an opportunity to provide their comments, you may have more time. You will only be allowed to comment when your name is called.

Elected officials and individuals representing organizations will be called upon first.

A court reporter is recording this proceeding for the record. We will take a ten-minute break every hour to allow the court reporter to take a break.

As mentioned earlier, restrooms are located to the left down the hallway that is marked with the exit sign, and refreshments can be found near the check-in desk.

Throughout this hearing, I ask that you keep in mind that this public hearing is not a debate, or any type of vote on the Draft Environmental Impact

National Court Reporters, Inc 888.800.9656
Statement, nor is it primarily designed
as a question-and-answer session,
although legitimate, clarifying questions
may be asked.

At the conclusion of this
hearing you may discuss the findings of
the Draft Environmental Impact Statement
in greater detail with the staff members
from the 108th Wing, National Guard
Bureau, and the consultant's technical
representatives.

If you do not wish to provide
oral comments, written comments will be
accepted and will be given equal
consideration. Even if you do make an
oral statement, you are welcome to
provide a written statement to reaffirm
the comments you made and any additional
comments you would like to make.

Written comments should be
sent to the National Guard Bureau at the
address printed on the comment form that
you filed out, or on the website. The
address is also printed on the comment
sheets.

National Court Reporters, Inc 888.800.9656
All relevant, substantive comments will be included in the administrative record and will be addressed in the Final Environmental Impact Statement. The formal comment period for the Draft Environmental Impact Statement ends on March 24, 2014. It is very important for you to realize that the New Jersey Air National Guard and the National Guard Bureau will be open and responsive to your comments and concerns throughout the NEPA process.

It is a requirement to inform you that under the Privacy Act of 1974, your name, address and comments, if provided during this NEPA process, will be:

> Used to compile mailing lists for sending project reports, brochures, and other information concerning the Environmental Impact Statement to those individuals and groups who might be interested.

> Forwarded to federal, state and local agencies, and elected

National Court Reporters, Inc 888.800.9656
The addresses of private individuals submitting comments will NOT, repeat, “will NOT,” be published in documents released to the public.

Failure to provide the information requested would prevent delivery of documents and notification of further developments. However, documents are available on the project website and in select libraries, with locations published in local newspapers.

Now, before we proceed with the presentation, if you have not reviewed a copy of the Draft Environmental Impact Statement, copies are available for you to review while in attendance at this hearing at each of the information booths.

Further, you may pick up a CD with the document on it at the check-in desk. There is also a list of locations where the Environmental Impact Statement is provided for public review after this meeting in the informational handouts.

National Court Reporters, Inc 888.800.9656
If you did not receive other informational materials that were available at the entrance, please raise your hand and someone will provide them to you.

At this point, I will turn this over to Colonel Meyer, the Commander for the 108th air refueling Wing.

COLONEL MEYER: Thank you, Your Honor. Good evening, my name is Colonel Bob Meyer, and I am the Wing Commander for the 108th Air Refueling Wing, New Jersey Air National Guard, at Joint Base McGuire-Dix-Lakehurst.

On behalf of the New Jersey Air National Guard, I want to welcome all of you to this important public hearing regarding the Draft Environmental Impact Statement for the proposed beddown of the KC-46A tanker aircraft.

It is our goal this evening to provide you with information about the proposed aircraft beddown and the National Environmental Policy Act, commonly referred to as NEPA, and to
ensure your maximum participation and understanding of this process.

I would like to introduce you to individuals who are here this evening to assist in answering questions about the aircraft conversion and to facilitate your participation in commenting on the findings of the Draft Environmental Impact Statement.

You have already met Colonel William Muldoon from Headquarters Air Force. He will be presiding over this evening's hearing. Next we have Captain Robert Mendez, the 108th Wing's Environmental Manager who will provide you with an overview of the proposed action and alternatives; and Anne Rowe, from the National Guard Bureau, who will be explaining some key considerations regarding the National Environmental Policy Act.

We also have a number of other individuals who have been involved in the development of the Environmental Impact Statement. They are from the New Jersey
International Guard, the National Guard
Bureau and Cardno TEC, our environmental
consultants. They will be available
after the current formal session to
answer questions and to help facilitate
this process. You will find that any
member in uniform or with an EIS name tag
can either answer your questions or
direct you to the right individual to
answer your questions.

The greater central New Jersey
community is important to the 108th Wing,
and community input is valuable to the
environmental analysis. Joint Base
McGuire-Dix-Lakehurst is the current home
of the 108th Wing. Many of our current,
as well as retired members live in the
area. We are part of this community.

Many of you have been
consistently supportive of the military
and of the 108th Wing. This community
helped foster the development of the New
Jersey Air National Guard as well as the
108th Wing over many years. This support
is and has been deeply appreciated. Like
you, our members live and work in this
community and care deeply about its
future. This is home to all of us.

The proposed action is for the
Air Force to replace a portion of the
existing KC-135 aerial refueling fleet
with the KC-46A, which will be a new
aircraft to the Air Force’s fleet. As
such, the Air Force plans to identify
locations for the beddown of a formal
training unit (also known as "FTU") and
the First Main Operating Base (also known
as "MOB 1"), which will both be led by
active duty units. This has been the
subject of a separate Environmental
Impact Statement and is NOT a part of
this discussion this evening.

The Air Force will also
beddown the KC-46A at a Second Main
Operating Base (also known as "MOB 2"),
which will be led by an International
Guard unit. This hearing is regarding
the Second MOB, Main Operating Base
beddown only, as the FTU and MOB 1
beddown are the subject of a separate
action.

The National Guard Bureau has prepared this Draft Environmental Impact Statement to analyze the potential impacts of the MOB 2 KC-46A beddown. The Draft Environmental Impact Statement analyzes potential environmental consequences that could result from the proposed beddown of 12 KC-46A aircraft at any of five alternative International Guard installations, including:

> Forbes Air National Guard Station, Kansas;

> Joint Base McGuire-Dix-Lakehurst, New Jersey;

> Pease Air National Guard Station, New Hampshire;

> Pittsburgh Air National Guard Station, Pennsylvania; and,

> Rickenbacker Air National Guard Station, Ohio.

The no-action alternative is required by the National Environmental Policy Act, and will be evaluated also to provide a baseline for decision-makers.
The no-action alternative evaluates the environmental consequences of not basing the KC-46A aircraft at any installation. Under the no-action alternative, no installation would be selected to host the KC-46A for the Second Main Operating Base.

In 2013, the Secretary of the Air Force announced Pease International Guard Station as the preferred alternative for the KC-46A Second Main Operating Base. The United States Air Force selected Pease Air National Guard Station based on an operational analysis, results of site surveys, and military judgment factors. We would like to emphasize that although the preferred alternative for the beddown has been announced, no formal decision has been made on the basing of the KC-46A aircraft currently under analysis in this draft EIS. Until a final decision is made by the Secretary of the Air Force, all alternatives are still under consideration and are treated equally.
As shown on the poster boards,
as a result of the Proposed Action, there
would be a change to the type of aircraft
based at the selected installation; a
change to the mix of aircraft using
associated air space; changes to staffing
and manpower at the selected location;
changes to the number of airfield
operations; as well as minor required
construction, building renovation, and
facility demolition. There would be no
new or modified airspace required to
support this action. The proposed
aircraft beddown is estimated to begin in
late 2017 or 2018 for the National Guard
Bureau.

If Joint Base
McGuire-Dix-Lakehurst is selected for the
MOB 2 KC-46A beddown, 8 KC-135 aircraft
would be replaced by 12 KC-46A aircraft,
personnel would increase by 287
individuals, total airfield operations
would increase by 15 percent, and the
acreage off airport-controlled property
within the 65 decibel Day-Night Average
Sound Level noise contour -- there is a
mouthful -- would increase by 419 acres.

If Joint Base
McGuire-Dix-Lakehurst is not chosen for
the beddown of the KC-46A Tanker
Aircraft, the existing KC-135 will remain
at the base for the foreseeable future.

Again, I want to thank you for
your attendance and your interest this
evening. Please let me know if I can be
of further assistance, either during or
after tonight’s formal proceedings
conclude. With that, I will turn over
the hearing to Captain Mendez,
Environmental Manager for the 108th Wing.
Thank you.

CAPTAIN MENDEZ: Thank you,
Colonel Meyer. Good evening ladies and
gentlemen and welcome to the public
hearing for the Draft Environmental
Impact Statement. As the Commander
indicate, I am Captain Robert Mendez, and
I serve as the environmental manager for
the 108th Wing. As a member of the unit
and of the local community I am very
interested in what happens here as well.
This is an important occasion in which to
discuss this topic and I appreciate your
interest, your participation, and your
comments.

The Draft Environmental Impact
Statement evaluates impacts to eleven
resources by the proposed action to
include Noise, Air Quality, Safety,
Biological Resources, and Cultural
Resources. Other Resources evaluated can
be reviewed in the Draft Environmental
Impact Statement. As a result of the
draft environmental analysis, we do not
expect the proposed action to have any
significant impacts to any resources.

I will speak briefly to most
of the resources I just mentioned;
however, more in-depth information is
provided in the Draft EIS document for
all eleven resources.

The noise poster board shows
baseline noise contours from existing
KC-135 aircraft operations and proposed
noise contours from KC-46A aircraft
operations at Joint Base
McGuire-Dix-Lakehurst. The analysis was
based on 8,040 allocated flying hours for
each unit, which is a conservative
estimate, meaning that flying hours would
most certainly be below that number for
each alternative.

As you can see the noise
contours would increase with an addition
of 419 acres off airport-controlled
property affected. Impacts to Air
Quality from proposed operational
emissions would be less than significant
for all criteria pollutants, except
nitrogen oxides, which would be above the
de minimis threshold of 100 tons per
year. A conformity determination is
being prepared to address this and will
be completed prior to finalizing the
Environmental Impact Statement. The
National Guard Bureau is coordinating
with Joint Base McGuire-Dix-Lakehurst and
the New Jersey Department of
Environmental Quality on the effort.

Under this Alternative minor
construction and renovation of facilities would be required resulting in approximately 4.7 acres of temporary soil disturbance and 2.4 acres of new impervious surface. There would be no impacts to wetlands, floodplains, or federally listed species. In addition, the Air National Guard has initiated government-to-government coordination with all federally recognized tribes affiliated with the area. To date, from the responses we have received, no tribe has indicated that any traditional resources occur in the project area.

We look forward to input provided from the public and affected communities as we proceed through the NEPA process. Once the requirements of NEPA are complete, the Air Force will make its final basing decision.

Thank you for your attention, and I will now turn the presentation over to Ms. Anne Rowe, the National Guard Bureau Project Manager for the Environmental Impact Statement to discuss.
the NEPA process.

ANNE ROWE: Thank you, Captain Mendez.

I will briefly summarize the NEPA process. The National Environmental Policy Act, commonly referred to as NEPA, aids Federal agency decision-makers in determining the future course of federal actions. It is the objective of NEPA to ensure that decision-makers have the environmental information and public input to facilitate informed decisions.

The goal of preparing the Environmental Impact Statement is to support sound decisions through the assessment of potential environmental impacts, as well as involving the public in the process. The result of this analysis and other relevant factors will be considered before a decision is made by the Air Force on this proposal.

The Draft Environmental Impact Statement, or Draft EIS, which was made available for your viewing at a number of public locations beginning on February
7th, 2014, presents the findings and
analysis of the proposed action and
alternatives on environmental criteria
set forth by NEPA.

Tonight's public hearing is
the second of two public comment forums
that provide the public an opportunity to
comment on the scope and content of the
Environmental Impact Statement. The
first forum, called a scoping meeting,
was held at here and at the other
alternative locations in June 2013.

Comments have also been
solicited from local, state and Federal
agencies that have jurisdiction over
particular resources, such as air and
water quality. That process began with
the release of the Notice of Intent to
prepare an Environmental Impact Statement
on May 17, 2013, and continues today with
public and agency review of the Draft
Environmental Impact Statement.

This hearing gives the
potentially affected communities an
opportunity to comment on the analyses.
that have been presented in the Draft Environmental Impact Statement.

The formal public comment period ends on March 24th, 2014.

Following this period, oral and written comments received from both the public and government agencies will be reviewed by the Air Force and the National Guard Bureau. We will continue to accept comments throughout the NEPA process.

However, it is more difficult to give your comments the consideration they deserve as the process winds down closer to the release of the Final Environmental Impact Statement, or Final EIS.

After all comments on the Draft Environmental Impact Statement have been addressed, substantive comments will be reviewed and responded to in the final EIS. The Final Environmental Impact Statement will be released to the public for a 30-day period before a record of decision is signed by the Secretary of the Air Force or their designee. The Record Of Decision is scheduled to be

National Court Reporters, Inc 888.800.9656
signed in June 2014.

This concludes the explanation
of both the KC-46A beddown proposal, as
well as the NEPA process.

I now return the program back
to our hearing officer. Thank you.

* * *

COLONEL WILLIAM MULDOON:

Thank you, Ms. Rows.

My records show we don't have
any written questions from anyone
attending.

Did anyone attending have any
questions for the panel to clarify
anything before we proceeded? And I am
not seeing any.

Also, I would don't have any
note of anyone wanting to make a public
comment.

At this point I will offer an
opportunity if anyone wanted to make a
comment.

AUDIENCE MEMBER: Can I ask
questions about the table?

COLONEL WILLIAM MULDOON:
Certainly, yes you may.

AUDIENCE MEMBER: So I understand, there are eight KC-135s at McGuire, at McGuire-Dix-Lakehurst, and there is eight up at Pease?

COLONEL: I believe Pease has 12 currently.

AUDIENCE MEMBER: So, they're going to keep four of them?

COLONEL: I believe they relinquished their entire KC-135 fleet and that will be replaced with KC-46A.

MS. ROWE: It will be replaced with 12 -- it would lose all their KC-135s and be replaced with 12 KC-46s.

AUDIENCE MEMBER: Does McGuire -- How many are, KC-135s are at McGuire?

COLONEL: We have, we possess eight.

AUDIENCE MEMBER: And you'd give all of those up and get --

COLONEL: And get 12 of these.

AUDIENCE MEMBER: Okay. Now, this, the table doesn't reflect your KC-10 assets. So I mean, I am looking at
this table as the 135s only.
The KC-10s add a lot more
capability to joint based
McGuire-Dix-Lakehurst.

COLONEL: It is another air
refueling asset that we have on the main
installation which is operated primarily
by the active component in conjunction
with the 514, which is the Air Force
Reserve.

So I mean across the joint
installation we have a robust air
re-fueling fleet, but it is also made up
of you know, us, International Guard
asset as well as the 514 reserve and 305.

AUDIENCE MEMBER: Do they have
any active duty up at Pease?

COLONEL: They have an
associate unit up there as well. They
do. They have what they refer to as a
classic association.

AUDIENCE MEMBER: And they
have separate aircraft for that?

COLONEL: They share the
airplane. So they all operate that same
AUDIENCE MEMBER: I see. The, as far as the modification, it appears as if the modifications at Pease are almost identical to those at McGuire-Dix-Lakehurst.

So, I mean I don't see a difference.

Is there a reason that you would need to add 287 people at McGuire-Dix-Lakehurst versus 187 up at Pease?

Why are -- any idea why there might -- and I don't expect the answer to this question. Any idea why you might have additional people at Lakehurst?

COLONEL: Do you have the answer to that one? Do you want to take that one?

MS. ROWE: Because Joint based McGuire doesn't have an active associate right now so that would include an active associate at Joint Base McGuire.

AUDIENCE MEMBER: I don't know what that means. That means that, that
you would -- those additional people
would be supporting an active duty
component, is that what that means, or?

MS. ROWE: I'm sorry.

AUDIENCE MEMBER: I am not sure
I understand what an associate -- I mean
I understand what that means but why, why
does that impact the number of people?
That is the bottom --

MS. ROWE: Because -- Right.
And Pease has -- Pease has, Pease is the,
only one of the five that has the active
associate right now. So, they are, they
already have an active associate there.

AUDIENCE MEMBER: And to
create one here requires additional
people?

MS. ROWE: Yes, sir. Do you
want to explain what an active associate
is?

COLONEL: It would be a
scenario where you have one squadron that
is lead by the International Guard; then
you would have an active duty squadron
that associates with that International
Guard, so...

AUDIENCE MEMBER: I see.

COLONEL: It is a net gain of manpower to operate the 135R models that we currently have.

AUDIENCE MEMBER: Just so I understand for the record here, let me say. So, the fuel supply for McGuire-Dix-Lakehurst comes by a secure underground pipe?

COLONEL: That is correct.

AUDIENCE MEMBER: And the supply from Pease comes from a -- it gets, I guess barged in, and then it gets trucked to the base?

COLONEL: I have to verify that one. It may be best to add Anne on this one, but it is my understanding that it is by tanker truck.

MS. ROWE: Sir, I will just stop you right now. I appreciate your question. We can clarify your question after the formal part.

If you would like to get up and make a statement about that --
AUDIENCE MEMBER: No, you've answered all my questions, thank you.

MS. ROWE: That is fine. I didn't want to keep going back and forth, but certainly we can clarify any questions that you have once we're done this portion of it.

But feel free to get up and speak. And also, yes, and how, how they fueled it, I don't know how they fueled it. It was part of this environmental analysis. So, it is not relevant to the Environment Impact Statement.

AUDIENCE MEMBER: I understand. Thank you.

MS. ROWE: Yes, sir.

COLONEL WILLIAM MULDOON: Did anyone else have any questions or clarification?

What I will do, I will take a brief ten-minute break, to see, if based on that, anyone wanted to make a public comment. And then we will come back on the record to take any public comments if anyone had to make them.
If you have not provided a
card with your question or a card with
your desire to make a comment to our
staff yet, now would be the time to do
that.

And then I will alert everyone
when it is time to reconvene the hearing.

As I stated before,
refreshments are available for your
enjoyment. And restrooms are down the
corridor with the exit sign. And we'll
take a ten-minute break.

* * *

(Break taken.)

* * *

COLONEL WILLIAM MULDOON: This
hearing is reconvened.

We still have not received any
written questions and there is no one
listed on the sign-in sheets who wanted
to speak and make a formal public
comment.

But we are going to begin the
public, formal public comment portion of
the hearing.
If there is anyone who didn't sign up and would like to make a formal public comment, this would be the time to do that.

Not seeing anyone -- I remind everyone in attendance that you can still make written comments as described before and as in the handout materials.

Equal weight will be given to both oral and written comments in this process. They will all become part of the official record and will be included in the Final Environmental Impact Statement.

This evening's goal was to provide you with open communication and accurate information to ensure your informed participation in the NEPA process.

I hope that we have achieved that goal. Please feel free to visit the information booth and ask any additional questions that you may have regarding this proposed action. You have an opportunity during the formal comment
period ending March 24, 2014, to provide
written comments.

Please stop by the
registration booth to get any additional
materials you may need. Thank you and
have a good evening.

* * *

(WHEREUPON, the deposition is
hereby concluded at 6:47 p.m.)

* * *

National Court Reporters, Inc 888.800.9656
CERTIFICATION

I, Patricia A. Terracciano, Certified Shorthand Reporter and Notary Public duly and qualified in and for the State of New Jersey, do hereby certify that the foregoing transcript is a true and correct transcript of my original stenographic notes.

I further certify that I am neither attorney or counsel for, nor related to or employed by any of the parties to the action in which this deposition is taken; and furthermore, that I am not a relative or employee of any attorney or counsel employed by the parties hereto or financially interested in the action.

PATRICIA A. TERRACCIANO
CERTIFIED SHORTHAND REPORTER
License No. 1158

National Court Reporters, Inc 888.800.9656
<table>
<thead>
<tr>
<th>A</th>
<th>Affairs</th>
<th>analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>abandoned</td>
<td>2:3, 10</td>
<td>4:7 13, 14 16:14, 21 19:14 20:2</td>
</tr>
<tr>
<td>accept</td>
<td>affiliated</td>
<td>22:11</td>
</tr>
<tr>
<td>accepted</td>
<td>agency</td>
<td>22:7 23:21</td>
</tr>
<tr>
<td>8:14</td>
<td>aircraft</td>
<td>11:20</td>
</tr>
<tr>
<td>accurate</td>
<td>aids</td>
<td>22:7</td>
</tr>
<tr>
<td>33:17</td>
<td>aircraft</td>
<td>10:2</td>
</tr>
<tr>
<td>achieved</td>
<td>add</td>
<td>27:2 28:10 30:17</td>
</tr>
<tr>
<td>33:20</td>
<td>addition</td>
<td>14:14 27:8, 17 28:21, 22 29:2 12</td>
</tr>
<tr>
<td>acreage</td>
<td>active</td>
<td>29:14, 19, 24</td>
</tr>
<tr>
<td>17:24</td>
<td>actions</td>
<td>22:9</td>
</tr>
<tr>
<td>acres</td>
<td>18:2 20:10 21:3, 4</td>
<td>28:12 29:2, 12</td>
</tr>
<tr>
<td>19:8 15:23:2</td>
<td>33:24 35:14, 18</td>
<td></td>
</tr>
<tr>
<td>act</td>
<td>add</td>
<td>27:2 28:10 30:17</td>
</tr>
<tr>
<td>22:6</td>
<td>additional</td>
<td>8:18 28:16 29:1, 16 33:22 34:4</td>
</tr>
<tr>
<td>action</td>
<td>address</td>
<td>8:22, 24 9:15 20:18</td>
</tr>
<tr>
<td>15:1 17:2, 13 19:8 15:23:2</td>
<td>addresses</td>
<td>10:2</td>
</tr>
<tr>
<td>33:24 35:14, 18</td>
<td>administrative</td>
<td>9:3</td>
</tr>
<tr>
<td>advice</td>
<td>alternative</td>
<td>15:10, 22 16:14, 11, 18 20:7, 25</td>
</tr>
<tr>
<td>3:23</td>
<td>allow</td>
<td>23:12</td>
</tr>
<tr>
<td>Advocate</td>
<td>allocated</td>
<td>20:3</td>
</tr>
<tr>
<td>3:14, 19</td>
<td>allow</td>
<td>7:16</td>
</tr>
<tr>
<td>aerial</td>
<td>allowed</td>
<td>7:8</td>
</tr>
<tr>
<td>14:6</td>
<td>allows</td>
<td>7:5</td>
</tr>
</tbody>
</table>

National Court Reporters, Inc 888.800.9656
<table>
<thead>
<tr>
<th>deeply</th>
<th>District</th>
<th>employee</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:25 14:2</td>
<td>1:17</td>
<td>35:16</td>
</tr>
<tr>
<td>delivery</td>
<td>disturbance</td>
<td>ends</td>
</tr>
<tr>
<td>10:8</td>
<td>21:4</td>
<td>9:7 24:4</td>
</tr>
<tr>
<td>demolition</td>
<td>document</td>
<td>enjoy</td>
</tr>
<tr>
<td>17:11</td>
<td>10:21 19:20</td>
<td>2:12</td>
</tr>
<tr>
<td>Department</td>
<td>documents</td>
<td>enjoyment</td>
</tr>
<tr>
<td>20:23</td>
<td>10:5 8:9</td>
<td>32:10</td>
</tr>
<tr>
<td>deposition</td>
<td>Doolittle</td>
<td>ensure</td>
</tr>
<tr>
<td>34:8 35:15</td>
<td>1:7 2:2 9:3 5</td>
<td>7:12 1:22 10:33:17</td>
</tr>
<tr>
<td>described</td>
<td>door</td>
<td>entertained</td>
</tr>
<tr>
<td>33:7</td>
<td>6:20</td>
<td>6:1</td>
</tr>
<tr>
<td>describing</td>
<td>draft</td>
<td>entire</td>
</tr>
<tr>
<td>6:20</td>
<td>1:3 2:5 4:2 22 6:24 7:25 8:7 9:6</td>
<td>26:11</td>
</tr>
<tr>
<td>description</td>
<td>10:15 11:18 12:8 15:3 6 16:21</td>
<td>entrance</td>
</tr>
<tr>
<td>deserve</td>
<td>23:21 24:1:17</td>
<td>Environment</td>
</tr>
<tr>
<td>24:13</td>
<td>duly</td>
<td>31:13</td>
</tr>
<tr>
<td>designed</td>
<td>duty</td>
<td>environmental</td>
</tr>
<tr>
<td>desigee</td>
<td></td>
<td>7:25 8:7 9:4 6:21 10:16 23</td>
</tr>
<tr>
<td>desire</td>
<td></td>
<td>13:14 14:15 15:3 6 7:23 16:2</td>
</tr>
<tr>
<td>detail</td>
<td></td>
<td>31:11 33:13</td>
</tr>
<tr>
<td>8:8</td>
<td></td>
<td>equal</td>
</tr>
<tr>
<td>determination</td>
<td></td>
<td>8:14 33:9</td>
</tr>
<tr>
<td>20:17</td>
<td></td>
<td>equally</td>
</tr>
<tr>
<td>determining</td>
<td></td>
<td>10:25</td>
</tr>
<tr>
<td>22:8</td>
<td></td>
<td>estimate</td>
</tr>
<tr>
<td>development</td>
<td></td>
<td>20:5</td>
</tr>
<tr>
<td>12:24 13:22</td>
<td></td>
<td>estimated</td>
</tr>
<tr>
<td>developments</td>
<td></td>
<td>17:14</td>
</tr>
<tr>
<td>10:9</td>
<td></td>
<td>evaluated</td>
</tr>
<tr>
<td>difference</td>
<td></td>
<td>15:24 19:11</td>
</tr>
<tr>
<td>28:8</td>
<td></td>
<td>evaluates</td>
</tr>
<tr>
<td>difficult</td>
<td></td>
<td>16:1 19:7</td>
</tr>
<tr>
<td>24:11</td>
<td></td>
<td>evening</td>
</tr>
<tr>
<td>direct</td>
<td></td>
<td>2:4 3:4 6:4 11:10 21 12:4 14:17</td>
</tr>
<tr>
<td>4:17 13:9</td>
<td></td>
<td>18:10 18:34:6</td>
</tr>
<tr>
<td>directly</td>
<td></td>
<td>evening's</td>
</tr>
<tr>
<td>3:17</td>
<td></td>
<td>12:13 33:15</td>
</tr>
<tr>
<td>discuss</td>
<td></td>
<td>existing</td>
</tr>
<tr>
<td>discussion</td>
<td></td>
<td>exit</td>
</tr>
<tr>
<td>5:8 14:17</td>
<td></td>
<td>7:19 32:11</td>
</tr>
</tbody>
</table>
Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS

Appendix B6 Public Hearing Transcripts, Responses to Comments, and Written Comments on the Draft EIS

B6-78
<table>
<thead>
<tr>
<th>MOB</th>
<th>14</th>
<th>15</th>
<th>17</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>15</td>
<td>17</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>15</td>
<td>17</td>
<td>19</td>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>17</td>
<td>19</td>
<td>21</td>
<td>23</td>
<td>25</td>
</tr>
<tr>
<td>19</td>
<td>21</td>
<td>23</td>
<td>25</td>
<td>27</td>
</tr>
<tr>
<td>21</td>
<td>23</td>
<td>25</td>
<td>27</td>
<td>29</td>
</tr>
<tr>
<td>23</td>
<td>25</td>
<td>27</td>
<td>29</td>
<td>31</td>
</tr>
<tr>
<td>25</td>
<td>27</td>
<td>29</td>
<td>31</td>
<td>33</td>
</tr>
<tr>
<td>27</td>
<td>29</td>
<td>31</td>
<td>33</td>
<td>35</td>
</tr>
<tr>
<td>29</td>
<td>31</td>
<td>33</td>
<td>35</td>
<td>37</td>
</tr>
<tr>
<td>31</td>
<td>33</td>
<td>35</td>
<td>37</td>
<td>39</td>
</tr>
</tbody>
</table>

The table above shows the correspondence between different regions or units, with specific coordinates for each entry.
overview
12:16
oxides
20:15

<table>
<thead>
<tr>
<th>P</th>
<th>1:12</th>
</tr>
</thead>
<tbody>
<tr>
<td>p.m</td>
<td>1:16 5:2,5,10 34:9</td>
</tr>
<tr>
<td>panel</td>
<td>4:18 6:3 25:14</td>
</tr>
<tr>
<td>participation</td>
<td>12:1,7 19:4 33:18</td>
</tr>
<tr>
<td>particular</td>
<td>23:16</td>
</tr>
<tr>
<td>parties</td>
<td>5:10 35:14,17</td>
</tr>
<tr>
<td>Patricia</td>
<td>1:13 35:5,20</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>15:19</td>
</tr>
<tr>
<td>people</td>
<td>28:10,16 29:1,8,17</td>
</tr>
<tr>
<td>percent</td>
<td>17:23</td>
</tr>
<tr>
<td>period</td>
<td>9:6 24:4,5,22 34:1</td>
</tr>
<tr>
<td>person</td>
<td>7:5</td>
</tr>
<tr>
<td>personnel</td>
<td>17:21</td>
</tr>
<tr>
<td>phones</td>
<td>2:18</td>
</tr>
<tr>
<td>pick</td>
<td>10:20</td>
</tr>
<tr>
<td>pipe</td>
<td>30:10</td>
</tr>
<tr>
<td>Pittsburgh</td>
<td>15:18</td>
</tr>
<tr>
<td>placed</td>
<td>2:18</td>
</tr>
<tr>
<td>plans</td>
<td>14:9</td>
</tr>
<tr>
<td>please</td>
<td>2:12,20,21 5:22 6:17 11:3 18:10 33:21 34:3</td>
</tr>
<tr>
<td>Plumbsted</td>
<td>1:16</td>
</tr>
<tr>
<td>point</td>
<td>11:6 25:20</td>
</tr>
<tr>
<td>points</td>
<td>5:15</td>
</tr>
<tr>
<td>pollutants</td>
<td>20:14</td>
</tr>
<tr>
<td>portion</td>
<td>2:17 3:2 4:16 14:5 31:7 32:24</td>
</tr>
<tr>
<td>possess</td>
<td>26:18</td>
</tr>
<tr>
<td>poster</td>
<td>17:1 19:22</td>
</tr>
<tr>
<td>potential</td>
<td>15:4,7 22:16</td>
</tr>
<tr>
<td>potentially</td>
<td>23:24</td>
</tr>
<tr>
<td>preferred</td>
<td>16:10,17</td>
</tr>
<tr>
<td>preparation</td>
<td>3:21</td>
</tr>
<tr>
<td>prepare</td>
<td>23:19</td>
</tr>
<tr>
<td>prepared</td>
<td>4:15 15:3 20:18</td>
</tr>
<tr>
<td>preparing</td>
<td>22:13</td>
</tr>
<tr>
<td>present</td>
<td>6:3</td>
</tr>
<tr>
<td>presentation</td>
<td>5:12 10:14 21:22</td>
</tr>
<tr>
<td>presented</td>
<td>6:1 24:1</td>
</tr>
<tr>
<td>presents</td>
<td>23:1</td>
</tr>
<tr>
<td>presiding</td>
<td>12:12</td>
</tr>
<tr>
<td>prevent</td>
<td>10:7</td>
</tr>
<tr>
<td>primarily</td>
<td>8:1 27:7</td>
</tr>
<tr>
<td>printed</td>
<td>8:22,24</td>
</tr>
<tr>
<td>prior</td>
<td>20:19</td>
</tr>
<tr>
<td>Privacy</td>
<td>9:14</td>
</tr>
<tr>
<td>private</td>
<td>10:2</td>
</tr>
<tr>
<td>proceed</td>
<td>10:13 21:17</td>
</tr>
<tr>
<td>proceeded</td>
<td>25:15</td>
</tr>
<tr>
<td>proceeding</td>
<td>7:14</td>
</tr>
<tr>
<td>proceedings</td>
<td>1:2 2,1 19 18:12</td>
</tr>
<tr>
<td>program</td>
<td>25:5</td>
</tr>
<tr>
<td>prohibited</td>
<td>2:15</td>
</tr>
<tr>
<td>project</td>
<td>1:9 4:12 9:19 10:10 21:14,24</td>
</tr>
<tr>
<td>property</td>
<td>17:24 20:11</td>
</tr>
<tr>
<td>proposal</td>
<td>6:21 22:21 25:3</td>
</tr>
<tr>
<td>provides</td>
<td>4:8</td>
</tr>
<tr>
<td>providing</td>
<td>2:21 4:4</td>
</tr>
<tr>
<td>public</td>
<td>1:1,3,14 2:3,5,10 4:1,8,15,19 7:23 10:5,24 11:17 18:19</td>
</tr>
<tr>
<td>B6-82</td>
<td>Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Appendix B6 Public Hearing Transcripts, Responses to Comments, and Written Comments on the Draft EIS</td>
</tr>
</tbody>
</table>

National Court Reporters, Inc 888.800.9656
<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
<th>321</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>321</td>
<td>321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>321</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>123</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>23:17</td>
</tr>
<tr>
<td>we'll</td>
<td>32:11</td>
</tr>
<tr>
<td>we're</td>
<td>31:6</td>
</tr>
<tr>
<td>website</td>
<td>8:23 10:10</td>
</tr>
<tr>
<td>weight</td>
<td>33:9</td>
</tr>
<tr>
<td>welcome</td>
<td>2:4 8:16 11:16 18:19</td>
</tr>
<tr>
<td>wetlands</td>
<td>21:6</td>
</tr>
<tr>
<td>winds</td>
<td>24:13</td>
</tr>
<tr>
<td>Wing</td>
<td>2:9 8:9 11:8,11,12 13:12,16,21 13:24 18:15,24</td>
</tr>
<tr>
<td>Wing's</td>
<td>12:14</td>
</tr>
<tr>
<td>wish</td>
<td>6:17 8:12</td>
</tr>
<tr>
<td>work</td>
<td>3:14 14:1</td>
</tr>
<tr>
<td>written</td>
<td>8:13 17:20 24:5 32:19 33:7 310 34:2</td>
</tr>
</tbody>
</table>

| Z | 0 |
| 1 |

| 1:17 14:13,24 |
In Re: Second Main Operating Base Beddown of the KC-46A Tanker Aircraft

Thursday, March 6, 2014
6:02 p.m.

Portsmouth City Hall
Junkins Avenue
Portsmouth, New Hampshire 03801

Court Reporter:

Michelle Perrier Cole
Licensed Court Reporter
NH LCR No. 78 (RSA 310-A)
JUDGE ADVOCATE: Colonel William Muldoon

PRESENTERS:

1st Lieutenant Aaron McCarthy
Colonel Paul Hutchinson
Andy Smith, 157th Air Refueling Wing’s Environmental Manager
Anne Rowe, National Guard Bureau

OFFICIAL APPEARANCES:

Mayor Bob Lister
Ms. Kerry McHugh, Office of Governor Hassan
Ms. Sherri Pierce, Office of Senator Shaheen
Mr. Bud Fitch, Office of Senator Ayotte
Mr. Josh Denton, Office of U.S. Representative Shea-Porter
Mr. Sean Downey, Office of U.S. Representative Kuster
Major General William Reddel, the Adjutant General for the State of New Hampshire
Brigadier General Carolyn Proutzian, Deputy Adjutant General and the Commander of the Air National Guard for the State of New Hampshire
Major General (ret.) Joe Simeone
Major General (ret.) Mark Sears
Colonel (ret.) Dick Martel

SPEAKERS:

Mayor Robert Lister, Portsmouth
State Senator Martha Fuller Clark
Ms. Kerry McHugh, Office of Governor Hassan
Ms. Sherri Pierce, Office of Senator Shaheen
Mr. Bud Fitch, Office of Senator Ayotte
Mr. Josh Denton, Office of U.S. Representative Shea-Porter
Mr. Sean Downey, Office of U.S. Representative Kuster
Ms. Renee Plummer
Mr. Doug Bates
Mr. Ron Snow
SPEAKERS:

Ms. Karen Benedetti, Office of Gordon Simmons, President and CEO of Service Credit Union
Mr. Bill Hopper
Mr. John Frink
Dr. Melvin Frostkoff

(Letters read into the record as part of this transcript on behalf of Governor Hassan, Senator Shaheen, Senator Ayotte, U.S. Representative Shea-Porter, U.S. Representative Kuster, and Gordon Simmons were not read verbatim, therefore, no quotes are used.)
LIEUTENANT MCCARTHY: Good evening, ladies and gentlemen. Welcome to the public hearing of the Draft Environmental Impact Statement for the second main operating base beddown of the KC-46A Tanker Aircraft.

I am First Lieutenant Aaron McCarthy with the 157th Air Refueling Wing's Public Affairs Office located in Portsmouth/Newington, New Hampshire.

We'd like to remind you to please enjoy the refreshments provided out in the lobby. The restrooms are outside in the lobby down to the right, and smoking in this facility is prohibited.

Before starting the formal portion of tonight's hearing, I ask that cell phones be turned off or placed in silent mode. During the proceedings, please do not interrupt the speakers and please be respectful of those providing oral comments. We will do our best to give everyone an opportunity to speak in the time we have. Thank you.

COLONEL MULDOON (Judge Advocate): Good evening. My name is Colonel Bill Muldoon. I am a military judge. I'm the Chief Regional Military Judge for the Western region of the United States Air Force from Nellis Air Force Base, Nevada. Before we begin, I'd
like to make clear from the outset that I am here in my capacity as a federal judge solely to act as moderator in this hearing. The United States Trial Judiciary is an independent organization. I do not work for or with anyone in this room. I am not a member of this command or assigned to this installation. I report directly to the Chief Trial Judge of the United States Air Force and to the Judge Advocate General of the United States Air Force. I have had no involvement with the preparation of this proposed action or the Environmental Impact Statement. I have not rendered legal advice or assistance with respect to this action. I am here tonight to serve as an independent public hearing officer regarding the Draft Environmental Impact Statement. I am responsible for providing everyone an opportunity to comment tonight on the proposed action, alternatives, and associated environmental analysis. This public hearing provides you with the formal opportunity for comment. I do not make any recommendation or decision on whether the proposed project should be continued, modified, or abandoned or how the Environmental Impact Statement should be prepared. Therefore, during the
public comment portion of this hearing, I urge you to
direct your comments to the individuals on our panel.
The purpose of this public hearing is to provide
you with an opportunity to comment on the findings of
the Draft Environmental Impact Statement. More
importantly, this hearing is a formal opportunity for
you to get involved in the NEPA process. This hearing
is scheduled to conclude at 8 p.m., but if necessary,
will continue until all comments have been received.
This formal session may end before 8 p.m. if there are
no more comments. However, the overall hearing,
including materials to be viewed and discussion with
team members individually, will continue until 8 p.m.
unless all interested parties have left the meeting.

If, following the presentation, any members of
the audience have questions regarding clarification of
any points you may not have understood, you may fill
out a question card, which can be found at the
registration desk or on several tables scattered
throughout the room or you may raise your hand now and
someone will bring a card to you. Once you have
filled out your question on the card, please raise
your hand again and one of our staff will collect it
from you. Only questions regarding clarification of
the topics presented will be entertained. General
comments on the action will not be, but you may
present your comment orally later in this hearing or
submit it on one of the comment cards found throughout
the room.

If there are questions, we will take a 10-minute
break to allow Colonel Hutchinson, the 157th Air
Refueling Wing staff, National Guard Bureau staff, and
the environmental consultants to review any questions
submitted and identify the best person to answer each.

After we break, we will answer any questions we
have received on the question cards from the audience.
Once questions have been answered, members of the
audience who checked the box on the registration cards
indicating their desire to provide oral comments will
be asked to come forward.

Registration cards were available at the
registration table as you came in. If you have not
filled out a card or indicated your desire to speak
and wish to do so, please raise your hand and a card
will be provided to you now.

In addition, there are materials at the door
describing the official Air National Guard proposal,
the description of the proposed action and
alternatives, and information on locations where you
can review the Draft Environmental Impact Statement
after tonight, if you have not already done so.

To ensure that all interested citizens have an
opportunity to speak, I will limit the comments to
five minutes per person. If time allows after
everyone has had an opportunity to provide their
comments, you may have more time. You will only be
allowed to comment when your name is called. Elected
officials and individuals representing organizations
will be called upon first.

A court reporter is recording this proceeding
for the record. We will take a 10-minute break every
hour to allow the court reporter to take a break.

At this time, I would like to introduce and
recognize public officials that are present at the
hearing. Mayor Bob Lister; from the Office of
Governor Hassan, Ms. Kerry McHugh; from the Office of
Senator Shaheen, Ms. Sherri Pierce; from the Office of
Senator Ayotte, Mr. Bud Fitch; from the Office of U.S.
Representative Shea-Porter, Mr. Josh Denton; from the
Office of U.S. Representative Ann Kuster, Mr. Sean Downey; Major General William Reddel, the Adjutant General for the State of New Hampshire; Brigadier General Carolyn Protzman, Deputy Adjutant General and the Commander of the Air National Guard for the State of New Hampshire; Major General (ret.) Joe Simeone; Major General (ret.) Mark Sears; and Colonel (ret.) Dick Martel.

As mentioned earlier, restrooms are located in the lobby to the right and refreshments can be found near the check-in desk.

Throughout this hearing, I ask you to keep in mind that this public hearing is not a debate or any type of vote on the Draft Environmental Impact Statement. Nor is it primarily designed as a question and answer session, although legitimate clarifying questions may be asked as I discussed earlier. At the conclusion of this hearing, you may discuss the findings of the Draft Environmental Impact Statement in greater detail with the staff members of the 157th Air Refueling Wing, National Guard Bureau, and the consultant's technical representatives.

If you do not wish to provide oral comments,
written comments will be accepted and will be given equal consideration. Even if you do make an oral statement, you are welcome to provide a written statement to reaffirm the comments you made and any additional comments you would like to make. Written comments should be sent to the National Guard Bureau at the address printed on the comment form that you filled out or on the website. The address is also provided on the comment sheets. All relevant and substantive comments will be included in the administrative record and will be addressed in the Final Environmental Impact Statement. The formal comment period for the Draft Environmental Impact Statement ends on March 24, 2014. It is very important for you to realize that the New Hampshire Air National Guard and the National Guard Bureau will be open and responsive to your comments and concerns throughout the NEPA process.

It is a requirement to inform you that under the Privacy Act of 1974, your name, address, and comments, if provided during of the NEPA process, will be used to compile mailing lists for sending project reports, brochures, and other information concerning the
Environmental Impact Statement to those individuals and groups who might be interested; forwarded to federal, state, and local agencies and elected officials; the addresses of private individuals submitting comments will not, and I repeat, will not be published in documents released to the public.

Failing to provide the information requested would prevent delivery of documents and notification of further developments. However, documents are available on the project website and in select libraries with locations public -- excuse me -- with locations published in local newspapers.

Now, before we proceed with the presentation, if you have not reviewed a copy of the Draft Environmental Impact Statement, copies are able for you to review while in attendance at this hearing at each of the information booths. Further, you may pick up a CD with the document on it at the check-in desk. There's also a list of locations where the Environmental Impact Statement is provided for public review after this meeting in the informational handouts. If you did not receive other informational materials that were available at the entrance, please
raise your hand and someone will provide them to you.

At this point, I will turn this over to Colonel Hutchinson, the Commander of the 157th Air Refueling Wing.

COLONEL HUTCHINSON: Thank you, Your Honor.

Good evening. My name is Colonel Paul Hutchinson, and I am the Wing Commander for the New Hampshire Air National Guard's 157th Air Refueling Wing at the Portsmouth International Airport. On behalf of the New Hampshire Air National Guard, I want to welcome you all to this important public meeting regarding the Draft Environmental Impact Statement for the proposed beddown of the KC-46A Tanker Aircraft. It is our goal this evening to provide you with information about the proposed aircraft beddown and the National Environmental Policy Act, commonly referred to as NEPA, and to ensure your maximum participation and understanding of this process.

I would like to introduce you to individuals who are here this evening to assist in answering questions about the aircraft conversion and to facilitate your participation in commenting on the findings of the Draft Environmental Statement.
1 You have already met Colonel William Muldoon, Judge Advocate from Headquarters Air Force, Joint Base Andrews, Maryland. He will be presiding over this evening's hearing. Next, we'll have Mr. Andy Smith, the 157th Air Refueling Wing's environmental manager, who will provide an overview of the proposed action and alternates. Anne Rowe from the National Guard Bureau, who will be explaining some of the key considerations regarding the National Environmental Policy Act. We also have another -- a group of other individuals who have been involved in the development of the Environmental Impact Statement. They are from the New Hampshire Air National Guard, the National Guard Bureau, and Cardno TEC, our environmental consultants. They will be available after the current formal session to answer questions and to help facilitate the process. You will find that any member in uniform or with an EIS name tag can either answer your question or direct you to the right person to answer your question.

The greater Portsmouth and Newington community is important to the 157th Air Refueling Wing, and community input is valuable to the environmental
analysis. Portsmouth International Airport is the current home of the 157th Air Refueling Wing. Many of our current as well as retired members live in the communities of Portsmouth and Newington, and we are -- we are embedded as part of this community.

Many of you have consistently been supportive of the military and of the 157th Air Refueling Wing. This community has helped foster the development of the New Hampshire Air National Guard as well as the 157th Air Refueling Wing over the years. This support is now and has been deeply appreciated. Like you, our members live and work in the community and care deeply about its future. This is home to all of us.

The proposed action is for the Air Force to replace a portion of the existing KC-135 air refueling fleet with the KC-46A, which will be a new aircraft to the Air Force fleet. As such the Air Force plans to identify locations for the beddown of a formal training unit, also known as FTU, and the First Main Operating Base, also known as MOB 1, which will both be led by active duty units. This has been the subject of a separate Environmental Impact Statement and is not part of the discussion tonight. The Air
Force will also beddown the KC-46A at a Second Main Operating Base, also known as MOB 2, which will be led by an Air National Guard unit. This hearing is regarding the Second Main Operating Base beddown only, as the FTU and the MOB 1 beddown are the subject of a separate action.

The National Guard Bureau has prepared this Draft Environmental Impact Statement to analyze the potential impacts of the MOB 2 KC-46A beddown. The Draft Environmental Impact Statement analyzes potential environmental consequences that could result from the proposed beddown of 12 KC-46A aircraft at any of the five alternate Air National Guard installations, including Forbes Air National Guard Station, Kansas; Joint Base McGuire-Dix-Lakehurst, New Jersey; Pease Air National Guard Station, New Hampshire; Pittsburgh Air National Guard Station in Pennsylvania; and Rickenbacker Air National Guard Station, Ohio.

The no-action alternative is required by the National Environmental Policy Act and was evaluated also to provide a baseline to decision makers. The no-action alternative evaluates the environmental
consequences of not basing the KC-46A aircraft at any installation. Under the no-action alternative, no installation would be selected to host the KC-46A for the Second Main Operating Base.

In 2013, the Secretary of the Air Force announced Pease Air National Guard Station as the preferred alternative for the KC-46A Second Main Operating Base. The United States Air Force selected Pease Air National Guard Station on an operational analysis, results of site surveys, and military judgment factors. We would like to emphasize that although the preferred alternative for the beddown has been announced, no final decision has been made on the basing of the KC-46A aircraft currently under the analysis of this Draft EIS. Until a final decision is made by the Secretary of the Air Force, all alternatives are still under consideration and are treated equally.

As shown on the poster boards, as a result of the proposed action, there would be a change to the type of aircraft based at the selected location; a change in the mix of aircraft using the associated airspace; changes to staffing and manpower at the
selected locations; changes to the number of airfield
operations; as well as minor required construction,
building renovation, and facility demolition. There
would be no new or modified airspace required to
support this action. The proposed aircraft beddown is
estimated to begin in late 2017 or 2018 for the
National Guard Bureau.

If Pease Air National Guard Station is selected
for the MGB 2 KC-46A beddown, 8 KC-135 aircraft would
be replaced by 12 KC-46A aircraft, personnel would
increase by approximately 171 individuals, total
airfield operations would increase by 7 percent, and
the acreage off airport-controlled property within the
65 decibel day/night average sound level noise contour
would increase by 4 acres.

If Pease is not chosen for the beddown of the
KC-46A Tanker Aircraft, the KC-135 will remain at the
base for the foreseeable future.

Again, I'd like to thank you for your attendance
and your interest this evening. Please let me know if
I can be of any further assistance either during or
after tonight's formal proceedings conclude. With
that, I will turn the hearing over to Mr. Andy Smith,
the environmental manager for the 157th Air Refueling Wing.

MR. SMITH: Thank you, Colonel Hutchinson. Good evening, ladies and gentlemen. Welcome to the public hearing for the Draft Environmental Impact Statement. As the Commander indicated, I am Mr. Andy Smith, and I serve as the environmental manager for the 157th Air Refueling Wing. As a member of the Air Refueling Wing and of the local community, I am very interested in what happens here as well. This is an important occasion in which to discuss this topic, and I appreciate your interest, your participation, and your comments.

The Draft Environmental Impact Statement evaluates impacts to 11 resources by the proposed action to include noise, air quality, safety, biological resources, and cultural resources. Other resources evaluated can be reviewed in the Draft Environmental Impact Statement. As a result of the draft environmental analysis, we do not expect the proposed action to have any significant impacts to any resources.

I will speak briefly to most of the resources I
must mentioned, however, more in-depth information is
provided in the Draft EIS document for all 11
resources.

The noise poster board shows baseline noise
contours from existing KC-135 aircraft operations and
proposed noise contours from KC-46A aircraft
operations at Pease. The analysis was based on 8,040
allocated flying hours for each unit, which is a
conservative estimate, meaning that flying hours would
most certainly be below that number for each
alternative.

As you can see, the noise contours would
increase slightly with an addition of 4 acres of
uninhabited land being affected off the installation.
Pease Air National Guard Station is located in a
maintenance area for ozone, which is a criteria
pollutant as designated by the Clean Air Act.
Projected emissions from the proposed action would not
be expected to exceed established air quality
standards. Any increase in air emissions would be
below the established thresholds for our area and
would not be significant.

Under this alternative, minor construction and
renovation of facilities would be required, resulting
in approximately 3 acres of temporary soil disturbance
and 0.5 acre of new impervious surface. There would
be no impacts to wetlands, floodplains, federally
listed species, or cultural resources. In addition,
the Air National Guard has initiated
government-to-government coordination with all
federally recognized tribes affiliated with the area.
To date, from the responses we have received, no tribe
has indicated that any traditional resources occur in
the project area.

We look forward to your input provided from the
public and affected communities as we proceed through
the NEPA process. Once the requirements of NEPA are
complete, the Air Force will make its final basing
decision.

Thank you for your attention, and I will now
turn the presentation over to Ms. Anne Rowe, the
National Guard Bureau project manager for the
Environmental Impact Statement, to discuss the NEPA
process.

MS. ROWE: I will briefly summarize the NEPA
process. The National Environmental Policy Act,
commonly referred to as NEPA, aids federal agency
decision makers in determining the future course of
federal actions. It's the objective of NEPA to ensure
that the decision makers have the environmental
information and public input to facilitate informed
decisions.

The goal of preparing an Environmental Impact
Statement is to support sound decisions throughout the
assessment of potential environmental impacts, as well
as involving the public in the process. The results
of this analysis and other relevant factors will be
considered before a decision is made by the Air Force
on this proposal.

The Draft Environmental Impact Statement, or
Draft EIS, which was made available for your viewing
at a number of public locations beginning on February
7, 2014, presents the findings and analysis of the
proposed action and alternatives on the environmental
criteria set forth by NEPA. Tonight's public hearing
is the second of two public comment forums that
provide the public an opportunity to comment on the
scope and content of the Environmental Impact
Statement. The first forum, called a scoping meeting,
was held at the Portsmouth Public Library and at other alternative locations in June of 2013. Comments have also been solicited from local, state, and federal agencies that have jurisdiction over particular resources, such as air and water quality. That process began with the release of the Notice of Intent to Prepare an Environmental Impact Statement on May 17, 2013, and continues today with public and agency review of the Draft Environmental Impact Statement.

This hearing gives the potentially affected communities an opportunity to comment on the analysis that has been presented in the Draft Environmental Impact Statement.

The formal comment public -- the formal public comment period ends on March 24, 2014. Following this period, oral and written comments received from both the public and government agencies will still be reviewed by the Air Force and National Guard Bureau. We will continue to accept comments throughout the NEPA process. However, it is more difficult to give your comments the consideration they deserve as the process winds down closer to the release of the Final
Environmental Impact Statement, or Final EIS.

After all the comments on the Draft Environmental Impact Statement have been addressed, substantive comments will be reviewed and responded to in the Final EIS. The Final Environmental Impact Statement will be released to the public for a 30-day public -- for a 30-day period before a Record of Decision is signed by the Secretary of the Air Force or their designee. The Record of Decision is scheduled to be signed in June 2014.

This concludes the explanation of both the KC-46A beddown proposal as well as the NEPA process. I now return the program back to our hearing officer.

COLONEL MULDOON (Judge Advocate): When the hearing began, we did not have any questions asking for clarifications about the Draft EIS. If anyone has a question, I'd ask that they raise their hand at this point in time so a staff member can get you a question card to fill out.

And seeing that there are no hands raised, I would like to begin the formal comment portion of the hearing. I will call the speakers in the order in which they signed up, with any elected officials
having the opportunity to speak first.

So the court reporter can accurately capture
your comments, please clearly state your full name and
the full name of your organization you represent, if
any. Do not provide any other personal information
such as your home address or phone number. Your oral
comments will be used to develop a transcript and
permanent record of this meeting. Again, as a
courtesy to those others who have registered to speak,
please limit your comments to five minutes. This
applies to all of our speakers. Keep in mind, you are
welcome to submit written comments and there are no
page limits. The Air Force will give equal weight to
all comments whether they're oral, written, or both.

You do not have to speak for the full five
minutes; however, if you choose to speak for the full
five minutes, I will advise you when your five minutes
are almost up. Following your comments, I will ask
that you sit down so I may call on the next speaker.

If you think you'll have more comments than you can
present in the time allotted, make the most important
comments first, and follow up by submitting the
remainder of your comments in writing, if you wish.
Again, please understand there's no page limit to written comments. Equal weight will be given to both oral and written comments. They will all become part of the official record and will be included in the Final Environmental Impact Statement.

I would now like to begin. The first speaker is Mayor Bob Lister.

MAYOR LISTER: Thank you, sir. Welcome everyone to the City of Portsmouth and City Hall. My remarks will be brief, but I could not let this opportunity pass without again congratulating the New Hampshire Air National Guard, the staff, and the officers who are involved in the New Hampshire Air National Guard. So we welcome you all to the City of Portsmouth and congratulate you again. Thank you for the opportunity to -- provided for this public hearing. It's very important that our citizens hear about what's happening with the Environmental Impact Statement, and we certainly appreciate the audience and people who will watch this at another time.

I'd also like to just be able to mention that not only is this public hearing important, but because Portsmouth and the surrounding area has had a long
history of military presence, we're very proud to have
this hearing tonight and very proud that there may be
an opportunity for the KC-46A to be in the Portsmouth
area, and certainly, because of the public hearing,
taking into consideration the environmental impact on
the City of Portsmouth and the surrounding area.

I urge all citizens to support this proposal, to
support the New Hampshire National Guard as they have.
We appreciate all that you're doing in our community.
You are definitely part of our community. This is
definitely a team effort, and we appreciate your
presence. And we look forward to supporting you in
your future endeavors, working with you, and being
part of this new program. So thank you very much.

COLONEL MULDOON (Judge Advocate): Thank you,
Mayor.

State Senator Martha Fuller Clark.

SENATOR CLARK: Thank you very much for the
opportunity to speak, and thank you all for being here
this evening. I have a letter that I would like to
read into the record.

Dear Members of the National Guard Bureau, I am
writing in support of bringing the Air Force's new
tankers, the KC-46, to the Pease Air National Guard base at the Pease Tradeport Center, Portsmouth, New Hampshire. I believe that the 157th Air Refueling Wing is ideally suited to be the first national guard unit in the country to field the KC-46. The 157th has established a track record of unparalleled excellence, winning the Air Force’s Outstanding Unit Award 11 times. And to those of you who are here from the unit, my congratulations and my awe.

In just the last two years, the Pease Air National Guard Base has reduced energy consumption by approximately 35 percent through facility modification and new construction projects. The KC-46, with its new technologically improved design based on the more fuel-efficient Boeing 767 airliner, will give Pease the opportunity to continue this trend and conserve our valuable natural resources.

The new tanker also adds increased cargo and aeromedical evacuation capabilities, which can provide potentially life-saving capabilities in national disasters and for overseas missions. Pease is the ideal location to provide such support to our nation, close to strategic refueling tracks for missions to
the Middle East, Europe, and Africa. Its exceptional location allows for missions to be shorter, saving millions in fuel costs, thereby providing an outstanding value for our country.

The 157th Wing is a vital aspect of the seacoast economy, generating revenue for small businesses and services. It is also popular with thousands who work at or around Pease. Currently, the Pease ANGB provides approximately $135 million to the local economy. Bringing the KC-46 to Pease will add over 100 new jobs and provide an additional 7 million in annual payroll to the region. It will also add 45 million in military construction to the local economy.

Clearly, having the Air Force’s number one acquisition, the KC-46, based here in New Hampshire will also help to ensure the continued vitality of Pease and the local seacoast communities for many years to come. I highly recommend to the committee the selection of Pease and the 157th Air Refueling Wing as an outstanding site for the bedding of the new KC-46 tankers.

Most sincerely, Martha Fuller Clark, State Senator, District 21.
Thank you.

COLONEL MULDOON (Judge Advocate): Thank you, Senator.

SENATOR CLARK: You're welcome.

COLONEL MULDOON (Judge Advocate): From the governor's office, Ms. Kerry McHugh.

MS. MCHugh: My name is Kerry McHugh. I am here on behalf of Governor Hassan. I'm here to read a letter from the governor.

Dear Friends, I regret that I am not able to be with you in person for today's public hearing, but on behalf of the State of New Hampshire, I write to express my strong support for the beddown of the new KC-46A Aircraft at Pease Air National Guard Base in Newington, New Hampshire.

The Pease Air National Guard Base is the best location for the KC-46A Air Refueling Tankers. The base is strategically located on the East Coast of the United States, translating to considerable time and cost savings for all eastbound support operations. In addition, much of the infrastructure needed to successfully implement the KC-46A is already in place at Pease. This infrastructure includes the longest
Air National Guard runway and parking ramp in the Northeast, air traffic control, security, and customs and fire protection.

The 157th Air Refueling Wing and the 64th Air Refueling Squadron stationed at Pease are the best options to support the operation of the new KC-46A. The 157th Air Refueling Wing is a model unit made up of brave, skilled airmen who consistently exceed expectations in the participation of both military and homeland defense operations. Since their assignment to the 157th Air Refueling Wing in 2009, the 64th Air Refueling Squadron has fully integrated into the Wing and their performance has rated as outstanding.

Bringing the KC-46A Air Refueling Tankers to Pease will also benefit our seacoast communities and economy, bringing more jobs to the region and helping the base generate an even greater positive economic impact.

Our state has a proud tradition of military service dating back to the founding of the New Hampshire National Guard nearly 400 years ago. Today, the men and women of our Air National Guard continue this tradition of military service. Our New Hampshire
Airmen and soldiers are true heroes who have proven their dedication and courage time and again.

The assignment of the KC-46A tankers to Pease will be good for the Air National Guard, the State of New Hampshire, and our economy. It is an honor to be selected by the Air Force to base the KC-46A tankers at Pease.

With every good wish, Margaret Wood Hassan, Governor.

COLONEL MULDOON (Judge Advocate): Thank you, Ms. McHugh.

From the Office of Senator Shaheen, Ms. Sherri Pierce.

MS. PIERCE: Thank you, sir. The senator regrets that she is unable to be here tonight, but she asked me to share this letter on her behalf.

Dear Friends, Thank you for the opportunity to comment on the basing of the Air Force's new KC-46A Refueling Tanker at Pease Air National Guard Base. I have been a strong advocate for Pease's selection as one of the first bases to locate this new tanker, and I am pleased to continue supporting this critical program.
Pease and the 157th Air Refueling Wing have been providing continuous air refueling coverage to critical combatant commands overseas since September 11, 2001. The 157th currently flies eight KC-135 Stratotanker aircraft and nearly 1,000 personnel support the mission on a continuing basis with distinction and pride. Pease's preliminary selection as one of the first locations for the KC-46A underscores the strong record of success.

Pease is the preeminent location for basing of the KC-46A based on its experienced personnel, open airspace, close partnership with an active associate unit, modern facilities, significant ramp space, long runway, cost effectiveness, and strategic location to support current and future requirements for the military. No other unit in the Northeast can provide the level of aircraft utilization more cost effectively than the 157th Air Refueling Wing.

In selecting Pease as one of the first locations for the new tanker, the Air Force has expressed its confidence that the personnel at Pease will continue a proud tradition of excellence and service with the new, state-of-the-art aircraft. I know the Pease
community will rise to meet the challenge of basing
the KC-46A, and I stand ready to work with the U.S.
Air Force, the Air National Guard, and community
leaders to ensure a smooth transition to this new
generation of tankers.

Sincerely, Jeanne Shaheen, United States
Senator.

COLONEL MULDOON (Judge Advocate): Thank you,
Ms. Pierce.

From Senator Ayotte's office, Mr. Bud Fitch.

MR. FITCH: Good evening. Thank you. I have a
brief statement from the senator, and then we will
provide for the record a copy of the joint letter from
Senator Shaheen and Senator Ayotte that was sent
yesterday to Lieutenant General Stanley Clarke, the
Director of the Air National Guard.

Senator Ayotte would like to put the following
statement into the record: I want to thank the
Environmental Impact Statement panel for coming to
New Hampshire to learn more about Pease and the
readiness of the 157th Air Refueling Wing to host the
KC-46A. I also want to thank the members of the
general public for attending this important hearing.
I will regret that votes in Washington, D.C., precluded me from being with you this evening. I want to express my strongest possible support for bringing the KC-46A to Pease Air National Guard Base.

As Senator Shaheen and I stated in our letter yesterday to the Director of the Air National Guard, Pease boasts an optimal strategic location, a top-performing air refueling unit, an absence of environmental concerns, and an incredibly supportive community and congressional delegation. I look forward to working with the Air National Guard to bring the KC-46A to Pease.

And I will submit for the record the joint letter from the two senators.

COLONEL MULDOON (Judge Advocate): Thank you.

Thank you, Mr. Fitch.

From the Office of United States Representative Shea-Porter, Mr. Josh Denton.

MR. DENTON: Thank you, Colonel. The Congresswoman couldn't be here tonight because she's in D.C. today, but she asked me to read this letter on her behalf.

Dear Friends, Thank you for inviting me to the
public hearing on the Draft Environmental Impact

Statement for the KC-46A Pease basing proposal. I
regret that I cannot be with you in person this
evening.

I would like to express my continued support for
the basing of the KC-46A Refueling Tanker at Pease Air
National Guard Base. I have been a strong advocate
for Pease because it is the ideal candidate for the
KC-46A due to its proximity to operational and
training refueling tracks, its aircraft-related
infrastructure, its training flight simulator, and its
active duty association. In addition, the 157th Air
Refueling Wing at Pease has received the prestigious
Air Force Outstanding Unit Award 11 times, most
recently last year. I believe that having the KC-46A
Refueling Tanker at Pease will be good for our nation
and for our area.

Thank you to the National Guard Bureau for
organizing, and City of Portsmouth for hosting, the
Environmental Impact Statement public hearing. I
would also like to thank all of the members of the
National Guard here tonight for your dedication to our
nation.
Sincerely, Carol Shea-Porter, Member of Congress.

COLONEL MULDOON (Judge Advocate): Thank you, Mr. Denton.

From the Office of United States Representative Kuster, Mr. Sean Downey.

MR. DOWNEY: Thank you, sir. Congresswoman Kuster regrets that she couldn't be here this evening, but she asked me to come and read this letter on her behalf.

Dear Friends, It is an honor to join my colleagues this evening in endorsing the 157th Air Refueling Wing and their home at Pease Air National Guard Base as the ideal location for the new KC-46A Refueling Tanker. In recent months, I have repeatedly enjoyed the opportunity to share this record of excellence that defines these guardsmen and their active duty component counterparts.

The 157th has long been a point of pride for us here in the Granite state. It is not an accident that this past year marked the 11th time that this unit has been recognized with the Air Force's Outstanding Unit Award. Their record of efficiency and effectiveness
is unparalleled by their peers in other states, and
their ability to rise to the challenge of these
difficult times is yet another reminder of their
exceptional qualifications.

In addition to the exemplary men and women who
would be responsible for this new aircraft, Pease
itself boasts a number of strategic advantages. Its
proximity to critical refueling tracks for United
States aircraft heading to the Middle East, Europe,
and Africa, and its massive fuel storage and aircraft
parking capabilities would ensure the Air Force saves
time and money as we look towards a new age of
readiness.

There is no doubt in my mind that New
Hampshire's guardsmen have created an ideal
environment for the KC-46A. Whether assessing their
record of excellence or the strategic advantages of
Pease, I cannot imagine an outfit more suited for this
important assignment.

I want to commend the New Hampshire Air National
Guard on their continued service to their state and
country, and I want to ensure the Air Force knows that
when they are looking for the best, they need look no
further than the men and women of the 157th Air
Refueling Wing.

Sincerely, Ann McLane Kuster, Member of
Congress.

COLONEL MULDOON (Judge Advocate): Thank you,
Mr. Downey.

Ms. Renee Plummer.

MS. PLUMMER: Good evening. I am Renee Plummer,
and I am here. And I would have flown all over the
world just to be here for you all.

When the former Pease Air Force Base closed down
in the early '90s, many locals felt that this area
would turn into a wasteland. However, we at 2
International saw an opportunity to try and cultivate
a successful business-friendly area which could
provide a boom to the local economy. But while we
have achieved our goal to help transform Pease Air
Force Base into the thriving Pease International
Tradeport, we must acknowledge that 157th Air
Refueling Wing has been an integral part of that
success.

Every day we know that the tankers are up there
refueling aircraft on their missions to keep us
safe -- see, this is where I get very emotional for
what you do -- and we are happy to drive to work
side-by-side with the Air National Guard's women and
men here at Pease. And because the existing ANG wing
is already here, all the facilities and
infrastructures are in place to receive the new KC-46A
plane. Logistically, this is a no-brainer, and
economically, this would have a wonderful impact on
the area by creating new jobs, and to me, the math is
pretty simple.

We have been fortunate enough to see Pease
Tradeport become a commercial success, but it would
not be the same place without those Air National Guard
planes and the people who make them work so well. I
fully support the efforts of the Pease Air National
Guard Base to acquire the KC-46A Pegasus Tanker, and I
look forward to continuing our partnership in the
future.

Renee Plummer. Thank you.

COLONEL MULDOON (Judge Advocate): Thank you,
Ms. Plummer.

Mr. Doug Bates.

MR. BATES: My name is Doug Bates. I'm
president of the Portsmouth Chamber of Commerce. I'm here on behalf of the Greater Portsmouth Chamber.

It is the mission of the Greater Portsmouth Chamber to advocate for members on the issues of community concerns effecting business. This is certainly one of them. We have many fundamental objectives, but we provide leadership and economic development in the Portsmouth area and in the seacoast. And we try to effectively influence decisions about legislative regional interests to our members, some 900 members.

We have a long history as an advocate for Pease Air National Guard and believe firmly that this base is critical not only to our nation's security but also to our region's economic well-being. As such, we strongly support the selection of Pease in Portsmouth, New Hampshire, as the base for the Air Force's new KC-46A Midair Refueling Tankers. Not only is Pease well-positioned and prepared to welcome these new aircraft, but the selection of Pease would have tremendous economic and other benefits to the region.

First, the selection of Pease would bring much needed new jobs to our region, including 70 full-time
and 50 part-time jobs, resulting in an additional $7 million to the local payroll. And you've heard earlier that they already contributed quite a bit, so it's always helpful to get a little bit more.

In addition, if Pease is selected, our country's -- our region's economy and local communities will benefit from 45 million in military construction. Of course, the selection of Pease would also bring a variety of other benefits to our region, including enhanced FEMA Region 1 response and increased cargo and aeromedical evacuation capacity.

We are very proud as the Greater Portsmouth Chamber to add our voice to those of Governor Maggie Hassan and all of the entire New Hampshire Congressional delegation in supporting the selection of Pease Air National Guard Base as the new home of the KC-46A. Thank you very much.

COLONEL MULDOON (Judge Advocate): Thank you, Mr. Bates.

MR. RON SNOW: Thank you. My name is Ron Snow, and I'm the director of marketing at the Brain Injury Association of New Hampshire. And one of my jobs
there is I'm also the associate director of the
Service Credit Union Boston/Portsmouth Air Show, and I
just wanted to speak upon our very strong support of
Pease getting the KC-46. As you know, the air show is
a pretty complicated process, whereas, you might know,
it's a very complicated process to put it together.
Our last air show, we had over 60,000 people attend
and without the National Guard support, there is no
way we'd be able to ever make it happen. The air
show -- the proceeds from the air show went to over 41
local charities and -- and without them, there's
just -- again, there's no way we'd be able to exist.

One story that I'd like to pass along about the
character of the folks at Pease is on the Friday of
the air show, we do a specialty show for the Make A
Wish kids, and it gets a little hectic on that Friday
morning, and we're supposed to have some folks come
and do face painting for some of the kids. And I
looked over and I saw two guardsmen standing by the
fence at the flight line, and I went over to them and,
I go, hey, could you guys come do camo paint for a
bunch of these kids? And they're, like, absolutely.
They came over, they spent three hours painting up
these kids' faces. And kind of the funny story is, like, have you guys ever put camo paint on? And they're, like, no, we've never done that. So okay. But just do your best. And when I saw the faces of those kids, I knew that we were dealing with some very special people. And I certainly want to -- you know, from the air show side, we want to certainly thank you and wish you the continued support. Thank you.

COLONEL MULDOON (Judge Advocate): Thank you, Mr. Snow.

Ms. Karen Benedetti.

MS. BENEDETTI: Thank you. My name is Karen Benedetti. I'm the vice president of marketing at Service Credit Union. Tonight, I am reading comments from Gordon Simmons, president and CEO of Service Credit Union.

Good evening, all. I am sorry I could not be present for this very important community forum. I'm Gordon Simmons, the president and CEO of Service Credit Union and secretary/treasurer of the board of directors. I joined the Credit Union in 1974, managing operations in Germany, then relocated to Portsmouth, New Hampshire, in 1995 to serve as
president and CEO, my current position.

I have served as director and chairman of the Defense Credit Union Council, Chairman of the Armed Forces Financial Network, and have spent many years in direct contact with Air Force and Army command headquarters, military community leaders and commanders, as well as Department of Defense liaisons in Washington, D.C.

And I am a long-term resident of Portsmouth, New Hampshire. Thus, I am keenly aware of the role of the military in protecting our great nation as well as assimilating into the community at large.

Service Credit Union opened its doors on Pease Air Force Base in 1957. Today we continue to serve Pease, communities across New Hampshire, and military worldwide. I and my board of directors are keenly aware of the importance of a robust refueling capability so that the U.S. forces would not be limited in their ability to provide a global reach.

The new KC-46 Tanker would add increased cargo and aeromedical evacuation capacities, providing potential life-saving capabilities in national and international disasters.
The U.S. Air Force has identified Pease Air National Guard Base, home of the 157th Air National Guard -- sorry about that -- as a preferred alternative for the KC-46 beddown based on an environmental analysis, operational analysis, site surveys, and military judgment factors. Pease is the ideal location to provide support to the nation given its proximity to critical refueling tracks for missions in the Middle East, Europe, and Africa. The location allows for missions to be shorter, saving time and money, thus resulting in outstanding value for the country.

We understand that the beddown for the Pegasus needs to be sound, along a whole host of environmental impacts. As such, we have reviewed the requirements of the environmental impact analysis process which will drive the Air Force’s final basing decision.

After a review of the Environmental Impact Statement, Service Credit is pleased to support the beddown of the KC-46 Aircraft to Pease Air National Guard based on no measurable negative impact to the community, including noise, air quality, safety, soil
and water, biological resources, cultural resources, land use infrastructure and transportation, and hazardous materials and waste. In fact, any new facilities and additions associated with this project will be implemented with more energy-efficient standards and utility systems than are currently in place.

Socioeconomically, there would be an uptick in economic activity associated with the construction activities at the 157th Air Refueling Wing installation, which would provide short-term economic benefits to the local economy.

The Pease Air National Guard Base is noted as providing approximately 135 million to the local economy. The Air National Guard expects the Pegasus coming to Pease will add an additional 45 million in construction and 7 million to annual payroll to workers within the region.

The KC-46 mission would add an additional 171 military positions, a 12 percent increase to existing 157 personnel. The community would welcome 233 family members and many purchasing homes in the surrounding communities.
The Air National Guard Base -- the Pease Air National Guard Base is the most logical base for the beddown of Pegasus and will ensure that Pease remains a leader in our nation's defense for many years to come.

Thank you.

COLONEL MULDOON (Judge Advocate): Thank you, MS. BENEDETTI.

Mr. Bill Hopper.

MR. HOPPER: Thank you. My name is Bill Hopper. I'm the airport manager with the Pease Development Authority here in Portsmouth and Newington, and I just want to speak on behalf of the support of Pease Development Authority and our support of the KC-46 Tanker program. The New Hampshire Air National Guard predates the PDA and has been a constant support and an extremely important presence in the Tradeport and seacoast communities. Many of the successes at the Portsmouth Air National Airport at Pease were largely possible because of the PDA and New Hampshire Air National Guard partnership.

The KC-135R has been one of the most reliable assets in the history of the U.S. military, and I look
forward to the continuation of the reliability and
future generations with the KC-46A. Pease is proud to
be an ideal location with the optimum facilities for
the U.S. military's tanker mission, and we are proud
to own and operate the airport that will host the
first rollout of the Guard’s KC-46As. Thank you.

COLONEL MULDOON (Judge Advocate): Thank you,
Mr. Hopper.

Mr. John Frink.

MR. FRINK: Yes, I'm John Frink. I represent
only myself, my bees, my vegetable garden, my animals.
I have a very small farm that's very close to the
north end of the runway, and I would like to comment
on the environmental impact that Newington has had
because of the installation.

I do respect and admire the Air National Guard.
They are good neighbors, far better than what we had
when we had Pease Air Force base. You only have to
get a little bit close to the Newington side of the
air base and you can see the pollution mediation
measures that have been taken and you see the
monitoring wells and things are not what they were.
But that is neither here nor there.
I would like to relate a story just for my credibility here. I attended a town meeting in Newington when the town was being asked to purchase a conservation easement on property owned by Ghuruda Khalsa, which is adjacent to the north boundary of Pease. And there was a person, a resident in Newington who was a former Air National Guard member and who spoke up, and he said, you know, before the town really gets too involved in purchasing this easement, it would probably be a good idea to have an environmentalist come out and look at the property because when I was at the Air National Guard, we dumped a lot of fuel on that property. Now, I know it's a policy, although I have not personally called the Air National Guard, to deny jettisoning of fuel, however, I get up in the morning and certain atmospheric conditions, and there's a very strong smell of kerosene.

Now, I've heard that this is because of the warm-up process and prevailing winds. I've also heard that it's necessary to jettison fuel in order to land or take off or something. But it's distressing. It's perhaps better that I would ask the
question rather than try to make a formal statement here, and the question would be, with the new tankers, which I'm sure are probably environmentally more friendly than the KC-135s, given that the 8 aircraft would be replaced by 12, would there be more of this jet fuel in the air over my house? I have honey bees that aren't doing well. That probably is the case almost everywhere. I have a vegetable garden, which is pretty much organic, and I think it's important to really consider the environment.

The City of Portsmouth and State of New Hampshire have always been very supportive of the military base there, but the people in Newington are the ones that really experience the downside. I have TCE in the water that runs through my property. I don't have to drink that water, but there are environmental impacts, and I just would like to be reassured that the amount of fuel in the air vapor is not going to increase due to the increased aircraft.

Thank you very much.

COLONEL MULDOON (Judge Advocate): Thank you, Mr. Frink. Dr. Melvin Prostkoff.

DR. PROSTKOFF: Thank you. My name is Dr.
Prostokoff. I've been a physician here on the seacoast for 30 years now. And when I first came, I was the neurosurgeon consultant for the military hospital at Pease, and also, I got involved with the ESGR, the Employer Support Group for the Guard and Reserve, and I work with the members of the Air National Guard unit here. I'm very proud to be involved with, although I've never worked for the National Guard in New Hampshire, and I strongly believe and support the KC-46A coming here for beddown at Pease.

The -- since 1991, I've been working on the joint civilian military mass casualty incident drills, and we run them every three years in conjunction with the Pease Developmental Authority, mandated by the FAA and their civilian military involvement. There's been nothing but excellence in everything that I see and everything that I do with the Air National Guard.

You've heard all the other speakers talk about environmental issues, strategic issues, the -- what KC-46A will do to help with the economy here, and everything else that's positive. But as a physician, I talk about the softer side. The other environmental issues. When I see a patient, I don't just operate on
an X-ray. I ask -- I do a physical exam, I ask
questions, I get a social history, a family history,
because that determines what you really are doing, why
you're doing the operation. Similarly, I look at the
whole environment, and this just has to be a fabulous
place for the KC-46A to come in.
The involvement of the Air National Guard and
the entire New Hampshire National Guard is integral in
the community of New Hampshire and has been for
hundreds of years. And they are strong leadership,
and the leadership has always been very forthcoming
and very, very forward-thinking. We have simulators,
we have room for the building for the simulator, for
the bigger simulator that's going to house the KC-46A
simulator. So a lot of training will be taking place
in the simulator and not in the air. Plus, the
aircraft will not always be bedded down here. They
will be overseas.
Their safety is fantastic. I'm a pilot. I fly
out of a little airport called Little Brook five miles
from here. Never been a problem. The people in our
control tower here are Air National Guard members and
civilian members with the Department of Defense with
much more training for handling large military
aircraft and civilian aircraft together than you get
at a normal airport with just FAA control tower
members.

The collaboration of civilian and military
activities -- we've got great neighbors here. All our
-- everybody who lives here has a neighbor who's a
member of the National Guard, either the Air Guard or
the New Hampshire Guard, and we're all here happy on
the seacoast. What we feel is that it's really,
really important, and as John Q. Citizen, I urge,
support, the beddown of the KC-46A.

I'm going to send a formal letter to the Joint
Base Andrews in support. I wanted to speak
extemporaneously today. Thank you.

And one more thing. This book, "Granite Wings:
History of the New Hampshire Air National Guard," came
out in 1998 for the first 50 years. I think with
everything that's taken place between 1998 and now,
when we end up getting the KC-46A here, it'll be time
for Volume II. Thank you.

COLONEL MULDOON (Judge Advocate): Thank you,
Dr. Prostkofoff. It's been an hour, so we're going to
take a break, 10-minute break. Coincidentally, that is all the speakers who have signed up. So if there is anyone who wanted to speak and hadn't signed up, if you could please check in at the registration desk and sign in, and we'll come back in 10 minutes to hear those additional speakers or to wrap up tonight's program.

(A short break was taken.)

COLONEL MULDOON (Judge Advocate): During the break -- excuse me, this hearing is reconvened.

During the break, we did not get any additional requests to be heard in the public portion of this hearing, so that concludes all of our commentators.

This evening's goal was to provide you with open communication and accurate information to ensure your informed participation in the NEPA process. I hope that we have achieved that goal. Please feel free to visit the information booth and ask any additional questions that you may have regarding this proposed action. You have an opportunity, during the formal comment period, ending March 24, 2014, to provide written comments. Please stop by the registration booth to get any additional materials you may need.
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Thank you, and have a good evening.</td>
</tr>
<tr>
<td>2</td>
<td>(Hearing concluded at 7:16 p.m.)</td>
</tr>
</tbody>
</table>
CERTIFICATE.

I, Michelle Perrier Cole, do hereby certify that the foregoing transcript is a true and accurate transcription of the within proceeding, to the best of my knowledge, skill, ability, and belief.

THE FOREGOING CERTIFICATION OF THIS TRANSCRIPT DOES NOT APPLY TO ANY REPRODUCTION OF THE SAME BY ANY MEANS UNLESS UNDER THE DIRECT CONTROL AND/OR DIRECTION OF THE CERTIFYING REPORTER.

Michelle Perrier Cole, LCR
TRANSCRIPT OF PROCEEDINGS

AIR NATIONAL GUARD PUBLIC HEARING
DRAFT ENVIRONMENTAL IMPACT STATEMENT
FOR THE SECOND MAIN OPERATING BASE BEDDOWN
OF THE KC-46A TANKER AIRCRAFT

TRANSCRIPT OF PROCEEDINGS

held on Tuesday, February 25, 2014, at the Pittsburgh
Airport Marriott, 777 Aten Road, Coraopolis,
Pennsylvania 15108, commencing at 5:00 p.m.

PANEL PRESENT:
Colonel Mark Allred, Hearing Officer
Colonel Edward Metzgar, Wing Commander
Colonel Thomas Hess, Maintenance Commander
Lt. Col. John Tower, Environmental Representative
Major Karen Bogdan, Public Affairs
Anne Rowe, Air National Guard

National Court Reporters, Inc.
888.800.9656
TRANSCRIPT OF PROCEEDINGS

* * * * *

PROCEEDINGS

(6:05 o'clock p.m.)

* * * * *

MAJOR BOGDAN: Good evening, ladies and gentlemen, and welcome to the public hearing for the Draft Environmental Impact Statement for the Second Main Operating Base Beddown of the KC-46A Tanker Aircraft.

I am Major Karen Bogdan, with the 171st Air Refueling Wing’s Public Affairs Office, located in Pittsburgh, Pennsylvania.

Please enjoy the refreshments provided. Restrooms are outside in the lobby, and smoking in the facility is prohibited.

Before starting the formal portion of tonight’s hearing, I ask that cell phones be turned off or placed in the silent mode. During the proceedings, please do not interrupt the speakers, and please be respectful to those providing oral comments. We will do our best to give everyone an opportunity to speak in the time that we have.

Colonel Mark Allred, Judge Advocate, will now begin the formal portion of tonight’s hearing.

National Court Reporters, Inc.
888.800.9656
TRANSCRIPT OF PROCEEDINGS

* * * * *

COLONEL ALLRED: Good evening, and thank you, Major Karen Bogdan. I am Judge Colonel Mark Allred and I am a Chief Trial Judge of the United States Air Force from Joint Base Andrews, Maryland.

I'd like to make clear from the outset that I'm here in my capacity as a federal judge, solely to act as a moderator in this hearing.

The United States Trial Judiciary is an independent organization. I do not work for, or with, anyone in this room. I am not a member of this command or assigned to this installation. I report directly to the Chief Trial Judge of the United States Air Force and to the Judge Advocate General of the Air Force. I have had no involvement with the preparation of this proposed action or the Environmental Impact Statement. I have not rendered legal advice or assistance with respect to this action. I'm here tonight to serve as an independent public hearing officer regarding the Draft Environmental Impact Statement. I am responsible for providing everyone an opportunity to comment tonight on the proposed action, alternatives, and associated

National Court Reporters, Inc.
888.800.9656
environmental analysis. This public hearing provides you with the formal opportunity for comment. I do not make any recommendation or decision on whether the proposed project should be continued, modified, or abandoned or how the Environmental Impact Statement should be prepared. Therefore, during the public comment portion of this hearing, I urge you to direct your comments to the individuals on our panel.

The purpose of this public hearing is to provide you with an opportunity to comment on the findings of the Draft Environmental Impact Statement. More importantly, this hearing is a formal opportunity for you to get involved in the NEPA process. This hearing is scheduled to conclude at 8:00 p.m., but, if necessary, will continue until all comments have been received. This formal session may end before 8:00 p.m., if there are no more comments. However, the overall hearing, including materials to be viewed and discussion with team members individually, will continue until 8:00 p.m., unless all interested parties have left the meeting.

If, following the presentation, any members

National Court Reporters, Inc.
888.800.9656
of the audience have questions regarding
clarification of any points you may not have
understood, you may fill out a question card,
which can be found at the registration desk or
on several tables scattered throughout the room,
or you may raise your hand now and someone will
bring a card to you.

Once you have filled out your question on
the card, please raise your hand again and one
of our staff will collect it from you. Only
questions regarding clarification of the topics
presented will be entertained. General comments
on the action will not be read by our panel, but
you may present your comment orally later in
this hearing or submit it on one of our comment
cards found throughout the room.

We will take a ten minute break to allow
Colonel Metzgar, the 171st Air Refueling Wing
staff, National Guard Bureau staff, and the
environmental consultants to review any
questions submitted and identify the best person
to answer each.

After the break, we will answer any
questions we have received on the question cards
from the audience. Once questions have been
TRANSCRIPT OF PROCEEDINGS

answered, members of the audience who checked
the box on their registration cards indicating
their desire to provide oral comments will be
asked to come forward.

Registration cards were available at the
registration table as you came in. If you have
not filled out a card or indicated your desire
to speak and wish to do so, please raise your
hand and a card will be provided to you now.

In addition, there are materials at the
door describing the official Air National Guard
proposal, the description of the proposed action
and alternatives, and information on locations
where you can review the draft Environmental
Impact Statement after tonight.

To ensure that all interested citizens have
an opportunity to speak, I will limit the
comments to ten minutes per person. If time
allows after everyone has an opportunity to
provide their comments, you may have more time.
You will only be allowed to comment when your
name is called. Elected officials, individuals
representing organizations will be called upon
first.

A court reporter is recording this

National Court Reporters, Inc.
888.800.9656
proceeding for the record. We will take a ten
minute break every hour to allow the court
reporter to take a break.

At this time, I would like to introduce and
recognize one public official at this hearing,
Kaitlin O'Connor from the office of
Representative Tim Murphy.

Apparently, we also have Mr. Daniel Alwine
from Senator Matt Smith's office.

As mentioned earlier, restrooms are located
in the lobby outside this room, and refreshments
can be found near the check-in desk.

Throughout this hearing, I ask that you
keep in mind that this public hearing is not a
debate, or any type of vote on the Draft
Environmental Impact Statement, nor is it
primarily designed as a question and answer
session, although legitimate, clarifying
questions may be asked.

At the conclusion of this hearing, you may
discuss the findings of the Draft Environmental
Impact Statement in greater detail with the
staff members from the 171st Air Refueling Wing,
National Guard Bureau, and the consultant's
technical representatives.

National Court Reporters, Inc.
888.800.9656
TRANSIENT OF PROCEEDINGS

If you do not wish to provide oral comments, written comments will be accepted and will be given equal consideration. Even if you do make an oral statement, you are welcome to provide a written statement to reaffirm the comments you made and any additional comments you would like to make.

Written comments should be sent to the National Guard Bureau at the address printed on the comment form that you filled out, or on the website. The address is also provided on the comment sheets.

All relevant, substantive comments will be included in the administrative record and will be addressed in the Final Environmental Impact Statement. The formal comment period for the Draft Environmental Impact Statement ends on March 24, 2014. It is very important for you to realize that the Pennsylvania Air National Guard and the National Guard Bureau will be open and responsive to your comments and concerns throughout the NEPA process.

It is a requirement to inform you that under the Privacy Act of 1974, your name, address, and comments, if provided during this
NEPA process, will be used to compile mailing
lists for sending project reports, brochures and
other information concerning the Environmental
Impact Statement to those individuals and groups
who might be interested; forwarded to federal,
state, and local agencies and elected officials.
The addresses of private individuals
submitting comments will not, repeat, will not,
be published in documents released to the
public.

Failure to provide the information
requested would prevent delivery of documents
and notification of further developments.
However, documents are available on the project
website, and in select libraries, with locations
published in local newspapers.

Now, before we proceed with the
presentation, if you have not reviewed a copy of
the Draft Environmental Impact Statement, copies
are available for you to review while in
attendance at this hearing at each of the
information booths. Further, you may pick up a
CD with the document on it at the check-in desk.
There is also a list of locations where the
Environmental Impact Statement is provided for

National Court Reporters, Inc.
888.800.9656
TRANSCRIPT OF PROCEEDINGS

public review after this meeting in the informational handouts. If you did not receive other informational materials that were available at the entrance, please raise your hand and someone will provide them to you.

At this point, I will turn this over to Colonel Metzgar, the Commander for the 171st Air Refueling Wing.

COLONEL METZGAR: Thank you, Your Honor.

Good evening. My name is Colonel Edward Metzgar, and I am the Wing Commander for the Pennsylvania Air National Guard's 171st Air Refueling Wing at the Pittsburgh International Airport. On behalf of the Pennsylvania Air National Guard, I want to welcome all of you to this important public hearing regarding the Draft Environmental Impact Statement for the proposed beddown of the KC-46A tanker aircraft. It is our goal this evening to provide you with information about the proposed aircraft beddown and the National Environmental Policy Act, commonly referred to as NEPA, and to ensure your maximum participation and understanding of this process.

I would like to introduce you to National Court Reporters, Inc.
888.800.9656
TRANSCRIPT OF PROCEEDINGS

* * * * *

individuals who are here this evening to assist
in answering questions about the aircraft
conversion and to facilitate your participation
in commenting on the findings of the Draft
Environmental Impact Statement.

You have already met Colonel Mark Allred,
Judge Advocate, from Headquarters Air Force,
Joint Base Andrews, Maryland. He will be
presiding over this evening's hearing.

Next we have Lt. Col. John Tower, the 171st
Air Refueling Wing's environmental manager, who
will provide you with an overview of the
proposed action and alternatives; and Anne Rowe,
from the National Guard Bureau, who will be
explaining some key considerations regarding the
National Environmental Policy Act.

We also have a number of other individuals
who have been involved in the development of the
Environmental Impact Statement. They are from
the Pennsylvania Air National Guard, the
National Guard Bureau, and Cardno TEC, our
environmental consultants. They will be
available after the current formal session to
answer questions and to help facilitate this
process. You will find that any member in

National Court Reporters, Inc.
888.800.9656
uniform or with an EIS name tag can either answer your questions or direct you to the right individual to answer your questions.

The greater Pittsburgh community is important to the 171st Air Refueling Wing, and community input is valuable to the environmental analyses, Pittsburgh International Airport is the current home of the 171st Air Refueling Wing. Many of our current, as well as retired, members live in the Pittsburgh area. We are part of this community.

Many of you have been consistently supportive of the military and of the 171st Air Refueling Wing. This community helped foster the development of the Pennsylvania Air National Guard as well as the 171st Air Refueling Wing over the years. This support is and has been deeply appreciated. Like you, our members live and work in this community and care deeply about its future. This is home to us all.

The proposed action is for the Air Force to replace a portion of the existing KC-135 aerial refueling fleet with the KC-46A, which will be a new aircraft to the Air Force’s fleet. As such, the Air Force plans to identify locations for

National Court Reporters, Inc.
888.800.9656
the beddown of a formal training unit, also
known as FTU, and the First Main Operating Base,
also known as MOB 1, which will both be led by
active duty units. This has been the subject of
a separate Environmental Impact Statement and is
not a part of this discussion tonight. The Air
Force will also beddown the KC-46A at a second
Main Operating Base, also known as MOB 2, which
will be led by an Air National Guard unit. This
hearing is regarding the second Main Operating
Base beddown only, as the FTU and MOB 1 beddown
are the subject of a separate action.

The National Guard Bureau has prepared this
Draft Environmental Impact Statement to analyze
the potential impacts of the MOB 2 KC-46A
beddown. The Draft Environmental Impact
Statement analyzes potential environmental
consequences that could result from the proposed
beddown of 12 KC-46A aircraft at any of five
alternative Air National Guard installations,
including Forbes Air National Guard Station,
Kansas; Joint Base McGuire-Dix-Lakehurst, New
Jersey; Pease Air National Guard Station, New
Hampshire; Pittsburgh Air National Guard
Station, Pennsylvania; and Rickenbacker Air

National Court Reporters, Inc.
888.800.9656
National Guard Station, Ohio.

The no-action alternative is required by the National Environmental Policy Act, and was evaluated also to provide a baseline for decision makers. The no action alternative evaluates the environmental consequences of not basing the KC-46A aircraft at any installation. Under the No Action alternative, no installation would be selected to host the KC-46A for the second Main Operating Base.

In 2013, the Secretary of the Air Force announced Pease Air National Guard Station as the preferred alternative for the KC-46A second Main Operating Base. The United States Air Force selected Pease Air National Guard Station based on an operational analysis, results of site surveys, and military judgment factors. We would like to emphasize that although the preferred alternative for the beddown has been announced, no final decision has been made on the basing of the KC-46A aircraft currently under analysis in this draft EIS. Until a final decision is made by the Secretary of the Air Force, all alternatives are still under consideration and are treated equally.
As shown on the poster boards, as a result of the proposed action, there would be a change to the type of aircraft based at the selected installation; a change to the mix of aircraft using the associated airspace; changes to staffing and manpower at the selected location; changes to the number of airfield operations; as well as minor required construction, building renovation and facility demolition. There would be no new or modified airspace required to support this action. The proposed aircraft beddown is estimated to begin in late 2017 or 2018 for the National Guard Bureau.

If Pittsburgh Air National Guard Station is selected for the MOB 2 KC-46A beddown, 17 KC-135 aircraft would be replaced by 12 KC-46A aircraft, personnel would increase by 59 individuals, total airfield operations would increase by 2 percent and the acreage of airport-controlled property within the 65 decibel day night average sound level noise contour would increase by 23 acres.

If Pittsburgh is not chosen for the beddown of the KC-46A tanker aircraft, the existing KC-235 will remain at the base for the
foreseeable future.

Again, I want to thank you for your
attendance and your interest this evening.
Please let me know if I can be of further
assistance, either during or after tonight's
formal proceedings conclude.

With that, I will turn over the hearing to
Lt. Col. John Tower, Environmental Manager for
the 171st Air Refueling Wing.

LT. COL. TOWER: Thank you, Colonel
Metzgar. Good evening, ladies and gentlemen,
and welcome to the public hearing for the Draft
Environmental Impact Statement. As the Commander
indicated, I am Lt. Col. John Tower, and I serve
as the environmental manager for the 171st Air
Refueling Wing. As a member of the Air
Refueling Wing and of the local community, I am
very interested in what happens here as well.
This is an important occasion in which to
discuss this topic and I appreciate your
interest, your participation and your comments.

The Draft Environmental Impact Statement
evaluates impacts to eleven resources by the
proposed action to include noise, air quality,
safety, biological resources, and cultural
resources. Other resources evaluated can be reviewed in the Draft Environmental Impact Statement. As a result of the draft environmental analysis, we do not expect the proposed action to have any significant impacts to any resources.

I will speak briefly to most of the resources I just mentioned. However, more in-depth information is provided in the Draft EIS document for all eleven resources.

The noise poster board shows baseline noise contours from existing KC-135 aircraft operations and proposed noise contours from KC-46A aircraft operations at Pittsburgh. The analysis was based on 8,040 allocated flying hours for each unit, which is a conservative estimate, meaning that flying hours would most certainly be below that number for each alternative.

As you can see, the noise contours would reduce slightly by 23 acres off airport-controlled property. Pittsburgh Air National Guard Station is located in an area of non-attainment for some criteria pollutants, including particulate matter and...
ozone. Projected emissions from the proposed action would not be expected to exceed established air quality standards. Any increase in air emissions would be below the established thresholds for our area and would not be significant.

Under this alternative, minor construction and renovation of facilities would be required, resulting in approximately 4.3 acres of temporary soil disturbance and 2 acres of new impervious surface. There would be no impacts to wetlands, floodplains, federally listed species, or cultural resources. In addition, the Air National Guard has initiated government to government coordination with all federally recognized tribes affiliated with the area. To date, from the responses we have received, no tribe has indicated that any traditional resources occur in the project area.

We look forward to input provided from the public and affected communities as we proceed through the NEPA process. Once the requirements of NEPA are complete, the Air Force will make its final basing decision.

Thank you for your attention, and I will
now turn the presentation over to Ms. Anne Rowe, the National Guard Bureau Project Manager for the Environmental Impact Statement to discuss the NEPA process.

MS. ROWE: I will briefly summarize the NEPA Process.

The National Environmental Policy Act, commonly referred to as NEPA, aids federal agency decision makers in determining the future course of federal actions. It is the objective of NEPA to ensure that decision makers have environmental information and public input to facilitate informed decisions.

The goal of preparing the Environmental Impact Statement is to support sound decisions through the assessment of potential environmental impacts, as well as involving the public in the process. The result of this analysis and other relevant factors will be considered before a decision is made by the Air Force on this proposal.

The Draft Environmental Impact Statement, or Draft EIS, which was made available for your viewing at a number of public locations beginning on February 7, 2014, presents the
findings and analysis of the proposed action and alternatives on environmental criteria set forth by NEPA. Tonight’s public hearing is the second of two public comment forums that provide the public an opportunity to comment on the scope and content of the Environmental Impact Statement. The first forum, called a scoping meeting, was held at the Town of Moon Municipal building and at the other alternative locations in June 2013.

Comments have also been solicited from local, state and federal agencies that have jurisdiction over particular resources, such as air and water quality. That process began with the release of the Notice of Intent to prepare an Environmental Impact Statement on May 17, 2013, and continues today with public and agency review of the Draft Environmental Impact Statement.

This hearing gives the potentially affected communities an opportunity to comment on the analyses that have been presented in the Draft Environmental Impact Statement.

The formal public comment period ends on March 24, 2014. Following this period, oral and
written comments received from both the public and government agencies will be reviewed by the Air Force and the National Guard Bureau. We will continue to accept comments throughout the NEPA Process. However, it is more difficult to give your comments the consideration they deserve as the process winds down close to the release of the Final Environmental Impact Statement, or Final EIS.

After all comments on the Draft Environmental Impact Statement have been addressed, substantive comments will be reviewed and responded to in the final EIS. The Final Environmental Impact Statement will be released to the public for a 30-day period before a record of decision is signed by the Secretary of the Air Force or their designee. The Record of Decision is scheduled to be signed in June 2014.

This conduces the explanation of both the KC-46A beddown proposal, as well as the NEPA Process. I now return the program back to our hearing officer.

Thank you.

COLONEL ALLRED: Normally at this time in such a proceeding we take a brief recess, 10 to
15 minutes, to gather comment cards from anyone that might wish to ask questions or make comments. Because of the few numbers we have this evening, I am not sure whether a formal break is necessary.

Do we have anyone who has provided a comment card?

(No response.)

COLONEL ALLRED: We have one person who would like to provide comments. At this point, we will proceed and let anyone speak that would like to.

Mr. Alwine, would you like to come up to make a comment.

MR. ALWINE: Thank you very much. Ann, it is very nice to meet you in person. I see your name on correspondence.

I wanted to make a comment, because I've seen no one else was going to, and Colonel Metzgar touched upon a couple of things, community involvement, the concern that the Pittsburgh area and people who live here have families, people who serve in the military, and for our region to continue to receive the 171st and other installations is to grow.
My comment isn't addressing the environmental impact. The small attendance numbers you see here should be proof that the region supports the 171st, the expansion, and we want to see the 171st get the new tankers and continue serving and doing the fantastic job they do.

That is my comment. Thank you very much.

COLONEL ALLRED: Thank you, sir.

I want to make sure everyone has an opportunity to provide comments or questions. Is there any other question or comment from anyone this evening?

(No response.)

COLONEL ALLRED: Apparently not.

I would like to give the National Guard Bureau an opportunity to address any questions that might have come up at all. I think I have in front of us all of the questions that have been raised.

Any other questions that have been fielded? I want to make sure I am not missing anything.

If you still should have any questions that arise after we have closed the proceeding, please feel free to visit these information

National Court Reporters, Inc.
888.800.9656
booths and ask questions that you may have regarding the proposed action.

Now that all questions appear to be answered, I would -- just one moment. I'm moving along in our program, as we seem to have covered much of it already.

Mr. Alwine, you made comments here. Please be advised that you and anyone else in this session can be followed up with written comments, any matters that you would like to submit in writing. Understand that equal weight is given to both oral and written comments and will become part of the official record and be included in the final environmental impact statement.

This evening's goal was to provide you with open communication and accurate information to ensure your informed participation in the NEPA Process. I hope that we have achieved that goal. Please feel free to visit the information booths and ask any additional questions that you may have regarding this proposed action. You have an opportunity during the formal comment period ending March 24, 2014, to provide written comments. Please stop by the registration booth

National Court Reporters, Inc.
888.800.9656
TRANSCRIPT OF PROCEEDINGS

* * * * *

to get any additional materials that you ay need.

Thank you and have a good evening.

(Whereupon, at 6:25 p.m., the hearing was concluded.)

* * * * *

National Court Reporters, Inc.
888.800.9656
CERTIFICATE

* * * * *

I hereby certify that the foregoing is a true and correct transcript of the hearing held in the above-captioned matter, to the best of my ability.

[Signature]
Elizabeth D. Pekar
Professional Court Reporter

* * * * *

National Court Reporters, Inc.
888.800.9656
TRANSCRIPT OF PROCEEDINGS

1

already 11:06, 24:16
alternative 13:20, 14:3, 14:5, 14:8, 14:13, 14:19, 17:19, 18:7, 20:2
amended 3:25, 4:13, 11:13, 14:24, 20:2
as though 7:19, 13:1, 13:15, 24:7
changes 8:6, 13:15, 14:1, 22:6
analysis 1:17, 20:2
analyses 6:1, 14:10, 14:22, 17:4, 17:15, 19:19, 20:1
analyze 13:14
analysis 13:17
analyses 13:17
 Arbeit 14:1
and 14:1
and 14:1

2

April 12, 2014 10:00 a.m.: The Honorable Judge Grant Announces: The purpose of today's hearing is to further review the Draft Final EIS that was presented to the Court on February 20, 2014. The court will consider comments received in drafting the Final EIS. Both the U.S. Air Force and the U.S. Department of Defense will have an opportunity to present their positions on the comments that have been received. The court will then move forward with the hearing process. The court will take a break at noon for lunch and reconvene at 1:00 p.m.

3

May 17, 2014 10:00 a.m.: The Honorable Judge Grant Announces: The purpose of today's hearing is to further review the Draft Final EIS that was presented to the Court on February 20, 2014. The court will consider comments received in drafting the Final EIS. Both the U.S. Air Force and the U.S. Department of Defense will have an opportunity to present their positions on the comments that have been received. The court will then move forward with the hearing process. The court will take a break at noon for lunch and reconvene at 1:00 p.m.

4

National Court Reporters, Inc.
TRANSCRIPT OF PROCEEDINGS

National Court Reporters, Inc.
* * *
DRAFT EIS HEARING PROCEEDINGS
* * *
DATE OF HEARING: Thursday, February 27, 2014
6:02 o'clock p.m.
PLACE OF HEARING: 2241 John Circle Drive
Columbus, Ohio 43217
HEARING OFFICER: Colonel Mark Allred
* * *
CAPTAIN ERICA WONN: Good evening, ladies and gentlemen, and welcome to the public hearing for the Draft Environmental Impact Statement for the Second Main Operating Base Beddown of the KC-46A Tanker Aircraft. I'm Captain Erica Wonn with the 121st Air Refueling Wing's Public Affairs Office located here in Columbus, Ohio. Please enjoy the refreshments provided. Restrooms are outside in the lobby, and smoking in the facility is prohibited.

Before starting the formal portion of tonight's hearing, I ask that cell phones be turned off or placed in the silent mode. During the proceedings, please do not interrupt the speakers and please be respectful to those providing oral comments. We will do our best to give everyone an opportunity to speak in the time we have.

Colonel Mark Allred, Judge Advocate, will now begin the formal portion of tonight's hearing.

COLONEL MARK ALLRED: Good evening, and thank you Captain Wonn. I am Judge Colonel Mark Allred. I'm the chief trial judge of the United States Air Force from Joint Base Andrews, Maryland. I'd like to make clear from the outset that I'm here in my capacity as a federal judge solely to
act as a moderator in this hearing. The United
States Trial Judiciary is an independent
organization. I do not work for, or with, anyone
in this room. I am not a member of this command or
assigned to this installation. I report directly
to the Judge Advocate General of the Air Force.
I've had no involvement with the preparation of
this proposed action or the Environmental Impact
Statement. I have not rendered legal advice or
assistance with respect to this action. I'm here
tonight to serve as an independent public hearing
officer regarding the Draft Environmental Impact
Statement. I am responsible for providing everyone
an opportunity to comment tonight on the proposed
action, alternatives, and associated environmental
analysis. This public hearing provides you with
the formal opportunity for comment. I do not make
any recommendation or decision on whether the
proposed project should be continued, modified, or
abandoned or how the Environmental Impact Statement
should be prepared. Therefore, during the public
comment portion of this hearing I urge you to
direct your comments to the individuals on our
panel.

The purpose of this public hearing is to
provide you with an opportunity to comment on the findings of the Draft Environmental Impact Statement. More importantly, this hearing is a formal opportunity for you to get involved in the NEPA Process. This hearing is scheduled to conclude at 8:00 p.m., but if necessary, it will continue until all comments have been received. This formal session may end before 8:00 p.m., if there are no more comments. However, the overall hearing, including materials to be viewed and discussion with team members individually, will continue until 8:00 p.m., unless all interested parties left the meeting.

If following the presentation any members of the audience have questions regarding clarification of any points you may not have understood, you may fill out a question card, which can be found at the registration desk or on several tables scattered throughout the room, or you may raise your hand now and someone will bring a card to you. Once you have filled out your question on the card, please raise your hand again and one of our staff will collect it from you. Only questions regarding clarification of the topics presented will be entertained. General comments on the action will
not be read by our panel, but you may present your
comment orally later in this hearing or submit it on
one of the comment cards found throughout the room.

Later we will take a break to allow
Colonel Jones, the 121st Air Refueling Wing staff,
National Guard Bureau staff and environmental
consultants to review any questions submitted and
identify the best person to answer each.

After the break, we will answer any
questions that we have received on the question
cards from the audience. Once the questions have
been answered, members of the audience who checked
the box on their registration cards indicating their
desire to provide oral comments will be asked to
come forward.

Registration cards were available at the
registration table as you came in. If you have not
filled out a card or indicated your desire to speak
and wish to do so, please raise your hand and a card
will be provided to you now.

In addition, there are materials at the
door describing the office Air National Guard
proposal, the description of the proposed action and
alternatives, and information on locations where you
can review the Draft Environmental Impact Statement
after tonight, if you have not already done so.
To ensure that all interested citizens
have an opportunity to speak, I will limit the
comments to ten minutes per person. If time allows
after everyone has had an opportunity to provide
their comments, you may have more time. You will
only be allowed to comment when your name is called.
Elected officials and individuals representing
organizations will be called upon first.
A court reporter is recording this
proceeding for the record. We will take a
ten-minute break every hour to allow the court
reporter to take a break.
At this time I would like to introduce and
recognize a few public officials that are present at
the hearing. First of all, Brigadier General Mark
Stevens who is the director of the Joint Staff at
the Ohio National Guard. Welcome, sir. And also we
would like to recognize Ms. Susan Cox. She is from
the office of U.S. Senator, Rob Portman, a
representative from his office.
As I mentioned, there are restrooms
located nearby. There are some just to the rear of
us here and refreshments can be found over in this
area.
Throughout this hearing, I ask that you keep in mind that this public hearing is not a debate, or any type of vote on the Draft Environmental Impact Statement, nor is it primarily designed as a question-and-answer session, although legitimate, clarifying questions may be asked. At the conclusion of this hearing you may discuss the findings of the Draft Environmental Impact Statement in greater detail with the staff members of the 121st Air Refueling Wing, National Guard Bureau, and the consultant's technical representatives.

If you do not wish to provide oral comments, written comments will be accepted and given equal consideration. Even if you do make an oral statement, you are welcome to provide a written statement to reaffirm the comments you made and to make any additional comments you would like.

Written comments should be sent to the National Guard Bureau at the address printed on the comment form that you filled out, or on the website. The address is also provided on the comment sheets.

All relevant, substantive comments will be included in the administrative record and will be addressed in the Final Environmental Impact Statement. The formal comment period for the Draft
Environmental Impact Statement ends on March 24, 2014. It is very important for you to realize that the Ohio Air National Guard and the National Guard Bureau will be open and responsive to your comments and concerns throughout the NEPA Process.

It is a requirement to inform you that under the Privacy Act of 1974, your name, address, and comments, if provided during the NEPA Process, will be A: Used to compile mailing lists for sending project reports, brochures, and other information concerning the Environmental Impact Statement to those individuals and groups who might be interested. B: Forwarded to federal, state, and local agencies, and elected officials. C: The addresses of private individuals submitting comments will not, repeat will not, be published in documents released to the public.

Failure to provide the information requested would prevent delivery of documents and notification of further developments. However, documents are available on the project website and in select libraries, with locations published in local newspapers.

Now, before we proceed with the presentation, if you have not reviewed a copy of the
Draft Environmental Impact Statement, copies are available for you to review while in attendance at this hearing at each of the information booths. Further, you may pick up a CD with the document on it at the check-in desk. There is also a list of locations where the Environmental Impact Statement is provided for public review after this meeting in the informational handouts. If you did not receive other informational materials that were available at the entrance, please raise your hand and someone will provide them to you.

At this point, I will turn this over to Colonel Jones, the Commander for the 121st Air Refueling Wing.

COLONEL JONES: Thank you, your honor. Good evening, my name is Colonel James Jones, and I am the Wing Commander for the Ohio Air National Guard’s 121 Air Refueling Wing at the Rickenbacker International Airport. On behalf of the Ohio Air National Guard, I want to welcome all of you to this important public hearing regarding the Draft Environmental Impact Statement for the proposed beddown of the KC-46A tanker aircraft. It is our goal this evening to provide you with information about the proposed aircraft beddown and the
National Environmental Policy Act, commonly referred to as NEPA, and to ensure your maximum participation and understanding of this process.

I would like to introduce you to individuals who are here this evening to assist in answering questions about the aircraft conversion and to facilitate your participation in commenting on the findings of the Draft Environmental Impact Statement.

You have already met Colonel Mark Allred, Judge Advocate, from Headquarters Air Force, Joint Base Andrews, Maryland. He will be presiding over this evening’s hearing. Next, we have Mr. Roger Jones, the 121st Air Refueling Wing’s Environmental Manager who will provide you with an overview of the proposed action and alternatives; and Anne Rowe, from the National Guard Bureau, who will be explaining some key considerations regarding the National Environmental Policy Act.

We also have a number of other individuals who have been involved in the development of the Environmental Impact Statement. They are from the Ohio Air National Guard, the National Guard Bureau, and Cardno TEC, our environmental consultants. They will be available after the current formal session.
to answer questions and to help facilitate this process. You will find that any member in uniform or with an EIS name tag can either answer your questions or direct you to the right individual to answer your questions.

The greater Columbus community is important to the 121st Air Refueling Wing, and community input is valuable to the environmental analysis. Rickenbacker International Airport is the current home of the 121st Air Refueling Wing. Many of our current, as well as retired, members live in the Columbus area. We are a part of this community. Many of you have been consistently supportive of the military and of the 121st Air Refueling Wing. This community helped foster the development of the Ohio Air National Guard, as well as the 121st Air Refueling Wing over the years. This support is and has been deeply appreciated. Like you, our members live and work in this community and care deeply about its future. This is home to us all.

The proposed action is for the Air Force to replace a portion of the existing KC-135 aerial refueling fleet with KC-46A, which will be a new aircraft to the Air Force's fleet. As such, the Air
Force plans to identify locations for the beddown of a formal training unit, also known as FTU, and the First Main Operating Base, also known as MOB 1, which will be led by active duty units. This has been the subject of a separate Environmental Impact Statement and is not a part of this discussion tonight. The Air Force will also beddown the KC-46A at a Second Main Operating Base, also known as MOB 2, which will be led by an Air National Guard unit. This hearing is regarding the Second Main Operating Base beddown only, as the FTU and MOB 1 beddown are the subject of a separate action.

The National Guard Bureau has prepared this Draft Environmental Impact Statement to analyze the potential impacts of the MOB 2 KC-46A beddown. The Draft Environmental Impact Statement analyzes potential environmental consequences that could result from the proposed beddown of 12 KC-46A aircraft at any five alternative Air National Guard installations, including Forbes Air National Guard Station, Kansas; Joint Base McGuire-Dix-Lakehurst, New Jersey; Pease Air National Guard Station, New Hampshire; Pittsburgh Air National Guard Station, Pennsylvania; and Rickenbacker Air National Guard Station, Ohio.
The no-action alternative is required by the National Environmental Policy Act, and was evaluated also to provide a baseline for decision-makers. The no-action alternative evaluates the environmental consequences of not basing the KC-46A aircraft at any installation. Under the no-action alternative, no installation selected would be selected to host the KC-46A for the Second Main Operating Base.

In 2013, the Secretary of the Air Force announced Pease Air National Guard Station as the preferred alternative for the KC-46A Second Main Operating Base. The United States Air Force selected Pease Air National Guard Station based on an operational analysis, results of site surveys, and military judgment factors. We would like to emphasize that although the preferred alternative for the beddown has been announced, no final decision has been made on the basing of the KC-46A aircraft currently under analysis in this draft EIS. Until a final decision is made by the Secretary of the Air Force, all alternatives are still under consideration and are treated equally.

As shown on the poster boards, as a result of the Proposed Action, there would be a change to
the type of aircraft based at the selected
installation; a change in the mix of aircraft using
the associated airspace; changes to staffing and
manpower at the selected location; changes to the
number of airfield operations; as well as minor
required construction, building renovation, and
facility demolition. There would be no new or
modified airspace required to support this action.
The proposed aircraft beddown is estimated to begin
in late 2017 or 2018 for the National Guard Bureau.
If Rickenbacker Air National Guard Station
is selected for the MOB 2 KC-46A beddown, all KC-135
aircraft at Rickenbacker Air National Guard Station
will be replaced by 12 KC-46A aircraft, personnel
would increase by 197 individuals, total airfield
operations would increase by 1 percent, and the
acreage off airport-controlled property within the
65 decibel Day-Night Average Sound Level noise
contour would decrease by 72 acre.
If Rickenbacker is not chosen for the
beddown of the KC-46A tanker aircraft, the existing
KC-135 will remain at the base for the foreseeable
future.

Again, I want to thank you for your
attendance and your interest in this evening.
Please let me know if I can be of further assistance, either during or after tonight's formal proceedings conclude. With that, I will turn over the hearing to Mr. Roger Jones, Environmental Manager for the 121st Air Refueling Wing.

MR. JONES: Thank you, Colonel Jones. Good evening ladies and gentlemen and welcome to the public hearing for the Draft Environmental Impact Statement. As the Commander indicated, I am Roger Jones, and I serve as the environmental manager for the 121st Air Refueling Wing. As a member of the Air Refueling Wing and of the local community I am very interested in what happens here as well. This is an important occasion in which to discuss this topic and I appreciate your interest, your participation, and your comments.

The Draft Environmental Impact Statement evaluates impacts to eleven resources by the proposed action to include Noise, Air Quality, Safety, Biological Resources, and Cultural Resources. Other resources evaluated can be reviewed in the Draft Environmental Impact Statement. As a result of the draft environmental analysis, we do not expect the proposed action to have any significant impacts to any resources.
I will speak briefly to most of the resources I just mentioned; however, more in-depth information is provided in the Draft EIS document for all eleven resources.

The noise poster board shows baseline noise contours from existing KC-135 aircraft operations and proposed noise contours from KC-46A aircraft operations at Rickenbacker. The analysis was based on 8,040 allocated flying hours for each unit, which is a conservative estimate, meaning that flying hours would most certainly be below that number for each alternative.

As you can see the noise contours would be slightly reduced by 72 acres off air-controlled property. The Rickenbacker Air National Guard Station is located in an area of non-attainment for particulate matter and ozone. Projected emissions from the proposed action would not be expected to exceed established air quality standards. Any increase in air emissions would be below the established thresholds for our area and would not be significant.

Under this alternative minor construction and renovation of facilities would be required resulting in approximately 8.5 acres of temporary
soil disturbance and 0.3 acres of new impervious surface. There would be no impacts to wetlands, floodplains, or federally listed species. In addition, the Air National Guard initiated government-to-government coordination with all federally recognized tribes affiliated with the area. To date, from the responses we have received, no tribe has indicated that any traditional resources occur in the project area.

We look forward to input provided from the public and affected communities as we proceed through the NEPA Process. Once the requirements of NEPA are complete, the Air Force will make its final basing decision. Thank you for your attention, and I will now turn over the presentation to Ms. Anne Rowe, the National Guard Bureau Project Manager for the Environmental Impact Statement to discuss the NEPA Process.

MS. ROWE: Thank you, Roger. I will briefly summarize the NEPA Process. The National Environmental Policy Act, commonly referred to as NEPA, aids federal agency decision-makers in determining the future course of federal actions. It is the objective of NEPA to ensure that decision-makers have environmental information and
The goal of preparing the Environmental Impact Statement is to support sound decisions through the assessment of potential environmental impacts, as well as involving the public in the process. The result of this analysis and other relevant factors will be considered before a decision is made by the Air Force on this proposal.

The Draft Environmental Statement or Draft EIS, which was made available for your viewing at a number of public locations beginning on February 7, 2014, presents the findings and analysis of the proposed action and alternatives on environmental criteria set forth by NEPA. Tonight's public hearing is the second of two public comment forums that provide the public an opportunity to comment on the scope and content of the Environmental Impact Statement. The first forum, called a scoping meeting, was held here and at the other alternative locations in June of 2013.

Comments have also been solicited from local, state, and Federal agencies that have jurisdiction over particular resources, such as air and water quality. That process began with the release of the Notice of Intent to prepare an
Environmental Impact Statement on May 17, 2013, and continues today with public and agency review of the Draft Environmental Impact Statement. This hearing gives the potentially affected communities an opportunity to comment on the analysis that have been presented in the Draft Environmental Impact Statement. The formal public comment period ends on March 24, 2014. Following this period, oral and written comments received from both the public and government agencies will be reviewed by the Air Force and the National Guard Bureau. We will continue to accept comments throughout the NEPA Process. However, it is more difficult to give your comments the consideration they deserve as the process winds down closer to the release of the Final Environmental Impact Statement or Final EIS. After all comments on the Draft Environmental Impact Statement have been addressed, substantive comments will be reviewed and responded to in the Final EIS. The Final Environmental Impact Statement will be released to the public for a 30-day period before a record of decision is signed by the Secretary of the Air Force or their designee. The Record of Decision is scheduled to be signed in
June of 2014.

This concludes the explanation of both the KC-46A beddown proposal, as well as the NEPA Process. I now return the program back to our hearing officer. Thank you.

COLONEL MARK ALLRED: Thank you, Anne.

The next phase of our hearing involves one, the answering of questions from the audience and two, the opportunity for members of the audience to make comments. Normally at this point when we have a number of questions that have been filled out we take a break to give our panel a chance to look at those questions and decide who can best handle those questions. At this point I have not received any cards of any questions from anyone in the audience.

Is there anyone who wishes to fill out a question card and does anyone have a question for our panel? I want to make sure that everyone has an opportunity to do that. We won't drag that particular phase out as longer than is necessary.

The next phase is to give anyone who would like to do so the opportunity to make a public comment. I do have one card from Mr. Michael Hartley from the Columbus Chamber. Please,
Mr. Hartley, take your place here and speak to the audience.

MR. HARTLEY: Thank you very much for the opportunity to give public comment. First of all, thank you for the service of those in this audience to our country and our community. One of the things I want to talk about here is the aspect of what you see, the folks in attendance, the community support. When this mission was announced and the opportunity for the mission was announced, you saw here in the Columbus region in central Ohio full community support. This included local elected officials, state officials, congressional delegation, all of the Ohio congressional delegation and both U.S. senators.

The packet that we put together included letters of support from all of those entities, included in that also is the business community. The Columbus Chamber represents 1,600 businesses, approximately a quarter of a million employees. Along with the small and medium size businesses you have the Columbus partnership, which represents the large fifty businesses in the Columbus region.

We have continued to work including a January 17th, briefing here at Rickenbacker where
we brought the community together with Senator Rob
Portman. We spent a full day here and learned, I
think, A through Z of what goes on here at
Rickenbacker.

This community and this group is
committed, regarding this mission, to help drive
down the cost of this facility. Also, we know of no
environmental obstacles that would prevent locating
the KC-46A here at Rickenbacker. We fully believe
that Rickenbacker can serve this mission well. We
are committed if the mission does come here, as a
community, to help connect any active duty to
housing and other quality of life accommodations and
services.

I will say one final thing and remind
everyone here of the historical tradition of the
Rickenbacker Air Force Base. As you walk in you see
the historical markers. I believe many folks
believe that Eddie Rickenbacker would be very
pleased and feel it was appropriate for the KC-4A's
mission to be here.

With that I appreciate very much and thank
you very much for the time.

COLONEL MARK ALLRED: Thank you, sir.

Again, we want to ensure that everyone has ample
opportunity to ask any questions or make any comments. Anyone else who would like to ask a question or make any comment? Apparently not. This evening’s goal was to provide you with open communication and accurate information to ensure your informed participation in the NEPA Process. I hope that we have achieved that goal. Please feel free to visit the information booths and ask any additional questions that you may have regarding this proposed action. You have an opportunity during the formal comment period ending March 24, 2014, to provide written comments. Please stop by the registration booth to get any additional materials that you need. Thank you very much and have a good evening.

(Thereupon, the hearing was concluded at 6:32 o'clock p.m.)
STATE OF OHIO
COUNTY OF MONTGOMERY

I, WQUEANA N. GEORGE, a Notary Public within and for the State of Ohio, duly commissioned and qualified, DO HEREBY CERTIFY that the above-named hearing, was reduced to writing by me stenographically in the presence of the parties and thereafter reduced to typewriting.

I FURTHER CERTIFY that I am not a relative or Attorney of either party nor in any manner interested in the event of this action.

IN WITNESS WHEREOF, I have hereunto set my hand and seal of office at Dayton, Ohio, on this 13th day of March, 2014.

WQUEANA N. GEORGE
NOTARY PUBLIC, STATE OF OHIO
My commission expires 02-15-2015
<table>
<thead>
<tr>
<th>Organization (Private Citizen, etc.)</th>
<th>Commenter Name</th>
<th>Comment Number</th>
<th>Page # of Comment Letter</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Senate</td>
<td>Kelly Ayotte</td>
<td>1</td>
<td>B6-223</td>
</tr>
<tr>
<td>U.S. Senate</td>
<td>Jeanne Shaheen</td>
<td>1</td>
<td>B6-223</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>Jim Colbert</td>
<td>2</td>
<td>B6-225</td>
</tr>
<tr>
<td>Department of Interior, Office of Environmental Policy and Compliance</td>
<td>Andrew Raddant</td>
<td>3</td>
<td>B6-226</td>
</tr>
<tr>
<td>Federal Aviation Administration</td>
<td>Glenn Helm, P.E.</td>
<td>4</td>
<td>B6-227</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>H.R. Bower</td>
<td>5</td>
<td>B6-228</td>
</tr>
<tr>
<td>City of Dublin</td>
<td>Dana McDaniel</td>
<td>6</td>
<td>B6-229</td>
</tr>
<tr>
<td>City of Groveport</td>
<td>Marsha Hall</td>
<td>7</td>
<td>B6-230</td>
</tr>
<tr>
<td>Newark City Mayor</td>
<td>Jeff Hall</td>
<td>8</td>
<td>B6-231</td>
</tr>
<tr>
<td>City of Upper Arlington</td>
<td>Theodore Staton</td>
<td>9</td>
<td>B6-232</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>Anonymous</td>
<td>10</td>
<td>B6-234</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>Anonymous</td>
<td>11</td>
<td>B6-235</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>Robert Burelli</td>
<td>12</td>
<td>B6-236</td>
</tr>
<tr>
<td>Columbus City Council</td>
<td>Hearcel Craig</td>
<td>13</td>
<td>B6-237</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>Marilyn McCoy</td>
<td>14</td>
<td>B6-239</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>Victor Wilson</td>
<td>15</td>
<td>B6-240</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>Kristin Cruikshank</td>
<td>16</td>
<td>B6-241</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>Richard Emmons</td>
<td>17</td>
<td>B6-242</td>
</tr>
<tr>
<td>Fairfield County Board of Commissioners</td>
<td>Steve Davis</td>
<td>18</td>
<td>B6-243</td>
</tr>
<tr>
<td>Fairfield County Board of Commissioners</td>
<td>Dave Levacy</td>
<td>18</td>
<td>B6-243</td>
</tr>
<tr>
<td>Fairfield County Board of Commissioners</td>
<td>Mike Kiger</td>
<td>18</td>
<td>B6-243</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>David Jackson</td>
<td>19</td>
<td>B6-244</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>Donald Kershner</td>
<td>20</td>
<td>B6-245</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>Joseph Machado</td>
<td>21</td>
<td>B6-246</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>William McNeer</td>
<td>22</td>
<td>B6-248</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>Michael Myers</td>
<td>23</td>
<td>B6-249</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>LtCol Rex Mykrantz</td>
<td>24</td>
<td>B6-250</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>Marlene Packer</td>
<td>25</td>
<td>B6-251</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>Jason Porter</td>
<td>26</td>
<td>B6-252</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>Laurence Reed</td>
<td>27</td>
<td>B6-253</td>
</tr>
<tr>
<td>Columbus-Franklin County Finance Authority</td>
<td>Jean Carter Ryan</td>
<td>28</td>
<td>B6-254</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>Richard Shroeder</td>
<td>29</td>
<td>B6-256</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>Senator Joe Uecker</td>
<td>30</td>
<td>B6-257</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>Martin Stires</td>
<td>31</td>
<td>B6-258</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>Daniel Snyder</td>
<td>32</td>
<td>B6-259</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>Pete Wilkinson</td>
<td>33</td>
<td>B6-260</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>G. Taylor</td>
<td>34</td>
<td>B6-263</td>
</tr>
<tr>
<td>City of Topeka</td>
<td>Larry Wolgast</td>
<td>35</td>
<td>B6-264</td>
</tr>
<tr>
<td>Governor</td>
<td>Margaret Wood Hassan</td>
<td>36</td>
<td>B6-265</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>Barbara N Hayes</td>
<td>37</td>
<td>B6-267</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>Nancy Holloway</td>
<td>38</td>
<td>B6-268</td>
</tr>
<tr>
<td>Organization (Private Citizen, etc.)</td>
<td>Commenter Name</td>
<td>Comment Number</td>
<td>Page # of Comment Letter</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------------------------</td>
<td>----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>Emmanuel Kidd</td>
<td>39</td>
<td>B6-269</td>
</tr>
<tr>
<td>House of Representatives, New Hampshire</td>
<td>Ann McLane Kuster</td>
<td>40</td>
<td>B6-270</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>Ronald Douglas Manuel</td>
<td>41</td>
<td>B6-271</td>
</tr>
<tr>
<td>Mayor of Canal Winchester</td>
<td>Michael Ebert</td>
<td>42</td>
<td>B6-276</td>
</tr>
<tr>
<td>The New England Council</td>
<td>James Brett</td>
<td>43</td>
<td>B6-277</td>
</tr>
<tr>
<td>Ohio Historical Society</td>
<td>Justin Cook</td>
<td>44</td>
<td>B6-278</td>
</tr>
<tr>
<td>Ohio Task Force</td>
<td>Victor Wilson</td>
<td>45</td>
<td>B6-280</td>
</tr>
<tr>
<td>Pennsylvania Historical and Museum Commission</td>
<td>Douglas McLearen</td>
<td>46</td>
<td>B6-281</td>
</tr>
<tr>
<td>Penobscot Nation Tribal Historic Preservation Office</td>
<td>Chris Sockalexis</td>
<td>47</td>
<td>B6-283</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>Joseph Pescatello</td>
<td>48</td>
<td>B6-284</td>
</tr>
<tr>
<td>Portsmouth Chamber of Commerce</td>
<td>Doug Bates</td>
<td>49</td>
<td>B6-285</td>
</tr>
<tr>
<td>State Senator</td>
<td>Matt Smith</td>
<td>50</td>
<td>B6-286</td>
</tr>
<tr>
<td>U.S. Senator</td>
<td>Pat Roberts</td>
<td>51</td>
<td>B6-288</td>
</tr>
<tr>
<td>U.S. Senator</td>
<td>Jerry Moran</td>
<td>51</td>
<td>B6-288</td>
</tr>
<tr>
<td>House of Representatives, Kansas</td>
<td>Lynn Jenkins</td>
<td>51</td>
<td>B6-288</td>
</tr>
<tr>
<td>House of Representatives, Kansas</td>
<td>Mike Pompeo</td>
<td>51</td>
<td>B6-288</td>
</tr>
<tr>
<td>House of Representatives, Kansas</td>
<td>Kevin Yoder</td>
<td>51</td>
<td>B6-288</td>
</tr>
<tr>
<td>House of Representatives, Kansas</td>
<td>Tim Huelskamp</td>
<td>51</td>
<td>B6-288</td>
</tr>
<tr>
<td>Service Credit Union</td>
<td>Gordon Simmons</td>
<td>52</td>
<td>B6-291</td>
</tr>
<tr>
<td>U.S. Senator</td>
<td>Jeanne Shaheen</td>
<td>53</td>
<td>B6-296</td>
</tr>
<tr>
<td>Board of Commissioners, Shawnee County, Kansas</td>
<td>Robert Archer</td>
<td>54</td>
<td>B6-297</td>
</tr>
<tr>
<td>Board of Commissioners, Shawnee County, Kansas</td>
<td>Kevin Cook</td>
<td>54</td>
<td>B6-297</td>
</tr>
<tr>
<td>Board of Commissioners, Shawnee County, Kansas</td>
<td>Michele Buhler</td>
<td>54</td>
<td>B6-297</td>
</tr>
<tr>
<td>House of Representatives, New Hampshire</td>
<td>Carol Shea-Porter</td>
<td>55</td>
<td>B6-298</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>Robert Sheppard</td>
<td>56</td>
<td>B6-299</td>
</tr>
<tr>
<td>Senator NH District 21</td>
<td>Martha Fuller Clark</td>
<td>57</td>
<td>B6-301</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>Thomas Gross</td>
<td>58</td>
<td>B6-302</td>
</tr>
<tr>
<td>Greater Topeka Chamber of Commerce</td>
<td>Doug Kinsinger</td>
<td>59</td>
<td>B6-303</td>
</tr>
<tr>
<td>Greater Topeka Chamber of Commerce</td>
<td>Neil Dobler</td>
<td>59</td>
<td>B6-303</td>
</tr>
<tr>
<td>WIBW Channels</td>
<td>Jim Ogle, Jr.</td>
<td>59</td>
<td>B6-303</td>
</tr>
<tr>
<td>Fidelity State Bank and Trust</td>
<td>Allan Towe</td>
<td>59</td>
<td>B6-303</td>
</tr>
<tr>
<td>Cox Communications</td>
<td>Coleen Jennison</td>
<td>59</td>
<td>B6-303</td>
</tr>
<tr>
<td>M-C Industries, Inc.</td>
<td>Karla Clem</td>
<td>59</td>
<td>B6-303</td>
</tr>
<tr>
<td>Payless Shoe Source</td>
<td>Curtis Snedden</td>
<td>59</td>
<td>B6-303</td>
</tr>
<tr>
<td>Premier Employment Solutions</td>
<td>Paul Bossert</td>
<td>59</td>
<td>B6-303</td>
</tr>
<tr>
<td>Capital Federal</td>
<td>John Dicus</td>
<td>59</td>
<td>B6-303</td>
</tr>
<tr>
<td>Washburn University</td>
<td>Randy Pembrook</td>
<td>59</td>
<td>B6-303</td>
</tr>
<tr>
<td>Express Employment Professionals</td>
<td>Diana Ramirez</td>
<td>59</td>
<td>B6-303</td>
</tr>
<tr>
<td>Jayhawk File Express, LLC</td>
<td>Cheryl Creviston</td>
<td>59</td>
<td>B6-303</td>
</tr>
<tr>
<td>Organization (Private Citizen, etc.)</td>
<td>Commenter Name</td>
<td>Comment Number</td>
<td>Page # of Comment Letter</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---------------------------------</td>
<td>----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Kansas Medical Mutual Insurance Company</td>
<td>Kurt Scott</td>
<td>59</td>
<td>B6-303</td>
</tr>
<tr>
<td>Mickey’s Promotions</td>
<td>Michaela Shaver</td>
<td>59</td>
<td>B6-303</td>
</tr>
<tr>
<td>Mars Chocolate North American</td>
<td>Bret Spangler</td>
<td>59</td>
<td>B6-303</td>
</tr>
<tr>
<td>Frito-Lay, Inc.</td>
<td>Allen Moore</td>
<td>59</td>
<td>B6-303</td>
</tr>
<tr>
<td>Dillons/Kroger</td>
<td>Kim Svoboda</td>
<td>59</td>
<td>B6-303</td>
</tr>
<tr>
<td>U.S. Fish and Wildlife Service</td>
<td>Mary Knapp</td>
<td>60</td>
<td>B6-306</td>
</tr>
<tr>
<td>U.S. Environmental Protection Agency, Region 1</td>
<td>Curtis Spalding</td>
<td>61</td>
<td>B6-309</td>
</tr>
<tr>
<td>Town of Hampton</td>
<td>Frederick Welch</td>
<td>62</td>
<td>B6-317</td>
</tr>
<tr>
<td>Westar Energy</td>
<td>Mark Ruelle</td>
<td>63</td>
<td>B6-318</td>
</tr>
<tr>
<td>U.S. Fish and Wildlife Service, Kansas Ecological Field Office</td>
<td>Michele McNulty for Heather Whitlaw</td>
<td>64</td>
<td>B6-320</td>
</tr>
<tr>
<td>Canal Winchester Area Chamber of Commerce</td>
<td>Eric Wymer</td>
<td>65</td>
<td>B6-321</td>
</tr>
<tr>
<td>Canal Winchester Area Chamber of Commerce</td>
<td>Greg Chamblin</td>
<td>65</td>
<td>B6-321</td>
</tr>
<tr>
<td>Canal Winchester Area Chamber of Commerce</td>
<td>Amanda Lemke</td>
<td>65</td>
<td>B6-321</td>
</tr>
<tr>
<td>City of Dublin</td>
<td>Michael Keenan</td>
<td>66</td>
<td>B6-322</td>
</tr>
<tr>
<td>City of Dublin</td>
<td>Marsha Grigsby</td>
<td>66</td>
<td>B6-322</td>
</tr>
<tr>
<td>Columbus Chamber of Commerce</td>
<td>Michael Dalby</td>
<td>67</td>
<td>B6-328</td>
</tr>
<tr>
<td>Columbus Regional Airport Authority</td>
<td>Elaine Roberts</td>
<td>68</td>
<td>B6-329</td>
</tr>
<tr>
<td>Destination Canal Winchester</td>
<td>Bruce Jarvis</td>
<td>69</td>
<td>B6-332</td>
</tr>
<tr>
<td>The Franklin County Board of Commissioners</td>
<td>Marilyn Brown</td>
<td>70</td>
<td>B6-334</td>
</tr>
<tr>
<td>The Franklin County Board of Commissioners</td>
<td>Paula Brooks</td>
<td>70</td>
<td>B6-334</td>
</tr>
<tr>
<td>The Franklin County Board of Commissioners</td>
<td>John O’Grady</td>
<td>70</td>
<td>B6-334</td>
</tr>
<tr>
<td>The Franklin County Board of Commissioners</td>
<td>Marilyn Brown</td>
<td>71</td>
<td>B6-335</td>
</tr>
<tr>
<td>The Franklin County Board of Commissioners</td>
<td>Paula Brooks</td>
<td>71</td>
<td>B6-335</td>
</tr>
<tr>
<td>The Franklin County Board of Commissioners</td>
<td>John O’Grady</td>
<td>71</td>
<td>B6-335</td>
</tr>
<tr>
<td>Governor</td>
<td>Sam Brownback</td>
<td>72</td>
<td>B6-336</td>
</tr>
<tr>
<td>Mayor of Canal Winchester</td>
<td>Michael Ebert</td>
<td>73</td>
<td>B6-337</td>
</tr>
<tr>
<td>Mid-Ohio Regional Planning Commission</td>
<td>William Murdock</td>
<td>74</td>
<td>B6-338</td>
</tr>
<tr>
<td>New Hampshire Department of Environmental Services</td>
<td>Timothy Drew</td>
<td>75</td>
<td>B6-339</td>
</tr>
<tr>
<td>New Jersey Department of Environmental Protection</td>
<td>Ruth Foster</td>
<td>76</td>
<td>B6-344</td>
</tr>
<tr>
<td>Ohio Attorney General</td>
<td>Mike DeWine</td>
<td>77</td>
<td>B6-351</td>
</tr>
<tr>
<td>Pickaway County Board of County Commissioners</td>
<td>Jay Wippel</td>
<td>78</td>
<td>B6-352</td>
</tr>
<tr>
<td>Pickaway County Board of County Commissioners</td>
<td>Brian Stewart</td>
<td>78</td>
<td>B6-352</td>
</tr>
<tr>
<td>Pickaway County Board of County Commissioners</td>
<td>Harold Henson</td>
<td>78</td>
<td>B6-352</td>
</tr>
<tr>
<td>Organization (Private Citizen, etc.)</td>
<td>Commenter Name</td>
<td>Comment Number</td>
<td>Page # of Comment Letter</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Commissioners</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Great Bay Neurosurgical Associates</td>
<td>Melvin Prostkoff, M.D.</td>
<td>79</td>
<td>B6-353</td>
</tr>
<tr>
<td>Southeastern Franklin County Chamber of Commerce</td>
<td>Robert Garvin</td>
<td>80</td>
<td>B6-355</td>
</tr>
<tr>
<td>State Senator, District 16</td>
<td>Jim Hughes</td>
<td>81</td>
<td>B6-356</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>Dr. Calvin Taylor</td>
<td>82</td>
<td>B6-357</td>
</tr>
<tr>
<td>U.S. Fish and Wildlife Service, New England Field Office</td>
<td>Anthony Tur</td>
<td>83</td>
<td>B6-358</td>
</tr>
<tr>
<td>U.S. Army Corps of Engineers</td>
<td>Joshua Shaffer for Jon Coleman</td>
<td>84</td>
<td>B6-359</td>
</tr>
<tr>
<td>U.S. Fish and Wildlife Service, New England Field Office</td>
<td>Thomas Chapman</td>
<td>85</td>
<td>B6-367</td>
</tr>
<tr>
<td>Board of Commissioners, Shawnee County, Kansas</td>
<td>Robert Archer</td>
<td>86</td>
<td>B6-369</td>
</tr>
<tr>
<td>Board of Commissioners, Shawnee County, Kansas</td>
<td>Kevin Cook</td>
<td>86</td>
<td>B6-369</td>
</tr>
<tr>
<td>Board of Commissioners, Shawnee County, Kansas</td>
<td>Michele Buhler</td>
<td>86</td>
<td>B6-369</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>Allan Towle</td>
<td>87</td>
<td>B6-371</td>
</tr>
<tr>
<td>Mayor of Portsmouth</td>
<td>Bob Lister</td>
<td>88</td>
<td>B6-373</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>Renee Plummer</td>
<td>89</td>
<td>B6-374</td>
</tr>
<tr>
<td>Pease Development Authority</td>
<td>Bill Hopper</td>
<td>90</td>
<td>B6-375</td>
</tr>
<tr>
<td>Private Citizen</td>
<td>John Frink</td>
<td>91</td>
<td>B6-376</td>
</tr>
<tr>
<td>Office of Senator Matt Smith</td>
<td>Daniel Alvine</td>
<td>92</td>
<td>B6-378</td>
</tr>
<tr>
<td>Columbus Chamber</td>
<td>Michael Hartley</td>
<td>93</td>
<td>B6-379</td>
</tr>
<tr>
<td>Ohio U.S. Fish and Wildlife Service</td>
<td>Jeremy Applegate</td>
<td>94</td>
<td>B6-380</td>
</tr>
<tr>
<td>U.S. Fish and Wildlife Service, Pennsylvania Field Office</td>
<td>Lori Zimmerman</td>
<td>95</td>
<td>B6-381</td>
</tr>
<tr>
<td>Tuscarora Nation</td>
<td>Bryan Printup</td>
<td>96</td>
<td>B6-385</td>
</tr>
<tr>
<td>New Jersey Historic Preservation Office</td>
<td>Jonathan Kinney</td>
<td>97</td>
<td>B6-386</td>
</tr>
</tbody>
</table>
COMMENTS ON THE DRAFT EIS – KC-46A MOB 2 BEDDOWN

<table>
<thead>
<tr>
<th>Comment Number</th>
<th>Name/Agency</th>
<th>Date</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1</td>
<td>Glenn Helm, P.E. Environmental Specialist FAA</td>
<td>3/3/14</td>
<td>If Forbes Field is the selected location, the project will require formal notice and review for airspace review under Federal Aviation Regulation (FAR) Part 77, Objects Affecting Navigable Airspace. I recommend a 120-day notification to accommodate the review process and issue our determination letter. Proposals may be filed with FAA at http://oeaaa.faa.gov.</td>
<td>Although no facilities are proposed that would affect navigable airspace, Forbes ANGS will comply with 14 CFR Part 77 Objects Affecting Navigable Airspace, as appropriate, should they be selected to host the KC-46A. This has been added to all five locations in the safety sections.</td>
</tr>
<tr>
<td>4-2</td>
<td>Glenn Helm, P.E. Environmental Specialist FAA</td>
<td>3/3/14</td>
<td>I encourage you to file a request for airspace study as quickly as possible if and when Forbes Field is selected in order to determine if there are any potential effects to the airport from the proposed project. Be sure to submit information for any roads, objects, and temporary construction equipment (e.g. cranes). More information on this process may be found at: http://www.faa.gov/airports/central/engineering/part77/</td>
<td>Although no facilities are proposed that would affect navigable airspace, Forbes ANGS will comply with 14 CFR Part 77 Objects Affecting Navigable Airspace, as appropriate, should they be selected to host the KC-46A.</td>
</tr>
<tr>
<td>36-1</td>
<td>Margaret Wood Hassan, Governor</td>
<td>3/6/14</td>
<td>The Pease Air National Guard Base is the ideal location for the KC-46A air refueling tankers. The base is strategically located on the East Coast of the United States, translating to considerable time and cost savings for all eastbound support operations. In addition, much of the infrastructure needed to successfully implement the KC-46A aircraft is already in place at Pease. This infrastructure includes the longest Air National Guard runway and parking ramp in the northeast, air traffic control, security and customs, and fire protection. The 157th Air Refueling Wing and the 64th Air Refueling Squadron stationed at Pease are the best options to support the operation of the new KC-46 aircraft. Bringing the KC-46A air refueling tankers to Pease will also benefit our Seacoast communities and economy, bringing more jobs to the region and helping the base generate an even greater positive economic impact.</td>
<td>Thank you for your comment. As described in Section 2.2 of the Draft EIS, the USAF strategic basing process used several operational and other criteria to identify candidate and alternative bases for the MOB 2 missions. The criteria included 1) runway of at least 7,000 feet in length, 2) the presence of an ANG Wing on the installation, and 3) the installation had to be located in the continental United States. The EIS process is focused on evaluating each alternative to inform the Secretary of the Air Force on</td>
</tr>
<tr>
<td>Comment Number</td>
<td>Name/Agency</td>
<td>Date</td>
<td>Comment</td>
<td>Response</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------</td>
<td>--------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>41-1</td>
<td>Ronald Douglas Manuel</td>
<td>3/23/14</td>
<td>- The NAAQS and are below the pollutant emissions for the PSD/de minimis and are not subject to this regulation.</td>
<td>Thank you for your comment. Sections 3.5.2 and 4.5.2 discuss both baseline and projected emissions under Alternative #5. As discussed in these sections, the USEPA has classified the Columbus area, including all of Franklin County, as nonattainment for the O₃ and PM₂.₅ NAAQS. The region is designated attainment/unclassified area for all other criteria pollutants. As such, they are subject to de minimis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Rickenbacker ANGS 121 ARW is already flying the required hours/sorties required by the new KC-46A aircraft.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- The maintenance capability is already in place (now supporting 18 KC-135R’s and their training commitments) with a full maintenance capability rate.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- There are two runways that fully operational and they are both over 2 miles long.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- The civilian version of the aircraft is already flown by some of our ANG pilots, this would reduce the training needed for the new refueling aircraft (economies).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- The total airfield operations rate would remain at about the same level.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment Number</td>
<td>Name/Agency</td>
<td>Date</td>
<td>Comment</td>
<td>Response</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------------------</td>
<td>----------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/10/14</td>
<td>• Rickenbacker has fast delivery of parts when needed with commercial carriers (FedEx and UPS, and others) with around the clock delivery and the DSCC and DFAS installation are just up the road from the base.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Our communities around the airfield are used to the activity of the ANG aircraft. Some of the people in the towns don’t even now there is a tanker unit at Rickenbacker.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• As a community we need these new aircraft to continue the extraordinary conviction and integrity of the “troops” of the Ohio ANG to fly in support of any conflict in the world or of these United States.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• The community would not know of the unit’s activity during the week if not for the reporting of the local news outlets. The city of Columbus Chamber of Commerce (who have at least 1600 local business support) fully stand behind the unit acquiring the new KC-46A.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• The Ohio ANG is the most efficient and cost effective way of using these aircraft to their full capabilities in support of US Air Force missions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• The towns around RANGS have a large population of people with the technical expertise which will provide a large base of support for new members for the full-time force and the added personnel for the KC-46A.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Our unit and its members and have received many awards from the local communities and from communities around the world at deployed locations for their support in many missions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• And the communities could use the new jobs for the new aircraft to help support the local economy.</td>
<td></td>
</tr>
</tbody>
</table>

Letter was resubmitted and Rickenbacker ANGS and the Ohio SHPO have developed a Programmatic Agreement stating that if Rickenbacker ANGS is selected to host the MOB 2 scenario, further consultation thresholds. As discussed in Section 4.5.2, projected emissions would be expected to be below *de minimis* thresholds. As described in Section 2.2 of the Draft EIS, the USAF strategic basing process used several operational and other criteria to identify candidate and alternative bases for the MOB 2 missions. The criteria included 1) runway of at least 7,000 feet in length, 2) the presence of an ANG Wing on the installation, and 3) the installation had to be located in the continental United States. The EIS process is focused on evaluating each alternative to inform the Secretary of the Air Force on potential environmental impacts associated with each base. The USAF considers public comments in making decisions. We appreciate your participation in the environmental impact analysis process.
<table>
<thead>
<tr>
<th>Comment Number</th>
<th>Name/Agency</th>
<th>Date</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>46-1</td>
<td>Douglas McLearen, Pennsylvania Historical and Museum Commission</td>
<td>3/10/14</td>
<td>Please re-submit this correspondence and the associated attachments - including Attachment 3 (Draft Description of the Proposed Action and Alternatives), which was not included in Appendix B of the Draft EIS - so that we can begin consultation intended to avoid, minimize, or mitigate the adverse effect on historic properties that will apparently result from project implementation.</td>
<td>Would be conducted to minimize and mitigate potential adverse effects to these buildings.</td>
</tr>
<tr>
<td>47-1</td>
<td>Chris Sockalexis, Penobscot Nation Tribal Historic Preservation Office</td>
<td>2/28/14</td>
<td>Based on our survey files, which include both archaeological sites and standing structures, and the information you provided, it is our opinion that this project has no potential to affect historic properties [Pittsburgh]. Therefore, your responsibility for consultation with the State Historic Preservation Office for this project is complete. Should you become aware, from any source, that historic or archaeological properties are located at or near the project site, please notify the Bureau for Historic Preservation at (717) 783-8946.</td>
<td>Thank you for your comment. The USAF appreciates your input into the environmental impact analysis process. The conclusions of the EIS are consistent with this comment.</td>
</tr>
<tr>
<td>47-2</td>
<td>Chris Sockalexis, Penobscot Nation Tribal Historic Preservation Office</td>
<td>2/28/14</td>
<td>The Penobscot Nation would like notification if there is to be a significant change in the flight patterns and a significant change in the airspace that will be utilized during these missions [Pease].</td>
<td>Under the Proposed Action there is no significant change in the flight patterns or in the airspace that will be utilized during these missions. If this changes, the Penobscot Nation will be notified.</td>
</tr>
<tr>
<td>48-1</td>
<td>Joseph Pescatello</td>
<td>3/10/14</td>
<td>The Penobscot Nation concurs with the Cultural Resources study that there would be no adverse effect upon any Penobscot cultural and/or historical interests within the Project Boundary of this Proposed Action. The Penobscot Nation also concurs that all other potential environmental impacts associated with this Proposed Action will be minimal [Pease].</td>
<td>Thank you for your comment. The USAF appreciates your input into the environmental impact analysis process. The conclusions of the EIS are consistent with this comment.</td>
</tr>
</tbody>
</table>

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS

Appendix B6 Public Hearing Transcripts, Responses to Comments, and Written Comments on the Draft EIS
<table>
<thead>
<tr>
<th>Comment Number</th>
<th>Name/Agency</th>
<th>Date</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-1</td>
<td>Matt Smith, State Senator</td>
<td>3/24/14</td>
<td>I’m very afraid that adding more tankers will have a terrible effect on the environment for both the people and animals who live here. This area is a quiet enclave in a pristine area on the New England seacoast. As a long-term resident, I urge you to please consider other locations for the new tankers and leave the New Hampshire seacoast as it is. Of this increase in acreage, 4 acres would be off airport-controlled property. Impacts to wildlife species from operational noise would be expected to be minor due to the slight increase in noise and the temporary nature of construction. Impacts to state listed species would be minor. No federally listed species or critical habitat is known to occur on Portsmouth IAP; therefore, there would be no impacts to federally listed species.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>In fact, the draft finds there will be a decrease in noise disturbance and the existing facilities for fire response and crash recovery meet the KC-46A beddown requirements [Pittsburgh]. Thank you for your comment. Section 3.4.3.2 discusses Class A mishaps and confirms this record.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The draft EIS also notes the 171st has recently completed their 53rd consecutive year and over 230,000 flying hours without a Class-A mishap. These factors make the 171st a strong candidate for selection to house the KC-46A. As you consider the viability of this site, I also encourage you to consider the financial and operational advantages and efficiencies that make the 171st uniquely suited to serve as the MOB 2 of the new KC-46A tanker fleet. It is my understanding the 171st was chosen to be one of five alternative locations based on several criteria, including, but not limited to: its strategic location within a 90 minute flight time to 70% of the U.S. population which also covers six FEMA Regions, and its collaboration with the Pittsburgh International Airport, which provides the unit with access to four runways, inexpensive service agreements with ACAA fire and rescue operations, world-class snow removal operations, and around-the-clock tower support with no air traffic restrictions. This cost savings agreement, in addition to the nominal infrastructure expenses required to convert existing facilities to accommodate new KC-46A tankers, can save the USAF millions in Thank you for your comment. Section 3.4.3.2 discusses Class A mishaps and confirms this record.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The current FAR Part 150 data identified 321,436 total aircraft operations that occurred at Pittsburgh IAP during the 12-month period ending March 2006. Per the request of the ACAA, the current approved and published FAR Part 150 Noise Compatibility Program Update for Pittsburgh IAP is used as the baseline for this analysis. As shown in Section 4.4.1.1, under Alternative #4, the</td>
<td></td>
</tr>
</tbody>
</table>
DNL noise contours would decrease slightly in the areas of arrivals and departures from the DNL baseline contours because of fewer KC-46A airfield operations than depicted in the approved FAR Part 150 and the KC-46A is generally a quieter aircraft (5 dB quieter on landing and 1 dB louder on take-off) than the KC-135.

As described in Section 2.2 of the Draft EIS, the USAF strategic basing process used several operational and other criteria to identify candidate and alternative bases for the MOB 2 missions. The criteria included 1) runway of at least 7,000 feet in length, 2) the presence of an ANG Wing on the installation, and 3) the installation had to be located in the continental United States. The EIS process is focused on evaluating each alternative to inform the Secretary of the Air Force on potential environmental impacts associated with each base. The USAF considers public comments in making decisions. We appreciate your participation in the environmental impact
<table>
<thead>
<tr>
<th>Comment Number</th>
<th>Name/Agency</th>
<th>Date</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>54-1</td>
<td>Robert Archer, Kevin Cook, and Michele Buhler, Board of Commissioners, Shawnee County, Kansas</td>
<td>3/3/14</td>
<td>Forbes Field has excellent facilities and would easily house the KC-46A and additional Airmen.</td>
<td>Thank you for your comment. As described in Section 2.2 of the Draft EIS, the USAF strategic basing process used several operational and other criteria to identify candidate and alternative bases for the MOB 2 missions. The criteria included 1) runway of at least 7,000 feet in length, 2) the presence of an ANG Wing on the installation, and 3) the installation had to be located in the continental United States. The EIS process is focused on evaluating each alternative to inform the Secretary of the Air Force on potential environmental impacts associated with each base. The USAF considers public comments in making decisions. We appreciate your participation in the environmental impact analysis process.</td>
</tr>
<tr>
<td>56-1</td>
<td>Robert Sheppard</td>
<td>3/12/14</td>
<td>According to the USAF Environmental Impact Study, the NHANGS is currently responsible for 16% of flight operations at Pease International Airport (IAP). Living roughly four miles from the runway I am occasionally aware of the noise from circling air tankers while working around my yard, though appreciative of the airport restrictions, which limit low approaches or touch-and-go’s between 11pm and 7am, and before noon on Sundays. At least in this neighborhood NNE of the runway’s mid-point we notice much higher levels of noise from news media helicopters and corporate jets than military aircraft. It is my understanding, the KC-46A replacement aircraft will operate at or below current noise levels of the current air tanker.</td>
<td>The current FAR Part 150 data identified 321,436 total aircraft operations that occurred at Pittsburgh IAP during the 12-month period ending March 2006. Per the request of the ACAA, the current approved and published FAR Part 150 Noise Compatibility Program Update for Pittsburgh IAP is</td>
</tr>
<tr>
<td>Comment Number</td>
<td>Name/Agency</td>
<td>Date</td>
<td>Comment</td>
<td>Response</td>
</tr>
<tr>
<td>----------------</td>
<td>------------------</td>
<td>----------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>56-2</td>
<td>Robert Sheppard</td>
<td>3/12/14</td>
<td>Professionally I work with corporations to reduce their reliance on fossil fuels, decreasing the impact on climate change. The proposal to replace the existing fleet of eight KC-135’s and 1 backup with the newest generation of air tanker is a positive step from an environmental standpoint. The US Environmental Protection Administration recently designated South East region of NH as an air-quality attainment area. This represents a positive improvement in terms of ozone due to a number of factors including a more comprehensive focus on energy efficiency at both the state and local level. Employing an aircraft that consumes less fuel at and assuming the current level of 6,140 annual field operations as stated in the EIS, the NH ANGS should not have an adverse impact on the region’s air quality or sensitive environmental places. Thirty-four percent of the area adjoining IAP consists water; the Piscataqua-Salmon Falls River Watershed, Great and Little Bays, Portsmouth Harbor and the Atlantic Ocean. The statistics mention the 157 ARW has not suffered a major mishap in a decade, reported just three emergency fuel jettisons 2011-2012, and fewer than 20 BASH collisions per year, all well within acceptable standards for a military unit flying in close proximity to a developed area.</td>
<td>Thank you for your comment. Section 3.3.2 attainment status for the ROI. The USEPA had previously classified the Boston-Manchester-Portsmouth area as a moderate nonattainment area for the 1997 O₃ standard. On January 31, 2013, the USEPA formally redesignated southeastern New Hampshire as an attainment area for the 1997 O₃ standard. The region is therefore considered a maintenance area for O₃. The region is designated attainment/unclassified area for all other criteria pollutants. Section 3.3.3 confirms these BASH and fuel jettison statistics for the 157 ARW.</td>
</tr>
<tr>
<td>56-3</td>
<td>Robert Sheppard</td>
<td>3/12/14</td>
<td>My only concern is that the EIS provides an incomplete picture of the NHANG’s impact on the local economy. The data included in the report (3-82) includes Rockingham County, the town of Newington, City of Portsmouth and NH in terms of education, employment, housing and population. The next section goes on to list the Portsmouth Naval Shipyard and the UA Local 488 Marine Pipefitters union, as two of the area’s four principal employers. However, both of those entities are located just across the state line in Kittery, Maine. As a resident of this region since 1984, I believe that a more accurate assessment would include York County Maine, Eliot, Kittery and York, ME since many of the NHANG employees actually reside on this side of the border.</td>
<td>Thank you for your comment. The increase in personnel would be minimal, and it is expected that many, if not a majority of the individuals would be already living in the vicinity. Therefore, having the smaller region of influence around the installation was deemed to provide accurate results.</td>
</tr>
<tr>
<td>Comment Number</td>
<td>Name/Agency</td>
<td>Date</td>
<td>Comment</td>
<td>Response</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>----------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3/24/14</td>
<td>shopping in our stores, and sending their children to our schools. While one might find this a minor point, the impact of the 157<sup>th</sup> operations on the entire region does come into play in the event of a Defense Base Closure and Realignment process, which may draw from previous government documents. For this reason, I would encourage the USAF to included expanded commentary in the appropriate section of the final EIS.</td>
<td></td>
</tr>
<tr>
<td>61-1</td>
<td>Curtis Spalding, USEPA, Region 1</td>
<td>3/24/14</td>
<td>Miscellaneous Although the DEIS had a Glossary, many of the acronyms were not listed. A complete list of acronyms used should be provided in the FEIS.</td>
<td>A list of acronyms is listed at the beginning of the document. The glossary includes definitions of select words.</td>
</tr>
<tr>
<td>61-2</td>
<td>Curtis Spalding, USEPA, Region 1</td>
<td>3/24/14</td>
<td>Pease ANGS Alternative Air Quality--General Conformity The Pease ANGS site is not subject to General Conformity for the 2008 eight-hour ozone National Ambient Air Quality Standard (NAAQS, the 2008 ozone standard), as all of New Hampshire has been designated unclassifiable/attainment for the 2008 ozone standard. However, the General Conformity requirements currently remain in place for the 1997 eight-hour ozone NAAQS for the Boston-Manchester-Portsmouth (SE) NH area. On June 6, 2013 (78 FR 34178), EPA published its proposed rule for “Implementation of the 2008 National Ambient Air Quality Standards for Ozone: State Implementation Plan Requirements,” where EPA proposed revocation of the 1997 ozone standard. EPA has not yet finalized this regulation. EPA approved redesignation of the Boston-Manchester-Portsmouth (SE), New Hampshire moderate 8-hour ozone nonattainment area to attainment for the 1997 eight hour ozone NAAQS and the initial 10-year ozone maintenance plan for this area on Thursday, January 31, 2013; (78 FR 6741). We point out that the Boston-Manchester Portsmouth (SE), NH maintenance area is within the Ozone Transport Region. As such, General Conformity regulations establish applicability rates for ozone maintenance areas inside an ozone transport region as equal to or exceeding the rate of 100 tons per year of nitrogen oxides (NOx) and/or 50 tons per year of volatile organic compounds (VOCs) see 40 CFR §93.153(b)(2).</td>
<td>Thank you for your comment. The USAF appreciates your input into the environmental impact analysis process. The conclusions of the EIS are consistent with this comment.</td>
</tr>
<tr>
<td>Comment Number</td>
<td>Name/Agency</td>
<td>Date</td>
<td>Comment</td>
<td>Response</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------------</td>
<td>---------</td>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
| 61-3 | Curtis Spalding, USEPA, Region 1 | 3/24/14 | **Stormwater**

The project will require coverage under a National Pollution Discharge Elimination System (NPDES) construction general permit (CGP) for land disturbance of one or more acres of land. If this threshold is surpassed, the Pease ANGS would need to submit a Notice of Intent and obtain coverage under the COP and develop and implement a stormwater pollution prevention plan meeting the requirements of the most recently issued CGP.

The completed project may also be subject to the multi-sector general permit for storm water discharges associated with industrial activity - air transportation sector. Moreover, if any dewatering needs to occur for project construction, the project may also be subject to the remediation general permit if there is dewatering discharge. The FEIS should discuss these various permit requirements and the steps the Air Force will take to ensure compliance with stormwater discharge regulations.

Since this is federal facility the project should be designed and operated

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS

Appendix B6 Public Hearing Transcripts, Responses to Comments, and Written Comments on the Draft EIS
<table>
<thead>
<tr>
<th>Comment Number</th>
<th>Name/Agency</th>
<th>Date</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>61-4</td>
<td>Curtis Spalding, USEPA, Region 1</td>
<td>3/24/14</td>
<td>Water Supply</td>
<td>The DEIS does not describe or acknowledge a drinking water supply well called the Pease Trade Port Haven Well [EPA ID# 951020-002] operated by the Portsmouth Water Works. The proposed installation lies within the well’s source water protection area (SWPA). This gravel-packed supply well is approximately 4,200 feet south of the proposed facility. The FEIS should be updated to include this water supply resource. The DEIS should include the latest raw water quality analyses for the Pease Trade Port Haven Well (i.e., inorganics, VOCs, SOCs, PAHs, etc.) from the Portsmouth Water Works to describe current groundwater quality under the proposed installation location. This will provide a basis for a comparison of future potential drinking water impacts, if any, from KC-46A activities. In addition, any nearby monitoring wells should be sampled for the same constituents. The DEIS’ description of groundwater impacts (page 4-74) mentions only a 0.5 acre increase in impervious surface from the project. No mention whatsoever is made of groundwater quality. The fate and transport of storm water, deicing chemicals or fire-fighting agents in the vicinity of the proposed installation are not clear in the document. The FEIS should describe the present composition of storm water runoff; and what, if any, changes in impacts will occur to surface or groundwater from the new facility construction and operation.</td>
</tr>
<tr>
<td>61-5</td>
<td>Curtis Spalding, USEPA, Region 1</td>
<td>3/24/14</td>
<td>Pittsburgh ANGS Alternative Hazardous Materials and Waste</td>
<td>Nothing would change with respect to ASTs (what is stored, what amount is stored, etc.); therefore, no further changes occur.</td>
</tr>
</tbody>
</table>
Comment Number | Name/Agency | Date | Comment |
---|---|---|---|
aqueous film forming foam, potassium acetate, developer, dye penetrant, emulsifier, and rinse solution.” The location of the ASTs is not shown on the site. The FEIS should provide a map that depicts the location of the ASTs in relation to the proposed facility construction. The safety measures integrated into the AST should also be discussed.

The DEIS (page 5-27) notes, “Under Alternative #4, the total number of flying hours for the 171 ARW would increase approximately 34 percent; therefore, throughput of petroleum substances and hazardous waste streams would be expected to increase commensurately.” The FEIS should discuss if the current hazardous waste management systems can handle and treat increased hazardous waste and if additional options have been considered for incorporation to respond to the projected increase.

The Pittsburgh IAP relies on two in-stream treatment ponds to treat deicing wash. The ANG should consider upgrading its deicing facility to meet current standards.

The DEIS (page 3-106) notes, “Hazardous wastes initially accumulated at a SAP are accumulated in appropriate containers before being transferred to the installation CAP.” “The installation CAP is located in Building 501/502 (171 ARW 2009, Tower 2013b).” Building 501/502 is not identified on a map in the DEIS. The FEIS should explain whether these buildings are within the study area, depict them on a map and discuss safety procedures incorporated into the building design. The FEIS should also describe the approximate increase in waste generated as a result of the Proposed Action and if the buildings would have the capacity to handle the additional waste.

The DEIS (page 3-106) notes, “OWSs are used to separate oils, fuels, sand, and grease from wastewater and to prevent contaminants from entering the sanitary sewer and stormwater drainage systems. Fifteen OWSs are located on the 171 ARW installation. These OWSs primarily receive discharge from floor drains in maintenance area (171 ARW 2012c).” The FEIS should provide the location of the fifteen OWSs located on the 171 ARW installation and describe whether more are

Response
Have added the following language that is currently in Chapter 4 Hazmat sections also to Chapter 5 sections “Hazardous waste generation (e.g., used oil, used filters, oily rags, etc.) would continue to be managed in accordance with the installation’s Hazardous Waste Management Plan and all applicable federal, state, and local regulations. Additionally, no changes to the installation’s small quantity generator status would be expected to occur due to the increase in hazardous waste generation from aircraft operations.”
Upgrading the deicing facility is not a part of the proposed action, and as such is not discussed in this EIS.
These buildings are not located within the area of construction and therefore are not shown on the areal extent of the map.
Should additional OWSs or
<table>
<thead>
<tr>
<th>Comment Number</th>
<th>Name/Agency</th>
<th>Date</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
</table>
| 61-6 | Curtis Spalding, USEPA, Region 1 | 3/24/14 | Environmental Justice and the Protection of Children
The DEIS (page 3-110) discusses minority and low-income populations as well as children under the age of 18 living in the vicinity of the Pittsburgh ANGS. However, the FEIS should identify census tracts and blocks depicting these populations on a map to show possible impacts and support text and tables provided. | Comment noted. GIS for census tracts and blocks from the U.S. Census Bureau were used to analyzed low-income and minority populations within the vicinity of Pittsburgh ANGS. However, this was considered unnecessary for analysis to depict on maps in the EIS as the maps created would be cluttered and difficult to read. |
| 61-7 | Curtis Spalding, USEPA, Region 1 | 3/24/14 | Aircraft Noise
The DEIS (page 4-89) notes, “Aircrews associated with the KC-46A would continue to practice closed patterns, including tactical procedures in which the aircraft climbs or descends in the immediate vicinity of the airfield.” “This procedure is currently being flown with the KC-135; however most tactical procedures would be accomplished in the | There is no change to the type of operations that would occur at the Pittsburgh airfield. A maximum of 8,040 training hours (non-simulator) have been |
Comment Number | Name/Agency | Date | Comment | Response
--- | --- | --- | --- | ---
68-1 | Elaine Roberts, Columbus Regional Airport Authority | 1/24/14 | The Rickenbacker Air Guard Station is well located to provide responsive support to the significant demand for aerial refueling in the eastern United States, particularly the heavy concentration of fighter and cargo aircraft in the southeast states. Rickenbacker AGS is well positioned to accept 12 KC-46A aircraft, with the base's infrastructure currently supporting 18 KC-135R aircraft. Rickenbacker also offers a total logistics platform, all-weather navigation, a Foreign-trade zone, and U.S. Customs and Border Protection on site. CRAA maintains all runways, taxiways and navigational aids.

Additionally, the facility stands out for its existing infrastructure, offering not just one, but two runways meeting the criteria identified in your sourcing document.

We know you will do a detailed analysis of our Region and compare us against other competitors to ensure the best choice for your people, your aircraft and your mission.

Thank you for your comment. As described in Section 2.2 of the Draft EIS, the USAF strategic basing process used several operational and other criteria to identify candidate and alternative bases for the MOB 2 missions. The criteria included 1) runway of at least 7,000 feet in length, 2) the presence of an ANG Wing on the installation, and 3) the installation had to be located in the continental United States. The EIS process is focused on evaluating each alternative to inform the Secretary of the Air Force on potential environmental impacts associated with each base. The USAF considers public comments in making decisions. We appreciate your participation in the environmental impact analysis process.

76-1 | Ruth Foster, NJ Department of Environmental Protection | 3/24/14 | The Historic Preservation Office (HPO) received the above document for review directly from the National Guard Bureau. As stated in the EIS document, the HPO previously reviewed the proposed undertaking pursuant to Section 106 of the National Historic Preservation Act. Our office concurred with the finding that there are no historic properties affected by the proposed activity at Joint Base McGuire-Dix-Lakehurst. A copy of our review letter (HP0-12013-045) is attached for your reference.

Thank you for your comment. The USAF appreciates your input into the environmental impact analysis process. The conclusions of the EIS are consistent with this comment.
<table>
<thead>
<tr>
<th>Comment Number</th>
<th>Name/Agency</th>
<th>Date</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>76-2</td>
<td>Ruth Foster, NJ Department of Environmental Protection</td>
<td>3/24/14</td>
<td>The NJ Division of Fish & Wildlife (DFW) appreciates the opportunity to provide comment for the Environmental Impact Statements (EIS’s) being prepared for the MOB 1/FTU 1 and MOB 2 aircraft beddowns. The NJ DFW feels that the proposed facility additions, new impervious surface areas and changes to the existing fueling infrastructure shown in the “Final Description of the Proposed Action and Alternatives Environmental Impact Statement KC-46A Beddown at Alternative Air National Guard Installations Main Operating Base 2” should have little to no effect on the known nesting area of the Upland Sandpipers, Grasshopper Sparrows and Savannah Sparrows near the center of the runways at McGuire AFB.</td>
<td>Thank you for your comment. The USAF appreciates your input into the environmental impact analysis process. The conclusions of the EIS are consistent with this comment.</td>
</tr>
<tr>
<td>76-3</td>
<td>Ruth Foster, NJ Department of Environmental Protection</td>
<td>3/24/14</td>
<td>In the EIS, a description of other larger aircraft with similar engines using the same runways would be helpful in determining whether or not the replacement of the existing KC-135 aerial refueling fleet with the KC-46A would have any effect on the T &E species present [JB MDL].</td>
<td>As stated in Appendix A, Section A.1.2.1 Actual noise measurements for the KC-46A have not been obtained. Therefore, the USAF developed a set of noise data that can be used as a substitute for the KC-46A until such time as actual noise data becomes available. This data is not available in the INM program; therefore, the B767-300 was used as a substitute aircraft at civilian airports. Based on this substitute data, on a one-to-one basis, the KC-46A is slightly quieter than both the KC-135 and B767-300.</td>
</tr>
</tbody>
</table>
Comment Number | Name/Agency | Date | Comment | Response
--- | --- | --- | --- | ---
76-4 | Ruth Foster, NJ Department of Environmental Protection | 3/24/14 | As shown in Table ES-2. Summary of Impacts, under “JB MDL”: “Acreage within the 65 dB DNL (and greater) noise contour would increase by 1,831 acres.” The DFW would like to know what the noise level is now and exactly what the change in noise level would be. A study by Erin H. Strasser and Julie A. Heath, *Reproductive failure of a human-tolerant species, the American kestrel, is associated with stress and human disturbance*, suggests that “cavity nesting birds, such as kestrels, who inhabit noisy environments may compensate for decreased auditory cues by increasing vigilance behavior, such as visual scans from the nest entrance or flushing from the nest, leading to changes in energy allocation or extended periods away from the nest during incubation. This behavior appears to be followed, at a high rate, by nest abandonment.” The DFW would be concerned with how this may relate to the species nesting within the air field. | Analysis in the DEIS has found that there would be no impacts to T&E species at any of the locations. The Strasser and Heath study indicates that Kestrel nest success is lower in areas with greater human disturbance (not necessarily noise); and that disturbance (as identified in the study) was related to the proximity of roads; actual noise near the nests was not measured. Operational noise levels under Alternative #2 would be expected to increase slightly from baseline with the conversion to the KC-46A aircraft. As shown in Appendix A, Table A.1.2-2 provides representative SELs, indicating that the SEL for individual landings by the KC-46A would be 5 dB less than with the KC-135, while take-offs would be 1 dB greater than the KC-135. Under Alternative #2, only the number of aircraft operations would change; there would be no change in where or when individual aircraft operate. Flights would be scheduled for similar time periods as...
<table>
<thead>
<tr>
<th>Comment Number</th>
<th>Name/Agency</th>
<th>Date</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>83-1</td>
<td>Anthony Tur, USFWS New England Field Office</td>
<td>4/1/14</td>
<td>As stated in the draft EIS Section 3.3.5.3 (pg. 3-74), dated February 2014, there are no known occurrences of federally listed or candidate species within the vicinity of the 157 ARW installation. Consequently, I have no information to justify the need for further consultation regarding the Endangered Species Act.</td>
<td>Thank you for your comment. The USAF appreciates your input into the environmental impact analysis process. The conclusions of the EIS are consistent with this comment.</td>
</tr>
<tr>
<td>84-1</td>
<td>Joshua Shaffer for Jon Coleman, USACE</td>
<td>3/25/14</td>
<td>The U.S. Army Corps of Engineers regulates earth moving activities within streams or wetlands. This includes any placement of fill material, temporary or permanent. If you are proposing a new project that entails the placement of fill material in waters (including wetlands), or if you are proposing a modification to an existing project that entails the placement of fill material in waters, then this letter serves as your notice that your project may require a permit from this office [Pittsburgh].</td>
<td>The Proposed Action would not require the placement of fill material in wetlands or streams.</td>
</tr>
<tr>
<td>Comment Number</td>
<td>Name/Agency</td>
<td>Date</td>
<td>Comment</td>
<td>Response</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>----------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>84-2</td>
<td>Joshua Shaffer for Jon Coleman, USACE</td>
<td>3/25/14</td>
<td>Based on the information contained within the Draft EIS it appears that impacts to waters may be proposed. We recommend that you hire a qualified wetland consultant to evaluate the entire project area in order to determine if any streams or wetlands are present. Enclosed is a list of wetland consultants. If impacts to streams or wetlands are in fact proposed, you should again contact this office to discuss permitting requirements. Every effort should be made to avoid and minimize impacts to the aquatic resources on-site. We will continue to work with you in order to protect any aquatic resources that may be present [Pittsburgh].</td>
<td>The EIS has analyzed potential impacts to waters and has found that there would be no impacts under the Proposed Action. Every effort to avoid impacts to aquatic resources would be made.</td>
</tr>
</tbody>
</table>
| 85-1 | Thomas Chapman, USFWS New England Field Office | 3/25/14 | Based on information currently available to us, no federally listed or proposed, threatened or endangered species or critical habitat under the jurisdiction of the U.S. Fish and Wildlife Service are known to occur in the project area [Pease]. Preparation of a Biological Assessment or further consultation with us under section 7 of the Endangered Species Act is not required. No further Endangered Species Act coordination is necessary for a period of one year from the date of this letter, unless additional information on listed or proposed species becomes available. To obtain updated lists of federally listed or proposed threatened or endangered species and critical habitats, it is not necessary to contact this office. Instead, please visit the Endangered Species Consultation page on the New England Field Office’s website:

www.fws.gov/newengland/endangered!<fpec-consultation.htm
(accessed January 2013)

On the website, there is also a link to procedures that may allow you to conclude if habitat for a listed species is present in the project area. If no such habitat exists, then no federally listed species are present in the project area and there is no need to contact us for further consultation. If the above conclusion cannot be reached, further consultation with this office is advised. Information describing the nature and location of the proposed activity that should be provided to us for further informal consultation can be found at the above-referenced site. | Thank you for your comment. No habitat for listed species is present within the project area. |
| 91-1 | John Frink | 3/6/14 | Now, I know it’s a policy, although I have not personally called the Air National Guard, to deny jettisoning of fuel, however, I get up in the | Thank you for your comment. The ANG only jettisons fuel |
morning and certain atmospheric conditions, and there’s a very strong smell of kerosene.

Now, I’ve heard that this is because of the warm-up process and prevailing winds. I’ve also heard that it's necessary to jettison fuel in order to land or take off or something. But it’s distressing.

It’s perhaps better that I would ask the question rather than try to make a formal statement here, and the question would be, with the new tankers, which I’m sure are probably environmentally more friendly than the KC-135s, given that the 8 aircraft would be replaced by 12, would there be more of this jet fuel in the air over my house? I have honey bees that aren’t doing well. That probably is the case almost everywhere. I have a vegetable garden, which is pretty much organic, and I think it’s important to really consider the environment [Pease].

The City of Portsmouth and State of New Hampshire have always been very supportive of the military base there, but the people in Newington are the ones that really experience the downside. I have TCE in the water that runs through my property. I don’t have to drink that water, but there are environmental impacts, and I just would like to be reassured that the amount of fuel in the air vapor is not going to increase due to the increased aircraft.

during an emergency situation and it is not a daily practice to jettison fuel anywhere including at the end of the runway at Pease ANGS.

<table>
<thead>
<tr>
<th>Comment Number</th>
<th>Name/Agency</th>
<th>Date</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>94-1</td>
<td>Jeromy Applegate, OH USFWS</td>
<td>4/7/14</td>
<td>Relative to the subject project, you have made a determination that the project will have no effect on the federally endangered Indiana bat [Rickenbacker]. Because you have made a “no effect” determination, consultation (and FWS concurrence) under section 7(a)(2) of the Endangered Species Act is not required.</td>
<td>Thank you for your comment. The USAF appreciates your input into the environmental impact analysis process. The conclusions of the EIS are consistent with this comment.</td>
</tr>
<tr>
<td>95-1</td>
<td>Lori Zimmerman, USFWS Pennsylvania Field Office</td>
<td>4/2/14</td>
<td>Except for occasional transient species, no federally listed threatened or endangered species under our jurisdiction are known to occur within the project impact area [Pittsburgh].</td>
<td>Thank you for your comment. The USAF appreciates your input into the environmental impact analysis process. The conclusions of the EIS are consistent with this comment.</td>
</tr>
<tr>
<td>Comment Number</td>
<td>Name/Agency</td>
<td>Date</td>
<td>Comment</td>
<td>Response</td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>95-2</td>
<td>Lori Zimmerman, USFWS Pennsylvania Field Office</td>
<td>4/2/14</td>
<td>However, the Pittsburgh Air National Guard Station is within the range of the northern long-eared bat (Myotis septentrionalis), a species that was proposed for listing as an endangered species on October 2, 2013. No critical habitat has been proposed at this time. Species proposed for listing are not afforded protection under the ESA; however, as soon as a listing becomes effective, the prohibition against jeopardizing its continued existence and “take” applies regardless of an action’s stage of completion. Therefore, to avoid project delays we recommend that the effect of the project on northern long-eared bats, and their habitat, be considered during the project planning and design. Additional information about northern long-eared bats, including ecology, habitat descriptions, listing status updates, and possible conservation measures may be found at www.fws.gov/midwestendangered/mammals/nlba/index.html (click on Northern Long-eared Bat Interim Conference and Planning Guidance). We are available to discuss potential conservation measures specific to your project design.</td>
<td>Thank you for your comment. No habitat or potential habitat for the long-eared bat is located within the proposed construction area.</td>
</tr>
<tr>
<td>95-3</td>
<td>Lori Zimmerman, USFWS Pennsylvania Field Office</td>
<td>4/2/14</td>
<td>The Service is the principal Federal agency charged with protecting and enhancing populations and habitat of migratory bird species. The Migratory Bird Treaty Act (MBTA) prohibits the taking, killing, possession, transportation, and importation of migratory birds, their eggs, parts, and nests, except when specifically authorized by the Department of the Interior. While the MBTA has no provision for authorizing incidental take, the Service recognizes that some birds may be killed even if all reasonable measures to avoid take are implemented. The potential exists for avian mortality from habitat destruction and alteration within the project boundaries. Site-specific factors that should be considered in project siting to avoid and minimize the risk to birds include avian abundance; the quality, quantity and type of habitat; geographic location; type and extent of bird use (e.g., breeding, foraging, migrating, etc.); and landscape features. Please review the enclosed information for general recommendations for avoiding and minimizing impacts to migratory birds within and around the project area [Pittsburgh]. Please be aware that since these are general guidelines, some of them may not be applicable to the current project design or they may have already been included in the project design.</td>
<td>Thank you for your comment. Impacts to migratory birds are expected to be minor to negligible under the Proposed Action at Pittsburgh ANGS. No habitat would be permanently altered, and noise from construction would be temporary and minimal due to the existing ambient noise levels that occur at the airfield. An increase in levels of operations (e.g., sorties) may result in an increased opportunity for bird-aircraft strikes to occur, including those with migratory birds. Adherence to the existing,</td>
</tr>
</tbody>
</table>

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS

Appendix B6 Public Hearing Transcripts, Responses to Comments, and Written Comments on the Draft EIS
B6-221
<table>
<thead>
<tr>
<th>Comment Number</th>
<th>Name/Agency</th>
<th>Date</th>
<th>Comment</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>To avoid potential delays in reviewing your project, please use the</td>
<td>BASH program would</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>above-referenced USFWS project tracking number in any future</td>
<td>minimize the risk of</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>correspondence regarding this project.</td>
<td>bird/wildlife aircraft strikes.</td>
</tr>
<tr>
<td>97-1</td>
<td>Jonathan Kinney, New Jersey</td>
<td>5/12/14</td>
<td>Please submit a hard copy of the building evaluation with a cover letter</td>
<td>A hard copy of the building evaluation has been sent to</td>
</tr>
<tr>
<td></td>
<td>Historic Preservation Office</td>
<td></td>
<td>to our office requesting a formal concurrence with the “not eligible”</td>
<td>your office requesting formal concurrence.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>determination [JB MDL]. We will respond upon receipt of that</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>documentation. Please let me know if you have any questions.</td>
<td></td>
</tr>
</tbody>
</table>

United States Senate
WASHINGTON, DC 20510
March 5, 2014

Lieutenant General Stanley E. Clarke III
Director, Air National Guard
1000 Air Force Pentagon
Washington, DC 20330-1000

Dear General Clark,

As the Air Force completes the environmental impact process associated with the second KC-46A main operating base, we write to reiterate our enthusiastic support for the Air Force’s selection of Pease Air National Guard Base to serve as the first home for KC-46As in the Air National Guard. The strategic advantages of Pease, the performance of the 157th Air Refueling Wing (ARW), the strong public support for the base and its refueling mission, as well as the lack of environmental concerns continue to make Pease the best location in the Air National Guard for the KC-46A.

As you know, Pease is located only minutes from the most important refueling tracks for U.S.-based aircraft heading to the Middle East, Europe, and Africa and can support a range of training and operational missions. In fact, Pease is 12 minutes from the Coronet routing to Europe and the Middle East and ideally positioned to support the OPLAN 8010 mission. Proximity to these critical refueling tracks saves time and money, ensuring an outstanding value for the Air Force.

Pease also stands out because of its existing infrastructure to support the KC-46A. Pease has nearly one million gallons of bulk fuel storage and parking for up to 19 of the new aircraft. In addition to having one of the largest aircraft parking ramps in the Air National Guard, Pease has one of the longest runways in the Northeast and an absence of any environmental issues that would impede the basing and operation of the KC-46A.

In addition to these major assets at Pease, the most important asset is the men and women of the 157th ARW—whose expertise and commitment make them the best air refueling unit in the Air Force. From fiscal years 2011 to 2013, through supporting operations in Afghanistan, Libya, and Iraq, as well as Coronet missions, Pease has flown almost 13,000 operational hours, achieving the highest aircraft utilization of any Air National Guard KC-135 unit. Additionally, the 157th ARW was number one in operational support to Combatant Commanders—flying more operational hours than any other Air National Guard refueling unit, including units with significantly more aircraft.

The 157th ARW has developed a mature, high-performing active duty association that seamlessly integrates with the reserve component to form a highly functional unit capable of meeting the demands of the active component and the Air National Guard. Through working closely and effectively with its active associate, the 157th ARW has earned 11 Air Force Outstanding Unit Awards, while maintaining a retention rate near 100 percent. During fiscal year 2013, Pease’s active associate averaged 105 days per person per year on temporary duty.
assignment, the highest among all active duty and associate air refueling wings which averaged 92 days per person over the same period.

In short, an optimal strategic location, a top-performing air refueling unit, an absence of environmental concerns, and a supportive community and Congressional delegation combine to make clear that Pease Air National Guard Base represents the best possible location in the Air National Guard for the KC-46A.

Thank you for your service to our country. We look forward to working with you and the Air National Guard to welcome the KC-46A to Pease.

Sincerely,

Kelly Ayotte
United States Senate

Jeanne Shaheen
United States Senate
From: Jim Colbert [mailto:]
Sent: Friday, March 07, 2014 11:26 AM
To: ANGRC/NGB/A7A NEPA COMMENTS
Cc:
Subject: KC-46A BeddownEIS

I fully support the proposed beddown of the KC-46A refueling aircraft at the Pease ANG base in Newington NH

I do not believe this will have a negative impact on the environmental impact on the area. Pease has been here for a long time and the facilities here are second to none.

The arrival of this aircraft will surely create more jobs and bring more money to the State and help boost the economy.

The 157th air refueling wing would be the ideal unit receive this aircraft because of its past and present mission accomplishments.

Thank You,

Sincerely, James L. Colbert USAF, ret

Portsmouth, NH 03801
March 24, 2014

9043.1
ER 14/0069

Anne Rowe
NGB/A7AM
3501 Fetchet Avenue
Joint Base Andrews, MD 20762

RE: COMMENTS
Draft Environmental Impact Statement (DEIS)
Modification of the Second Main Operating Base KC-46A Beddown
Alternative Air National Guard Installations, NH, NJ, KS, PA, and OH

Dear Ms. Rowe:

The U.S. Department of the Interior (Department) has reviewed the Draft Environmental Impact Statement (DEIS) for Modification of the Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations, NH, NJ, KS, PA, and OH. The Department has no comment on the DEIS.

Thank you for the opportunity to review and comment on this document. Please contact me at (617) 223-8565 if I can be of assistance.

Sincerely,

[Signature]

Andrew L. Raddant
Regional Environmental Officer
March 3, 2014

Ms. Anne Rowe
Plans and Requirements Branch
National Guard Bureau
3501 Fetchet Avenue
Joint Base Andrews, MD 20762-5157

Re: Draft Environmental Impact Statement for the Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations
Forbes Field, Topeka, Kansas – One of Five Alternative Locations

Dear Ms. Rowe:

We have received your letter dated February 1, 2014. We generally do not provide comments from an environmental perspective.

Airspace Considerations
If Forbes Field is the selected location, the project will require formal notice and review for airspace review under Federal Aviation Regulation (FAR) Part 77, Objects Affecting Navigable Airspace.

I recommend a 120-day notification to accommodate the review process and issue our determination letter. Proposals may be filed with FAA at http://ocaaa.faa.gov.

I encourage you to file a request for airspace study as quickly as possible if and when Forbes Field is selected in order to determine if there are any potential effects to the airport from the proposed project. Be sure to submit information for any roads, objects, and temporary construction equipment (e.g., cranes).

More information on this process may be found at: http://www.faa.gov/airports/central/engineering/part77/

If you have questions, please contact me at glenn.helm@faa.gov or 816-329-2617.

Sincerely,

Glenn Helm, P.E.
Environmental Specialist

cc: Jeff Deitering, ACE-611D (e-mail only)

NOTE: This letter was e-mailed to ang.env.comments@ang.af.mil No hard copy will follow.
15 March 2014

KC-46A EIS Project Manager
NGB/A7AM, Shepperd Hall
3501 Fetchet Avenue
Join Base Andrews MD 20762-5157

Dear Sir:

I am writing in support of bringing the KC-46A “Pegasus” to Rickenbacker Air National Guard Base. As you are aware, Rickenbacker is prepared to accept the new role of the main operating base of the KC-46 today. But what the previous assessments have not been able to show is how much capability Rickenbacker Air National Guard Base offers with their local partnerships.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true “In Land Port”. This is unparalleled low cost joint use surge capability that would benefit a KC-46 operation.

Teamed with the Defense Logistics Agency, also located in Columbus (by the airport), and the 121 Air Refueling Wing can be a key partner in the cargo delivery for the Air Force.

Located within 1 hour flight time to 60% of the US population, Columbus is the ideal departure point for homeland defense and security. Additionally, the Columbus based KC-46 would be sharing the runways with FedEx, UPS, Cargo Lux and Cathay Pacific for long haul world-wide delivery.

Columbus, Ohio is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. In short, Columbus and the surrounding communities are ready for the KC-46.

I think you can see that bringing the KC-46 to Rickenbacker would be the most low cost/high capability choice that can be made. I implore you to station the KC-46 at Rickenbacker Air National Guard Base.

Thank you for your support of Rickenbacker Air National Guard Base.

Sincerely,

[Signature]

[Address]

[City, State Zip]
March 14, 2014

KC-46A EIS Project Manager, NGB/A7AM, Shepperd Hall
3501 Fetchet Avenue
Joint Base Andrews MD 20762-5157

Dear Sir:

I am writing in support of bringing the KC-46A “Pegasus” to Rickenbacker Air National Guard Base. As you are aware, Rickenbacker is prepared to accept the new role of the main operating base of the KC-46 today. But what the previous assessments have not been able to show is how much capability Rickenbacker Air National Guard Base offers with their local partnerships.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true “In Land Port.” This is unparalleled low cost joint use surge capability that would benefit a KC-46 operation.

Teamed with Defense Logistics Agency, also located in Columbus (by the airport), and the 121 Air Refueling Wing can be a key partner in the cargo delivery for the Air Force.

Located within the 1 hour flight time to 60% of the US population, Columbus is the ideal departure point for homeland defense and security. Additionally, the Columbus based KC-46 would be sharing the runways with Fed Ex, UPS, cargo Lux and Cathay Pacific for long haul world-wide delivery.

Columbus, Ohio is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. In short, Columbus and the surrounding communities are ready for the KC-46.

I think you can see the bringing the KC-46 to Rickenbacker would be the most low cost/high capability choice that can be made. I implore you to station the KC-46 at Rickenbacker Air National Guard Base.

Thank you for your support of Rickenbacker Air National Guard Base.

Sincerely,

[Signature]
Dana McDaniel
Development Director

[Handwritten note]
DLM/db
March 13, 2014

KC-46A EIS Project Manager, NGB/A7AM, Sheppard Hall
3501 Fetchet Avenue
Joint Base Andrews MD 20762-5157

Dear Sir:

I am writing in support of bringing the KC-46A “Pegasus” to Rickenbacker Air National Guard Base. As you are aware, Rickenbacker is prepared to accept the new role of the main operating base of the KC-46 today. But what the previous assessments have not been able to show is how much capability Rickenbacker Air National Guard Base offers with their local partnerships.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true “In Land Port”. This is unparalleled low cost joint use surge capability that would benefit a KC-46 operation.

Team with the Defense Logistics Agency, also located in Columbus (by the airport), and the 121 Air Refueling Wing can be a key partner in the cargo delivery for the Air Force. Located within 1 hour flight time to 60% of the US population, Columbus is the ideal departure point for homeland defense and security. Additionally, the Columbus based KC-46 would be sharing the runways with Fed Ex, UPS, Cargo Lux and Cathay Pacific for long haul world-wide delivery.

Columbus, Ohio is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. In short, Columbus and the surrounding communities are ready for the KC-46.

I think you can see that bringing the KC-46 to Rickenbacker would be the most low cost/high capability choice that can be made. I implore you to station the KC-46 at Rickenbacker Air National Guard Base.

Thank you for your support of Rickenbacker Air National Guard Base.

Sincerely,

Marsha Hall, Administrator
City of Groveport, Ohio

Town Hall 648 Main Street, Groveport, Ohio 43125
Recreation Center 7370 Botz Way, Groveport, Ohio 43125
Public Works 7400 Groveport Road, Groveport, Ohio 43125
The Links at Groveport 1005 Richardson Road, Groveport, Ohio 43125
March 14, 2014

KC-46A EIS Project Manager, NGB/A7AM, Shepperd Hall
3501 Fetchet Avenue
Joint Base Andrews, MD 20762-5157

Dear Sir:

I am writing in support of bringing the KC-46A “Pegasus” to Rickenbacker Air National Guard Base. As you are aware, Rickenbacker is prepared to accept the new role of the main operating base of the KC-46 today. But what the previous assessments have not been able to show is how much capability Rickenbacker Air National Guard Base offers with their local partnerships.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true “In Land Port”. This is unparalleled low cost joint use surge capability that would benefit a KC-46 operation.

Teammed with the Defense Logistics Agency, also located in Columbus (by the airport), and the 121 Air Refueling Wing can be a key partner in the cargo delivery for the Air Force.

Located within 1 hour flight time to 60% of the US population, Columbus is the ideal departure point for homeland defense and security. Additionally, the Columbus based KC-46 would be sharing the runways with Fed Ex, UPS, Cargo Lux and Cathay Pacific for long haul world-wide delivery.

Columbus, Ohio is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. In short, Columbus and the surrounding communities are ready for the KC-46.

I think you can see that bringing the KC-46 to Rickenbacker would be the most low cost/high capability choice that can be made. I implore you to station the KC-46 at Rickenbacker Air National Guard Base.

Thank you for your support of Rickenbacker Air National Guard Base.

Sincerely,

Jeff Hall
March, 17th 2014

KC-46A EIS Project Manager, NGB/A7AM, Shepperd Hall
3501 Fetehet Avenue
Joint Base Andrews MD 20762-5157

Dear Sir:

I am writing in support of bringing the KC-46A “Pegasus” to Rickenbacker Air National Guard Base. As you are aware, Rickenbacker is prepared to accept the new role of the main operating base of the KC-46 today. The opportunity to engage in meaningful local partnerships around Rickenbacker Air National Guard Base offers greater capabilities then previous assessments indicate.

Rickenbacker and Columbus International Airport are located within 25 miles of each other and are both governed by the Columbus Regional Airport Authority. These two major airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true “In Land Port”. The KC-46 operation would benefit greatly from leveraging this unparalleled low cost joint use surge capability.

Teamed with the Defense Logistics Agency, also located in Columbus (by the airport), and the 121 Air Refueling Wing can be a key partner in the cargo delivery for the Air Force.

Columbus is the ideal departure point for homeland defense and security operations because it is located within a 1 hour flight time to 60% of the US population. Additionally, the Columbus based KC-46 would be sharing the runways with Fed Ex, UPS, Cargo Lux and Cathay Pacific for long haul world-wide delivery.

Columbus, Ohio is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. In short, Columbus and the surrounding communities are ready for the KC-46.
I think you can see that bringing the KC-46 to Rickenbacker would be the most low cost/high capability choice that can be made. I implore you to station the KC-46 at Rickenbacker Air National Guard Base.

Thank you for your support of Rickenbacker Air National Guard Base.

Sincerely,

[Signature]

Theodore J. Staton
City Manager
March 2014

KC-46A EIS Project Manager
NGB/A7AM, Shepperd Hall
3501 Fetchet Avenue
Join Base Andrews MD 20762-5157

Dear Sir:

I am writing in support of bringing the KC-46A “Pegasus” to Rickenbacker Air National Guard Base. As you are aware, Rickenbacker is prepared to accept the new role of the main operating base of the KC-46 today. But what the previous assessments have not been able to show is how much capability Rickenbacker Air National Guard Base offers with their local partnerships.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true “In Land Port”. This is unparalleled low cost joint use surge capability that would benefit a KC-46 operation.

Teamed with the Defense Logistics Agency, also located in Columbus (by the airport), and the 121 Air Refueling Wing can be a key partner in the cargo delivery for the Air Force.

Located within 1 hour flight time to 60% of the US population, Columbus is the ideal departure point for homeland defense and security. Additionally, the Columbus based KC-46 would be sharing the runways with Fed Ex, UPS, Cargo Lux and Cathay Pacific for long haul world-wide delivery.

Columbus, Ohio is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. In short, Columbus and the surrounding communities are ready for the KC-46.

I think you can see that bringing the KC-46 to Rickenbacker would be the most low cost/high capability choice that can be made. I implore you to station the KC-46 at Rickenbacker Air National Guard Base.

Thank you for your support of Rickenbacker Air National Guard Base.

Sincerely,
March 2014

The Honorable Deborah Lee James
Secretary of the Air Force
1670 Air Force Pentagon
Washington, DC 20330-1670

Dear Madam Secretary:

I am writing in support of bringing the KC-46A “Pegasus” to Rickenbacker Air National Guard Base. As you are aware, Rickenbacker is prepared to accept the new role of the main operating base of the KC-46 today. But what the previous assessments have not been able to show is how much capability Rickenbacker Air National Guard Base offers with their local partnerships.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true “In Land Port”. This is unparalleled low cost joint use surge capability that would benefit a KC-46 operation.

Teamed with the Defense Logistics Agency, also located in Columbus (by the airport), and the 121 Air Refueling Wing can be a key partner in the cargo delivery for the Air Force.

Located within 1 hour flight time to 60% of the US population, Columbus is the ideal departure point for homeland defense and security. Additionally, the Columbus based KC-46 would be sharing the runways with Fed Ex, UPS, Cargo Lux and Cathay Pacific for long haul world- wide delivery.

Columbus, Ohio is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. In short, Columbus and the surrounding communities are ready for the KC-46.

I think you can see that bringing the KC-46 to Rickenbacker would be the most low cost/high capability choice that can be made. I implore you to station the KC-46 at Rickenbacker Air National Guard Base.

Thank you for your support of Rickenbacker Air National Guard Base.

Sincerely,
15 March 2014

KC-46A EIS Project Manager
NGB/A7AM, Shepperd Hall
3501 Fetchet Avenue
Join Base Andrews MD 20762-5157

Dear Sir:

I am writing in support of bringing the KC-46A “Pegasus” to Rickenbacker Air National Guard Base. As you are aware, Rickenbacker is prepared to accept the new role of the main operating base of the KC-46 today. But what the previous assessments have not been able to show is how much capability Rickenbacker Air National Guard Base offers with their local partnerships.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true “In Land Port”. This is unparalleled low cost joint use surge capability that would benefit a KC-46 operation.

Team with the Defense Logistics Agency, also located in Columbus (by the airport), and the 121 Air Refueling Wing can be a key partner in the cargo delivery for the Air Force.

Located within 1 hour flight time to 60% of the US population, Columbus is the ideal departure point for homeland defense and security. Additionally, the Columbus based KC-46 would be sharing the runways with FedEx, UPS, Cargo Lux and Cathay Pacific for long haul world-wide delivery.

Columbus, Ohio is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. In short, Columbus and the surrounding communities are ready for the KC-46.

I think you can see that bringing the KC-46 to Rickenbacker would be the most low-cost/high capability choice that can be made. I implore you to station the KC-46 at Rickenbacker Air National Guard Base.

Thank you for your support of Rickenbacker Air National Guard Base.

Sincerely,

Robert C. Burelli
LTC USA (Ret.)

The decision fits the “Common Sense” Test
A No Brainer!
March 24, 2014

KC-46A EIS Project Manager, NGB/A7AM, Shepperd Hall
3501 Fetchet Avenue
Joint Base Andrews MD 20762-5157

Dear Sir:

As chairman of Columbus City Council’s Veterans Affairs Committee, and as a Vietnam era veteran, I know firsthand the powerful positive impact military installations can have on a community. Rickenbacker Air National Guard Base and various defense related facilities in the Columbus area employ some 13,000 people, with an estimated annual economic impact of nearly $3 million.

That is why I am writing you in support of bringing the KC-46A “Pegasus” to Rickenbacker. In my role as a City Councilmember, I have spent time with the men and women of the 121st Air Refueling Wing and have participated in training missions with them. They are a professional, combat ready operation that plays a vital role in support of protecting American interests both at home and abroad.

As you are aware, Rickenbacker is prepared to serve as the main operating base of the KC-46 today. But what the previous assessments have not been able to show is how much capability Rickenbacker Air National Guard Base offers with their local partnerships.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true “In Land Port.” This is unparalleled low-cost joint-use surge capability that would benefit a KC-46 operation.

Teamed with the Defense Logistics Agency, which is located near the airport, the 121st Air Refueling Wing can be a key partner in cargo delivery for the Air Force.

Located within an hour’s flight to 60% of the US population, Columbus is the ideal departure point for homeland defense and security. Additionally, the Columbus based KC-46 would be sharing the runways with Fed Ex, UPS, Cargo Lux and Cathay Pacific for long haul worldwide delivery.
Columbus is America’s 15th largest city and has been rated the 11th most military friendly city in the country. The city recently received an Employer Support of the Guard and Reserve award. Columbus and its surrounding communities are ready for the KC-46.

Rickenbacker Air National Guard Base is ready to be the low-cost, high-capability home for the KC-46. I urge you to bring the Pegasus to Columbus.

Thank you for your support of Rickenbacker Air National Guard Base.

Sincerely,

Hearcel F. Craig
Member, Columbus City Council
18 March 2014

KC-46A EIS Project Manager
NGAB/A7AM, Sheppard Hall
3501 Fitchet Avenue
Joint Base Andrews MD 20762-5157

Dear Sir:

I am writing in support of bringing the KC-46A “Pegasus” to Rickenbacker Air National Guard Base. As you are aware, Rickenbacker is prepared to accept the new role of the main operating base of the KC-46 today. But what the previous assessments have not been able to show is how much capability Rickenbacker Air National Guard Base offers with its local partnerships.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true “In Land Port”. This is unparalleled low cost joint use surge capability that would benefit a KC-46 operation.

Teamed with the Defense Logistics Agency, also located in Columbus (by the airport), and the 121 Air Refueling Wing can be a key partner in the cargo delivery for the Air Force.

Located within 1 hour flight time to 60% of the US population, Columbus is the ideal departure point for homeland defense and security. Additionally, the Columbus based KC-46 would be sharing the runways with FedEx, UPS, Cargo Lux and Cathay Pacific for long haul worldwide delivery.

Columbus, Ohio is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. In short, Columbus and the surrounding communities are ready for the KC-46.

I think you can see that bringing the KC-46 to Rickenbacker would be the most low cost/high capability choice that can be made. I implore you to station the KC-46 at Rickenbacker Air National Guard Base.

Thank you for your support of Rickenbacker Air National Guard Base.

Sincerely,

Reynoldsburg OH 43068
From: chirotaskforce [mailto:]
Sent: Monday, March 24, 2014 4:07 PM
To: ANGRC/NGB/A7A NEPA COMMENTS
Subject: support

KC-46A EIS Project Manager, NGB/A7AM, Sheperd Hall
3501 Fetchet Avenue
Joint Base Andrews MD 20762-5157

Dear Sir:

I am writing in support of bringing the KC-46A “Pegasus” to Rickenbacker Air National Guard Base. As you are aware, Rickenbacker is prepared to accept the new role of the main operating base of the KC-46 today. But what the previous assessments have not been able to show is how much capability Rickenbacker Air National Guard Base offers with their local partnerships.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true “In Land Port”. This is unparalleled low cost joint use surge capability that would benefit a KC-46 operation.

Teamed with the Defense Logistics Agency, also located in Columbus (by the airport), and the 121 Air Refueling Wing can be a key partner in the cargo delivery for the Air Force.

Located within 1 hour flight time to 60% of the US population, Columbus is the ideal departure point for homeland defense and security. Additionally, the Columbus based KC-46 would be sharing the runways with FedEx, UPS, Cargo Lux and Cathay Pacific for long haul world-wide delivery.

Columbus, Ohio is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. In short, Columbus and the surrounding communities are ready for the KC-46.

I think you can see that bringing the KC-46 to Rickenbacker would be the most low cost/high capability choice that can be made. I implore you to station the KC-46 at Rickenbacker Air National Guard Base.

Thank you for your support of Rickenbacker Air National Guard Base.

Sincerely

Victor Wilson
Dear Sir:

I am writing in support of bringing the KC-46A “Pegasus” to Rickenbacker Air National Guard Base. As you are aware, Rickenbacker is prepared to accept the new role of the main operating base of the KC-46 today. But what the previous assessments have not been able to show is how much capability Rickenbacker Air National Guard Base offers with their local partnerships.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true “In Land Port”. This is unparalleled low cost joint use surge capability that would benefit a KC-46 operation.

Teamed with the Defense Logistics Agency, also located in Columbus (by the airport), and the 121 Air Refueling Wing can be a key partner in the cargo delivery for the Air Force.

Located within 1 hour flight time to 60% of the US population, Columbus is the ideal departure point for homeland defense and security. Additionally, the Columbus based KC-46 would be sharing the runways with Fed Ex, UPS, Cargo Lux and Cathay Pacific for long haul world wide delivery.

Columbus, Ohio is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. In short, Columbus and the surrounding communities are ready for the KC-46.

I think you can see that bringing the KC-46 to Rickenbacker would be the most low cost/high capability choice that can be made. I implore you to station the KC-46 at Rickenbacker Air National Guard Base.

Thank you for your support of Rickenbacker Air National Guard Base.

Sincerely,

[Signature]

KC-46A EIS Project Manager, NGB/A7AM, Shepperd Hall
3501 Fetchet Avenue
Joint Base Andrews MD 20762-5157

[Signature]
March 2014

KC-46A EIS Project Manager
NG/A7AM, Sheppard Hall
3501 Fetchet Avenue
Joint Base Andrews MD 20762-5157

Dear Sir:

I am writing in support of bringing the KC-46A “Pegasus” to Rickenbacker Air National Guard Base. As you are aware, Rickenbacker is prepared to accept the new role of the main operating base of the KC-46 today. But what the previous assessments have not been able to show is how much capability Rickenbacker Air National Guard Base offers with their local partnerships.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true “In Land Port”. This is unparalleled low cost joint use surge capability that would benefit a KC-46 operation.

Teamed with the Defense Logistics Agency, also located in Columbus (by the airport), and the 121 Air Refueling Wing can be a key partner in the cargo delivery for the Air Force.

Located within 1 hour flight time to 60% of the US population, Columbus is the ideal departure point for homeland defense and security. Additionally, the Columbus based KC-46 would be sharing the runways with Fed Ex, UPS, Cargo Lux and Cathay Pacific for long haul world-wide delivery.

Columbus, Ohio is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. In short, Columbus and the surrounding communities are ready for the KC-46.

I think you can see that bringing the KC-46 to Rickenbacker would be the most low cost/high capability choice that can be made. I implore you to station the KC-46 at Rickenbacker Air National Guard Base.

Thank you for your support of Rickenbacker Air National Guard Base.

Sincerely,

[Signature]

Col/Ret Richard D. Emmons
Hilliard OH 43026-3009
March 18, 2014

KC-46A EIS Project Manager, NGB/A&AM, Shepperd Hall
3501 Fetchet Avenue
Joint Base Andrews, MD 20762-5157

Dear Sir:

We are writing in support of bringing the KC-46A “Pegasus” to Rickenbacker Air National Guard Base. As you are aware, Rickenbacker is prepared to accept the new role of the main operating base of the KC-46 today. But what the previous assessments have not been able to show is how much capability Rickenbacker Air National Guard Base offers with their local partnerships.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal Park that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true “In Land Port”. This is unparalleled low cost joint use surge capability that would benefit a KC-46 operation.

Team with the Defense Logistics Agency, also located in Columbus (by the airport), and the 121 Air Refueling Wing can be a key partner in the cargo delivery for the Air Force.

Located within 1-hour flight time to 60% of the US population, Columbus is the ideal departure point for homeland defense and security. Additionally, the Columbus based KC-46 would be sharing the runways with FedEx, UPS, Cargo Lux and Cathay Pacific for long haul world-wide delivery.

Columbus, Ohio is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. In short, Columbus and the surrounding communities are ready for the KC-46.

We think you can see that bringing the KC-46 to Rickenbacker would be the most low cost/high capability choice that can be made. We implore you to station the KC-46 at Rickenbacker Air National Guard Base.

Thank you for your support of Rickenbacker Air National Guard Base.

Sincerely,

Steve Davis
Commissioner

Dave Levacy
Commissioner

Mike Kiger
Commissioner

Fairfield County Commissioners Office • 210 E. Main Street, Room 301
Lancaster, Ohio 43130-3879 • (740) 652-7090 • Fax: (740) 687-6048
15 March 2014

KC-46A EIS Project Manager
NGB/A7AM, Shepperd Hall
3501 Fetchet Avenue
Join Base Andrews MD 20762-5157

Dear Sir:

I am writing in support of bringing the KC-46A “Pegasus” to Rickenbacker Air National Guard Base. As you are aware, Rickenbacker is prepared to accept the new role of the main operating base of the KC-46 today. But what the previous assessments have not been able to show is how much capability Rickenbacker Air National Guard Base offers with their local partnerships.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true “In Land Port”. This is unparalleled low cost joint use surge capability that would benefit a KC-46 operation.

Teamed with the Defense Logistics Agency, also located in Columbus (by the airport), and the 121 Air Refueling Wing can be a key partner in the cargo delivery for the Air Force.

Located within 1 hour flight time to 60% of the US population, Columbus is the ideal departure point for homeland defense and security. Additionally, the Columbus based KC-46 would be sharing the runways with FedEx, UPS, Cargo Lux and Cathay Pacific for long haul world-wide delivery.

Columbus, Ohio is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. In short, Columbus and the surrounding communities are ready for the KC-46.

I think you can see that bringing the KC-46 to Rickenbacker would be the most low cost/high capability choice that can be made. I implore you to station the KC-46 at Rickenbacker Air National Guard Base.

Thank you for your support of Rickenbacker Air National Guard Base.

Sincerely,

[Signature]

DAVID E. JACKSON
Col USAF Res
15 March 2014

KC-46A EIS Project Manager
NGB/A7AM, Sheperd Hall
3501 Fetchet Avenue
Join Base Andrews MD 20762-5157

Dear Sir:

I am writing in support of bringing the KC-46A “Pegasus” to Rickenbacker Air National Guard Base. As you are aware, Rickenbacker is prepared to accept the new role of the main operating base of the KC-46 today. But what the previous assessments have not been able to show is how much capability Rickenbacker Air National Guard Base offers with their local partnerships.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true “In Land Port”. This is unparalleled low cost joint use surge capability that would benefit a KC-46 operation.

Teamed with the Defense Logistics Agency, also located in Columbus (by the airport), and the 121 Air Refueling Wing can be a key partner in the cargo delivery for the Air Force.

Located within 1 hour flight time to 60% of the US population, Columbus is the ideal departure point for homeland defense and security. Additionally, the Columbus based KC-46 would be sharing the runways with Fed Ex, UPS, Cargo Lux and Cathay Pacific for long haul world-wide delivery.

Columbus, Ohio is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. In short, Columbus and the surrounding communities are ready for the KC-46.

I think you can see that bringing the KC-46 to Rickenbacker would be the most low cost/high capability choice that can be made. I implore you to station the KC-46 at Rickenbacker Air National Guard Base.

Thank you for your support of Rickenbacker Air National Guard Base.

Sincerely,

Donald E Kershner

Columbus, Oh 43232
16 March 2014

KC-46A EIS Project Manager
NGB/A7AM, Sheppard Hall
3501 Fetchet Avenue
Joint Base Andrews MD 20762-5157

Dear Sir:

As President of the Military Officers Association of America (MOAA) Central Ohio Chapter, I represent approximately 400 former and retired officers of the uniformed services of the United States.

I am writing to you in support of assigning the KC-46A “Pegasus” aircraft and mission to Rickenbacker Air National Guard Base in Ohio. I am certain you are aware that Rickenbacker is prepared to accept the new role of the main operating base of the KC-46A today. However, what previous assessments may not have been able to illustrate is how much capability Rickenbacker Air National Guard Base offers through its local operating partnerships and its physical proximity to key mission-enhancing support activities.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy-lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true “Inland Port”. This is an unparalleled low cost joint use surge capability that would benefit the KC-46A operational mission.

Teamed with the Defense Logistics Agency, also located in Columbus and adjacent to the airport, the 121st Air Refueling Wing can be a key partner in the cargo delivery for the Air Force.

Located within a one-hour of flight time to 60% of the US population, Columbus is the ideal departure point for homeland defense and security. Additionally, the Columbus based KC-46A mission would be sharing the runways with FedEx, UPS, Cargo Lux and Cathay Pacific for long haul worldwide delivery.

Columbus, Ohio is the 15th largest city and is rated the 11th most “military friendly” city in America. The city was recently awarded a Employer Support of the Guard and Reserve award. In short, Columbus and the surrounding communities are an ideal location for the main operating base of the KC-46A mission and is ready to accept this important responsibility.
March 16, 2014

I trust you will agree that assigning the KC-46A mission to this central Ohio location would be the most low cost/high capability choice that can be made. I urge you to recommend stationing the KC-46A aircraft and mission at Rickenbacker Air National Guard Base.

On behalf of the members of the MOAA Central Ohio Chapter, thank you for your support of Rickenbacker Air National Guard Base as the future location of this important aircraft and its critical mission to the defense of the United States.

Sincerely,

[Signature]

Joseph A. Machado
LTC USA (Ret)
President, MOAA Central Ohio Chapter
15 March 2014

KC-46A EIS Project Manager
NGB/A7AM, Shepperd Hall
3501 Fetchet Avenue
Join Base Andrews MD 20762-5157

Dear Sir:

I am writing in support of bringing the KC-46A “Pegasus” to Rickenbacker Air National Guard Base. As you are aware, Rickenbacker is prepared to accept the new role of the main operating base of the KC-46 today. But what the previous assessments have not been able to show is how much capability Rickenbacker Air National Guard Base offers with their local partnerships.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true “In Land Port”. This is unparalleled low cost joint use surge capability that would benefit a KC-46 operation.

Teamed with the Defense Logistics Agency, also located in Columbus (by the airport), and the 121 Air Refueling Wing can be a key partner in the cargo delivery for the Air Force.

Located within 1 hour flight time to 60% of the US population, Columbus is the ideal departure point for homeland defense and security. Additionally, the Columbus based KC-46 would be sharing the runways with Fed Ex, UPS, Cargo Lux and Cathay Pacific for long haul world-wide delivery.

Columbus, Ohio is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. In short, Columbus and the surrounding communities are ready for the KC-46.

I think you can see that bringing the KC-46 to Rickenbacker would be the most low cost/high capability choice that can be made. I implore you to station the KC-46 at Rickenbacker Air National Guard Base.

Thank you for your support of Rickenbacker Air National Guard Base.

Sincerely,

[Signature]

[Name]

[Rank]
March 2014

KC-46A EIS Project Manager
NGB/A7AM, Sheppard Hall
3501 Fetchet Avenue
Joint Base Andrews MD 20762-5157

Dear Sir:

I am writing in support of bringing the KC-46A “Pegasus” to Rickenbacker Air National Guard Base. As you are aware, Rickenbacker is prepared to accept the new role of the main operating base of the KC-46 today. But what the previous assessments have not been able to show is how much capability Rickenbacker Air National Guard Base offers with their local partnerships.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true “In Land Port”. This is unparalleled low cost joint use surge capability that would benefit a KC-46 operation.

Teamed with the Defense Logistics Agency, also located in Columbus (by the airport), and the 121 Air Refueling Wing can be a key partner in the cargo delivery for the Air Force.

Located within 1 hour flight time to 60% of the US population, Columbus is the ideal departure point for homeland defense and security. Additionally, the Columbus based KC-46 would be sharing the runways with Fed Ex, UPS, Cargo Lux and Cathay Pacific for long haul world-wide delivery.

Columbus, Ohio is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. In short, Columbus and the surrounding communities are ready for the KC-46.

I think you can see that bringing the KC-46 to Rickenbacker would be the most low cost/high capability choice that can be made. I implore you to station the KC-46 at Rickenbacker Air National Guard Base.

Thank you for your support of Rickenbacker Air National Guard Base.

Sincerely,

Michael Morgan, Retired
KC-46A EIS Project Manager, NGB/A7AM
Shepperd Hall
3501 Fetchet Avenue
Joint Base Andrews MD 20762-5157

March 11, 2014

Dear Sir/Madam:

I am writing in support of bringing the KC-46A “Pegasus” to Rickenbacker Air National Guard Base. As you are aware, Rickenbacker is prepared to accept the new role of the main operating base of the KC-46 today. But what the previous assessments have not been able to show is how much capability Rickenbacker Air National Guard Base offers with their local partnerships.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true “In Land Port”. This is unparalleled low cost joint use surge capability that would benefit a KC-46 operation.

Teamed with the Defense Logistics Agency (located in Columbus by the airport), the 121 Air Refueling Wing can be a key partner in the cargo delivery for the Air Force.

Because of its location within 1 hour flight time to 60% of the U.S. population, Columbus is the ideal departure point for homeland defense and security. Additionally, the Columbus based KC-46 would be sharing the runways with Fed Ex, UPS, Cargo Lux and Cathay Pacific for long haul world-wide delivery.

Columbus, Ohio is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. In short, Columbus and the surrounding communities are ready for the KC-46.

I think you can see that bringing the KC-46 to Rickenbacker would be the most low cost/high capability choice that can be made. I implore you to station the KC-46 at Rickenbacker Air National Guard Base.

Thank you for your support of Rickenbacker Air National Guard Base.

Sincerely,

LtCol Rex A. Mykrantz
Ohio Air National Guard

Hilliard, OH 43026-7332
March 2014

KC-46A EIS Project Manager
NGB/A7AM, Shepperd Hall
3501 Fetchet Avenue
Join Base Andrews MD 20762-5157

Dear Sir:

I am writing in support of bringing the KC-46A “Pegasus” to Rickenbacker Air National Guard Base. As you are aware, Rickenbacker is prepared to accept the new role of the main operating base of the KC-46 today. But what the previous assessments have not been able to show is how much capability Rickenbacker Air National Guard Base offers with their local partnerships.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true “In Land Port”. This is unparalleled low cost joint use surge capability that would benefit a KC-46 operation.

Teamed with the Defense Logistics Agency, also located in Columbus (by the airport), and the 121 Air Refueling Wing can be a key partner in the cargo delivery for the Air Force.

Located within 1 hour flight time to 60% of the US population, Columbus is the ideal departure point for homeland defense and security. Additionally, the Columbus based KC-46 would be sharing the runways with Fed Ex, UPS, Cargo Lux and Cathay Pacific for long haul wide- wide delivery.

Columbus, Ohio is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. In short, Columbus and the surrounding communities are ready for the KC-46.

I think you can see that bringing the KC-46 to Rickenbacker would be the most low cost/high capability choice that can be made. I implore you to station the KC-46 at Rickenbacker Air National Guard Base.

Thank you for your support of Rickenbacker Air National Guard Base.

Sincerely,

[Signature]

14 March 2014
3/15/14

KC-46A EIS Project Manager, NGB/A7AM, Shepperd Hall
3501 Fetchet Avenue
Joint Base Andrews MD 20762-5157
Dear Sir:

I am writing in support of bringing the KC-46A “Pegasus” to Rickenbacker Air National Guard Base. As you are aware, Rickenbacker is prepared to accept the new role of the main operating base of the KC-46 today. But what the previous assessments have not been able to show is how much capability Rickenbacker Air National Guard Base offers with their local partnerships.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true “In Land Port”. This is unparalleled low cost joint use surge capability that would benefit a KC-46 operation.

Teamed with the Defense Logistics Agency, also located in Columbus (by the airport), and the 121 Air Refueling Wing can be a key partner in the cargo delivery for the Air Force.

Located within 1 hour flight time to 60% of the US population, Columbus is the ideal departure point for homeland defense and security. Additionally, the Columbus based KC-46 would be sharing the runways with FedEx, UPS, Cargo Lux and Cathay Pacific for long haul worldwide delivery.

Columbus, Ohio is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. In short, Columbus and the surrounding communities are ready for the KC-46.

I think you can see that bringing the KC-46 to Rickenbacker would be the most low cost/high capability choice that can be made. I implore you to station the KC-46 at Rickenbacker Air National Guard Base.

Thank you for your support of Rickenbacker Air National Guard Base.

Sincerely,

Jason J. Porter, M.D.
LtCol, Senior Flight Surgeon, Ohio Air National Guard
Rickenbacker, Columbus, Ohio
March 17, 2014

KC-46A EIS Project Manager
NGB/AGM, Sheppard Hall
3501 Fetchet Avenue
Joint Base Andrews MD 20762-5157

Dear Sir:

I am writing in support of bringing the KC-46A “Pegasus” to Rickenbacker Air National Guard Base. As you know, Rickenbacker is prepared to accept the new role of the main operating base of the KC-46 today. However, what the previous assessments have not been able to show is how much capability Rickenbacker Air National Guard Base offers with their local partnerships.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true “In Land Port”. This is unparalleled low cost joint use surge capability that would benefit a KC-46 operation.

Teamed with the Defense Logistics Agency, also located in Columbus (by the airport), and the 121 Air Refueling Wing can be a key partner in the cargo delivery for the Air Force.

Located within 1 hour flight time to 60% of the US population, Columbus is the ideal departure point for homeland defense and security. Additionally, the Columbus based KC-46 would be sharing the runways with FedEx, UPS, Cargo Lux and Cathay Pacific for long haul world-wide delivery.

Columbus, Ohio is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. In short, Columbus and the surrounding communities are ready for the KC-46.

I think you can see that bringing the KC-46 to Rickenbacker would be the most low cost and high capability choice that can be made. I implore you to station the KC-46 at Rickenbacker Air National Guard Base.

Thank you for your support of Rickenbacker Air National Guard Base.

Respectfully,

Laurence D. Reed
Captain, U.S. Public Health Service (Ret.)

Loveland, Ohio 45140-5501
March 14, 2014

KC-46A EIS Project Manager, NGB/A7AM, Shepperd Hall
3501 Fetchet Avenue
Joint Base Andrews MD 20762-5157

Dear Sir:

I am writing in support of bringing the KC-46A “Pegasus” to Rickenbacker Air National Guard Base. As you are aware, Rickenbacker is prepared to accept the new role of the main operating base of the KC-46 today. But what the previous assessments have not been able to show is how much capability Rickenbacker Air National Guard Base offers with their local partnerships.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true “In Land Port”. This is unparalleled low cost joint use surge capability that would benefit a KC-46 operation.

Teamed with the Defense Logistics Agency, also located in Columbus (by the airport), and the 121 Air Refueling Wing can be a key partner in the cargo delivery for the Air Force.

Located within 1 hour flight time to 60% of the US population, Columbus is the ideal departure point for homeland defense and security. Additionally, the Columbus based KC-46 would be sharing the runways with Fed Ex, UPS, Cargo Lux and Cathay Pacific for long haul world-wide delivery. Columbus, Ohio is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve
award. In short, Columbus and the surrounding communities are ready for the KC-46.

I think you can see that bringing the KC-46 to Rickenbacker would be the most low cost/high capability choice that can be made. I implore you to station the KC-46 at Rickenbacker Air National Guard Base.

Thank you for your support of Rickenbacker Air National Guard Base.

Regards,

Jean Carter Ryan
President
March 2014

KC-46A EIS Project Manager
NGB/A7AM, Shepperd Hall
3501 Fetchet Avenue
Joint Base Andrews MD 20762-5157

Dear Sir:

I am writing in support of bringing the KC-46A “Pegasus” to Rickenbacker Air National Guard Base. As you are aware, Rickenbacker is prepared to accept the new role of the main operating base of the KC-46 today. But what the previous assessments have not been able to show is how much capability Rickenbacker Air National Guard Base offers with their local partnerships.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true “In Land Port”. This is unparalleled low cost joint use surge capability that would benefit a KC-46 operation.

Teamed with the Defense Logistics Agency, also located in Columbus (by the airport), and the 121 Air Refueling Wing can be a key partner in the cargo delivery for the Air Force.

Located within 1 hour flight time to 60% of the US population, Columbus is the ideal departure point for homeland defense and security. Additionally, the Columbus based KC-46 would be sharing the runways with Fed Ex, UPS, Cargo Lux and Cathay Pacific for long haul world-wide delivery.

Columbus, Ohio is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. In short, Columbus and the surrounding communities are ready for the KC-46.

I think you can see that bringing the KC-46 to Rickenbacker would be the most low cost/high capability choice that can be made. I implore you to station the KC-46 at Rickenbacker Air National Guard Base.

Thank you for your support of Rickenbacker Air National Guard Base.

Sincerely,

[Signature]

Richard W. Schroeder
COL USAR, RET
2nd Vice President, Ohio Council of Chapters
Military Officers Association of America
Joseph W. Uecker
State Senator
14th District
March 18, 2014

Dear Secretary,

I am writing to express my full support of bringing the KC-46A “Pegasus” to Rickenbacker Air National Guard Base in Columbus, Ohio. I believe that Rickenbacker is not only prepared to take on this new role, but that the partnerships which Rickenbacker possesses with local agencies exhibit their ability to adequately perform as the main operating base of the KC-46.

As you may know, Columbus is not only the 15th largest city, but it was also rated the 11th most military friendly city in America. Teamed with the Defense Logistics Agency and the 121 Air Refueling Wing in Columbus, Rickenbacker would be a key partner in cargo delivery for the Air Force.

Additionally, The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. Located within two miles of each other, these two airports provide access to four heavy lift capable runways.

The CRAA also governs the Rickenbacker Intermodal which combines rail head traffic, road traffic and distribution and warehouse facilities into a true “In Land Port”. This joint use allows for low cost and high capability which I believe would be beneficial to a KC-46 operation.

As Columbus is located within 1 hour flight time to 60% of the population in the United States it is the ideal departure point for homeland defense and security. The Columbus based KC-46 would be sharing the runways with Fed Ex, UPS, Cargo Lux and Cathay Pacific allowing for long haul world-wide delivery. With the characteristics mentioned, I hope you will see that Rickenbacker Air National Guard base is a low cost and high capability choice for the station of the KC-46.

I thank you for your time and consideration. Please feel free to contact my office if you have any questions.

Sincerely,

Joe Uecker
District 14

Contact Info
Phone: 614.466.8082
Email: uecker@ohiosenate.gov

Committees
State Government and Oversight Reform – Vice Chair • JCARR
Finance: Subcommittee on Education • Energy and Natural Resources
Civil Justice • Commerce and Labor • Public Safety • Public Utilities
15 March 2014

KC-46A EIS Project Manager
NGB/A7AM, Shepperd Hall
3501 Fetchet Avenue
Join Base Andrews MD 20762-5157

Dear Sir:

I am writing in support of bringing the KC-46A “Pegasus” to Rickenbacker Air National Guard Base. As you are aware, Rickenbacker is prepared to accept the new role of the main operating base of the KC-46 today. But what the previous assessments have not been able to show is how much capability Rickenbacker Air National Guard Base offers with their local partnerships.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true “In Land Port”. This is unparalleled low cost joint use surge capability that would benefit a KC-46 operation.

Teamed with the Defense Logistics Agency, also located in Columbus (by the airport), and the 121 Air Refueling Wing can be a key partner in the cargo delivery for the Air Force.

Located within 1 hour flight time to 60% of the US population, Columbus is the ideal departure point for homeland defense and security. Additionally, the Columbus based KC-46 would be sharing the runways with Fed Ex, UPS, Cargo Lux and Cathay Pacific for long haul world-wide delivery.

Columbus, Ohio is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. In short, Columbus and the surrounding communities are ready for the KC-46.

I think you can see that bringing the KC-46 to Rickenbacker would be the most low cost/high capability choice that can be made. I implore you to station the KC-46 at Rickenbacker Air National Guard Base.

Thank you for your support of Rickenbacker Air National Guard Base.

Sincerely,

[Signature]

Lt. Gen. USAC(Ret.)
Dear Sir:

I am writing in support of bringing the KC-46A “Pegasus” to Rickenbacker Air National Guard Base. As you are aware, Rickenbacker is prepared to accept the new role of the main operating base of the KC-46 today. But what the previous assessments have not been able to show is how much capability Rickenbacker Air National Guard Base offers with their local partnerships.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true “In Land Port”. This is unparalleled low cost joint use surge capability that would benefit a KC-46 operation.

Teamed with the Defense Logistics Agency, also located in Columbus (by the airport), and the 121 Air Refueling Wing can be a key partner in the cargo delivery for the Air Force.

Located within 1 hour flight time to 60% of the US population, Columbus is the ideal departure point for homeland defense and security. Additionally, the Columbus based KC-46 would be sharing the runways with Fed Ex, UPS, Cargo Lux and Cathay Pacific for long haul world-wide delivery.

Columbus, Ohio is the 15th largest city and rated the 14th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. In short, Columbus and the surrounding communities are ready for the KC-46.

I think you can see that bringing the KC-46 to Rickenbacker would be the most low cost/high capability choice that can be made. I implore you to station the KC-46 at Rickenbacker Air National Guard Base.

Thank you for your support of Rickenbacker Air National Guard Base.

Sincerely,

[Signature]

KC-46A EIS Project Manager, NGB/A7AM, Shepperd Hall
3501 Fetchet Avenue
Joint Base Andrews MD 20762-5157
14 March 2014

KC-46A EIS Project Manager
NGB/A7AM, Shepperd Hall
3501 Fetchet Avenue
Join Base Andrews MD 20762-5157

Dear Sir:

I am writing in support of bringing the KC-46A “Pegasus” to Rickenbacker Air National Guard Base. As you are aware, Rickenbacker is prepared to accept the new role of the main operating base of the KC-46 today. But what the previous assessments have not been able to show is how much capability Rickenbacker Air National Guard Base offers with their local partnerships.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true “In Land Port”. This is unparalleled low cost joint use surge capability that would benefit a KC-46 operation.

Teamed with the Defense Logistics Agency, also located in Columbus (by the airport), and the 121 Air Refueling Wing can be a key partner in the cargo delivery for the Air Force.

Located within 1 hour flight time to 60% of the US population, Columbus is the ideal departure point for homeland defense and security. Additionally, the Columbus based KC-46 would be sharing the runways with Fed Ex, UPS, Cargo Lux and Cathay Pacific for long haul world- wide delivery.

Columbus, Ohio is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. In short, Columbus and the surrounding communities are ready for the KC-46.

I think you can see that bringing the KC-46 to Rickenbacker would be the most low cost/high capability choice that can be made. I implore you to station the KC-46 at Rickenbacker Air National Guard Base.

Thank you for your support of Rickenbacker Air National Guard Base.

Sincerely,

Pete Wilkinson
Colonel USAF (Retired)
MOAA Central Ohio Past President
From: petewilkinson [mailto:]
Sent: Sunday, March 16, 2014 4:21 PM
To: ANGRC/NGB/A7A NEPA COMMENTS
Cc: petewilkinson
Subject: KC-46A Assignment to Rickenbacker Air National Guard Base

KC-46A EIS Project Manager

NGB/A7AM, Sheppard Hall

3501 Fetchet Avenue

Joint Base Andrews MD 20762-5157

Dear Sir:

I am writing in support of bringing the KC-46A “Pegasus” to Rickenbacker Air National Guard Base. As you are aware, Rickenbacker is prepared to accept the new role of the main operating base of the KC-46 today. But what the previous assessments have not been able to show is how much capability Rickenbacker Air National Guard Base offers with their local partnerships.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true “In Land Port”. This is unparalleled low cost joint use surge capability that would benefit a KC-46 operation.

Teamed with the Defense Logistics Agency, also located in Columbus (by the airport), and the 121 Air Refueling Wing can be a key partner in the cargo delivery for the Air Force.

Located within 1 hour flight time to 60% of the US population, Columbus is the ideal departure point for homeland defense and security. Additionally, the Columbus based KC-46 would be sharing the runways with Fed Ex, UPS, Cargo Lux and Cathay Pacific for long haul worldwide delivery.
Columbus, Ohio is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. In short, Columbus and the surrounding communities are ready for the KC-46.

I think you can see that bringing the KC-46 to Rickenbacker would be the most low cost/high capability choice that can be made. I implore you to station the KC-46 at Rickenbacker Air National Guard Base.

Thank you for your support of Rickenbacker Air National Guard Base.

Sincerely,

Pete Wilkinson
Colonel USAF (Retired)
MOAA Central Ohio Past President
Pete Wilkinson
15 March 2014

KC-46A EIS Project Manager
NGB/A7AM, Shepperd Hall
3501 Fetchet Avenue
Join Base Andrews MD 20762-5157

Dear Sir:

I am writing in support of bringing the KC-46A “Pegasus” to Rickenbacker Air National Guard Base. As you are aware, Rickenbacker is prepared to accept the new role of the main operating base of the KC-46 today. But what the previous assessments have not been able to show is how much capability Rickenbacker Air National Guard Base offers with their local partnerships.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true “In Land Port”. This is unparalleled low cost joint use surge capability that would benefit a KC-46 operation.

Teamed with the Defense Logistics Agency, also located in Columbus (by the airport), and the 121 Air Refueling Wing can be a key partner in the cargo delivery for the Air Force.

Located within 1 hour flight time to 60% of the US population, Columbus is the ideal departure point for homeland defense and security. Additionally, the Columbus based KC-46 would be sharing the runways with Fed Ex, UPS, Cargo Lux and Cathay Pacific for long haul world-wide delivery.

Columbus, Ohio is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. In short, Columbus and the surrounding communities are ready for the KC-46.

I think you can see that bringing the KC-46 to Rickenbacker would be the most low cost/high capability choice that can be made. I implore you to station the KC-46 at Rickenbacker Air National Guard Base.

Thank you for your support of Rickenbacker Air National Guard Base.

Sincerely,

[Signature]
March 12, 2014

The Honorable Deborah James
Secretary of the Air Force
1670 Air Force Pentagon
Washington, DC 20330

General Mark A. Welsh
Chief of Staff - United States Air Force
1670 Air Force Pentagon
Washington, DC 20330

Dear Secretary James and General Welsh:

I am writing in support of bringing the first Air National Guard KC-46A Main Operating Base with the 190th Air Refueling Wing to the Forbes Field Air National Guard Base in Topeka, KS. The City of Topeka has been honored to be the home of the 190th Air Refueling Wing and our community has demonstrated that it is well suited to support the men and women who will be serving the new KC-46A.

Topeka is home to multi-generational military families whose parents or grandparents came to Forbes Air Force Base as part of the Strategic Air Command—men and women who stayed to start a family, buy a home, join the workforce. These men and women brought talent, energy, and leadership skills which melded well with our goals and Topeka has prospered because of their contributions. We are a better city because of their presence and our community remembers. The ties that bind us together are strong and the lines between civilian and military are indistinguishable. This indelible characteristic can't be measured but we know it is the heart and soul of who we are.

The Greater Topeka Chamber of Commerce has done an outstanding job providing you with the myriad of facts for this request. I proudly endorse their comments on behalf of the City of Topeka. I am especially honored to extol the attributes of this community and its people.

We are excited about the opportunities we have to offer and I personally encourage you to consider Forbes Field Air National Guard Base as the new home for the Air National Guard KC-46A Main Operating Base. We are ready to provide support in any way possible.

Thank you for your consideration. We look forward to working with you.

Sincerely,

Larry E. Wolgast

Larry E. Wolgast
March 6, 2014

KC-46A EIS Project Manager
NGB/A7AM
Sheperd Hall
3501 Fetchet Avenue
Joint Base Andrews, MD 20762-5157

Dear Friends:

I regret that I am not able to be with you in person for today’s public hearing, but on behalf of the State of New Hampshire, I write to express my strong support for the beddown of the new KC-46A aircraft at Pease Air National Guard Base in Newington, New Hampshire.

The Pease Air National Guard Base is the ideal location for the KC-46A air refueling tankers. The base is strategically located on the East Coast of the United States, translating to considerable time and cost savings for all eastbound support operations. In addition, much of the infrastructure needed to successfully implement the KC-46A aircraft is already in place at Pease. This infrastructure includes the longest Air National Guard runway and parking ramp in the northeast, air traffic control, security and customs, and fire protection.

The 157th Air Refueling Wing and the 64th Air Refueling Squadron stationed at Pease are the best options to support the operation of the new KC-46A aircraft. The 157th Air Refueling Wing is a model unit, made up of brave, skilled airmen who consistently exceed expectations in the participation of both military and homeland defense operations. Since their assignment to the 157th Air Refueling Wing in 2009, the 64th Air Refueling Squadron has fully integrated into the wing, and their performance has rated as outstanding.

Bringing the KC-46A air refueling tankers to Pease will also benefit our Seacoast communities and economy, bringing more jobs to the region and helping the base generate an even greater positive economic impact.
Letter for KC-46A Public Hearing
March 6, 2014
Page 2

Our state has a proud tradition of military service dating back to the founding of
the New Hampshire National Guard nearly 400 years ago. Today, the men and women of
our Air National Guard continue this tradition of military service. Our New Hampshire
airmen and soldiers are true heroes who have proven their dedication and courage time
and again.

The assignment of the KC-46A tankers to Pease will be good for the Air National
Guard, the State of New Hampshire and our economy. It is an honor to be selected by the
Air Force to base the KC-46A refueling tankers at Pease.

With every good wish,

Margaret Wood Hassan
Governor
From: [mailto:]
Sent: Friday, March 07, 2014 12:59 PM
To: ANGRC/NGB/A7A NEPA COMMENTS
Subject: KC-46A Beddown EIS

I am the surviving spouse of a 28 year veteran of the USAF. Our last duty station was Pease AFB, 509th Bomb Wing, Strategic Air Command. He felt that Pease was one of the best laid out, and functionally prepared air bases, for any aircraft that ever needed to land here, regardless of size and speed. Aircraft are always in the process for change I remember at Wright Patterson AF base when the huge B29 came there for a home base after the war. Many thought it too large, but perhaps it is still there and useful. Another base was in the Azores when the KC 135 came for a visit. It was huge, therefore, comments about the ability of the field to operate were banded about, but it served it’s purpose. Now Pease is the ideal place to handle the KC-46A because of the excellent runways and service crews that can handle anything at the 157th Air Refueling Wing, of the Air National Guard and Air Force 64th Refueling Squadron.
We embrace the idea of hosting the KC-46A here at Pease, as well as the population here in Portsmouth, NH.; that is a ready made Military town along with the Navy Base across the river. WELCOME

Thank you,
Barbara N Hayes,
(spouse of deceased, Maj. Herman H Hayes)
From: Nancy Holloway [mailto:]
Sent: Monday, March 10, 2014 6:11 PM
To: ANGRC/NGB/A7A NEPA COMMENTS
Cc: Nancy Holloway
Subject: KC-46A Beddown EIS

I missed the community meeting at Rickenbacker, so I'm sending a quick message in support of assigning the new squadron of KC-46A refueling tankers to Rickenbacker ANGB. I live in the area and briefly reviewed the EIS at the library. I am in complete support of bringing the new aircraft here and all the modifications necessary to accomplish it. The base and all activities that occur there enrich our community. Thank you.

--

Nancy A. Holloway
Canal Winchester, OH 43110
From: Kidd, Emmanuel CW3 USARMY NG OHARNG [US]
[mailto:]
Sent: Wednesday, March 12, 2014 11:49 AM
To: ANGRC/NGB/A7A NEPA COMMENTS
Subject: KC-46A to Ohio (UNCLASSIFIED)

Classification: UNCLASSIFIED
Caveats: NONE

Bring the KC-46A to Ohio, Rickenbacker is ready. I've worked around Rickenbacker, as part of the Co. D 1/137th AVIM for 14 years. The experience level at 121 ARW is second to none. The surrounding communities and Ohio are ready for this new challenge. Ohio is the leap forward in efficiency and capability the KC-46 needs for the success of the nation.

Regards,
Emmanuel Kidd
CW3, OD
Training Admin/WOCS Course Manager

"STRENGTH IN KNOWLEDGE"
Dear Friends,

It is an honor to join my colleagues this evening in endorsing the 157th Air Refueling Wing and their home at Pease Air National Guard Base as the ideal location for the new KC-46A refueling tanker. In recent months, I have repeatedly enjoyed the opportunity to share the record of excellence that defines these Guardsmen and their active duty component counterparts.

The 157th has long been a point of pride for us here in the Granite State. It is not an accident that this past year marked the 11th time this unit has been recognized with the Air Force’s Outstanding Unit Award. Their record of efficiency and effectiveness is unparalleled by their peers in other states, and their ability to rise to the challenge of these difficult times is yet another reminder of their exceptional qualifications.

In addition to the exemplary men and women who would be responsible for this new aircraft, Pease itself boasts a number of strategic advantages. Its proximity to critical refueling tracks for United States aircraft heading to the Middle East, Europe, and Africa, and its massive fuel storage and aircraft parking capabilities would ensure the Air Force saves time and money as we look towards a new age of readiness.

There is no doubt in my mind that New Hampshire’s Guardsmen have created an ideal environment for the KC-46A. Whether assessing their record of excellence or the strategic advantages of Pease, I cannot imagine an outfit more suited for this important assignment.

I want to commend the New Hampshire Air National Guard on their continued service to their state and country, and I want to ensure the Air Force knows that when they are looking for the best, they need look no further than the men and women of the 157th Air Refueling Wing.

Sincerely,

Ann McLane Kuster
Member of Congress
From: Ron Manuel [mailto:]
Sent: Sunday, March 23, 2014 3:55 PM
To: ANGRC/NGB/A7A NEPA COMMENTS
Cc: RETIREES160ARG; Ron Manuel
Subject: Subject: KC-46A Beddown EIS

Ronald Douglas Manuel
Columbus, Ohio 43207
SMS USAF Retired
email: >

NGGB Environmental Group On Bed-down of KC-46A MOB 2 Rickenbacker ANGS as #1 operating base.

* The NAAQS and are below the pollutant emissions for the PSD/de minimus and are not subject to this regulation.

* Rickenbacker ANGS 121 ARW is already flying the required hours/sorties required by the new KC-46A aircraft.

* The maintenance capability is already in place (now supporting 18 KC-135R's and their training commitments) with a full maintenance capability rate.

* There are two runways that fully operational and they are both over 2 miles long.

* The civilian version of the aircraft is already flown by some of our ANG pilots, this would reduce the training needed for the new refueling aircraft (economies).

* The total airfield operations rate would remain at about the same level.

* Rickenbacker has fast delivery of parts when needed with commercial carriers (FedEx and UPS, and others) with around the clock delivery and the DSCC and DFAS installation are just up the road from the base.

* Our communities around the airfield are used to the activity of the ANG aircraft. Some of the people in the towns don’t even now there is a tanker unit at Rickenbacker.

* As a community we need these new aircraft to continue the extraordinary conviction and integrity of the “troops” of the Ohio ANG to fly in support of any conflict in the world or of these United States.

* The community would not know of the unit’s activity during the week if not for the reporting of the local news outlets. The city of Columbus Chamber of Commerce (who have at least 1600 local business support) fully stand behind the unit acquiring the new KC-46A.
The Ohio ANG is the most efficient and cost effective way of using these aircraft to their full capabilities in support of US Air Force missions.

The towns around RANGS have a large population of people with the technical expertise which will provide a large base of support for new members for the full-time force and the added personnel for the KC-46A.

Our unit and its members and have received many awards from the local communities and from communities around the world at deployed locations for their support in many missions.

And the communities could use the the new jobs for the new aircraft to help support the local economy.

I want to thank you for the time and effort the NGB and the Air Force members have put in to this project. I would hope Rickenbacker would be considered as the number one selection for this important step forward to modernize our tanker fleet as the 121 ARW has all the criteria areas covered.

Sincerely yours,

Ronald D. Manuel, SMS retired USAF
Local resident of Columbus, Ohio
Copies of local newspaper articles are attached
The military

Rickenbacker makes its case

By Holly Zachariah

The soldiers barely had time to shower before meeting the visitors who awaited them. The men and women of the Ohio National Guard's 138th Air Refueling Support Team had just returned from a week spent helping reduce the West Virginia water crisis and had slept only that morning. Their fingers still frosted on the blue patch of daily communications SQR and the milking equipment truck they had just cleaned and stowed for their special guests.

See Rickenbacker Page B4
Rickenbacker good steward of our tax money

I respond to the Monday Dispatch article “Rickenbacker makes its case.” A few years ago I was privileged to visit the Rickenbacker Air National Guard Base and the 121st Refueling Wing of the Ohio Air National Guard. As a pilot, a taxpayer and a military veteran, I can tell you we get a big bang for the buck we spend supporting these folks.

After a tour of a few KC-135 Boeing-built tankers, I was astounded that these aircraft looked like they just left the Boeing factory. One plane was vintage 1956. The grandson of its first pilot could easily be flying this airplane today. If the politicians want to save money, give them my phone number.

Meanwhile, I suggest they give Rickenbacker personnel a great big “well done” and a pay raise for guarding our money as if it were theirs. Advice the Bandits of the Potomac might find useful.

This wing should be in line to receive the new Boeing 767 derivative tankers, not a pink slip.

JACK COWAN
Upper Arlington

Good job on road work in Grove City

I congratulate the agencies.
KC-46A EIS Project Manager

NG8/A7 AM
Sheppard Hall
3501 Fetchet Avenue
Joint Base Andrews MD 20762-5157
ang.env.comments@ang.af.mil

The Honorable Deborah Lee James
Secretary of the Air Force

Subject: “KC-46A Beddown EIS”

Today I’m writing on behalf of the City of Canal Winchester in support of the Rickenbacker AFB Columbus, Ohio Beddown of the KC-46A Aircraft. Rickenbacker has been a large part of our community for more than sixty years and has always been an important and responsible member of our community. The Ohio Air National Guard’s 121st ARW home at Rickenbacker AFB has a history of outstanding service and performance for many Central Ohio communities and our Nation’s refueling missions abroad and at home.

The infrastructure and environment at Rickenbacker is the best there is and its location has made it easily accessible to any part of the United States and our U.S. Capitol within minutes. Additionally refueling missions are accomplished easily from Rickenbacker to the Southeastern part of the United States for its large inventory of Fighter and Cargo aircraft.

Local Central Ohio Communities are strong supporters of The 121st ARW, Rickenbacker AFB and its residents, as is Rickenbacker and the 121st ARW to our communities. The schools are second to none and will support the additional students the KC-46A Beddown will bring to the area. Our cost of living is low compared to most regions and our amenities make the area quite attractive and appropriate for and active unit.

The City of Canal Winchester and its residents encourage you to continue to support Rickenbacker AFB and the 121st ARW with the KC-46A Beddown EIS so it may continue its superior service to our Nation, the service it deserves.

Respectfully,

Michael Ebert
Mayor
mebert@canalwinchesterohio.gov

CITY OF CANAL WINCHESTER
36 South High Street, Canal Winchester, OH 43110 p: (614) 837-7493 f: (614) 837-0145 www.canalwinchesterohio.gov
March 14, 2014

KC-46A EIS Project Manager
NGB/A7AM
Sheppard Hall
3501 Fething Avenue
Joint Base Andrews, MD 20762-5157

RE: KC-46A Beddown EIS

To Whom It May Concern:

I write today on behalf of The New England Council, the nation’s oldest regional business association. The New England Council is an alliance of businesses, academic and health institutions, and public and private organizations throughout New England formed to promote economic growth and a high quality of life in the region. The Council is dedicated to identifying and supporting federal public policies and articulating the voice of its membership regionally and nationally on important issues facing New England.

The Council has a long history as an advocate for our region’s military installations and believes firmly that these bases are critical not only to our nation’s security, but also to our region’s economic wellbeing. As such, we strongly support the selection of Pease Air National Guard Base in Portsmouth, New Hampshire, as the base for the Air Force’s new KC-46A mid-air refueling tankers.

Not only is the base well positioned and prepared to welcome these new aircraft, but the selection of Pease would have tremendous economic and other benefits for our region. First, the selection of Pease would bring much-needed new jobs to our region, including 70 full-time and 50 part-time jobs, addition an additional $7 million to the local payroll. In addition, if Pease is selected, our region’s economy and local communities will benefit from $4.5 million in military construction. Of course the selection of Pease would also bring a variety of other benefits to our region, including enhanced FEMA region 1 response and increased cargo and aeromedical evacuation capacity.

The New England Council is proud to add our voice to those of Governor Maggie Hassan and the entire New Hampshire Congressional delegation in supporting the selection of Pease Air National Guard Base as the home of the KC-46A. If you have any questions, I can be reached at (617) 723-4009.

Sincerely,

[Signature]

James T. Brett
President & CEO

The New England Council
98 North Washington Street • Boston, Massachusetts 02114 • (617) 723-4009
331 Constitution Avenue, NE • Washington, DC 20002 • (202) 547-0149
www.newenglandcouncil.com
March 10, 2014

Anne Rowe
Plans and Requirements Branch
NGB/A7AM
3501 Fetchet Avenue
Joint Base Andrews, Maryland 20762-5157

Dear Ms. Rowe:

Re: MOB 2 KC-46A Beddown Draft EIS
Rickenbacker ANGS, Hamilton and Madison Townships, Franklin County, Ohio

This is in response to correspondence dated February 1, 2014, (received on February 10, 2014) conveying a Draft Environmental Impact Statement prepared by the National Guard Bureau (NGB) to analyze potential impacts of the proposed MOB 2 KC-46A beddown. Rickenbacker Air National Guard Station (ANGS) in Hamilton and Madison Townships, Franklin County, Ohio is one of five alternative locations being considered for this facility.

As stated in our July 2, 2013, letter responding to the NGB’s initial correspondence regarding this matter, we reiterate that the Ohio Historic Preservation Office (OHPO) has no involvement in project review under the National Environmental Policy Act, for which the NGB is preparing an Environmental Impact Statement. Rather, we are responsible for advising the agency in its efforts to assess the effects of the project on historic properties under 36 CFR Part 800, the regulations implementing Section 106 of the National Historic Preservation Act (16 USC 470).

Appendix B of the Draft EIS contains a September 12, 2013, letter and associated Attachments 1, 2, and 4 from Robert Dogan of the NGB to Lisa Adkins of OHPO initiating Section 106 consultation for this project and concluding that “a potential adverse effect to Hangar 885 (at Rickenbacker ANGS) may result from this undertaking.” A check of the database that we use to track Section 106-related correspondence suggests that OHPO did not receive Mr. Dogan’s September 12, 2013, letter.

Please re-submit this correspondence and the associated attachments – including Attachment 3 (Draft Description of the Proposed Action and Alternatives), which was not included in Appendix B of the Draft EIS – so that we can begin consultation intended to avoid, minimize, or mitigate the adverse effect on historic properties that will apparently result from project implementation.
Anne Rowe
March 10, 2014
Page 2

If you have any questions, please contact me by phone at (614) 298-2000 or by email at jecook@ohiohistory.org. Thank you for your cooperation.

Sincerely,

Justin M. Cook, History Reviews Manager
Resource Protection and Review

cc: KC-46A Project Manager, NGB/A7AM, Shepperd Hall, 3501 Fetchet Avenue, Joint Base Andrews, Maryland 20762-5157
Robert L. Dogan, REM, GS-13, Plans and Requirements Branch, NGB/A7AM, 3501 Fetchet Avenue, Joint Base Andrews, Maryland 20762-5157

OHPO Project ID: 2013-FRA-24671
From: ohiotaskforce [mailto:]
Sent: Sunday, March 09, 2014 9:18 PM
Subject: Ohio is fighting for the KC-46

Please consider all of what central Ohio offers before you make a decision. The full scope of capability at low cost has not been evaluated by this round of assessments. Rickenbacker Air National Base is the right place to bring the KC-46 first.

Thank-you
Victor Wilson
From: Safley, Robin [mailto:rsafley@pa.gov]
Sent: Monday, March 10, 2014 10:01 AM
To: ANGRC/NGB/A7A NEPA COMMENTS
Subject: Draft EIS for Second Main Operating Base KC-46A Beddown at
Alternative Air National Guard Installations

Attached you will find our letter of comment concerning the above referenced
project.

Ann Safley | Historic Preservation Specialist
Bureau for Historic Preservation, State Historic Preservation Office
Pennsylvania Historical and Museum Commission
400 North Street, 2nd Floor | Harrisburg, PA 17120-0093
Phone: 717.787.9121
Anne Rowe
National Guard Bureau
A7AM Shepperd Hall
3501 Fetchet Avenue
Joint Base Andrews, MD 20762-5157

RE: ER# 09-2162-003-B

Dear Ms. Rowe:

Based on our survey files, which include both archaeological sites and standing structures, and the information you provided, it is our opinion that this project has no potential to affect historic properties. Therefore, your responsibility for consultation with the State Historic Preservation Office for this project is complete. Should you become aware, from any source, that historic or archaeological properties are located at or near the project site, please notify the Bureau for Historic Preservation at (717) 783-8946.

If you need further information in this matter please consult Ann Sailey at (717) 787-9121.

Sincerely,

Douglas C. McLearen, Chief
Division of Archaeology & Protection
DCMcL/ras
Penobscot Nation
Cultural and Historic Preservation Department
12 Wabanaki Way, Indian Island, ME 04468

February 28, 2014

KC-46A EIS Project Manager
NGB/ATAM
Sheppard Hall
3501 Futchet Avenue
Joint Base Andrews MD 20762-5157

RE: Draft Environmental Impact Statement for the Second Main Operating Base KC-46A
Beddown at Alternative Air National Guard Installations

Dear Sir/Madam,

The Penobscot Nation Tribal Historic Preservation Office has reviewed the Draft Environmental Impact Statement for the Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations. The Penobscot Nation recognizes that the Preferred Alternative for the MOB 2 KC-46A Beddown will be located at Pease ANGS, New Hampshire.

It is understood that the Proposed Action may result in an increase in the frequency of use and number of operations conducted within the airspace currently used by the KC-135. The Proposed Action states that no new airspace will be required for the KC-46A and the flight operations will be similar to the existing KC-135 aircrafts. The Penobscot Nation would like notification if there is to be a significant change in the flight patterns and a significant change in the airspace that will be utilized during these missions.

The Penobscot Nation concurs with the Cultural Resources study that there would be no adverse effect upon any Penobscot cultural and/or historical interests within the Project Boundary of this Proposed Action. The Penobscot Nation also concurs that all other potential environmental impacts associated with this Proposed Action will be minimal.

Thank you for consulting with the Penobscot Nation on the Proposed Action by the United States Air Force.

Sincerely,

Chris Sockalexis, THPO
Penobscot Nation
From: Pescatello
Sent: Monday, March 10, 2014 7:47 AM
To: ANGRC/NGB/A7A NEPA COMMENTS
Subject: New KC-46A at Pease ANG Base

To Whom it May Concern:

I'm writing to express my concern over locating more refueling tankers at Pease ANG base in New Hampshire. Pease is nestled squarely in a highly residential area and residents for miles around already suffer the effects of regular jet traffic from the existing KC-135s stationed there.

Our homes, schools, parks, churches, etc. already have to live with unhealthy noise at all hours, seven-days-a-week. The smell of jet fuel is overwhelming at times in neighborhoods around the base. There is also a wildlife sanctuary located, literally, at the end of the runway at Pease. I'm very afraid that adding more tankers will have a terrible effect on the environment for both the people and animals who live here.

This area is a quiet enclave in a pristine area on the New England seacoast. As a long-term resident, I urge you to please consider other locations for the new tankers and leave the New Hampshire seacoast as it is.

Sincerely,
Joseph Pescatello
March 06, 2014

KC-46A EIS Project Manager
NGB/A7AM
Sheppard Hall
3501 Fitchet Avenue
Joint Base Andrews, MD 20762-5157

RE: KC-46A – Pease International Tradeport

To Whom It May Concern:

I write today on behalf of the Greater Portsmouth Chamber of Commerce (GPCC). It is the mission of the GPCC to be the advocate for its members on issues and community concerns affecting business. Our fundamental objectives are as follows:

- Provide leadership in economic development in the Portsmouth area and in the seacoast.
- Effectively influence decisions about legislative and regional issues of interest to members.
- Identify and serve interest and needs of members, while expanding membership.
- Encourage community development in education, safety, transportation, environment, health, culture and recreation.
- Ensure the future of the organization and its mission through financial stability and growth and development of future Chamber leadership.

The GPCC has a long history as an advocate for the Pease Air National Guard Base (Pease) and believes firmly that this base is critical not only to our nation’s security, but also to our region’s economic well being. As such, we strongly support the selection of Pease in Portsmouth, New Hampshire, as the base for the Air Force’s new KC-46A mid-air refueling tankers. Not only is Pease well positioned and prepared to welcome these new aircraft, but the selection of Pease would have tremendous economic and other benefits for our region. First, the selection of Pease would bring much-needed new jobs to our region, including 70 full-time and 50 part-time jobs, resulting in an additional $7 million to the local payroll. In addition, if Pease is selected, our region’s economy and local communities will benefit from $45 million in military construction. Of course the selection of Pease would also bring a variety of other benefits to our region, including enhanced FEMA region 1 response and increased cargo and aero medical evacuation capacity.

The GPCC is proud to add our voice to those of Governor Maggie Hassan and the entire New Hampshire Congressional delegation in supporting the selection of Pease Air National Guard Base as the home of the KC-46A. If you have any questions, I can be reached at (603) 610-5516.

Sincerely,

Doug Bates
President
March 24, 2014

Via First Class U.S. Mail

Ms. Anne Rowe
KC-46A EIS Project Manager, NGB/A7AM
3501 Fetchet Avenue
Joint Base Andrews, MD 20762-5157

Dear Ms. Rowe:

As the National Guard Bureau solicits public comment and analyzes potential environmental consequences of selecting one of several Air National Guard units to serve as the 2nd Main Operating Base (MOB 2) of the KC-46A tanker, I write to comment on the key advantages and minimal environmental impacts in selecting the Pittsburgh Air National Guard Station, home to the 171st Air Refueling Wing of the Pennsylvania Air National Guard.

As the State Senator representing Pennsylvania’s 37th Senatorial District, I have the distinct pleasure of representing the Pittsburgh Air National Guard Station, and as a member of the Allegheny County Airport Authority (ACAA), enjoy the partnership these two organizations have fostered. The draft Environmental Impact Statement (EIS) has shown there to be minimal environmental impacts to the beddown of the KC-46A at the 171st. In fact, the draft finds there will be a decrease in noise disturbance and the existing facilities for fire response and crash recovery meet the KC-46A beddown requirements. The draft EIS also notes the 171st has recently completed their 53rd consecutive year and over 230,000 flying hours without a Class-A mishap. These factors make the 171st a strong candidate for selection to house the KC-46A. As you consider the viability of this site, I also encourage you to consider the financial and operational advantages and efficiencies that make the 171st uniquely suited to serve as the MOB 2 of the new KC-46A tanker fleet. I would also like to call to your attention the unique and intimate
relationship the 171st has with the local civilian and business community and the regional military community of Western Pennsylvania.

It is my understanding the 171st was chosen to be one of five alternative locations based on several criteria, including, but not limited to: its strategic location within a 90 minute flight time to 70% of the U.S. population which also covers six FEMA Regions, and its collaboration with the Pittsburgh International Airport, which provides the unit with access to four runways, inexpensive service agreements with ACAAA fire and rescue operations, world-class snow removal operations, and around-the-clock tower support with no air traffic restrictions. This cost savings agreement, in addition to the nominal infrastructure expenses required to convert existing facilities to accommodate new KC-46A tankers, can save the USAF millions in operational expenses. The 171st is in close proximity to various military entities and has shown a willingness and vision to work cooperatively with other branches of the military with the goal of streamlining services and sharing costs. Nearby installations include the 911th Airlift Wing of the Air Force Reserve and the McGarity U.S. Army Reserve Center. In the near future, a Navy Operations Center will be co-locating with the 911th Airlift Wing, and a Post Exchange and Commissary are being constructed a short distance from the 171st.

I believe the Pittsburgh Air National Guard Base is a proven and efficient installation that merits thorough consideration for the selection of the MOB 2 beddown of the KC-46A fleet. Thank you for your consideration. If I can provide additional information, please do not hesitate to contact me.

Sincerely,

MATT SMITH
State Senator
37th Senate District
www.SenatorMattSmith.com

cc: The Honorable Deborah Lee James, Secretary, United States Air Force
Mr. Robert Dogan
KC-46A Program Manager
National Guard Bureau/A7AM
Shepperd Hall
3501 Fetchet Avenue
Joint Base Andrews, MD 20762-5157

Dear Mr. Dogan:

We write today to express our support for Forbes Field Air National Guard Base (Forbes ANGB) to serve as the Air National Guard Second Main Operating Base (MOB 2) for the KC-46A tanker refueling mission.

The United States Air Force (USAF) recently announced, and made a case in favor of designating Pease Air National Guard Station (Pease ANGS) as the “preferred alternative” for the Air National Guard operating mission. We certainly respect and appreciate the basis for the United States Air Force's (USAF) decision selecting Pease ANGS. It is our belief that the 190th Air Refueling Wing (ARW) at Forbes continues to be a top candidate and an excellent choice for the KC-46A mission for the MOB 2 requirement, and in future basing rounds.

We would like to share a number of additive factors below to reaffirm Forbes Field’s demonstrable track record of success.

Facilities and Location

The Air Force’s analysis demonstrates that Forbes Field has the infrastructure capability necessary to support the KC-46A mission. Currently at Forbes ANGB there are:
- Two runways (12,800x150 & 7,000X150).
- Existing ramp space for 16 aircraft.
- Five hangar spaces (3 fully closed).

Forbes enjoys unencumbered airspace with access to the highest density of refueling operations in the Continental United States (CONUS) for which the KC-46A MOB 2 site will provide support. Additionally, there are Operations and Maintenance facilities that can house additional Airmen with no additional cost or construction.

KC-135 Operations in Kansas

In 2013, McConnell Air Force Base was selected as the Main Operating Base (MOB 1) for the KC-46A mission for a wealth of reasons, but its successful history of operation with the KC-135 tanker since 1971 was one of the most obvious and significant. Equally, since 1978 the
190th ARW at Forbes has conducted KC-135 refueling operations. Like McConnell AFB, Forbes has a successful and longstanding history of tanker operations as a major force in the refueling of military aircraft.

By bringing the centralizing the KC-46A mission around tanker experts at Forbes and McConnell, base leadership and the community can be assured that not only will the transition be significantly easier than alternative bases, but that the continuation of this mission, which will house the next generation of aircraft and pilots, will ensure the installation will continue to play a crucial role in military operations for decades to come.

Community Support / Cost of Living

There has continued to be strong community support for the MOB 2 operation at Forbes Field. The State and Local governments, in coordination with military installations, have come together to ensure noise contours, appropriate zoning, and to promote air quality initiatives. Cost of living is 10% below the urban area average near Forbes ANGB, which calculates to some of the lowest housing and local area costs in the country.

Adaptability for an Active Association

Forbes Field is located in Topeka, Kansas - a major metropolitan area with the amenities and high quality family resources (medical care, education, etc.) of importance to military families. Topeka also offers well priced housing, cultural and recreational amenities and access to a major metropolitan airport within a one hour drive in Kansas City Missouri - all important family support components for a highly successful Active Association. Forbes is also located close to two Active Duty installations which provide the military support services (Human Resources, Medical, Commissaries & Exchanges) of importance to military personnel and their dependents. Fort Leavenworth (home of the Army's Command & General Staff College) is less than a one hour drive (65 miles) from Forbes, while McConnell Air Force Base (site of the KC-46A MOB 1 site) is less than two hours by car from Forbes.

In summary, we take no exception to the Air Force's decision to name Pease Air National Guard Base as the MOB 2 Preferred Alternative. We understand that the existing Active Association, along with many other positive factors, played a critical role in the Air Force's selection of Pease for the MOB 2 site.

However, we would be remiss if we did not explicate our unwavering support for Forbes Field. Led by strong community support, exceptional infrastructure, and the ideal location for the mission, Forbes would be a valid choice for future Air National Guard/Active Association KC-46A basing considerations by the Department.

Sincerely,

Senator Pat Roberts

Senator Jerry Moran
Appendix B6 Public Hearing Transcripts, Responses to Comments, and Written Comments on the Draft EIS

B6-290
My name is Karen Benedetti, the VP of Marketing at Service Credit Union.

Tonight, I will be reading comments from Gordon Simmons, President and CEO of Service Credit Union.

Good evening all. I am sorry I could not be present tonight for this very important community forum. I am Gordon Simmons, the President and CEO of Service Credit Union, and Treasurer and Secretary of the Board of Directors. I joined the credit union in 1974, managing operations in Germany then relocating to Portsmouth New Hampshire in 1995 to serve as President and CEO, my current position.

I have served as Director and Chairman of the Defense Credit Union Council and Chairman of the Armed Forces Financial Network, and have spent many years in direct contact with Air Force and Army command headquarters, military community leaders and commanders, as well as Department of Defense liaisons in Washington, D.C.

And I am a long term resident of Portsmouth, NH. Thus I am keenly aware of the role of the military in protecting our great nation as well as assimilating into the community at large.

Service Credit Union opened its doors on Pease Air Force Base in 1957. Today we continue to serve Pease, communities across New Hampshire, and military worldwide.
I and my board of directors are keenly aware of the importance of a robust refueling capability so that the U.S. forces would not be limited in their ability to provide a global reach. The new KC-46 tanker will add increased cargo and aeromedical evacuation capabilities, providing potential lifesaving capabilities in national and international disasters.

The USAF has identified Pease ANGS, home of the 157 ARW of the NH ANG, as their preferred alternative for the MOB KC 46 beddown based on an operational analysis, site surveys, and military judgment factors. Pease is in an ideal location to provide support to the nation given proximity to critical refueling tracks for missions in the Middle East, Europe and Africa. The location allows for missions to be shorter, saving time and money, thus resulting in outstanding value for the country.

We also understand that the beddown of the Pegasus needs to be sound along a whole host of environmental impacts. As such, we have reviewed the requirements of the environmental impact analysis process, which will drive the Air Force’s final basing decision.

After a review of the Environmental Impact Statement, Service Credit Union is pleased to support the beddown of the KC-46 aircraft to Pease ANGS based on no measurable negative impact to the community including noise, air quality, safety, soil and water, biological resources, cultural resources, land use, infrastructure and transportation, and hazardous materials and waste. In fact, new any facilities and additions associated with
this project would be implemented with more energy efficient design standards and utility systems than are currently in place.

Socioeconomically, there would be an uptick in economic activity associated with the construction activities at the 157 ARW installation which would provide short-term economic benefits to the local community.

The Pease Air National Guard Base is noted as providing approximately $135 million to the local economy. The Air National Guard expects the Pegasus coming to Pease will add an additional $45 million of construction and $7 million in annual payroll to workers within the region.

The KC-46 mission would add up to an additional 171 military positions (a 12% increase to existing 157 ARW personnel). The community would welcome 233 family members, with many purchasing homes in the surrounding communities.

The Pease Air National Guard Base is the most logical base for the beddown of the Pegasus and will ensure that Pease remains a leader in our nation's defense for many years to come.

Thank you.
National Guard Bureau
KC-46 EIS Public Hearing
Portsmouth Town Hall
Portsmouth, New Hampshire

March 6, 2014

Dear Sir/Madam:

Good evening all. I am sorry I could not be present tonight for this very important community forum. I am Gordon Simmons, the President and CEO of Service Credit Union, and Treasurer and Secretary of the Board of Directors. I joined the credit union in 1974, managing operations in Germany then relocating to Portsmouth New Hampshire in 1995 to serve as President and CEO, my current position.

I have served as Director and Chairman of the Defense Credit Union Council and Chairman of the Armed Forces Financial Network, and have spent many years in direct contact with Air Force and Army command headquarters, military community leaders and commanders, as well as Department of Defense liaisons in Washington, D.C.

I am a long term resident of Portsmouth, NH. Thus I am keenly aware of the role of the military in protecting our great nation as well as assimilating into the community at large.

Service Credit Union opened its doors on Pease Air Force Base in 1957. Today we continue to serve Pease, communities across New Hampshire, and military worldwide.

The Service Credit Union Board of Directors and I are keenly aware of the importance of a robust refueling capability so that the U.S. forces would not be limited in their ability to provide a global reach. The new KC-46 tanker will add increased cargo and aeromedical evacuation capabilities, providing potential lifesaving capabilities in national and international disasters.

The USAF has identified Pease ANGS, home of the 157 ARW of the NH ANG, as their preferred alternative for the MOB KC 46 beddown based on an operational analysis, site surveys, and military judgment factors. Pease is in an ideal location to provide support to the nation given proximity to critical refueling tracks for missions in the Middle East, Europe and Africa. The location allows for missions to be shorter, saving time and money, thus resulting in outstanding value for the country.
We also understand that the beddown of the Pegasus needs to be sound along a whole host of environmental impacts. As such, we have reviewed the requirements of the environmental impact analysis process, which will drive the Air Force’s final basing decision.

After a review of the Environmental Impact Statement, Service Credit Union is pleased to support the beddown of the KC-46 aircraft to Pease ANGS based on no measurable negative impact to the community including noise, air quality, safety, soil and water, biological resources, cultural resources, land use, infrastructure and transportation, and hazardous materials and waste. In fact, new any facilities and additions associated with this project would be implemented with more energy efficient design standards and utility systems than are currently in place.

Socioeconomically, there would be an uptick in economic activity associated with the construction activities at the 157 ARW installation which would provide short-term economic benefits to the local community.

The Pease Air National Guard Base is noted as providing approximately $135 million to the local economy. The Air National Guard expects the Pegasus coming to Pease will add an additional $45 million of construction and $7 million in annual payroll to workers within the region.

The KC-46 mission would add up to an additional 171 military positions (a 12% increase to existing 157 ARW personnel). The community would welcome 233 family members, with many purchasing homes in the surrounding communities.

The Pease Air National Guard Base is the most logical base for the beddown of the Pegasus and will ensure that Pease remains a leader in our nation’s defense for many years to come.

Very truly yours,

SERVICE
CREDIT UNION

[Signature]

Gordon Simmons
President/CEO
March 6, 2014

The Honorable Deborah Lee James
Secretary of the Air Force
1670 Air Force Pentagon
Washington, DC 20330

Dear Secretary James:

Thank you for the opportunity to comment on the basing of the Air Force’s new KC-46A refueling tanker at Pease Air National Guard Base. I have been a strong advocate for Pease’s selection as one of the first bases to locate this new tanker and I am pleased to continue supporting this critical program.

Pease and the 157th Air Refueling Wing have been providing continuous air refueling coverage to critical combatant commands overseas since September 11, 2001. The 157th currently flies eight KC-135R Stratotanker aircraft and nearly 1,000 personnel support this mission on a continuing basis with distinction and pride. Pease’s preliminary selection as one of the first locations for the KC-46A underscores this strong record of success.

Pease is the preeminent location for basing of the KC-46A; based on its experienced personnel, open airspace, close partnership with an active associate unit, modern facilities, significant ramp space, long runway, cost effectiveness, and strategic location to support current and future requirements for the military. No other unit in the northeast can provide the level of aircraft utilization more cost effectively than the 157th Air Refueling Wing at Pease.

In selecting Pease as one of the first locations for the new tanker, the Air Force has expressed its confidence that the personnel at Pease will continue a proud tradition of excellence and service with this new, state-of-the-art aircraft. I know the Pease community will rise to meet the challenge of basing the KC-46A, and I stand ready to work with the U.S. Air Force, the Air National Guard, and community leaders to ensure a smooth transition to this new generation of tankers.

Sincerely,

Jeanne Shaheen
United States Senator
March 3, 2014

The Honorable Deborah James
Secretary of the Air Force
1670 Air Force Pentagon
Washington, DC 20330

General Mark A. Welsh
Chief of Staff – United States Air Force
1670 Air Force Pentagon
Washington, DC 20330

Dear Secretary Donley and General Welsh:

The Shawnee County Board of Commissioners would like to encourage the U.S. Air Force to bring the first Air National Guard KC-46A Main Operating Base to the Forbes Field Air National Guard Base in Topeka. The 190th Air Refueling Wing has called Forbes home for many years and with leadership from the Air Force and Air National Guard, it has become one of the most significant tanker operations in the country.

Forbes Field has excellent facilities and would easily house the KC-46A and additional Airmen. In addition to the excellent facilities at Forbes Field, Topeka also offers some of the most affordable housing in the country. Topeka has first class medical facilities, an abundance of shopping throughout the community, and a wide variety of entertainment. We have first rate schools and are home to Washburn University which draws many students from throughout the world as well as our local students.

We have always been proud to be the home of the Air National Guard’s 190th Air Refueling Wing and would be equally proud to be the home of the new KC-46A. The Airmen from the 190th are active in our community and highly respected by the citizens in our community. The active duty Airmen and their families with the KC-46A Operating Base would equally be welcomed and would quickly become a part of the Topeka-Shawnee County family.

The Board of County Commissioners strongly encourages you to consider Forbes Field Air National Guard Base as the new home for the Air National Guard KC-46A Main Operating Base. We stand ready to provide whatever assistance we can to assure a smooth transition and move to Topeka.

Sincerely,

The Board of Commissioners
Shawnee County, Kansas

[Signatures]

Shawnee County Board of Commissioners
Shelly Buhler, 1st district
Kevin Cook, 2nd district
Bob Archer, 3rd district
March 6, 2014

Dear Friends:

Thank you for inviting me to the public hearing on the Draft Environmental Impact Statement for the KC-46A Pease basing proposal. I regret that I cannot be with you in person this evening.

I would like to express my continued support for basing the KC-46A air refueling tanker at Pease Air National Guard Base. I have been a strong advocate for Pease because it is the ideal candidate for the KC-46A due to its proximity to operational and training refueling tracks, its aircraft-related infrastructure, its training flight simulator, and its Active Duty Association. In addition, the 157th Air Refueling Wing at Pease has received the prestigious Air Force Outstanding Unit Award eleven times, most recently last year. I believe that having the KC-46A refueling tanker at Pease will be good for our nation and for our area.

Thank you to the National Guard Bureau for organizing, and the City of Portsmouth for hosting, this Environmental Impact Statement Public Hearing. I would also like to thank all of the members of the National Guard here tonight for your dedication to our nation.

Sincerely,

Carol Shea-Porter
Member of Congress
March 12, 2014
Kittery, ME 03904

KC-46A EIS Project Manager
NGB/A7AM Sheppard Hall
3501 Fetchet Avenue
Joint Base Andrews MD 20762-5157

I am writing to urge you to include New Hampshire’s Pease Air National Guard Air Guard Station in consideration for the MOB KC-46A Beddown Air National Guard.

This location best suits the mission of the United States Air Force in facilitating transit to and from Europe from a base considerably closer to that theater than the alternatives, a distance that can prove to be critical during an emergency. The NHANGS and 157th Air Refueling Wing are a good neighbor to the surrounding community, providing employment hosting air shows and contributing to the quality of life in the seacoast area of NH & Maine in more ways than one can be listed in a single letter.

This area of New England has proudly served as home for military aircraft since just after WWII, and it welcomes the next generation of air fueling aircraft that will replace the aging KC-135 fleet. While those jets have served admirably for some five decades, it is time to provide their crews with an aircraft that has greater capacity, the ability to serve multiple branches of the military as well as our allies, and to carry cargo and medevac missions in times of need.

According to the USAF Environmental Impact Study, the NHANGS is currently responsible for 16% of flight operations at Pease International Airport (IAP). Living roughly four miles from the runway I am occasionally aware of the noise from circling air tankers while working around my yard, though appreciative of the airport restrictions, which limit low approaches or touch-and-go’s between 11pm and 7am, and before noon on Sundays. At least in this neighborhood NNE of the runway’s mid-point we notice much higher levels of noise from news media helicopters and corporate jets than military aircraft. It is my understanding, the KC-46A replacement aircraft will operate at or below current noise levels of the current air tanker.

Professionally I work with corporations to reduce their reliance on fossil fuels, decreasing the impact on climate change. The proposal to replace the existing fleet of eight KC-135’s and I backup with the newest generation of air tanker is a positive step from an environmental standpoint. The US Environmental Protection Administration recently designated South East region of NH as an air-quality attainment area. This represents a positive improvement in terms of ozone due to a number of factors including a more comprehensive focus on energy efficiency at both the state and local level.
Emplo}ring an aircraft that consumes less fuel at and assuming the current level of 6,140 annual field operations as stated in the EIS, the NH ANG should not have an adverse impact on the region’s air quality or sensitive environmental places. Thirty-four percent of the area adjoining IAP consists water; the Piscataqua-Salmon Falls River Watershed, Great and Little Bays, Portsmouth Harbor and the Atlantic Ocean. The statistics mention the 157 ARW has not suffered a major mishap in a decade, reported just three emergency fuel jettisons 2011-2012, and fewer than 20 BASH collisions per year, all well within acceptable standards for a military unit flying in close proximity to a developed area.

My only concern is that the EIS provides an incomplete picture of the NHANG’s impact on the local economy. The data included in the report (3-82) includes Rockingham County, the town of Newington, City of Portsmouth and NH in terms of education, employment, housing and population. The next section goes on to list the Portsmouth Naval Shipyard and the UA Local 488 Marine Pipefitters union, as two of the area’s four principal employers. However, both of those entities are located just across the state line in Kittery, Maine. As a resident of this region since 1984, I believe that a more accurate assessment would include York County Maine, Eliot, Kittery and York, ME since many of the NHANG employees actually reside on this side of the border, shopping in our stores, and sending their children to our schools. While one might find this a minor point, the impact of the 157th operations on the entire region does come into play in the event of a Defense Base Closure and Realignment process, which may draw from previous government documents. For this reason, I would encourage the USAF to included expanded commentary in the appropriate section of the final EIS.

As the son of a member of the 922nd FC of the USAAC the prospect of the new twelve KC-46A operating from Pease Air National Guard Station is one which my family and many of our neighbors heartily support.

Sincerely,

Robert A. Sheppard
The Senate of the State of New Hampshire
107 North Main Street, Concord, N.H. 03301-4951

MARTHA FULLER CLARK
Senator District 21

National Guard Bureau
3501 Pechet Avenue
Joint Base Andrews MD 20762-5157

Dear Members of the National Guard Bureau

I am writing in support of bringing the Air Force’s new tankers, the KC-46, to the Pease Air National Guard Base at the Pease Trade Port Center, Portsmouth, New Hampshire. I believe that the 157th Air Refueling Wing is ideally suited to be the first Air National Guard unit in the country to field the KC-46. The 157th has established a track record of unparalleled excellence; winning the Air Force Outstanding Unit award 11 times.

In just the last two years, Pease Air National Guard Base has reduced energy consumption by approximately 35% through facility modification and new construction projects. The KC-46, with its new technologically improved design based on the more fuel efficient Boeing 767 airliner, will give Pease the opportunity to continue this trend and conserve our valuable natural resources.

The new tanker also adds increased cargo and aero medical evacuation capabilities, which can provide potentially lifesaving capabilities in national disasters and for overseas missions. Pease is the ideal location to provide such support to our nation, close to strategic refueling tracks for missions to the Middle East, Europe, and Africa. Its exceptional location allows for missions to be shorter, saving millions in fuel costs; thereby providing an outstanding value for the country.

The 157th Wing is a vital aspect of the seacoast economy, generating revenue for small businesses and services. It is also popular with thousands who work at or around Pease. Currently Pease ANG$8 provides approximately $135 million to the local economy. Bringing the KC-46 to Pease will add over 100 new jobs and provide an additional $7 million in annual payroll to the region. It will also add $45 million in military construction to the local economy.

Clearly, having the Air Force’s number one acquisition, the KC-46, based here in NH will also help to ensure the continued vitality of Pease and the local seacoast communities for many years to come.

I highly recommend to the committee the selection of Pease and the 15th Air Refueling Wing as an outstanding site for the bedding of the new KC-46 tankers.

Most sincerely,

[Signature]
State Senator Martha Fuller Clark
NH District 21
Thank you for providing your comments on the proposed beddown of KC-46A aircraft for the Air National Guard at one of five candidate locations. Please provide us with your written comments no later than March 24, 2014. Comments may be submitted at the meeting, mailed to the address below, or submitted via email to: ang.env.comments@ang.af.mil. Please put “KC-46A Beddown EIS” in the subject line.

I fully support the replacement of the aging KC-135 at Pease with the newer, quieter, more fuel efficient Boeing KC-46A.

I am a resident of Portsmouth. I remember the high noise levels when there were B-52s and F-111s at Pease. The KC-46A is a dramatic improvement.

Name: Thomas W. Gross
Address: Portsmouth, NH 03801

Do you wish to receive a CD of the Final Environmental Impact Statement? Yes__ No__
Do you wish to receive a hard copy of the Final Environmental Impact Statement? Yes__ No__

Note: Your address will not be made public if you are just requesting a copy of the Draft EIS.

Please give this form to one of the Air National Guard representatives tonight or mail/email to:
KC-46A EIS Project Manager
NGB/A7AM
Shepperd Hall
3501 Fetchet Avenue
Joint Base Andrews MD 20762-5157
ang.env.comments@ang.af.mil
March 12, 2014

The Honorable Deborah James
Secretary of the Air Force
1670 Air Force Pentagon
Washington, DC 20330

General Mark A. Welsh
Chief of Staff - United States Air Force
1670 Air Force Pentagon
Washington, DC 20330

Dear Secretary James and General Welsh,

The Greater Topeka Chamber of Commerce strongly urges the U.S. Air Force to place the first Air National Guard KC-46A Main Operating Base with the 190th Air Refueling Wing at Forbes Field Air National Guard Base, Topeka, Kansas. The 190th ARW has worked diligently over the years along with leadership from the Air Force and Air National Guard to create one of the highest-quality and most cost effective tanker operations in the country. They have done that with the strong support of this community which has been home to Forbes Field since 1942.

Forbes Field is optimally located to support the aerial refueling needs of the Department of Defense as well as having first class facilities that would require very little investment to house the KC-46A and additional active duty Airmen. The existing ramp space will accommodate the larger aircraft with room to spare. Furthermore, a recent collaborative effort by the 190th ARW, City of Topeka, Shawnee County, Topeka Chamber and local industry was successful in rezoning areas around the base that will help protect the runway from encroachment for years to come.

In addition to the many positives Forbes Field has to offer, the greater Topeka community is also well positioned to meet the needs of active duty Airmen and their families assigned to the base. The Topeka community has the necessary quality housing to accommodate additional personnel and their families. Topeka has consistently ranked as one of the most affordable metropolitan areas in the country for housing costs; additionally in 2011 Topeka’s housing was ranked #6 in affordable housing for veterans in the country by Livability.com.

Topeka has also benefited from several large corporations that have recently built facilities near Forbes Field that provide well paying jobs that military dependents may be interested in. We have high achieving, strong K-12 public and parochial/private schools throughout the community; these schools have innovative programs, newer facilities and are technology rich. Topeka is also home to Washburn University, which is just a few minutes drive from the base and will provide Airmen and their dependents with the opportunity to receive a college degree while stationed at Forbes Field. The University of Kansas and Kansas State University are both located less than an hour from Topeka.
Finally, the 190th ARW has built a strong and positive working relationship with the Metropolitan Topeka Airport Authority created through a strong commitment to public/private partnerships. This lasting relationship gives the 190th ARW the ability to maintain a secure and low-cost installation by sharing infrastructure and costs for dual use facilities and functions.

The Topeka Community actively embraces the 190th ARW, not only for the economic impact, but for the many intangible impacts military service has on our community. 190th ARW personnel are locally regarded as the highest quality community members, respected by both the business community and the citizens of Topeka and Kansas. The Greater Topeka Chamber of Commerce places such importance in the 190th’s presence in Topeka that a permanent position was created in 2004 on the Chamber board of directors for the 190th ARW commander to be assured the needs of the 190th and their mission are always supported by the business community.

Additionally, the citizen Airmen from the 190th are our neighbors and friends. They provide our community with leadership and the core values instilled by the Air Force. We are proud to be the home of the Air National Guard’s 190th ARW.

The Topeka Chamber of Commerce and community stand with the 190th ARW, the Adjutant General and Governor of Kansas to encourage your attention to their capabilities and readiness to accept the new assignment of KC-46A tankers. We are always ready to provide assistance and partnership with the 190th ARW and express our desire to have the new Air National Guard KC-46A Main Operating Base at Forbes Field Air National Guard Base, Topeka, Kansas.

Sincerely,

Doug S. Kinsinger
Greater Topeka Chamber of Commerce
GO Topeka Economic Partnership

Neil Dobler
Bartlett & West
Board Chair, Greater Topeka Chamber of Commerce

Jim R. Ogle Jr.
WIBW Channels

Allan Towle
Fidelity State Bank and Trust

Coleen Jennison
Cox Communications

Karla Clem
M-C Industries, Inc.
From: susan.zimmermann@fws.gov [mailto:susan.zimmermann@fws.gov] On Behalf Of Ohio, FW3
Sent: Monday, March 10, 2014 2:07 PM
To: ANGRC/NGB/A7A NEPA COMMENTS
Subject: Draft EIS - Second Main Operating Base KC-46A Beddown

TAILS# 03E15000-2014-TA-0844

Dear Ms. Rowe,

We have received your recent correspondence requesting information about the subject proposal. There are no Federal wilderness areas, wildlife refuges or designated critical habitat within the vicinity of the project area. The following comments and recommendations will assist you in fulfilling the requirements for consultation under section 7 of the Endangered Species Act of 1973, as amended (ESA).

The Service recommends that proposed developments avoid and minimize water quality impacts and impacts to high quality fish and wildlife habitat (e.g., forests, streams, wetlands). Additionally, natural buffers around streams and wetlands should be preserved to enhance beneficial functions. If streams or wetlands will be impacted, the Corps of Engineers should be contacted to determine whether a Clean Water Act section 404 permit is required. Best management practices should be used to minimize erosion, especially on slopes. All disturbed areas should be mulched and revegetated with native plant species. Prevention of non-native, invasive plant establishment is critical in maintaining high quality habitats.

ENDANGERED SPECIES COMMENTS: All projects in the State of Ohio lie within the range of the Indiana bat (Myotis sodalis), a federally listed endangered species. Since first listed as endangered in 1967, their population has declined by nearly 60%. Several factors have contributed to the decline of the Indiana bat, including the loss and degradation of suitable hibernacula, human disturbance during hibernation, pesticides, and the loss and degradation of forested habitat, particularly stands of large, mature trees. Fragmentation of forest habitat may also contribute to declines. During winter, Indiana bats hibernate in caves and abandoned mines. Summer habitat requirements for the species are not well defined but the following are considered important.
(1) dead or live trees and snags with peeling or exfoliating bark, split tree trunk and/or branches, or cavities, which may be used as maternity roost areas;
(2) live trees (such as shagbark hickory and oaks) which have exfoliating bark;
(3) stream corridors, riparian areas, and upland woodlots which provide forage sites.

Should habitat exhibiting the characteristics described above be present at the proposed project site, we recommend that they, as well as surrounding trees, be saved wherever possible. However, if these trees cannot be avoided, they should only be cut between October 1 and March 31. If implementation of the seasonal tree cutting restriction is not possible, summer surveys should be conducted to document the presence or likely absence of the Indiana bat within the project area during the summer. The survey must be conducted by an approved surveyor and be designed and conducted in coordination with the Endangered Species Coordinator for this office.

The proposed project lies within the range of the northern long-eared bat (Myotis septentrionalis), a species that is currently proposed for listing as federally endangered. Recently white-nose syndrome (WNS), a novel fungal pathogen, has caused serious declines in the northern long-eared bat population in the northeastern U.S. WNS has also been documented in Ohio, but the full extent of the impacts from WNS in Ohio are not yet known.

During winter, northern long-eared bats hibernate in caves and abandoned mines. Summer habitat requirements for the species are not well defined but the following are considered important:

(1) Roosting habitat in dead or live trees and snags with cavities, peeling or exfoliating bark, split tree trunk and/or branches, which may be used as maternity roost areas.
(2) Foraging habitat in upland and lowland woodlots and tree lined corridors;
(3) Occasionally they may roost in structures like barns and sheds.

It appears that habitat exhibiting the characteristics described above may be present at the proposed project site. We recommend that trees exhibiting
any of the characteristics listed above, as well as any wooded areas or tree lined corridors be saved wherever possible. However, if these areas cannot be avoided, they should only be cut from October 1 through March 31.

If there is a Federal nexus for the project (e.g., Federal funding provided, Federal permits required to construct), no tree clearing on any portion of the parcel should occur until consultation under section 7 of the ESA, between the Service and the Federal action agency, is completed. We recommend that the Federal action agency submit a determination of effects to this office, relative to the Indiana bat, for our review and concurrence.

Due to the project type, size, and location, we do not anticipate adverse effects to any other federally endangered, threatened, proposed, or candidate species. Should the project design change, or during the term of this action, additional information on listed or proposed species or their critical habitat become available, or if new information reveals effects of the action that were not previously considered, consultation with the Service should be initiated to assess any potential impacts.

These comments have been prepared under the authority of the Fish and Wildlife Coordination Act (48 Stat. 401, as amended; 16 U.S.C. 661 et seq.), the Endangered Species Act of 1973 (ESA), as amended, and are consistent with the intent of the National Environmental Policy Act of 1969 and the U. S. Fish and Wildlife Service’s Mitigation Policy. This letter provides technical assistance only and does not serve as a completed section 7 consultation document.

Sincerely,

Mary Knapp, Ph.D.
Field Supervisor
March 24, 2014

Anne Rowe
NGB/A7AM, 3501 Fetchet Avenue
Joint Base Andrews MD
20762-5157

RE: Comments on Draft Environmental Impact Statement for the Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations (CEQ # 20140026)

Dear Ms Rowe:

The Environmental Protection Agency-New England Region (EPA) has reviewed the United States Air Force (USAF) Draft Environmental Impact Statement (DEIS) for the establishment of a Second Main Operating Base for the KC-46A refueling aircraft beddown at alternative Air National Guard Installations. We submit the following comments on the DEIS in accordance with our responsibilities under the National Environmental Policy Act (NEPA) and Section 309 of the Clean Air Act.

The DEIS describes the work necessary to establish a Second Main Operating Base (MOB 2) for beddown (homebasing) of the new KC-46A refueling aircraft. The DEIS analyzes five alternative locations for the action including: Forbes Air National Guard Station (ANGS), Kansas; Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey; Pease ANGS, New Hampshire; Pittsburgh ANGS, Pennsylvania; and, Rickenbacker ANGS, Ohio. The DEIS identifies the Pease ANGS as the preferred alternative location for the beddown.

According to the DEIS the proposed beddown would allow for efficient regional and global refueling activities to continue with the deployment of twelve new KC-46A aircraft to the selected base. Existing KC-135 aircraft at Pease ANGS (and other locations where KC-46A aircraft are deployed in the future) would be relocated and/or retired from the USAF inventory. The DEIS notes that the Pease ANGS has acceptable facilities to support the proposed beddown but that other work would be necessary to support the action including renovations/additions to existing buildings and hangars on the property; taxiway construction/upgrades; and installation of new fuel hydrants and lines. The project will also result in a 23,617 square foot increase in impervious area on the property. The DEIS explains that the construction would follow Leadership in Energy and Environmental Design (LEED) and sustainable development concepts to “achieve optimum resource efficiency, constructability, sustainability, and energy
conservation, while minimizing adverse impacts to the built and natural environments through all phases of the project’s life cycle.” EPA supports these sustainability efforts by the Air Force.

EPA appreciates the opportunity to review the DEIS. Based on our review, we have no objection to the preferred alternative as proposed, but we believe additional information is necessary in order to more fully describe and clarify the potential environmental impacts associated with the alternatives considered in the DEIS. We have provided specific comments in the attachment to this letter describing our concerns and look forward to working with the Air Force as necessary so they can be addressed in the FEIS. Our specific comments focus on the Pease and Pittsburgh sites, but we encourage the Air Force to provide consistent information in the FEIS for all of the locations considered to better inform comparisons among the alternatives. Based on our review we have rated the DEIS “EC-2—Environmental Concerns-Insufficient Information” in accordance with EPA’s national rating system, a description of which is attached to this letter.

Please contact Timothy Timmermann, Associate Director of EPA New England's Office of Environmental Review at 617-918-1025 or timmermann.timothy@epa.gov, with any comments or questions about this letter.

Sincerely,

H. Curtis Spalding
Regional Administrator

Attachment
Summary of Rating Definitions and Follow-up Action

Environmental Impact of the Action

LO--Lack of Objections
The EPA review has not identified any potential environmental impacts requiring substantive changes to the proposal. The review may have disclosed opportunities for application of mitigation measures that could be accomplished with no more than minor changes to the proposal.

EC--Environmental Concerns
The EPA review has identified environmental impacts that should be avoided in order to fully protect the environment. Corrective measures may require changes to the preferred alternative or application of mitigation measures that can reduce the environmental impact. EPA would like to work with the lead agency to reduce these impacts.

EO--Environmental Objections
The EPA review has identified significant environmental impacts that must be avoided in order to provide adequate protection for the environment. Corrective measures may require substantial changes to the preferred alternative or consideration of some other project alternative (including the no action alternative or a new alternative). EPA intends to work with the lead agency to reduce these impacts.

EU--Environmentally Unsatisfactory
The EPA review has identified adverse environmental impacts that are of sufficient magnitude that they are unsatisfactory from the standpoint of public health or welfare or environmental quality. EPA intends to work with the lead agency to reduce these impacts. If the potentially unsatisfactory impacts are not corrected at the final EIS stage, this proposal will be recommended for referral to the CEQ.

Adequacy of the Impact Statement

Category 1--Adequate
EPA believes the draft EIS adequately sets forth the environmental impact(s) of the preferred alternative and those of the alternatives reasonably available to the project or action. No further analysis or data collection is necessary, but the reviewer may suggest the addition of clarifying language or information.

Category 2--Insufficient Information
The draft EIS does not contain sufficient information for EPA to fully assess environmental impacts that should be avoided in order to fully protect the environment, or the EPA reviewer has identified new reasonably available alternatives that are within the spectrum of alternatives analyzed in the draft EIS, which could reduce the environmental impacts of the action. The identified additional information, data, analyses, or discussion should be included in the final EIS.

Category 3--Inadequate
EPA does not believe that the draft EIS adequately assesses potentially significant environmental impacts of the action, or the EPA reviewer has identified new, reasonably available alternatives that are outside of the spectrum of alternatives analyzed in the draft EIS, which should be analyzed in order to reduce the potentially significant environmental impacts. EPA believes that the identified additional information, data, analyses, or discussions are of such a magnitude that they should have full public review at a draft stage. EPA does not believe that the draft EIS is adequate for the purposes of the NEPA and/or Section 309 review, and thus should be formally revised and made available for public comment in a supplemental or revised draft EIS. On the basis of the potential significant impacts involved, this proposal could be a candidate for referral to the CEQ.
Additional Detailed Comments Regarding the DEIS for the Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations

General Comments

Selection of the Preferred Alternative
The DEIS notes that the “...Secretary of the Air Force considered the objective screening results as well as qualitative operational factors in determining the alternative installations for the KC-46A MOB 2 mission.” The USAF subsequently selected Pease ANGS based on an analysis of operational issues, the results of site surveys, and military judgment factors.” The military judgment factors considered are listed in the DEIS but, beyond the general list, there is no substantive discussion provided to explain why the preferred alternative was selected. Based on the information provided in the DEIS it appears that any one of the candidate sites analyzed could be viable.

While we do not object to the selection of the preferred alternative, we believe the EIS would benefit from a more detailed description of how environmental factors were utilized to select the preferred alternative. The DEIS presents tables that outline the potential impacts if the beddown were to occur at each base but lacks any comparative analysis to explain whether one location is superior to another based on the impacts analysis. It would also be helpful to understand whether the environmental and military judgment factors align and how this might affect the selection process. As an example, if an operational goal for this round of KC-46A deployment is focused on regional refueling support along the eastern seaboard it would be a prudent move from an operational efficiency and environmental impact standpoint to select a site like Pease ANGS (as opposed to a site away from the coast) to avoid efficiency losses and potentially greater greenhouse gas (GHG) emissions from increased flight distances.

Fuel Jettisoning
The DEIS explains that airbases establish jettison areas and develop procedures to minimize the impact of fuel jettisoning on the surrounding environment. Beyond stating that the new KC-46A aircraft are also capable of jettisoning fuel, the DEIS does not explain whether this would be more or less likely than with the current fleet. The FEIS should explain the expected change in fuel jettisoning with the change in aircraft and discuss the potential health and environmental impacts on affected areas (for each of the bases under review) as it relates to the new aircraft.

Leadership in Energy and Environmental Design (LEED)
The description of the alternatives mentions that LEED and sustainable development principles will be incorporated in the construction of support facilities for the project. Additional detail should be provided in the FEIS regarding all of the proposed measures.

Miscellaneous
Although the DEIS had a Glossary, many of the acronyms were not listed. A complete list of acronyms used should be provided in the FEIS.
Pease ANGS Alternative

Air Quality—General Conformity

The Pease ANGS site is not subject to General Conformity for the 2008 eight-hour ozone National Ambient Air Quality Standard (NAAQS, the 2008 ozone standard), as all of New Hampshire has been designated unclassifiable/attainment for the 2008 ozone standard. However, the General Conformity requirements currently remain in place for the 1997 eight-hour ozone NAAQS for the Boston-Manchester-Portsmouth (SE) NH area. On June 6, 2013 (78 FR 34178), EPA published its proposed rule for “Implementation of the 2008 National Ambient Air Quality Standards for Ozone: State Implementation Plan Requirements,” where EPA proposed revocation of the 1997 ozone standard. EPA has not yet finalized this regulation.

EPA approved redesignation of the Boston-Manchester-Portsmouth (SE), New Hampshire moderate 8-hour ozone nonattainment area to attainment for the 1997 eight-hour ozone NAAQS and the initial 10-year ozone maintenance plan for this area on Thursday, January 31, 2013; (78 FR 6741). We point out that the Boston-Manchester-Portsmouth (SE), NH maintenance area is within the Ozone Transport Region. As such, General Conformity regulations establish applicability rates for ozone maintenance areas inside an ozone transport region as equal to or exceeding the rate of 100 tons per year of nitrogen oxides (NOx) and/or 50 tons per year of volatile organic compounds (VOCs) see 40 CFR §93.153(b)(2).

Applicability rates are based on the total of direct and indirect emissions of the criteria pollutant or precursor in a nonattainment or maintenance area caused by a Federal action. The annual operational emissions that would result from KC-46A operations at Pease ANGS is calculated at 158.92 tons of NOx and 16.93 tons of VOC as stated in Table 4.3.2-1 “Comparison of Baseline and Proposed Annual Operational Emissions, 157 ARW,” on page 4-66 of the Draft EIS (also Table 3.3-2 on page D2-5). However, concurrent with the beddown of the 12 KC-46A, twelve existing KC-135 aircraft would be retired out of the Air National Guard fleet. The net annual emissions from the proposed Pease ANGS Alternative are calculated at 83.60 tons of NOx and 13.31 tons of VOC. We concur with the DEIS that the annual level of NOx and VOC from the Pease ANGS Alternative are below the General Conformity applicability rate of 100 tons per year of NOx and 50 tons per year of VOC. Therefore, General Conformity is not triggered.

Stormwater

The project will require coverage under a National Pollution Discharge Elimination System (NPDES) construction general permit (CGP) for land disturbance of one or more acres of land. If this threshold is surpassed, the Pease ANGS would need to submit a Notice of Intent and obtain coverage under the CGP and develop and implement a stormwater pollution prevention plan meeting the requirements of the most recently issued CGP.

The completed project may also be subject to the multi-sector general permit for stormwater discharges associated with industrial activity – air transportation sector. Moreover, if any dewatering needs to occur for project construction, the project may also be subject to the remediation general permit if there is dewatering discharge. The FEIS should discuss these various permit requirements and the steps the Air Force will take to ensure compliance with stormwater discharge regulations.

Since this is a federal facility the project should be designed and operated in a manner consistent with Section 438 of the Energy Independence and Security Act, which provides: “The sponsor of any development or redevelopment project involving a federal facility with a footprint that exceeds 5,000 square feet shall use site planning, design, construction, and maintenance strategies for the property to maintain or restore to the maximum extent technically feasible, the predevelopment hydrology of the property with regard to the temperature, rate, volume, and duration of flow.” 42 U.S.C. § 17094. Additional guidance is available at: http://www.epa.gov/owow/NPS/lid/section438/.

Water Supply
The DEIS does not describe or acknowledge a drinking water supply well called the Pease Trade Port Haven Well [EPA ID#1951020-002] operated by the Portsmouth Water Works. The proposed installation lies within the well’s source water protection area (SWPA). This gravel-packed supply well is approximately 4,200 feet south of the proposed facility. The FEIS should be updated to include this water supply resource.

The DEIS should include the latest raw water quality analyses for the Pease Trade Port Haven Well (i.e., inorganics, VOCs, SOCs, PAHs, etc.) from the Portsmouth Water Works to describe current ground water quality under the proposed installation location. This will provide a basis for a comparison of future potential drinking water impacts, if any, from KC-46A activities. In addition, any nearby monitoring wells should be sampled for the same constituents. The DEIS’ description of ground water impacts (page 4-74) mentions only a 0.5 acre increase in impervious surface from the project. No mention whatsoever is made of ground water quality.

The fate and transport of storm water, deicing chemicals or fire-fighting agents in the vicinity of the proposed installation are not clear in the document. The FEIS should describe the present composition of storm water runoff; and what, if any, changes in impacts will occur to surface or ground waters from the new facility construction and operation.

Pittsburgh ANGS Alternative

Hazardous Materials and Waste
The DEIS (page 3-105) notes, “Nineteen ASTs occur on the 171 ARW installation and are used to store diesel, jet fuel, motor gasoline, aqueous film forming foam, potassium
acetate, developer, dye penetrant, emulsifier, and rinse solution.” The location of the ASTs is not shown on the site. The FEIS should provide a map that depicts the location of the ASTs in relation to the proposed facility construction. The safety measures integrated into the AST should also be discussed.

The DEIS (page 5-27) notes, “Under Alternative #4, the total number of flying hours for the 171 ARW would increase approximately 34 percent; therefore, throughput of petroleum substances and hazardous waste streams would be expected to increase commensurately.” The FEIS should discuss if the current hazardous waste management systems can handle and treat increased hazardous waste and if additional options have been considered for incorporation to respond to the projected increase.

The Pittsburgh IAP relies on two in-stream treatment ponds to treat deicing wash. The ANG should consider upgrading its deicing facility to meet current standards.

The DEIS (page 3-106) notes, “Hazardous wastes initially accumulated at a SAP are accumulated in appropriate containers before being transferred to the installation CAP.” “The installation CAP is located in Building 501/502 (171 ARW 2009, Tower 2013b).” Building 501/502 is not identified on a map in the DEIS. The FEIS should explain whether these buildings are within the study area, depict them on a map and discuss safety procedures incorporated into the building design. The FEIS should also describe the approximate increase in waste generated as a result of the Proposed Action and if the buildings would have the capacity to handle the additional waste.

The DEIS (page 3-106) notes, “OWSs are used to separate oils, fuels, sand, and grease from wastewater and to prevent contaminants from entering the sanitary sewer and stormwater drainage systems. Fifteen OWSs are located on the 171 ARW installation. These OWSs primarily receive discharge from floor drains in maintenance area (171 ARW 2012c).” The FEIS should provide the location of the fifteen OWSs located on the 171 ARW installation and describe whether more are necessary to compensate for the proposed action and/or to control waste from entering the sanitary sewer and stormwater drainage systems.

The DEIS (pages 3-106 and 3-107) identifies three closed ERP sites and two closed Areas of Concern (AOC) at the 171 ARW installation. The DEIS did not discuss if contaminated soils were removed if groundwater is being treated and whether these areas are subject to land control restrictions. Since the Proposed Action can occur on or in proximity to existing ERP sites and AOCs, this information and how the proposed action may affect them, is critical to assessing environmental impacts and should be provided in the FEIS.

Environmental Justice and the Protection of Children
The DEIS (page 3-110) discusses minority and low-income populations as well as children under the age of 18 living in the vicinity of the Pittsburgh ANGS. However, the FEIS should identify census tracts and blocks depicting these populations on a map to show possible impacts and support text and tables provided.
Aircraft Noise

The DEIS (page 4-89) notes, “Aircrews associated with the KC-46A would continue to practice closed patterns, including tactical procedures in which the aircraft climbs or descends in the immediate vicinity of the airfield.” “This procedure is currently being flown with the KC-135; however most tactical procedures would be accomplished in the simulator and at the other locations away from Pittsburgh IAP.” The FEIS should estimate the number of tactical procedures to take place in the simulator versus other locations and identify the other locations where this training will occur and associated impacts.
March 6, 2014

Lt. Col. Jason R. Denton, NHANG
157th Air Refueling Wing/Operations Group
302 Newmarket Street, Bldg. 264
Pease Air National Guard Base, NH

Re: KC-46C Environmental Impact Hearing

Dear Col. Denton:

On behalf of the Town of Hampton, New Hampshire and at the request of its Board of Selectmen, the Governing Body of our community, I write in strong support of the basing of the Air Forces new KC-46C at the Pease Air National Guard Base in Portsmouth and Newington, New Hampshire.

The Town of Hampton is a strong supporter of the missions flown by our 157th Air Refueling Wing based at Pease. We recognize the need of all Americans to support our men and women in uniform. The 157th performs a service vital to the security of the United States and her citizens and we are proud to support the wing and its officers and men for its outstanding service to our Nation.

We support the permanent basing of the new KC-46C at the Pease Air National Guard Base. Your service in refueling our military aircraft traveling into and out of the United States provides a vital and needed service that should not be interrupted, to do so would adversely affect the security of our nation.

Your efforts should be strongly supported at the hearing and are so by the Town of Hampton. All necessary permits and authorizations to continue and expand your operations to meet our National needs on our behalf must be granted for the benefit of us all.

For the Town of Hampton, New Hampshire

[Signature]

Frederick Welch, Town Manager
March 12, 2014

The Honorable Deborah James
Secretary of the Air Force
1670 Air Force Pentagon
Washington, D.C. 20330

General Mark A. Welsh
Chief of Staff—United States Air Force
1670 Air Force Pentagon
Washington, D.C. 20330

Dear Secretary James and General Welsh,

Westar Energy strongly urges the U.S. Air Force to place the Air National Guard KC-46A air refueling tankers with the 190th Air Refueling Wing at Forbes Field Air National Guard Base, Topeka, Kansas. The 190th ARW has worked diligently over the years, along with leadership from the Air Force and Air National Guard, to create one of the highest-quality and most cost-effective tanker operations in the country. They have done that with the strong support of this community, which has been home to Forbes Field since 1942.

The 190th ARW is a wonderful organization for Topeka, the state of Kansas and the entire country. We take great pride in the role it has played and will continue to play in defending our country. The 190th has an outstanding record of service, having served with distinction when its personnel and fleet of tankers have been called upon. Its safety record is stellar. Maintaining the 190th ARW’s effectiveness with the new tankers would be a wise decision for the Air Force and would further strengthen the Topeka community’s pride in the fact that the Air Force leadership thinks highly enough of the unit to consider it among the elite of Air National Guard operations. The KC-46A air refueling tankers would be a great addition to the 190th ARW’s mission, allowing it to continue providing excellent service at Forbes for decades to come.

Forbes Field is optimally located in the center of the U.S. to support the aerial refueling needs of the Department of Defense, as well as having first-class facilities that would require very little investment to house the KC-46A and additional active-duty Air personnel. The existing ramp space will accommodate the larger aircraft with room to spare. Furthermore, a recent

818 South Kansas Avenue / P.O. Box 889 / Topeka, Kansas 66601
Telephone: (785) 575-6530 / Fax: (785) 575-8061 / Mobile: (785) 213-6530
mark.ruelle@WestarEnergy.com
collaborative effort by the 190th ARW, City of Topeka, Shawnee County, Topeka Chamber and local industry was successful in rezoning areas around the base that will help protect the runway from encroachment for years to come.

Additionally, the 190th ARW has built a strong and positive working relationship with the Metropolitan Topeka Airport Authority created through a strong commitment to public/private partnerships. This lasting relationship gives the 190th ARW the ability to maintain a secure and low-cost installation by sharing infrastructure and costs for dual-use facilities and functions. Recently, United Airlines began offering twice-daily, non-stop jet service between Topeka Regional Airport (located at Forbes) and Chicago’s O’Hare Airport.

The Topeka community actively embraces the 190th ARW, not only for the economic impact and flow of jobs but also for the many intangible impacts military service has on our community. 190th ARW personnel are locally regarded as the highest-quality community members, respected by both the business community and the residents of Topeka and Kansas. The Greater Topeka Chamber of Commerce places such importance in the 190th’s presence in Topeka that a permanent position was created in 2004 on the Chamber board of directors for the 190th ARW commander to assure the needs of the 190th and its mission are always supported by the business community. In sum, 190th ARW personnel are an integral, vital part of our community, state and nation, and we strongly support their continued growth and strength with the addition of the new KC-46As.

Westar Energy, The Topeka Chamber of Commerce and the greater Topeka community stand with the 190th ARW, the Adjutant General and Governor of Kansas to encourage your attention to their capabilities and readiness to accept the new assignment of KC-46A tankers. We are already ready to provide assistance and partnership with the 190th ARW, and we are glad to have this opportunity to express our desire to have the new Air National Guard KC-46As at Forbes Field Air National Guard Base, Topeka, Kansas. It is a GREAT location for the KC-46As!

Sincerely,

[Signature]

cc: Ronald W. Krueger
Colonel, Kansas Air National Guard
Commander, 190th Air Refueling Wing, Forbes Field

Doug A. Kinsinger
President and CEO
Greater Topeka Chamber of Commerce
MEMORANDUM FOR INTERESTED INDIVIDUALS, ORGANIZATIONS, PUBLIC GROUPS, GOVERNMENT AGENCIES, AND PUBLIC LIBRARIES

FROM: NGB/A7AM
Shepperd Hall
3501 Fetchet Avenue
Joint Base Andrews MD 20762-5157

SUBJECT: Draft Environmental Impact Statement for the Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations

The United States Air Force (USAF) plans to replace a portion of the existing KC-135 aerial refueling fleet with the KC-46A, which will be a new aircraft to the USAF’s fleet. As such, the USAF plans to identify locations for the beddown of a formal training unit (FTU) and the first main operating base (MOB 1), which will both be led by active duty units. The USAF will also beddown the KC-46A at the second main operating base (MOB 2), which will be led by an Air National Guard (ANG) unit. The NGB has prepared a Draft Environmental Impact Statement (EIS) to analyze the potential impacts of the MOB 2 KC-46A beddown. This letter references the MOB 2 beddown only, as the FTU and MOB 1 beddown are the subject of a separate action.

The Draft EIS analyzes potential environmental consequences that could result from the proposed beddown of KC-46A aircraft at alternative ANG installations. The NGB proposes to beddown 12 KC-46A aircraft at one of five alternative locations: Forbes Air National Guard Station (ANGS), Kansas; Joint Base McGuire-Dix-Lakehurst, New Jersey; Pease ANGS, New Hampshire; Pittsburgh ANGS, Pennsylvania; and Rickenbacker ANGS, Ohio.

The NGB also invites you to participate in the public hearings at one of the times and locations listed below. The address Date 3/13/14

No Concerns/No Comment

Signed
Heather Whitlaw
Field Supervisor
U.S. Fish and Wildlife Service
Kansas Ecological Services Field Office

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS
Appendix B6 Public Hearing Transcripts, Responses to Comments, and Written Comments on the Draft EIS
For the consideration of KC-46A EIS Project Mgr, NGB/A7AM. The Canal Winchester Area Chamber of Commerce would like to encourage the United States Air Force to choose Rickenbacker Air National Guard Station as the beddown location for a squadron of KC-46A aircraft. Rickenbacker is a well-established Air National Guard Station that currently houses aircraft of this type which should minimize that transition. The facility is located in an area that has historically, and will continue to, support and provide the resources required to keep the facility a vibrant entity. The Central Ohio area has all of the amenities that make it a desirable location for the ANG members who staff the facility. A moderate cost of living, strong educational institutions (for ANG staff and their children) and access to ‘quality of life’ features, such as parks, museums and entertainment venues make Rickenbacker a place that creates a dedicated and loyal workforce. The CWACC appreciates your consideration of Rickenbacker and pledges support and cooperation to see that a decision to locate here would be beneficial to all concerned.

Sincerely,

Erica Wymer
Chairman of the Board

Greg Chamblin, Sr
Chairman
Advocacy/Economic Development Committee

Amanda Lemke
President

Canal Winchester Area Chamber of Commerce
20 N. High St.
Canal Winchester, Ohio 43110
614-837-1556
614-837-9901 Fax
www.canalwinchester.com
February 26, 2014

The Honorable John A. Boehner
Speaker of the House
1011 Longworth House Office Building
Washington, D.C. 20515

Dear Speaker Boehner,

The City of Dublin strongly supports the selection of Rickenbacker Air Guard Station for the proposed Air National Guard (ANG) KC-46A Beddown.

The Ohio Air National Guard’s 121st Air Refueling Wing based at Rickenbacker has a proven record of exemplary performance in the air refueling mission.

In addition, the location, infrastructure and community support for Rickenbacker throughout Central Ohio provides a unique benefit to the Air Force. The geographic location of Rickenbacker Air Guard Station makes it well suited to provide responsive support to the significant demand for aerial refueling in the eastern United States and, in particular, the heavy concentration of fighter and cargo aircraft in the southeast states.

The local communities in Central Ohio are strong supporters of the base and its residents. The community amenities in our region and the low local area cost of living make Rickenbacker AGS an appropriate location for an active association unit.

We encourage you to continue to support the proposed Air National Guard KC-46A Beddown at Rickenbacker Air Guard Station, which will greatly benefit the region and all of Ohio.

Sincerely,

Michael H. Keenan
Mayor

Marsha I. Grigsby
City Manager
February 26, 2014

The Honorable Steve Stivers
U.S. Congressman
1022 Longworth House Office Building
Washington, D.C. 20515

Dear Congressman Stivers,

The City of Dublin strongly supports the selection of Rickenbacker Air Guard Station for the proposed Air National Guard (ANG) KC-46A Beddown.

The Ohio Air National Guard’s 121st Air Refueling Wing based at Rickenbacker has a proven record of exemplary performance in the air refueling mission.

In addition, the location, infrastructure and community support for Rickenbacker throughout Central Ohio provides a unique benefit to the Air Force. The geographic location of Rickenbacker Air Guard Station makes it well suited to provide responsive support to the significant demand for aerial refueling in the eastern United States and, in particular, the heavy concentration of fighter and cargo aircraft in the southeast states.

The local communities in Central Ohio are strong supporters of the base and its residents. The community amenities in our region and the low local area cost of living make Rickenbacker AGS an appropriate location for an active association unit.

We encourage you to continue to support the proposed Air National Guard KC-46A Beddown at Rickenbacker Air Guard Station, which will greatly benefit the region and all of Ohio.

Sincerely,

Michael H. Keenan
Mayor

Marsha L. Grigsby
City Manager
City of Dublin

February 26, 2014

The Honorable Sherrod Brown
U.S. Senator
713 Hart Senate Office Building
Washington, D.C. 20510

Dear Senator Brown,

The City of Dublin strongly supports the selection of Rickenbacker Air Guard Station for the proposed Air National Guard (ANG) KC-46A Beddown.

The Ohio Air National Guard’s 121st Air Refueling Wing based at Rickenbacker has a proven record of exemplary performance in the air refueling mission.

In addition, the location, infrastructure and community support for Rickenbacker throughout Central Ohio provides a unique benefit to the Air Force. The geographic location of Rickenbacker Air Guard Station makes it well suited to provide responsive support to the significant demand for aerial refueling in the eastern United States and, in particular, the heavy concentration of fighter and cargo aircraft in the southeast states.

The local communities in Central Ohio are strong supporters of the base and its residents. The community amenities in our region and the low local area cost of living make Rickenbacker AGS an appropriate location for an active association unit.

We encourage you to continue to support the proposed Air National Guard KC-46A Beddown at Rickenbacker Air Guard Station, which will greatly benefit the region and all of Ohio.

Sincerely,

Michael H. Keenan
Mayor

Marsha L. Grigsby
City Manager
February 26, 2014

The Honorable Jim Jordan
U.S. Congressman
1524 Longworth House Office Building
Washington, D.C. 20515

Dear Congressman Jordan,

The City of Dublin strongly supports the selection of Rickenbacker Air Guard Station for the proposed Air National Guard (ANG) KC-46A Beddown.

The Ohio Air National Guard’s 121st Air Refueling Wing based at Rickenbacker has a proven record of exemplary performance in the air refueling mission.

In addition, the location, infrastructure and community support for Rickenbacker throughout Central Ohio provides a unique benefit to the Air Force. The geographic location of Rickenbacker Air Guard Station makes it well suited to provide responsive support to the significant demand for aerial refueling in the eastern United States and, in particular, the heavy concentration of fighter and cargo aircraft in the southeast states.

The local communities in Central Ohio are strong supporters of the base and its residents. The community amenities in our region and the low local area cost of living make Rickenbacker AGS an appropriate location for an active association unit.

We encourage you to continue to support the proposed Air National Guard KC-46A Beddown at Rickenbacker Air Guard Station, which will greatly benefit the region and all of Ohio.

Sincerely,

Michael H. Keenan
Mayor

Marsha I. Grigsby
City Manager
February 26, 2014

The Honorable Rob Portman
United States Senator
448 Russell Senate Office Building
Washington, D.C. 20510

Dear Senator Portman,

The City of Dublin strongly supports the selection of Rickenbacker Air Guard Station for the proposed Air National Guard (ANG) KC-46A Beddown.

The Ohio Air National Guard’s 121st Air Refueling Wing based at Rickenbacker has a proven record of exemplary performance in the air refueling mission.

In addition, the location, infrastructure and community support for Rickenbacker throughout Central Ohio provides a unique benefit to the Air Force. The geographic location of Rickenbacker Air Guard Station makes it well suited to provide responsive support to the significant demand for aerial refueling in the eastern United States and, in particular, the heavy concentration of fighter and cargo aircraft in the southeast states.

The local communities in Central Ohio are strong supporters of the base and its residents. The community amenities in our region and the low local area cost of living make Rickenbacker AGS an appropriate location for an active association unit.

We encourage you to continue to support the proposed Air National Guard KC-46A Beddown at Rickenbacker Air Guard Station, which will greatly benefit the region and all of Ohio.

Sincerely,

[Signature]
Michael H. Keenan
Mayor

[Signature]
Marsha I. Grigsby
City Manager
February 26, 2014

The Honorable Pat Tiberi
U.S. Congressman
106 Cannon House Office Building
Washington, D.C. 20515

Dear Congressman Tiberi,

The City of Dublin strongly supports the selection of Rickenbacker Air Guard Station for the proposed Air National Guard (ANG) KC-46A Beddown. The Ohio Air National Guard’s 121st Air Refueling Wing based at Rickenbacker has a proven record of exemplary performance in the air refueling mission.

In addition, the location, infrastructure and community support for Rickenbacker throughout Central Ohio provides a unique benefit to the Air Force. The geographic location of Rickenbacker Air Guard Station makes it well suited to provide responsive support to the significant demand for aerial refueling in the eastern United States and, in particular, the heavy concentration of fighter and cargo aircraft in the southeast states.

The local communities in Central Ohio are strong supporters of the base and its residents. The community amenities in our region and the low local area cost of living make Rickenbacker AGS an appropriate location for an active association unit.

We encourage you to continue to support the proposed Air National Guard KC-46A Beddown at Rickenbacker Air Guard Station, which will greatly benefit the region and all of Ohio.

Sincerely,

Michael H. Keenan
Mayor

Marsha I. Grigsby
City Manager
January 24, 2013

Colonel James V. Jones
Commander
121st Air Refueling Wing
7370 Minuteman Way
Columbus, Ohio 43217

Dear Colonel Jones:

On behalf of the Columbus Region business community, let me express our excitement on making the short list of locations for the new KC-46 Tanker. Since the 1940s, Rickenbacker has continuously and capably hosted military aviation operations. Military personnel and their families have found the Columbus Region to be a vibrant home in which to live, work and play. We’d be honored to host the first Air National Guard-led KC-46A main operating base.

Columbus offers the vital support to ensure your Airmen and their families feel welcome, grow and prosper. Rickenbacker’s host community, the 15th largest city in the U.S., is a vibrant, growing metro area. Two of our strongest economic drivers – healthcare and education – are noted as critical criteria in your review. With four major healthcare systems (including a major children’s research hospital and two major cancer treatment centers), Columbus is a regional center for medical care. And with tremendous choice among K-12 education, the largest community college in the region, and 50 colleges/universities and post-secondary institutions, Columbus offers more education options than practically any other metropolitan area. Moreover, with 15 Fortune 1000 companies in the Columbus Region, spousal employment opportunities abound. And finally, with a cost of living that ranks in the top 10 nationally among major metro areas, your personnel will be able to afford the dining, entertainment and cultural options.

We know you will do a detailed analysis of our Region and compare us against other competitors to ensure the best choice for your people, your aircraft and your mission. But as a metropolitan area, you’ll find no better, no more sustainable home. As a former AF officer and as one who chose to live and work in Columbus, I promise you’ll be well taken care of in Central Ohio. Your KC-46 ANG MOB should be Rickenbacker Air Guard Station.

If you have any questions, please contact me at 614.225.6917.

Sincerely,

Michael Dalby
President & CEO
January 24, 2013

Colonel James V. Jones
Commander
121st Air Refueling Wing
7370 Minuteman Way
Columbus, Ohio 43217

Dear Colonel Jones:

On behalf of the Columbus Regional Airport Authority (CRAA) and the Columbus Region business community, allow me to express our enthusiasm on making the short list of locations for the new KC-46 Tanker. The CRAA would be honored to host the first Air National Guard-led KC-46A Main Operating Base. As the Air Force examines candidate bases for the initial fielding of the KC-46A, we want to express our strong support for the Ohio Air National Guard’s 121st Air Refueling Wing based at Rickenbacker Air Guard Station (AGS).

Since 1941, Rickenbacker has been the backbone for military aviation operations. Lockbourne Air Force Base was home base to the Tuskegee Airmen after World War II. The 332nd Fighter Group remained at Lockbourne, now named Rickenbacker Air National Guard Base, until 1949. This rich and unique heritage, which includes a history identified with Columbus-born Eddie Rickenbacker, one of the facilities used to train Members of the WASPs (Women Airforce Service Pilots), and home to the Tuskegee Airmen is not only a central part of the base’s identity, but the larger Columbus community’s history.

Military personnel and their families have found the Columbus Region to be a vibrant home in which to live, work and play. The military remains extremely active at Rickenbacker. Today the U.S. and Ohio Air National Guard, U.S. Army Reserve and Navy/Marine Reserve units can be found at Rickenbacker. This creates significant economies of scale when these units can be collocated on facilities that include a significant amount of community investment in infrastructure.

The combination of the infrastructure, Central Ohio location, and community associated with the site and the proven performance of the unit, would give this location unique benefit to the Air Force. The Rickenbacker Air Guard Station is well located to provide responsive support to the significant demand for aerial refueling in the eastern United States, particularly the heavy concentration of fighter and cargo aircraft in the southeast states. Rickenbacker AGS is well positioned to accept 12 KC-46A aircraft, with the base’s infrastructure currently supporting 18 KC-135R aircraft. Rickenbacker also offers a total logistics platform, all-weather navigation, a Foreign-trade zone, and U.S. Customs and Border Protection on site. CRAA maintains all runways, taxiways and navigational aids.

Additionally, the facility stands out for its existing infrastructure, offering not just one, but two runways meeting the criteria identified in your sourcing document.
Page 2 | Rickenbacker KC-46 Tanker

Through our partnerships with counties, cities, townships and the Mid-Ohio Regional Planning Commission, we have been able to leverage public and private investment for Rickenbacker. We have leveraged over $112 million of investments from the FAA, as well as federal and state grants. We are completing the grant offer and acceptance on a $16 million TIGER Grant that will facilitate the completion of $30 million of capital projects (East-West Connector) providing better access to/from Rickenbacker. In total, $177 million has been invested in capital improvements at Rickenbacker between 2003 and 2012, excluding investments made by the military.

Columbus offers the vital support to ensure your Airmen and their families feel welcome, grow and prosper. Rickenbacker's host community, the 15th largest city in the U.S., is a vibrant, growing metro area. The economic impact that Rickenbacker, as well as Port Columbus and Bolton Field airports, have in the Columbus area are quite impressive. Our airports make a considerable contribution to the economy in employment, payroll and economic activity.

Summary of Economic Impacts [2012 Study by CDM Smith]

<table>
<thead>
<tr>
<th></th>
<th>CRAA’s Airports</th>
<th>Rickenbacker Off-Airport Businesses</th>
<th>Total Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Jobs</td>
<td>38,374</td>
<td>15,798</td>
<td>54,172</td>
</tr>
<tr>
<td>Total Payroll</td>
<td>$1.3 Billion</td>
<td>$5.152 Million</td>
<td>$6.8 Billion</td>
</tr>
<tr>
<td>Total Output</td>
<td>$4.6 Billion</td>
<td>$1.9 Billion</td>
<td>$6.6 Billion</td>
</tr>
</tbody>
</table>

The Columbus Region is a test market of the United States because of its diverse economic profile. In addition to the large universities, and having a national logistics hub, it is a center of retail brands such as the Limited Brands and Wendy’s and the second home of Chase bank, which happens to be the region’s largest employer. With 6 Fortune 500 and 15 Fortune 1000 companies in the Columbus Region, spousal employment opportunities abound. Nearly 190 companies have chosen the Columbus Region to locate and expand since 2011, and the Rickenbacker Global Logistics Park provides up to 29 million square feet of additional development space to complement the 40 million square feet of existing space.

Moreover, Columbus’ cost of living ranks in the top 10 nationally among major metro areas, meaning your personnel will be able to afford the dining, entertainment and cultural options of our vibrant city.

Two of our strongest economic drivers – healthcare and education – are noted as critical criteria in your review. The Chalmers P. Wylie VA Ambulatory Care Center is located in Columbus and four VA Clinics are located in the regional area. With four major healthcare systems, including a major children’s research hospital and two major cancer treatment centers, Columbus is a regional center for medical care.

In addition, with a tremendous choice among K-12 education, the largest community college in the region, and 50 colleges/universities and post-secondary institutions, Columbus offers more education options than practically any other metropolitan area. Our health care and educational institutions are not only top-rated, but have a history of working together on regional priorities.
Page 3 | Rickenbacker KC-46 Tanker

We know you will do a detailed analysis of our Region and compare us against other competitors to ensure the best choice for your people, your aircraft and your mission. And as a metropolitan area, you’ll find no better, no more sustainable and welcoming home. We believe that the proven performance and wealth of experience at the 121st, Rickenbacker’s outstanding facilities, and the strong local and statewide support enjoyed by the unit make it an ideal location for a KC-46A Main Operating Base. We encourage you to give Rickenbacker AGS every favorable consideration as you make your decision in the months ahead.

Additional facility information has previously been provided to your staff. However, if you have any additional questions, please contact me at 614-239-4094.

Sincerely,

Elaine Roberts
President & CEO
DATE: January 15, 2013

SUBJECT: Letter of Support for 121st Air Refueling Wing (Rickenbacker AFB)

Colonel James V. Jones
121st Air Refueling Wing
7370 Minuteman Way
Columbus, Ohio 43217

Colonel Jones,

As the Visitor/Tourism Bureau for the city of Canal Winchester, Destination: Canal Winchester wants to go on record that we enthusiastically support any decision to maintain or augment current mission scope and staffing of the 121st Air Refueling Wing located at Rickenbacker AFB and we greatly appreciate all efforts toward that end. Our community has developed an integrated relationship with the hard-working men and women of the Rickenbacker Air National Guard base and any significant reduction in staffing there would have an immediate adverse impact on our quality of life. We fully understand that military technology and budgets change over time but locations with high-performing work teams like the 121st ARW deserve special consideration for their professionalism and positive effect both on and off base.

Through their patronage, the Rickenbacker team members provide direct economic support to our local small businesses and help draw family and friends into our community who would not otherwise visit Canal Winchester. Without exception, they are outstanding representatives of the country, their uniform, and our community. If the 121st ARW must lose mission due to planned retirement of equipment such as the KC-135 aircraft, please give strongest consideration to allowing a proven efficient team to transition into a KC-46A maintenance role so they can continue the outstanding service they provide to their country and surrounding community. Thank you for your time, help, and thoughtful consideration of this community’s future!

Sincerely,

Bruce Jarvis
Executive Director, Destination: Canal Winchester
info@DestinationCW.org

Destination: Canal Winchester is a 501(c)(3) non-profit organization (tax ID: 31-1659678)
March 26, 2014

KC-46A EIS Project Manager, NGB/A7AM, Shepperd Hall
3501 Fetchet Avenue
Joint Base Andrews, MD 20762-5157

Dear Sir:

The Franklin County, Ohio Board of Commissioners enthusiastically supports the location of the new KC-46A "Pegasus" mission at Rickenbacker Air National Guard Base here in Franklin County, as Rickenbacker is prepared to accept the new role of the main operating base of the KC-46 today.

Rickenbacker offers unique opportunities for local partnerships that would make the location of the KC-46 here a success. The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports, located within miles of each other and providing access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal, which combines rail head traffic, road traffic and distribution and warehouse facilities into a true Inland Port. This is unparalleled, low-cost, joint-use surge capability that would benefit a KC-46 operation. Teamed with the Defense Logistics Agency, also located in Columbus (by the airport), and the 121 Air Refueling Wing can be a key partner in the cargo delivery for the Air Force.

Because Columbus is located within an hour's flight – a day's drive – to nearly 60% of the U.S. population, Central Ohio is an ideal departure point for homeland defense and security activities.

Franklin County is the proud home to 1.2 million residents with wonderful natural assets. Our community features 15 Fortune 1000 communities and was recently ranked the #4 metropolitan area in the nation for economic growth by The Business Journals. Our anchor institutions include world-class healthcare systems (including a major children's research hospital and two major cancer treatment centers), the largest private research institution in the world (Battelle) and one of the largest research universities in the world (The Ohio State University). Our vast cultural amenities include #1 rankings for our ballpark, zoo and metropolitan library system, and our cost-of-living ranks in the top 10 nationally among major metro areas.
Franklin County government has long been recognized for its professionally run operations, and is among very few metro counties in the nation that carry a double AAA bond rating, the highest rating available. Our focus on investments in public safety, economic development and environmental sustainability contributes to the great quality of life in Central Ohio.

We thank you in advance for your consideration of Rickenbacker Air National Guard Base as the future home of the KC-46.

Sincerely,

Marilyn Brown, President
Paula Brooks
John O'Grady

The Franklin County Board of Commissioners
January 23, 2013

Colonel James V. Jones
Commander
121st Air Refueling Wing
7370 Minuteman Way
Columbus, Ohio 43217

Dear Colonel Jones:

The Franklin County Board of Commissioners enthusiastically supports the location of the new KC-46 Tanker at Rickenbacker, and our community would be honored to host the first Air National Guard-led KC-46A main operating base.

Since the 1940s, Rickenbacker has continuously and capably hosted military aviation operations. Military personnel and their families have found Franklin County to be a supporting community and wonderful place to locate.

Franklin County is the proud home to 1.2 million residents with wonderful natural assets. Our community features 15 Fortune 1000 communities and was recently ranked the #4 metropolitan area in the nation for economic growth by The Business Journals. Our anchor institutions include world-class healthcare systems (including a major children’s research hospital and two major cancer treatment centers), the largest private research institution in the world (Battelle) and one of the largest research universities in the world (The Ohio State University). Our vast cultural amenities include #1 rankings for our ballpark, zoo and metropolitan library system, and our cost-of-living ranks in the top 10 nationally among major metro areas.

Franklin County government has long been recognized for its professionally run operations, and is among very few metro counties in the nation that carry a double AAA bond rating, the highest rating available. Our focus on investments in public safety, economic development and environmental sustainability contributes to the great quality of life in Central Ohio.

As you proceed with our analysis, we expect that our region will compare favorably with any in the country, and we look forward to the opportunity to welcome you to our community. Please do not hesitate to call us if you have any questions.

Sincerely,

John O’Grady, President
Paula Brooks
Marilyn Brown
Franklin County Board of Commissioners

373 South High Street, 26th Floor, Columbus, Ohio 43215-6314
Tel: 614-525-3322 Fax: 614-525-5999 www.FranklinCountyOhio.gov
March 18, 2014

KC-46A EIS Program Manager
NGB/A7AM
Shepperd Hall, 3501 Fetchet Avenue
Joint Base Andrews MD 20762-5157

Dear Sir/Madam,

We are extremely proud that Forbes Field Air National Guard Base (ANGS)/190th Air Refueling Wing (ARW) is one of five ANGSs being considered to become the first Air National Guard Main Operating Base (MOB2) for the KC-46A mission. As proud as we are of this consideration, we in Kansas are just as proud of the 190th’s successful history of operating air refueling aircraft in support of military and national security missions.

Clearly an Active Association such as the one currently existing at Pease Air National Guard Base is an important factor in determining where the Air Force should beddown the KC-46A for the MOB2 mission site. The State of Kansas looks forward to working with the 190th ARW, the Air National Guard and Headquarters, US Air Force, to establish an Active Association at Forbes Field in Topeka, Kansas.

While we certainly respect and support the United States Air Force’s (USAF) decision selecting Pease ANGS, we firmly believe that Forbes continues to be a top candidate and an excellent choice for a future KC-46A Active Association and associated mission during the next round of basing decisions for the KC-46A.

I also want you to know that Forbes Field Air National Guard Base and the 190th ARW have enjoyed, and will continue to enjoy, strong state and community engagement and support. I pledge on behalf of the citizens of Kansas that we will not only assist the 190th ARW in its efficient and cost effective accomplishment of its air refueling mission, but also in improving the quality of life of its airmen and their families.

Sincerely,

Sam Brownback
Governor

CC:
Honorable Debbie Lee James - Secretary of the Air Force
Ms. Kathleen Ferguson – Assistant Secretary (Acting), Assistant Secretary for Installations, Environment and Logistics
Lieutenant General Stanley E. "Sid" Clarke - Director, Air National Guard Bureau
January 23, 2013

Colonel James V. Jones
Commander
121st Air Refueling Wing
7370 Minuteman Way
Columbus, Ohio 43217

Dear Colonel Jones:

On behalf of the Canal Winchester community, let me express our congratulations on making the short list of locations for the new KC-46A Tanker. Since the 1940s, Rickenbacker has continuously and capably hosted military aviation operations. Military personnel and their families have found the Columbus Region to be a vibrant home in which to live, work and play. We'd be honored to host the first Air National Guard-led KC-46A main operating base.

With Canal Winchester’s close proximity to Rickenbacker, it makes it easy for your Airmen to enjoy dining and shopping during their lunchtime, as well as partake in family friendly events and festivals throughout the entire year. Canal Winchester offers your Airmen and their families a place for healthcare needs with our new Diley Ridge Medical Center. This medical campus currently includes a medical office building with family and specialty physicians, Nationwide Children’s Urgent Care Center and an Emergency Room. This campus is proposed to expand to several more office buildings and a two hundred bed hospital in the next several years. With all these amenities within a short distance to Rickenbacker Air Base, Airmen and their families have found Canal Winchester to be a welcoming area where they want to raise their families and be a part of the community.

We know you will do a detailed analysis of our Region and compare us against other competitors to ensure the best choice for your people, your aircraft and your mission. We feel that as community, you’ll find no better or more sustainable home than the Rickenbacker Air Guard Station, and we hope that you will come to the same conclusion.

If you have any questions, please contact me at 614.837.7493.

Sincerely,

Michael Ebert
Mayor

Office: (614) 837-7493

City of Canal Winchester
36 South High Street
Canal Winchester, Ohio 43110-1213
March 24, 2014

KC-46A EIS Project Manager
NGB/A7AM, Sheppard Hall
3501 Fetchet Avenue
Joint Base Andrews MD 20762-5157

Subject: KC-46A Pegasus Mission

Dear KC-46A EIS Project Manager:

The Mid-Ohio Regional Planning Commission (MORPC) supports bringing the KC-46A "Pegasus" to Rickenbacker Air National Guard Base in Columbus, Ohio. Rickenbacker is prepared today to accept the new role of the main operating base of the KC-46A.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true "In Land Port". This is an unparalleled low-cost joint use surge capability that would benefit a KC-46 operation.

In addition, the Defense Logistics Agency is also located in Columbus (by the airport), and the 121 Air Refuelling Wing can be a key partner in the cargo delivery for the Air Force. Columbus is the ideal departure point for homeland defense and security as a one hour flight time can reach 60 percent of the US population. As a result, long-haul worldwide carriers are already utilizing this airport.

The Mid-Ohio Regional Planning Commission (MORPC) is a voluntary association of over 50 local governments from the Central Ohio Area. MORPC provides services in transportation, planning, energy, housing, land use, environment, and economic prosperity to promote sustainable communities. MORPC serves as a collective voice on regional matters and supports the opportunities to expand services at Rickenbacker Air National Guard Base.

Columbus is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. The Columbus Region is one of the most dynamic and diverse metropolitan regions in the U.S. and is known for its top-ranked market access, talented workforce and high-value cost of doing business.

Therefore, MORPC highly supports bringing the KC-46 to Rickenbacker.

Kind regards,

William Murdock
Executive Director

MORPC
Mid-Ohio Regional Planning Commission

March 24, 2014

KC-46A EIS Project Manager
NGB/A7AM, Sheppard Hall
3501 Fetchet Avenue
Joint Base Andrews MD 20762-5157

Subject: KC-46A Pegasus Mission

Dear KC-46A EIS Project Manager:

The Mid-Ohio Regional Planning Commission (MORPC) supports bringing the KC-46A "Pegasus" to Rickenbacker Air National Guard Base in Columbus, Ohio. Rickenbacker is prepared today to accept the new role of the main operating base of the KC-46A.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true "In Land Port". This is an unparalleled low-cost joint use surge capability that would benefit a KC-46 operation.

In addition, the Defense Logistics Agency is also located in Columbus (by the airport), and the 121 Air Refuelling Wing can be a key partner in the cargo delivery for the Air Force. Columbus is the ideal departure point for homeland defense and security as a one hour flight time can reach 60 percent of the US population. As a result, long-haul worldwide carriers are already utilizing this airport.

The Mid-Ohio Regional Planning Commission (MORPC) is a voluntary association of over 50 local governments from the Central Ohio Area. MORPC provides services in transportation, planning, energy, housing, land use, environment, and economic prosperity to promote sustainable communities. MORPC serves as a collective voice on regional matters and supports the opportunities to expand services at Rickenbacker Air National Guard Base.

Columbus is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. The Columbus Region is one of the most dynamic and diverse metropolitan regions in the U.S. and is known for its top-ranked market access, talented workforce and high-value cost of doing business.

Therefore, MORPC highly supports bringing the KC-46 to Rickenbacker.

Kind regards,

William Murdock
Executive Director

MORPC
Mid-Ohio Regional Planning Commission

March 24, 2014

KC-46A EIS Project Manager
NGB/A7AM, Sheppard Hall
3501 Fetchet Avenue
Joint Base Andrews MD 20762-5157

Subject: KC-46A Pegasus Mission

Dear KC-46A EIS Project Manager:

The Mid-Ohio Regional Planning Commission (MORPC) supports bringing the KC-46A "Pegasus" to Rickenbacker Air National Guard Base in Columbus, Ohio. Rickenbacker is prepared today to accept the new role of the main operating base of the KC-46A.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true "In Land Port". This is an unparalleled low-cost joint use surge capability that would benefit a KC-46 operation.

In addition, the Defense Logistics Agency is also located in Columbus (by the airport), and the 121 Air Refuelling Wing can be a key partner in the cargo delivery for the Air Force. Columbus is the ideal departure point for homeland defense and security as a one hour flight time can reach 60 percent of the US population. As a result, long-haul worldwide carriers are already utilizing this airport.

The Mid-Ohio Regional Planning Commission (MORPC) is a voluntary association of over 50 local governments from the Central Ohio Area. MORPC provides services in transportation, planning, energy, housing, land use, environment, and economic prosperity to promote sustainable communities. MORPC serves as a collective voice on regional matters and supports the opportunities to expand services at Rickenbacker Air National Guard Base.

Columbus is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. The Columbus Region is one of the most dynamic and diverse metropolitan regions in the U.S. and is known for its top-ranked market access, talented workforce and high-value cost of doing business.

Therefore, MORPC highly supports bringing the KC-46 to Rickenbacker.

Kind regards,

William Murdock
Executive Director

MORPC
Mid-Ohio Regional Planning Commission

March 24, 2014

KC-46A EIS Project Manager
NGB/A7AM, Sheppard Hall
3501 Fetchet Avenue
Joint Base Andrews MD 20762-5157

Subject: KC-46A Pegasus Mission

Dear KC-46A EIS Project Manager:

The Mid-Ohio Regional Planning Commission (MORPC) supports bringing the KC-46A "Pegasus" to Rickenbacker Air National Guard Base in Columbus, Ohio. Rickenbacker is prepared today to accept the new role of the main operating base of the KC-46A.

The Columbus Regional Airport Authority (CRAA) governs both Rickenbacker and Columbus International Airports. The two airports are located within miles of each other and provide access to four heavy lift capable runways. The CRAA also governs the Rickenbacker Intermodal that combines rail head traffic, road traffic, and distribution and warehouse facilities into a true "In Land Port". This is an unparalleled low-cost joint use surge capability that would benefit a KC-46 operation.

In addition, the Defense Logistics Agency is also located in Columbus (by the airport), and the 121 Air Refuelling Wing can be a key partner in the cargo delivery for the Air Force. Columbus is the ideal departure point for homeland defense and security as a one hour flight time can reach 60 percent of the US population. As a result, long-haul worldwide carriers are already utilizing this airport.

The Mid-Ohio Regional Planning Commission (MORPC) is a voluntary association of over 50 local governments from the Central Ohio Area. MORPC provides services in transportation, planning, energy, housing, land use, environment, and economic prosperity to promote sustainable communities. MORPC serves as a collective voice on regional matters and supports the opportunities to expand services at Rickenbacker Air National Guard Base.

Columbus is the 15th largest city and rated the 11th most military friendly city in America. The city was recently awarded an Employer Support of the Guard and Reserve award. The Columbus Region is one of the most dynamic and diverse metropolitan regions in the U.S. and is known for its top-ranked market access, talented workforce and high-value cost of doing business.

Therefore, MORPC highly supports bringing the KC-46 to Rickenbacker.

Kind regards,

William Murdock
Executive Director
Ms. Anne Rowe
KC-46A MOB2 Project Manager
NGB/A7AM
3501 Fetchet Avenue
Joint Base Andrews, MD 20762-5157

Dear Ms. Rowe:

The New Hampshire Department of Environmental Services (NH DES) has completed its review of the subject DEIS. NH DES provided comments to you on October 16, 2013 relative to potential environmental issues that needed to be addressed for the NEPA analysis, based on facts and plans presented in draft chapters one and two of the DEIS, dated September 2013. Topics considered included storm water management, wetland impacts, erosion control, aboveground petroleum management systems and air emissions modeling.

As a result of the review of the full DEIS, dated February 2014, the NH DES has no further comments at this time on the KC-46A proposal for the Pease ANGS. Instead, please accept our prior comments, dated October 16, 2013, as final for the full DEIS. I have enclosed with this letter copies of our October 16, 2013 comments for your reference. NH DES also attended the public hearing for the project on March 6, 2014 at the Portsmouth (NH) City Hall.

DES would like to thank you for the opportunity to comment on the DEIS. It is our intent to continue to serve as a partner in your effort to evaluate the Pease ANGS in Portsmouth, New Hampshire as a second main operating base (MOB 2) for the KC-46A beddown facility. If there are questions, please contact me as needed.

Sincerely,

Timothy W. Drew
Administrator
Public Information & Permitting
Office of the Commissioner

Encs.

Cc: Thomas S. Burack, Commissioner, NH DES
Vicki V. Quiram, Assistant Commissioner, NH DES
Harry T. Stewart, Director, Water Division, NH DES
Michael Winsett, Director, Waste Management Division, NH DES
Craig Wright, Director, Air Resources Division, NH DES
Jeffrey Andrews, Water Division, NH DES
Rigely Mauck, Water Division, NH DES
Robert Daniel, Waste Management Division, NH DES
Felice Janelle, Air Resources Division, NH DES

DES Web site: www.des.nh.gov
P.O. Box 95, 29 Hazen Drive, Concord, New Hampshire 03302-0095
Telephone: (603) 271-3503 • Fax: (603) 271-2867 • TDD Access: Relay NH 1-800-735-2964
The State of New Hampshire
DEPARTMENT OF ENVIRONMENTAL SERVICES

Thomas S. Burack, Commissioner

October 16, 2013

Ms. Anne Rowe
KC-46A MOB2 Project Manager
NGB/A7AM, Shepperd Hall
3501 Fetchet Avenue
Joint Base Andrews, MD 20762-5157

RE: NHDES COMMENTS – DRAFT CHAPTERS 1 & 2 - NEPA DRAFT ENVIRONMENTAL IMPACT STATEMENT (DEIS) – KC-46A BEDDOWN (MOB2) – PEASE AIR NATIONAL GUARD STATION (ANGS), PORTSMOUTH, NEW HAMPSHIRE – SEPTEMBER 2013

Dear Ms. Rowe:

The New Hampshire Department of Environmental Services (DES) has completed its review of the subject chapters and provides the enclosed comments for your consideration. The initial drafts of chapters one and two represented the focus of the agency’s review. Topics addressed included storm water management, aboveground petroleum management systems and air emissions modeling.

DES would like to thank you for the opportunity to comment on the early stages of the DEIS. It is our intent to continue to serve as a partner in your effort to evaluate the Pease ANGS in Portsmouth, New Hampshire as a beddown site for the KC-46As. If there are questions, please contact me as needed.

Sincerely,

Timothy W. Drew
Administrator
Public Information & Permitting
Office of the Commissioner

Enc.
Cc: Thomas S. Burack, Commissioner, NH DES
 Vicki V. Quiam, Assistant Commissioner, NH DES
 Harry T. Stewart, Director, Water Division, NH DES
 Michael Wimsatt, Director, Waste Management Division, NH DES
 Craig Wright, Director, Air Resources Division, NH DES
 Jeffrey Andrews, Water Division, NH DES
 Gregg Comstock, Water Division, NH DES
 Michael Juranty, Waste Management Division, NH DES
 Michael Fitzgerald, Air Resources Division, NH DES
 Thomas P. Ballestero, Director, Storm Water Center, UNH, Durham NH

DES Web site: www.des.nh.gov
P.O. Box 95, 29 Hazen Drive, Concord, New Hampshire 03302-0095
Telephone: (603) 271-3503 • Fax: (603) 271-2867 • TDD Access: Relay NH 1-800-735-2964
NH DES COMMENTS

October 16, 2013

Comment 1. Storm Water Management

Based on the figures in Table 2.3 (total disturbance 117,173 square feet and total new impervious surface 26,865 square feet), the Air National Guard Station (ANGS) will need both the U.S. Environmental Protection Agency (U.S. EPA) Construction General Permit (http://des.nh.gov/organization/divisions/water/stormwater/construction.htm) and an NH DES Alteration of Terrain Permit (http://des.nh.gov/organization/divisions/water/aot/permit_aot.htm). If the project includes construction dewatering, the ANGS may also need either the Dewatering General Permit (DGP - see http://www.epa.gov/region1/npdes/dewatering.html) or the Remediation General Permit (RGP - see http://www.epa.gov/region1/npdes/rpg.html), which are typically required for dewatering groundwater containing contaminants. ANGS would not need to address U.S. EPA Municipal Separate Storm Sewer System General Permit (MS4 GP) requirements since Newington is not an MS4, but would need to meet any applicable requirements in the Pease Tradeport’s individual National Pollutant Discharge Elimination System Permit (NH0090000) that contains conditions on several storm water outfalls (see attached NPDES Permit).

This additional impervious surface will create the potential for additional pollutant loads to be discharged to the impaired waters in the vicinity, including Great Bay. NH DES suggests that the ANGS’s goal should be “hold the loads” for any pollutants for which nearby waters are impaired. This could mean deploying structural Best Management Practices such as the University of New Hampshire’s subsurface gravel wetlands or a bioretention hybrid (internal storage volume). If this is considered a federal site or construction project, the ANGS would also need to comply with the storm water management requirements of Section 438 of the
Energy Independence and Security Act (see http://water.epa.gov/polwaste/nps/section438.cfm). Information on subsurface gravel wetlands can be found in the UNH Stormwater Center’s annual report (see http://unh.edu/unhsc/sites/unh.edu.unhsc/files/docs/UNHSC 2012Report.10.10.12.pdf) or by contacting the Center (see http://www.unh.edu/unhsc/contact). For information on the bioretention hybrids, which are a fairly recent design, however some exist presently in seacoast New Hampshire, contact Dr. Thomas Ballestero by telephone at (603) 862-1405 or by email at tom.ballestero@unh.edu.

Comment 2. Petroleum Management

The proposed project for modifying the refueling hydrants and lines would be regulated by the NH DES Aboveground Storage Tank (AST) Program (http://des.nh.gov/organization/divisions/waste/orch/ocs/astp/index.htm). This project is detailed on page 2-32 “Project #7”, shown on page 2-33 of the DEIS, and discussed at the top of page 2-36. The New Hampshire Air National Guard, Civil Engineering Squadron, is aware of the NH DES AST Program requirements and has been in preliminary contact with Bob Daniel in the Plan Review Subsection to discuss the scope of future improvements. The AST Program welcomes the proposed modifications that would add interstitial monitoring and secondary containment to the hydrants and lines.

Comment 3. Air Emissions Analysis

Based on the NH DES Air Resources Division’s (ARD) review of the above referenced project description, we concur that the project is compatible with the plans, programs, and objectives of ARD, and that the project should have no significant environmental impact to local or regional air quality.

ARD conducted modeling to determine potential air emissions, based on the type of aircraft to be used and the number of sorties as noted in the description of the proposed action using the FAA’s Emission and Dispersion Modeling System (EDMS). Results are shown below:

<table>
<thead>
<tr>
<th>Aircraft Scenario</th>
<th>Emissions for KC-135 vs. Proposed KC-46As</th>
<th>Emissions in Tons Per Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135R, CFM56-2A engines, 10,204 sorties</td>
<td>CO</td>
<td>NOx</td>
</tr>
<tr>
<td>259.9</td>
<td>392.9</td>
<td>4.2</td>
</tr>
<tr>
<td>KC-46A, PW409G2 engines, 12,799 sorties</td>
<td>467.4</td>
<td>359.1</td>
</tr>
<tr>
<td>Difference</td>
<td>207.4</td>
<td>-33.8</td>
</tr>
</tbody>
</table>

Rockingham county total, tons per year* 50,578 8,235 8,458 3,577 7,639

DRAFT CHAPTERS 1 & 2 - NEPA DRAFT ENVIRONMENTAL IMPACT STATEMENT (DEIS) – KC-46A BEDDOWN (MOB2) – PEASE AIR NATIONAL GUARD STATION (ANGS) PORTSMOUTH, NEW HAMPSHIRE- SEPTEMBER 2013

NH DES Comments
October 16, 2013
Page 2 of 3
% change in Rockingham county emissions with KC-46A aircraft and 2,565 additional sorties

Notes:
1) Emissions were estimated with EDMS 5.1.4.1
2) A Boeing 767-200ER with PW4062 engines was used to represent the KC-46A
3) A sortie was considered equal to a complete landing-takeoff operation (LTO)
* National Emissions inventory reporting for 2011

As shown, emissions for oxides of nitrogen and sulfate (NOx and SOx) are expected to decrease, while carbon monoxide (CO), particulate matter (PM) and volatile organic compounds (VOC) emission will increase. However, based on their contribution to area-wide emissions, those originating from aircraft are not expected to have a significant impact on area air quality or attainment status.

During proposed construction activities, we advise that appropriate measures be taken to limit emissions from diesel fueled vehicles. These measures include, but are not limited to:

- Preventing, abating and controlling fugitive dust;
- Limiting idling of construction vehicles.

Potential traffic related impacts due to construction vehicles will be evaluated via the Interagency Consultation Process as outlined in the federal Clean Air Act.

###

DRAFT CHAPTERS 1 & 2 - NEPA DRAFT ENVIRONMENTAL IMPACT STATEMENT (DEIS) – KC-46A BEDDOWN (MOB2) – PEASE AIR NATIONAL GUARD STATION (ANGS) PORTSMOUTH, NEW HAMPSHIRE- SEPTEMBER 2013

NH DES Comments
October 16, 2013
Page 3 of 3
March 24, 2014

Ms. Anne Rowe
Plants and Requirements Branch
NGB/A7AM
Sheppard Hall
3501 Fetchet Avenue
Joint Base Andrews, MD 20762-5157

RE: Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installation - Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey

Comments on the Draft Environmental Impact Statement (EIS)

Dear Ms. Rowe:

The New Jersey Department of Environmental Protection’s (Department) Office of Permit Coordination and Environmental Review (PCER) distributed the Draft Environmental Impact Statement (EIS) for the proposed Second Main Operating Base KC-46A Beddown at an Alternative Air National Guard Installation Joint Base McGuire-Dix-Lakehurst (JB MDL) in New Jersey. We offer the following comments for your consideration.

Cultural Resources

HPO Project# 13-1101-3
HPO-C2014-022

The Historic Preservation Office (HPO) received the above document for review directly from the National Guard Bureau. As stated in the EIS document, the HPO previously reviewed the proposed undertaking pursuant to Section 106 of the National Historic Preservation Act. Our office concurred with the finding that there are no historic properties affected by the proposed
activity at Joint Base McGuire-Dix-Lakehurst. A copy of our review letter (HPO-J2013-045) is
attached for your reference.

Thank you for providing us with the opportunity for review and comment on the submitted
documentation. If you have any questions, please do not hesitate to contact me. If additional
consultation is required for this undertaking, please reference the HPO project# 13-1101 in any
future calls, emails, or written correspondence in order to expedite our review and response.

Jonathan Kinney, Senior Historic Preservation Specialist
New Jersey Historic Preservation Office
Phone: (609) 984-0141 Fax: (609) 984-0578
Email: jonathan.kinney@dep.state.nj.us
Website: http://www.nj.gov/dep/hpo

Natural Resources

The NJ Division of Fish & Wildlife (DFW) appreciates the opportunity to provide comment for the
Environmental Impact Statements (EIS's) being prepared for the MOB 1/FTU1 and MOB 2
aircraft beddowns. The NJ DFW feels that the proposed facility additions, new impervious
surface areas and changes to the existing fueling infrastructure shown in the "Final Description
of the Proposed Action and Alternatives Environmental Impact Statement KC-46A Beddown at
Alternative Air National Guard Installations Main Operating Base 2" should have little to no
effect on the known nesting area of the Upland Sandpipers, Grasshopper Sparrows and Savannah
Sparrows near the center of the runways at McGuire AFB.

In the EIS, a description of other larger aircraft with similar engines using the same runways
would be helpful in determining whether or not the replacement of the existing KC-135 aerial
refueling fleet with the KC-46A would have any effect on the T&E species present.

As shown in Table ES-2, Summary of Impacts, under "JB MDL": "Acreage within the 65 dB
DNL (and greater) noise contour would increase by 1.831 acres." The DFW would like to know
what the noise level is now and exactly what the change in noise level would be. A study by Erin
H. Strasser and Julie A. Heath, Reproductive failure of a human-tolerant species, the American
kestrel, is associated with stress and human disturbance, suggests that "cavity nesting birds, such
as kestrels, who inhabit noisy environments may compensate for decreased auditory cues by
increasing vigilance behavior, such as visual scans from the nest entrance or flushing from the
nest, leading to changes in energy allocation or extended periods away from the nest during
incubation. This behavior appears to be followed, at a high rate, by nest abandonment."
The DFW would be concerned with how this may relate to the species nesting within the air
field.

If we may be of further service, please contact Kelly Davis at (908) 236-2118 or by Email at
kelly.davis@dep.state.nj.us
Air Quality

The Bureau of Air Quality Planning has reviewed the US Air Force JBMDL Draft EA for KC-46A beddown and has no comment.

Thank you for giving the New Jersey Department of Environmental Protection the opportunity to comment on the draft EIS. If you have any additional questions, please do not hesitate to call me at (609) 292-3600.

Sincerely,

Ruth Foster, Section Chief
Office of Permit Coordination and Environmental Review

Attachment

C: John Gray, NJDEP – PCER
Jonathan Kinney, NJDEP – HPO
Kelly Davis, NJDEP – DFW
Angela Skowronek, NJDEP - BAQP
Mr. Daniel Saunders
New Jersey Department of Environmental Protection
Historic Preservation Office
PO Box 420
Trenton, NJ 08625-420

Dear Mr. Saunders:

The United States Air Force (USAF) plans to replace the existing KC-135 air refueling fleet with the KC-46A, which will be a new aircraft to the USAF’s fleet. As such, the USAF has identified locations for the beddown of a formal training unit (FTU) and the first main operating base (MOB 1), which will both be led by active duty units. The USAF will also beddown the KC-46A at the second main operating base (MOB 2), which will be led by an Air National Guard (ANG) unit.

There are two separate Environmental Impact Statements (EISs) being prepared for the MOB 1/FTU\(^1\) and MOB 2 beddowns. While you may be familiar with either or both of these actions, this particular letter is in reference only to the MOB 2 beddown action. This correspondence is provided to initiate consultation with your office, pursuant to 36 Code of Federal Regulations (CFR) 800.3 for the Undertaking. Section 106 consultation for this project will be parallel to, but conducted separately from the EIS.

The MOB 2 alternative locations for this beddown include:

- Forbes Air National Guard Station (ANGS), Kansas;
- Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey;
- Pease ANGS, New Hampshire;
- Pittsburgh ANGS, Pennsylvania; and,
- Rickenbacker ANGS, Ohio.

The EIS is being prepared under the National Environmental Policy Act (NEPA) for the potential beddown of the KC-46A at one of the five alternative locations, including JB MDL in New Jersey (Attachment 1). The EIS will assess the potential environmental consequences associated with the beddown of the KC-46A at JB MDL as a replacement to the KC-135. As a result of the Proposed Action, there would be a change to the type of aircraft based at the

\(^1\) The FTU alternative installations include Altus Air Force Base (AFB), Oklahoma and McConnell AFB, Kansas. The MOB 1 alternative installations include Altus AFB, Oklahoma; McConnell AFB, Kansas; Fairchild AFB, Washington; and Grand Forks AFB, North Dakota.
selected installation; a change to the mix of aircraft using the associated airspace; changes to staffing and manpower at the selected location; changes to the number of airfield operations; as well as minor required construction, building renovation, and facility demolition. There would be no new or modified airspace required to support this undertaking.

At JB MDL, the KC-46A would replace the KC-135 currently based at the installation. The KC-46A would operate in existing airspace in a similar manner as is currently conducted. There may be a slight increase in operations in the airspace; however, use of this airspace is generally 10,000 feet above ground level and higher and preliminary analysis indicates that noise levels under the proposal would be similar to existing noise levels with the KC-135 aircraft. The purpose of this correspondence is to initiate the Section 106 process of the National Historic Preservation Act (NHPA) as outlined in 36 CFR 800.3.

The National Guard Bureau (NGB) anticipates the area of potential effect (APE) for this undertaking to be limited to the portion of the installation where construction, demolition, and renovation activities would occur (Attachment 2). Specifically, these activities would include an addition to Hangar 3333, an addition to Hangar 3336, interior renovations to Hangar 3332, construction of a new 6,700 square foot simulator building west of Building 3390, modifications/additions to the existing aircraft ramp and taxiway, and the addition of eight new fuel hydrants and associated fuel lines on the aircraft parking apron.

The entire McGuire AFB and associated off-base facilities have been surveyed for archaeological resources (Headquarters Air Mobility Command [HQ AMC] 1995). The 1995 survey also included an architectural survey of all buildings and structures built prior to 1947, and the Semi-Automatic Ground Environmental (SAGE) complex built in 1956. As a result of this survey and follow up surveys conducted in 1996 (AMC 1996, Holmes 1996), 1997 (Holmes et al. 1997, McGuire AFB 2003), and 1998 (Holmes and Goar 1998), the SAGE complex, the Boeing Michigan Aeronautical Research Center (BOMARC) complex at Fort Dix, and three historic archaeological sites were recommended eligible for inclusion in the National Register of Historic Places (NRHP). No other buildings or sites were recommended eligible. The cultural resources recommended eligible for the NRHP at McGuire AFB are all well outside the proposed APE for the undertaking. Additionally, according to the McGuire AFB Integrated Cultural Resources Management Plan (JB MDL 2013) the proposed APE occurs in an area of low archaeological sensitivity.

The NGB has identified no potential adverse effects as a result of this undertaking. We request your concurrence with the proposed APE, our identification of historic properties, and our assessment on the effects of this proposal on historic properties.
We have attached the Draft Description of the Proposed Action and Alternatives (Attachment 3), which will become the first chapters of the Draft EIS so that you may review the proposal and provide us any concerns that you may have regarding the proposal. Upon release of the Draft EIS (expected in early 2014), we will send that to you for your further review and comment.

The NGB is in the process of consulting with federally recognized American Indian Tribes concerning the Undertaking (Attachment 4). We are also contacting the public and relevant regional Archaeological Society offices both through the NEPA process and through Section 106 of the NHPA. All comments we receive, and any concerns expressed to the NGB, will be taken into consideration while planning for this undertaking. Please send your recommendations to the KC-46A MOB 2 Project Manager, Ms. Anne Rowe, at anne.rowe.ctr@ang.af.mil. If you have any questions regarding this consultation, Ms. Rowe can also be reached at (240) 612-8636.

Sincerely,

ROBERT L. DOGAN, REM, GS-13
Plans and Requirements Branch

Attachments: 1 – Vicinity map
2 – Map of Area of Potential Effect
3 – Draft Description of the Proposed Action and Alternatives
4 – Federally Recognized Tribes associated with JB MDL

References:

Air Mobility Command (AMC)

Headquarters Air Mobility Command (HQ AMC)

Holmes, Richard D.
Holmes, Richard D., Toni R. Goar, and Katherine J. Roxlau

Holmes, Richard D. and Toni R. Goar

Joint Base McGuire-Dix-Lakehurst (JB MDL)

McGuire Air Force Base (AFB)

I concur with your finding that there are no historic properties affected within the project’s area of potential effects. Consequently, pursuant to 36 CFR 800.4(d)(1), no further Section 106 consultation is required unless additional resources are discovered during project implementation pursuant to 36 CFR 800.13.

[Signature]
10/8/13
Date
Deputy State Historic Preservation Officer
DANIEL W. SAUNDERS
March 24, 2014

KC-46A EIS Project Manager, NGB/A7AM
Shepperd Hall
3501 Fetchet Ave.
Joint Base Andrews, MD 20762-5157

Dear Project Manager:

I am writing in support of locating the KC-46A “Pegasus” refueling squadron at Rickenbacker Air National Guard Base.

Rickenbacker Air National Guard Base has a proud and storied history dating to 1942. Located in Lockbourne, Ohio, only twelve miles from downtown Columbus, Rickenbacker Air National Guard Base is well-equipped to handle the next generation of air refueling tankers. With an excellent infrastructure, including long runways and first-rate maintenance facilities, Rickenbacker Air National Guard Base would make a superb location in which to beddown the second main operating base of KC-46A aircraft.

As you know, Rickenbacker Air National Guard Base is currently home to the 121st Air Refueling Wing, an outstanding unit of professional men and women who understand the critical mission of aerial refueling. Their knowledge, experience, and expertise would greatly contribute to a seamless beddown of the KC-46A aircraft at Rickenbacker Air National Guard Base.

Finally, Rickenbacker Air National Guard Base and the men and women who carry out its operations are strongly supported by local and state business, community, and political leaders. In fact, according to G.I. Jobs magazine, Columbus is the 11th most military friendly city in the country.

I strongly urge you to locate the second main operating base of KC-46A aircraft at Rickenbacker Air National Guard Base. Thank you for your consideration.

Very respectfully yours,

Mike DeWine
Ohio Attorney General
January 22, 2013

Colonel James V. Jones
Commander
121st Air Refueling Wing
2000 Minuteman Way
Columbus, OH 43217

Dear Colonel Jones:

The Pickaway County Board of Commissioners is very pleased that Rickenbacker Air Guard Station has made the short list of locations for the new KC-46A Tanker. Pickaway County is proud to be home to a portion of this airbase, and to be home to military families who serve there. With this in mind, we join many others in the region to express our hope that Rickenbacker will be chosen to host the first Air National Guard-led KC-46A main operating base.

Pickaway County and the Columbus region offer the vital support which will ensure your Airmen and their families feel welcome, and can prosper. Columbus is the 13th largest city in the U.S., and a vibrant, growing metro area. Pickaway County, a neighbor to the south, also has much to offer. We are home to four thriving local school districts which consistently rank high in state rankings. The county has a strong agricultural base which has helped our economy through difficult years, as well as a manufacturing industry that is growing and adapting to meet the needs of the 21st century. Quality of life is high in Pickaway County, with many safe, attractive communities to choose from, and much to offer your service members.

As you continue your analysis of different options, comparing our region against other potential sites, we know that you are seeking the best choice for your people, your aircraft, and your mission. We feel confident that at Rickenbacker, Columbus, and Pickaway County, each of these will be well taken care of. We hope your KC-46 ANG MOB will be Rickenbacker Air Guard Station.

If the Pickaway County Board of Commissioner can be of any assistance, please do not hesitate to contact us. Thank you for your service, and best wishes on the mission ahead.

Sincerely,

Jay H. Wippel
Brian S. Stewart
Hariold R. Henson
Great Bay Neurosurgical Associates
Central Commons – Suite H
750 Central Avenue
Dover, New Hampshire 03820

(603) 749-0888 • (603) 433-1913 • Fax: (603) 749-9285

Melvin E. Prostkooff, M.D.
Diplomate of The American Board of Neurological Surgery

To: KC-46A EIS Project Manager
NGA/ATAM
Shedd Hall
3301 Fetcher Avenue
Joint Base Andrews, MD 20762-5157

Re: Draft Environmental Impact Study (EIS)
KC-46A Beddown
Comment Letter in Support of Pease ANG Station, NH

Date: March 21, 2014

Dear Sir or Madam:

I am writing in support of the selection of Pease ANG Station, NH to be the Second Main Operating Base (MOB) 2 for the Beddown of the KC-46A Refueling Aircraft at an Air National Guard Installation.

I have familiarized myself with the content of the February 2014 Draft Environmental Impact Statement (Volumes I and II – Appendices, and the Executive Summary).

I strongly believe that the 157 Air Refueling Wing (ARW) of the NH Air National Guard (ANG) at Pease ANG Station, NH really is the “best of the best” of the five alternative ANG locations for the KC-46A Beddown. I am pleased that the USAF has identified Pease ANGS, NH as the preferred alternative for the MOB 2 KC-46A Beddown, based on its operational analysis, results of site surveys, and military judgment factors, as is stated on page ES-8 of the Executive Summary.

I commend the Department of Defense, and their contractor, Cardno Tee (Boise, ID), for their extensive environmental impact statement (EIS) analysis, on multiple criteria, including noise, air quality and pollution, safety and security, soils and water, biological resources, cultural resources, land use, archaeology, infrastructure, transportation and traffic, hazardous materials and waste, socioeconomics, and environmental justice and the protection of children. It is no surprise to me that Pease ANGS, NH has registered with negligible environmental impacts in all the areas studied.

Professionals with far more expertise than I have addressed these specific criteria in their comments to you.

You have heard from other commenters about the NH ANG’s outstanding record of awards, citations, recognitions, and commendations, including eleven USAF Outstanding Unit Awards (most recently in 2013), the Spatz Trophy, the Outstanding Tanker Flying Squadron, the Air Reserve Force of the Year, and the winner of the ANG Rodeo. Its senior leaders are progressive, proactive and forward thinking. It is their vision, over the years, that led to the creation of the Northeast Tanker Task Force, the “Air Bridge,” the upgrade or new construction of all facilities at Pease ANGS, the building of the full-motion KC-135R simulator building with the easy expansion capability to house the KC-46A full-motion simulator, the construction of the new Squadron Operations Facility, runway, taxiway and ramp improvements, and other infrastructure upgrades at Pease ANGS. They welcomed the 64 Air Refueling Squadron (ARS) Active Associate group to Pease in 2009 as a seamless transition of all phases of operation. They have become a model unit of ANG and Active Duty integration. They started preparing for the arrival of the KC-46A long before the aircraft was ever planned.

The 157 ARW has distinguished itself in many other ANG activities. Its Operations and Maintenance Support Groups are exceptional. They have successfully rehabbed and modernized KC-135R refueling aircraft that came to them from the Active Duty Air Force. They have been leaders in the Pacer CRAG glass cockpit conversion for many ANG aircraft from other states. They have a training center for personnel from other units to use the full motion KC-135R simulator, and will do the same for the KC-46A simulator, when it is installed. They excel in their Homeland Security mission, and after the 9/11/2001 attacks, performed superbly in their Combat Air Patrosls (CAP) over Boston, NY, and the District of Columbia. Their performance has been admirable in support of NATO Operation Deny Flight, Desert Shield, Operation Iraqi Freedom (OIF), Operation Enduring Freedom (OEF), Operation Northern Watch, and other missions.

Domestically, the NH ANG members are true Citizen Soldiers, who, when under the command and authority of the Governor of NH, distinguish themselves in their assistance to the citizens of NH in floods, snow and ice storms, hurricanes, and other natural disasters. They also participated in the Hurricane Katrina relief activities.

I have never been an employee of the NH Air National Guard or the 157 ARW at Pease ANGS, NH. I have, however, interacted with the NH ANG on multiple occasions, in multiple capacities, since I moved to the Seacoast region to open my Neurosurgical practice in January, 1984.

My initial contact with the NH ANG was as the Neurosurgical Consultant at the then Pease AFB base hospital, where the NH ANG is co-located. I was impressed with the professionalism and can-do attitude of the members of the NH ANG, which was indistinguishable to me from the members of the Active Duty Air Force of the 507 BMW.
In 1991, I became a founding member of the Seacoast Mass Casualty Incident (MCI) Planning Committee, a joint CIV/MIL group that organizes and runs triennial large scale MCI exercises at the Pease Airport. The original Seacoast Response – 1991 exercise was organized by the NH ANG, when they were the temporary landlords of the Pease Airport, after the Pease AFB was closed under BRAC I, and before the State of NH’s Pease Development Authority (PDA) took over operation of the airport. That combined CIV/MIL exercise, which was based on the crash of United 232 in Sioux City, IA in July, 1989, had over 1,900 participants, and 165 victim volunteers were transported to the five area hospitals in NH and ME within 1 hour and 15 minutes – an incredible feat! The CIV and MIL communities worked seamlessly together. Since that time, the NH ANG has continued to participate in all the FAA mandated CIV triennial drills at Pease to varying degrees. The NH ANG is currently part of the planning group for our upcoming MCI Seacoast Response – 2014 drill on October 4, 2014.

In December 1992, the NH ANG deployed to Moron, Spain for the Restore Hope humanitarian support mission. It was the first time that an ANG unit created a multi-national/ multi-language refueling operations base, that then, after safely off-loading over one million gallons of fuel, turned the operation over to the Active Duty Air Force. Many of the lessons learned in Seacoast Response – 1991 were used to establish, execute, and complete the NH ANG’s excellent mission outcome.

I reside in Newmarket, NH, at the edge of the Great Bay, under the approach path to Runway 16 at Pease. While growing up in Brooklyn, NY, I lived under the approach path to LaGuardia Airport (LGA). I am familiar with the noise levels and visible pollution emanating from DC-7s, Lockheed Constellations, Lockheed Electras, and early model DC-9s, B-727s, and B-737s. The noise and air pollution coming from the current KC-135Rs inbound to Pease is much less, and not at all disturbing. I feel proud to look up and see the force, power and protection of the USA projected in the sky overhead. The noise levels and air pollution from the KC-46A will be less. My pride will be even greater.

I am a licensed Private Pilot with an Instrument Rating, and fly out of Littlebrook Airpark (3B4) in Eliot, ME, a small, non-towered General Aviation airport, with an Aerobatic Box above, which is 5 miles from the Pease runway. My safety and security in the air have never been a concern of mine. The control tower at Pease (KPSM) is staffed by both members of the 260 ATC Squadron and DOD ATC professionals, who are consummate in their skill of handling the diverse traffic in the Pease environment, from large military aircraft to a wide range of civilian aircraft – from factory built General Aviation aircraft of all sizes to homebuilt aircraft, ultralights and helicopters, to corporate jets, to commercial, charter, and cargo airlines. There are multiple other General Aviation airports within a 50 mile radius of Pease, along with Boston Logan (KBOS), Manchester (KMHT), and Portland ME (KPWM) jetports. The air traffic control (ATC) services provided by Pease are highly commendable.

Prior to the 9/11/2001 terror attacks, the NH ANG hosted CIV pilot safety conferences that were sponsored by the Aircraft Owners and Pilots Association’s Air Safety Institute/Foundation (AOPA ASIF). They have also safety and successfully sponsored multiple summer air shows, in conjunction with the Pease Development authority (PDA), The Boy Scouts of America (BSA), and the NH Brain Injury Association (NH BIA).

I am a volunteer member of the Executive Committee and the NH Awards Chair of the Employer Support of the Guard and Reserve (ESGR) and DOD-chartered organization that seeks to promote a culture in which all America employers support and value the military service of their employees. In this capacity, I interact with the troops, the non-commissioned officers, and the senior leaders of the NH ANG. I know the pride of all the members of the NH ANG to be the “best of the best.”

The members of the NH ANG are our neighbors. The 157 ARW at Pease ANGS, along with the Active Associate 64 ARS, are excellent neighbors, themselves, to the surrounding communities. The members of the NH ANG at Pease ANGS, NH support their own members in need, through the Minuteman Fund, and the NH Chaplain’s Emergency Relief fund.

An organization is only as good as its people, and can only achieve its missions, goals and objectives with strong leadership and excellent members. The NH ANG at Pease ANGS, NH excels on all measures, and therefore will be very successful with the KC-46A Beddown.

The Beddown of the KC-46A will bring an economic boost to the Seacoast region of NH and ME, increase regional employment, and add significant strategic value.

I am proud of my thirty year affiliation with the NHNG, the NH ANG, and the members of the 157 ARW at Pease ANGS, NH. The NH ANG truly epitomizes all three of the USAF’s Core Values: Integrity First, Service Before Self, and Excellence in All We Do.

I am honored to give my unconditional support to, and recommendation of, the awarding of the MOB 2 KC-46A Beddown to the Pease ANGS, NH.

Thank you for your consideration of my comments.

Respectfully submitted,

[Signature]

Melvin E. Proskoff, MD
Southeastern Franklin County Chamber of Commerce

400 Sheryl Drive
Groveport, Ohio 43125

January 18, 2013
Colonel James V. Jones
Commander
121st Air Refueling Wing
7370 Minuteman Way
Columbus, Ohio 43217

Dear Colonel Jones:
On behalf of the Southeastern Franklin County Chamber of Commerce, let me express our excitement on making the short list of locations for the new KC-46 Tanker. Since the 1940s, Rickenbacker has continuously and capably hosted military aviation operations. Military personnel and their families have found the Southeastern Franklin County Region to be a vibrant home in which to live, work and play. We’d be honored to host the first Air National Guard-led KC-46A main operating base. Our Chamber offers the vital support to ensure your Airmen and their families feel welcome, grow and prosper.

We know you will do a detailed analysis of our Region and compare us against other competitors to ensure the best choice for your people, your aircraft and your mission. But as a thriving area, you’ll find no better, no more sustainable home. We promise you’ll be well taken care of in Southeastern Franklin County. Your KC-46 ANG MOB should be Rickenbacker Air Guard Station. If you have any questions, please contact us at 614.836.5900.

Sincerely,

Robert Garvin
President
Southeastern Franklin County Chamber of Commerce
February 20, 2014

Victor Wilson
Ohio National Guard Association
1299 Virginia Avenue
Columbus, OH 43212

Dear Mr. Wilson,

I am contacting you to express my support for the proposed beddown of one squadron of KC-46 aircrafts at Rickenbacker Air National Guard Station. I personally visited the area and believe that it is a great location for the aircrafts, future jobs, and economic growth associated with construction and renovation. As an elected official who represents Columbus, I believe the development of this area will not only create jobs, but will also serve as progression toward welcoming more businesses to this community.

Upon my review of the details set forth for this development, I wholeheartedly support the beddown of the KC-46 aircrafts and I believe it will prove beneficial to the community as a whole.

Please feel free to contact me if you have any questions.

Sincerely,

JIM HUGHES
State Senator

Hughes@ohiosenate.gov
Dr. Calvin L. Taylor
Lt. Col., USA, Retired
Worthington, OH 43085
March 21, 2014

KC-46A EIS Project Manager,
NGB/ATAM, Shepperd Hall
3501 Fetchet Avenue
Joint Base Andrews MD 20762-5157
ANG.ENV.comments@ang.af.mil

SUBJECT: KC 46-A Future Location

Dear Madam Secretary:

I am writing in support of assigning the KC-46A “Pegasus” to Rickenbacker Air National Guard Base located in Columbus, Ohio. The Air National Guard units located at Rickenbacker have a long-standing history of worldwide military support missions. Rickenbacker is not only capable but is ready, along with the surrounding community partners, to accept the new role of the main operating base for the KC-46 A. This holistic capability was understated in previous assessments.

Homeland defense and national security would be well served by location of the KC-46A at Rickenbacker. Columbus is within one hour flight time to 60% of the U.S. population. The Rickenbacker and Columbus International Airports located with a few miles of one another, operated by a single Airport Authority, provide four heavy lift capability runways. Available “intermodal” capability of rail, road, and air combined with existing distribution and warehouse facilities (Fed Ex, UPS, Cargo Lux, and Cathay Pacific) as well as the Defense Logistics Supply Center, provide an “inland port”. These existing capabilities provide low-cost, joint use surge capabilities that could benefit KC-46 operations.

Columbus, Ohio is the 15th largest city and rated the 11th most military friendly city in America. Columbus was recently awarded an Employer of the Guard and Reserve award. Central Ohio has 90,000 veterans in the area.

I request your serious consideration in locating the KC-46A at Rickenbacker Air National Guard Base.

Sincerely,

Dr. Calvin L. Taylor
(Lt. Col, USA, Retired)

BCF: Honorable Deborah Lee James
From: Tur, Anthony [mailto:anthony_tur@fws.gov]
Sent: Tuesday, April 01, 2014 1:38 PM
To: Kreider, Amanda J.
Cc: John Warner; Jeannine Dube
Subject: Re: Draft EIS - KC-46A Beddown at Alternative Air National Guard Installations

Ms. Kreider,

As stated in the draft EIS Section 3.3.5.3 (pg. 3-74), dated February 2014, there are no known occurrences of federally listed or candidate species within the vicinity of the 157 ARW installation. Consequently, I have no information to justify the need for further consultation regarding the Endangered Species Act.

Thank You for coordinating.
Tony

Anthony Tur
Endangered Species Biologist
U.S. Fish and Wildlife Service
New England Field Office
70 Commercial Street, Suite 300
Concord, New Hampshire 03301

Phone (603) 223-2541 x.24
Anthony_Tur@fws.gov

http://www.fws.gov/newengland/
Operations Division
Regulatory Branch
2013-1818

March 25, 2014

Anne Rowe
NGB/A7AM
Sheppard Hall
3501 Fetchet Avenue
Joint Base Andrews, MD 20762-5157

Dear Ms. Rowe:

I refer to your letter dated February 1, 2014 and Draft EIS with CD, received in this office February 11, 2014, requesting comments on the proposed alternative locations for the second Main Operating Base (MOB2) project. The United States Air Force (USAF) plans to beddown the new aircraft KC-46A fleet at the MOB2, which will be lead by the Air National Guard.

The U.S. Army Corps of Engineers regulates earth moving activities within streams or wetlands. This includes any placement of fill material, temporary or permanent. If you are proposing a new project that entails the placement of fill material in waters (including wetlands), or if you are proposing a modification to an existing project that entails the placement of fill material in waters, then this letter serves as your notice that your project may require a permit from this office.

Based on the information contained within the Draft EIS it appears that impacts to waters may be proposed. We recommend that you hire a qualified wetland consultant to evaluate the entire project area in order to determine if any streams or wetlands are present. Enclosed is a list of wetland consultants. If impacts to streams or wetlands are in fact proposed, you should again contact this office to discuss permitting requirements. Every effort should be made to avoid and minimize impacts to the aquatic resources on-site. We will continue to work with you in order to protect any aquatic resources that may be present.

This project has been assigned Department of the Army Permit Number 2013-1818. Please refer to this number in all future correspondence. If you have any questions, please contact Linda Everley at 412-395-7152 or by e-mail: Linda.L.Everley@usace.army.mil.

Sincerely,

/signed/
Joshua D. Shaffer
Jon T. Coleman
Chief, South Section, Regulatory Branch

DEPARTMENT OF THE ARMY
PITTSBURGH DISTRICT, CORPS OF ENGINEERS
WILLIAM S. MOOREHEAD FEDERAL BUILDING
1009 LIBERTY AVENUE
PITTSBURGH, PA 15222-4186

Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations EIS
Appendix B Public Hearing Transcripts, Responses to Comments, and
Written Comments on the Draft EIS
Enclosure

Copy Furnished:

KC-46A EIS Project Manager
NGB/A7AM
Sheppard Hall
3501 Fetchet Avenue
Joint Base Andrews, MD 20762-5157
Wetland Consultant List

The following is a list of contractors for environmental and engineering services. This list is not all inclusive. This list contains only firms who have requested listing. The Corps of Engineers provides this list as a service to the public. No recommendation or guarantee of competence or experience is implied by this listing. The Corps of Engineers neither endorses nor accepts responsibility for work performed by any firm on this list. We suggest that prospective clients ask for credentials before contracting for professional services.

NOTE: The Corps is the final authority with respect to the delineation of wetland areas and other waters of the U.S., as well as the determination of activities requiring Department of the Army permits. All wetland delineations must be conducted and documented in accordance with the “1987 Wetland Delineation Manual.” The Corps will review all preliminary jurisdictional determinations to verify their accuracy.

A.D. Marble & Company
1000 Gamma Drive, Suite 203
Pittsburgh, PA 15238
412-968-5977
Fax: 412-968-5978
www.admarble.com

AGES, Inc.
2402 Hookstown Grade Road
Suite 200
Clinton, PA 15026
412-264-6453
412-264-6567 Fax
www.appliedgeology.net

Alliance Consulting
Raleigh County Airport Industrial Park
124 Philpott Lane
Beaver, WV 25813
304-255-0491
www.ace-wv.com

Allstar Ecology, LLC
1580 McKinney Cave Road
Reedsville, WV 26547
Phone/Fax: 1-866-213-2666

ARM Group, Inc.
1129 West Governor Road
P.O. Box 797
Hershey, PA 17033
717-533-8600
www.armgroup.net

ASC Group, Inc.
4620 Indianola Avenue
Columbus, OH 43214
614-268-2514
www.ascgroup.net

Atlantic Environmental Group, Inc.
453 S R. 227
Oil City, PA 16301
814-677-3139

Blazosky Associates, Inc.
787 Pine Valley Drive
Suite C
Pittsburgh, PA 15239
724-733-2060
724-733-2077 Fax
www.blazosky.com
craigh@blazosky.com Email

(Updated October 2013)
Ecotone
215 Executive Drive
Suite 204
Cranberry Township, PA 16066
724-779-9011

Environmental Solutions & Innovations, Inc.
4525 Este Avenue
Cincinnati, OH 45232
513-451-1777
www.environmentalsi.com
vbrack@environmentalsi.com Email

Enviros Inc.
Michael S. Hollins
410-299-6898
envirens.com
envirens@aol.com

Flickinger Wetland Service Group, Inc.
554 White Pond Drive, Suite D
Fairlawn, OH 44320
330-865-0688
www.flickingerwetlandgroup.com

GAI Consultants
385 East Waterford Drive
Homestead, PA 15120
412-476-2000
www.gaiconsultants.com

Garvin Boward Beitko Engineering, Inc.
632 South Center Avenue, Apt A
Somerset, PA 15501
814-443-2548
http://garvinbowardeng.com/
stoki@garvinbowardeng.com Email

Hatch Mott MacDonald
Summit Corporate Center
1001 Corporate Drive, Suite 100
Canonsburg, PA 15317
(724) 514-5330
www.hatchmott.com
donald.nusser@hatchmott.com

342 High Street, Box 471
Flushing, OH 43977
740-968-4847
www.hamiltonandassoc.com

Keystone Consultants, Inc.
32 East Main Street
Carnegie, PA 15106
412-278-2100
www.keystoneconsultants.net

Kleski Environmental Services
P.O. Box 812
46071 State Route 124
Racine, OH 45771
740-949-2240
www.kleskienviro.com

L. Robert Kimball & Associates
415 Moon Clinton Road
Coraopolis, PA 15108
412-262-5400
www.lkimball.com

Lee Simpson Associates, Inc.
203 West Weber Avenue
P.O. Box 5504
DuBois, PA 15801
814-371-7750
www.lesimpson.com

Lennon, Smith, & Souleret Engineering, Inc.
846 Fourth Avenue
Coraopolis, PA 15108
412-265-4400
www.lsse.com

(Updated October 2013)
MAD Scientist & Associates, Inc.
253 N. State Street, Suite 101
Westerville, OH 43081-1472
614-818-9156
www.madscientistassociates.net

Maguire Group, Inc.
D L Clark Building, 6th Floor
503 Martindale Street
Pittsburgh, PA 15212-5746
412-322-8340
www.maguiregroup.com

Melius & Hockenberry
2402 William Penn Highway
Suite 2
Johnstown, PA 15909
814-322-4822
www.mhesinc.com

Michael Baker Corporation
Airside Business Park
100 Airside Drive
Moon Township, PA 15108
412-269-4618
www.mbakercom.com

Morris Knowles & Associates
443 Athena Drive
Delmont, PA 15626
724-468-4622
www.morrisknowles.com

MS Consultants, Inc.
1 South Main Street, 8th Floor
Akron, OH 44308-1864
330-928-9617
www.mconsultants.com

The Orin Group, LLC
10 North West Avenue
Suite 200
Tallmadge, OH 44278
330-630-3937
www.theoringroup.com

Pennsylvania Soil & Rock, Inc.
570 Beatty Road
Monroeville, PA 15146
412-372-4000
www.pasolrock.com

Pgh Wildlife & Environmental, Inc.
853 Beagle Club Road
McDonald, PA 15057
724-796-5137
nbossart@winstream.net

Porter Consulting Engineers
814 North Main Street
Meadville, PA 16335
814-337-4447
www.pceengineers.com

Potesta & Associates, Inc.
7012 MacCorkle Avenue, SE
Charleston, WV 25304
304-342-1400
www.potesta.com

R.A. Smith National, Inc.
300 Corbet Street, Suite 200B
Tarentum, PA 15084
724-224-2330
www.rasmithnational.com

R.D. Zande & Associates
1500 Lake Shore Drive
Suite 100
Columbus, OH 43204
614-486-4383
www.zande.com

Skelly and Loy
2500 Eldo Road, Suite 2
Monroeville, PA 15146
412-856-1676
www.skellyloy.com

(Updated October 2013)
S&ME, Inc.
6190 Enterprise Court
Dublin, OH 43016
614-793-2226
www.smeinc.com

T&M Associates
11 Tindall Road
Middletown, NJ 07748
732-671-6400
732-671-7365 (fax)

Terradon Corporation
401 Jacobson Drive
Poca, WV 25159
304-729-9133
www.terradon.com

Thrasher Engineering
30 Columbia Boulevard
P.O. Box 1532
Clarksburg, WV 26301
304-624-4108
www.thrashereng.com

Triad
P.O. Box 228
Hagerstown, MD 21740
301-797-6400
www.triadeng.com

Tri-County Engineering, LLC
319 Paintersville Road
Hunker, PA 15639
724-635-0210
www.tricountyeng.com

Urban Engineers
139 Sassafras Street
Erie, PA 16501
814-453-5702
www.urbanengineers.com

URS Corporation
1375 Euclid Ave., Suite 600
Cleveland, OH 44115
216-622-2400
www.urscorp.com

URS Corporation
Foster Plaza 4
501 Holiday Drive, Suite 300
Pittsburgh, PA 15220
412-503-4700
www.urscorp.com

Virginia Waters & Wetlands, Inc.
274 Corporate Circle
Manassas, VA 20110
703-330-0992

Wallace & Pancher, Inc.
1085 S. Hermitage Road
Hermitage, PA 16148
724-981-0155
www.wallacepancher.com

Western Reserve Land Consultants
8650 Market Street
Boardman, OH 44512
330-965-2337

Wetlands Studies and Solutions, Inc.
5300 Wellington Branch Drive, Suite 100
Gainesville, VA 20155
703-679-5637
www.wetlandstudies.com

WHM Group, LTD
2525 Green Tech Drive
Suite B
State College, PA 16803
814-689-1650
814-689-1557 Fax
www.wetlandshabitat.com
inquiries@wetlandshabitat.com Email

(Updated October 2013)
Wilson Ecological Consulting
515 Henderson Road
Julian, PA 16844
814-933-2488
www.wilsonecological.com

Widmer Engineering
806 Lincoln Place
Beaver Falls, PA 15010
724-847-1696
www.widmerengineering.com

(Updated October 2013)
This responds to your recent correspondence requesting information on the presence of federally listed and/or proposed endangered or threatened species in relation to the proposed activity referenced above. These comments are provided in accordance with the Endangered Species Act (87 Stat. 884, as amended; 16 U.S.C. 1531, et seq.).

Based on information currently available to us, no federally listed or proposed, threatened or endangered species or critical habitat under the jurisdiction of the U.S. Fish and Wildlife Service are known to occur in the project area. Preparation of a Biological Assessment or further consultation with us under section 7 of the Endangered Species Act is not required. No further Endangered Species Act coordination is necessary for a period of one year from the date of this letter, unless additional information on listed or proposed species becomes available.

To obtain updated lists of federally listed or proposed threatened or endangered species and critical habitats, it is not necessary to contact this office. Instead, please visit the Endangered Species Consultation page on the New England Field Office’s website:

On the website, there is also a link to procedures that may allow you to conclude if habitat for a listed species is present in the project area. If no such habitat exists, then no federally listed species are present in the project area and there is no need to contact us for further consultation. If the above
Anne Rowe
March 25, 2014

In conclusion, further consultation with this office is advised. Information describing the nature and location of the proposed activity that should be provided to us for further informal consultation can be found at the above-referenced site.

Thank you for your coordination. Please contact Maria Tur of this office at 603-223-2541, extension 12, if we can be of further assistance.

Sincerely yours,

Thomas R. Chapman
Supervisor
New England Field Office
1 home of the new KC-46A. The airmen from the
2 190th are active in our community, and they are
3 highly represented by the citizens in our
4 community. The active duty airmen and their
5 families with the KC-46A operating base would
6 equally be welcome and would quickly become a
7 part of our family. The Board of County
8 Commissioners strongly encourages you to
9 consider Forbes Field Air National Guard Base
10 as the new home for the Air National Guard
11 KC-46A Main Operating Base. We stand ready to
12 provide whatever assistance we can to assure a
13 smooth transition and move to Topeka. Signed
14 Bob Archer, Chair; Kevin Cook, Vice Chair; and
15 Shelly Buhler, Member of the Commission.
16 COLONEL SHERMAN: Thank you, sir.
17 CHAIRMAN ARCHER: Now, on a personal
18 note, as an elected official, I get a lot of
19 different assignments and requests, and one
20 that I got for the Visit Topeka magazine was to
21 say in your own words what makes Topeka unique.
22 And I submitted the following: The small town
23 charm, friendliness and cooperation of a
24 capital city with great education, arts and
25 livability make Topeka one of a kind. I hope
1 you'll locate here. We'd really love to have
2 the fueler. Thank you very much.
3
4 COLONEL SHERMAN: Next we have Mr. Neil Dobler from the Chamber of Commerce. Sir.
5
6 MR. DOBLER: Thank you. Thank you and welcome. My name is Neil Dobler. I represent the Chamber of Commerce in the capacity of the chairman of the board for 2014. I have some prepared comments which I will leave.

7 The Greater Topeka Chamber of Commerce strongly urges the U. S. Air Force to place the
8 First Air National Guard KC-46A Main Operating Base with the 190th Air Refuelling Wing at
9 Forbes Field Air National Guard Base, Topeka, Kansas. The 190th has worked diligently over
10 the years along with the leadership from the Air Force and Air National guard to create one of the highest-quality and most cost effective tanker operations in the country. They have done that with the strong support of this community, as you have heard from the Mayor and Chairman Archer. This community has been home to Forbes Field since 1942, so we have a long, long history.
Company and chairman of the board of Go Topeka.
Most of what I've already said has been said by
the distinguished gentlemen that got to speak
ahead of me. And I appreciate them going
through all of that.

I do want to add that the Topeka business
community -- and I see this in my work life,
and I see this in being involved in Go Topeka
-- is very supportive of the military, very
supportive of the 190th. The 190th adds great
economic value to Topeka, and I believe Topeka
adds great economic value to the 190th. One of
the advantages of bringing the aircraft here is
that we do have a very large Air Force base
runway so it can accommodate those. The
facilities here and the infrastructure here are
already in place, with minor adjustments for
the military to be able to use our facilities
here in Topeka. Our community has very strong
support. We've got the housing, we've got the
schools, we've got some great opportunities for
education and great opportunities for jobs for
the family members of the military that would
be coming to Topeka should this happen. So it
would be a great opportunity for the military
as well to come to Topeka with these additional aircraft. A few years ago my son joined the Marine Reserves; and with that, I have had an opportunity to get a little more first hand knowledge and observation, I should probably say, of how the public supports the military in Topeka. And it is just outstanding when he goes places, the reactions that he gets because of his service to our country. And we certainly appreciate your service to our country and everything that you have done for us through today. We certainly encourage you to bring the KC-46A here to Topeka. Thank you very much.

COLONEL SHERMAN: You're welcome, sir. This evening's goal was to provide you with open communication and accurate information to ensure your informed participation in the NEPA Process. I hope that we have achieved that goal. Please feel free to visit the information booths and ask any additional questions you may have regarding this proposed action. You have an opportunity during the formal comment period ending March
history of military presence, we're very proud to have this hearing tonight and very proud that there may be an opportunity for the KC-46A to be in the Portsmouth area, and certainly, because of the public hearing, taking into consideration the environmental impact on the City of Portsmouth and the surrounding area.

I urge all citizens to support this proposal, to support the New Hampshire National Guard as they have. We appreciate all that you're doing in our community.

You are definitely part of our community. This is definitely a team effort, and we appreciate your presence. And we look forward to supporting you in your future endeavors, working with you, and being part of this new program. So thank you very much.

COLONEL MULDOON (Judge Advocate): Thank you, Mayor.

State Senator Martha Fuller Clark.

SENATOR CLARK: Thank you very much for the opportunity to speak, and thank you all for being here this evening. I have a letter that I would like to read into the record.

Dear Members of the National Guard Bureau, I am writing in support of bringing the Air Force's new
safe -- see, this is where I get very emotional for
what you do -- and we are happy to drive to work
side-by-side with the Air National Guard's women and
men here at Pease. And because the existing ANG wing
is already here, all the facilities and
infrastructures are in place to receive the new KC-46A
plane. Logistically, this is a no-brainer, and
economically, this would have a wonderful impact on
the area by creating new jobs, and to me, the math is
pretty simple.

We have been fortunate enough to see Pease
Tradeport become a commercial success, but it would
not be the same place without those Air National Guard
planes and the people who make them work so well. I
fully support the efforts of the Pease Air National
Guard Base to acquire the KC-46A Pegasus Tanker, and I
look forward to continuing our partnership in the
future.

Renee Plummer. Thank you.

COLONEL MULDOON (Judge Advocate): Thank you,
Ms. Plummer.

Mr. Doug Bates.

MR. BATES: My name is Doug Bates. I'm
forward to the continuation of the reliability and
future generations with the KC-46A. Pease is proud to
be an ideal location with the optimum facilities for
the U.S. military's tanker mission, and we are proud
to own and operate the airport that will host the
first rollout of the Guard's KC-46As. Thank you.

COLONEL MULDOON (Judge Advocate): Thank you,
Mr. Hopper.

Mr. John Frink.

MR. FRINK: Yes, I'm John Frink. I represent
only myself, my bees, my vegetable garden, my animals.
I have a very small farm that's very close to the
north end of the runway, and I would like to comment
on the environmental impact that Newington has had
because of the installation.

I do respect and admire the Air National Guard.
They are good neighbors, far better than what we had
when we had Pease Air Force base. You only have to
get a little bit close to the Newington side of the
air base and you can see the pollution mediation
measures that have been taken and you see the
monitoring wells and things are not what they were.
But that is neither here nor there.
I would like to relate a story just for my credibility here. I attended a town meeting in Newington when the town was being asked to purchase a conservation easement on property owned by Ghuruda Khalsa, which is adjacent to the north boundary of Pease. And there was a person, a resident in Newington who was a former Air National Guard member and who spoke up, and he said, you know, before the town really gets too involved in purchasing this easement, it would probably be a good idea to have an environmentalist come out and look at the property because when I was at the Air National Guard, we dumped a lot of fuel on that property. Now, I know it's a policy, although I have not personally called the Air National Guard, to deny jettisoning of fuel, however, I get up in the morning and certain atmospheric conditions, and there's a very strong smell of kerosene.

Now, I've heard that this is because of the warm-up process and prevailing winds. I've also heard that it's necessary to jettison fuel in order to land or take off or something. But it's distressing.

It's perhaps better that I would ask the
question rather than try to make a formal statement here, and the question would be, with the new tankers, which I'm sure are probably environmentally more friendly than the KC-135s, given that the 8 aircraft would be replaced by 12, would there be more of this jet fuel in the air over my house? I have honey bees that aren't doing well. That probably is the case almost everywhere. I have a vegetable garden, which is pretty much organic, and I think it's important to really consider the environment.

The City of Portsmouth and State of New Hampshire have always been very supportive of the military base there, but the people in Newington are the ones that really experience the downside. I have TCE in the water that runs through my property. I don't have to drink that water, but there are environmental impacts, and I just would like to be reassured that the amount of fuel in the air vapor is not going to increase due to the increased aircraft.

Thank you very much.

COLONEL MULDOON (Judge Advocate): Thank you, Mr. Frink. Dr. Melvin Prostkoff.

DR. PROSTKOFF: Thank you. My name is Dr.
TRANSCRIPT OF PROCEEDINGS

* * * * *

My comment isn't addressing the environmental impact. The small attendance numbers you see here should be proof that the region supports the 171st, the expansion, and we want to see the 171st get the new tankers and continue serving and doing the fantastic job they do.

That is my comment. Thank you very much.

COLONEL ALLRED: Thank you, sir.

I want to make sure everyone has an opportunity to provide comments or questions. Is there any other question or comment from anyone this evening?

(No response.)

COLONEL ALLRED: Apparently not.

I would like to give the National Guard Bureau an opportunity to address any questions that might have come up at all. I think I have in front of us all of the questions that have been raised.

Any other questions that have been fielded? I want to make sure I am not missing anything.

If you still should have any questions that arise after we have closed the proceeding, please feel free to visit these information

National Court Reporters, Inc.
888.800.9656
we brought the community together with Senator Rob Portman. We spent a full day here and learned, I think, A through Z of what goes on here at Rickenbacker.

This community and this group is committed, regarding this mission, to help drive down the cost of this facility. Also, we know of no environmental obstacles that would prevent locating the KC-46A here at Rickenbacker. We fully believe that Rickenbacker can serve this mission well. We are committed if the mission does come here, as a community, to help connect any active duty to housing and other quality of life accommodations and services.

I will say one final thing and remind everyone here of the historical tradition of the Rickenbacker Air Force Base. As you walk in you see the historical markers. I believe many folks believe that Eddie Rickenbacker would be very pleased and feel it was appropriate for the KC-4A's mission to be here.

With that I appreciate very much and thank you very much for the time.

COLONEL MARK ALLRED: Thank you, sir.

Again, we want to ensure that everyone has ample
-----Original Message-----
From: jeromy_applegate@fws.gov [mailto:jeromy_applegate@fws.gov] On Behalf Of Ohio, FW3
Sent: Monday, April 07, 2014 1:39 PM
To: Rowe, Anne M CTR USAF ANG NGB/A7AM
Subject: Second Main Operation Base KC-46A Beddown

Kevin and Anne,

Relative to the subject project, you have made a determination that the project will have no effect on the federally endangered Indiana bat. Because you have made a “no effect” determination, consultation (and FWS concurrence) under section 7(a)(2) of the Endangered Species Act is not required.

Please contact me with any questions.

Jeromy Applegate
614-416-8993
United States Department of the Interior

FISH AND WILDLIFE SERVICE
Pennsylvania Field Office
315 South Allen Street, Suite 322
State College, Pennsylvania 16801-4850

April 2, 2014

KC-46A EIS Project Manager
NGB/A7AM
Shepperd Hall
3501 Fetchet Avenue
Joint Base Andrews, MD 20762-5157

RE: USFWS Project #2013-1228

Dear Project Manager:

This responds to your letter of February 1, 2014, regarding the Draft Environmental Impact Statement (EIS) for the Second Main Operating Base KC-46A Beddown at Alternative Air National Guard Installations located in several states, including Pittsburgh, Pennsylvania, at the Pittsburgh Air National Guard Station. The following comments are provided pursuant to the Endangered Species Act of 1973 (87 Stat. 884, as amended; 16 U.S.C. 1531 et seq.) to ensure the protection of endangered and threatened species and the Migratory Bird Treaty Act (MBTA, 16 U.S.C. 703-712; Ch. 128; July 13, 1918; 40 Stat. 755, as amended) to ensure the protection of migratory bird species.

Except for occasional transient species, no federally listed threatened or endangered species under our jurisdiction are known to occur within the project impact area.

However, the Pittsburgh Air National Guard Station is within the range of the northern long-eared bat (Myotis septentrionalis), a species that was proposed for listing as an endangered species on October 2, 2013. No critical habitat has been proposed at this time. Species proposed for listing are not afforded protection under the ESA; however, as soon as a listing becomes effective, the prohibition against jeopardizing its continued existence and “take” applies regardless of an action’s stage of completion. Therefore, to avoid project delays we

1 As defined in the Act, take means “...to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or attempt to engage in any such conduct.” “Harm” in the definition of take means an act which kills or injures wildlife. Such act may include significant habitat modification or degradation that results in death or injury to listed species by significantly impairing essential behavioral patterns, including breeding, feeding or sheltering (50 CFR part 17.3). “Harass” means intentional or negligent act or omission which creates the likelihood of injury to wildlife by annoying it to such an extent as to disrupt normal behavioral patterns which include, but are not limited to, breeding, feeding, or sheltering.
recommend that the effect of the project on northern long-eared bats, and their habitat, be considered during the project planning and design. Additional information about northern long-eared bats, including ecology, habitat descriptions, listing status updates, and possible conservation measures may be found at www.fws.gov/midwest/endangered/mammals/nlba/index.html (click on Northern Long-eared Bat Interim Conference and Planning Guidance). We are available to discuss potential conservation measures specific to your project design.

Assessment of Risks to Migratory Birds

The Service is the principal Federal agency charged with protecting and enhancing populations and habitat of migratory bird species. The Migratory Bird Treaty Act (MBTA) prohibits the taking, killing, possession, transportation, and importation of migratory birds, their eggs, parts, and nests, except when specifically authorized by the Department of the Interior. While the MBTA has no provision for authorizing incidental take, the Service recognizes that some birds may be killed even if all reasonable measures to avoid take are implemented.

The potential exists for avian mortality from habitat destruction and alteration within the project boundaries. Site-specific factors that should be considered in project siting to avoid and minimize the risk to birds include avian abundance; the quality, quantity and type of habitat; geographic location; type and extent of bird use (e.g. breeding, foraging, migrating, etc.); and landscape features. Please review the enclosed information for general recommendations for avoiding and minimizing impacts to migratory birds within and around the project area. Please be aware that since these are general guidelines, some of them may not be applicable to the current project design or they may have already been included in the project design.

To avoid potential delays in reviewing your project, please use the above-referenced USFWS project tracking number in any future correspondence regarding this project.

If you have any questions regarding this matter, please contact Pamela Shellenberger of my staff at 814-234-4090.

Sincerely,

Lora L. Zimmerman
Field Office Supervisor
Adaptive Management Practices for Conserving Migratory Birds

The Fish and Wildlife Service is the principal Federal agency charged with protecting and enhancing populations and habitat of migratory bird species. The Migratory Bird Treaty Act (MBTA, 16 U.S.C. 703-712; Ch. 128; July 13, 1918; 40 Stat. 755, as amended) prohibits the taking, killing, possession, transportation, and importation of migratory birds, their eggs, parts, and nests, except when specifically authorized by the Department of the Interior. While the MBTA has no provision for authorizing incidental take, the Service recognizes that some birds may be killed even if all reasonable measures to avoid take are implemented. Unless the take is authorized, it is not possible to absolve individuals, companies or agencies from liability (even if they implement avian mortality avoidance or similar conservation measures). However, the Office of Law Enforcement focuses on those individuals, companies, or agencies that take migratory birds with disregard for their actions and the law.

The potential exists for avian mortality from habitat destruction and alteration within the project boundaries. Site-specific factors that should be considered in project siting to avoid and minimize the risk to birds include avian abundance; the quality, quantity and type of habitat; geographic location; type and extent of bird use (e.g. breeding, foraging, migrating, etc.); and landscape features.

We offer the following recommendations to avoid and minimize impacts to migratory birds within and around the project area:

1. Where disturbance is necessary, clear natural or semi-natural habitats (e.g., forests, woodlots, reverting fields, shrubby areas) and perform maintenance activities (e.g., mowing) between September 1 and March 31, which is outside the nesting season for most native bird species. Without undertaking specific analysis of breeding species and their respective nesting seasons on the project site, implementation of this seasonal restriction will avoid take of most breeding birds, their nests, and their young (i.e., eggs, hatchlings, fledglings).

2. Minimize land and vegetation disturbance during project design and construction. To reduce habitat fragmentation, co-locate roads, fences, lay down areas, staging areas, and other infrastructure in or immediately adjacent to already-disturbed areas (e.g., existing roads, pipelines, agricultural fields) and cluster development features (e.g., buildings, roads) as opposed to distributing them throughout land parcels. Where this is not possible, minimize roads, fences, and other infrastructure.

3. Avoid permanent habitat alterations in areas where birds are highly concentrated. Examples of high concentration areas for birds are wetlands, State or Federal refuges, Audubon Important Bird Areas, private duck clubs, staging areas, rookeries, leks, roosts, and riparian areas. Avoid establishing sizable structures along known bird migration pathways or known daily movement flyways (e.g., between roosting and feeding areas).

4. To conserve area-sensitive species, avoid fragmenting large, contiguous tracts of wildlife habitat, especially if habitat cannot be fully restored after construction. Maintain
contiguous habitat corridors to facilitate wildlife dispersal. Where practicable, concentrate construction activities, infrastructure, and man-made structures (e.g., buildings, cell towers, roads, parking lots) on lands already altered or cultivated, and away from areas of intact and healthy native habitats. If not feasible, select fragmented or degraded habitats over relatively intact areas.

5. Develop a habitat restoration plan for the proposed site that avoids or minimizes negative impacts to birds, and that creates functional habitat for a variety of bird species. Use only plant species that are native to the local area for revegetation of the project area.

If you have any questions regarding these measures, please contact Jennifer Siani of the Pennsylvania Field Office located in State College, PA at 814-234-4090 ext 225 or Jennifer_Siani@fws.gov
April 14, 2014

U.S. Department of Defense
National Guard Bureau
3501 Fetchet Avenue
Joint Base Andrews, MD 20762-5157

Dear Mr. William Albro,

The Tuscarora Nation is in receipt of the United States Air Force, 171st Air Refueling Wing, division of the National Guard Bureau (NGB) letter dated September 24, 2013 regarding the proposed five (5) alternative location of the beddown of the KC-46A at the second main operating base (MOB 2), which includes Pittsburg ANGS, PA.

After review of the proposed project and the list of construction activities within the area of potential effect (APE) as cited in the 9/24/13 letter, the Tuscarora Nation concurs with the NGB and 171ARW determination that the proposed project will have no effect on predetermined archeological sites within the APE.

In the future of the above proposed project, during any phase of ground disturbances within the APE and its vicinity, please notify the Tuscarora Nation if traditional, cultural, burial and/or human remains are discovered. We ask that construction and all ground disturbance practices cease activity until further appropriate action can be taken and all interested parties can participate in the resolution and mitigation of adverse effects.

In no way does this response affect the sovereignty of the Tuscarora Nation. If you have any specific questions, do not hesitate to call, email or contact me at 5226 Walmore Road, Lewiston, NY 14092; bprintup@hetf.org; or #716.264.6011, x103.

Oneh.

Bryan Printup
---Original Message-----
From: Kinney, Jonathan [mailto:Jonathan.Kinney@dep.state.nj.us]
Sent: Monday, May 12, 2014 11:17 AM
To: Rowe, Anne M CTR USAF ANG NGB/A7AM
Subject: RE: MOB 2 KC-46A Beddown Draft EIS (UNCLASSIFIED)

Ms. Rowe,
Thank you for the summary. Yes, I can confirm our finding of No Historic Properties Affected for the proposed undertaking at Joint Base - McGuire Dix Lakehurst. For the purposes of review pursuant to Section 106 of the National Historic Preservation Act, no additional consultation is required.

Please submit a hard copy of the building evaluation with a cover letter to our office requesting a formal concurrence with the "not eligible" determination. We will respond upon receipt of that documentation. Please let me know if you have any questions.

Jonathan Kinney
Senior Historic Preservation Specialist

New Jersey Historic Preservation Office
Phone (609) 984-0141 Fax (609) 984-0578
Email: Jonathan.Kinney@dep.state.nj.us
Website: http://www.nj.gov/dep/hpo
Mailing Address:
Mail Code 501-04B
Department of Environmental Protection
Historic Preservation Office
P.O. Box 420
Trenton, NJ 08625-0420

---Original Message-----
From: Rowe, Anne M CTR USAF ANG NGB/A7AM [mailto:Anne.Rowe ctr@ang.af.mil]
Sent: Tuesday, May 06, 2014 1:35 PM
To: Kinney, Jonathan
Subject: MOB 2 KC-46A Beddown Draft EIS (UNCLASSIFIED)

Dear Mr. Kinney,
Following is a summary of our teleconference this morning with myself and Cardno TEC staff (Teresa Rudolph, Kate Bartz, Amanda Kreider).

There was 1995 survey of McGuire AFB, which included an inventory and NRHP evaluation of all buildings and structures constructed before 1947. Although several were considered eligible, none are located within the APE. In addition, there was a follow-up survey in 1996 that included all Cold War era buildings that were less than 50 years old at the time (including Hangar 3322). No buildings were recommended as eligible to the NRHP under criteria for exceptional significance (Criterion Consideration G). In 2013, another survey was completed for Pre-1967 resources that have since become 50 years old. One such building (Building 3322 - built in 1957) was evaluated for NRHP eligibility during this survey. The results of the inventory indicated that Building 3322 is not eligible.

Although JB MDL has not yet forwarded this 2013 report to your office, it is our understanding that your office has already indicated in your response of 10/3/13 that based on your assessment of Building 3322 and the proposed internal modifications to this building, no historic properties would be affected by implementation of Alternative #2 for the KC-46A MOB2 Beddown and that Section 106 consultation was complete. Further, you indicated that despite the typographical error in the letter sent to your office dated 12 September 2013 that indicated a reference to building 3332, you did understand that to reference Building 3322.

We are enclosing a copy of the inventory and evaluation form for Building 3322 from the 2013 report. We would appreciate your formal concurrence with the determination of "not eligible" for Building 3322 and confirmation on your original assessment of "no historic properties affected".

We appreciate your time very much.

Anne M. Rowe
Booz Allen Hamilton
National Guard Bureau (NGB/A7AM)
Asset Management Division
Plans and Requirements Branch
COMM: 240-612-8636, DSN: 612-8636
E-mail: anne.rowe.ctr@ang.af.mil
Appendix C

Background Information for the Noise Analysis
APPENDIX C BACKGROUND INFORMATION FOR THE
NOISE ANALYSIS

1. Basics of Sound

Noise is unwanted sound. Sound is all around us; sound becomes noise when it interferes with normal activities, such as sleep or conversation.

Sound is a physical phenomenon consisting of minute vibrations that travel through a medium, such as air, and are sensed by the human ear. Whether that sound is interpreted as pleasant (e.g., music) or unpleasant (e.g., jackhammers) depends largely on the listener’s current activity, past experience, and attitude toward the source of that sound.

The measurement and human perception of sound involves three basic physical characteristics: intensity, frequency, and duration. First, intensity is a measure of the acoustic energy of the sound vibrations and is expressed in terms of sound pressure. The greater the sound pressure, the more energy carried by the sound and the louder the perception of that sound. The second important physical characteristic of sound is frequency, which is the number of times per second the air vibrates or oscillates. Low-frequency sounds are characterized as rumbles or roars, while high-frequency sounds are typified by sirens or screeches. The third important characteristic of sound is duration or the length of time the sound can be detected.

The loudest sounds that can be detected comfortably by the human ear have intensities that are a trillion times higher than those of sounds that can barely be detected. Because of this vast range, using a linear scale to represent the intensity of sound becomes very unwieldy. As a result, a logarithmic unit known as the decibel (abbreviated dB) is used to represent the intensity of a sound. Such a representation is called a sound level. A sound level of 0 dB is approximately the threshold of human hearing and is barely audible under extremely quiet listening conditions. Normal speech has a sound level of approximately 60 dB; sound levels above 120 dB begin to be felt inside the human ear as discomfort. Sound levels between 130 to 140 dB are felt as pain (Berglund and Lindvall 1995).

Because of the logarithmic nature of the decibel unit, sound levels cannot be arithmetically added or subtracted and are somewhat cumbersome to handle mathematically. However, some simple rules are useful in dealing with sound levels. First, if a sound’s intensity is doubled, the sound level increases by 3 dB, regardless of the initial sound level. For example:

\[
60 \text{ dB} + 60 \text{ dB} = 63 \text{ dB}, \text{ and}
\]
80 dB + 80 dB = 83 dB.

Second, the total sound level produced by two sounds of different levels is usually only slightly more than the higher of the two. For example:

60.0 dB + 70.0 dB = 70.4 dB.

Because the addition of sound levels is different than that of ordinary numbers, such addition is often referred to as “decibel addition” or “energy addition.” The latter term arises from the fact that what we are really doing when we add decibel values is first converting each decibel value to its corresponding acoustic energy, then adding the energies using the normal rules of addition, and finally converting the total energy back to its decibel equivalent.

The minimum change in the sound level of individual events that an average human ear can detect is about 3 dB. On average, a person perceives a change in sound level of about 10 dB as a doubling (or halving) of the sound’s loudness, and this relation holds true for loud and quiet sounds. A decrease in sound level of 10 dB actually represents a 90 percent decrease in sound intensity but only a 50 percent decrease in perceived loudness because of the nonlinear response of the human ear (similar to most human senses).

Sound frequency is measured in terms of cycles per second (cps), or hertz (Hz), which is the standard unit for cps. The normal human ear can detect sounds that range in frequency from about 20 Hz to about 15,000 Hz. All sounds in this wide range of frequencies, however, are not heard equally by the human ear, which is most sensitive to frequencies in the 1,000 to 4,000 Hz range. Weighting curves have been developed to correspond to the sensitivity and perception of different types of sound. A-weighting and C-weighting are the two most common weightings. A-weighting accounts for frequency dependence by adjusting the very high and very low frequencies (below approximately 500 Hz and above approximately 10,000 Hz) to approximate the human ear’s lower sensitivities to those frequencies. C-weighting is nearly flat throughout the range of audible frequencies, hardly de-emphasizing the low frequency sound while approximating the human ear’s sensitivity to higher intensity sounds. The two curves shown in Figure C-1 are also the most adequate to quantify environmental noises.
Figure C-1. Frequency Response Characteristics of A- and C-Weighting Networks

A-weighted Sound Level

Sound levels that are measured using A-weighting, called A-weighted sound levels, are often denoted by the unit dBA or dB(A) rather than dB. When the use of A-weighting is understood, the adjective “A-weighted” is often omitted and the measurements are expressed as dB. In this report (as in most environmental impact documents), dB units refer to A-weighted sound levels.

Noise potentially becomes an issue when its intensity exceeds the ambient or background sound pressures. Ambient background noise in metropolitan, urbanized areas typically varies from 60 to 70 dB and can be as high as 80 dB or greater; quiet suburban neighborhoods experience ambient noise levels of approximately 45-50 dB (U.S. Environmental Protection Agency [USEPA] 1978).
Figure C-2 is a chart of A-weighted sound levels from typical sounds. Some noise sources (air conditioner, vacuum cleaner) are continuous sounds which levels are constant for some time. Some (automobile, heavy truck) are the maximum sound during a vehicle pass-by. Some (urban daytime, urban nighttime) are averages over extended periods. A variety of noise metrics have been developed to describe noise over different time periods, as discussed below.

Aircraft noise consists of two major types of sound events: aircraft takeoffs and landings, and engine maintenance operations. The former can be described as intermittent sounds and the latter as continuous. Noise levels from flight operations exceeding background noise typically occur beneath main approach and departure corridors, in local air traffic patterns around the airfield, and in areas immediately adjacent to parking ramps and aircraft staging areas. As aircraft in flight gain altitude, their noise contribution drops to lower levels, often becoming indistinguishable from the background.

1.1 Noise Metrics

In general, a metric is a statistic for measuring or quantifying. A noise metric quantifies the noise environment. There are three families of noise metrics described herein – one for single noise events such as an aircraft flyby, one for cumulative noise events such as a day’s worth of aircraft activity, and one which quantifies the events or time relative to single noise events.

Within the single noise event family, metrics described below include Peak Sound Pressure Level (L_{pk}), Maximum Sound Level (L_{max}) and Sound Exposure Level (SEL). Within the cumulative noise events family, metrics described below include Equivalent Sound Level (L_{eq}), Day-Night Average Sound Level (DNL or L_{dn}), and several others. Within the events/time family, metrics described below include Number of Events Above a Threshold Level and Time Above a Specified Level.

Maximum Sound Level (L_{max})

The highest A-weighted integrated sound level measured during a single event in which the sound level changes value with time (e.g., an aircraft overflight) is called the maximum A-weighted sound level or L_{max}.
<table>
<thead>
<tr>
<th>INDOORS</th>
<th>A-weighted Decibels</th>
<th>OUTDOORS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Threshold of Pain</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>140</td>
<td>Military Jet Takeoff with Afterburner (at 50 Feet)</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>Deafening</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>Uncomfortably Loud</td>
</tr>
<tr>
<td>Rock Band</td>
<td>110</td>
<td>Concord Landing (3,300 Feet From Rwy End)</td>
</tr>
<tr>
<td>Inside Subway Train, New York</td>
<td>100</td>
<td>747-100 Takeoff (4 Miles From Start of Roll)</td>
</tr>
<tr>
<td>Noisy Cocktail Bar</td>
<td>90</td>
<td>Power Lawnmower (at 50 Feet)</td>
</tr>
<tr>
<td>Noisy Restaurant</td>
<td>80</td>
<td>Ambulance Siren (at 100 Feet)</td>
</tr>
<tr>
<td>Jet Aircraft Cabin, at Cruise</td>
<td>70</td>
<td>Diesel Truck, 40 mph (at 50 Feet)</td>
</tr>
<tr>
<td>Skouting (at 3 Fee:)</td>
<td></td>
<td>Automobile, 65 mph (at 50 Feet)</td>
</tr>
<tr>
<td>Noisy Restaurant</td>
<td></td>
<td>Busy Street (at 50 Feet)</td>
</tr>
<tr>
<td>Large Business Office</td>
<td>70</td>
<td>757-200 Takeoff (4 Miles From Start of Roll)</td>
</tr>
<tr>
<td>Normal Conversation (at 3 Fee:)</td>
<td>60</td>
<td>Automobile, 30 mph (at 50 Feet)</td>
</tr>
<tr>
<td>Quiet Office</td>
<td></td>
<td>Cessna 172 Landing (3,300 Feet From Rwy End)</td>
</tr>
<tr>
<td>Dishwasher, Next Room</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Quiet Library</td>
<td>40</td>
<td>Quiet Urban Area, Nighttime</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quiet Suburban Area, Nighttime</td>
</tr>
<tr>
<td>Concert Hall, Background</td>
<td>30</td>
<td>Quiet Rural Area, Nighttime</td>
</tr>
<tr>
<td>Recording Studio</td>
<td>20</td>
<td>Leaves rustling</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Barely Audible</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Threshold of Hearing</td>
</tr>
</tbody>
</table>

Perceptibility of Charges in Loudness

- +1 dB Unnoticeable
- +3 dB Barely Noticeable
- +5 dB Quite Apparent
- +10 dB 2:1 Apparent Different

Source: State of California Department of Transportation 2002.

Figure C-2. Typical Decibel Level of Common Sounds
During an aircraft overflight, the noise level starts at the ambient or background noise level, rises to the maximum level as the aircraft flies closest to the observer, and returns to the background level as the aircraft recedes into the distance. The \(L_{\text{max}} \) indicates the maximum sound level occurring for a fraction of a second. For aircraft noise, the “fraction of a second” over which the maximum level is defined is generally one-eighth of a second, and is denoted as “fast” response (ANSI 1988). Slowly varying or steady sounds are generally measured over a period of one second, denoted “slow” response. The \(L_{\text{max}} \) is important in judging the interference caused by a noise event with conversation, TV or radio listening, sleep, or other common activities. Although it provides some measure of the intrusiveness of the event, it does not completely describe the total event, because it does not include the period of time that the sound is heard.

Sound Exposure Level (SEL)

SEL is a composite metric that represents both the intensity of a sound and its duration. Individual time-varying noise events (e.g., aircraft overflights) have two main characteristics: a sound level that changes throughout the event and a period of time during which the event is heard. SEL provides a measure of the net impact of the entire acoustic event, but it does not directly represent the sound level heard at any given time. During an aircraft flyover, SEL would include both the \(L_{\text{max}} \) and the lower noise levels produced during onset and recess periods of the overflight.

SEL is a logarithmic measure of the total acoustic energy transmitted to the listener during the event. Mathematically, it represents the sound level of a constant sound that would, in one second, generate the same acoustic energy as the actual time-varying noise event. For sound from aircraft overflights, which typically lasts more than one second, the SEL is usually greater than the \(L_{\text{max}} \) because an individual overflight takes seconds and the \(L_{\text{max}} \) occurs instantaneously. SEL represents the best metric to compare noise levels from overflights.

Equivalent Sound Level (\(L_{\text{eq}} \))

A cumulative noise metric useful in describing noise is the \(L_{\text{eq}} \). \(L_{\text{eq}} \) is the continuous sound level that would be present if all of the variations in sound level occurring over a specified time period were smoothed out as to contain the same total sound energy.

Just as SEL has proven to be a good measure of the noise impact of a single event, \(L_{\text{eq}} \) has been established to be a good measure of the impact of a series of events during a given time period. Also, while \(L_{\text{eq}} \) is defined as an average, it is effectively a sum over that time period and is, thus, a measure of the cumulative impact of noise. For example, the sum of all noise-generating events during the period of 7 a.m. to 4 p.m. could provide the relative impact of noise generating events for a school day.
2. Noise Effects

This noise effects section includes discussions of annoyance, speech interference and sleep disturbance, and the effects of noise on hearing, health, performance, learning, animals, property values, terrain and archaeological sites.

2.1 Annoyance

The primary effect of aircraft noise on exposed communities is one of long-term annoyance, defined by the USEPA as any negative subjective reaction on the part of an individual or group. The scientific community has adopted the use of long-term annoyance as a primary indicator of community response because it attempts to account for all negative aspects of effects from noise, e.g., increased annoyance due to being awakened the previous night by aircraft and interference with everyday conversation.

Numerous laboratory studies and field surveys have been conducted to measure annoyance and to account for a number of variables, many of which are dependent on a person’s individual circumstances and preferences. Laboratory studies of individual response to noise have helped isolate a number of the factors contributing to annoyance, such as the intensity level and spectral characteristics of the noise, duration, the presence of impulses, pitch, information content, and the degree of interference with activity. Social surveys of community response to noise have allowed the development of general dose-response relationships that can be used to estimate the proportion of people who will be highly annoyed by a given noise level. The results of these studies have formed the basis for criteria established to define areas of compatible land use.

A wide variety of responses have been used to determine intrusiveness of noise and disturbances of speech, sleep, audio/video entertainment, and outdoor living; but the most useful metric for assessing peoples’ responses to noise is the percentage of the population expected to be “highly annoyed.” The concept of “percent highly annoyed” has provided the most consistent response of a community to a particular noise environment. In his synthesis of several different social surveys that employed different response scales, Schultz (1978) defined “highly annoyed” respondents as those respondents whose self-described annoyance fell within the upper 28 percent of the response scale where the scale was numerical or un-named. For surveys where the response scale was named, Schultz counted those who claimed to be highly annoyed, combining the responses of “very annoyed” and “extremely annoyed.” Schultz’s definition of “percent highly annoyed” (%HA) became the basis for the federal policy on environmental noise. Daily average sound levels are typically used for the evaluation of community noise effects, such as long-term annoyance.
In general, scientific studies and social surveys have found a correlation between the percentages of groups of people highly annoyed and the level of average noise exposure. Thus, the results are expressed as the average %HA at various exposure levels measured in DNL. The classic analysis is Schultz’s original 1978 study, whose results are shown in Figure C-3. This figure is commonly referred to as the Schultz curve. It represents the synthesis of a large number of social surveys (161 data points in all), that relates the long-term community response to various types of noise sources, measured using the DNL metric.

![Figure C-3. Community Surveys of Noise Annoyance](image)

An updated study of the original Schultz data based on the analysis of 400 data points collected through 1989 essentially reaffirmed this relationship. Figure C-4 shows an updated form of the curve fit in comparison with the original Schultz curve (Finegold et al. 1994). The updated fit, which does not differ substantially from the original, is the preferred form in the U.S. The relationship between %HA and DNL is:

\[
%HA = 100/[1 + \exp(11.13 - 0.141L_{eq})]
\]
In general, correlation coefficients of 0.85 to 0.95 are found between the percentages of groups of people highly annoyed and the level of average noise exposure. However, the correlation coefficients for the annoyance of individuals are relatively low, on the order of 0.5 or less. This is not surprising, considering the varying personal factors that influence the manner in which individuals react to noise.

A number of non-acoustic factors have been identified that may influence the annoyance response of an individual. Newman and Beattie (1985) divided these factors into emotional and physical variables.

Emotional Variables:

- Feelings about the necessity or preventability of the noise;
- Judgment of the importance and value of the activity that is producing the noise;
- Activity at the time an individual hears the noise;
- Attitude about the environment;
- General sensitivity to noise;
- Belief about the effect of noise on health; and
- Feeling of fear associated with the noise.

Physical Variables:
- Type of neighborhood;
- Time of day;
- Season;
- Predictability of noise;
- Control over the noise source; and
- Length of time an individual is exposed to a noise.

The low correlation coefficients for individuals’ reactions reflect the large amount of scatter among the data drawn from the various surveys and point to the substantial uncertainty associated with the equation representing the relationship between %HA and DNL. Based on the results of surveys it has been observed that noise exposure can explain less than 50 percent of the observed variance in annoyance, indicating that non-acoustical factors play a major role. As a result, it is not possible to accurately predict individual annoyance in any specific community based on the aircraft noise exposure. Nevertheless, changes in %HA can be useful in giving the decision maker more information about the relative effects that different alternatives may have on the community.

The original Schultz curve and the subsequent updates do not separate out the annoyance from aircraft noise and other transportation noise sources. This was an important element, in that it allowed Schultz to obtain some consensus among the various social surveys from the 1960s and 1970s that were synthesized in the analysis. In essence, the Schultz curve assumes that the effects of long-term annoyance on the general population are the same, regardless of whether the noise source is road, rail, or aircraft. In the years after the classical Schultz analysis, additional social surveys have been conducted to better understand the annoyance effects of various transportation sources.

Miedema and Vos (1998) present synthesis curves for the relationship between DNL and percentage “Annoyed” and percentage “Highly Annoyed” for three transportation noise sources. Separate, non-identical curves were found for aircraft, road traffic, and railway noise. Table C-1 illustrates that, for a DNL of 65 dB, the percent of the people forecasted to be Highly Annoyed is
28 percent for air traffic, 18 percent for road traffic, and 11 percent for railroad traffic. For an outdoor DNL of 55 dB, the percent highly annoyed would be close to 12 percent if the noise is generated by aircraft operations, but only 7 percent and 4 percent, respectively, if the noise is generated by road or rail traffic. Comparing the levels on the Miedema and Vos curve to those on the updated Schultz curve indicates that the percentage of people highly annoyed by aircraft noise may be higher than previously thought when the noise is solely generated by aircraft activity.

Table C-1. Percent Highly Annoyed for Different Transportation Noise Sources

<table>
<thead>
<tr>
<th>DNL (dB)</th>
<th>Miedema and Vos</th>
<th>Schultz</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Air</td>
<td>Road</td>
<td>Rail</td>
</tr>
<tr>
<td>55</td>
<td>12</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>60</td>
<td>19</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>65</td>
<td>28</td>
<td>18</td>
<td>11</td>
</tr>
<tr>
<td>70</td>
<td>37</td>
<td>29</td>
<td>16</td>
</tr>
<tr>
<td>75</td>
<td>48</td>
<td>40</td>
<td>22</td>
</tr>
</tbody>
</table>

As noted by the World Health Organization (WHO), even though aircraft noise seems to produce a stronger annoyance response than road traffic, caution should be exercised when interpreting synthesized data from different studies (WHO 2000). The WHO noted that five major parameters should be randomly distributed for the analyses to be valid: personal, demographic, and lifestyle factors, as well as the duration of noise exposure and the population experience with noise.

The Federal Interagency Committee on Noise (FICON) found that the updated Schultz curve remains the best available source of empirical dosage effect information to predict community response to transportation noise without any segregation by transportation source (FICON 1992); a position held by the FICAN in 1997 (FICAN 1997). However, FICON also recommended further research to investigate the differences in perceptions of aircraft noise, ground transportation noise (highways and railroads), and general background noise.

2.2 Speech Interference

Speech interference associated with aircraft noise is a primary cause of annoyance for communities. The disruption of routine activities such as radio or television listening, telephone use, or family conversation gives rise to frustration and irritation. The quality of speech communication is particularly important in classrooms and offices. In industrial settings it can cause fatigue and vocal strain in those who attempt to communicate over the noise.
The disruption of speech in the classroom is a primary concern, due to the potential for adverse effects on children’s learning ability. There are two aspects to speech comprehension:

1. *Word Intelligibility* - the percent of words transmitted and received. This might be important for students in the lower grades who are learning the English language, and particularly for students who have English as a Second Language.

2. *Sentence Intelligibility* – the percent of sentences transmitted and understood. This might be important for high-school students and adults who are familiar with the language, and who do not necessarily have to understand each word in order to understand sentences.

For teachers to be clearly understood by their students, it is important that regular voice communication is clear and uninterrupted. Not only does the background sound level have to be low enough for the teacher to be clearly heard, but intermittent outdoor noise events also need to be minimized. It is therefore important to evaluate the steady background level, the level of voice communication, and the single-event level due to aircraft overflights that might interfere with speech.

Several research studies have been conducted and guideline documents been developed resulting in a fairly consistent set of noise level criteria for speech interference. This section provides an overview of the results of these studies.

U.S. Federal Criteria for Interior Noise

In 1974, the USEPA identified a goal of an indoor 24-hour average sound level $L_{eq(24)}$ of 45 dB to minimize speech interference based on the intelligibility of sentences in the presence of a steady background noise (USEPA 1974). Intelligibility pertains to the percentage of speech units correctly understood out of those transmitted, and specifies the type of speech material used, i.e., sentences or words. The curve displayed in Figure C-5 shows the effect of steady indoor background sound levels on sentence intelligibility. For an average adult with normal hearing and fluency in the language, steady background sound levels indoors of less than 45 dB L_{eq} are expected to allow 100 percent intelligibility of sentences.
The curve shows 99 percent sentence intelligibility for background levels at a L_{eq} of 54 dB, and less than 10 percent intelligibility for background levels above a L_{eq} of 73 dB. Note that the curve is especially sensitive to changes in sound level between 65 dB and 75 dB - an increase of 1 dB in background sound level from 70 dB to 71 dB results in a 14 percent decrease in sentence intelligibility, whereas a 1 dB increase in background sound level from 60 dB to 61 dB results in less than 1 percent decrease in sentence intelligibility.

Summary

As the previous section demonstrates, research indicates that it is not only important to consider the continuous background levels using time-averaged metrics, but also the intermittent events, using single-event metrics such as L_{max}. Table C-2 provides a summary of the noise level criteria recommended in the scientific literature.
Table C-2. Indoor Noise Level Criteria Based on Speech Intelligibility

<table>
<thead>
<tr>
<th>Source</th>
<th>Metric/Level (dB)</th>
<th>Effects and Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAA (1985)</td>
<td>L_{eq}(during school hours) = 45 dB</td>
<td>Federal assistance criteria for school sound insulation; supplemental single-event criteria may be used</td>
</tr>
<tr>
<td>Lind et al. (1998), Sharp and Plotkin (1984), Wesler (1986)</td>
<td>$L_{max} = 50$ dB / SIL 45</td>
<td>Single event level permissible in the classroom</td>
</tr>
<tr>
<td>WHO (2000)</td>
<td>$L_{eq} = 35$ dB $L_{max} = 50$ dB</td>
<td>Assumes average speech level of 50 dB and recommends signal to noise ratio of 15 dB</td>
</tr>
<tr>
<td>ANSI (2002)</td>
<td>$L_{eq} = 40$ dB, Based on Room Volume</td>
<td>Acceptable background level for continuous noise/relaxed criteria for intermittent noise in the classroom</td>
</tr>
<tr>
<td>UKDFES (2003)</td>
<td>$L_{eq}(30\text{min}) = 30-35$ dB $L_{max} = 55$ dB</td>
<td>Minimum acceptable in classroom and most other learning environs</td>
</tr>
</tbody>
</table>

When considering intermittent noise caused by aircraft overflights, a review of the relevant scientific literature and international guidelines indicates that an appropriate criteria is a limit on indoor background noise levels of 35 to 40 dB L_{eq} and a limit on single events of 50 dB L_{max}.

2.3 Sleep Disturbance

The disturbance of sleep is a major concern for communities exposed to nighttime aircraft noise. There have been numerous research studies that have attempted to quantify the complex effects of noise on sleep. This section provides an overview of the major noise-induced sleep disturbance studies that have been conducted, with particular emphasis placed on those studies that have influenced U.S. federal noise policy. The studies have been separated into two groups:

1. Initial studies performed in the 1960s and 1970s, where the research was focused on laboratory sleep observations.

2. Later studies performed in the 1990s up to the present, where the research was focused on field observations, and correlations to laboratory research were sought.

2.3.1 Initial Studies

The relationship between noise levels and sleep disturbance is complex and not fully understood. The disturbance depends not only on the depth of sleep, but also on the previous exposure to aircraft noise, familiarity with the surroundings, the physiological and psychological condition of the recipient, and a host of other situational factors. The most readily measurable effect of noise on sleep is the number of arousals or awakenings, and so the body of scientific literature has focused on predicting the percentage of the population that will be awakened at various noise levels. Fundamentally, regardless of the tools used to measure the degree of sleep disturbance
(awakenings, arousals, etc.), these studies have grouped the data points into bins to predict the percentage of the population likely to be disturbed at various sound level thresholds.

FICON produced a guidance document that provided an overview of the most pertinent sleep disturbance research that had been conducted throughout the 1970s (FICON 1992). Literature reviews and meta-analysis conducted between 1978 and 1989 made use of the existing datasets that indicated the effects of nighttime noise on various sleep-state changes and awakenings (Lukas 1978, Griefahn 1978, Pearsons et al. 1989). FICON noted that various indoor A-weighted sound levels ranging from 25 to 50 dB were observed to be thresholds below which significant sleep effects were not expected. Due to the large variability in the data, FICON did not endorse the reliability of the results.

However, FICON did recommend the use of an interim dose-response curve—awaiting future research—which predicted the percent of the exposed population expected to be awakened as a function of the exposure to single event noise levels expressed in terms of SEL. This curve was based on the research conducted for the U.S. Air Force (USAF) (Finegold et al. 1994). The dataset included most of the research performed up to that point, and predicted that 10 percent of the population would be awakened when exposed to an interior SEL of approximately 58 dB. The data utilized to derive this relationship were primarily the results of controlled laboratory studies.

2.3.2 Recent Sleep Disturbance Research – Field and Laboratory Studies

It was noted in the early sleep disturbance research that the controlled laboratory studies did not account for many factors that are important to sleep behavior, such as habituation to the environment and previous exposure to noise and awakenings from sources other than aircraft noise. In the early 1990s, field studies were conducted to validate the earlier laboratory work. The most significant finding from these studies was that an estimated 80 to 90 percent of sleep disturbances were not related to individual outdoor noise events, but were instead the result of indoor noise sources and other non-noise-related factors. The results showed that there was less of an effect of noise on sleep in real-life conditions than had been previously reported from laboratory studies.

2.3.3 Federal Interagency Committee on Aviation Noise

The interim FICON dose-response curve that was recommended for use in 1992 was based on the most pertinent sleep disturbance research that was conducted through the 1970s, primarily in laboratory settings. After that time, considerable field research was conducted to evaluate the sleep effects in peoples’ normal, home environment. Laboratory sleep studies tend to show higher values of sleep disturbance than field studies because people who sleep in their own
homes are habituated to their environment and, therefore, do not wake up as easily (FICAN 1997).

Based on the new information, FICAN updated its recommended dose-response curve in 1997, depicted as the lower curve in Figure C-6. This figure is based on the results of three field studies (Ollerhead et al. 1992, Fidell et al. 1994, 1995a, and 1995b), along with the datasets from six previous field studies.

The new relationship represents the higher end, or upper envelope, of the latest field data. It should be interpreted as predicting the “maximum percent of the exposed population expected to be behaviorally awakened” or the “maximum percent awakened” for a given residential population. According to this relationship, a maximum of 3 percent of people would be awakened at an indoor SEL of 58 dB, compared to 10 percent using the 1992 curve. An indoor SEL of 58 dB is equivalent to outdoor SEL’s of 73 and 83 dB respectively assuming 15 and 25 dB noise level reduction from outdoor to indoor with windows open and closed, respectively.

![Figure C-6. FICAN’s 1997 Recommended Sleep Disturbance Dose-Response Relationship](image)

The FICAN 1997 curve is represented by the following equation:

\[
\text{Percent Awakenings} = 0.0087 \times [\text{SEL} – 30]^{1.79}
\]

Note the relatively low percentage of awakenings to fairly high noise levels. People think they are awakened by a noise event, but usually the reason for awakening is otherwise. For example, the 1992 United Kingdom Civil Aviation Authority study found the average person was awakened about 18 times per night for reasons other than exposure to an aircraft noise – some of
these awakenings are due to the biological rhythms of sleep and some to other reasons that were not correlated with specific aircraft events.

2.3.4 Number of Events and Awakenings

In recent years, there have been studies and one proposal that attempted to determine the effect of multiple aircraft events on the number of awakenings. The German Aerospace Center (DLR) conducted an extensive study focused on the effects of nighttime aircraft noise on sleep and other related human performance factors (Basner 2004). The DLR study was one of the largest studies to examine the link between aircraft noise and sleep disturbance and involved both laboratory and in-home field research phases. The DLR investigators developed a dose-effect curve that predicts the number of aircraft events at various values of L_{max} expected to produce one additional awakening over the course of a night. The dose-effect curve was based on the relationships found in the field studies.

In July 2008 ANSI and the Acoustical Society of America (ASA) published a method to estimate the percent of the exposed population that might be awakened by multiple aircraft noise events based on statistical assumptions about the probability of awakening (or not awakening) (ANSI 2008). This method relies on probability theory rather than direct field research/experimental data to account for multiple events.

Figure C-7 depicts the awakenings data that form the basis and equations of ANSI S12.9-2008. The curve labeled ‘Eq. (B1)’ is the relationship between noise and awakening endorsed by FICAN in 1997. The ANSI recommended curve labeled ‘Eq. (1)’ quantifies the probability of awakening for a population of sleepers who are exposed to an outdoor noise event as a function of the associated indoor SEL in the bedroom. This curve was derived from studies of behavioral awakenings associated with noise events in “steady state” situations where the population has been exposed to the noise long enough to be habituated. The data points in Figure B-7 come from these studies. Unlike the FICAN curve, the ANSI 2008 curve represents the average of the field research data points.
2.4 Noise-Induced Hearing Impairment

This section provides a brief overview of hearing loss caused by noise exposure. The goal is to provide a sense of perspective as to how aircraft noise (as experienced on the ground) compares to other activities that are often linked with hearing loss.

2.4.1 Hearing Threshold Shifts

Hearing loss is generally interpreted as a decrease in the ear’s sensitivity or acuity to perceive sound; i.e., a shift in the hearing threshold to a higher level. This change can either be a Temporary Threshold Shift (TTS), or a Permanent Threshold Shift (PTS) (Berger et al. 1995).

TTS can result from exposure to loud noise over a given amount of time, yet the hearing loss is not necessarily permanent. An example of TTS might be a person attending a loud music concert. After the concert is over, the person may experience a threshold shift that may last several hours, depending upon the level and duration of exposure. While experiencing TTS, the person becomes less sensitive to low-level sounds, particularly at certain frequencies in the

Figure C-7. Plot of Sleep Awakening Data versus Indoor SEL

In December 2008, FICAN recommended the use of this new estimation procedure for future analyses of behavioral awakenings from aircraft noise. In that statement, FICAN also recognized that additional sleep disturbance research is underway by various research organizations, and results of that work may result in additional changes to FICAN’s position. Until that time, FICAN recommends the use of ANSI S12.9-2008.
speech range (typically near 4,000 Hz). Normal hearing ability eventually returns, as long as the person has enough time to recover within a relatively quiet environment.

PTS usually results from repeated exposure to high noise levels, where the ears are not given adequate time to recover from the strain and fatigue of exposure. A common example of PTS is the result of working in a loud environment such as a factory. It is important to note that a temporary shift (TTS) can eventually become permanent (PTS) over time with continuous exposure to high noise levels. Thus, even if the ear is given time to recover from TTS, repeated occurrence of TTS may eventually lead to permanent hearing loss. The point at which a TTS results in a PTS is difficult to identify and varies with a person’s sensitivity.

2.4.2 Criteria for Permanent Hearing Loss

Considerable data on hearing loss have been collected and analyzed by the scientific/medical community. It has been well established that continuous exposure to high noise levels will damage human hearing (USEPA 1978). The Occupational Safety and Health Administration (OSHA) regulation of 1971 standardizes the limits on workplace noise exposure for protection from hearing loss as an average level of 90 dB over an 8-hour work period or 85 dB over a 16-hour period (the average level is based on a 5 dB decrease per doubling of exposure time) (U.S. Department of Labor 1971). Even the most protective criterion (no measurable hearing loss for the most sensitive portion of the population at the ear’s most sensitive frequency, 4,000 Hz, after a 40-year exposure) is an average sound level of 70 dB over a 24-hour period.

The USEPA established 75 dB for an 8-hour exposure and 70 dB for a 24-hour exposure as the average noise level standard requisite to protect 96 percent of the population from greater than a 5 dB PTS (USEPA 1978). The National Academy of Sciences Committee on Hearing, Bioacoustics, and Biomechanics (CHABA) identified 75 dB as the minimum level at which hearing loss may occur (CHABA 1977). Finally, the WHO has concluded that environmental and leisure-time noise below an $L_{eq(24)}$ value of 70 dB “will not cause hearing loss in the large majority of the population, even after a lifetime of exposure” (WHO 2000).

2.4.3 Hearing Loss and Aircraft Noise

The 1982 USEPA Guidelines report specifically addresses the criteria and procedures for assessing the noise-induced hearing loss in terms of the Noise-Induced Permanent Threshold Shift (NIPTS), a quantity that defines the permanent change in hearing level, or threshold, caused by exposure to noise (USEPA 1982). Numerically, the NIPTS is the change in threshold averaged over the frequencies 0.5, 1, 2, and 4 kHz that can be expected from daily exposure to noise over a normal working lifetime of 40 years, with the exposure beginning at an age of 20 years. A grand average of the NIPTS over time (40 years) and hearing sensitivity (10 to 90 percentiles of the exposed population) is termed the Average NIPTS, or Ave NIPTS.
for short. The Ave NIPTS that can be expected for noise exposure as measured by the DNL metric is given in Table C-3.

<table>
<thead>
<tr>
<th>DNL</th>
<th>Ave NIPTS dB*</th>
<th>10th Percentile NIPTS dB*</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-76</td>
<td>1.0</td>
<td>4.0</td>
</tr>
<tr>
<td>76-77</td>
<td>1.0</td>
<td>4.5</td>
</tr>
<tr>
<td>77-78</td>
<td>1.6</td>
<td>5.0</td>
</tr>
<tr>
<td>78-79</td>
<td>2.0</td>
<td>5.5</td>
</tr>
<tr>
<td>79-80</td>
<td>2.5</td>
<td>6.0</td>
</tr>
<tr>
<td>80-81</td>
<td>3.0</td>
<td>7.0</td>
</tr>
<tr>
<td>81-82</td>
<td>3.5</td>
<td>8.0</td>
</tr>
<tr>
<td>82-83</td>
<td>4.0</td>
<td>9.0</td>
</tr>
<tr>
<td>83-84</td>
<td>4.5</td>
<td>10.0</td>
</tr>
<tr>
<td>84-85</td>
<td>5.5</td>
<td>11.0</td>
</tr>
</tbody>
</table>

Note: *Rounded to the nearest 0.5 dB

For example, for a noise exposure of 80 dB DNL, the expected lifetime average value of NIPTS is 2.5 dB, or 6.0 dB for the 10th percentile. Characterizing the noise exposure in terms of DNL will usually overestimate the assessment of hearing loss risk as DNL includes a 10 dB weighting factor for aircraft operations occurring between 10 p.m. and 7 a.m. If, however, flight operations between the hours of 10 p.m. and 7 a.m. account for 5 percent or less of the total 24-hour operations, the overestimation is on the order of 1.5 dB. From a civilian airport perspective, the scientific community has concluded that there is little likelihood that the resulting noise exposure from aircraft noise could result in either a temporary or permanent hearing loss. Studies on community hearing loss from exposure to aircraft flyovers near airports showed that there is no danger, under normal circumstances, of hearing loss due to aircraft noise (Newman and Beattie 1985). The USEPA criterion (Leq(24) = 70 dBA) can be exceeded in some areas located near airports, but that is only the case outdoors. Inside a building, where people are more likely to spend most of their time, the average noise level will be much less than 70 dBA (Eldred and von Gierke 1993). Eldred and von Gierke also report that “several studies in the U.S., Japan, and the United Kingdom have confirmed the predictions that the possibility for permanent hearing loss in communities, even under the most intense commercial take-off and landing patterns, is remote.”

With regard to military airbases, as individual aircraft noise levels are increasing with the introduction of new aircraft, a 2009 Department of Defense (DoD) policy directive requires that hearing loss risk be estimated for the at risk population, defined as the population exposed to DNL greater than or equal to 80 dB (Undersecretary of Defense for Acquisition, Technology and Logistics 2009). Specifically, DoD components are directed to “use the 80 Day-Night A-Weighted (DNL) noise contour to identify populations at the most risk of potential hearing loss.”
This does not preclude populations outside the 80 DNL contour, i.e., at lower exposure levels, from being at some degree of risk of hearing loss. However, the analysis should be restricted to populations within this contour area, including residents of on-base housing. The exposure of workers inside the base boundary area should be considered occupational and evaluated using the appropriate DoD component regulations for occupational noise exposure.

2.4.4 Summary

Aviation and typical community noise levels near airports are not comparable to the occupational or recreational noise exposures associated with hearing loss. Studies of aircraft noise levels associated with civilian airport activity have not definitively correlated permanent hearing impairment with aircraft activity. It is unlikely that airport neighbors will remain outside their homes 24 hours per day, so there is little likelihood of hearing loss below an average sound level of 75 dB DNL. Near military airbases, average noise levels above 75 dB may occur, and while new DoD policy dictates that NIPTS be evaluated, no research results to date have definitively related permanent hearing impairment to aviation noise.

2.5 Non-auditory Health Effects

Nonauditory health effects of long-term noise exposure, where noise may act as a risk factor, have not been found to occur at levels below those protective against noise-induced hearing loss, described above. Most studies attempting to clarify such health effects have found that noise exposure levels established for hearing protection will also protect against any potential nonauditory health effects, at least in workplace conditions. The best scientific summary of these findings is contained in the lead paper at the National Institutes of Health Conference on Noise and Hearing Loss, held on January 22–24, 1990, in Washington, D.C., which states “The nonauditory effects of chronic noise exposure, when noise is suspected to act as one of the risk factors in the development of hypertension, cardiovascular disease, and other nervous disorders, have never been proven to occur as chronic manifestations at levels below these criteria (an average of 75 dBA for complete protection against hearing loss for an eight-hour day)” (von Gierke 1990; parenthetical wording added for clarification). At the International Congress (1988) on Noise as a Public Health Problem, most studies attempting to clarify such health effects did not find them at levels below the criteria protective of noise-induced hearing loss; and even above these criteria, results regarding such health effects were ambiguous.

Consequently, it can be concluded that establishing and enforcing exposure levels protecting against noise-induced hearing loss would not only solve the noise-induced hearing loss problem but also any potential nonauditory health effects in the work place.

Although these findings were directed specifically at noise effects in the work place, they are equally applicable to aircraft noise effects in the community environment. Research studies
regarding the nonauditory health effects of aircraft noise are ambiguous, at best, and often contradictory. Yet, even those studies which purport to find such health effects use time-average noise levels of 75 dB and higher for their research.

For example, in an often-quoted paper, two University of California at Los Angeles researchers found a relation between aircraft noise levels under the approach path to Los Angeles International Airport and increased mortality rates among the exposed residents by using an average noise exposure level greater than 75 dB for the “noise-exposed” population (Meecham and Shaw 1979). Nevertheless, three other University of California at Los Angeles professors analyzed those same data and found no relation between noise exposure and mortality rates (Frerichs et al. 1980).

As a second example, two other University of California at Los Angeles researchers used this same population near Los Angeles International Airport to show a higher rate of birth defects during the period of 1970 to 1972 when compared with a control group residing away from the airport (Jones and Tauscher 1978). Based on this report, a separate group at the United States Centers for Disease Control performed a more thorough study of populations near Atlanta’s Hartsfield International Airport for 1970 to 1972 and found no relation in their study of 17 identified categories of birth defects to aircraft noise levels above 65 dB (Edmonds et al. 1979).

A recent review of health effects, prepared by a Committee of the Health Council of The Netherlands (Committee of the Health Council of the Netherlands 1996), analyzed currently available published information on this topic. The committee concluded that the threshold for possible long-term health effects was a 16-hour (6:00 a.m. to 10:00 p.m.) L_{eq} of 70 dB. Projecting this to 24 hours and applying the 10 dB nighttime penalty used with DNL, this corresponds to DNL of about 75 dB. The study also affirmed the risk threshold for hearing loss, as discussed earlier.

In summary, there is no scientific basis for a claim that potential health effects exist for aircraft time-average sound levels below 75 dB. The potential for noise to affect physiological health, such as the cardiovascular system, has been speculated; however, no unequivocal evidence exists to support such claims (Harris 1997). Conclusions drawn from a review of health effect studies involving military low-altitude flight noise with its unusually high maximum levels and rapid rise in sound level have shown no increase in cardiovascular disease (Schwartze and Thompson 1993). Additional claims that are unsupported include flyover noise producing increased mortality rates and increases in cardiovascular death, aggravation of post-traumatic stress syndrome, increased stress, increase in admissions to mental hospitals, and adverse effects on pregnant women and the unborn fetus (Harris 1997).
2.5.1 Performance Effects

The effect of noise on the performance of activities or tasks has been the subject of many studies. Some of these studies have established links between continuous high noise levels and performance loss. Noise-induced performance losses are most frequently reported in studies employing noise levels in excess of 85 dB. Little change has been found in low-noise cases. It has been cited that moderate noise levels appear to act as a stressor for more sensitive individuals performing a difficult psychomotor task.

While the results of research on the general effect of periodic aircraft noise on performance have yet to yield definitive criteria, several general trends have been noted including:

- A periodic intermittent noise is more likely to disrupt performance than a steady-state continuous noise of the same level. Flyover noise, due to its intermittent nature, might be more likely to disrupt performance than a steady-state noise of equal level.
- Noise is more inclined to affect the quality than the quantity of work.
- Noise is more likely to impair the performance of tasks that place extreme demands on the worker.

2.6 Noise Effects on Children

In response to noise-specific and other environmental studies, Executive Order (EO) 13045, Protection of Children from Environmental Health Risks and Safety Risks (1997), requires federal agencies to ensure that policies, programs, and activities address environmental health and safety risks to identify any disproportionate risks to children.

A review of the scientific literature indicates that there has not been a tremendous amount of research in the area of aircraft noise effects on children. The research reviewed does suggest that environments with sustained high background noise can have variable effects, including noise effects on learning and cognitive abilities, and reports of various noise-related physiological changes.

2.6.1 Effects on Learning and Cognitive Abilities

In 2002, ANSI refers to studies that suggest that loud and frequent background noise can affect the learning patterns of young children (ANSI 2002). ANSI provides discussion on the relationships between noise and learning, and stipulates design requirements and acoustical performance criteria for outdoor-to-indoor noise isolation. School design is directed to be cognizant of, and responsive to surrounding land uses and the shielding of outdoor noise from the indoor environment. The ANSI acoustical performance criteria for schools include the
requirement that the one-hour-average background noise level shall not exceed 35 dBA in core learning spaces smaller than 20,000 cubic feet and 40 dBA in core learning spaces with enclosed volumes exceeding 20,000 cubic feet. This would require schools be constructed such that, in quiet neighborhoods indoor noise levels are lowered by 15 to 20 dBA relative to outdoor levels. In schools near airports, indoor noise levels would have to be lowered by 35 to 45 dBA relative to outdoor levels (ANSI 2002).

The studies referenced by ANSI to support the new standard are not specific to jet aircraft noise and the potential effects on children. However, there are references to studies that have shown that children in noisier classrooms scored lower on a variety of tests. Excessive background noise or reverberation within schools causes interferences of communication and can therefore create an acoustical barrier to learning (ANSI 2002). Studies have been performed that contribute to the body of evidence emphasizing the importance of communication by way of the spoken language to the development of cognitive skills. The ability to read, write, comprehend, and maintain attentiveness, is in part, based upon whether teacher communication is consistently intelligible (ANSI 2002).

Numerous studies have shown varying degrees of effects of noise on the reading comprehension, attentiveness, puzzle-solving, and memory/recall ability of children. It is generally accepted that young children are more susceptible than adults to the effects of background noise. Because of the developmental status of young children (linguistic, cognitive, and proficiency), barriers to hearing can cause interferences or disruptions in developmental evolution.

Research on the impacts of aircraft noise, and noise in general, on the cognitive abilities of school-aged children has received more attention in recent years. Several studies suggest that aircraft noise can affect the academic performance of schoolchildren. Although many factors could contribute to learning deficits in school-aged children (e.g., socioeconomic level, home environment, diet, sleep patterns), evidence exists that suggests that chronic exposure to high aircraft noise levels can impair learning.

Specifically, elementary school children attending schools near New York City’s two airports demonstrated lower reading scores than children living farther away from the flight paths (Green et al. 1982). Researchers have found that tasks involving central processing and language comprehension (such as reading, attention, problem solving, and memory) appear to be the most affected by noise (Evans and Lepore 1993, Hygge 1994, and Evans et al. 1998). It has been demonstrated that chronic exposure of first- and second-grade children to aircraft noise can result in reading deficits and impaired speech perception (i.e., the ability to hear common, low-frequency [vowel] sounds but not high frequencies [consonants] in speech) (Evans and Maxwell 1997).
The Evans and Maxwell (1997) study found that chronic exposure to aircraft noise resulted in reading deficits and impaired speech perception for first- and second-grade children. Other studies found that children residing near the LAX had more difficulty solving cognitive problems and did not perform as well as children from quieter schools in puzzle-solving and attentiveness (Bronzaft 1997, Cohen et al. 1980). Children attending elementary schools in high aircraft noise areas near London’s Heathrow Airport demonstrated poorer reading comprehension and selective cognitive impairments (Haines et al. 2001a and 2001b). Similarly, a 1994 study found that students exposed to aircraft noise of approximately 76 dBA scored 20 percent lower on recall ability tests than students exposed to ambient noise of 42-44 dBA (Hygge 1994). Similar studies involving the testing of attention, memory, and reading comprehension of school children located near airports showed that their tests exhibited reduced performance results compared to those of similar groups of children who were located in quieter environments (Evans et al. 1998, Haines et al. 1998). The Haines and Stansfeld study indicated that there may be some long-term effects associated with exposure, as one-year follow-up testing still demonstrated lowered scores for children in higher noise schools (Haines et al. 2001a and 2001b). In contrast, a 2002 study found that although children living near the old Munich airport scored lower in standardized reading and long-term memory tests than a control group, their performance on the same tests was equal to that of the control group once the airport was closed (Hygge et al. 2002).

Finally, although it is recognized that there are many factors that could contribute to learning deficits in school-aged children, there is increasing awareness that chronic exposure to high aircraft noise levels may impair learning. This awareness has led the WHO and a North Atlantic Treaty Organization working group to conclude that daycare centers and schools should not be located near major sources of noise, such as highways, airports, and industrial sites (WHO 2000, North Atlantic Treaty Organization 2000).

2.6.2 Health Effects

Physiological effects in children exposed to aircraft noise and the potential for health effects have also been the focus of limited investigation. Studies in the literature include examination of blood pressure levels, hormonal secretions, and hearing loss.

As a measure of stress response to aircraft noise, authors have looked at blood pressure readings to monitor children’s health. Children who were chronically exposed to aircraft noise from a new airport near Munich, Germany, had modest (although significant) increases in blood pressure, significant increases in stress hormones, and a decline in quality of life (Evans et al. 1998). Children attending noisy schools had statistically significant average systolic and diastolic blood pressure (p<0.03). Systolic blood pressure means were 89.68 millimeters (mm) for children attending schools located in noisier environments compared to 86.77 mm for a
control group. Similarly, diastolic blood pressure means for the noisier environment group were 47.84 mm and 45.16 mm for the control group (Cohen et al. 1980).

Although the literature appears limited, studies focused on the wide range of potential effects of aircraft noise on school children have also investigated hormonal levels between groups of children exposed to aircraft noise compared to those in a control group. Specifically, two studies analyzed cortisol and urinary catecholamine levels in school children as measurements of stress response to aircraft noise (Haines et al. 2001b and 2001c). In both instances, there were no differences between the aircraft-noise-exposed children and the control groups.

Other studies have reported hearing losses from exposure to aircraft noise. Noise-induced hearing loss was reportedly higher in children who attended a school located under a flight path near a Taiwan airport, as compared to children at another school far away (Chen et al. 1997). Another study reported that hearing ability was reduced significantly in individuals who lived near an airport and were frequently exposed to aircraft noise (Chen and Chen 1993). In that study, noise exposure near the airport was reportedly uniform, with DNL greater than 75 dB and maximum noise levels of about 87 dB during overflights. Conversely, several other studies that were reviewed reported no difference in hearing ability between children exposed to high levels of airport noise and children located in quieter areas (Fisch 1977, Andrus et al. 1975, Wu et al. 1995).

2.7 Effects on Domestic Animals and Wildlife

Hearing is critical to an animal’s ability to react, compete, reproduce, hunt, forage, and survive in its environment. While the existing literature does include studies on possible effects of jet aircraft noise and sonic booms on wildlife, there appears to have been little concerted effort in developing quantitative comparisons of aircraft noise effects on normal auditory characteristics. Behavioral effects have been relatively well described, but the larger ecological context issues, and the potential for drawing conclusions regarding effects on populations, has not been well developed.

The relationships between potential auditory/physiological effects and species interactions with their environments are not well understood. Manci et al. (1988) assert that the consequences physiological effects may have on behavioral patterns is vital to understanding the long-term effects of noise on wildlife. Questions regarding the effects (if any) on predator-prey interactions, reproductive success, and intra-inter specific behavior patterns remain.

The following discussion provides an overview of the existing literature on noise effects (particularly jet aircraft noise) on animal species. The literature reviewed here involves those
studies that have focused on the observations of the behavioral effects that jet aircraft have on animals.

A great deal of research was conducted in the 1960s and 1970s on the effects of aircraft noise on the public and the potential for adverse ecological impacts. These studies were largely completed in response to the increase in air travel and as a result of the introduction of supersonic jet aircraft. According to Manci et al. (1988), the foundation of information created from that focus does not necessarily correlate or provide information specific to the impacts to wildlife in areas overflown by aircraft at supersonic speed or at low altitudes.

The abilities to hear sounds and noise and to communicate assist wildlife in maintaining group cohesiveness and survivorship. Social species communicate by transmitting calls of warning, introduction, and other types that are subsequently related to an individual’s or group’s responsiveness.

Animal species differ greatly in their responses to noise. Noise effects on domestic animals and wildlife are classified as primary, secondary, and tertiary. Primary effects are direct, physiological changes to the auditory system, and most likely include the masking of auditory signals. Masking is defined as the inability of an individual to hear important environmental signals that may arise from mates, predators, or prey. There is some potential that noise could disrupt a species’ ability to communicate or could interfere with behavioral patterns (Manci et al. 1988). Although the effects are likely temporal, aircraft noise may cause masking of auditory signals within exposed faunal communities. Animals rely on hearing to avoid predators, obtain food, and communicate with, and attract, other members of their species. Aircraft noise may mask or interfere with these functions. Other primary effects, such as ear drum rupture or temporary and permanent hearing threshold shifts, are not as likely given the subsonic noise levels produced by aircraft overflights. Secondary effects may include non-auditory effects such as stress and hypertension; behavioral modifications; interference with mating or reproduction; and impaired ability to obtain adequate food, cover, or water. Tertiary effects are the direct result of primary and secondary effects, and include population decline and habitat loss. Most of the effects of noise are mild enough that they may never be detectable as variables of change in population size or population growth against the background of normal variation (Bowles 1995). Other environmental variables (e.g., predators, weather, changing prey base, ground-based disturbance) also influence secondary and tertiary effects, and confound the ability to identify the ultimate factor in limiting productivity of a certain nest, area, or region (Smith et al. 1988). Overall, the literature suggests that species differ in their response to various types, durations, and sources of noise (Manci et al. 1988).

Many scientific studies have investigated the effects of aircraft noise on wildlife, and some have focused on wildlife “flight” due to noise. Apparently, animal responses to aircraft are influenced...
by many variables, including size, speed, proximity (both height above the ground and lateral distance), engine noise, color, flight profile, and radiated noise. The type of aircraft (e.g., fixed wing versus rotor-wing [helicopter]) and type of flight mission may also produce different levels of disturbance, with varying animal responses (Smith et al. 1988). Consequently, it is difficult to generalize animal responses to noise disturbances across species.

One result of the 1988 Manci et al., literature review was the conclusion that, while behavioral observation studies were relatively limited, a general behavioral reaction in animals from exposure to aircraft noise is the startle response. The intensity and duration of the startle response appears to be dependent on which species is exposed, whether there is a group or an individual, and whether there have been some previous exposures. Responses range from flight, trampling, stampeding, jumping, or running, to movement of the head in the apparent direction of the noise source. Manci et al. (1988) reported that the literature indicated that avian species may be more sensitive to aircraft noise than mammals.

2.7.1 Domestic Animals

Although some studies report that the effects of aircraft noise on domestic animals is inconclusive, a majority of the literature reviewed indicates that domestic animals exhibit some behavioral responses to military overflights but generally seem to habituate to the disturbances over a period of time. Mammals in particular appear to react to noise at sound levels higher than 90 dB, with responses including the startle response, freezing (i.e., becoming temporarily stationary), and fleeing from the sound source. Many studies on domestic animals suggest that some species appear to acclimate to some forms of sound disturbance (Manci et al. 1988). Some studies have reported such primary and secondary effects as reduced milk production and rate of milk release, increased glucose concentrations, decreased levels of hemoglobin, increased heart rate, and a reduction in thyroid activity. These latter effects appear to represent a small percentage of the findings occurring in the existing literature.

Some reviewers have indicated that earlier studies, and claims by farmers linking adverse effects of aircraft noise on livestock, did not necessarily provide clear-cut evidence of cause and effect (Cottereau 1978). In contrast, many studies conclude that there is no evidence that aircraft overflights affect feed intake, growth, or production rates in domestic animals.

2.7.2 Summary

Some physiological/behavioral responses such as increased hormonal production, increased heart rate, and reduction in milk production have been described in a small percentage of studies. A majority of the studies focusing on these types of effects have reported short-term or no effects.
The literature does suggest that common responses include the “startle” or “fright” response and, ultimately, habituation. It has been reported that the intensities and durations of the startle response decrease with the numbers and frequencies of exposures, suggesting no long-term adverse effects. The majority of the literature suggests that domestic animal species (cows, horses, chickens) and wildlife species exhibit adaptation, acclimation, and habituation after repeated exposure to jet aircraft noise.

Animal responses to aircraft noise appear to be somewhat dependent on, or influenced by, the size, shape, speed, proximity (vertical and horizontal), engine noise, color, and flight profile of planes. Helicopters also appear to induce greater intensities and durations of disturbance behavior as compared to fixed-wing aircraft. Some studies showed that animals that had been previously exposed to jet aircraft noise exhibited greater degrees of alarm and disturbance to other objects creating noise, such as boats, people, and objects blowing across the landscape. Other factors influencing response to jet aircraft noise may include wind direction, speed, and local air turbulence; landscape structures (i.e., amount and type of vegetative cover); and, in the case of bird species, whether the animals are in the incubation/nesting phase.

2.8 Property Values

Property within a noise zone (or Accident Potential Zone) may be affected by the availability of federally guaranteed loans. According to U.S. Department of Housing and Urban Development (HUD), Federal Housing Administration (FHA), and Veterans Administration (VA) guidance, sites are acceptable for program assistance, subsidy, or insurance for housing in noise zones of less than 65 dB DNL, and sites are conditionally acceptable with special approvals and noise attenuation in the 65 to 75 dB DNL noise zone and the greater than 75 dB DNL noise zone. HUD’s position is that noise is not the only determining factor for site acceptability, and properties should not be rejected only because of airport influences if there is evidence of acceptability within the market and if use of the dwelling is expected to continue. Similar to the Navy’s and USAF’s Air Installation Compatible Use Zone Program, HUD, FHA, and VA recommend sound attenuation for housing in the higher noise zones and written disclosures to all prospective buyers or lessees of property within a noise zone (or Accident Potential Zone).

Newman and Beattie (1985) reviewed the literature to assess the effect of aircraft noise on property values. One paper by Nelson (1978), reviewed by Newman and Beattie, suggested a 1.8 to 2.3 percent decrease in property value per decibel at three separate airports, while at another period of time, they found only a 0.8 percent devaluation per decibel change in DNL. However, Nelson also noted a decline in noise depreciation over time which he theorized could be due to either noise sensitive people being replaced by less sensitive people or the increase in commercial value of the property near airports; both ideas were supported by Crowley (1978). Ultimately, Newman and Beattie summarized that while an effect of noise was observed, noise is
only one of the many factors that is part of a decision to move close to, or away from, an airport, but which is sometimes considered an advantage due to increased opportunities for employment or ready access to the airport itself.

More recently Fidell et al. (1996) studied the influences of aircraft noise on actual sale prices of residential properties in the vicinity of two military facilities and found that equations developed for one area to predict residential sale prices in areas unaffected by aircraft noise worked equally well when applied to predicting sale prices of homes in areas with aircraft noise in excess of 65 dB DNL. Thus, the model worked equally well in predicting sale prices in areas with and without aircraft noise exposure. This indicates that aircraft noise had no meaningful effect on residential property values. In some cases, the average sale prices of noise exposed properties were somewhat higher than those elsewhere in the same area. In the vicinity of Davis-Monthan Air Force Base (AFB) in Tucson, Arizona, Fidell found the homes near the AFB were much older, smaller, and in poorer condition than homes elsewhere. These factors caused the equations developed for predicting sale prices in areas further away from the base to be inapplicable with those nearer the AFB. However, again Fidell found that, similar to other researchers, differences in sale prices between homes with and without aircraft noise were frequently due to factors other than noise itself.

2.8.1 Noise Effects on Structures

Normally, the most sensitive components of a structure to airborne noise are the windows and, infrequently, the plastered walls and ceilings. An evaluation of the peak sound pressures impinging on the structure is normally used to determine the possibility of damage. In general, with peak sound levels above 130 dB, there is the possibility of the excitation of structural component resonances. While certain frequencies (such as 30 Hz for window breakage) may be of more concern than other frequencies, conservatively, only sounds lasting more than one second above a sound level of 130 dB are potentially damaging to structural components (CHABA 1977).

Noise-induced structural vibration may also cause annoyance to dwelling occupants because of induced secondary vibrations, or rattling of objects within the dwelling such as hanging pictures, dishes, plaques, and bric-a-brac. Window panes may also vibrate noticeably when exposed to high levels of airborne noise. In general, such noise-induced vibrations occur at peak sound levels of 110 dB or greater. Thus, assessments of noise exposure levels for compatible land use should also be protective of noise-induced secondary vibrations.
3. References

Noise Modeling Input Data, Sample for KC-135 and KC-46A
Example Flight Profiles
Flight Profile KC 135 AA
ST-IN FROM SOUTHWEST

<table>
<thead>
<tr>
<th>Point</th>
<th>Distance (NM)</th>
<th>Height (AGL)</th>
<th>Power % NC</th>
<th>Speed (kts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>32.92</td>
<td>10,000</td>
<td>55 Variable</td>
<td>250</td>
</tr>
<tr>
<td>b</td>
<td>25.00</td>
<td>10,000</td>
<td>55 Variable</td>
<td>200</td>
</tr>
<tr>
<td>c</td>
<td>12.00</td>
<td>2,100</td>
<td>55 Variable</td>
<td>200</td>
</tr>
<tr>
<td>d</td>
<td>7.00</td>
<td>1,878</td>
<td>60 Approach</td>
<td>180</td>
</tr>
<tr>
<td>e</td>
<td>1.00</td>
<td>500</td>
<td>60 Approach</td>
<td>140</td>
</tr>
<tr>
<td>f</td>
<td>0.00</td>
<td>50</td>
<td>60 Approach</td>
<td>140</td>
</tr>
</tbody>
</table>

Scale in Feet 1:109,000 (1 inch = 9,100 feet)
Flight Profile KC 135 DA

<table>
<thead>
<tr>
<th>Point</th>
<th>Distance (NM)</th>
<th>Height (ft AGL)</th>
<th>Power (NF Variable)</th>
<th>Speed (kts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0.00</td>
<td>0</td>
<td>88</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>0.99</td>
<td>0</td>
<td>88</td>
<td>175</td>
</tr>
<tr>
<td>c</td>
<td>1.65</td>
<td>200</td>
<td>88</td>
<td>185</td>
</tr>
<tr>
<td>d</td>
<td>3.95</td>
<td>3,000</td>
<td>88</td>
<td>220</td>
</tr>
<tr>
<td>e</td>
<td>17.77</td>
<td>5,000</td>
<td>88</td>
<td>250</td>
</tr>
<tr>
<td>f</td>
<td>38.44</td>
<td>10,000</td>
<td>88</td>
<td>250</td>
</tr>
</tbody>
</table>

Scale in Feet 1:180,000 (1 inch = 15,000 feet)

Flight Profile KC 135 DA
LEFT TURN TO NORTH
Flight Profile KC 46 AA
ST-IN FROM SOUTHWEST

Scale in Feet 1:109,000 (1 inch = 9,100 feet)

<table>
<thead>
<tr>
<th>Point</th>
<th>Distance</th>
<th>Height</th>
<th>Power</th>
<th>Speed</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>3.29</td>
<td>10,000 AGL</td>
<td>55 Variable</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>2.50</td>
<td>10,000 AGL</td>
<td>55 Variable</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>1.20</td>
<td>2,100 AGL</td>
<td>60 Approach</td>
<td>180</td>
<td>Approach configuration</td>
</tr>
<tr>
<td>d</td>
<td>0.70</td>
<td>1,878 AGL</td>
<td>60 Approach</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>0.10</td>
<td>300 AGL</td>
<td>60 Approach</td>
<td>150</td>
<td>Approach configuration</td>
</tr>
<tr>
<td>f</td>
<td>0.00</td>
<td>50 AGL</td>
<td>60 Approach</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>
Flight Profile KC 46 CA
VFR RIGHT TURNS SOUTH SIDE, (TANKER AND LARGE AIRCRAFT)

Scale in Feet 1:69,100 (1 inch = 5,760 feet)
Flight Profile KC 46 DA
LEFT TURN TO NORTH

Scale in Feet 1:65,000 (1 inch = 5,410 feet)
Appendix D

Air Quality
TABLE OF CONTENTS

APPENDIX D AIR QUALITY

APPENDIX D1 AIR QUALITY BACKGROUND INFORMATION D1-1
APPENDIX D2 CONFORMITY APPLICABILITY ... D2-1
APPENDIX D3 EMISSION CALCULATIONS .. D3-1
Appendix D1

Air Quality Background Information
This appendix provides assumptions used to calculate emissions for the Proposed Action alternatives, as well as tables showing the emission calculations. Emissions from these categories of sources were calculated based on guidance from the United States Air Force (USAF) in their *Air Emissions Guide for Air Force Mobile Sources – Methods for Estimating Emissions of Air Pollutants for Mobile Sources at U.S. Air Force Installations* (Air Force Civil Engineer Center [AFCEC] 2013), utilizing the latest air emissions modeling tools. Each category of emissions is discussed in the sections below.

1.0 Construction Assumptions

It was assumed that each construction project associated with the Proposed Action would be constructed in a single year, and that all construction would occur in Fiscal Year (FY) 2015. Factors needed to derive construction source emission rates were obtained from the *Compilation of Air Pollutant Emission Factors*, AP-42, Volume I (United States Environmental Protection Agency [USEPA] 1995), the USEPA NONROAD2008a model for nonroad construction equipment (USEPA 2009), and the USEPA MOVES2010b model for on-road vehicles (USEPA 2013b).

Operational emissions from sources operating in association with the Proposed Action include aircraft operations, aerospace ground equipment (AGE), engine testing, and personal vehicle use. Calculation methodologies for each emission category and assumptions used to calculate emissions for the Proposed Action alternatives are discussed below.

2.0 Aircraft Operations

The methodology for estimating aircraft emissions involves evaluating the type of operations for each type of aircraft, the number of hours of operation for each aircraft type, the type of engine in each aircraft, and the mode of operation for each type of aircraft engine. Aircraft emissions are calculated based on the type of aircraft, the engine model, the operational mode and time-in-mode (TIM) for each mode, the power setting associated with each operational mode, the fuel flow rate associated with each power setting, engine-specific emission factors, the mixing zone height, and the number of landing-takeoff (LTO) cycles conducted during the course of a year. As TIM and fuel flow for each power setting varies among aircraft engines and airframes, the calculation procedure was repeated for individual aircraft types.

The types of aircraft and numbers and type of operations were obtained from the installations for both existing conditions (KC-135 aircraft) and Proposed Action alternatives (KC-46A aircraft). The operational profiles from the noise modeling analysis conducted for the Proposed Action were used to calculate emissions, accounting for the mode of operation for aircraft engines, engine speed, and elevation above ground level.
As discussed in the USAF guidance document, because estimating emissions using an LTO approach accounts for exhaust emissions associated with aircraft operations occurring both on the ground and up to the mixing zone height, the choice of a mixing zone height will have a direct impact on total emissions. Mixing zone height is used to adjust the TIM during the approach and climb out modes of an LTO when calculating emissions. Thus a shallow mixing zone height will result in a shorter TIM (and fewer emissions), and a high mixing zone height will result in a longer TIM (and more emissions). While emissions occurring anywhere within this zone will impact ground-level pollutant concentrations, emissions occurring above it will generally not be mixed to the ground. Because atmospheric stability (and hence inversions) are a function of temperature, mixing zone height varies depending on location, hour, and season, and is affected by local topography, time of day, and time of year. USEPA guidance notes that in most instances where oxides of nitrogen (NO\textsubscript{x}) emissions are not a local air quality concern, a default mixing zone height of 3,000 feet can be used. If, however, NO\textsubscript{x} emissions are considered an important component of the emission inventory, specific mixing height data must be gathered and used. The Federal Aviation Administration (FAA) has adopted this USEPA default value in its recommended procedures. For purposes of maximizing the accuracy of the inventory, location specific climate and meteorological data should be used where available to determine seasonal or annual average mixing height.

For conservative purposes, the mixing height was assumed to be 3,000 feet above ground level (AGL).

Emissions were calculated for individual flight operations as follows:

\[\text{Emissions} = \frac{\text{TIM}}{60} \times \frac{\text{FFR}}{1000} \times \text{EI} \times \text{NE} \times \text{N} \]

Where,

- TIM = Time spent in each mode (min/cycle)
- 60 = Factor for converting minutes into hours
- FFR = Fuel flow rate per engine (lb/hr)
- 1000 = Factor for converting lb/hr to 1000 lb/hr
- EI = Emission factor (lb/1000 lb)
- NE = Number of engines/aircraft
- N = number of operations

The KC-135 aircraft are equipped with four engines, and the KC-46A aircraft are equipped with two engines. Based on the flight profiles for the two aircraft provided for the noise analysis, training flight profiles would have the same TIM and same profiles.
Emission calculations for the baseline condition and Proposed Action alternatives are provided in this appendix.

3.0 Aircraft Ground Equipment

AGE includes onsite mobile support equipment such as tow tractors, reciprocating engines, and gas turbines used to support aircraft operations. Based on information from the *Air Emissions Guide for Air Force Mobile Sources – Methods for Estimating Emissions of Air Pollutants for Mobile Sources at U.S. Air Force Installations* (AFCEC 2013), emissions for AGE were calculated assuming AGE usage rates per LTO from the *Air Emissions Factor Guide*.

Emission estimates for AGE are provided in this appendix.

4.0 Engine Testing

Baseline emissions from on-wing engine testing were obtained from the operations shown in the Static Pad Summary. It was assumed that the number of engines tested annually would be proportional to the number of aircraft operations at each installation. Engine testing was calculated for the KC-135 engines for baseline conditions and for the KC-46A engines based on similar testing profiles, adjusting for the number of aircraft operations at the installation.

Emission estimates are provided in this appendix.

5.0 Ground Vehicles

Emissions from ground vehicles were calculated using emission factors from the *Air Emissions Guide for Air Force Mobile Sources – Methods for Estimating Emissions of Air Pollutants for Mobile Sources at U.S. Air Force Installations* (AFCEC 2013). Ground vehicles operations associated with the baseline and Proposed Action alternatives were calculated based on estimates of personnel that would be associated with the Proposed Action at each installation. It was assumed that vehicles would travel 1 mile on base. The distance traveled off base was estimated based on the distance from the installation to the nearest population center (i.e., downtown metropolitan area). Emission estimates include emissions from startups, hot soak, diurnal evaporative emissions, resting loss, and running loss, as well as running exhaust emissions in grams per mile. Emission estimates are provided in this appendix.
6.0 References

121st Air Refueling Wing. 2011. Final 2009 Air Emissions Inventory, 121st ARW, Ohio National Guard, Columbus, Ohio. June.

Appendix D2

Conformity Applicability
APPENDIX D2 CONFORMITY APPLICABILITY ANALYSIS

This appendix presents the Clean Air Act (CAA) General Conformity Applicability Analysis for the KC-46A Beddown at Alternative Air National Guard (ANG) Installations.

1.0 BACKGROUND

The 1990 CAA Amendments revised Section 176(c) to, among other things, require the U.S. Environmental Protection Agency (USEPA) to promulgate regulations establishing the criteria and procedures for determining conformity of federal actions to the applicable State Implementation Plan (SIP) or Federal Implementation Plan. General conformity to a SIP or Federal Implementation Plan means that a Federal agency’s activities will not produce new air quality violations, worsen existing violations, or delay an area’s timely attainment of the National Ambient Air Quality Standards (NAAQS). On November 30, 1993, the USEPA promulgated regulations, entitled Determining Conformity of General Federal Actions to State or Federal Implementation Plans, that were codified at 40 Code of Federal Regulations (CFR) Part 51 Subpart W and at 40 CFR Part 93 Subpart B. The regulations at 40 CFR Part 93 were interim regulations until states amended their SIPs per the regulations in 40 CFR Part 51. In 1995, Congress added subparagraph (5) to CAA Section 176(c), limiting the section’s applicability to areas designated either nonattainment or maintenance.

2.0 REGULATORY REQUIREMENTS

Under the provisions of 40 CFR Parts 51 and 93, Federal actions are required to conform with the approved SIP for those areas that are categorized as nonattainment or maintenance areas for any criteria pollutant. The purpose of the General Conformity Rule is to demonstrate that the Proposed Action will not cause or contribute to a violation of an air quality standard, and that the project will not adversely affect the air basin’s ability to attain and maintain the ambient air quality standards.

The first step in the evaluation is to determine whether the project’s emissions of nonattainment pollutants or precursors would exceed the regulatory de minimis thresholds established in 40 CFR 93. The following sections discuss the attainment status and General Conformity Rule requirements for each of the alternative ANG installations.

2.1 190th Air Refueling Wing

Forbes Air National Guard Station (ANGS), home of the 190th Air Refueling Wing (190 ARW) of the Kansas Air National Guard (KS ANG), is located on Forbes Field Airport, approximately 5 miles south of Topeka in Shawnee County, Kansas. The USEPA has classified the state of
Kansas as an attainment/unclassified area for all criteria pollutants. The Proposed Action is therefore not subject to the requirements of Section 176(c) of the CAA, as articulated in the USEPA General Conformity Rule.

2.2 108ᵗʰ Wing
Joint Base McGuire-Dix-Lakehurst (JB MDL) is located in the central portion of the state of New Jersey, in Ocean and Burlington counties. The USEPA has classified the Philadelphia-Wilmington-Atlantic City area of the states of Pennsylvania, Delaware, and New Jersey as nonattainment for the ozone (O₃) (marginal nonattainment) and particulate matter less than or equal to 2.5 microns in diameter (PM₂.₅) NAAQS, and a maintenance area for carbon dioxide (CO). The region is designated attainment/unclassified area for all other criteria pollutants. The proposed action is therefore subject to the requirements of Section 176(c) of the CAA, as articulated in the USEPA General Conformity Rule. Based on the nonattainment classification for the region, the de minimis emission thresholds for the General Conformity Rule for O₃ precursors (oxides of nitrogen [NOₓ] and volatile organic compounds [VOCs]) is 100 tons per year (tpy), and the de minimis emission thresholds for PM₂.₅ and CO emissions are also 100 tpy.

2.3 157ᵗʰ Air Refueling Wing
Pease ANGS, home of the 157ᵗʰ Air Refueling Wing (157 ARW) of the New Hampshire Air National Guard (NH ANG), is located in Newington, New Hampshire approximately 1 mile west of Portsmouth, New Hampshire. The USEPA had previously classified the Boston-Manchester-Portsmouth area as a moderate nonattainment area for the 1997 O₃ standard. On January 31, 2013, the USEPA formally redesignated southeastern New Hampshire as an attainment area for the 1997 O₃ standard. The region is therefore considered a maintenance area for O₃. The region is designated attainment/unclassified area for all other criteria pollutants. The proposed action is therefore subject to the requirements of Section 176(c) of the CAA, as articulated in the USEPA General Conformity Rule. Based on the classification for the region as a maintenance area, the de minimis emission thresholds for the General Conformity Rule for O₃ precursors (NOₓ and VOCs) is 100 tpy.

2.4 171ˢᵗ Air Refueling Wing
The USEPA has classified Allegheny County as a moderate nonattainment area for the O₃ NAAQS, and a nonattainment area for PM₂.₅. Pittsburgh is also designated as a nonattainment area for CO, but this designation applies only in high traffic areas in the central business district of the city. The region is designated attainment/unclassified area for all other criteria pollutants. Alternative #4 is therefore subject to the requirements of Section 176(c) of the CAA, as articulated in the USEPA General Conformity Rule. Based on the nonattainment classification for the region, the de minimis emission thresholds for the General Conformity Rule for O₃
precursors (NOₓ and VOCs) is 100 tpy, and the \textit{de minimis} emission threshold for PM\textsubscript{2.5} emissions is also 100 tpy.

2.5 121st Air Refueling Wing

Rickenbacker ANGS is located approximately 12 miles south of downtown Columbus, Ohio in Franklin County. The USEPA has classified the Columbus area, including all of Franklin County, as nonattainment for the O\textsubscript{3} and PM\textsubscript{2.5} NAAQS. The region is designated attainment/unclassified area for all other criteria pollutants. The proposed action is therefore subject to the requirements of Section 176(c) of the CAA, as articulated in the USEPA General Conformity Rule. Based on the nonattainment classification for the region, the \textit{de minimis} emission thresholds for the General Conformity Rule for O\textsubscript{3} precursors (NOₓ and VOCs) is 100 tpy, and the \textit{de minimis} emission threshold for PM\textsubscript{2.5} emissions is also 100 tpy.

Table 2.5-1 summarizes the \textit{de minimis} emission thresholds for the alternatives.

<table>
<thead>
<tr>
<th>Installation</th>
<th>VOCs</th>
<th>NOₓ</th>
<th>CO</th>
<th>SO\textsubscript{2}</th>
<th>PM\textsubscript{10}</th>
<th>PM\textsubscript{2.5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>190 ARW – Forbes</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>108 WG – JBMDL</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>NA</td>
<td>NA</td>
<td>100</td>
</tr>
<tr>
<td>157 ARW – Pease</td>
<td>100</td>
<td>100</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>171 ARW – Pittsburgh</td>
<td>100</td>
<td>100</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>100</td>
</tr>
<tr>
<td>121 ARW – Rickenbacker</td>
<td>100</td>
<td>100</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>100</td>
</tr>
</tbody>
</table>

Notes: NA – \textit{de minimis} threshold not applicable – installation is in attainment/unclassified area for this pollutant.

VOC = volatile organic compound; NOₓ = oxides of nitrogen; CO = carbon dioxide; SO\textsubscript{2} = sulfur dioxide; PM\textsubscript{10} = particulate matter less than or equal to 10 microns in diameter; PM\textsubscript{2.5} = particulate matter less than or equal to 2.5 microns in diameter; 190 ARW = 190th Air Refueling Wing; 108 WG = 108th Wing; 157 ARW = 157th Air Refueling Wing; 171 ARW = 171th Air Refueling Wing; 121 ARW = 121st Air Refueling Wing

3.0 EMISSIONS ASSOCIATED WITH THE FEDERAL ACTION

This section of the Conformity Applicability Analysis presents estimates of emissions associated with the proposed alternatives, and an evaluation of the applicability of the General Conformity Rule to the proposed alternatives.

3.1 190th Air Refueling Wing

Because the 190 ARW is not subject to the General Conformity Rule, the rule is not applicable and no further analysis is required.
3.2 108th Wing

The emissions associated with the proposed action at JBMDL include construction emissions and operational emissions. Construction emissions are summarized in Table 3.2-1. As shown in Table 3.2-1, emissions would be below the de minimis thresholds for all pollutants.

Table 3.2-1. Annual Construction Emissions under Alternative #2 – 108 WG Installation

<table>
<thead>
<tr>
<th>Construction Project</th>
<th>ANNUAL EMISSIONS, TONS/YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO</td>
</tr>
<tr>
<td>Total Construction Emissions</td>
<td>8.01</td>
</tr>
<tr>
<td>de minimis Threshold</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 3.2-2 presents the net annual operational emissions increase (decrease) associated with the beddown of the KC-46A aircraft at JB MDL. As shown in Table 3.2-2, emissions are below the de minimis thresholds for all pollutants except NOx. Emissions of NOx would exceed the de minimis threshold, and this alternative would therefore require a Conformity Determination under the General Conformity Rule.

Table 3.2-2. Comparison of Baseline and Proposed Annual Operational Emissions, 108 WG

<table>
<thead>
<tr>
<th>Baseline</th>
<th>ANNUAL EMISSIONS, TONS/YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VOC</td>
</tr>
<tr>
<td>Aircraft Operations</td>
<td>3.21</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.14</td>
</tr>
<tr>
<td>POVs</td>
<td>5.12</td>
</tr>
<tr>
<td>Total</td>
<td>8.48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proposed Action</th>
<th>ANNUAL EMISSIONS, TONS/YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VOC</td>
</tr>
<tr>
<td>Aircraft Operations</td>
<td>26.19</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>1.53</td>
</tr>
<tr>
<td>POVs</td>
<td>4.75</td>
</tr>
<tr>
<td>Total</td>
<td>32.48</td>
</tr>
<tr>
<td>Net Increase</td>
<td>24.01</td>
</tr>
<tr>
<td>de minimis Threshold</td>
<td>100</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding
CO = carbon monoxide; NOx = oxides of nitrogen; PM2.5 = particulate matter less than or equal to 2.5 microns in diameter; VOC = volatile organic compound

3.3 157th Air Refueling Wing

The emissions associated with the proposed action at Pease ANGS include construction emissions and operational emissions. Construction emissions are summarized in Table 3.3-1. As shown in Table 3.3-1, emissions would be below the de minimis thresholds for all pollutants.
Table 3.3-1. Annual Construction Emissions under Alternative #3 – 157 ARW Installation

<table>
<thead>
<tr>
<th>Construction Project</th>
<th>ANNUAL EMISSIONS, TONS/YEAR</th>
<th>NOₓ</th>
<th>VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Construction Emissions</td>
<td>10.99</td>
<td>1.64</td>
<td></td>
</tr>
<tr>
<td>de minimis Threshold</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.3-2 presents the net annual operational emissions increase (decrease) associated with the beddown of the KC-46A aircraft at Pease ANGS. As shown in Table 3.3-2, emissions would be below the de minimis thresholds for all pollutants. This alternative would therefore not be subject to the requirements of the General Conformity Rule for a Conformity Determination, and a Record of Non-Applicability would be prepared for this alternative.

Table 3.3-2. Comparison of Baseline and Proposed Annual Operational Emissions, 157 ARW

<table>
<thead>
<tr>
<th>Baseline</th>
<th>ANNUAL EMISSIONS, TONS/YEAR</th>
<th>VOC</th>
<th>NOₓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft Operations</td>
<td>2.41</td>
<td>73.94</td>
<td></td>
</tr>
<tr>
<td>AGE</td>
<td>0.00</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.10</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>POVs</td>
<td>1.11</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3.62</td>
<td>75.32</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proposed Action</th>
<th>ANNUAL EMISSIONS, TONS/YEAR</th>
<th>VOC</th>
<th>NOₓ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft Operations</td>
<td>15.24</td>
<td>157.41</td>
<td></td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.77</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>POVs</td>
<td>0.91</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16.93</td>
<td>158.92</td>
<td></td>
</tr>
<tr>
<td>Net Increase</td>
<td>13.31</td>
<td>83.60</td>
<td></td>
</tr>
<tr>
<td>de minimis Threshold</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding
NOₓ = oxides of nitrogen; VOC = volatile organic compound

3.4 171st Air Refueling Wing

The emissions associated with the proposed action at Pittsburgh ANGS include construction emissions and operational emissions. Construction emissions are summarized in Table 3.4-1. As shown in Table 3.4-1, emissions would be below the de minimis thresholds for all pollutants.

Table 3.4-1. Annual Construction Emissions under Alternative #4 – 171 ARW Installation

<table>
<thead>
<tr>
<th>Construction Project</th>
<th>ANNUAL EMISSIONS, TONS/YEAR</th>
<th>NOₓ</th>
<th>VOC</th>
<th>PM₂.₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Construction Emissions</td>
<td>14.68</td>
<td>1.91</td>
<td>6.60</td>
<td></td>
</tr>
<tr>
<td>de minimis Threshold</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Table 3.4-2 presents the net annual operational emissions increase (decrease) associated with the beddown of the KC-46A aircraft at Pittsburgh International Airport (IAP). As shown in Table 3.4-2, emissions are below the de minimis thresholds for all pollutants. This alternative would
therefore not be subject to the requirements of the General Conformity Rule for a Conformity Determination, and a Record of Non-Applicability would be prepared for this alternative.

Table 3.4-2. Comparison of Baseline and Proposed Annual Operational Emissions, 171 ARW

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Proposed Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\text{VOC})</td>
<td>(\text{NO}_x)</td>
</tr>
<tr>
<td>Aircraft Operations</td>
<td>3.42</td>
<td>67.79</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.10</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.11</td>
<td>0.46</td>
</tr>
<tr>
<td>POVs</td>
<td>4.27</td>
<td>3.37</td>
</tr>
<tr>
<td>Total</td>
<td>7.81</td>
<td>71.72</td>
</tr>
<tr>
<td>Net Increase</td>
<td>16.67</td>
<td>90.09</td>
</tr>
<tr>
<td>de minimis Threshold</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding. \(\text{NO}_x\) = oxides of nitrogen; \(\text{PM}_{2.5}\) = particulate matter less than or equal to 2.5 microns in diameter; \(\text{VOC}\) = volatile organic compound.

3.5 121st Air Refueling Wing

The emissions associated with the proposed action at Rickenbacker ANGS include construction emissions and operational emissions. Construction emissions are summarized in Table 3.5-1. As shown in Table 3.5-1, emissions would be below the \(\text{de minimis}\) thresholds for all pollutants.

Table 3.5-1. Annual Construction Emissions under Alternative #5 – 121 ARW Installation

<table>
<thead>
<tr>
<th>Construction Project</th>
<th>(\text{NO}_x)</th>
<th>(\text{VOC})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Construction Emissions</td>
<td>24.82</td>
<td>2.80</td>
</tr>
<tr>
<td>de minimis Threshold</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 3.5-2 presents the net annual operational emissions increase (decrease) associated with the beddown of the KC-46A aircraft at Rickenbacker ANGS. As shown in Table 3.5-2, emissions are below the \(\text{de minimis}\) thresholds for all pollutants. This alternative would therefore not be subject to the requirements of the General Conformity Rule for a Conformity Determination, and a Record of Non-Applicability would be prepared for this alternative.
Table 3.5-2. Comparison of Baseline and Proposed Annual Operational Emissions, 121 ARW

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Proposed Action</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VOC</td>
<td>NO\textsubscript{x}</td>
<td>VOC</td>
<td>NO\textsubscript{x}</td>
</tr>
<tr>
<td>Aircraft Operations</td>
<td>4.63</td>
<td>64.35</td>
<td>21.71</td>
<td>123.58</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.15</td>
<td>0.01</td>
<td>0.15</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.11</td>
<td>0.43</td>
<td>0.59</td>
<td>0.54</td>
</tr>
<tr>
<td>POVs</td>
<td>4.55</td>
<td>3.55</td>
<td>4.09</td>
<td>2.68</td>
</tr>
<tr>
<td>Total</td>
<td>9.29</td>
<td>68.48</td>
<td>26.43</td>
<td>126.95</td>
</tr>
<tr>
<td>Net Increase</td>
<td></td>
<td></td>
<td>17.13</td>
<td>58.47</td>
</tr>
<tr>
<td>de minimis Threshold</td>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding

\(\text{NO}_x\) = oxides of nitrogen; \(\text{VOC}\) = volatile organic compound

In accordance with the requirements of the General Conformity Rule, a conformity determination is required for each pollutant where the total of direct and indirect emissions associated with the federal action would equal or exceed any of the \(\text{de minimis}\) thresholds. Should Alternative #2 be chosen as the Proposed Action, the ANG would be required to make a determination as to the conformity of emissions of \(\text{NO}_x\) with the O\textsubscript{3} SIP for the air basin in which the Proposed Action occurs.
Appendix D3

Emission Calculations
Table D3.1-1. Engine Emission Factors by Throttle Setting - KC-135 and KC-46A Aircraft

<table>
<thead>
<tr>
<th>Engine Type/Throttle Setting</th>
<th>Fuel Flow (Pounds/Hour)</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-108-CF-100 (2)</td>
<td></td>
</tr>
<tr>
<td>Idle (9%)</td>
<td>1013.76</td>
<td>2.1045</td>
<td>30.7</td>
<td>4.00</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>3216</td>
<td>8.90E-02</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>Approach (30%)</td>
<td>2463.12</td>
<td>0.0912</td>
<td>4.20</td>
<td>8.20</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>3216</td>
<td>8.90E-02</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>Intermediate (70%)</td>
<td>6486.40</td>
<td>0.0575</td>
<td>0.09</td>
<td>16.00</td>
<td>0.06</td>
<td>0.05</td>
<td>0.05</td>
<td>3216</td>
<td>8.90E-02</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>Military (78%)</td>
<td>7801.2</td>
<td>0.0481</td>
<td>0.09</td>
<td>18.50</td>
<td>0.06</td>
<td>0.07</td>
<td>0.07</td>
<td>3216</td>
<td>8.90E-02</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>P&W 4062 (3)</td>
<td></td>
</tr>
<tr>
<td>Idle (7%)</td>
<td>1663</td>
<td>12.40</td>
<td>42.61</td>
<td>3.78</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>3216</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>Approach (30%)</td>
<td>5702</td>
<td>0.10</td>
<td>1.93</td>
<td>12.17</td>
<td>0.05</td>
<td>0.04</td>
<td>0.04</td>
<td>3216</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>Climbout (80%)</td>
<td>16870</td>
<td>0.08</td>
<td>0.50</td>
<td>25.98</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>3216</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>Take-Off (100%)</td>
<td>21622</td>
<td>0.09</td>
<td>0.61</td>
<td>34.36</td>
<td>0.08</td>
<td>0.07</td>
<td>0.07</td>
<td>3216</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>APU Use - P&W 4062</td>
<td>0.04</td>
<td>0.33</td>
<td>6.72</td>
<td>0.56</td>
<td>0.05</td>
<td>0.04</td>
<td>1373</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Data are for one engine. The KC-135 has 4 engines and the KC-46A has 2 engines.
3. ICAO Engine Exhaust Emissions Data Bank - Subsonic Engines - [ICAO 2013](https://example.com).

Table D3.1-2. HAP Emission Factors, KC-135 and KC-46A Aircraft

<table>
<thead>
<tr>
<th>Engine Type</th>
<th>Emission Factor (lb/1000 lb fuel) (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form-</td>
<td>Acet-</td>
</tr>
<tr>
<td>aldehyde</td>
<td>aldehyde</td>
</tr>
<tr>
<td>F108-CF-100</td>
<td></td>
</tr>
<tr>
<td>Idle</td>
<td>9.51E-02</td>
</tr>
<tr>
<td>Approach</td>
<td>1.50E-02</td>
</tr>
<tr>
<td>Intermediate</td>
<td>5.58E-03</td>
</tr>
<tr>
<td>Military</td>
<td>7.01E-03</td>
</tr>
<tr>
<td>P&W 4062 (3)</td>
<td></td>
</tr>
<tr>
<td>Idle</td>
<td>1.78E+00</td>
</tr>
<tr>
<td>Approach</td>
<td>1.48E-02</td>
</tr>
<tr>
<td>Intermediate</td>
<td>1.15E-02</td>
</tr>
<tr>
<td>Military</td>
<td>1.31E-02</td>
</tr>
</tbody>
</table>

Notes:
1. Data are for one engine. The KC-135 has 4 engines and the KC-46A has 2 engines.
2. Data from [Air Emissions Factor Guide to Air Force Mobile Sources (AFCEC 2013)](https://example.com), Table 2-9.
<table>
<thead>
<tr>
<th>Aircraft/Mode (Engine Throttle Setting)</th>
<th>LTO</th>
<th>Touch & Go</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time in Mode (TIM)</td>
<td>Fuel Usage</td>
</tr>
<tr>
<td></td>
<td>Minutes</td>
<td>Hours</td>
</tr>
<tr>
<td>KC-135 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxi Out (Idle)</td>
<td>32.8</td>
<td>0.55</td>
</tr>
<tr>
<td>Take-off (Military)</td>
<td>0.7</td>
<td>0.01</td>
</tr>
<tr>
<td>Climbout (Intermediate)</td>
<td>2.5</td>
<td>0.04</td>
</tr>
<tr>
<td>Approach</td>
<td>5.2</td>
<td>0.09</td>
</tr>
<tr>
<td>Taxi In (Idle)</td>
<td>14.9</td>
<td>0.25</td>
</tr>
<tr>
<td>Totals</td>
<td>56.1</td>
<td>0.94</td>
</tr>
<tr>
<td>KC-46A (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxi Out (Idle)</td>
<td>32.8</td>
<td>0.55</td>
</tr>
<tr>
<td>Take-off (Military)</td>
<td>0.7</td>
<td>0.01</td>
</tr>
<tr>
<td>Climbout (Intermediate)</td>
<td>2.5</td>
<td>0.04</td>
</tr>
<tr>
<td>Approach</td>
<td>5.2</td>
<td>0.09</td>
</tr>
<tr>
<td>Taxi In (Idle)</td>
<td>14.9</td>
<td>0.25</td>
</tr>
<tr>
<td>Totals</td>
<td>56.1</td>
<td>0.94</td>
</tr>
<tr>
<td>APU Use, KC-46A (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Flight - OBIGGS + Electric + Max ECS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Flight - Main Engine Start + Electric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-Flight - Electric + Min ECS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hours per LTO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: (1) Fuel usage per aircraft.
(2) TIM Data from Table 2-4, Transport Aircraft (AFCEC 2013).
(3) APU use from FTU/MOB1 Draft EIS.
Table D3.1-4. Land and Take-off/Touch and Go Total Fuel Usages and Emissions - KC-135 and KC-46A Aircraft

<table>
<thead>
<tr>
<th>Aircraft/Mode</th>
<th>Taxi Out (Idle)</th>
<th>Taxi In (Idle)</th>
<th>Take-off (Military)</th>
<th>Climbout (Intermediate)</th>
<th>Approach</th>
<th>Touch and Go</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time in Mode (TIM)</td>
<td>32.8</td>
<td>14.9</td>
<td>0.7</td>
<td>2.5</td>
<td>5.2</td>
<td>8.4</td>
</tr>
<tr>
<td>Emissions (Pounds)</td>
<td>2217</td>
<td>1007</td>
<td>364</td>
<td>1405</td>
<td>505</td>
<td>988</td>
</tr>
</tbody>
</table>

Aircraft/Mode

- KC-135 (2)
- KC-46A (2)

Emissions (Pounds)

- VOC: 0.21, 0.15
- CO: 0.09, 0.09
- NOx: 0.17, 0.15
- SO2: 0.03, 0.03
- PM10: 0.00, 0.00
- PM2.5: 0.00, 0.00
- CO2: 759.0, 628.1
- CH4: 0.2, 0.2
- N2O: 0.1, 0.1

Table D3.1-5. Land and Take-off/Touch and Go Total Fuel Usages and HAP Emissions - KC-135 and KC-46A Aircraft

<table>
<thead>
<tr>
<th>Aircraft/Mode</th>
<th>Taxi Out (Idle)</th>
<th>Taxi In (Idle)</th>
<th>Take-off (Military)</th>
<th>Climbout (Intermediate)</th>
<th>Approach</th>
<th>Touch and Go</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time in Mode (TIM)</td>
<td>32.8</td>
<td>14.9</td>
<td>0.7</td>
<td>2.5</td>
<td>5.2</td>
<td>8.4</td>
</tr>
<tr>
<td>Emissions (Pounds)</td>
<td>2217</td>
<td>1007</td>
<td>364</td>
<td>1405</td>
<td>505</td>
<td>988</td>
</tr>
</tbody>
</table>

Aircraft/Mode

- KC-135 (2)
- KC-46A (2)

Emissions (Pounds)

- Formaldehyde: 0.21, 3.24
- Acetaldehyde: 0.09, 0.09
- Acrolein: 0.09, 0.09
- Benzene: 0.03, 0.03
- Toluene: 0.09, 0.09
- Ethylbenzene: 0.00, 0.00
- Xylenes: 0.00, 0.00
- Styrene: 0.00, 0.00
- Chloroform: 0.00, 0.00
- Chloromethane: 0.00, 0.00
- 1,3-Dichloropropene: 0.00, 0.00
- Methylene Chloride: 0.00, 0.00
- Vinyl Acetate: 0.00, 0.00

Table D3.1-6. Land and Take-off/Touch and Go Total Fuel Usages and HAP Emissions - KC-135 and KC-46A Aircraft

<table>
<thead>
<tr>
<th>Aircraft/Mode</th>
<th>Taxi Out (Idle)</th>
<th>Taxi In (Idle)</th>
<th>Take-off (Military)</th>
<th>Climbout (Intermediate)</th>
<th>Approach</th>
<th>Touch and Go</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time in Mode (TIM)</td>
<td>32.8</td>
<td>14.9</td>
<td>0.7</td>
<td>2.5</td>
<td>5.2</td>
<td>8.4</td>
</tr>
<tr>
<td>Emissions (Pounds)</td>
<td>2217</td>
<td>1007</td>
<td>364</td>
<td>1405</td>
<td>505</td>
<td>988</td>
</tr>
</tbody>
</table>

Aircraft/Mode

- KC-135 (2)
- KC-46A (2)

Emissions (Pounds)

- Formaldehyde: 0.21, 3.24
- Acetaldehyde: 0.09, 0.09
- Acrolein: 0.09, 0.09
- Benzene: 0.03, 0.03
- Toluene: 0.09, 0.09
- Ethylbenzene: 0.00, 0.00
- Xylenes: 0.00, 0.00
- Styrene: 0.00, 0.00
- Chloroform: 0.00, 0.00
- Chloromethane: 0.00, 0.00
- 1,3-Dichloropropene: 0.00, 0.00
- Methylene Chloride: 0.00, 0.00
- Vinyl Acetate: 0.00, 0.00
Table D3.1-6. Annual Air Operations for Aircraft at Forbes - Baseline

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Number of Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LTO</td>
</tr>
<tr>
<td>KC-135</td>
<td>946</td>
</tr>
</tbody>
</table>
Table D3.1-7. KC-135 Aircraft Closed Pattern Operations at Forbes, Baseline

<table>
<thead>
<tr>
<th>Scenario/Operation</th>
<th>Total Ops per Pattern</th>
<th>55%</th>
<th>58%</th>
<th>60%</th>
<th>70%</th>
<th>73%</th>
<th>85%</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 CA VFR Right Turns South Side</td>
<td>100</td>
<td>1.08703211</td>
<td>1.05964148</td>
<td>2.23876665</td>
<td>3.26580111</td>
<td>0.17215511</td>
<td>0.60319134</td>
</tr>
<tr>
<td>KC-135 CB VFR Right Turns Southwest Side</td>
<td>100</td>
<td>1.08703211</td>
<td>1.05964148</td>
<td>3.23876665</td>
<td>2.65801111</td>
<td>0.17215511</td>
<td>0.60319134</td>
</tr>
<tr>
<td>KC-135 CC IFR Right Turns Southwest Side</td>
<td>66</td>
<td>5.08409061</td>
<td>2.76863508</td>
<td>3.98841667</td>
<td>2.65801111</td>
<td>0.17215511</td>
<td>0.60319134</td>
</tr>
<tr>
<td>KC-135 CC _2 IFR Right Turns Southwest Side</td>
<td>66</td>
<td>7.81529572</td>
<td>2.85368884</td>
<td>3.9072194</td>
<td>2.65801111</td>
<td>0.17215511</td>
<td>0.60319134</td>
</tr>
<tr>
<td>KC-135 CD IFR Right Turns Southwest Side</td>
<td>14</td>
<td>5.93736664</td>
<td>2.85344396</td>
<td>6.59612291</td>
<td>2.65801111</td>
<td>0.17215511</td>
<td>0.60319134</td>
</tr>
<tr>
<td>KC-135 CD _2 IFR Right Turns Southwest Side</td>
<td>3</td>
<td>5.08376664</td>
<td>2.85344396</td>
<td>6.59612291</td>
<td>2.65801111</td>
<td>0.17215511</td>
<td>0.60319134</td>
</tr>
<tr>
<td>KC-135 CE VFR Left Turns South Side</td>
<td>100</td>
<td>1.61109169</td>
<td>1.44097642</td>
<td>1.12193037</td>
<td>2.65801111</td>
<td>0.17215511</td>
<td>0.60319134</td>
</tr>
<tr>
<td>KC-135 CF VFR Left Turns Southwest Side</td>
<td>1897</td>
<td>1.61109169</td>
<td>1.44097642</td>
<td>1.12193037</td>
<td>2.65801111</td>
<td>0.17215511</td>
<td>0.60319134</td>
</tr>
<tr>
<td>KC-135 CG IFR Left Turns Southwest Side</td>
<td>133</td>
<td>7.81529572</td>
<td>1.51161252</td>
<td>4.17139681</td>
<td>2.65801111</td>
<td>0.17215511</td>
<td>0.60319134</td>
</tr>
<tr>
<td>KC-135 CH IFR Left Turns Southwest Side</td>
<td>14</td>
<td>2.36827143</td>
<td>7.25432736</td>
<td>7.71408428</td>
<td>2.65801111</td>
<td>0.17215511</td>
<td>0.60319134</td>
</tr>
<tr>
<td>Total Ops</td>
<td>4280</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table D3.1-8. KC-135 Aircraft Closed Pattern Operations - Fuel Use and Emission Factors, Baseline

<table>
<thead>
<tr>
<th>Factor</th>
<th>Engine Setting/Time in Mode per Operation (Minutes)</th>
<th>55%</th>
<th>58%</th>
<th>60%</th>
<th>70%</th>
<th>73%</th>
<th>85%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Use, lbs/hr</td>
<td>19910.88 - 20916.72 - 21922.56 - 25945.92 - 27589.32 - 31204.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emission Factors, lbs/1000 lbs fuel</td>
<td>0.0704 - 0.0683 - 0.0661 - 0.0575 - 0.0539 - 0.0460</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOC:</td>
<td>1.5612 - 1.3744 - 1.1175 - 0.9000 - 0.9000 - 0.9000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOx:</td>
<td>0.0500 - 0.0500 - 0.0500 - 0.0500 - 0.0500 - 0.0500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO2:</td>
<td>0.0500 - 0.0500 - 0.0500 - 0.0500 - 0.0500 - 0.0500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM10:</td>
<td>0.0500 - 0.0500 - 0.0500 - 0.0500 - 0.0500 - 0.0500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM2.5:</td>
<td>0.0500 - 0.0500 - 0.0500 - 0.0500 - 0.0500 - 0.0500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2:</td>
<td>0.0500 - 0.0500 - 0.0500 - 0.0500 - 0.0500 - 0.0500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH4:</td>
<td>0.0500 - 0.0500 - 0.0500 - 0.0500 - 0.0500 - 0.0500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2O:</td>
<td>0.0500 - 0.0500 - 0.0500 - 0.0500 - 0.0500 - 0.0500</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table D3.1-9. KC-135 Aircraft Closed Pattern Operations - Emissions Per Operation, Baseline

<table>
<thead>
<tr>
<th>Scenario/Operation</th>
<th>Emissions per operation, lbs VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 CA VFR Right Turns South Side</td>
<td>0.1614</td>
<td>2.4721</td>
<td>37.2809</td>
<td>2.6674</td>
<td>0.1363</td>
<td>0.1363</td>
<td>8183.7165</td>
<td>0.2265</td>
<td>0.2545</td>
</tr>
<tr>
<td>KC-135 CB VFR Right Turns Southwest Side</td>
<td>0.1614</td>
<td>2.4721</td>
<td>37.2809</td>
<td>2.6674</td>
<td>0.1363</td>
<td>0.1363</td>
<td>8183.7165</td>
<td>0.2265</td>
<td>0.2545</td>
</tr>
<tr>
<td>KC-135 CC IFR Right Turns Southwest Side</td>
<td>0.3329</td>
<td>6.2062</td>
<td>70.1391</td>
<td>5.3160</td>
<td>0.2713</td>
<td>0.2713</td>
<td>16128.9599</td>
<td>0.4463</td>
<td>0.5015</td>
</tr>
<tr>
<td>KC-135 CC _2 IFR Right Turns Southwest Side</td>
<td>0.3776</td>
<td>7.2053</td>
<td>78.4159</td>
<td>5.3866</td>
<td>0.3054</td>
<td>0.3054</td>
<td>18617.9580</td>
<td>0.5028</td>
<td>0.5649</td>
</tr>
<tr>
<td>KC-135 CD IFR Right Turns Southwest Side</td>
<td>0.3969</td>
<td>7.2813</td>
<td>83.4757</td>
<td>6.3237</td>
<td>0.3213</td>
<td>0.3213</td>
<td>19185.9407</td>
<td>0.5310</td>
<td>0.5966</td>
</tr>
<tr>
<td>KC-135 CD _2 IFR Right Turns Southwest Side</td>
<td>0.3969</td>
<td>7.2813</td>
<td>83.4757</td>
<td>6.3237</td>
<td>0.3213</td>
<td>0.3213</td>
<td>19185.9407</td>
<td>0.5310</td>
<td>0.5966</td>
</tr>
<tr>
<td>KC-135 CE VFR Left Turns South Side</td>
<td>0.1317</td>
<td>2.0776</td>
<td>30.5185</td>
<td>2.2050</td>
<td>0.1152</td>
<td>0.1152</td>
<td>6689.9507</td>
<td>0.1851</td>
<td>0.2090</td>
</tr>
<tr>
<td>KC-135 CF VFR Left Turns Southwest Side</td>
<td>0.1317</td>
<td>2.0776</td>
<td>30.5185</td>
<td>2.2050</td>
<td>0.1152</td>
<td>0.1152</td>
<td>6689.9507</td>
<td>0.1851</td>
<td>0.2090</td>
</tr>
<tr>
<td>KC-135 CG IFR Left Turns Southwest Side</td>
<td>0.3521</td>
<td>6.7151</td>
<td>73.4267</td>
<td>5.5846</td>
<td>0.2657</td>
<td>0.2657</td>
<td>16973.7233</td>
<td>0.4697</td>
<td>0.5278</td>
</tr>
<tr>
<td>KC-135 CH IFR Left Turns Southwest Side</td>
<td>0.4470</td>
<td>7.9644</td>
<td>95.1308</td>
<td>7.1727</td>
<td>0.3628</td>
<td>0.3628</td>
<td>21761.7200</td>
<td>0.6022</td>
<td>0.6767</td>
</tr>
<tr>
<td>Emissions, closed pattern ops, tons/year</td>
<td>0.3440</td>
<td>5.5160</td>
<td>78.4501</td>
<td>5.7133</td>
<td>0.2968</td>
<td>0.2968</td>
<td>17333.8109</td>
<td>0.4797</td>
<td>0.5390</td>
</tr>
</tbody>
</table>

D3-5
Table D3.1-10. Annual Air Emissions for KC-135 Aircraft Operations at Forbes - Baseline

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 LTOs</td>
<td>3.28</td>
<td>48.57</td>
<td>20.78</td>
<td>2.77</td>
<td>0.15</td>
<td>0.15</td>
<td>8401.07</td>
<td>0.23</td>
<td>0.26</td>
</tr>
<tr>
<td>KC-135 Closed Pattern Ops</td>
<td>0.34</td>
<td>5.52</td>
<td>78.45</td>
<td>5.71</td>
<td>0.30</td>
<td>0.30</td>
<td>17333.81</td>
<td>0.48</td>
<td>0.54</td>
</tr>
<tr>
<td>Total Existing</td>
<td>3.63</td>
<td>54.09</td>
<td>99.23</td>
<td>8.48</td>
<td>0.45</td>
<td>0.45</td>
<td>25734.88</td>
<td>0.71</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Table D3.1-11. Annual HAP Emissions for KC-135 Aircraft Operations at Forbes - Baseline

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Formaldehyde</th>
<th>Acetaldehyde</th>
<th>Acrolein</th>
<th>Naphthalene</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Ethylbenzene</th>
<th>Xylenes</th>
<th>Styrene</th>
<th>Chloroform</th>
<th>Chloromethane</th>
<th>1,3-Dichloropropene</th>
<th>Methylene Chloride</th>
<th>Vinyl Acetate</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 LTOs</td>
<td>0.16</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>KC-135 Closed Pattern Ops</td>
<td>0.05</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Total Existing</td>
<td>0.20</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>AGE Type</td>
<td>Sorties</td>
<td>Total Run Time (hr/yr)</td>
<td>Fuel Use per Unit (gal/yr)</td>
<td>Emission Factors, lbs/hr</td>
<td>CO2</td>
<td>CH4</td>
<td>N2O</td>
<td>Annual Emissions (lbs/yr)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>--------------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>--------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generator A/M32A-86</td>
<td>10 946.00</td>
<td>6.47</td>
<td>79036.77</td>
<td>148</td>
<td>2.19E+00</td>
<td>5.91E+00</td>
<td>8.96E-02</td>
<td>2.86E+01</td>
<td>6.70E+01</td>
<td>5.21E+01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start Cart A/M32A-60A</td>
<td>1 946.00</td>
<td>10.16</td>
<td>9612.58</td>
<td>180</td>
<td>2.19E+00</td>
<td>5.91E+00</td>
<td>8.96E-02</td>
<td>2.86E+01</td>
<td>6.70E+01</td>
<td>5.21E+01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start Cart A/M32A-95</td>
<td>0.1 946.00</td>
<td>8.75</td>
<td>827.75</td>
<td>155</td>
<td>2.19E+00</td>
<td>5.91E+00</td>
<td>8.96E-02</td>
<td>2.86E+01</td>
<td>6.70E+01</td>
<td>5.21E+01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heater/AC A/M32A-900-AC</td>
<td>10 946.00</td>
<td>6.80</td>
<td>145256.77</td>
<td>272</td>
<td>2.19E+00</td>
<td>5.91E+00</td>
<td>8.96E-02</td>
<td>2.86E+01</td>
<td>6.70E+01</td>
<td>5.21E+01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heated Air Compressor/M-5A</td>
<td>2 1892.00</td>
<td>7.12</td>
<td>12816.77</td>
<td>120</td>
<td>2.19E+00</td>
<td>5.91E+00</td>
<td>8.96E-02</td>
<td>2.86E+01</td>
<td>6.70E+01</td>
<td>5.21E+01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total JP-8 AGE, Tons/year</td>
<td>2.42E+03</td>
<td>6.78E-02</td>
<td>7.80E-02</td>
<td></td>
</tr>
</tbody>
</table>

Emission estimation methodology based AFCEC 2013, assuming Sortie/LTO method per AFCEC guidance. Equipment from AFCEC 2013, Table 3-3. Emission Factors from AFCEC 2013, Table 3-4.
Table D3.1-15. Aircraft Engine Emissions - Engine Tests, Forbes, Baseline

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Fuel Flow Rate per Engine (lbs fuel/hour)</th>
<th>Emission Factors (lb/1000 lb fuel)</th>
<th>Emissions (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VOC, CO, NOx, SO2, PM10, PM2.5</td>
<td></td>
</tr>
<tr>
<td>KC-135 Defueling</td>
<td>28 Idle</td>
<td>0.30</td>
<td>1</td>
<td>1,014</td>
<td>2.1, 4.0</td>
<td></td>
</tr>
<tr>
<td>Maintenance Run</td>
<td>104 Idle</td>
<td>0.33</td>
<td>4</td>
<td>1,014</td>
<td>2.1, 4.0</td>
<td></td>
</tr>
<tr>
<td>TRT Run 2 Engine</td>
<td>12 Idle</td>
<td>0.17</td>
<td>2</td>
<td>1,014</td>
<td>2.1, 4.0</td>
<td></td>
</tr>
<tr>
<td>TRT Run 4 Engine</td>
<td>9 Idle</td>
<td>0.17</td>
<td>4</td>
<td>1,014</td>
<td>2.1, 4.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>85% RPM</td>
<td>0.38</td>
<td>2</td>
<td>870.2</td>
<td>0.3, 1.1</td>
<td></td>
</tr>
</tbody>
</table>

Table D3.1-16. HAP Emissions, Engine Tests, Forbes, Baseline

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Fuel Flow Rate per Engine (lbs fuel/hour)</th>
<th>Form-aldehyde</th>
<th>Acet-aldehyde</th>
<th>Acrolein</th>
<th>Naphthalene</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Ethyl-benzene</th>
<th>Xylenes</th>
<th>Styrene</th>
<th>Chloroform</th>
<th>Chloromethane</th>
<th>1,3-Dichloropropene</th>
<th>Methylene Chloride</th>
<th>Vinyl Acetate</th>
<th>Total HAPs, TYP</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 Defueling</td>
<td>28 Idle</td>
<td>0.30</td>
<td>1</td>
<td>1,014</td>
<td>9.51E-02</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>2.90E-03</td>
<td>1.90E-03</td>
<td>8.97E-03</td>
<td>6.84E-04</td>
<td>1.65E-03</td>
<td>1.48E-03</td>
<td>2.31E-03</td>
<td>9.13E-04</td>
<td>9.98E-04</td>
<td>6.75E-02</td>
<td>4.85E-03</td>
<td></td>
</tr>
<tr>
<td>Maintenance Run</td>
<td>104 Idle</td>
<td>0.33</td>
<td>4</td>
<td>1,014</td>
<td>9.51E-02</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>2.90E-03</td>
<td>1.90E-03</td>
<td>8.97E-03</td>
<td>6.84E-04</td>
<td>1.65E-03</td>
<td>1.48E-03</td>
<td>2.31E-03</td>
<td>9.13E-04</td>
<td>9.98E-04</td>
<td>6.75E-02</td>
<td>4.85E-03</td>
<td></td>
</tr>
<tr>
<td>TRT Run 2 Engine</td>
<td>12 Idle</td>
<td>0.17</td>
<td>2</td>
<td>1,014</td>
<td>7.01E-03</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>1.11E-03</td>
<td>1.11E-03</td>
<td>0.00E+00</td>
<td>3.36E-04</td>
<td>1.96E-03</td>
<td>2.42E-03</td>
<td>8.46E-04</td>
<td>9.98E-04</td>
<td>6.75E-02</td>
<td>4.85E-03</td>
<td></td>
</tr>
<tr>
<td>TRT Run 4 Engine</td>
<td>9 Idle</td>
<td>0.17</td>
<td>4</td>
<td>1,014</td>
<td>7.01E-03</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>1.11E-03</td>
<td>1.11E-03</td>
<td>0.00E+00</td>
<td>3.36E-04</td>
<td>1.96E-03</td>
<td>2.42E-03</td>
<td>8.46E-04</td>
<td>9.98E-04</td>
<td>6.75E-02</td>
<td>4.85E-03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>85% RPM</td>
<td>0.38</td>
<td>2</td>
<td>870.2</td>
<td>7.01E-03</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>1.11E-03</td>
<td>1.11E-03</td>
<td>0.00E+00</td>
<td>3.36E-04</td>
<td>1.96E-03</td>
<td>2.42E-03</td>
<td>8.46E-04</td>
<td>9.98E-04</td>
<td>6.75E-02</td>
<td>4.85E-03</td>
<td></td>
</tr>
</tbody>
</table>

Table D3.1-17. GHG Emissions, Engine Tests, Forbes, Baseline

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Fuel Flow Rate per Engine (lbs fuel/hour)</th>
<th>CO2, CH4, N2O (lb/1000 lb fuel)</th>
<th>Actual Emissions (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KC-135 Defueling</td>
<td>28 Idle</td>
<td>0.30</td>
<td>1</td>
<td>1,014</td>
<td>3,216.0</td>
<td>0.01, 0.01</td>
</tr>
<tr>
<td>Maintenance Run</td>
<td>104 Idle</td>
<td>0.33</td>
<td>4</td>
<td>1,014</td>
<td>3,216.0</td>
<td>0.01, 0.01</td>
</tr>
<tr>
<td>TRT Run 2 Engine</td>
<td>12 Idle</td>
<td>0.17</td>
<td>2</td>
<td>1,014</td>
<td>3,216.0</td>
<td>0.01, 0.01</td>
</tr>
<tr>
<td>TRT Run 4 Engine</td>
<td>9 Idle</td>
<td>0.17</td>
<td>4</td>
<td>1,014</td>
<td>3,216.0</td>
<td>0.01, 0.01</td>
</tr>
<tr>
<td></td>
<td>85% RPM</td>
<td>0.38</td>
<td>2</td>
<td>870.2</td>
<td>3,216.0</td>
<td>0.01, 0.01</td>
</tr>
</tbody>
</table>

(1) CO2 emission factors obtained from AFCEC 2013.

CH4 and N2O emission factors were derived from Table A-101 for jet fuel in EPA's Inventory of U.S. Greenhouse Gas Emissions and Sinks, 1990-2005, using density of JP-8 as 6.8 lb/gallon.

D3-8
Table D3.1-18. Annual Worker Population and VMT at Forbes - KC-46A Project Scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Total # of Workers</th>
<th>Annual On-Base VMT</th>
<th>Annual Off-Base VMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing</td>
<td>945</td>
<td>24570</td>
<td>194103</td>
</tr>
<tr>
<td>Proposed Action</td>
<td>1126</td>
<td>29276</td>
<td>231280</td>
</tr>
</tbody>
</table>

1 On-Base mileage based on 1.00 miles from 2010 AEI; total mileage obtained from AEI.
2 Off-Base mileage based on distance to downtown Topeka, 7.9 miles; assume 260 days/year.

Table D3.1-19. Annual Average On-Road Vehicle Emission Factors - Forbes

<table>
<thead>
<tr>
<th>Scenario/Vehicle Class</th>
<th>Emission Factors (Grams/Mile)</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing (Year 2013)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDGV</td>
<td>37.05</td>
<td>0.69</td>
<td>3.56</td>
<td>1.11</td>
<td>0.15</td>
<td>0.18</td>
<td>0.86</td>
<td>0.55</td>
</tr>
<tr>
<td>LDDT</td>
<td>0.03</td>
<td>0.07</td>
<td>0.33</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>LDGT</td>
<td>60.32</td>
<td>1.13</td>
<td>1.98</td>
<td>0.22</td>
<td>0.15</td>
<td>0.20</td>
<td>0.11</td>
<td>0.01</td>
</tr>
<tr>
<td>HDGV</td>
<td>0.2</td>
<td>0.36</td>
<td>0.86</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>MC</td>
<td>1.9</td>
<td>3.29</td>
<td>27.81</td>
<td>0.84</td>
<td>0.03</td>
<td>0.03</td>
<td>0.01</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Proposed Action (Year 2018) (1)

<table>
<thead>
<tr>
<th>Scenario/Vehicle Class</th>
<th>Emission Factors (Grams/Mile)</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDGV</td>
<td>37.05</td>
<td>0.69</td>
<td>3.56</td>
<td>1.11</td>
<td>0.15</td>
<td>0.18</td>
<td>0.86</td>
<td>0.55</td>
</tr>
<tr>
<td>LDDT</td>
<td>0.03</td>
<td>0.07</td>
<td>0.33</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>LDGT</td>
<td>60.32</td>
<td>1.13</td>
<td>1.98</td>
<td>0.22</td>
<td>0.15</td>
<td>0.20</td>
<td>0.11</td>
<td>0.01</td>
</tr>
<tr>
<td>HDGV</td>
<td>0.2</td>
<td>0.36</td>
<td>0.86</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>MC</td>
<td>1.9</td>
<td>3.29</td>
<td>27.81</td>
<td>0.84</td>
<td>0.03</td>
<td>0.03</td>
<td>0.01</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Notes: (1) Emission factors from AFSEC 2013, Table 5-13, for 2017 used to provide a conservative estimate of emissions for 2018.
Table D3.1-22. Annual Air Operations for Aircraft at Forbes - Proposed Action

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>LTO</th>
<th>TGO</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A</td>
<td>1266</td>
<td>5995</td>
<td>14562</td>
</tr>
</tbody>
</table>
Table D3.1-23. KC-46A Aircraft Closed Pattern Operations at Forbes - KC-46A Proposed Scenarios

<table>
<thead>
<tr>
<th>Scenario/Operation</th>
<th>Operations/Year</th>
<th>Engine Setting/Time in Mode per Operation (Minutes)</th>
<th>55%</th>
<th>58%</th>
<th>60%</th>
<th>68%</th>
<th>73%</th>
<th>83%</th>
<th>85%</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A CA VFR Right Turns South Side</td>
<td>0.02336246</td>
<td>1.52770185</td>
<td>1.04541426</td>
<td>2.57545944</td>
<td>0.68656113</td>
<td>0.6861792</td>
<td>0.3602441</td>
<td>0.3602852</td>
<td></td>
</tr>
<tr>
<td>KC-46A CB VFR Right Turns Southwest Side</td>
<td>0.44390301</td>
<td>1.52770185</td>
<td>1.04541426</td>
<td>2.57545944</td>
<td>0.68656113</td>
<td>0.6861792</td>
<td>0.3602441</td>
<td>0.3602852</td>
<td></td>
</tr>
<tr>
<td>KC-46A CC IFR Right Turns Southwest Side</td>
<td>0.5153171</td>
<td>5.47555759</td>
<td>1.5601614</td>
<td>4.11830013</td>
<td>1.16386657</td>
<td>0.6861792</td>
<td>0.3602441</td>
<td>0.3602852</td>
<td></td>
</tr>
<tr>
<td>KC-46A CC_2 IFR Right Turns Southwest Side</td>
<td>0.5153171</td>
<td>5.47555759</td>
<td>1.0333177</td>
<td>6.8322226</td>
<td>1.16386657</td>
<td>0.6861792</td>
<td>0.3602441</td>
<td>0.3602852</td>
<td></td>
</tr>
<tr>
<td>KC-46A CD IFR Right Turns Southwest Side</td>
<td>0.00082201</td>
<td>10.6572214</td>
<td>1.00489145</td>
<td>2.43021617</td>
<td>1.16386657</td>
<td>0.6861792</td>
<td>0.3602441</td>
<td>0.3602852</td>
<td></td>
</tr>
<tr>
<td>KC-46A CD_2 IFR Right Turns Southwest Side</td>
<td>0.00082201</td>
<td>10.6572214</td>
<td>1.00489145</td>
<td>2.43021617</td>
<td>1.16386657</td>
<td>0.6861792</td>
<td>0.3602441</td>
<td>0.3602852</td>
<td></td>
</tr>
<tr>
<td>KC-46A CE VFR Left Turns South Side</td>
<td>0.02336246</td>
<td>1.52770185</td>
<td>1.04541426</td>
<td>2.57545944</td>
<td>0.68656113</td>
<td>0.6861792</td>
<td>0.3602441</td>
<td>0.3602852</td>
<td></td>
</tr>
<tr>
<td>KC-46A CF VFR Left Turns South Side</td>
<td>0.44390301</td>
<td>1.52770185</td>
<td>1.04541426</td>
<td>2.57545944</td>
<td>0.68656113</td>
<td>0.6861792</td>
<td>0.3602441</td>
<td>0.3602852</td>
<td></td>
</tr>
<tr>
<td>KC-46A CG IFR Left Turns South Side</td>
<td>0.03168342</td>
<td>5.24755759</td>
<td>0.52140594</td>
<td>6.25469204</td>
<td>1.16386657</td>
<td>0.6861792</td>
<td>0.3602441</td>
<td>0.3602852</td>
<td></td>
</tr>
<tr>
<td>KC-46A CH IFR Left Turns South Side</td>
<td>0.00164403</td>
<td>9.93973562</td>
<td>0.90605056</td>
<td>2.97021433</td>
<td>1.16386657</td>
<td>0.6861792</td>
<td>0.3602441</td>
<td>0.3602852</td>
<td></td>
</tr>
<tr>
<td>Total Ops</td>
<td>5995</td>
<td>22572</td>
<td>23688.8</td>
<td>24805.6</td>
<td>28379.3</td>
<td>3216</td>
<td>3216</td>
<td>3216</td>
<td></td>
</tr>
</tbody>
</table>

Table D3.1-24. KC-46A Aircraft Closed Pattern Operations - Fuel Use and Emission Factors

<table>
<thead>
<tr>
<th>Factor</th>
<th>Fuel Use, lbs/hr</th>
<th>Emission Factors, lbs/1000 lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>0.0200</td>
<td>0.9090</td>
</tr>
<tr>
<td>CO</td>
<td>1.2150</td>
<td>0.9090</td>
</tr>
<tr>
<td>NOx</td>
<td>19.0750</td>
<td>19.0750</td>
</tr>
<tr>
<td>SO2</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>PM10</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>PM2.5</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>CC</td>
<td>3216</td>
<td>3216</td>
</tr>
<tr>
<td>CH4</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>CO2</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>CH4</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>N2O</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Table D3.1-25. KC-46A Aircraft Closed Pattern Operations - Emissions Per Operation

<table>
<thead>
<tr>
<th>Emissions per operation, lbs</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A CA VFR Right Turns South Side</td>
<td>0.2531</td>
<td>2.8367</td>
<td>61.2646</td>
<td>3.0225</td>
<td>0.1809</td>
<td>0.1523</td>
<td>9170.2396</td>
<td>0.2538</td>
<td>0.2851</td>
</tr>
<tr>
<td>KC-46A CB VFR Right Turns Southwest Side</td>
<td>0.2531</td>
<td>2.8367</td>
<td>61.2646</td>
<td>3.0225</td>
<td>0.1809</td>
<td>0.1523</td>
<td>9170.2396</td>
<td>0.2538</td>
<td>0.2851</td>
</tr>
<tr>
<td>KC-46A CC IFR Right Turns Southwest Side</td>
<td>0.4768</td>
<td>5.6496</td>
<td>109.9461</td>
<td>5.6344</td>
<td>0.3311</td>
<td>0.2780</td>
<td>1704.6263</td>
<td>0.4731</td>
<td>0.3315</td>
</tr>
<tr>
<td>KC-46A CC_2 IFR Right Turns Southwest Side</td>
<td>0.5579</td>
<td>6.6000</td>
<td>126.5666</td>
<td>6.5964</td>
<td>0.3576</td>
<td>0.3254</td>
<td>2001.1403</td>
<td>0.5538</td>
<td>0.6222</td>
</tr>
<tr>
<td>KC-46A CD IFR Right Turns Southwest Side</td>
<td>0.5906</td>
<td>7.1145</td>
<td>130.0111</td>
<td>6.8112</td>
<td>0.3613</td>
<td>0.3319</td>
<td>2086.7685</td>
<td>0.5719</td>
<td>0.6426</td>
</tr>
<tr>
<td>KC-46A CD_2 IFR Right Turns Southwest Side</td>
<td>0.5906</td>
<td>7.1145</td>
<td>130.0111</td>
<td>6.8112</td>
<td>0.3613</td>
<td>0.3319</td>
<td>2086.7685</td>
<td>0.5719</td>
<td>0.6426</td>
</tr>
<tr>
<td>KC-46A CE VFR Left Turns South Side</td>
<td>0.2531</td>
<td>2.8367</td>
<td>61.2646</td>
<td>3.0225</td>
<td>0.1809</td>
<td>0.1523</td>
<td>9170.2396</td>
<td>0.2538</td>
<td>0.2851</td>
</tr>
<tr>
<td>KC-46A CF VFR Left Turns South Side</td>
<td>0.2531</td>
<td>2.8367</td>
<td>61.2646</td>
<td>3.0225</td>
<td>0.1809</td>
<td>0.1523</td>
<td>9170.2396</td>
<td>0.2538</td>
<td>0.2851</td>
</tr>
<tr>
<td>KC-46A CG IFR Left Turns South Side</td>
<td>0.5180</td>
<td>6.1185</td>
<td>119.7211</td>
<td>6.1276</td>
<td>0.3694</td>
<td>0.3206</td>
<td>19590.9803</td>
<td>0.5145</td>
<td>0.5781</td>
</tr>
<tr>
<td>KC-46A CH IFR Left Turns South Side</td>
<td>0.5744</td>
<td>7.0559</td>
<td>129.0739</td>
<td>6.7432</td>
<td>0.3627</td>
<td>0.3291</td>
<td>20486.5274</td>
<td>0.5962</td>
<td>0.6381</td>
</tr>
<tr>
<td>Emissions, closed pattern ops, tons/year</td>
<td>0.8111</td>
<td>9.1567</td>
<td>195.1626</td>
<td>9.6741</td>
<td>0.5776</td>
<td>0.4863</td>
<td>29350.8442</td>
<td>0.8123</td>
<td>0.9127</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A LTOs</td>
<td>21.40</td>
<td>74.33</td>
<td>48.79</td>
<td>3.78</td>
<td>0.31</td>
<td>0.27</td>
<td>11462.73</td>
<td>0.32</td>
<td>0.36</td>
</tr>
<tr>
<td>KC-46A T&G</td>
<td>0.81</td>
<td>9.16</td>
<td>195.16</td>
<td>9.67</td>
<td>0.58</td>
<td>0.49</td>
<td>26360.84</td>
<td>0.81</td>
<td>0.91</td>
</tr>
<tr>
<td>APU</td>
<td>0.05</td>
<td>0.45</td>
<td>9.16</td>
<td>0.76</td>
<td>0.07</td>
<td>0.06</td>
<td>1871.62</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total Proposed Action</td>
<td>22.27</td>
<td>83.94</td>
<td>253.12</td>
<td>14.22</td>
<td>0.95</td>
<td>0.81</td>
<td>42685.20</td>
<td>1.13</td>
<td>1.27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Formaldehyde</th>
<th>Acetaldehyde</th>
<th>Acrolein</th>
<th>Naphthalene</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Ethylbenzene</th>
<th>Xylenes</th>
<th>Styrene</th>
<th>Chloroform</th>
<th>Chloromethane</th>
<th>1,3-Dichloropropene</th>
<th>Methylene Chloride</th>
<th>Vinyl Acetate</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A LTOs</td>
<td>3.06</td>
<td>1.06</td>
<td>0.61</td>
<td>0.13</td>
<td>0.42</td>
<td>0.16</td>
<td>0.04</td>
<td>0.07</td>
<td>0.06</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.19</td>
<td>0.01</td>
</tr>
<tr>
<td>KC-46A Closed Pattern Ops</td>
<td>0.11</td>
<td>0.04</td>
<td>0.02</td>
<td>0.00</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.36</td>
<td>0.03</td>
</tr>
<tr>
<td>Total Proposed Action</td>
<td>3.17</td>
<td>1.10</td>
<td>0.63</td>
<td>0.14</td>
<td>0.43</td>
<td>0.17</td>
<td>0.04</td>
<td>0.07</td>
<td>0.06</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.54</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Table D3.1-28 JP-8 AGE Equipment Emissions, Forbes, Proposed Action

<table>
<thead>
<tr>
<th>AGE Type</th>
<th>Sorties</th>
<th>Fuel Use per Unit (gal/hr)</th>
<th>Emission Factors, metric Tons/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator AV-249A</td>
<td>1</td>
<td>5.67E+04</td>
<td>3.30E+03</td>
</tr>
<tr>
<td>Start Cart AV-256A</td>
<td>1</td>
<td>5.67E+04</td>
<td>3.30E+03</td>
</tr>
<tr>
<td>Light Cart NF-2</td>
<td>2</td>
<td>4.19E+03</td>
<td>2.56E+02</td>
</tr>
<tr>
<td>Air Compressor MA-3C AC</td>
<td>2</td>
<td>4.19E+03</td>
<td>2.56E+02</td>
</tr>
</tbody>
</table>

Table D3.1-29 AGE HAP Emissions, Forbes, Proposed Action

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Total Run Time (hr/yr)</th>
<th>Fuel Use per Unit (gal/hr)</th>
<th>Emission Factors, lbs/1000 gal</th>
<th>Actual Annual Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>1.52E-03</td>
<td></td>
<td></td>
<td>2.35E+01</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>5.48E-03</td>
<td>3.25E+01</td>
<td>7.00E+02</td>
<td></td>
</tr>
<tr>
<td>Acrolein</td>
<td>6.48E-04</td>
<td></td>
<td></td>
<td>5.45E+01</td>
</tr>
<tr>
<td>Benzene</td>
<td>7.65E-03</td>
<td></td>
<td></td>
<td>4.75E+02</td>
</tr>
<tr>
<td>Beryllium</td>
<td>4.31E-05</td>
<td></td>
<td></td>
<td>2.35E+01</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>2.22E-03</td>
<td></td>
<td></td>
<td>1.40E+02</td>
</tr>
<tr>
<td>Cadmium</td>
<td>5.67E-04</td>
<td></td>
<td></td>
<td>3.45E+02</td>
</tr>
<tr>
<td>Chromium</td>
<td>1.52E-03</td>
<td></td>
<td></td>
<td>9.00E+01</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>3.89E-03</td>
<td></td>
<td></td>
<td>2.30E+02</td>
</tr>
<tr>
<td>Lead</td>
<td>1.19E-03</td>
<td></td>
<td></td>
<td>7.00E+01</td>
</tr>
<tr>
<td>Manganese</td>
<td>1.19E-03</td>
<td></td>
<td></td>
<td>7.00E+01</td>
</tr>
<tr>
<td>Mercury</td>
<td>1.06E-03</td>
<td></td>
<td></td>
<td>6.00E+01</td>
</tr>
<tr>
<td>Nickel</td>
<td>3.89E-03</td>
<td></td>
<td></td>
<td>2.30E+02</td>
</tr>
<tr>
<td>Selenium</td>
<td>3.89E-03</td>
<td></td>
<td></td>
<td>2.30E+02</td>
</tr>
<tr>
<td>Tin</td>
<td>2.04E-03</td>
<td></td>
<td></td>
<td>1.20E+02</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>1.49E+02</td>
</tr>
</tbody>
</table>

Table D3.1-30 JP-8 AGE Equipment GHG Emissions, Forbes, Proposed Action

<table>
<thead>
<tr>
<th>AGE Type</th>
<th>Sorties</th>
<th>Fuel Use per Unit (gal/hr)</th>
<th>Emission Factors, lbs/MMBTU</th>
<th>Annual Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator AV-249A</td>
<td>1</td>
<td>5.67E+04</td>
<td>5.90E-03</td>
<td>3.25E+03</td>
</tr>
<tr>
<td>Start Cart AV-256A</td>
<td>1</td>
<td>5.67E+04</td>
<td>5.90E-03</td>
<td>3.25E+03</td>
</tr>
<tr>
<td>Light Cart NF-2</td>
<td>2</td>
<td>4.19E+03</td>
<td>2.56E+02</td>
<td>1.40E+02</td>
</tr>
<tr>
<td>Air Compressor MA-3C AC</td>
<td>2</td>
<td>4.19E+03</td>
<td>2.56E+02</td>
<td>1.40E+02</td>
</tr>
</tbody>
</table>

Table D3.1-31 JP-8 AGE Equipment Emissions, Forbes, Proposed Action

<table>
<thead>
<tr>
<th>AGE Type</th>
<th>Sorties</th>
<th>Fuel Use per Unit (gal/hr)</th>
<th>Engine Rating (hp)</th>
<th>Emission Factors, metric Tons/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generator AV-249A</td>
<td>1</td>
<td>5.67E+04</td>
<td>3.25E+01</td>
<td>1.40E+02</td>
</tr>
<tr>
<td>Start Cart AV-256A</td>
<td>1</td>
<td>5.67E+04</td>
<td>3.25E+01</td>
<td>1.40E+02</td>
</tr>
<tr>
<td>Light Cart NF-2</td>
<td>2</td>
<td>4.19E+03</td>
<td>2.56E+02</td>
<td>1.40E+02</td>
</tr>
<tr>
<td>Air Compressor MA-3C AC</td>
<td>2</td>
<td>4.19E+03</td>
<td>2.56E+02</td>
<td>1.40E+02</td>
</tr>
</tbody>
</table>

Emission estimation methodology based AFCEC 2013, assuming Sortie/LTO method per AFCEC guidance.
Equipment from AFCEC 2013, Table 3-3. Emission Factors from AFCEC 2013, Table 3-4.
Table D3.1-31. Aircraft Engine Emissions - Engine Tests, Proposed Action, Forbes

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs fuel)</th>
<th>Emission Factors (lb/1000 lb fuel)</th>
<th>Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defueling</td>
<td>38</td>
<td>Idle</td>
<td>0.50</td>
<td>2</td>
<td>1.063 3.296 0.01 0.1 0.1 96,279.32</td>
<td>206 2.90</td>
<td>206 2.90</td>
</tr>
<tr>
<td>Maintenance Run</td>
<td>145</td>
<td>Idle</td>
<td>0.33</td>
<td>3</td>
<td>1.063 3.296 0.01 0.1 0.1 96,279.32</td>
<td>206 2.90</td>
<td>206 2.90</td>
</tr>
<tr>
<td>TRT Run 1 Engine</td>
<td>17</td>
<td>Idle</td>
<td>0.17</td>
<td>1</td>
<td>1.063 3.296 0.01 0.1 0.1 96,279.32</td>
<td>206 2.90</td>
<td>206 2.90</td>
</tr>
<tr>
<td>TRT Run 2 Engine</td>
<td>17</td>
<td>Idle</td>
<td>0.17</td>
<td>2</td>
<td>1.063 3.296 0.01 0.1 0.1 96,279.32</td>
<td>206 2.90</td>
<td>206 2.90</td>
</tr>
<tr>
<td>TRT Run 3 Engine</td>
<td>17</td>
<td>Idle</td>
<td>0.17</td>
<td>1</td>
<td>1.063 3.296 0.01 0.1 0.1 96,279.32</td>
<td>206 2.90</td>
<td>206 2.90</td>
</tr>
<tr>
<td>TRT Run 4 Engine</td>
<td>17</td>
<td>Idle</td>
<td>0.17</td>
<td>2</td>
<td>1.063 3.296 0.01 0.1 0.1 96,279.32</td>
<td>206 2.90</td>
<td>206 2.90</td>
</tr>
</tbody>
</table>

Table D3.1-32. HAP Emissions, Engine Tests, Proposed Action, Forbes

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs fuel)</th>
<th>Emission Factors (lb/1000 lb fuel)</th>
<th>Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defueling</td>
<td>38</td>
<td>Idle</td>
<td>0.50</td>
<td>2</td>
<td>1.063 3.296 0.01 0.1 0.1 96,279.32</td>
<td>206 2.90</td>
<td>206 2.90</td>
</tr>
<tr>
<td>Maintenance Run</td>
<td>145</td>
<td>Idle</td>
<td>0.33</td>
<td>3</td>
<td>1.063 3.296 0.01 0.1 0.1 96,279.32</td>
<td>206 2.90</td>
<td>206 2.90</td>
</tr>
<tr>
<td>TRT Run 1 Engine</td>
<td>17</td>
<td>Idle</td>
<td>0.17</td>
<td>1</td>
<td>1.063 3.296 0.01 0.1 0.1 96,279.32</td>
<td>206 2.90</td>
<td>206 2.90</td>
</tr>
<tr>
<td>TRT Run 2 Engine</td>
<td>17</td>
<td>Idle</td>
<td>0.17</td>
<td>2</td>
<td>1.063 3.296 0.01 0.1 0.1 96,279.32</td>
<td>206 2.90</td>
<td>206 2.90</td>
</tr>
<tr>
<td>TRT Run 3 Engine</td>
<td>17</td>
<td>Idle</td>
<td>0.17</td>
<td>1</td>
<td>1.063 3.296 0.01 0.1 0.1 96,279.32</td>
<td>206 2.90</td>
<td>206 2.90</td>
</tr>
<tr>
<td>TRT Run 4 Engine</td>
<td>17</td>
<td>Idle</td>
<td>0.17</td>
<td>2</td>
<td>1.063 3.296 0.01 0.1 0.1 96,279.32</td>
<td>206 2.90</td>
<td>206 2.90</td>
</tr>
</tbody>
</table>

Table D3.1-33. GHG Emissions, Engine Tests, Proposed Action, Forbes

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs fuel)</th>
<th>Emission Factors (lb/1000 lb fuel)</th>
<th>Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defueling</td>
<td>38</td>
<td>Idle</td>
<td>0.50</td>
<td>2</td>
<td>1.063 3.296 0.01 0.1 0.1 96,279.32</td>
<td>206 2.90</td>
<td>206 2.90</td>
</tr>
<tr>
<td>Maintenance Run</td>
<td>145</td>
<td>Idle</td>
<td>0.33</td>
<td>3</td>
<td>1.063 3.296 0.01 0.1 0.1 96,279.32</td>
<td>206 2.90</td>
<td>206 2.90</td>
</tr>
<tr>
<td>TRT Run 1 Engine</td>
<td>17</td>
<td>Idle</td>
<td>0.17</td>
<td>1</td>
<td>1.063 3.296 0.01 0.1 0.1 96,279.32</td>
<td>206 2.90</td>
<td>206 2.90</td>
</tr>
<tr>
<td>TRT Run 2 Engine</td>
<td>17</td>
<td>Idle</td>
<td>0.17</td>
<td>2</td>
<td>1.063 3.296 0.01 0.1 0.1 96,279.32</td>
<td>206 2.90</td>
<td>206 2.90</td>
</tr>
<tr>
<td>TRT Run 3 Engine</td>
<td>17</td>
<td>Idle</td>
<td>0.17</td>
<td>1</td>
<td>1.063 3.296 0.01 0.1 0.1 96,279.32</td>
<td>206 2.90</td>
<td>206 2.90</td>
</tr>
<tr>
<td>TRT Run 4 Engine</td>
<td>17</td>
<td>Idle</td>
<td>0.17</td>
<td>2</td>
<td>1.063 3.296 0.01 0.1 0.1 96,279.32</td>
<td>206 2.90</td>
<td>206 2.90</td>
</tr>
</tbody>
</table>

(1) CO2 emission factors obtained from AFCEC 2013. CH4 and N2O emission factors were derived from Table A-101 for jet fuel in EPA’s Inventory of U.S. Greenhouse Gas Emissions and Sinks, 1990-2005, using density of JP-8 as 6.8 lb/gallon.
Table D3.1-34. Forbes Comparison of Emissions

<table>
<thead>
<tr>
<th></th>
<th>Annual Emissions, tons/year</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VOC</td>
<td>CO</td>
<td>NOx</td>
<td>SO2</td>
<td>PM10</td>
<td>PM2.5</td>
</tr>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft Ops</td>
<td>3.63</td>
<td>54.09</td>
<td>99.23</td>
<td>8.48</td>
<td>0.45</td>
<td>0.45</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.17</td>
<td>2.52</td>
<td>0.69</td>
<td>0.11</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>POVs</td>
<td>1.94</td>
<td>25.92</td>
<td>1.46</td>
<td>0.02</td>
<td>0.06</td>
<td>0.03</td>
</tr>
<tr>
<td>Total</td>
<td>5.75</td>
<td>83.00</td>
<td>101.39</td>
<td>8.61</td>
<td>0.53</td>
<td>0.49</td>
</tr>
<tr>
<td>Proposed Action</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft Ops</td>
<td>22.27</td>
<td>83.94</td>
<td>253.12</td>
<td>14.22</td>
<td>0.95</td>
<td>0.81</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>1.27</td>
<td>4.33</td>
<td>1.17</td>
<td>0.14</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>POVs</td>
<td>1.59</td>
<td>23.99</td>
<td>1.11</td>
<td>0.02</td>
<td>0.06</td>
<td>0.03</td>
</tr>
<tr>
<td>Total</td>
<td>25.14</td>
<td>112.28</td>
<td>255.42</td>
<td>14.38</td>
<td>1.04</td>
<td>0.86</td>
</tr>
<tr>
<td>Net Increase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19.40</td>
<td>29.28</td>
<td>154.03</td>
<td>5.77</td>
<td>0.51</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Table D3.1-35. Forbes Comparison of HAP Emissions

<table>
<thead>
<tr>
<th></th>
<th>Annual HAP Emissions, tons/year</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Form-</td>
<td>Acet-</td>
<td>Acrolein</td>
<td>Naphthalene</td>
<td>Benzene</td>
<td>Toluene</td>
<td>Ethyl-</td>
<td>Xylenes</td>
<td>Styrene</td>
<td>Chloroform</td>
<td>Chloromethane</td>
<td>1,3-</td>
<td>Dichloropropene</td>
<td>Methylene</td>
<td>Chloride</td>
</tr>
<tr>
<td></td>
<td>aldehyde</td>
<td>aldehyde</td>
<td>Acrolein</td>
<td>Naphthalene</td>
<td>Benzene</td>
<td>Toluene</td>
<td>benzene</td>
<td>Xylenes</td>
<td>Styrene</td>
<td>Chloroform</td>
<td>Chloromethane</td>
<td>Dichloropropene</td>
<td>Methylene Chloride</td>
<td>Vinyl Acetate</td>
<td></td>
</tr>
<tr>
<td>Aircraft Ops</td>
<td>0.20</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>AGE</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>0.23</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Proposed Action</td>
<td></td>
</tr>
<tr>
<td>Aircraft Ops</td>
<td>3.17</td>
<td>1.10</td>
<td>0.63</td>
<td>0.14</td>
<td>0.17</td>
<td>0.17</td>
<td>0.04</td>
<td>0.07</td>
<td>0.08</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>AGE</td>
<td>0.03</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.06</td>
<td>0.04</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>3.26</td>
<td>1.15</td>
<td>0.64</td>
<td>0.17</td>
<td>0.46</td>
<td>0.17</td>
<td>0.05</td>
<td>0.08</td>
<td>0.08</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Net Increase</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.03</td>
<td>1.14</td>
<td>0.64</td>
<td>0.16</td>
<td>0.44</td>
<td>0.13</td>
<td>0.05</td>
<td>0.06</td>
<td>0.08</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Table D3.1-36. Forbes Comparison of GHG Emissions

<table>
<thead>
<tr>
<th></th>
<th>Annual GHG Emissions, metric tons/year</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO2</td>
<td>CH4</td>
<td>N2O</td>
<td>CO2e</td>
<td></td>
</tr>
<tr>
<td>Aircraft Ops</td>
<td>23347</td>
<td>0.66</td>
<td>0.73</td>
<td>23586</td>
<td></td>
</tr>
<tr>
<td>AGE</td>
<td>2421</td>
<td>0.07</td>
<td>0.06</td>
<td>2446</td>
<td></td>
</tr>
<tr>
<td>Engine Tests</td>
<td>296</td>
<td>0.01</td>
<td>0.01</td>
<td>296</td>
<td></td>
</tr>
<tr>
<td>POVs</td>
<td>953</td>
<td>0.00</td>
<td>0.00</td>
<td>953</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>27056</td>
<td>0.72</td>
<td>0.81</td>
<td>27324</td>
<td></td>
</tr>
<tr>
<td>Proposed Action</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft Ops</td>
<td>38724</td>
<td>1.02</td>
<td>1.15</td>
<td>39102</td>
<td></td>
</tr>
<tr>
<td>AGE</td>
<td>3291</td>
<td>0.09</td>
<td>0.11</td>
<td>3326</td>
<td></td>
</tr>
<tr>
<td>Engine Tests</td>
<td>384</td>
<td>0.01</td>
<td>0.01</td>
<td>388</td>
<td></td>
</tr>
<tr>
<td>POVs</td>
<td>1015</td>
<td>0.00</td>
<td>0.00</td>
<td>1015</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>43413</td>
<td>1.13</td>
<td>1.27</td>
<td>43831</td>
<td></td>
</tr>
<tr>
<td>Net Increase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16357</td>
<td>0.41</td>
<td>0.46</td>
<td>16507</td>
<td></td>
</tr>
</tbody>
</table>
Table D3.2-1: Engine Emission Factors by Throttle Setting - KC-135 and KC-46A Aircraft

<table>
<thead>
<tr>
<th>Engine Type/Throttle Setting</th>
<th>Fuel Flow (Pounds/Hour)</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-108-CF-100 (2)</td>
<td></td>
</tr>
<tr>
<td>Idle</td>
<td>1013.76</td>
<td>2.1045</td>
<td>30.7</td>
<td>4</td>
<td>1.06</td>
<td>0.06</td>
<td>0.06</td>
<td>3216</td>
<td>8.90E-02</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>Approach</td>
<td>2453.12</td>
<td>0.092</td>
<td>4.2</td>
<td>8.2</td>
<td>1.06</td>
<td>0.06</td>
<td>0.06</td>
<td>3216</td>
<td>8.90E-02</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>Intermediate</td>
<td>6486.48</td>
<td>0.0575</td>
<td>0.09</td>
<td>16</td>
<td>1.06</td>
<td>0.06</td>
<td>0.06</td>
<td>3216</td>
<td>8.90E-02</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>Military</td>
<td>7801.2</td>
<td>0.046</td>
<td>0.05</td>
<td>18.5</td>
<td>1.06</td>
<td>0.07</td>
<td>0.07</td>
<td>3216</td>
<td>8.90E-02</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>P&W 4062 (3)</td>
<td></td>
</tr>
<tr>
<td>Idle</td>
<td>1663.2</td>
<td>12.489</td>
<td>42.61</td>
<td>3.78</td>
<td>1.06</td>
<td>0.11</td>
<td>0.1</td>
<td>3216</td>
<td>8.90E-02</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>Approach</td>
<td>5702.4</td>
<td>0.1035</td>
<td>1.90</td>
<td>12.17</td>
<td>1.06</td>
<td>0.05</td>
<td>0.04</td>
<td>3216</td>
<td>8.90E-02</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>Climbout</td>
<td>16869.6</td>
<td>0.0805</td>
<td>0.5</td>
<td>25.98</td>
<td>1.06</td>
<td>0.07</td>
<td>0.06</td>
<td>3216</td>
<td>8.90E-02</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>Take-Off</td>
<td>21621.6</td>
<td>0.062</td>
<td>0.61</td>
<td>34.36</td>
<td>1.06</td>
<td>0.08</td>
<td>0.07</td>
<td>3216</td>
<td>8.90E-02</td>
<td>1.00E-01</td>
</tr>
</tbody>
</table>

Notes:
1. Data are for one engine. The KC-135R has 4 engines and the KC-46A has 2 engines.

Table D3.2-2: HAP Emission Factors - KC-135 and KC-46A Aircraft

<table>
<thead>
<tr>
<th>Engine Type</th>
<th>Formaldehyde</th>
<th>Acetaldehyde</th>
<th>Acrolein</th>
<th>Naphthalene</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Ethylbenzene</th>
<th>Xylenes</th>
<th>Styrene</th>
<th>Chloroform</th>
<th>Chloromethane</th>
<th>1,3-Dichloropropene</th>
<th>Methylene Chloride</th>
<th>Vinyl Acetate</th>
</tr>
</thead>
<tbody>
<tr>
<td>F108-CF-100</td>
<td></td>
</tr>
<tr>
<td>Idle</td>
<td>9.51E-02</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>2.90E-03</td>
<td>1.90E-03</td>
<td>8.97E-03</td>
<td>6.84E-04</td>
<td>1.65E-03</td>
<td>9.13E-04</td>
<td>9.68E-04</td>
<td>6.79E-02</td>
<td>4.85E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach</td>
<td>1.50E-02</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>3.22E-03</td>
<td>6.23E-03</td>
<td>5.53E-04</td>
<td>1.61E-03</td>
<td>3.53E-04</td>
<td>1.85E-03</td>
<td>8.63E-04</td>
<td>7.63E-02</td>
<td>4.48E-03</td>
<td>3.81E-03</td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td>5.98E-03</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>4.25E-04</td>
<td>1.42E-03</td>
<td>0.00E+00</td>
<td>5.42E-04</td>
<td>0.00E+00</td>
<td>1.78E-03</td>
<td>7.94E-04</td>
<td>5.00E-04</td>
<td>5.00E-02</td>
<td>2.54E-03</td>
<td></td>
</tr>
<tr>
<td>Military</td>
<td>7.01E-03</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>1.11E-03</td>
<td>1.11E-03</td>
<td>0.00E+00</td>
<td>3.36E-04</td>
<td>0.00E+00</td>
<td>1.18E-03</td>
<td>3.37E-04</td>
<td>4.84E-04</td>
<td>1.96E-03</td>
<td>2.42E-03</td>
<td></td>
</tr>
<tr>
<td>P&W 4062 (3)</td>
<td></td>
</tr>
<tr>
<td>Idle</td>
<td>1.78E+00</td>
<td>6.14E-01</td>
<td>3.55E-01</td>
<td>7.84E-02</td>
<td>2.44E-01</td>
<td>9.30E-02</td>
<td>2.52E-02</td>
<td>4.06E-02</td>
<td>4.48E-02</td>
<td>3.31E-03</td>
<td>9.13E-04</td>
<td>9.68E-04</td>
<td>6.79E-02</td>
<td>4.85E-03</td>
</tr>
<tr>
<td>Approach</td>
<td>1.48E-02</td>
<td>5.13E-03</td>
<td>2.94E-03</td>
<td>6.55E-04</td>
<td>2.02E-03</td>
<td>7.71E-04</td>
<td>2.09E-04</td>
<td>3.39E-04</td>
<td>3.71E-04</td>
<td>1.85E-03</td>
<td>8.62E-04</td>
<td>7.63E-02</td>
<td>4.48E-02</td>
<td>3.81E-03</td>
</tr>
<tr>
<td>Intermediate</td>
<td>1.15E-02</td>
<td>3.95E-03</td>
<td>2.29E-03</td>
<td>5.05E-04</td>
<td>1.57E-03</td>
<td>6.00E-04</td>
<td>1.63E-04</td>
<td>2.62E-04</td>
<td>2.98E-04</td>
<td>1.76E-03</td>
<td>7.94E-04</td>
<td>5.00E-04</td>
<td>5.00E-02</td>
<td>2.54E-03</td>
</tr>
<tr>
<td>Military</td>
<td>1.31E-02</td>
<td>4.56E-03</td>
<td>2.61E-03</td>
<td>5.79E-04</td>
<td>1.79E-03</td>
<td>6.85E-04</td>
<td>1.80E-04</td>
<td>3.01E-04</td>
<td>3.30E-04</td>
<td>1.18E-03</td>
<td>3.37E-04</td>
<td>4.84E-04</td>
<td>1.96E-03</td>
<td>2.42E-03</td>
</tr>
</tbody>
</table>

Notes:
1. Data are for one engine. The KC-135R has 4 engines and the KC-46A has 2 engines.
2. Data from Air Emissions Factor Guide to Air Force Mobile Sources (AFCEC 2013), Table 2-9.
Table D3.2-3. Land and Take-off/Touch and Go Times in Mode and Fuel Usages - KC-135 and KC-46A Aircraft

<table>
<thead>
<tr>
<th>Aircraft/Mode (Engine Throttle Setting)</th>
<th>LTO</th>
<th>Touch & Go</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time in Mode (TIM)</td>
<td>Fuel Usage</td>
</tr>
<tr>
<td></td>
<td>Minutes</td>
<td>Hours</td>
</tr>
<tr>
<td>KC-135 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxi Out (Idle)</td>
<td>32.8</td>
<td>0.55</td>
</tr>
<tr>
<td>Take-off (Military)</td>
<td>0.7</td>
<td>0.01</td>
</tr>
<tr>
<td>Climbout (Intermediate)</td>
<td>2.5</td>
<td>0.04</td>
</tr>
<tr>
<td>Approach</td>
<td>5.2</td>
<td>0.09</td>
</tr>
<tr>
<td>Taxi In (Idle)</td>
<td>14.9</td>
<td>0.25</td>
</tr>
<tr>
<td>Totals</td>
<td>56.1</td>
<td>0.94</td>
</tr>
<tr>
<td>KC-46A (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxi Out (Idle)</td>
<td>32.8</td>
<td>0.55</td>
</tr>
<tr>
<td>Take-off (Military)</td>
<td>0.7</td>
<td>0.01</td>
</tr>
<tr>
<td>Climbout (Intermediate)</td>
<td>2.5</td>
<td>0.04</td>
</tr>
<tr>
<td>Approach</td>
<td>5.2</td>
<td>0.09</td>
</tr>
<tr>
<td>Taxi In (Idle)</td>
<td>14.9</td>
<td>0.25</td>
</tr>
<tr>
<td>Totals</td>
<td>56.1</td>
<td>0.94</td>
</tr>
<tr>
<td>APU Use, KC-46A (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Flight - OBIGGS + Electric + Max ECS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Flight - Main Engine Start + Electric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-Flight - Electric + Min ECS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hours per LTO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: (1) Fuel usage per aircraft.
(2) TIM Data from Table 2-4, Transport Aircraft (AFCEC 2013).
(3) APU use from FTU/MOB1 Draft EIS.
Table D3.2-4. Land and Take-off/Touch and Go Total Fuel Usages and Emissions - KC-135 and KC-46A Aircraft
Aircraft/Mode
LTO
LTOs
Fuel Usage
VOC
CO
Time in Mode (TIM)
Minutes
Hours
Pounds
KC-135 (2)
Taxi Out (Idle)
32.8
0.55
2217
4.67
68.05
Take-off (Military)
0.7
0.01
364
0.02
0.03
Climbout (Intermediate)
2.5
0.04
1081
0.06
0.10
Approach
5.2
0.09
854
0.08
3.59
Taxi In (Idle)
14.9
0.25
1007
2.12
30.91
Totals
56.1
0.935
5523
6.94
102.69
KC-46A (2)
Taxi Out (Idle)
32.8
0.55
1818
22.71
77.48
Take-off (Military)
0.7
0.01
505
0.05
0.31
Climbout (Intermediate)
2.5
0.04
1406
0.11
0.70
Approach
5.2
0.09
988
0.10
1.91
Taxi In (Idle)
14.9
0.25
826
10.32
35.20
Totals
56.1
0.935
5543
33.29
115.60

Aircraft/Mode
Touch and Go
KC-135 (2)
Take-off (Military)
Climbout (Intermediate)
Approach
Totals
KC-46A (2)
Take-off (Military)
Climbout (Intermediate)
Approach
Totals

Touch and Go
Time in Mode (TIM)
Minutes
Hours

Fuel Usage
Pounds

VOC

CO

NOx

SO2

Emissions (Pounds)
PM10
PM2.5

KC-135 (2)
Taxi Out (Idle)
Take-off (Military)
Climbout (Intermediate)
Approach
Taxi In (Idle)
Totals
KC-46A (2)
Taxi Out (Idle)
Take-off (Military)
Climbout (Intermediate)
Approach
Taxi In (Idle)
Totals

KC-135 (2)
Take-off (Military)
Climbout (Intermediate)
Approach
Totals
KC-46A (2)
Take-off (Military)
Climbout (Intermediate)
Approach
Totals

N2O

2.35
0.39
1.15
0.91
1.07
5.85

0.13
0.03
0.05
0.05
0.06
0.32

0.13
0.03
0.05
0.05
0.06
0.32

7129.08
1170.80
3476.75
2746.08
3238.52
17761.24

0.20
0.03
0.10
0.08
0.09
0.49

0.22
0.04
0.11
0.09
0.10
0.55

6.87
17.33
36.52
12.03
3.12
75.88

1.93
0.53
1.49
1.05
0.88
5.88

0.20
0.04
0.10
0.05
0.09
0.48

0.18
0.04
0.08
0.04
0.08
0.42

5848.08
1622.48
4521.05
3178.75
2656.60
17826.96

0.16
0.04
0.13
0.09
0.07
0.49

0.18
0.05
0.14
0.10
0.08
0.55

NOx

SO2

Emissions (Pounds)
PM10
PM2.5

CO2

CH4

N2O

0.70
2.50
5.20
8.40

0.01
0.04
0.09
0.14

364
1081
854
2299

0.02
0.06
0.08
0.16

0.03
0.10
3.59
3.72

6.74
17.30
7.00
31.03

0.39
1.15
0.91
2.44

0.03
0.05
0.05
0.13

0.03
0.05
0.05
0.13

1170.80
3476.75
2746.08
7393.64

0.03
0.10
0.08
0.20

0.04
0.11
0.09
0.23

0.7
2.5
5.2
8.40

0.01
0.04
0.09
0.14

505
1406
988
2899

0.05
0.11
0.10
0.26

0.31
0.70
1.91
2.92

17.33
36.52
12.03
65.89

0.53
1.49
1.05
3.07

0.04
0.10
0.05
0.19

0.04
0.08
0.04
0.16

1622.48
4521.05
3178.75
9322.28

0.04
0.13
0.09
0.26

0.05
0.14
0.10
0.29

Fuel Usage
Pounds

Time in Mode (TIM)
Minutes
Hours

Formaldehyde

Acetaldehyde

Emissions (Pounds)

Acrolein

Naphthalene

Benzene

Toluene

Ethylbenzene

Xylenes

Styrene

Chloroform

Chloromethane

1,3Dichloropropene

Methylene
Chloride

Vinyl
Acetate

32.8
0.7
2.5
5.2
14.9
56.1

0.55
0.01
0.04
0.09
0.25
0.94

2217
364
1081
854
1007
5523

0.21
0.00
0.01
0.01
0.10
0.33

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.01
0.00
0.00
0.00
0.00
0.01

0.00
0.00
0.00
0.00
0.00
0.01

0.02
0.00
0.00
0.01
0.01
0.04

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.01

0.00
0.00
0.00
0.00
0.00
0.00

0.01
0.00
0.00
0.00
0.00
0.01

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.15
0.00
0.05
0.04
0.07
0.31

0.01
0.00
0.00
0.00
0.00
0.02

32.8
0.7
2.5
5.2
14.9
56.1

0.55
0.01
0.04
0.09
0.25
0.94

1818
505
1406
988
826
5543

3.24
0.01
0.02
0.01
1.47
4.75

1.13
0.00
0.01
0.01
0.51
1.65

0.65
0.00
0.00
0.00
0.29
0.95

0.14
0.00
0.00
0.00
0.06
0.21

0.44
0.00
0.00
0.00
0.20
0.65

0.17
0.00
0.00
0.00
0.08
0.25

0.05
0.00
0.00
0.00
0.02
0.07

0.07
0.00
0.00
0.00
0.03
0.11

0.08
0.00
0.00
0.00
0.04
0.12

0.01
0.00
0.00
0.00
0.00
0.01

0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

0.12
0.00
0.07
0.04
0.06
0.29

0.01
0.00
0.00
0.00
0.00
0.02

Aircraft/Mode

Touch and Go

CH4

8.87
6.74
17.30
7.00
4.03
43.93

Table D3.2-5. Land and Take-off/Touch and Go Total Fuel Usages and HAP Emissions - KC-135 and KC-46A Aircraft
Aircraft/Mode
LTO

LTOs

CO2

Emissions (Pounds)

Touch and Go

Fuel Usage
Pounds

Time in Mode (TIM)
Minutes
Hours

Formaldehyde

Acetaldehyde

Acrolein

Naphthalene

Benzene

Toluene

Ethylbenzene

Xylenes

Styrene

Chloroform

Chloromethane

1,3Dichloropropene

Methylene
Chloride

Vinyl
Acetate

0.70
2.50
5.20
8.40

0.01
0.04
0.09
0.14

364
1081
854
2299

0.00
0.01
0.01
0.02

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.01
0.01

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.05
0.04
0.09

0.00
0.00
0.00
0.01

0.7
2.5
5.2
8.40

0.01
0.04
0.09
0.14

505
1406
988
2899

0.01
0.02
0.01
0.04

0.00
0.01
0.01
0.01

0.00
0.00
0.00
0.01

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.01

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00

0.00
0.07
0.04
0.12

0.00
0.00
0.00
0.01

D3-19


<table>
<thead>
<tr>
<th>Aircraft</th>
<th>LTO</th>
<th>TGO</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135</td>
<td>834</td>
<td>3336</td>
<td>8340</td>
</tr>
</tbody>
</table>
Table D3.2-7. KC-135 Aircraft Closed Pattern Operations at McGuire, Baseline

<table>
<thead>
<tr>
<th>Fraction of Ops</th>
<th>Total Ops per Pattern</th>
<th>Engine Setting/Time in Mode per Operation (Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR01 IFR to RWY06 on South Side</td>
<td>0.0030 177 2.1406 8.3006 0.1362 2.0085 1.5710 0.7591 0.4916</td>
<td></td>
</tr>
<tr>
<td>CR02 TACAN RWY85 VFR Circle</td>
<td>0.0035 12 0.6319 0.5671 7.5369 0.1362 2.9128 1.5710 0.7591 0.4916</td>
<td></td>
</tr>
<tr>
<td>CR03 North Radar Track</td>
<td>0.0141 47 2.1406 5.0742 0.1362 1.6340 1.5710 0.7591 0.4916</td>
<td></td>
</tr>
<tr>
<td>CR04 Radar Track on 18C3</td>
<td>0.0228 26 2.1406 6.2832 0.1362 2.1286 1.5710 0.7591 0.4916</td>
<td></td>
</tr>
<tr>
<td>CR05 Radar Track on 18C4</td>
<td>0.0059 25 2.1406 6.8000 0.1362 2.1286 1.5710 0.7591 0.4916</td>
<td></td>
</tr>
<tr>
<td>CR06 Radar Track Continuous turn 180 HDG to 90 HDG</td>
<td>0.0191 307 2.1406 7.4803 0.1362 2.1286 1.5710 0.7591 0.4916</td>
<td></td>
</tr>
<tr>
<td>CR07 Radar Track 180 HDG for Crossing</td>
<td>0.0141 47 2.1406 7.6444 0.1362 2.1286 1.5710 0.7591 0.4916</td>
<td></td>
</tr>
<tr>
<td>CR08 TACAN to RW 24 then VFR Circle to RW 18</td>
<td>0.0171 26 0.6319 1.0068 7.2526 1.6624 0.1362 2.1286 1.5710 0.7591 0.4916</td>
<td></td>
</tr>
<tr>
<td>CR09 Radar track to North</td>
<td>0.0383 92 2.1406 6.5639 0.1362 3.9710 1.5710 0.7591 0.4916</td>
<td></td>
</tr>
<tr>
<td>CR10 Radar track on 36C3</td>
<td>0.0069 25 2.1406 7.3668 0.1362 3.9710 1.5710 0.7591 0.4916</td>
<td></td>
</tr>
<tr>
<td>CR11 TACAN approach to RW 36 VFR Circle to RW 6</td>
<td>0.0059 26 0.6498 0.5238 7.2755 1.6665 0.1362 2.1286 1.5710 0.7591 0.4916</td>
<td></td>
</tr>
<tr>
<td>CV06 - West VFR on 18C2</td>
<td>0.0253 118 0.7645 1.1699 0.6517 0.1362 0.7571 0.3668 0.4919</td>
<td></td>
</tr>
<tr>
<td>CV07 - West VFR on 36C2</td>
<td>0.0063 118 0.7645 1.1699 0.7396 0.1362 0.7571 0.3668 0.4919</td>
<td></td>
</tr>
<tr>
<td>Total Ops</td>
<td>3336</td>
<td></td>
</tr>
</tbody>
</table>
Table D3.2-10. Annual Air Emissions for KC-135 Aircraft Operations at McGuire - Baseline

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 LTOs</td>
<td>2.89</td>
<td>42.82</td>
<td>18.32</td>
<td>2.44</td>
<td>0.14</td>
<td>0.14</td>
<td>7406.44</td>
<td>0.20</td>
<td>0.23</td>
</tr>
<tr>
<td>KC-135 T&G</td>
<td>0.32</td>
<td>6.21</td>
<td>65.02</td>
<td>4.99</td>
<td>0.26</td>
<td>0.26</td>
<td>15135.26</td>
<td>0.42</td>
<td>0.47</td>
</tr>
<tr>
<td>Total Existing</td>
<td>3.21</td>
<td>49.03</td>
<td>83.34</td>
<td>7.43</td>
<td>0.39</td>
<td>0.39</td>
<td>22541.70</td>
<td>0.62</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Table D3.2-11. Annual HAP Emissions for KC-135 Aircraft Operations at McGuire - Baseline

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Formaldehyde</th>
<th>Acetaldehyde</th>
<th>Acrolein</th>
<th>Naphthalene</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Ethylbenzene</th>
<th>Xylenes</th>
<th>Styrene</th>
<th>Chloroform</th>
<th>Chloromethane</th>
<th>1,3-Dichloropropene</th>
<th>Methylene Chloride</th>
<th>Vinyl Acetate</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 LTOs</td>
<td>0.14</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.13</td>
<td>0.01</td>
</tr>
<tr>
<td>KC-135 Closed Pattern Ops</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.16</td>
</tr>
<tr>
<td>Total Existing</td>
<td>0.17</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.29</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Table D3.2-12. JP-8 AGE Equipment Emissions, McGuire, Baseline

<table>
<thead>
<tr>
<th>AGE Type</th>
<th>Sorties</th>
<th>Total Run Time (hr/yr)</th>
<th>Fuel Use per Unit (gal/hr)</th>
<th>Fuel Use per Unit (gal/yr)</th>
<th>Engine Rating (hp)</th>
<th>Emission Factors, Western</th>
<th>Annual Emissions (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NOx</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VOC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SO2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KC-135 AGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NOx</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VOC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SO2</td>
<td></td>
</tr>
</tbody>
</table>

Emission estimation methodology based AFCEC 2013, assuming Sortie/LTO method per AFCEC guidance. Equipment from AFCEC 2013, Table 3-3. Emission Factors from AFCEC 2013, Table 3-4.

Table D3.2-13. AGE HAP Emissions, McGuire, Baseline

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factors (lb/MMBTU)</th>
<th>Actual Annual Emissions (lbs/yr)</th>
<th>Emission Factors (lb/1000 gal)</th>
<th>Annual Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>1.35E-03</td>
<td>1.95E-04</td>
<td>1.35E-03</td>
<td>1.95E-04</td>
</tr>
<tr>
<td>Arsenic</td>
<td>2.13E+01</td>
<td>2.13E+01</td>
<td>2.13E+01</td>
<td>2.13E+01</td>
</tr>
<tr>
<td>Benene</td>
<td>6.90E-03</td>
<td>6.90E-03</td>
<td>6.90E-03</td>
<td>6.90E-03</td>
</tr>
<tr>
<td>Benzene</td>
<td>2.74E-03</td>
<td>2.74E-03</td>
<td>2.74E-03</td>
<td>2.74E-03</td>
</tr>
<tr>
<td>Beryllium</td>
<td>4.31E-05</td>
<td>4.31E-05</td>
<td>4.31E-05</td>
<td>4.31E-05</td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>1.08E-03</td>
<td>1.08E-03</td>
<td>1.08E-03</td>
<td>1.08E-03</td>
</tr>
<tr>
<td>Cadmium</td>
<td>2.35E-03</td>
<td>2.35E-03</td>
<td>2.35E-03</td>
<td>2.35E-03</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>3.28E-03</td>
<td>3.28E-03</td>
<td>3.28E-03</td>
<td>3.28E-03</td>
</tr>
<tr>
<td>Lead</td>
<td>1.62E-03</td>
<td>1.62E-03</td>
<td>1.62E-03</td>
<td>1.62E-03</td>
</tr>
<tr>
<td>Manganese</td>
<td>2.57E-03</td>
<td>2.57E-03</td>
<td>2.57E-03</td>
<td>2.57E-03</td>
</tr>
<tr>
<td>Mercury</td>
<td>6.30E-04</td>
<td>6.30E-04</td>
<td>6.30E-04</td>
<td>6.30E-04</td>
</tr>
<tr>
<td>Methylmercury</td>
<td>2.35E-03</td>
<td>2.35E-03</td>
<td>2.35E-03</td>
<td>2.35E-03</td>
</tr>
<tr>
<td>Toluene</td>
<td>2.58E-04</td>
<td>2.58E-04</td>
<td>2.58E-04</td>
<td>2.58E-04</td>
</tr>
<tr>
<td>Xylenes</td>
<td>2.35E-03</td>
<td>2.35E-03</td>
<td>2.35E-03</td>
<td>2.35E-03</td>
</tr>
</tbody>
</table>

Total 9.68E-03

Table D3.2-14. JP-8 AGE Equipment GHG Emissions, McGuire, Baseline

<table>
<thead>
<tr>
<th>AGE Type</th>
<th>Sorties</th>
<th>Total Run Time (hr/yr)</th>
<th>Fuel Use per Unit (gal/hr)</th>
<th>Fuel Use per Unit (gal/yr)</th>
<th>Engine Rating (hp)</th>
<th>Emission Factors, Western</th>
<th>Annual Emissions (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NOx</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VOC</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PM2.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SO2</td>
<td></td>
</tr>
</tbody>
</table>

Emission estimation methodology based AFCEC 2013, assuming Sortie/LTO method per AFCEC guidance. Equipment from AFCEC 2013, Table 3-3. Emission Factors from AFCEC 2013, Table 3-4.

D3-23
Table D3.2-15. Aircraft Engine Emissions - Engine Tests, McGuire

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs fuel/hr)</th>
<th>Emission Factors (lb/1000 lb fuel)</th>
<th>Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135</td>
<td>21 Idle</td>
<td>0.30</td>
<td>1</td>
<td>1,014</td>
<td>9.51E-02</td>
<td>0.10</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00E+00</td>
<td>1.21</td>
<td>2.01</td>
</tr>
<tr>
<td>Maintenance Run</td>
<td>83 Idle</td>
<td>0.33</td>
<td>4</td>
<td>1,014</td>
<td>9.51E-02</td>
<td>0.10</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00E+00</td>
<td>1.21</td>
<td>2.01</td>
</tr>
<tr>
<td>TRT Run 2 Engine</td>
<td>10 Idle</td>
<td>0.17</td>
<td>4</td>
<td>1,014</td>
<td>9.51E-02</td>
<td>0.10</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00E+00</td>
<td>1.21</td>
<td>2.01</td>
</tr>
<tr>
<td>TRT Run 3 Engine</td>
<td>7 Idle</td>
<td>0.17</td>
<td>4</td>
<td>1,014</td>
<td>9.51E-02</td>
<td>0.10</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00E+00</td>
<td>1.21</td>
<td>2.01</td>
</tr>
<tr>
<td>TRT Run 4 Engine</td>
<td>7 Idle</td>
<td>0.17</td>
<td>4</td>
<td>1,014</td>
<td>9.51E-02</td>
<td>0.10</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00E+00</td>
<td>1.21</td>
<td>2.01</td>
</tr>
</tbody>
</table>

Table D3.2-16. HAP Emissions, Engine Tests, McGuire

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs fuel/hr)</th>
<th>Emission Factors (lb/1000 lb fuel)</th>
<th>Emissions, lbs/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135</td>
<td>21 Idle</td>
<td>0.30</td>
<td>1</td>
<td>1,014</td>
<td>9.51E-02</td>
<td>0.10</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00E+00</td>
<td>1.21</td>
<td>2.01</td>
</tr>
<tr>
<td>Maintenance Run</td>
<td>83 Idle</td>
<td>0.33</td>
<td>4</td>
<td>1,014</td>
<td>9.51E-02</td>
<td>0.10</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00E+00</td>
<td>1.21</td>
<td>2.01</td>
</tr>
<tr>
<td>TRT Run 2 Engine</td>
<td>10 Idle</td>
<td>0.17</td>
<td>4</td>
<td>1,014</td>
<td>9.51E-02</td>
<td>0.10</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00E+00</td>
<td>1.21</td>
<td>2.01</td>
</tr>
<tr>
<td>TRT Run 3 Engine</td>
<td>7 Idle</td>
<td>0.17</td>
<td>4</td>
<td>1,014</td>
<td>9.51E-02</td>
<td>0.10</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00E+00</td>
<td>1.21</td>
<td>2.01</td>
</tr>
<tr>
<td>TRT Run 4 Engine</td>
<td>7 Idle</td>
<td>0.17</td>
<td>4</td>
<td>1,014</td>
<td>9.51E-02</td>
<td>0.10</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00E+00</td>
<td>1.21</td>
<td>2.01</td>
</tr>
</tbody>
</table>

Table D3.2-17. GHG Emissions, Engine Tests, McGuire

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs fuel/hr)</th>
<th>Emission Factors (lb/1000 lb fuel)</th>
<th>Actual Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135</td>
<td>21 Idle</td>
<td>0.30</td>
<td>1</td>
<td>1,014</td>
<td>3,216.0</td>
<td>0.10</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00E+00</td>
<td>1.21</td>
<td>2.01</td>
</tr>
<tr>
<td>Maintenance Run</td>
<td>83 Idle</td>
<td>0.33</td>
<td>4</td>
<td>1,014</td>
<td>3,216.0</td>
<td>0.10</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00E+00</td>
<td>1.21</td>
<td>2.01</td>
</tr>
<tr>
<td>TRT Run 2 Engine</td>
<td>10 Idle</td>
<td>0.17</td>
<td>4</td>
<td>1,014</td>
<td>3,216.0</td>
<td>0.10</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00E+00</td>
<td>1.21</td>
<td>2.01</td>
</tr>
<tr>
<td>TRT Run 3 Engine</td>
<td>7 Idle</td>
<td>0.17</td>
<td>4</td>
<td>1,014</td>
<td>3,216.0</td>
<td>0.10</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00E+00</td>
<td>1.21</td>
<td>2.01</td>
</tr>
<tr>
<td>TRT Run 4 Engine</td>
<td>7 Idle</td>
<td>0.17</td>
<td>4</td>
<td>1,014</td>
<td>3,216.0</td>
<td>0.10</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00E+00</td>
<td>1.21</td>
<td>2.01</td>
</tr>
</tbody>
</table>

Notes
- CO2 emission factors obtained from AFCEC 2013.
- CH4 and N2O emission factors were derived from Table A-101 for jet fuel in EPA's Inventory of U.S. Greenhouse Gas Emissions and Sinks, 1990-2005, using density of JP-8 as 6.8 lb/gallon.
Table D3.2-18. Annual Worker Population and VMT at McGuire - KC-46A Project Scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Total # of Workers</th>
<th>Annual On-Base VMT</th>
<th>Annual Off-Base VMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing</td>
<td>1051</td>
<td>2732</td>
<td>4560</td>
</tr>
<tr>
<td>Proposed Action</td>
<td>1306</td>
<td>3395</td>
<td>5667</td>
</tr>
</tbody>
</table>

Table D3.2-20. Annual Average On-Base Vehicle Emissions

<table>
<thead>
<tr>
<th>Scenario/Vehicle Class</th>
<th>Emission Factors (Grams/Mile)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VOC</td>
</tr>
<tr>
<td>Existing (Year 2013)</td>
<td></td>
</tr>
<tr>
<td>LDGV</td>
<td>37.55</td>
</tr>
<tr>
<td>LDDT</td>
<td>0.03</td>
</tr>
<tr>
<td>LDGT</td>
<td>60.32</td>
</tr>
<tr>
<td>LDGT</td>
<td>0.2</td>
</tr>
<tr>
<td>LDDT</td>
<td>0</td>
</tr>
<tr>
<td>MC</td>
<td>1.9</td>
</tr>
<tr>
<td>Proposed Action (Year 2018)</td>
<td></td>
</tr>
<tr>
<td>LDGV</td>
<td>37.55</td>
</tr>
<tr>
<td>LDDT</td>
<td>0.03</td>
</tr>
<tr>
<td>LDGT</td>
<td>60.32</td>
</tr>
<tr>
<td>LDGT</td>
<td>0.2</td>
</tr>
<tr>
<td>LDDT</td>
<td>0</td>
</tr>
<tr>
<td>MC</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Table D3.2-21. Annual Average Off-Base Vehicle Emissions

<table>
<thead>
<tr>
<th>Scenario/Vehicle Class</th>
<th>Emission Factors (Grams/Mile)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VOC</td>
</tr>
<tr>
<td>Existing (Year 2013)</td>
<td></td>
</tr>
<tr>
<td>LDGV</td>
<td>37.55</td>
</tr>
<tr>
<td>LDDT</td>
<td>0.03</td>
</tr>
<tr>
<td>LDGT</td>
<td>60.32</td>
</tr>
<tr>
<td>LDGT</td>
<td>0.2</td>
</tr>
<tr>
<td>LDDT</td>
<td>0</td>
</tr>
<tr>
<td>MC</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Notes: 1. Emission factors from AFCEC 2013, Table 5-13, for 2017 used to provide a conservative estimate of emissions for 2018
<table>
<thead>
<tr>
<th>Aircraft</th>
<th>LTO</th>
<th>TGO</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A</td>
<td>1508</td>
<td>7296</td>
<td>17608</td>
</tr>
</tbody>
</table>
Table D3.2-23. KC-46A Aircraft Closed Pattern Operations at McGuire - KC-46A Proposed Scenarios
Operations/Year
Fraction of Total Ops
Ops
per Pattern

0.8238
1.1669
1.1669
1.1669
1.1669
1.1670
1.1669

55.0
8.5008
7.1268
5.0742
8.2663
6.8000
7.4803
7.6444
7.2052
6.5939
7.3686
7.2755
0.6817
0.6817
0.7397
0.9721
0.6680
0.7397

48.5
19668.32

52.5
21455.2

55.0
22572

0.0950
1.4009
17.2797
1.0600
0.0574
0.0474
3216
0.0890
0.1000

0.0932
1.2865
18.3845
1.0600
0.0590
0.0490
3216
0.0890
0.1000

0.0920
1.2150
19.0750
1.0600
0.0600
0.0500
3216
0.0890
0.1000

0.0909
1.1435
19.7655
1.0600
0.0610
0.0510
3216
0.0890
0.1000

0.0904
1.1149
20.0417
1.0600
0.0614
0.0514
3216
0.0890
0.1000

0.0897
1.0720
20.4560
1.0600
0.0620
0.0520
3216
0.0890
0.1000

0.0896
1.0663
20.5112
1.0600
0.0621
0.0521
3216
0.0890
0.1000

0.0886
1.0005
21.1465
1.0600
0.0630
0.0530
3216
0.0890
0.1000

0.0849
0.7717
23.3561
1.0600
0.0662
0.0562
3216
0.0890
0.1000

Table D3.2-25. KC-46A Aircraft Closed Pattern Operations - Emissions Per Operation
Emissions per operation, lbs
VOC
CR01 IFR to RWY06 on South Side
0.5528
CR02 TACAN RWY06 VFR Circle
0.5193
CR03 North Radar Track
0.4189
CR04 Radar Track on 18C3
0.5478
CR05 Radar Track on 18C4
0.4974
CR06 Radar Track Continuous turn 150HDG to 90 HDG
0.5206
CR07 Radar Track 150HDG for Crosswind
0.5263
CR08 TACAN to Rwy 24 then VFR Circle to RWY 18
0.5582
CR09 Radar track to North
0.5588
CR10 Radar track on 36C3
0.5170
CR11 TACAN approach to RWY 36 VFR Circle to RWY 6
0.5366
CV01 - North VFR
0.1889
CV02 - West VFR on 18C2
0.1889
CV03 - North VFR Inside Housing
0.1850
CV04 - North VFR Outside Housing
0.2210
CV05 - VFR With Breakout
0.2917
CV06 - West VFR on 36C2
0.1890
Emissions, closed pattern ops, tons/year
1.0238

CO
6.9815
6.4433
5.2325
6.9117
6.2328
6.5524
6.6274
6.9576
6.9699
6.4998
6.7049
2.3143
2.3143
2.2666
2.7109
3.4477
2.3161
12.6852

NOx
119.8938
114.5336
91.8159
118.9246
108.6896
113.2829
114.4612
122.5660
122.6205
112.5958
117.5614
42.1492
42.1492
41.2817
49.2300
67.1451
42.1379
226.0694

SO2
6.4448
6.0816
4.8976
6.3883
5.8105
6.0748
6.1402
6.5288
6.5348
6.0336
6.2726
2.2192
2.2192
2.1735
2.5945
3.4557
2.2194
11.9930

PM10
0.3705
0.3516
0.2826
0.3673
0.3349
0.3496
0.3533
0.3769
0.3772
0.3473
0.3618
0.1288
0.1288
0.1262
0.1505
0.2028
0.1288
0.6937

PM2.5
0.3097
0.2942
0.2364
0.3071
0.2801
0.2923
0.2954
0.3153
0.3155
0.2904
0.3027
0.1079
0.1079
0.1057
0.1261
0.1702
0.1079
0.5806

CO2
19553.2901
18451.2142
14859.1404
19381.7711
17628.9690
18430.6441
18629.2587
19808.1470
19826.2219
18305.8273
19030.9306
6732.8662
6732.8662
6594.1730
7871.7252
10484.5776
6733.4865
36386.3482

CH4
0.5411
0.5106
0.4112
0.5364
0.4879
0.5101
0.5155
0.5482
0.5487
0.5066
0.5267
0.1863
0.1863
0.1825
0.2178
0.2902
0.1863
1.0070

N2O
0.6080
0.5737
0.4620
0.6027
0.5482
0.5731
0.5793
0.6159
0.6165
0.5692
0.5918
0.2094
0.2094
0.2050
0.2448
0.3260
0.2094
1.1314

Scenario/Operation
CR01 IFR to RWY06 on South Side
CR02 TACAN RWY06 VFR Circle
CR03 North Radar Track
CR04 Radar Track on 18C3
CR05 Radar Track on 18C4
CR06 Radar Track Continuous turn 150HDG to 90 HDG
CR07 Radar Track 150HDG for Crosswind
CR08 TACAN to Rwy 24 then VFR Circle to RWY 18
CR09 Radar track to North
CR10 Radar track on 36C3
CR11 TACAN approach to RWY 36 VFR Circle to RWY 6
CV01 - North VFR
CV02 - West VFR on 18C2
CV03 - North VFR Inside Housing
CV04 - North VFR Outside Housing
CV05 - VFR With Breakout
CV06 - West VFR on 36C2
Total Ops

0.0559
0.0037
0.0150
0.0063
0.0063
0.0792
0.0150
0.0075
0.0300
0.0063
0.0063
0.2135
0.0425
0.0502
0.3860
0.0090
0.0675

408
27
110
46
46
578
110
55
219
46
46
1557
310
366
2816
66
493
7296

48.5
2.1406
0.6319
2.1406
2.1406
2.1406
2.1406
2.1406
0.6319
2.1406
2.1406
0.6948
0.7645
0.7645
0.7645
0.7645
0.7645
0.7645

Engine Setting/Time in Mode per Operation (Minutes)

52.5
0.8571

1.0058

57.5

1.6424

1.9866
0.9162
0.9162
0.7516
1.5196
0.8613

58.5
0.1362
0.1362
0.1362
0.1362
0.0681
0.1362
0.1362
0.1362
0.1362
0.1362
0.1362
0.1362
0.1362
0.1362
0.0681
0.1362
0.1362

60.0
2.0365
2.9128
1.6240
2.1209
2.1209
2.1209
2.1209
2.1650
3.9770
1.2953

0.6419

60.5
1.5710
1.5710
1.5710
1.5710
1.5710
1.5712
1.5710
1.5710
1.5710
3.6919
1.5710
0.7571
0.7571
0.7571
0.7571
0.7571
0.7571

62.5

70.5
0.7596
0.7596
0.7596
0.7596
0.7596
0.7594
0.7596
0.7596
0.7596
0.7596
0.7596
0.3668
0.3668
0.3668
0.3668
0.3668
0.3668

75.0
0.4919
0.4919
0.4919
0.4919
0.5567
0.4919
0.4919
0.4919
0.4919
0.4919
0.4919
0.4919
0.4919
0.4919
0.5567
0.4919
0.4919

62.5
25922.4

70.5
29496.16

75.0
31506.4
0.0828
0.6430
24.5990
1.0600
0.0680
0.0580
3216
0.0890
0.1000

2.9350

Table D3.2-24. KC-46A Aircraft Closed Pattern Operations - Fuel Use and Emission Factors
Factor
Fuel Use, lbs/hr
Emission Factors, lbs/1000 lbs fuel
VOC
CO
NOx
SO2
PM10
PM2.5
CO2
CH4
N2O

Engine Setting/Time in Mode per Operation (Minutes)
57.5
58.5
60.0
60.5
23688.8
24135.52
24805.6 24894.944

D3-27


Table D3.2-26. Annual Air Emissions for KC-46A Aircraft Operations at McGuire - Proposed Action

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A LTOs</td>
<td>25.10</td>
<td>87.16</td>
<td>57.22</td>
<td>4.43</td>
<td>0.36</td>
<td>0.32</td>
<td>13441.53</td>
<td>0.37</td>
<td>0.42</td>
</tr>
<tr>
<td>KC-46A T&G</td>
<td>1.02</td>
<td>12.69</td>
<td>226.07</td>
<td>11.99</td>
<td>0.69</td>
<td>0.58</td>
<td>36386.35</td>
<td>1.01</td>
<td>1.13</td>
</tr>
<tr>
<td>APU</td>
<td>0.06</td>
<td>0.53</td>
<td>10.74</td>
<td>0.90</td>
<td>0.06</td>
<td>0.06</td>
<td>2194.71</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total Proposed Action</td>
<td>26.19</td>
<td>100.37</td>
<td>294.03</td>
<td>17.32</td>
<td>1.13</td>
<td>0.96</td>
<td>52022.59</td>
<td>1.38</td>
<td>1.55</td>
</tr>
</tbody>
</table>

Table D3.2-27. Annual HAP Emissions for KC-46A Aircraft Operations at McGuire - Proposed Action

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Formaldehyde</th>
<th>Acetaldehyde</th>
<th>Acrolein</th>
<th>Naphthalene</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Ethylbenzene</th>
<th>Xylenes</th>
<th>Styrene</th>
<th>Chloroform</th>
<th>Chloromethane</th>
<th>1,3-Dichloropropene</th>
<th>Methylene Chloride</th>
<th>Vinyl Acetate</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A LTOs</td>
<td>3.58</td>
<td>1.24</td>
<td>0.71</td>
<td>0.16</td>
<td>0.49</td>
<td>0.19</td>
<td>0.05</td>
<td>0.08</td>
<td>0.09</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.22</td>
<td>0.02</td>
</tr>
<tr>
<td>KC-46A Closed Pattern Ops</td>
<td>0.14</td>
<td>0.05</td>
<td>0.03</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.42</td>
<td>0.03</td>
</tr>
<tr>
<td>Total Proposed Action</td>
<td>3.72</td>
<td>1.29</td>
<td>0.74</td>
<td>0.16</td>
<td>0.51</td>
<td>0.19</td>
<td>0.05</td>
<td>0.09</td>
<td>0.09</td>
<td>0.03</td>
<td>0.01</td>
<td>0.01</td>
<td>0.65</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Table D3.2-28. JP-8 AGE Equipment Emissions, Proposed Action, McGuire

<table>
<thead>
<tr>
<th>AGE Type</th>
<th>Sorties</th>
<th>Total Run Time (hr/yr)</th>
<th>Fuel Use per Unit (gal/hr)</th>
<th>Fuel Use per Unit (gal/yr)</th>
<th>Engine Rating (hp)</th>
<th>Emission Factors, lbs/hr</th>
<th>Annual Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A AGE</td>
<td>1508</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

House/Sortie

Generator AM2A-08-08H

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Factor</td>
<td>Factor</td>
<td>Factor</td>
<td>Factor</td>
<td>Factor</td>
<td>Factor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(lbs/MMBTU)</td>
<td>(lbs/MMBTU)</td>
<td>(lbs/MMBTU)</td>
<td>(lbs/MMBTU)</td>
<td>(lbs/MMBTU)</td>
<td>(lbs/MMBTU)</td>
</tr>
</tbody>
</table>

Table D3.2-29. AGE HAP Emissions, Proposed Action, McGuire

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factors</th>
<th>Actual Annual Emissions (lbs/yr)</th>
<th>Annual Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fuel Use per Unit (gal/hr)</td>
<td>Fuel Use per Unit (gal/yr)</td>
<td>Engine Rating (hp)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP-8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gasoline</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table D3.2-30. JP-8 AGE Equipment GHG Emissions, Proposed Action, McGuire

<table>
<thead>
<tr>
<th>AGE Type</th>
<th>Sorties</th>
<th>Total Run Time (hr/yr)</th>
<th>Fuel Use per Unit (gal/hr)</th>
<th>Fuel Use per Unit (gal/yr)</th>
<th>Engine Rating (hp)</th>
<th>Emission Factors, lbs/yr</th>
<th>Annual Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A AGE</td>
<td>1508</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

House/Sortie

Generator AM2A-08-08H

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
Table D3.2-31. Aircraft Engine Emissions - Engine Tests, Proposed Action, McGuire

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs fuel)</th>
<th>Emission Factors (lb/1000 lb fuel)</th>
<th>Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A Defueling</td>
<td>44 IA</td>
<td>0.50</td>
<td>1</td>
<td>1,663</td>
<td>3.26 4.8 3.8 1.1 0.1 0.1 4.86 2 1.86 0.02 0.02 0.02</td>
<td>VOC CO NOx SO2 PM10 PM2.5 VOC CO NOx SO2 PM10 PM2.5</td>
<td>152.3 13.2 1.3 0.1 0.2 0.01</td>
</tr>
<tr>
<td>Maintenance Run</td>
<td>175 IA</td>
<td>0.33</td>
<td>2</td>
<td>1,663</td>
<td>3.26 4.8 3.8 1.1 0.1 0.1 2.43 3.7 8.2 6.03 7.3 4.7 205 68 21.34 19.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRT Run 1 Engine</td>
<td>20 IA</td>
<td>0.17</td>
<td>1</td>
<td>1,663</td>
<td>3.26 4.8 3.8 1.1 0.1 0.1 6.24 23.6 23.6 10.6 5.88 0.81 0.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 80% RPM</td>
<td>0.08</td>
<td>1</td>
<td>1668.6</td>
<td>0.1</td>
<td>0.1 28.6 1.1 0.1 0.1 2.3 14.36 73.05 28.80 1.87 1.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRT Run 2 Engine</td>
<td>15 IA</td>
<td>0.17</td>
<td>2</td>
<td>1,663</td>
<td>3.26 4.8 3.8 1.1 0.1 0.1 10.38 35.34 31.43 8.81 0.91 0.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 80% RPM</td>
<td>0.08</td>
<td>2</td>
<td>1668.6</td>
<td>0.1</td>
<td>0.1 28.6 1.1 0.1 0.1 3.90 21.09 10.55 10.55 4.75 2.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 80% RPM</td>
<td>0.08</td>
<td>3</td>
<td>16869.6</td>
<td>0.1</td>
<td>0.1 28.6 1.1 0.1 0.1 5.02 30.36 26.04 10.55 4.75 2.53</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table D3.2-32. HAP Emissions, Engine Tests, Proposed Action, McGuire

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs fuel)</th>
<th>Emission Factors (lb/1000 lb fuel)</th>
<th>Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A Defueling</td>
<td>44 IA</td>
<td>0.50</td>
<td>1</td>
<td>1,663</td>
<td>3.26 4.8 3.8 1.1 0.1 0.1 4.86 2 1.86 0.02 0.02 0.02</td>
<td>VOC CO NOx SO2 PM10 PM2.5 VOC CO NOx SO2 PM10 PM2.5</td>
<td>152.3 13.2 1.3 0.1 0.2 0.01</td>
</tr>
<tr>
<td>Maintenance Run</td>
<td>175 IA</td>
<td>0.33</td>
<td>2</td>
<td>1,663</td>
<td>3.26 4.8 3.8 1.1 0.1 0.1 2.43 3.7 8.2 6.03 7.3 4.7 205 68 21.34 19.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRT Run 1 Engine</td>
<td>20 IA</td>
<td>0.17</td>
<td>1</td>
<td>1,663</td>
<td>3.26 4.8 3.8 1.1 0.1 0.1 6.24 23.6 23.6 10.6 5.88 0.81 0.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 80% RPM</td>
<td>0.08</td>
<td>1</td>
<td>1668.6</td>
<td>0.1</td>
<td>0.1 28.6 1.1 0.1 0.1 2.3 14.36 73.05 28.80 1.87 1.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRT Run 2 Engine</td>
<td>15 IA</td>
<td>0.17</td>
<td>2</td>
<td>1,663</td>
<td>3.26 4.8 3.8 1.1 0.1 0.1 10.38 35.34 31.43 8.81 0.91 0.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 80% RPM</td>
<td>0.08</td>
<td>2</td>
<td>1668.6</td>
<td>0.1</td>
<td>0.1 28.6 1.1 0.1 0.1 3.90 21.09 10.55 10.55 4.75 2.53</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table D3.2-33. GHG Emissions, Engine Tests, Proposed Action, McGuire

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs fuel)</th>
<th>Emission Factors (lb/1000 lb fuel)</th>
<th>Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A Defueling</td>
<td>44 IA</td>
<td>0.50</td>
<td>1</td>
<td>1,663</td>
<td>3.26 4.8 3.8 1.1 0.1 0.1 4.86 2 1.86 0.02 0.02 0.02</td>
<td>VOC CO NOx SO2 PM10 PM2.5 VOC CO NOx SO2 PM10 PM2.5</td>
<td>152.3 13.2 1.3 0.1 0.2 0.01</td>
</tr>
<tr>
<td>Maintenance Run</td>
<td>175 IA</td>
<td>0.33</td>
<td>2</td>
<td>1,663</td>
<td>3.26 4.8 3.8 1.1 0.1 0.1 2.43 3.7 8.2 6.03 7.3 4.7 205 68 21.34 19.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRT Run 1 Engine</td>
<td>20 IA</td>
<td>0.17</td>
<td>1</td>
<td>1,663</td>
<td>3.26 4.8 3.8 1.1 0.1 0.1 6.24 23.6 23.6 10.6 5.88 0.81 0.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 80% RPM</td>
<td>0.08</td>
<td>1</td>
<td>1668.6</td>
<td>0.1</td>
<td>0.1 28.6 1.1 0.1 0.1 2.3 14.36 73.05 28.80 1.87 1.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRT Run 2 Engine</td>
<td>15 IA</td>
<td>0.17</td>
<td>2</td>
<td>1,663</td>
<td>3.26 4.8 3.8 1.1 0.1 0.1 10.38 35.34 31.43 8.81 0.91 0.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 80% RPM</td>
<td>0.08</td>
<td>2</td>
<td>1668.6</td>
<td>0.1</td>
<td>0.1 28.6 1.1 0.1 0.1 3.90 21.09 10.55 10.55 4.75 2.53</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Emission Factors (lb/1000 lb fuel):
- CO2, CH4, N2O

Actual Emissions (lb/yr):
- CO2, CH4, N2O

Total HAPs, TPy:
- CO2, CH4, N2O

Methylene Chloride:
- Total HAPs, TPy

VOC, CO, NOx, SO2, PM10, PM2.5:
- Emission Factors (lb/1000 lb fuel)

Formaldehyde, Acetaldehyde, Acrolein, Naphthalene, Benzene, Toluene, Ethylbenzene, Xylenes, Styrene, Chloroform, Chloromethane, 1,3-Dichloropropene, Vinyl Acetate:
- Total HAPs, TPy

NOM:
- Total HAPs, TPy

Methyl Alcohol:
- Total HAPs, TPy

Density:
- 6.8 lb/gallon
Table D3.2-34. McGuire Comparison of Emissions

<table>
<thead>
<tr>
<th></th>
<th>Baseline (tons/year)</th>
<th>Proposed Action (tons/year)</th>
<th>Net Increase (tons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>3.21</td>
<td>26.19</td>
<td>24.01</td>
</tr>
<tr>
<td>CO</td>
<td>49.03</td>
<td>100.37</td>
<td>51.34</td>
</tr>
<tr>
<td>NOx</td>
<td>83.34</td>
<td>294.03</td>
<td>210.69</td>
</tr>
<tr>
<td>SO2</td>
<td>7.43</td>
<td>17.32</td>
<td>9.89</td>
</tr>
<tr>
<td>PM10</td>
<td>0.39</td>
<td>1.13</td>
<td>0.74</td>
</tr>
<tr>
<td>PM2.5</td>
<td>0.39</td>
<td>0.96</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Table D3.2-35. McGuire Comparison of HAP Emissions

<table>
<thead>
<tr>
<th></th>
<th>Baseline (tons/year)</th>
<th>Proposed Action (tons/year)</th>
<th>Net Increase (tons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formaldehyde</td>
<td>0.17</td>
<td>3.72</td>
<td>3.55</td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>0.00</td>
<td>1.29</td>
<td>1.29</td>
</tr>
<tr>
<td>Acrolein</td>
<td>0.00</td>
<td>0.74</td>
<td>0.74</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>0.00</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>Benzene</td>
<td>0.00</td>
<td>0.51</td>
<td>0.51</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.01</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>0.00</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Xylenes</td>
<td>0.00</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Styrene</td>
<td>0.00</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Chloroform</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Chloromethane</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>1,3-Dichloropropene</td>
<td>0.29</td>
<td>0.36</td>
<td>0.07</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>0.00</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Vinyl Acetate</td>
<td>0.00</td>
<td>0.03</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Table D3.2-36. McGuire Comparison of GHG Emissions

<table>
<thead>
<tr>
<th></th>
<th>Baseline (metric tons/year)</th>
<th>Proposed Action (metric tons/year)</th>
<th>Net Increase (metric tons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>20457</td>
<td>47168</td>
<td>26711</td>
</tr>
<tr>
<td>CH4</td>
<td>0.57</td>
<td>1.25</td>
<td>0.68</td>
</tr>
<tr>
<td>N2O</td>
<td>0.64</td>
<td>1.41</td>
<td>0.77</td>
</tr>
<tr>
<td>CO2e</td>
<td>20659</td>
<td>47657</td>
<td>27198</td>
</tr>
</tbody>
</table>

D3-31
Table D3.3-1. Engine Emission Factors by Throttle Setting - KC-135 and KC-46A Aircraft

<table>
<thead>
<tr>
<th>Engine Type/Throttle Setting</th>
<th>Fuel Flow (Pounds/Hour)</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-108-CF-100 (2)</td>
<td></td>
</tr>
<tr>
<td>Idle</td>
<td>1013.76</td>
<td>2.1045</td>
<td>30.7</td>
<td>4</td>
<td>1.06</td>
<td>0.06</td>
<td>0.06</td>
<td>3216</td>
<td>8.90E-02</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>Approach</td>
<td>2463.12</td>
<td>0.092</td>
<td>4.2</td>
<td>8.2</td>
<td>1.06</td>
<td>0.05</td>
<td>0.06</td>
<td>3216</td>
<td>8.90E-02</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>Intermediate</td>
<td>6985.48</td>
<td>0.0075</td>
<td>0.06</td>
<td>16</td>
<td>1.06</td>
<td>0.05</td>
<td>0.05</td>
<td>3216</td>
<td>8.90E-02</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>Military</td>
<td>7801.2</td>
<td>0.046</td>
<td>0.06</td>
<td>18.5</td>
<td>1.06</td>
<td>0.07</td>
<td>0.07</td>
<td>3216</td>
<td>8.90E-02</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>P&W-4062 (3)</td>
<td></td>
</tr>
<tr>
<td>Idle</td>
<td>1663.2</td>
<td>12.485</td>
<td>42.61</td>
<td>3.78</td>
<td>1.06</td>
<td>0.11</td>
<td>0.1</td>
<td>3216</td>
<td>8.90E-02</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>Approach</td>
<td>5702.4</td>
<td>0.1035</td>
<td>1.92</td>
<td>12.17</td>
<td>1.06</td>
<td>0.05</td>
<td>0.04</td>
<td>3216</td>
<td>8.90E-02</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>Climbout</td>
<td>16806.6</td>
<td>0.0805</td>
<td>0.5</td>
<td>25.98</td>
<td>1.06</td>
<td>0.07</td>
<td>0.06</td>
<td>3216</td>
<td>8.90E-02</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>Take-Off</td>
<td>21621.6</td>
<td>0.052</td>
<td>0.61</td>
<td>34.36</td>
<td>1.06</td>
<td>0.08</td>
<td>0.07</td>
<td>3216</td>
<td>8.90E-02</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>APU Use - P&W-4062</td>
<td></td>
<td>0.04</td>
<td>0.33</td>
<td>6.72</td>
<td>0.96</td>
<td>0.05</td>
<td>0.04</td>
<td>1373</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: (1) Data are for one engine. The KC-135R has 4 engines and the KC-46A has 2 engines.
(2) Data from Air Emissions Factor Guide to Air Force Mobile Sources (AFCEC 2013).
(3) ICAO Engine Exhaust Emissions Data Bank - Subsonic Engines - (ICAO 2013).

Table D3.3-2. HAP Emission Factors - KC-135 and KC-46A Aircraft

<table>
<thead>
<tr>
<th>Engine Type/Throttle Setting</th>
<th>Emission Factors (lb/1000 lb fuel) (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Form-aldhyde</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>F-108-CF-100 (2)</td>
<td></td>
</tr>
<tr>
<td>Idle</td>
<td>9.5E-02</td>
</tr>
<tr>
<td>Approach</td>
<td>1.50E-02</td>
</tr>
<tr>
<td>Intermediate</td>
<td>5.58E-03</td>
</tr>
<tr>
<td>Military</td>
<td>7.01E-03</td>
</tr>
<tr>
<td>P&W-4062 (3)</td>
<td></td>
</tr>
<tr>
<td>Idle</td>
<td>1.79E+00</td>
</tr>
<tr>
<td>Approach</td>
<td>1.48E+02</td>
</tr>
<tr>
<td>Intermediate</td>
<td>1.15E+02</td>
</tr>
<tr>
<td>Military</td>
<td>1.31E+02</td>
</tr>
</tbody>
</table>

Notes: (1) Data are for one engine. The KC-135R has 4 engines and the KC-46A has 2 engines.
(2) Data from Air Emissions Factor Guide to Air Force Mobile Sources (AFCEC 2013).

Table D3.3-3. Land and Take-off/Touch and Go Times in Mode and Fuel Usages - KC-135 and KC-46A Aircraft

<table>
<thead>
<tr>
<th>Aircraft/Mode (Engine Throttle Setting)</th>
<th>LTO</th>
<th>Touch & Go</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minutes</td>
<td>TIM</td>
</tr>
<tr>
<td>KC-135 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxi Out (Idle)</td>
<td>32.8</td>
<td>0.55</td>
</tr>
<tr>
<td>Take-off (Military)</td>
<td>0.7</td>
<td>0.01</td>
</tr>
<tr>
<td>Climbout (Intermediate)</td>
<td>2.5</td>
<td>0.04</td>
</tr>
<tr>
<td>Approach</td>
<td>5.2</td>
<td>0.09</td>
</tr>
<tr>
<td>Taxi In (Idle)</td>
<td>14.9</td>
<td>0.25</td>
</tr>
<tr>
<td>Totals</td>
<td>56.1</td>
<td>0.94</td>
</tr>
<tr>
<td>KC-46A (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxi Out (Idle)</td>
<td>32.8</td>
<td>0.55</td>
</tr>
<tr>
<td>Take-off (Military)</td>
<td>0.7</td>
<td>0.01</td>
</tr>
<tr>
<td>Climbout (Intermediate)</td>
<td>2.5</td>
<td>0.04</td>
</tr>
<tr>
<td>Approach</td>
<td>5.2</td>
<td>0.09</td>
</tr>
<tr>
<td>Taxi In (Idle)</td>
<td>14.9</td>
<td>0.25</td>
</tr>
<tr>
<td>Totals</td>
<td>56.1</td>
<td>0.94</td>
</tr>
<tr>
<td>APU Use, KC-46A (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Flight - OBIGGS + Electric + Max ECS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Flight - Main Engine Start + Electric</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-Flight - Electric + Min ECS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Hours per LTO</td>
<td>2.12</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
(1) Fuel usage per aircraft.
(2) TIM Data from Table 2-4, Transport Aircraft (AFCEC 2013).
(3) APU use from FTU/MOB1 Draft EIS.
Table D3.3-4. Land and Take-off/Touch and Go Total Fuel Usages and Emissions - KC-135 and KC-46A Aircraft

<table>
<thead>
<tr>
<th>Aircraft/Mode</th>
<th>Touch and Go Fuel Usage</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minutes</td>
<td>Hours</td>
<td>Pounds</td>
<td></td>
</tr>
<tr>
<td>KC-135 (2)</td>
<td>Taxi Out (Idle)</td>
<td>32.8</td>
<td>0.55</td>
<td>2217</td>
<td>4.69</td>
<td>66.02</td>
<td>7.09</td>
<td>2.35</td>
<td>0.13</td>
<td>0.13</td>
<td>7129.08</td>
<td>0.20</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>Take-off (Military)</td>
<td>0.7</td>
<td>0.01</td>
<td>1802</td>
<td>0.03</td>
<td>0.74</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>1701.02</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Clim bout (Intermediate)</td>
<td>2.5</td>
<td>0.04</td>
<td>1014</td>
<td>0.01</td>
<td>1.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>3018.23</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>Approach</td>
<td>0.2</td>
<td>0.01</td>
<td>856</td>
<td>0.01</td>
<td>3.64</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>2746.08</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>Total in (Idle)</td>
<td>16.0</td>
<td>0.20</td>
<td>1070</td>
<td>0.02</td>
<td>3.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>3288.53</td>
<td>0.08</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>Totals</td>
<td>56.1</td>
<td>0.93</td>
<td>5524</td>
<td>0.94</td>
<td>50.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>17781.34</td>
<td>0.46</td>
<td>0.55</td>
</tr>
<tr>
<td>KC-46A (2)</td>
<td>Taxi Out (Idle)</td>
<td>24.7</td>
<td>0.41</td>
<td>1818</td>
<td>27.71</td>
<td>17.43</td>
<td>6.06</td>
<td>0.16</td>
<td>0.06</td>
<td>0.06</td>
<td>5949.05</td>
<td>0.16</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>Take-off (Military)</td>
<td>0.7</td>
<td>0.01</td>
<td>1233</td>
<td>0.02</td>
<td>0.72</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>1622.48</td>
<td>0.04</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>Clim bout (Intermediate)</td>
<td>2.5</td>
<td>0.04</td>
<td>846</td>
<td>0.01</td>
<td>1.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>4521.02</td>
<td>0.12</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>Approach</td>
<td>0.2</td>
<td>0.01</td>
<td>696</td>
<td>0.01</td>
<td>3.64</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>3178.75</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>Total in (Idle)</td>
<td>14.9</td>
<td>0.25</td>
<td>836</td>
<td>0.16</td>
<td>3.65</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>2656.60</td>
<td>0.07</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>Totals</td>
<td>56.1</td>
<td>0.93</td>
<td>5524</td>
<td>0.94</td>
<td>50.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>17781.34</td>
<td>0.46</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Table D3.3-5. Land and Take-off/Touch and Go Total Fuel Usages and HAP Emissions - KC-135 and KC-46A Aircraft

<table>
<thead>
<tr>
<th>Aircraft/Mode</th>
<th>Touch and Go Fuel Usage</th>
<th>HAP Emissions (Pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minutes</td>
<td>Hours</td>
</tr>
<tr>
<td>KC-135 (2)</td>
<td>Taxi Out (Idle)</td>
<td>32.8</td>
</tr>
<tr>
<td></td>
<td>Approach</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Total in (Idle)</td>
<td>16.0</td>
</tr>
<tr>
<td></td>
<td>Totals</td>
<td>56.1</td>
</tr>
<tr>
<td>KC-46A (2)</td>
<td>Taxi Out (Idle)</td>
<td>24.7</td>
</tr>
<tr>
<td></td>
<td>Approach</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Total in (Idle)</td>
<td>14.9</td>
</tr>
<tr>
<td></td>
<td>Totals</td>
<td>56.1</td>
</tr>
</tbody>
</table>

Table D3.3-4. Land and Take-off/Touch and Go Total Fuel Usages and Emissions - KC-135 and KC-46A Aircraft

Table D3.3-5. Land and Take-off/Touch and Go Total Fuel Usages and HAP Emissions - KC-135 and KC-46A Aircraft
Table D3.3-6. Annual Air Operations for Aircraft at Pease - Baseline

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>LTO</th>
<th>TGO</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135</td>
<td>614</td>
<td>2456</td>
<td>6140</td>
</tr>
</tbody>
</table>
Table D3.3-7. KC-135 Aircraft Closed Pattern Operations at Pease

<table>
<thead>
<tr>
<th>Scenario/Operation</th>
<th>Operations/Year</th>
<th>Engine Setting/Time in Mode per Operation (Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fraction of Ops</td>
<td>Total Ops</td>
</tr>
<tr>
<td>KC-135 VFR Profile</td>
<td>0.6225</td>
<td>1529</td>
</tr>
<tr>
<td>KC-135 IFR Profile</td>
<td>0.3775</td>
<td>927</td>
</tr>
<tr>
<td>Total Ops</td>
<td></td>
<td>2456</td>
</tr>
</tbody>
</table>

Table D3.3-8. KC-135 Aircraft Closed Pattern Operations - Fuel Use and Emission Factors, Baseline

<table>
<thead>
<tr>
<th>Factor</th>
<th>Engine Setting/Time in Mode per Operation (Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>55%</td>
</tr>
<tr>
<td>Fuel Use, lbs/hr</td>
<td>19910.88</td>
</tr>
<tr>
<td>Emission Factors, lbs/1000 lbs fuel</td>
<td></td>
</tr>
<tr>
<td>VOC</td>
<td>0.0704</td>
</tr>
<tr>
<td>CO</td>
<td>1.6313</td>
</tr>
<tr>
<td>SO2</td>
<td>1.0600</td>
</tr>
<tr>
<td>PM10</td>
<td>0.0538</td>
</tr>
<tr>
<td>PM2.5</td>
<td>0.0538</td>
</tr>
<tr>
<td>CO2</td>
<td>3216</td>
</tr>
<tr>
<td>CH4</td>
<td>0.0890</td>
</tr>
<tr>
<td>N2O</td>
<td>0.1000</td>
</tr>
</tbody>
</table>

Table D3.3-9. KC-135 Aircraft Closed Pattern Operations - Emissions Per Operation, Baseline

<table>
<thead>
<tr>
<th>Emissions per operation, lbs</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 CA VFR Right Turns South Side</td>
<td>0.1614</td>
<td>2.4721</td>
<td>37.2809</td>
<td>2.6974</td>
<td>0.1393</td>
<td>0.1393</td>
<td>8183.7166</td>
<td>0.2266</td>
<td>0.2545</td>
</tr>
<tr>
<td>KC-135 CC IFR Right Turns Southwest Side</td>
<td>0.3286</td>
<td>6.2014</td>
<td>68.9372</td>
<td>5.2364</td>
<td>0.2676</td>
<td>0.2676</td>
<td>15886.9857</td>
<td>0.4397</td>
<td>0.4940</td>
</tr>
</tbody>
</table>

Emissions, closed pattern ops, tons/year

<table>
<thead>
<tr>
<th></th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2757</td>
<td>4.7645</td>
<td>60.4558</td>
<td>4.4894</td>
<td>0.2305</td>
<td>0.2305</td>
<td>13620.6084</td>
<td>0.3769</td>
<td>0.4235</td>
<td></td>
</tr>
</tbody>
</table>
Table D3.3-10. Annual Air Emissions for KC-135 Aircraft Operations at Pease - Baseline

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO₂</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO₂</th>
<th>CH₄</th>
<th>N₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 LTOs</td>
<td>2.13</td>
<td>31.52</td>
<td>13.49</td>
<td>1.80</td>
<td>0.10</td>
<td>0.10</td>
<td>5452.70</td>
<td>0.15</td>
<td>0.17</td>
</tr>
<tr>
<td>KC-135 T&G</td>
<td>0.28</td>
<td>4.76</td>
<td>60.46</td>
<td>4.49</td>
<td>0.23</td>
<td>0.23</td>
<td>13620.61</td>
<td>0.38</td>
<td>0.42</td>
</tr>
<tr>
<td>Total Existing</td>
<td>2.41</td>
<td>36.29</td>
<td>73.94</td>
<td>6.29</td>
<td>0.33</td>
<td>0.33</td>
<td>19073.31</td>
<td>0.53</td>
<td>0.59</td>
</tr>
</tbody>
</table>

Table D3.3-11. Annual HAP Emissions for KC-135 Aircraft Operations at Pease - Baseline

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Form-aldehyde</th>
<th>Acetaldehyde</th>
<th>Acrolein</th>
<th>Naphthalene</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Ethyl-benzene</th>
<th>Xylenes</th>
<th>Styrene</th>
<th>Chloroform</th>
<th>Chloromethane</th>
<th>1,3-Dichloropropene</th>
<th>Methylene Chloride</th>
<th>Vinyl Acetate</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 LTOs</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.10</td>
<td>0.01</td>
</tr>
<tr>
<td>KC-135 Closed Pattern Ops</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.11</td>
<td>0.01</td>
</tr>
<tr>
<td>Total Existing</td>
<td>0.13</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.21</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Table D3.3-12. JP-8 AGE Equipment Emissions, Pease, Baseline

<table>
<thead>
<tr>
<th>AGE Type</th>
<th>Sorties</th>
<th>Total Run Time (hr/yr)</th>
<th>Fuel Use per Unit (gal/hr)</th>
<th>Fuel Use per Unit (gal/yr)</th>
<th>Engine Rating (hp)</th>
<th>Emission Factors, lbs/yr</th>
<th>Annual Emissions, lbs/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>KG-135-AGE</td>
<td>Generator AVMD-30A</td>
<td>10</td>
<td>6140.00</td>
<td>6.47</td>
<td>31258.71</td>
<td>1.06E+01</td>
<td>2.94E-01</td>
</tr>
<tr>
<td></td>
<td>Sorties: 614</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>House/Sortie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Emission estimation methodology based AFCEC 2013, assuming Sortie/LTO method per AFCEC guidance.
- Equipment from AFCEC 2013, Table 3-3. Emission Factors from AFCEC 2013, Table 3-4.

Table D3.3-13. AGE HAP Emissions, Pease, Baseline

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Turbine (lb/1000 gal)</th>
<th>Reciprocating (lb/1000 hp-hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>5.40E-03</td>
<td>1.57E+01</td>
</tr>
<tr>
<td>Asbestos</td>
<td>6.40E-04</td>
<td>1.58E+00</td>
</tr>
<tr>
<td>Boron</td>
<td>7.60E-02</td>
<td>1.55E+00</td>
</tr>
<tr>
<td>Chromium</td>
<td>6.60E-03</td>
<td>2.11E+01</td>
</tr>
<tr>
<td>Copper</td>
<td>3.60E-03</td>
<td>2.91E+01</td>
</tr>
<tr>
<td>Lead</td>
<td>1.00E-02</td>
<td>7.65E+00</td>
</tr>
<tr>
<td>Mercury</td>
<td>1.70E-04</td>
<td>5.30E+00</td>
</tr>
<tr>
<td>Nickel</td>
<td>3.60E-04</td>
<td>5.60E+00</td>
</tr>
<tr>
<td>Nickel</td>
<td>3.60E-04</td>
<td>5.60E+00</td>
</tr>
<tr>
<td>Nickel</td>
<td>1.00E-02</td>
<td>7.65E+00</td>
</tr>
<tr>
<td>Nickel</td>
<td>1.00E-02</td>
<td>7.65E+00</td>
</tr>
<tr>
<td>Nickel</td>
<td>1.00E-02</td>
<td>7.65E+00</td>
</tr>
</tbody>
</table>

- Total AGE, lbs/yr 7.12E+03

Table D3.3-14. JP-8 AGE Equipment GHG Emissions, Pease, Baseline

<table>
<thead>
<tr>
<th>AGE Type</th>
<th>Sorties</th>
<th>Total Run Time (hr/yr)</th>
<th>Fuel Use per Unit (gal/hr)</th>
<th>Fuel Use per Unit (gal/yr)</th>
<th>Engine Rating (hp)</th>
<th>Emission Factors, lbs/yr</th>
<th>Annual Emissions, lbs/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>KG-135-AGE</td>
<td>Generator AVMD-30A</td>
<td>10</td>
<td>6140.00</td>
<td>6.47</td>
<td>31258.71</td>
<td>1.06E+01</td>
<td>2.94E-01</td>
</tr>
<tr>
<td></td>
<td>Sorties: 614</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Emission estimation methodology based AFCEC 2013, assuming Sortie/LTO method per AFCEC guidance.
- Equipment from AFCEC 2013, Table 3-3. Emission Factors from AFCEC 2013, Table 3-4.

D3-39
Table D3.3-15. Aircraft Engine Emissions - Engine Tests, Pease, Baseline

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs fuel)</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135</td>
<td>15 0.50 1 1,014 2.1 30.7 4.0 1.1 0.1 1.0 0.1 0.1 0.46 0.46</td>
<td>Maintenance Run</td>
<td>61 0.33 4 1,014 2.1 30.7 4.0 1.1 0.1 1.0 0.1 0.1 0.46 0.46</td>
<td>TRT Run 2 Engine</td>
<td>7 0.17 2 1,014 2.1 30.7 4.0 1.1 0.1 1.0 0.1 0.1 0.46 0.46</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>TRT Run 4 Engine</td>
<td>5 0.17 4 1,014 2.1 30.7 4.0 1.1 0.1 1.0 0.1 0.1 0.46 0.46</td>
<td>Maintenance Run</td>
<td>61 0.33 4 1,014 2.1 30.7 4.0 1.1 0.1 1.0 0.1 0.1 0.46 0.46</td>
<td>TRT Run 2 Engine</td>
<td>7 0.17 2 1,014 2.1 30.7 4.0 1.1 0.1 1.0 0.1 0.1 0.46 0.46</td>
<td></td>
</tr>
</tbody>
</table>

Table D3.3-16. HAP Emissions, Engine Tests, Pease, Baseline

Aircraft/Test Type	Number of Engine Tests	Power Setting	Duration (hrs)	Number of Engines	Fuel Flow Rate per Engine (lbs fuel)	Form-	Acet-	Acrolein	Naphthalene	Benzene	Toluene	Ethyl-	Benzene	Styrene	Chloroform	Chloromethane	1,3- Dichloropropene	Methylene Chloride	Vinyl Acetate	Total HAPs, TPy			
KC-135	15 0.50 1 1,014 2.1 30.7 4.0 1.1 0.1 1.0 0.1 0.1 0.46 0.46	Maintenance Run	61 0.33 4 1,014 2.1 30.7 4.0 1.1 0.1 1.0 0.1 0.1 0.46 0.46	TRT Run 2 Engine	7 0.17 2 1,014 2.1 30.7 4.0 1.1 0.1 1.0 0.1 0.1 0.46 0.46																		
TRT Run 4 Engine	5 0.17 4 1,014 2.1 30.7 4.0 1.1 0.1 1.0 0.1 0.1 0.46 0.46	Maintenance Run	61 0.33 4 1,014 2.1 30.7 4.0 1.1 0.1 1.0 0.1 0.1 0.46 0.46	TRT Run 2 Engine	7 0.17 2 1,014 2.1 30.7 4.0 1.1 0.1 1.0 0.1 0.1 0.46 0.46																		

Table D3.3-17. GHG Emissions, Engine Tests, Pease, Baseline

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs fuel)</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>Emission Factor (lb/1000 lb fuel)</th>
<th>Actual Emissions (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135</td>
<td>15 0.50 1 1,014 2.1 30.7 4.0 1.1 0.1 1.0 0.1 0.1 0.46 0.46</td>
<td>Maintenance Run</td>
<td>61 0.33 4 1,014 2.1 30.7 4.0 1.1 0.1 1.0 0.1 0.1 0.46 0.46</td>
<td>TRT Run 2 Engine</td>
<td>7 0.17 2 1,014 2.1 30.7 4.0 1.1 0.1 1.0 0.1 0.1 0.46 0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>TRT Run 4 Engine</td>
<td>5 0.17 4 1,014 2.1 30.7 4.0 1.1 0.1 1.0 0.1 0.1 0.46 0.46</td>
<td>Maintenance Run</td>
<td>61 0.33 4 1,014 2.1 30.7 4.0 1.1 0.1 1.0 0.1 0.1 0.46 0.46</td>
<td>TRT Run 2 Engine</td>
<td>7 0.17 2 1,014 2.1 30.7 4.0 1.1 0.1 1.0 0.1 0.1 0.46 0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) CO2 emission factors obtained from AFCEC 2013. CH4 and N2O emission factors were derived from Table A-101 for jet fuel in EPA’s Inventory of U.S. Greenhouse Gas Emissions and Sinks, 1990-2005, using density of JP-8 as 6.8 lb/gallon.
Table D3.3-19. Annual Average On-Road Vehicle Emission Factors - Pease

<table>
<thead>
<tr>
<th>Scenario/Vehicle Class</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing (Year 2013)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDGV</td>
<td>37.58</td>
<td>0.567</td>
<td>11.64</td>
<td>0.567</td>
<td>0.007</td>
<td>0.028</td>
<td>0.013</td>
</tr>
<tr>
<td>LDDT</td>
<td>0.2</td>
<td>0.067</td>
<td>0.007</td>
<td>0.028</td>
<td>0.013</td>
<td>536.9</td>
<td></td>
</tr>
<tr>
<td>LDGT</td>
<td>60.32</td>
<td>0.820</td>
<td>13.66</td>
<td>0.728</td>
<td>0.01</td>
<td>0.028</td>
<td>0.013</td>
</tr>
<tr>
<td>HDGV</td>
<td>0.2</td>
<td>0.306</td>
<td>0.178</td>
<td>0.067</td>
<td>0.023</td>
<td>0.010</td>
<td>566.3</td>
</tr>
<tr>
<td>MC</td>
<td>1.8</td>
<td>2.73</td>
<td>26.76</td>
<td>0.41</td>
<td>0.007</td>
<td>0.037</td>
<td>0.013</td>
</tr>
<tr>
<td>Proposed Action (Year 2018)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDGV</td>
<td>37.58</td>
<td>0.432</td>
<td>10.66</td>
<td>0.337</td>
<td>0.007</td>
<td>0.028</td>
<td>0.013</td>
</tr>
<tr>
<td>LDDT</td>
<td>0.2</td>
<td>0.067</td>
<td>0.007</td>
<td>0.028</td>
<td>0.013</td>
<td>368.9</td>
<td></td>
</tr>
<tr>
<td>LDGT</td>
<td>60.32</td>
<td>0.820</td>
<td>13.66</td>
<td>0.728</td>
<td>0.01</td>
<td>0.028</td>
<td>0.013</td>
</tr>
<tr>
<td>HDGV</td>
<td>0.2</td>
<td>0.306</td>
<td>0.178</td>
<td>0.067</td>
<td>0.023</td>
<td>0.010</td>
<td>566.3</td>
</tr>
<tr>
<td>MC</td>
<td>1.8</td>
<td>2.73</td>
<td>26.76</td>
<td>0.41</td>
<td>0.007</td>
<td>0.037</td>
<td>0.013</td>
</tr>
</tbody>
</table>

Notes: (1) Emission factors from AFCEC 2013, Table 5-13, for 2017 used to provide a conservative estimate of emissions for 2018
Table D3.3-22. Annual Air Operations for Aircraft at Pease - Proposed Action

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>LTO</th>
<th>TGO</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A</td>
<td>884</td>
<td>3536</td>
<td>8840</td>
</tr>
</tbody>
</table>
Table D3.3-23. KC-46A Aircraft Closed Pattern Operations at Pease - KC-46A Proposed Scenarios

<table>
<thead>
<tr>
<th>Scenario/Operation</th>
<th>Operations/Year</th>
<th>Engine Setting/Time in Mode per Operation (Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fraction of Ops</td>
<td>Total Ops per Pattern</td>
</tr>
<tr>
<td>KC-46A VFR Profile</td>
<td>0.8924</td>
<td>3156</td>
</tr>
<tr>
<td>KC-46A IFR Profile</td>
<td>0.1076</td>
<td>380</td>
</tr>
<tr>
<td>Total Ops</td>
<td></td>
<td>3536</td>
</tr>
</tbody>
</table>

Table D3.3-24. KC-46A Aircraft Closed Pattern Operations - Fuel Use and Emission Factors

<table>
<thead>
<tr>
<th>Factor</th>
<th>Fuel Use, lbs/hr</th>
<th>Emission Factors, lbs/1000 lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>55%</td>
<td>58%</td>
</tr>
<tr>
<td></td>
<td>22572</td>
<td>23688.8</td>
</tr>
<tr>
<td>VOC</td>
<td>0.0920</td>
<td>0.0909</td>
</tr>
<tr>
<td>CO</td>
<td>1.2150</td>
<td>1.1435</td>
</tr>
<tr>
<td>SO2</td>
<td>1.0600</td>
<td>1.0600</td>
</tr>
<tr>
<td>PM10</td>
<td>0.0600</td>
<td>0.0610</td>
</tr>
<tr>
<td>PM2.5</td>
<td>0.0500</td>
<td>0.0510</td>
</tr>
<tr>
<td>CO2</td>
<td>3216</td>
<td>3216</td>
</tr>
<tr>
<td>CH4</td>
<td>0.0890</td>
<td>0.0890</td>
</tr>
<tr>
<td>N2O</td>
<td>0.1000</td>
<td>0.1000</td>
</tr>
</tbody>
</table>

Table D3.3-25. KC-46A Aircraft Closed Pattern Operations - Emissions Per Operation

<table>
<thead>
<tr>
<th>Emissions per operation, lbs</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A CA VFR Right Turns South Side</td>
<td>0.2531</td>
<td>2.8367</td>
<td>61.2648</td>
<td>3.0225</td>
<td>0.1809</td>
<td>0.1523</td>
<td>9170.2396</td>
<td>0.2538</td>
<td>0.2851</td>
</tr>
<tr>
<td>KC-46A CC IFR Right Turns Southwest Side</td>
<td>0.4768</td>
<td>5.6496</td>
<td>109.9461</td>
<td>5.6344</td>
<td>0.3311</td>
<td>0.2870</td>
<td>17094.6253</td>
<td>0.4731</td>
<td>0.5315</td>
</tr>
<tr>
<td>Emissions, closed pattern ops, tons/year</td>
<td>0.4900</td>
<td>5.5604</td>
<td>117.5768</td>
<td>5.8407</td>
<td>0.3483</td>
<td>0.2932</td>
<td>17720.4935</td>
<td>0.4904</td>
<td>0.5510</td>
</tr>
</tbody>
</table>

D3-43
Table D3.3-26. Annual Air Emissions for KC-46A Aircraft Operations at Pease - Proposed Action

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A LTOs</td>
<td>14.71</td>
<td>51.10</td>
<td>33.54</td>
<td>2.60</td>
<td>0.21</td>
<td>0.19</td>
<td>7879.51</td>
<td>0.22</td>
<td>0.25</td>
</tr>
<tr>
<td>KC-46A T&G</td>
<td>0.49</td>
<td>5.55</td>
<td>117.58</td>
<td>5.84</td>
<td>0.35</td>
<td>0.29</td>
<td>17720.49</td>
<td>0.49</td>
<td>0.55</td>
</tr>
<tr>
<td>APU</td>
<td>0.04</td>
<td>0.31</td>
<td>6.30</td>
<td>0.52</td>
<td>0.05</td>
<td>0.04</td>
<td>1286.56</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total Proposed Action</td>
<td>15.24</td>
<td>56.95</td>
<td>157.41</td>
<td>8.96</td>
<td>0.61</td>
<td>0.52</td>
<td>26886.56</td>
<td>0.71</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Table D3.3-27. Annual HAP Emissions for KC-46A Aircraft Operations at Pease - Proposed Action

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Formaldehyde</th>
<th>Acetaldehyde</th>
<th>Acrolein</th>
<th>Naphthalene</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Ethylbenzene</th>
<th>Xylenes</th>
<th>Styrene</th>
<th>Chloroform</th>
<th>Chloromethane</th>
<th>1,3-Dichloropropene</th>
<th>Methylene Chloride</th>
<th>Vinyl Acetate</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A LTOs</td>
<td>2.10</td>
<td>0.73</td>
<td>0.42</td>
<td>0.09</td>
<td>0.29</td>
<td>0.11</td>
<td>0.03</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.13</td>
<td>0.01</td>
</tr>
<tr>
<td>KC-46A Closed Pattern Ops</td>
<td>0.07</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.21</td>
<td>0.02</td>
</tr>
<tr>
<td>Total Proposed Action</td>
<td>2.17</td>
<td>0.75</td>
<td>0.43</td>
<td>0.10</td>
<td>0.30</td>
<td>0.11</td>
<td>0.03</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.34</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Table D3.3-28. JP-8 AGE Equipment Emissions, Proposed Action, Pease

<table>
<thead>
<tr>
<th>AGE Type</th>
<th>Sorties</th>
<th>Total Run Time (hr/yr)</th>
<th>Fuel Use per Unit (gal/hr)</th>
<th>Fuel Use per Unit (gal/yr)</th>
<th>Engine Rating (hp)</th>
<th>Emission Factors, lbs/yr</th>
<th>Annual Emissions, lbs/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A AGE</td>
<td>SBH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Emission estimation methodology based on AFCEC 2013, assuming Sortie/LTO method per AFCEC guidance.
- Equipment from AFCEC 2013, Table 1-3. Emission Factors from AFCEC 2013, Table 3-4.

Table D3.3-29. AGE HAP Emissions, Proposed Action, Pease

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factors (lbs/MMBTU)</th>
<th>Actual Annual Emissions (lbs/yr)</th>
<th>Emission Factors (lbs/MMBTU)</th>
<th>Annual Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>1.56E-05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acrylamide</td>
<td>2.33E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>2.57E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titanium</td>
<td>2.32E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>3.48E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>1.06E-04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>1.67E-04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methylotrione</td>
<td>5.79E-04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>5.38E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POM</td>
<td>1.20E+03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>1.06E-05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>3.53E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylenes</td>
<td>3.02E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.06E-02</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table D3.3-30. JP-8 AGE Equipment GHG Emissions, Proposed Action, Pease

<table>
<thead>
<tr>
<th>AGE Type</th>
<th>Sorties</th>
<th>Total Run Time (hr/yr)</th>
<th>Fuel Use per Unit (gal/hr)</th>
<th>Fuel Use per Unit (gal/yr)</th>
<th>Engine Rating (hp)</th>
<th>Emission Factors, lbs/yr</th>
<th>Annual Emissions, lbs/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A AGE</td>
<td>SBH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Emission estimation methodology based on AFCEC 2013, assuming Sortie/LTO method per AFCEC guidance.
- Equipment from AFCEC 2013, Table 1-3. Emission Factors from AFCEC 2013, Table 3-4.

D3-45
Table D3.3-31. Aircraft Engine Emissions - Engine Tests, Proposed Action, Pease

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs fuel/hr)</th>
<th>Emission Factors (lb/1000 lb fuel)</th>
<th>Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VOC</td>
<td>CO</td>
<td>NOx</td>
</tr>
<tr>
<td>KC-46A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defueling</td>
<td>22</td>
<td>Idle</td>
<td>0.09</td>
<td>1</td>
<td>1,663</td>
<td>32.5</td>
<td>42.8</td>
</tr>
<tr>
<td>Maintenance Run</td>
<td>88</td>
<td>Idle</td>
<td>0.33</td>
<td>2</td>
<td>1,663</td>
<td>32.5</td>
<td>42.8</td>
</tr>
<tr>
<td>TRT Run 1 Engine</td>
<td>10</td>
<td>Idle</td>
<td>0.17</td>
<td>1</td>
<td>1,663</td>
<td>32.5</td>
<td>42.8</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>80% RPM</td>
<td>0.08</td>
<td>1</td>
<td>1,666.6</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>0.08</td>
<td>2</td>
<td>1,663</td>
<td>32.5</td>
<td>42.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>0.08</td>
<td>2</td>
<td>1,663</td>
<td>32.5</td>
<td>42.8</td>
</tr>
</tbody>
</table>

Table D3.3-32. HAP Emissions, Engine Tests, Proposed Action, Pease

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs fuel/hr)</th>
<th>Emission Factors (lb/1000 lb fuel)</th>
<th>Emissions, TPY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Form-</td>
<td>Acet-</td>
<td>Acrolein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>aldehyde</td>
<td>aldehyde</td>
<td></td>
</tr>
<tr>
<td>KC-46A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defueling</td>
<td>22</td>
<td>Idle</td>
<td>0.09</td>
<td>1</td>
<td>1,663</td>
<td>3.29</td>
<td>0.1</td>
</tr>
<tr>
<td>Maintenance Run</td>
<td>88</td>
<td>Idle</td>
<td>0.33</td>
<td>2</td>
<td>1,663</td>
<td>3.29</td>
<td>0.1</td>
</tr>
<tr>
<td>TRT Run 1 Engine</td>
<td>10</td>
<td>Idle</td>
<td>0.17</td>
<td>1</td>
<td>1,663</td>
<td>3.29</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>80% RPM</td>
<td>0.08</td>
<td>1</td>
<td>1,666.6</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>0.08</td>
<td>2</td>
<td>1,663</td>
<td>3.29</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Table D3.3-33. GHG Emissions, Engine Tests, Proposed Action, Pease

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs fuel/hr)</th>
<th>Emission Factors (lb/1000 lb fuel)</th>
<th>Actual Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CO2</td>
<td>CH4</td>
<td>N2O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(lb/1000 lb fuel)</td>
<td>(lb/1000 lb fuel)</td>
<td>(lb/1000 lb fuel)</td>
</tr>
<tr>
<td>KC-46A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defueling</td>
<td>22</td>
<td>Idle</td>
<td>0.09</td>
<td>1</td>
<td>1,663</td>
<td>3.29</td>
<td>0.1</td>
</tr>
<tr>
<td>Maintenance Run</td>
<td>88</td>
<td>Idle</td>
<td>0.33</td>
<td>2</td>
<td>1,663</td>
<td>3.29</td>
<td>0.1</td>
</tr>
<tr>
<td>TRT Run 1 Engine</td>
<td>10</td>
<td>Idle</td>
<td>0.17</td>
<td>1</td>
<td>1,663</td>
<td>3.29</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>80% RPM</td>
<td>0.08</td>
<td>1</td>
<td>1,666.6</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>0.08</td>
<td>2</td>
<td>1,663</td>
<td>3.29</td>
<td>0.1</td>
</tr>
</tbody>
</table>

(1) CO2 emission factors obtained from AFCEC 2013. CH4 and N2O emission factors were derived from Table A-101 for jet fuel in EPA's Inventory of U.S. Greenhouse Gas Emissions and Sinks, 1990-2005, using density of JP-8 as 6.8 lb/gallon.
Table D3.3-34. Pease Comparison of Emissions

Annual Emissions, tons/year

<table>
<thead>
<tr>
<th></th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft Ops</td>
<td>2.41</td>
<td>36.29</td>
<td>73.94</td>
<td>6.29</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>AGE</td>
<td>0.00</td>
<td>0.01</td>
<td>0.07</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.13</td>
<td>1.47</td>
<td>0.40</td>
<td>0.06</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>POVs</td>
<td>1.11</td>
<td>19.06</td>
<td>0.91</td>
<td>0.01</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>Total</td>
<td>3.62</td>
<td>56.84</td>
<td>75.32</td>
<td>6.36</td>
<td>0.37</td>
<td>0.35</td>
</tr>
<tr>
<td>Proposed Action</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft Ops</td>
<td>15.24</td>
<td>56.95</td>
<td>157.41</td>
<td>8.96</td>
<td>0.61</td>
<td>0.52</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.01</td>
<td>0.10</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.77</td>
<td>2.63</td>
<td>0.71</td>
<td>0.08</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>POVs</td>
<td>0.91</td>
<td>17.45</td>
<td>0.70</td>
<td>0.01</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>Total</td>
<td>16.93</td>
<td>77.05</td>
<td>158.92</td>
<td>9.06</td>
<td>0.66</td>
<td>0.55</td>
</tr>
<tr>
<td>Net Increase</td>
<td>13.31</td>
<td>20.21</td>
<td>83.60</td>
<td>2.70</td>
<td>0.28</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Table D3.3-35. Pease Comparison of HAP Emissions

Annual HAP Emissions, tons/year

<table>
<thead>
<tr>
<th></th>
<th>Formaldehyde</th>
<th>Acetaldehyde</th>
<th>Acrolein</th>
<th>Naphthalene</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Ethylbenzene</th>
<th>Xylenes</th>
<th>Styrene</th>
<th>Chloroform</th>
<th>Chloromethane</th>
<th>1,3-Dichloropropene</th>
<th>Methylene Chloride</th>
<th>Vinyl Acetate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
</tr>
<tr>
<td>Aircraft Ops</td>
<td>0.13</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.21</td>
<td>0.02</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.03</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>0.14</td>
<td>0.01</td>
<td>0.00</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.21</td>
<td>0.02</td>
</tr>
<tr>
<td>Proposed Action</td>
<td></td>
</tr>
<tr>
<td>Aircraft Ops</td>
<td>2.17</td>
<td>0.75</td>
<td>0.43</td>
<td>0.10</td>
<td>0.30</td>
<td>0.11</td>
<td>0.03</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.34</td>
<td>0.02</td>
</tr>
<tr>
<td>AGE</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>0.03</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.04</td>
<td>0.02</td>
<td>0.00</td>
<td>0.03</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>2.22</td>
<td>0.79</td>
<td>0.44</td>
<td>0.11</td>
<td>0.32</td>
<td>0.12</td>
<td>0.03</td>
<td>0.05</td>
<td>0.05</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.34</td>
<td>0.02</td>
</tr>
<tr>
<td>Net Increase</td>
<td>2.08</td>
<td>0.79</td>
<td>0.44</td>
<td>0.11</td>
<td>0.30</td>
<td>0.09</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.12</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Table D3.3-36. Pease Comparison of GHG Emissions

Annual GHG Emissions, metric tons/year

<table>
<thead>
<tr>
<th></th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft Ops</td>
<td>17303</td>
<td>0.48</td>
<td>0.54</td>
<td>17480</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>1571</td>
<td>0.04</td>
<td>0.05</td>
<td>1588</td>
</tr>
<tr>
<td>POVs</td>
<td>597</td>
<td>0.00</td>
<td>0.00</td>
<td>597</td>
</tr>
<tr>
<td>Total</td>
<td>19643</td>
<td>0.53</td>
<td>0.59</td>
<td>19639</td>
</tr>
<tr>
<td>Proposed Action</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft Ops</td>
<td>24391</td>
<td>0.64</td>
<td>0.72</td>
<td>24629</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>2282</td>
<td>0.06</td>
<td>0.07</td>
<td>2292</td>
</tr>
<tr>
<td>POVs</td>
<td>612</td>
<td>0.00</td>
<td>0.00</td>
<td>612</td>
</tr>
<tr>
<td>Total</td>
<td>27698</td>
<td>0.71</td>
<td>0.80</td>
<td>27762</td>
</tr>
<tr>
<td>Net Increase</td>
<td>7855</td>
<td>0.18</td>
<td>0.21</td>
<td>7924</td>
</tr>
</tbody>
</table>
Table D3.4-1. Engine Emission Factors by Throttle Setting - KC-135 and KC-46A Aircraft

<table>
<thead>
<tr>
<th>Engine Type/Throttle Setting</th>
<th>Fuel Flow (Pounds/Hour)</th>
<th>Emission Factors, lbs/1000 lbs fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VOC</td>
<td>CO</td>
</tr>
<tr>
<td>F-108-CF-100 (2) Idle</td>
<td>1013.76</td>
<td>2.1045</td>
</tr>
<tr>
<td>Approach</td>
<td>2463.12</td>
<td>0.092</td>
</tr>
<tr>
<td>Intermediate</td>
<td>6486.48</td>
<td>0.0575</td>
</tr>
<tr>
<td>Military</td>
<td>7801.2</td>
<td>0.046</td>
</tr>
<tr>
<td>PW-4062 (3) Idle</td>
<td>1663.2</td>
<td>12.489</td>
</tr>
<tr>
<td>Approach</td>
<td>5702.8</td>
<td>0.1035</td>
</tr>
<tr>
<td>Climbout</td>
<td>16889.6</td>
<td>0.0805</td>
</tr>
<tr>
<td>Take-Off</td>
<td>21621.6</td>
<td>0.052</td>
</tr>
</tbody>
</table>

Notes: (1) Data are for one engine. The KC-135R has 4 engines and the KC-46A has 2 engines.
(2) Data from Air Emissions Factor Guide to Air Force Mobile Sources (AFCEC 2013).
(3) ICAO Engine Exhaust Emissions Data Bank - Subsonic Engines - (ICAO 2013).

Table D3.4-2. HAP Emission Factors - KC-135 and KC-46A Aircraft

<table>
<thead>
<tr>
<th>Engine Type</th>
<th>Emission Factor (lb/1000 lb fuel) (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formaldehyde</td>
</tr>
<tr>
<td>F-108-CF-100 Idle</td>
<td>9.5E-02</td>
</tr>
<tr>
<td>Approach</td>
<td>1.50E-02</td>
</tr>
<tr>
<td>Intermediate</td>
<td>5.58E-03</td>
</tr>
<tr>
<td>Military</td>
<td>7.01E-03</td>
</tr>
<tr>
<td>PW-4062 (3) Idle</td>
<td>1.79E+00</td>
</tr>
<tr>
<td>Approach</td>
<td>1.48E-02</td>
</tr>
<tr>
<td>Intermediate</td>
<td>1.15E-03</td>
</tr>
<tr>
<td>Military</td>
<td>1.31E-02</td>
</tr>
</tbody>
</table>

Notes: (1) Data are for one engine. The KC-135 has 4 engines and the KC-46A has 2 engines.
(2) Data from Air Emissions Factor Guide to Air Force Mobile Sources (AFCEC 2013), Table 2-9.
Table D3.4-3. Land and Take-off/Touch and Go Times in Mode and Fuel Usages - KC-135 and KC-46A Aircraft

<table>
<thead>
<tr>
<th>Aircraft/Mode (Engine Throttle Setting)</th>
<th>LTO Time in Mode (TIM)</th>
<th>Fuel Usage</th>
<th>Touch & Go</th>
<th>Fuel Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minutes</td>
<td>Hours</td>
<td>Pounds</td>
<td>Hours</td>
</tr>
<tr>
<td>KC-135 (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxi Out (Idle)</td>
<td>32.8</td>
<td>0.55</td>
<td>2217</td>
<td></td>
</tr>
<tr>
<td>Take-off (Military)</td>
<td>0.7</td>
<td>0.01</td>
<td>364</td>
<td>0.01</td>
</tr>
<tr>
<td>Climbout (Intermediate)</td>
<td>2.5</td>
<td>0.04</td>
<td>1081</td>
<td>0.04</td>
</tr>
<tr>
<td>Approach</td>
<td>5.2</td>
<td>0.09</td>
<td>854</td>
<td>0.09</td>
</tr>
<tr>
<td>Taxi In (Idle)</td>
<td>14.9</td>
<td>0.25</td>
<td>1007</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>56.1</td>
<td>0.94</td>
<td>5523</td>
<td>0.14</td>
</tr>
<tr>
<td>KC-46A (2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxi Out (Idle)</td>
<td>32.8</td>
<td>0.55</td>
<td>1818</td>
<td></td>
</tr>
<tr>
<td>Take-off (Military)</td>
<td>0.7</td>
<td>0.01</td>
<td>505</td>
<td>0.01</td>
</tr>
<tr>
<td>Climbout (Intermediate)</td>
<td>2.5</td>
<td>0.04</td>
<td>1406</td>
<td>0.04</td>
</tr>
<tr>
<td>Approach</td>
<td>5.2</td>
<td>0.09</td>
<td>988</td>
<td>0.09</td>
</tr>
<tr>
<td>Taxi In (Idle)</td>
<td>14.9</td>
<td>0.25</td>
<td>826</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>56.1</td>
<td>0.94</td>
<td>5543</td>
<td>0.14</td>
</tr>
<tr>
<td>APU Use, KC-46A (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Flight - OBIGGS + Electric + Max ECS</td>
<td></td>
<td></td>
<td></td>
<td>1.50</td>
</tr>
<tr>
<td>Pre-Flight - Main Engine Start + Electric</td>
<td></td>
<td></td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>Post-Flight - Electric + Min ECS</td>
<td></td>
<td></td>
<td></td>
<td>0.58</td>
</tr>
<tr>
<td>Total Hours per LTO</td>
<td></td>
<td></td>
<td></td>
<td>2.12</td>
</tr>
</tbody>
</table>

Notes: (1) Fuel usage per aircraft.
(2) TIM Data from Table 2-4, Transport Aircraft (AFCEC 2013).
(3) APU use from FTU/MOB1 Draft EIS.
Table D3.4-4: Land and Take-off/Touch and Go Total Fuel Usages and Emissions - KC-135 and KC-46A Aircraft

<table>
<thead>
<tr>
<th>Aircraft/Mode</th>
<th>Time in Mode (TIM)</th>
<th>Fuel Usage</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>LTO</th>
<th>Emmissions (Pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 (2)</td>
<td></td>
</tr>
<tr>
<td>Taxi Out (Idle)</td>
<td>32.8</td>
<td>0.55</td>
<td>2217</td>
<td>4.02</td>
<td>86.05</td>
<td>8.89</td>
<td>2.32</td>
<td>0.13</td>
<td>0.13</td>
<td>7319.69</td>
<td>0.25</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>Takeoff (Military)</td>
<td>0.7</td>
<td>0.01</td>
<td>345</td>
<td>0.00</td>
<td>0.44</td>
<td>0.16</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>1175.08</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Climbout (Intermediate)</td>
<td>2.5</td>
<td>0.04</td>
<td>1068</td>
<td>0.00</td>
<td>0.60</td>
<td>0.19</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>1784.09</td>
<td>0.02</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Approach</td>
<td>0.2</td>
<td>0.00</td>
<td>854</td>
<td>0.00</td>
<td>5.06</td>
<td>0.75</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>2718.62</td>
<td>0.02</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>LTO (Idle)</td>
<td>14.9</td>
<td>0.25</td>
<td>1007</td>
<td>0.00</td>
<td>6.05</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>3238.52</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>LTO Total</td>
<td>56.1</td>
<td>0.94</td>
<td>5523</td>
<td>6.99</td>
<td>102.69</td>
<td>4.33</td>
<td>5.85</td>
<td>0.32</td>
<td>0.32</td>
<td>17761.24</td>
<td>0.49</td>
<td>0.55</td>
<td></td>
</tr>
</tbody>
</table>

KC-46A (2)													
Taxi Out (Idle)	34.9	0.56	1818	22.72	77.46	4.75	0.38	0.03	0.03	5848.08	0.16	0.19	
Takeoff (Military)	0.7	0.01	505	0.00	0.31	0.06	0.00	0.00	0.00	3178.75	0.09	0.10	
Climbout (Intermediate)	2.5	0.04	1406	0.00	1.75	0.30	0.01	0.00	0.00	4521.07	0.13	0.14	
Approach	0.3	0.00	988	0.00	2.22	0.22	0.01	0.00	0.00	2656.60	0.07	0.08	
LTO (Idle)	14.9	0.25	826	0.00	1.53	0.30	0.00	0.00	0.00	2656.60	0.07	0.08	
LTO Total	56.1	0.94	5543	3.29	105.66	6.58	5.88	0.48	0.42	17826.96	0.49	0.55	

Table D3.4-5: Land and Take-off/Touch and Go Total Fuel Usages and HAP Emissions - KC-135 and KC-46A Aircraft

<table>
<thead>
<tr>
<th>Aircraft/Mode</th>
<th>Time in Mode (TIM)</th>
<th>Fuel Usage</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>LTO</th>
<th>Emmissions (Pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 (2)</td>
<td></td>
</tr>
<tr>
<td>Taxi Out (Idle)</td>
<td>32.8</td>
<td>0.55</td>
<td>2217</td>
<td>4.02</td>
<td>86.05</td>
<td>8.89</td>
<td>2.32</td>
<td>0.13</td>
<td>0.13</td>
<td>7319.69</td>
<td>0.25</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>Takeoff (Military)</td>
<td>0.7</td>
<td>0.01</td>
<td>345</td>
<td>0.00</td>
<td>0.44</td>
<td>0.16</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>1175.08</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Climbout (Intermediate)</td>
<td>2.5</td>
<td>0.04</td>
<td>1068</td>
<td>0.00</td>
<td>0.60</td>
<td>0.19</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>1784.09</td>
<td>0.02</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Approach</td>
<td>0.2</td>
<td>0.00</td>
<td>854</td>
<td>0.00</td>
<td>5.06</td>
<td>0.75</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>2718.62</td>
<td>0.02</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>LTO (Idle)</td>
<td>14.9</td>
<td>0.25</td>
<td>1007</td>
<td>0.00</td>
<td>6.05</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>3238.52</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>LTO Total</td>
<td>56.1</td>
<td>0.94</td>
<td>5523</td>
<td>6.99</td>
<td>102.69</td>
<td>4.33</td>
<td>5.85</td>
<td>0.32</td>
<td>0.32</td>
<td>17761.24</td>
<td>0.49</td>
<td>0.55</td>
<td></td>
</tr>
</tbody>
</table>

KC-46A (2)													
Taxi Out (Idle)	34.9	0.56	1818	22.72	77.46	4.75	0.38	0.03	0.03	5848.08	0.16	0.19	
Takeoff (Military)	0.7	0.01	505	0.00	0.31	0.06	0.00	0.00	0.00	3178.75	0.09	0.10	
Climbout (Intermediate)	2.5	0.04	1406	0.00	1.75	0.30	0.01	0.00	0.00	4521.07	0.13	0.14	
Approach	0.3	0.00	988	0.00	2.22	0.22	0.01	0.00	0.00	2656.60	0.07	0.08	
LTO (Idle)	14.9	0.25	826	0.00	1.53	0.30	0.00	0.00	0.00	2656.60	0.07	0.08	
LTO Total	56.1	0.94	5543	3.29	105.66	6.58	5.88	0.48	0.42	17826.96	0.49	0.55	
Table D3.4-6. Annual Air Operations for Aircraft at Pittsburgh - Baseline

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>LTO</th>
<th>TGO</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135</td>
<td>926</td>
<td>2545.5</td>
<td>6943</td>
</tr>
</tbody>
</table>
Table D3.4-7. KC-135 Aircraft Closed Pattern Operations at Pittsburgh, Baseline

<table>
<thead>
<tr>
<th>Scenario/Operation</th>
<th>Fraction of Ops</th>
<th>Total Ops per Pattern</th>
<th>55%</th>
<th>58%</th>
<th>60%</th>
<th>70%</th>
<th>73%</th>
<th>85%</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 VFR Profile</td>
<td>1</td>
<td>2546</td>
<td>1.08073231</td>
<td>1.05954148</td>
<td>3.23876605</td>
<td>0.62508111</td>
<td>0.10721561</td>
<td>0.60319134</td>
</tr>
<tr>
<td>KC-135 IFR Profile</td>
<td>0</td>
<td>0</td>
<td>5.90400061</td>
<td>2.76893508</td>
<td>3.98841687</td>
<td>0.45137435</td>
<td>0.10721561</td>
<td>0.60319134</td>
</tr>
<tr>
<td>Total Ops</td>
<td></td>
<td></td>
<td>2545.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table D3.4-8. KC-135 Aircraft Closed Pattern Operations - Fuel Use and Emission Factors, Baseline

<table>
<thead>
<tr>
<th>Factor</th>
<th>Fuel Use, lbs/hr</th>
<th>Emission Factors, lbs/1000 lbs fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>55%</td>
<td>58%</td>
</tr>
<tr>
<td></td>
<td>19910.88</td>
<td>20916.72</td>
</tr>
<tr>
<td>Fuel Use, lbs/hr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VOC</td>
<td>0.0704</td>
<td>0.0683</td>
</tr>
<tr>
<td>CO</td>
<td>1.6313</td>
<td>1.3744</td>
</tr>
<tr>
<td>SO2</td>
<td>1.0600</td>
<td>1.0600</td>
</tr>
<tr>
<td>PM10</td>
<td>0.0638</td>
<td>0.0531</td>
</tr>
<tr>
<td>PM2.5</td>
<td>0.0638</td>
<td>0.0531</td>
</tr>
<tr>
<td>CO2</td>
<td>3216</td>
<td>3216</td>
</tr>
<tr>
<td>CH4</td>
<td>0.0890</td>
<td>0.0890</td>
</tr>
<tr>
<td>N2O</td>
<td>0.1000</td>
<td>0.1000</td>
</tr>
</tbody>
</table>

Table D3.4-9. KC-135 Aircraft Closed Pattern Operations - Emissions Per Operation, Baseline

<table>
<thead>
<tr>
<th>Emissions per operation, lbs</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 CA VFR Right Torns South Side</td>
<td>0.1614</td>
<td>2.4721</td>
<td>37.2809</td>
<td>2.6974</td>
<td>0.1393</td>
<td>0.1393</td>
<td>8183.7166</td>
<td>0.2266</td>
<td>0.2545</td>
</tr>
<tr>
<td>KC-135 CC IFR Right Torns Southwest Side</td>
<td>0.3296</td>
<td>6.2014</td>
<td>68.9372</td>
<td>5.2364</td>
<td>0.2676</td>
<td>0.2676</td>
<td>15886.9867</td>
<td>0.4397</td>
<td>0.4940</td>
</tr>
<tr>
<td>Emissions, closed pattern ops, tons/year</td>
<td>0.2054</td>
<td>3.1464</td>
<td>47.4492</td>
<td>3.4331</td>
<td>0.1773</td>
<td>0.1773</td>
<td>10415.6252</td>
<td>0.2882</td>
<td>0.3239</td>
</tr>
</tbody>
</table>

D3-53
Table D3.4-10. Annual Air Emissions for KC-135 Aircraft Operations at Pittsburgh - Baseline

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 LTOs</td>
<td>3.21</td>
<td>47.54</td>
<td>20.34</td>
<td>2.71</td>
<td>0.15</td>
<td>0.15</td>
<td>8223.46</td>
<td>0.23</td>
<td>0.26</td>
</tr>
<tr>
<td>KC-135 T&G</td>
<td>0.21</td>
<td>3.15</td>
<td>47.45</td>
<td>3.43</td>
<td>0.18</td>
<td>0.18</td>
<td>10415.83</td>
<td>0.29</td>
<td>0.32</td>
</tr>
<tr>
<td>Total Existing</td>
<td>3.42</td>
<td>50.69</td>
<td>67.79</td>
<td>6.14</td>
<td>0.33</td>
<td>0.33</td>
<td>18639.28</td>
<td>0.52</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Table D3.4-11. Annual HAP Emissions for KC-135 Aircraft Operations at Pittsburgh - Baseline

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Form-</th>
<th>Acet-</th>
<th>Acrolein</th>
<th>Naphthalene</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Ethyl-</th>
<th>Xylenes</th>
<th>Styrene</th>
<th>Chloroform</th>
<th>Chloromethane</th>
<th>1,3-</th>
<th>Dichloropropene</th>
<th>Methylene</th>
<th>Vinyl</th>
<th>Acetate</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 LTOs</td>
<td>0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.14</td>
<td>0.14</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>KC-135 Closed Pattern Ops</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.12</td>
<td>0.12</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Total Existing</td>
<td>0.18</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.26</td>
<td>0.26</td>
<td>0.02</td>
<td></td>
</tr>
</tbody>
</table>
Table D3.4-12. JP-8 AGE Equipment Emissions, Pittsburgh, Baseline

AGE Type	Sorties	Total Run Time (hr/yr)	Fuel Use per Unit (gal/hr)	Fuel Use per Unit (gal/yr)	Engine Rating (hp)	NOx	CO	VOC	PM2.5	PM10	SO2	NOx	CO	VOC	PM2.5	PM10	SO2	
KC-135 AGE	926	9260.00	6.47	77385.81	650.00	9.58	12458.81	60.00	148.00	2.11E+01	5.91E-04	6.80E-04	1.63E+06	4.57E+01	5.26E+01	1.11E+01	1.11E+01	3.09E+02

Total JP-8 AGE, Tons/year 4385602.67 21.05E-01 6.57E-03 4.44E-03 4.35E-03 1.19E-03

Note: Emission estimation methodology based AFCEC 2013, assuming Sortie/LTO method per AFCEC guidance. Equipment from AFCEC 2013, Table 3-3. Emission Factors from AFCEC 2013, Table 3-4.

Table D3.4-13. AGE HAP Emissions, Pittsburgh, Baseline

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Turbine (lb/1000 gal)</th>
<th>Reciprocating (lb/1000 hr-hr)</th>
<th>Actual Annual Emissions (lbs/yr)</th>
<th>Emission Factor (lb/MMBTU)</th>
<th>Annual Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetaldehyde</td>
<td>5.40E-03</td>
<td>2.37E+01</td>
<td>7.00E-02</td>
<td>2.11E+01</td>
<td>5.91E-04</td>
</tr>
</tbody>
</table>

Table D3.4-14. JP-8 AGE Equipment GHG Emissions, Pittsburgh, Baseline

<table>
<thead>
<tr>
<th>AGE Type</th>
<th>Sorties</th>
<th>Total Run Time (hr/yr)</th>
<th>Fuel Use per Unit (gal/hr)</th>
<th>Fuel Use per Unit (gal/yr)</th>
<th>Engine Rating (hp)</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 AGE</td>
<td>926</td>
<td>9260.00</td>
<td>6.47</td>
<td>77385.81</td>
<td>650.00</td>
<td>9.58</td>
<td>12458.81</td>
<td>60.00</td>
<td>148.00</td>
<td>2.11E+01</td>
<td>5.91E-04</td>
<td>6.80E-04</td>
<td>1.63E+06</td>
<td>4.57E+01</td>
</tr>
</tbody>
</table>

Total JP-8 AGE, Metric Tons/year 2.37E+02 6.54E-02 7.64E-02

Note: Emission estimation methodology based AFCEC 2013, assuming Sortie/LTO method per AFCEC guidance. Equipment from AFCEC 2013, Table 3-3. Emission Factors from AFCEC 2013, Table 3-4.
Table D3.4-15. Aircraft Engine Emissions - Engine Tests, Pittsburgh, Baseline

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs fuel/hr)</th>
<th>Emission Factors (lb/1000 lb fuel)</th>
<th>Emissions (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135</td>
<td>17 Idle</td>
<td>0.50</td>
<td>1</td>
<td>1,014 2.1 30.7 4.0</td>
<td>1.1 0.1 1.1 0.1 18.13</td>
<td>294.54</td>
<td>34.47</td>
</tr>
<tr>
<td>Maintenance Run</td>
<td>69 Idle</td>
<td>0.33</td>
<td>4</td>
<td>1,014 2.1 30.7 4.0</td>
<td>1.1 0.1 1.1 0.1 536.28</td>
<td>2,853.28</td>
<td>323.06</td>
</tr>
<tr>
<td>TRT Run 2 Engine</td>
<td>8 Idle</td>
<td>0.17</td>
<td>2</td>
<td>1,014 2.1 30.7 4.0</td>
<td>1.1 0.1 1.1 0.1 5.69</td>
<td>82.89</td>
<td>10.81</td>
</tr>
<tr>
<td>8% RPM</td>
<td>8 Idle</td>
<td>0.17</td>
<td>4</td>
<td>1,014 2.1 30.7 4.0</td>
<td>1.1 0.1 1.1 0.1 5.69</td>
<td>82.89</td>
<td>10.81</td>
</tr>
<tr>
<td>8 80% RPM</td>
<td>8 Idle</td>
<td>0.08</td>
<td>2</td>
<td>780 1.2 0.0 0.0</td>
<td>0.0 0.0 0.0 0.0 0.82</td>
<td>14.53</td>
<td>2.15</td>
</tr>
<tr>
<td>6 80% RPM</td>
<td>6 Idle</td>
<td>0.17</td>
<td>4</td>
<td>1,014 2.1 30.7 4.0</td>
<td>1.1 0.1 1.1 0.1 5.69</td>
<td>82.89</td>
<td>10.81</td>
</tr>
<tr>
<td>Table D3.4-16. HAP Emissions, Engine Tests, Pittsburgh, Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs fuel/hr)</th>
<th>Emission Factors (lb/1000 lb fuel)</th>
<th>Emissions, lb/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135</td>
<td>17 Idle</td>
<td>0.50</td>
<td>1</td>
<td>1,014 2.1 30.7 4.0</td>
<td>1.1 0.1 1.1 0.1 18.13</td>
<td>294.54</td>
<td>34.47</td>
</tr>
<tr>
<td>Maintenance Run</td>
<td>69 Idle</td>
<td>0.33</td>
<td>4</td>
<td>1,014 2.1 30.7 4.0</td>
<td>1.1 0.1 1.1 0.1 536.28</td>
<td>2,853.28</td>
<td>323.06</td>
</tr>
<tr>
<td>TRT Run 2 Engine</td>
<td>8 Idle</td>
<td>0.17</td>
<td>2</td>
<td>1,014 2.1 30.7 4.0</td>
<td>1.1 0.1 1.1 0.1 5.69</td>
<td>82.89</td>
<td>10.81</td>
</tr>
<tr>
<td>8% RPM</td>
<td>8 Idle</td>
<td>0.17</td>
<td>4</td>
<td>1,014 2.1 30.7 4.0</td>
<td>1.1 0.1 1.1 0.1 5.69</td>
<td>82.89</td>
<td>10.81</td>
</tr>
<tr>
<td>8 80% RPM</td>
<td>8 Idle</td>
<td>0.08</td>
<td>2</td>
<td>780 1.2 0.0 0.0</td>
<td>0.0 0.0 0.0 0.0 0.82</td>
<td>14.53</td>
<td>2.15</td>
</tr>
<tr>
<td>6 80% RPM</td>
<td>6 Idle</td>
<td>0.17</td>
<td>4</td>
<td>1,014 2.1 30.7 4.0</td>
<td>1.1 0.1 1.1 0.1 5.69</td>
<td>82.89</td>
<td>10.81</td>
</tr>
<tr>
<td>Table D3.4-17. GHG Emissions, Engine Tests, Pittsburgh, Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs fuel/hr)</th>
<th>Emission Factors (lb/1000 lb fuel)</th>
<th>Emissions, lb/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135</td>
<td>17 Idle</td>
<td>0.50</td>
<td>1</td>
<td>1,014 3.216 0.3</td>
<td>0.1 0.1 27.12</td>
<td>0.77</td>
<td>0.88</td>
</tr>
<tr>
<td>Maintenance Run</td>
<td>69 Idle</td>
<td>0.33</td>
<td>4</td>
<td>1,014 3.216 0.3</td>
<td>0.1 0.1 27.12</td>
<td>0.77</td>
<td>0.88</td>
</tr>
<tr>
<td>TRT Run 2 Engine</td>
<td>8 Idle</td>
<td>0.17</td>
<td>2</td>
<td>1,014 3.216 0.3</td>
<td>0.1 0.1 27.12</td>
<td>0.77</td>
<td>0.88</td>
</tr>
<tr>
<td>8% RPM</td>
<td>8 Idle</td>
<td>0.17</td>
<td>4</td>
<td>1,014 3.216 0.3</td>
<td>0.1 0.1 27.12</td>
<td>0.77</td>
<td>0.88</td>
</tr>
<tr>
<td>8 80% RPM</td>
<td>8 Idle</td>
<td>0.08</td>
<td>2</td>
<td>780 1.2 0.0 0.0</td>
<td>0.0 0.0 0.0 0.0 3.34</td>
<td>0.59</td>
<td>0.94</td>
</tr>
<tr>
<td>6 80% RPM</td>
<td>6 Idle</td>
<td>0.17</td>
<td>4</td>
<td>1,014 3.216 0.3</td>
<td>0.1 0.1 27.12</td>
<td>0.77</td>
<td>0.88</td>
</tr>
</tbody>
</table>

(1) CO2 emission factors obtained from AFCEC 2013.

CH4 and N2O emission factors were derived from Table A-101 for jet fuel in EPA's Inventory of U.S. Greenhouse Gas Emissions and Sinks, 1990-2005, using density of JP-8 as 6.8 lb/gallon.
<table>
<thead>
<tr>
<th>Scenario/Vehicle Class</th>
<th>POVs (%), VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing (Year 2013)</td>
<td>37.55</td>
<td>0.56</td>
<td>10.40</td>
<td>0.46</td>
<td>0.007</td>
<td>0.020</td>
<td>0.011</td>
</tr>
<tr>
<td>LDDT</td>
<td>0.00</td>
<td>0.56</td>
<td>10.40</td>
<td>0.46</td>
<td>0.007</td>
<td>0.020</td>
<td>0.011</td>
</tr>
<tr>
<td>LDGT</td>
<td>83.32</td>
<td>0.83</td>
<td>12.34</td>
<td>0.70</td>
<td>0.01</td>
<td>0.020</td>
<td>0.011</td>
</tr>
<tr>
<td>LDDT</td>
<td>0.20</td>
<td>0.30</td>
<td>0.76</td>
<td>0.46</td>
<td>0.008</td>
<td>0.049</td>
<td>0.049</td>
</tr>
<tr>
<td>HDDV</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>LDGT</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>MC</td>
<td>1.50</td>
<td>2.75</td>
<td>27.81</td>
<td>0.87</td>
<td>0.003</td>
<td>0.012</td>
<td>0.012</td>
</tr>
<tr>
<td>Proposed Action (Year 2018) (1)</td>
<td>37.55</td>
<td>0.46</td>
<td>9.59</td>
<td>0.31</td>
<td>0.007</td>
<td>0.026</td>
<td>0.011</td>
</tr>
<tr>
<td>LDDT</td>
<td>0.00</td>
<td>0.46</td>
<td>9.59</td>
<td>0.31</td>
<td>0.007</td>
<td>0.026</td>
<td>0.011</td>
</tr>
<tr>
<td>LDGT</td>
<td>83.32</td>
<td>0.66</td>
<td>10.77</td>
<td>0.52</td>
<td>0.01</td>
<td>0.023</td>
<td>0.011</td>
</tr>
<tr>
<td>LDDT</td>
<td>0.20</td>
<td>0.30</td>
<td>0.60</td>
<td>0.31</td>
<td>0.006</td>
<td>0.047</td>
<td>0.047</td>
</tr>
<tr>
<td>HDDV</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>LDGT</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>MC</td>
<td>1.50</td>
<td>2.75</td>
<td>27.81</td>
<td>0.87</td>
<td>0.003</td>
<td>0.012</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Notes: (1) Emission factors from AFCEC 2013, Table 5-13, for 2017 used to provide a conservative estimate of emissions for 2018.
Table D3.4-22. Annual Air Operations for Aircraft at Pittsburgh - Proposed Action

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>LTO</th>
<th>TGO</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A</td>
<td>1186</td>
<td>3427</td>
<td>9226</td>
</tr>
</tbody>
</table>
Table D3.4-23. KC-46A Aircraft Closed Pattern Operations at Pittsburgh - KC-46A Proposed Scenarios

<table>
<thead>
<tr>
<th>Scenario/Operation</th>
<th>Operations/Year</th>
<th>Engine Setting/Time in Mode per Operation (Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fraction of Ops</td>
<td>55% 58% 60% 68% 73% 83% 85%</td>
</tr>
<tr>
<td></td>
<td>Total Ops per Pattern</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 3427</td>
<td>1.52770185 1.04541426 2.57545944 0.66856113 0.06861792 0.3602441 0.3602441</td>
</tr>
<tr>
<td>KC-46A IFR Profile</td>
<td>0 0</td>
<td>5.24755579 1.580018 4.11836013 1.16386557 0.06861792 0.39455307 0.33222512</td>
</tr>
<tr>
<td>Total Ops</td>
<td>3427</td>
<td></td>
</tr>
</tbody>
</table>

Table D3.4-24. KC-46A Aircraft Closed Pattern Operations - Fuel Use and Emission Factors

<table>
<thead>
<tr>
<th>Factor</th>
<th>Engine Setting/Time in Mode per Operation (Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Use, lbs/hr</td>
<td>22572 23688.8 24805.6 28379.36 30389.6 34928 36116</td>
</tr>
<tr>
<td>Emission Factors, lbs/1000 lbs</td>
<td></td>
</tr>
<tr>
<td>VOC</td>
<td>0.0920 0.0909 0.0897 0.0860 0.0840 0.0619 0.0834</td>
</tr>
<tr>
<td>CO</td>
<td>1.2150 1.1435 1.0720 0.8432 0.7145 0.5138 0.5275</td>
</tr>
<tr>
<td>SO2</td>
<td>1.0600 1.0600 1.0600 1.0600 1.0600 1.0600 1.0600</td>
</tr>
<tr>
<td>PM10</td>
<td>0.0600 0.0610 0.0620 0.0652 0.0670 0.0713 0.0725</td>
</tr>
<tr>
<td>PM2.5</td>
<td>0.0500 0.0510 0.0520 0.0552 0.0570 0.0613 0.0625</td>
</tr>
<tr>
<td>CO2</td>
<td>3216 3216 3216 3216 3216 3216 3216</td>
</tr>
<tr>
<td>CH4</td>
<td>0.0890 0.0890 0.0890 0.0890 0.0890 0.0890 0.0890</td>
</tr>
<tr>
<td>N2O</td>
<td>0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000</td>
</tr>
</tbody>
</table>

Table D3.4-25. KC-46A Aircraft Closed Pattern Operations - Emissions Per Operation

<table>
<thead>
<tr>
<th>Emissions per operation, lbs</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A CA VFR Right Turns South Side</td>
<td>0.2531</td>
<td>2.8367</td>
<td>61.2646</td>
<td>3.0225</td>
<td>0.1809</td>
<td>0.1523</td>
<td>9170.2396</td>
<td>0.2538</td>
<td>0.2851</td>
</tr>
<tr>
<td>KC-46A CC IFR Right Turns Southwest Side</td>
<td>0.4768</td>
<td>5.6496</td>
<td>109.9461</td>
<td>5.6344</td>
<td>0.3111</td>
<td>0.2780</td>
<td>17094.6253</td>
<td>0.4731</td>
<td>0.5315</td>
</tr>
<tr>
<td>Emissions, closed pattern ops, tons/year</td>
<td>0.4336</td>
<td>4.8607</td>
<td>104.9769</td>
<td>5.1791</td>
<td>0.3099</td>
<td>0.2610</td>
<td>15713.2056</td>
<td>0.4348</td>
<td>0.4886</td>
</tr>
</tbody>
</table>

D3-59
Table D3.4-26. Annual Air Emissions for KC-46A Aircraft Operations at Pittsburgh - Proposed Action

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A LTOs</td>
<td>19.74</td>
<td>68.55</td>
<td>45.00</td>
<td>3.48</td>
<td>0.28</td>
<td>0.25</td>
<td>10571.39</td>
<td>0.29</td>
<td>0.33</td>
</tr>
<tr>
<td>KC-46A T&G</td>
<td>0.43</td>
<td>4.86</td>
<td>104.98</td>
<td>5.18</td>
<td>0.31</td>
<td>0.26</td>
<td>15713.21</td>
<td>0.43</td>
<td>0.49</td>
</tr>
<tr>
<td>APU</td>
<td>0.05</td>
<td>0.41</td>
<td>8.45</td>
<td>0.70</td>
<td>0.06</td>
<td>0.05</td>
<td>1726.08</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total Proposed Action</td>
<td>20.22</td>
<td>73.83</td>
<td>158.42</td>
<td>9.37</td>
<td>0.66</td>
<td>0.56</td>
<td>28010.67</td>
<td>0.73</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Table D3.4-27. Annual HAP Emissions for KC-135 Aircraft Operations at Pittsburgh - Proposed Action

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Formaldehyde</th>
<th>Acetaldehyde</th>
<th>Acrolein</th>
<th>Naphthalene</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Ethylbenzene</th>
<th>Xylenes</th>
<th>Styrene</th>
<th>Chloroform</th>
<th>Chloromethane</th>
<th>1,3-Dichloropropene</th>
<th>Methylene Chloride</th>
<th>Vinyl Acetate</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46 LTOs</td>
<td>2.82</td>
<td>0.98</td>
<td>0.56</td>
<td>0.12</td>
<td>0.39</td>
<td>0.15</td>
<td>0.04</td>
<td>0.06</td>
<td>0.07</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.17</td>
<td>0.01</td>
</tr>
<tr>
<td>KC-46 Closed Pattern Ops</td>
<td>0.06</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.20</td>
<td>0.01</td>
</tr>
<tr>
<td>Total Proposed Action</td>
<td>2.88</td>
<td>1.00</td>
<td>0.57</td>
<td>0.13</td>
<td>0.39</td>
<td>0.15</td>
<td>0.04</td>
<td>0.07</td>
<td>0.07</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.37</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Table D3.4-28. JP-8 AGE Equipment Emissions, Pittsburgh, Proposed Action

<table>
<thead>
<tr>
<th>AGE Type</th>
<th>Sorties</th>
<th>Total Run Time (hr/yr)</th>
<th>Fuel Use per Unit (gallons/hr)</th>
<th>Fuel Use per Unit (gallons/yr)</th>
<th>Engine Rating (hp)</th>
<th>Emission Factors, lbs/gal</th>
<th>Annual Emissions, lbs/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A AGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sorties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Source |
|----------------|---------|------------------------|--------------------------------|--------------------------------|-------------------|---------------------------|--------------------------|
| Generator A/M32A-86 | 10 | 1,180.00 | 10.15 | 120,301.00 | 8.75 | 9,903.00 | 9,903.00 |
| Start Cart A/M32A-86 | 0.1 | 115.00 | 10.15 | 120,301.00 | 8.75 | 9,903.00 | 9,903.00 |
| Start Cart A/M32A-45 | 10 | 1,180.00 | 10.15 | 120,301.00 | 8.75 | 9,903.00 | 9,903.00 |
| Hostel/Air Refueler | 10 | 1,180.00 | 10.15 | 120,301.00 | 8.75 | 9,903.00 | 9,903.00 |

Emission estimation methodology based AFCEC 2013, assuming Sortie/LTO method per AFCEC guidance. Equipment from AFCEC 2013, Table 3-3. Emission Factors from AFCEC 2013, Table 3-4.

Table D3.4-29. AGE HAP Emissions, Pittsburgh, Proposed Action

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factors, lbs/gal Annual Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pollution Emission Factor (lb/MMBTU) Annual Emissions (lbs/yr)</td>
</tr>
<tr>
<td></td>
<td>Turbine (lb/1000 gal) Multicycle (lb/1000 hp-hr)</td>
</tr>
<tr>
<td></td>
<td>Generator (lb/1000 gal) Multicycle (lb/1000 hp-hr)</td>
</tr>
</tbody>
</table>

Table D3.4-30. JP-8 AGE Equipment GHG Emissions, Pittsburgh, Proposed Action

<table>
<thead>
<tr>
<th>AGE Type</th>
<th>Sorties</th>
<th>Total Run Time (hr/yr)</th>
<th>Fuel Use per Unit (gallons/hr)</th>
<th>Fuel Use per Unit (gallons/yr)</th>
<th>Engine Rating (hp)</th>
<th>CO2 (lbs/yr)</th>
<th>CH4 (lbs/yr)</th>
<th>N2O (lbs/yr)</th>
<th>Total (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A AGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sorties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

| Source |
|----------------|---------|------------------------|--------------------------------|--------------------------------|-------------------|----------------|--------------|--------------|---------------|
| Generator A/M32A-86 | 10 | 1,180.00 | 10.15 | 120,301.00 | 8.75 | 9,903.00 | 9,903.00 |
| Start Cart A/M32A-86 | 0.1 | 115.00 | 10.15 | 120,301.00 | 8.75 | 9,903.00 | 9,903.00 |
| Start Cart A/M32A-45 | 10 | 1,180.00 | 10.15 | 120,301.00 | 8.75 | 9,903.00 | 9,903.00 |
| Hostel/Air Refueler | 10 | 1,180.00 | 10.15 | 120,301.00 | 8.75 | 9,903.00 | 9,903.00 |

Emission estimation methodology based AFCEC 2013, assuming Sortie/LTO method per AFCEC guidance. Equipment from AFCEC 2013, Table 3-3. Emission Factors from AFCEC 2013, Table 3-4.
Table D3.4-31. Aircraft Engine Emissions - Engine Tests, Pittsburgh, Proposed Action

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs fuel/hr)</th>
<th>Emission Factors (lb/1000 lb fuel)</th>
<th>Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VOC</td>
<td>CO</td>
</tr>
<tr>
<td>KC-46A Defueling</td>
<td>23</td>
<td>Idle</td>
<td>0.00</td>
<td>1</td>
<td>1,663</td>
<td>3.25</td>
<td>42.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintenance Run</td>
<td>0.33</td>
<td>2</td>
<td>1,663</td>
<td>3.25</td>
<td>42.6</td>
</tr>
<tr>
<td>TRT Run 1 Engine</td>
<td>11</td>
<td>Idle</td>
<td>0.17</td>
<td>1</td>
<td>1,663</td>
<td>3.25</td>
<td>42.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80% RPM</td>
<td>0.08</td>
<td>1</td>
<td>1,668.65</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintenance Run</td>
<td>0.33</td>
<td>2</td>
<td>1,663</td>
<td>3.25</td>
<td>42.6</td>
</tr>
<tr>
<td>TRT Run 2 Engine</td>
<td>8</td>
<td>Idle</td>
<td>0.17</td>
<td>2</td>
<td>1,663</td>
<td>3.25</td>
<td>42.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80% RPM</td>
<td>0.08</td>
<td>2</td>
<td>1,668.65</td>
<td>0.1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table D3.4-32. HAP Emissions, Engine Tests, Pittsburgh, Proposed Action

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs fuel/hr)</th>
<th>Form-aldehyde</th>
<th>Acetaldehyde</th>
<th>Acrolein</th>
<th>Naphthalene</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Ethyl-benzene</th>
<th>Xylenes</th>
<th>Styrene</th>
<th>Chloroform</th>
<th>Chloromethane</th>
<th>1,3-Dichloropropene</th>
<th>Methylene Chloride</th>
<th>Vinyl Acetate</th>
<th>Total HAPs, TPy</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A Defueling</td>
<td>23</td>
<td>Idle</td>
<td>0.00</td>
<td>1</td>
<td>1,663</td>
<td>0.50</td>
<td>1</td>
<td>1,663</td>
<td>12.5</td>
<td>42.6</td>
<td>3.8</td>
<td>1.1</td>
<td>0.1</td>
<td>0.1</td>
<td>238.87</td>
<td>814.99</td>
<td>72.30</td>
<td>20.27</td>
<td>2.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintenance Run</td>
<td>0.33</td>
<td>2</td>
<td>1,663</td>
<td>0.50</td>
<td>1</td>
<td>1,663</td>
<td>12.5</td>
<td>42.6</td>
<td>3.8</td>
<td>1.1</td>
<td>0.1</td>
<td>0.1</td>
<td>1,774.00</td>
<td>4,348.63</td>
<td>385.69</td>
<td>108.13</td>
<td>11.22</td>
<td></td>
</tr>
<tr>
<td>TRT Run 1 Engine</td>
<td>11</td>
<td>Idle</td>
<td>0.17</td>
<td>1</td>
<td>1,663</td>
<td>0.50</td>
<td>1</td>
<td>1,663</td>
<td>12.5</td>
<td>42.6</td>
<td>3.8</td>
<td>1.1</td>
<td>0.1</td>
<td>0.1</td>
<td>38.06</td>
<td>126.93</td>
<td>11.50</td>
<td>3.23</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>80% RPM</td>
<td>0.08</td>
<td>1</td>
<td>1,668.65</td>
<td>0.1</td>
<td>0.5</td>
<td>26.0</td>
<td>1.1</td>
<td>0.1</td>
<td>0.1</td>
<td>1.24</td>
<td>7.73</td>
<td>401.75</td>
<td>16.39</td>
<td>1.08</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintenance Run</td>
<td>0.33</td>
<td>2</td>
<td>1,663</td>
<td>0.1</td>
<td>0.5</td>
<td>26.0</td>
<td>1.1</td>
<td>0.1</td>
<td>0.1</td>
<td>55.39</td>
<td>188.98</td>
<td>16.70</td>
<td>4.76</td>
<td>0.49</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRT Run 2 Engine</td>
<td>8</td>
<td>Idle</td>
<td>0.17</td>
<td>2</td>
<td>1,663</td>
<td>0.1</td>
<td>0.5</td>
<td>26.0</td>
<td>1.1</td>
<td>0.1</td>
<td>0.1</td>
<td>38.08</td>
<td>129.93</td>
<td>11.53</td>
<td>4.76</td>
<td>0.49</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>80% RPM</td>
<td>0.08</td>
<td>2</td>
<td>1,668.65</td>
<td>0.1</td>
<td>0.5</td>
<td>26.0</td>
<td>1.1</td>
<td>0.1</td>
<td>0.1</td>
<td>1.81</td>
<td>11.25</td>
<td>584.86</td>
<td>23.84</td>
<td>1.57</td>
<td>1.36</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table D3.4-33. GHG Emissions, Engine Tests, Pittsburgh, Proposed Action

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs fuel/hr)</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>Actual Emissions (lb/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A Defueling</td>
<td>23</td>
<td>Idle</td>
<td>0.00</td>
<td>1</td>
<td>1,663</td>
<td>3.26</td>
<td>0.1</td>
<td>0.1</td>
<td>3.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintenance Run</td>
<td>0.33</td>
<td>2</td>
<td>1,663</td>
<td>3.26</td>
<td>0.1</td>
<td>0.1</td>
<td>61.011754</td>
</tr>
<tr>
<td>TRT Run 1 Engine</td>
<td>11</td>
<td>Idle</td>
<td>0.17</td>
<td>1</td>
<td>1,663</td>
<td>3.26</td>
<td>0.1</td>
<td>0.1</td>
<td>3.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80% RPM</td>
<td>0.08</td>
<td>1</td>
<td>1,668.65</td>
<td>3.26</td>
<td>0.1</td>
<td>0.1</td>
<td>40,761.58</td>
</tr>
<tr>
<td>TRT Run 2 Engine</td>
<td>8</td>
<td>Idle</td>
<td>0.17</td>
<td>2</td>
<td>1,663</td>
<td>3.26</td>
<td>0.1</td>
<td>0.1</td>
<td>3.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80% RPM</td>
<td>0.08</td>
<td>2</td>
<td>1,668.65</td>
<td>3.26</td>
<td>0.1</td>
<td>0.1</td>
<td>72,388.84</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>243</td>
<td>0.01</td>
<td>0.01</td>
<td>243</td>
</tr>
</tbody>
</table>

(1) CO2 emission factors obtained from AFCEC 2013. CH4 and N2O emission factors were derived from Table A-101 for jet fuel in EPA's Inventory of U.S. Greenhouse Gas Emissions and Sinks, 1990-2005, using density of JP-8 as 6.8 lb/gallon.
Table D3.4-34. Pittsburgh Comparison of Emissions

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Proposed Action</th>
<th>Net Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Emissions, tons/year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>CO</td>
<td>NOx</td>
</tr>
<tr>
<td>Aircraft Ops</td>
<td>3.42</td>
<td>50.69</td>
<td>67.73</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.01</td>
<td>0.10</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.11</td>
<td>1.67</td>
<td>0.46</td>
</tr>
<tr>
<td>POVs</td>
<td>4.27</td>
<td>65.96</td>
<td>3.37</td>
</tr>
<tr>
<td>Total</td>
<td>7.81</td>
<td>117.93</td>
<td>71.72</td>
</tr>
</tbody>
</table>

Table D3.4-35. Pittsburgh Comparison of HAP Emissions

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Proposed Action</th>
<th>Net Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual HAP Emissions, tons/year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Form-</td>
<td>Acet-</td>
<td>Acrolein</td>
</tr>
<tr>
<td>Aircraft Ops</td>
<td>Alcohol</td>
<td>Alcohol</td>
<td>Acrolein</td>
</tr>
<tr>
<td></td>
<td>0.18</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>AGE</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>POVs</td>
<td>3.44</td>
<td>56.54</td>
<td>2.52</td>
</tr>
<tr>
<td>Total</td>
<td>3.69</td>
<td>58.54</td>
<td>2.52</td>
</tr>
</tbody>
</table>

Table D3.4-36. Pittsburgh Comparison of GHG Emissions

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Proposed Action</th>
<th>Net Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual GHG Emissions, metric tons/year</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO2</td>
<td>CH4</td>
<td>N2O</td>
</tr>
<tr>
<td>Aircraft Ops</td>
<td>16909</td>
<td>0.47</td>
<td>0.53</td>
</tr>
<tr>
<td>AGE</td>
<td>2370</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>198</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>POVs</td>
<td>2770</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>21746</td>
<td>0.54</td>
<td>0.61</td>
</tr>
<tr>
<td>Proposed Action</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO2</td>
<td>CH4</td>
<td>N2O</td>
</tr>
<tr>
<td>Aircraft Ops</td>
<td>25411</td>
<td>0.68</td>
<td>0.74</td>
</tr>
<tr>
<td>AGE</td>
<td>3095</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>243</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>POVs</td>
<td>2274</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>30963</td>
<td>0.75</td>
<td>0.85</td>
</tr>
<tr>
<td>Net Increase</td>
<td>9218</td>
<td>0.21</td>
<td>0.24</td>
</tr>
</tbody>
</table>
Rickenbacker ANGS
Table D3.5-1. Engine Emission Factors by Throttle Setting - KC-135 and KC-46A Aircraft

<table>
<thead>
<tr>
<th>Engine Type/Throttle Setting</th>
<th>Fuel Flow (Pounds/Hour)</th>
<th>Emission Factors, lbs/1000 lbs fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fuel Flow</td>
<td>CO</td>
</tr>
<tr>
<td>F-108-CF-100 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idle</td>
<td>1013.76</td>
<td>2.10</td>
</tr>
<tr>
<td>Approach</td>
<td>2463.12</td>
<td>0.09</td>
</tr>
<tr>
<td>Intermediate</td>
<td>6486.48</td>
<td>0.05</td>
</tr>
<tr>
<td>Military</td>
<td>7801.2</td>
<td>0.04</td>
</tr>
<tr>
<td>P&W 4062 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idle</td>
<td>1683.2</td>
<td>12.48</td>
</tr>
<tr>
<td>Approach</td>
<td>5702.4</td>
<td>0.10</td>
</tr>
<tr>
<td>Climbout</td>
<td>16868.6</td>
<td>0.09</td>
</tr>
<tr>
<td>Take-Off</td>
<td>21621.6</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Notes:
(1) Data are for one engine. The KC-135R has 4 engines and the KC-46A has 2 engines.
(2) Data from Air Emissions Factor Guide to Air Force Mobile Sources (AFCEC 2013).
(3) ICAO Engine Exhaust Emissions Data Bank - Subsonic Engines - (ICAO 2013).

Table D3.5-2. HAP Emission Factors - KC-135 and KC-46A Aircraft

<table>
<thead>
<tr>
<th>Engine Type</th>
<th>Emission Factor (lb/1000 Ib fuel) (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formaldehyde</td>
</tr>
<tr>
<td>F-108-CF-100</td>
<td>9.51E-02</td>
</tr>
<tr>
<td>Idle</td>
<td>1.50E-02</td>
</tr>
<tr>
<td>Approach</td>
<td>5.98E-03</td>
</tr>
<tr>
<td>Intermediate</td>
<td>7.01E-03</td>
</tr>
<tr>
<td>P&W 4062 (3)</td>
<td>1.78E+00</td>
</tr>
<tr>
<td>Idle</td>
<td>1.48E-02</td>
</tr>
<tr>
<td>Approach</td>
<td>1.16E-02</td>
</tr>
<tr>
<td>Intermediate</td>
<td>1.31E-02</td>
</tr>
</tbody>
</table>

Notes:
(1) Data are for one engine. The KC-135R has 4 engines and the KC-46A has 2 engines.
(2) Data from Air Emissions Factor Guide to Air Force Mobile Sources (AFCEC 2013), Table 2-9.
Table D3.5-3. Land and Take-off/Takeoff and Go Times in Mode and Fuel Usages - KC-135 and KC-46A Aircraft

<table>
<thead>
<tr>
<th>Aircraft/Mode (Engine Throttle Setting)</th>
<th>LTO</th>
<th>Touch & Go</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time in Mode (TIM)</td>
<td>Fuel Usage</td>
</tr>
<tr>
<td></td>
<td>Minutes</td>
<td>Hours</td>
</tr>
<tr>
<td>KC-135 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxi Out (Idle)</td>
<td>32.8</td>
<td>0.55</td>
</tr>
<tr>
<td>Take-off (Military)</td>
<td>0.7</td>
<td>0.01</td>
</tr>
<tr>
<td>Climbout (Intermediate)</td>
<td>2.5</td>
<td>0.04</td>
</tr>
<tr>
<td>Approach</td>
<td>5.2</td>
<td>0.09</td>
</tr>
<tr>
<td>Taxi In (Idle)</td>
<td>14.9</td>
<td>0.25</td>
</tr>
<tr>
<td>Totals</td>
<td>56.1</td>
<td>0.94</td>
</tr>
<tr>
<td>KC-46A (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxi Out (Idle)</td>
<td>32.8</td>
<td>0.55</td>
</tr>
<tr>
<td>Take-off (Military)</td>
<td>0.7</td>
<td>0.01</td>
</tr>
<tr>
<td>Climbout (Intermediate)</td>
<td>2.5</td>
<td>0.04</td>
</tr>
<tr>
<td>Approach</td>
<td>5.2</td>
<td>0.09</td>
</tr>
<tr>
<td>Taxi In (Idle)</td>
<td>14.9</td>
<td>0.25</td>
</tr>
<tr>
<td>Totals</td>
<td>56.1</td>
<td>0.94</td>
</tr>
<tr>
<td>APU Use, KC-46A (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Flight - OBIGGS + Electric + Max ECS</td>
<td></td>
<td>1.50</td>
</tr>
<tr>
<td>Pre-Flight - Main Engine Start + Electric</td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>Post-Flight - Electric + Min ECS</td>
<td></td>
<td>0.58</td>
</tr>
<tr>
<td>Total Hours per LTO</td>
<td></td>
<td>2.12</td>
</tr>
</tbody>
</table>

Notes: (1) Fuel usage per aircraft.
(2) TIM Data from Table 2-4, Transport Aircraft (AFCEC 2013).
(3) APU use from FTU/MOB1 Draft EIS.
Table D3.5-4: Land and Take-off/Touch and Go Total Fuel Usages and Emissions - KC-135 and KC-46A Aircraft

<table>
<thead>
<tr>
<th>Aircraft/Mode</th>
<th>LTO</th>
<th>Touch and Go</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Usage</td>
<td>VOC</td>
<td>CO</td>
</tr>
<tr>
<td>Minutes</td>
<td>Hours</td>
<td>Pounds</td>
</tr>
<tr>
<td>KC-135 (2)</td>
<td>Taxi Out (Idle)</td>
<td>32.8</td>
</tr>
<tr>
<td></td>
<td>Taxi Out (Military)</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>Taxi In (Idle)</td>
<td>14.9</td>
</tr>
<tr>
<td></td>
<td>Totals</td>
<td>56.1</td>
</tr>
<tr>
<td>KC-46A (2)</td>
<td>Taxi Out (Idle)</td>
<td>32.8</td>
</tr>
<tr>
<td></td>
<td>Taxi Out (Military)</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>Taxi In (Idle)</td>
<td>14.9</td>
</tr>
<tr>
<td></td>
<td>Totals</td>
<td>56.1</td>
</tr>
</tbody>
</table>

Table D3.5-5: Land and Take-off/Touch and Go Total Fuel Usages and HAP Emissions - KC-135 and KC-46A Aircraft

<table>
<thead>
<tr>
<th>Aircraft/Mode</th>
<th>LTO</th>
<th>Touch and Go</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formaldehyde</td>
<td>Acetaldehyde</td>
<td>Acrolein</td>
</tr>
<tr>
<td>Minutes</td>
<td>Hours</td>
<td>Pounds</td>
</tr>
<tr>
<td>KC-135 (2)</td>
<td>Taxi Out (Idle)</td>
<td>32.8</td>
</tr>
<tr>
<td></td>
<td>Taxi Out (Military)</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>Taxi In (Idle)</td>
<td>14.9</td>
</tr>
<tr>
<td></td>
<td>Totals</td>
<td>56.1</td>
</tr>
<tr>
<td>KC-46A (2)</td>
<td>Taxi Out (Idle)</td>
<td>32.8</td>
</tr>
<tr>
<td></td>
<td>Taxi Out (Military)</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>Taxi In (Idle)</td>
<td>14.9</td>
</tr>
<tr>
<td></td>
<td>Totals</td>
<td>56.1</td>
</tr>
</tbody>
</table>

D3-67
Table D3.5-6. Annual Air Operations for Aircraft at Rickenbacker - Baseline

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>LTO</th>
<th>TGO</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135</td>
<td>1289</td>
<td>1933.5</td>
<td>6445</td>
</tr>
</tbody>
</table>
Table D3.5-7. KC-135 Aircraft Closed Pattern Operations at Rickenbacker, Baseline

<table>
<thead>
<tr>
<th>Scenario/Operation</th>
<th>Operations/Year</th>
<th>Engine Setting/Time in Mode per Operation (Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fraction of Ops</td>
<td>55%</td>
</tr>
<tr>
<td>KC-136 VFR Profile</td>
<td>1</td>
<td>1.00073231</td>
</tr>
<tr>
<td>KC-135 IFR Profile</td>
<td>0</td>
<td>5.90400061</td>
</tr>
<tr>
<td>Total Ops</td>
<td>1933.5</td>
<td></td>
</tr>
</tbody>
</table>

Table D3.5-8. KC-135 Aircraft Closed Pattern Operations - Fuel Use and Emission Factors, Baseline

<table>
<thead>
<tr>
<th>Emission Factors, lbs/1000 lbs fuel</th>
<th>Factor</th>
<th>55%</th>
<th>58%</th>
<th>60%</th>
<th>70%</th>
<th>73%</th>
<th>85%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Use, lbs/hr</td>
<td>19910.88</td>
<td>20916.72</td>
<td>21922.56</td>
<td>25945.92</td>
<td>27589.32</td>
<td>31204.8</td>
<td></td>
</tr>
<tr>
<td>VOC</td>
<td>0.0704</td>
<td>0.0683</td>
<td>0.0661</td>
<td>0.0575</td>
<td>0.0539</td>
<td>0.0460</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>1.6313</td>
<td>1.3744</td>
<td>1.1175</td>
<td>0.8900</td>
<td>0.8900</td>
<td>0.8900</td>
<td></td>
</tr>
<tr>
<td>SO2</td>
<td>1.0600</td>
<td>1.0600</td>
<td>1.0600</td>
<td>1.0600</td>
<td>1.0600</td>
<td>1.0600</td>
<td></td>
</tr>
<tr>
<td>PM10</td>
<td>0.0538</td>
<td>0.0531</td>
<td>0.0525</td>
<td>0.0500</td>
<td>0.0563</td>
<td>0.0700</td>
<td></td>
</tr>
<tr>
<td>PM2.5</td>
<td>0.0538</td>
<td>0.0531</td>
<td>0.0525</td>
<td>0.0500</td>
<td>0.0563</td>
<td>0.0700</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3216</td>
<td>3216</td>
<td>3216</td>
<td>3216</td>
<td>3216</td>
<td>3216</td>
<td></td>
</tr>
<tr>
<td>CH4</td>
<td>0.0890</td>
<td>0.0890</td>
<td>0.0890</td>
<td>0.0890</td>
<td>0.0890</td>
<td>0.0890</td>
<td></td>
</tr>
<tr>
<td>N2O</td>
<td>0.1000</td>
<td>0.1000</td>
<td>0.1000</td>
<td>0.1000</td>
<td>0.1000</td>
<td>0.1000</td>
<td></td>
</tr>
</tbody>
</table>

Table D3.5-9. KC-135 Aircraft Closed Pattern Operations - Emissions Per Operation, Baseline

<table>
<thead>
<tr>
<th>Emissions per operation, lbs</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 CA VFR Right Turns South Side</td>
<td>0.1614</td>
<td>2.4721</td>
<td>37.2809</td>
<td>2.6974</td>
<td>0.1363</td>
<td>0.1363</td>
<td>8183.7166</td>
<td>0.2265</td>
<td>0.2545</td>
</tr>
<tr>
<td>KC-135 CC IFR Right Turns Southwest Side</td>
<td>0.3286</td>
<td>6.2014</td>
<td>68.9372</td>
<td>5.2364</td>
<td>0.2576</td>
<td>0.2576</td>
<td>15886.9857</td>
<td>0.4397</td>
<td>0.4940</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emissions, closed pattern ops, tons/year</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1560</td>
<td>2.3899</td>
<td>36.0413</td>
<td>2.6077</td>
<td>0.1346</td>
<td>0.1346</td>
<td>7911.6080</td>
<td>0.2188</td>
<td>0.2460</td>
<td></td>
</tr>
</tbody>
</table>
Table D3.5-10. Annual Air Emissions for KC-135 Aircraft Operations at Rickenbacker - Baseline

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 LTOs</td>
<td>4.47</td>
<td>66.18</td>
<td>28.31</td>
<td>3.77</td>
<td>0.21</td>
<td>0.21</td>
<td>11447.12</td>
<td>0.32</td>
<td>0.36</td>
</tr>
<tr>
<td>KC-135 T&G</td>
<td>0.16</td>
<td>2.39</td>
<td>36.04</td>
<td>2.61</td>
<td>0.13</td>
<td>0.13</td>
<td>7911.61</td>
<td>0.22</td>
<td>0.25</td>
</tr>
<tr>
<td>Total Existing</td>
<td>4.63</td>
<td>68.57</td>
<td>64.35</td>
<td>6.38</td>
<td>0.34</td>
<td>0.34</td>
<td>19358.73</td>
<td>0.54</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Table D3.5-11. Annual HAP Emissions for KC-135 Aircraft Operations at Rickenbacker - Baseline

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Form-</th>
<th>Acet-</th>
<th>Acrolein</th>
<th>Naphthalene</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Ethyl-</th>
<th>Xylenes</th>
<th>Styrane</th>
<th>Chloroform</th>
<th>Chloromethane</th>
<th>1,3-</th>
<th>Dichloropropene</th>
<th>Methylene</th>
<th>Chloride</th>
<th>Vinyl</th>
<th>Acetate</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 LTOs</td>
<td>0.21</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.20</td>
<td>0.01</td>
<td></td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>KC-135 Closed Pattern Ops</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.09</td>
<td>0.01</td>
<td></td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Total Existing</td>
<td>0.23</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.29</td>
<td>0.02</td>
<td></td>
<td></td>
<td>0.02</td>
</tr>
</tbody>
</table>
Table D3.5-12. JP-8 AGE Equipment Emissions, Rickenbacker, Baseline

<table>
<thead>
<tr>
<th>AGE Type</th>
<th>Sorties</th>
<th>Total Run Time (hr/yr)</th>
<th>Fuel Use per Unit (gal/hr)</th>
<th>Fuel Use per Unit (gal/yr)</th>
<th>Engine Rating (hp)</th>
<th>NOx</th>
<th>CO</th>
<th>VOC</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>NOx</th>
<th>CO</th>
<th>VOC</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>KG-135-AGE</td>
<td>Sorties: 125</td>
<td></td>
</tr>
<tr>
<td>Generator AMDS/A-61</td>
<td>15</td>
<td>5,289.00</td>
<td>8.47</td>
<td>107,953.87</td>
<td>148</td>
<td>6,130.00</td>
<td>4,575.00</td>
<td>2,540.01</td>
<td>9,168.02</td>
<td>8,029.02</td>
<td>4,580.02</td>
<td>3,430.01</td>
<td>5,175.00</td>
<td>1,089.00</td>
<td>7,692.00</td>
<td>6,868.00</td>
<td>5,082.00</td>
</tr>
<tr>
<td>Start Cont AMDS/A-61A</td>
<td>5</td>
<td>1,289.00</td>
<td>10.15</td>
<td>13,297.90</td>
<td>150</td>
<td>1,582.00</td>
<td>5,489.00</td>
<td>2,780.01</td>
<td>2,118.01</td>
<td>2,098.01</td>
<td>7,180.02</td>
<td>5,175.00</td>
<td>1,089.00</td>
<td>7,692.00</td>
<td>6,868.00</td>
<td>5,082.00</td>
<td>2,048.01</td>
</tr>
<tr>
<td>Start Cont AMDS/A-65</td>
<td>0.1</td>
<td>128.90</td>
<td>8.75</td>
<td>1,127.89</td>
<td>150</td>
<td>1,470.00</td>
<td>5,489.00</td>
<td>7,080.01</td>
<td>1,108.01</td>
<td>1,076.01</td>
<td>6,580.02</td>
<td>4,180.01</td>
<td>1,076.01</td>
<td>3,180.02</td>
<td>3,040.03</td>
<td>1,780.02</td>
<td></td>
</tr>
<tr>
<td>Heaters/AC 82-900-AC</td>
<td>15</td>
<td>5,289.00</td>
<td>8.47</td>
<td>107,953.87</td>
<td>272</td>
<td>2,540.01</td>
<td>1,056.00</td>
<td>2,048.01</td>
<td>1,998.03</td>
<td>1,532.01</td>
<td>4,852.02</td>
<td>3,352.01</td>
<td>4,429.01</td>
<td>5,820.00</td>
<td>5,520.00</td>
<td>5,400.00</td>
<td>1,380.00</td>
</tr>
<tr>
<td>MA-3C Air Conditioner</td>
<td>2</td>
<td>2,578.00</td>
<td>7.12</td>
<td>17,463.87</td>
<td>120</td>
<td>4,175.00</td>
<td>3,175.00</td>
<td>5,362.02</td>
<td>1,086.01</td>
<td>1,056.01</td>
<td>5,032.00</td>
<td>2,375.00</td>
<td>1,886.03</td>
<td>3,180.02</td>
<td>6,426.01</td>
<td>5,975.00</td>
<td>2,465.01</td>
</tr>
<tr>
<td>TR</td>
<td>4</td>
<td>644.09</td>
<td>0.38</td>
<td>2,944.99</td>
<td>5.3</td>
<td>1,209.01</td>
<td>1,056.01</td>
<td>1,056.01</td>
<td>1,056.01</td>
<td>3,020.02</td>
<td>2,250.00</td>
<td>2,570.00</td>
<td>1,420.01</td>
<td>1,120.00</td>
<td>1,120.00</td>
<td>4,260.01</td>
<td></td>
</tr>
<tr>
<td>TH</td>
<td>4</td>
<td>5,102.00</td>
<td>0.38</td>
<td>1,891.02</td>
<td>0.5</td>
<td>1,086.01</td>
<td>1,056.01</td>
<td>1,056.01</td>
<td>3,020.02</td>
<td>2,250.00</td>
<td>2,570.00</td>
<td>1,420.01</td>
<td>1,120.00</td>
<td>1,120.00</td>
<td>4,260.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light Cont NF-2</td>
<td>2</td>
<td>2,578.00</td>
<td>7.12</td>
<td>17,463.87</td>
<td>120</td>
<td>4,175.00</td>
<td>1,056.01</td>
<td>1,056.01</td>
<td>1,056.01</td>
<td>3,020.02</td>
<td>2,250.00</td>
<td>2,570.00</td>
<td>1,420.01</td>
<td>1,120.00</td>
<td>1,120.00</td>
<td>4,260.01</td>
<td></td>
</tr>
<tr>
<td>Air Compressor AF-1A</td>
<td>0.32</td>
<td>425.37</td>
<td>1.09</td>
<td>441.94</td>
<td>18.4</td>
<td>4,180.01</td>
<td>2,076.03</td>
<td>2,076.03</td>
<td>7,180.02</td>
<td>8,029.02</td>
<td>5,032.00</td>
<td>2,375.00</td>
<td>2,375.00</td>
<td>6,668.02</td>
<td>6,868.00</td>
<td>6,382.00</td>
<td>7,952.00</td>
</tr>
</tbody>
</table>

Total JP-8 AGE, Tons/year: 8,149,796.88

Emission estimation methodology based on AFCEC 2013, assuming Sortie/LTO method per AFCEC guidance. Equipment from AFCEC 2013, Table 3-3. Emission Factors from AFCEC 2013, Table 3-4.

Table D3.5-13. AGE HAP Emissions, Rickenbacker, Baseline

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Turbine (lb/1000 gal)</th>
<th>Reciprocating (lb/1000 hp-hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>1.50E-03</td>
<td></td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>5.40E-03</td>
<td>3.30E+01</td>
</tr>
<tr>
<td>Acrolein</td>
<td>6.50E-03</td>
<td>3.30E+01</td>
</tr>
<tr>
<td>Alkanes</td>
<td>7.86E-03</td>
<td>6.50E-03</td>
</tr>
<tr>
<td>Benzene</td>
<td>4.26E-04</td>
<td>3.97E+00</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>2.26E-05</td>
<td>1.07E+00</td>
</tr>
<tr>
<td>Chromium</td>
<td>1.20E-05</td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>3.96E-05</td>
<td>5.07E+01</td>
</tr>
<tr>
<td>Lead</td>
<td>1.90E-04</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>1.90E-04</td>
<td></td>
</tr>
<tr>
<td>Methylhydrocarbons</td>
<td>4.87E-04</td>
<td>3.62E+00</td>
</tr>
<tr>
<td>Nitric</td>
<td>6.34E-09</td>
<td></td>
</tr>
<tr>
<td>NMVOCs</td>
<td>5.56E-03</td>
<td>3.36E+00</td>
</tr>
<tr>
<td>Oxygen</td>
<td>3.96E-05</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>2.24E-06</td>
<td>1.77E+00</td>
</tr>
<tr>
<td>Xylene</td>
<td>2.00E-03</td>
<td>1.22E+01</td>
</tr>
</tbody>
</table>

Total HAP Emissions: 1.50E-02

Table D3.5-14. JP-8 AGE Equipment GHG Emissions, Rickenbacker, Baseline

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Turbine (lb/MMBTU)</th>
<th>Reciprocating (lb/MMBTU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>1.46E+00</td>
<td>1.40E+00</td>
</tr>
<tr>
<td>CH4</td>
<td>2.67E+00</td>
<td>2.58E+00</td>
</tr>
<tr>
<td>N2O</td>
<td>6.19E+00</td>
<td>5.98E+00</td>
</tr>
</tbody>
</table>

Total JP-8 AGE, Metric Tons/year: 3.30E+03

Emission estimation methodology based on AFCEC 2013, assuming Sortie/LTO method per AFCEC guidance. Equipment from AFCEC 2013, Table 3-3. Emission Factors from AFCEC 2013, Table 3-4.
Table D3.5-15. Aircraft Engine Emissions - Engine Tests, Rickenbacker, Baseline

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs fuel/hr)</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>Emission Factors (lb/1000 lbs fuel)</th>
<th>Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135</td>
<td>16 Idc</td>
<td>Idle</td>
<td>0.50</td>
<td>1,014</td>
<td>2.1 30.7 4.0 1.1 0.1 0.1 17.07 248.98 32.44 8.60 0.99 0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance Run</td>
<td>64 Idc</td>
<td>Idle</td>
<td>0.33</td>
<td>4,014</td>
<td>2.1 30.7 4.0 1.1 0.1 0.1 182.06 285.78 340.83 31.70 10.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRT Run 2 Engine</td>
<td>7 Idc</td>
<td>Idle</td>
<td>0.17</td>
<td>4,014</td>
<td>2.1 30.7 4.0 1.1 0.1 0.1 4.96 72.62 9.46 2.51 0.29 0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRT Run 4 Engine</td>
<td>6 Idc</td>
<td>Idle</td>
<td>0.17</td>
<td>4,014</td>
<td>2.1 30.7 4.0 1.1 0.1 0.1 8.53 124.49 16.22 4.30 0.49 0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRT Run 4 Engine</td>
<td>6 Idc</td>
<td>80% RPM</td>
<td>0.08</td>
<td>2,780</td>
<td>1.2 0.0 0.1 18.5 1.1 0.1 0.1 0.42 0.82 168.38 9.65 1.00 1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRT Run 4 Engine</td>
<td>6 Idc</td>
<td>80% RPM</td>
<td>0.08</td>
<td>2,780</td>
<td>1.2 0.0 0.1 18.5 1.1 0.1 0.1 0.72 1.40 288.64 16.54 1.71 1.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table D3.5-16. HAP Emissions, Engine Tests, Rickenbacker, Baseline

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs fuel/hr)</th>
<th>Form-</th>
<th>Acet-</th>
<th>Acrolein</th>
<th>Naphthalene</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Ethyl-benzenes</th>
<th>Xylenes</th>
<th>Styrene</th>
<th>Chloroform</th>
<th>Chloromethane</th>
<th>1,3-</th>
<th>Dichloropropene</th>
<th>Chloroform</th>
<th>Vinyl</th>
<th>Acetate</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135</td>
<td>16 Idc</td>
<td>Idle</td>
<td>0.50</td>
<td>1,014</td>
<td>2.1 30.7 4.0 1.1 0.1 0.1 17.07 248.98 32.44 8.60 0.99 0.99</td>
<td></td>
</tr>
<tr>
<td>Maintenance Run</td>
<td>64 Idc</td>
<td>Idle</td>
<td>0.33</td>
<td>4,014</td>
<td>2.1 30.7 4.0 1.1 0.1 0.1 182.06 285.78 340.83 31.70 10.54</td>
<td></td>
</tr>
<tr>
<td>TRT Run 2 Engine</td>
<td>7 Idc</td>
<td>Idle</td>
<td>0.17</td>
<td>4,014</td>
<td>2.1 30.7 4.0 1.1 0.1 0.1 4.96 72.62 9.46 2.51 0.29 0.29</td>
<td></td>
</tr>
<tr>
<td>TRT Run 4 Engine</td>
<td>6 Idc</td>
<td>Idle</td>
<td>0.17</td>
<td>4,014</td>
<td>2.1 30.7 4.0 1.1 0.1 0.1 8.53 124.49 16.22 4.30 0.49 0.49</td>
<td></td>
</tr>
<tr>
<td>TRT Run 4 Engine</td>
<td>6 Idc</td>
<td>80% RPM</td>
<td>0.08</td>
<td>2,780</td>
<td>1.2 0.0 0.1 18.5 1.1 0.1 0.1 0.42 0.82 168.38 9.65 1.00 1.00</td>
<td></td>
</tr>
<tr>
<td>TRT Run 4 Engine</td>
<td>6 Idc</td>
<td>80% RPM</td>
<td>0.08</td>
<td>2,780</td>
<td>1.2 0.0 0.1 18.5 1.1 0.1 0.1 0.72 1.40 288.64 16.54 1.71 1.71</td>
<td></td>
</tr>
</tbody>
</table>

Table D3.5-17. GHG Emissions, Engine Tests, Rickenbacker, Baseline

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs fuel/hr)</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>Emission Factor (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135</td>
<td>16 Idc</td>
<td>Idle</td>
<td>0.50</td>
<td>1,014</td>
<td>2.1 30.7 4.0 1.1 0.1 0.1 26,082.02 0.72 0.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance Run</td>
<td>64 Idc</td>
<td>Idle</td>
<td>0.33</td>
<td>4,014</td>
<td>2.1 30.7 4.0 1.1 0.1 0.1 278,208.18 7.70 8.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRT Run 2 Engine</td>
<td>7 Idc</td>
<td>Idle</td>
<td>0.17</td>
<td>4,014</td>
<td>2.1 30.7 4.0 1.1 0.1 0.1 7,607.26 0.21 0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRT Run 4 Engine</td>
<td>6 Idc</td>
<td>80% RPM</td>
<td>0.08</td>
<td>2,780</td>
<td>1.2 0.0 0.1 18.5 1.1 0.1 0.1 50,177.32 1.39 1.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) CO2 emission factors obtained from AFCEC 2013. CH4 and N2O emission factors were derived from Table A-101 for jet fuel in EPA’s Inventory of U.S. Greenhouse Gas Emissions and Sinks, 1990-2005, using density of JP-8 as 6.8 lb/gallon.
Table D3.5-19. Annual Average On-Road Vehicle Emission Factors - Rickenbacker

<table>
<thead>
<tr>
<th>Scenario/Vehicle Class</th>
<th>Emission Factors (Grams/Mile)</th>
<th>Existing (Year 2013)</th>
<th>Proposed Action (Year 2018)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VOC</td>
<td>CO</td>
<td>NOx</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td>Existing</td>
<td>37.56</td>
<td>0.58</td>
<td>10.13</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>0.85</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>60.32</td>
<td>0.83</td>
<td>12.92</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.30</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>0.07</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>60.32</td>
<td>0.75</td>
<td>10.45</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.30</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>0.07</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>0.07</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>1.9</td>
<td>2.85</td>
<td>27.61</td>
</tr>
<tr>
<td>Proposed Action (Year 2018) (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>37.56</td>
<td>0.44</td>
<td>9.25</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>0.07</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>60.32</td>
<td>0.75</td>
<td>10.45</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.30</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>0.07</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>60.32</td>
<td>0.75</td>
<td>10.45</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.30</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>0.07</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>1.9</td>
<td>2.85</td>
<td>27.61</td>
</tr>
</tbody>
</table>

Notes: (1) Emission factors from AFCEC 2013, Table 5-13, for 2017 used to provide a conservative estimate of emissions for 2018
Table D3.5-22. Annual Air Operations for Aircraft at Rickenbacker - Proposed Action

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>LTO</th>
<th>TGO</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A</td>
<td>1286</td>
<td>2142.5</td>
<td>6857</td>
</tr>
</tbody>
</table>
Table D3.5-23. KC-46A Aircraft Closed Pattern Operations at Rickenbacker - KC-46A Proposed Scenarios

<table>
<thead>
<tr>
<th>Scenario/Operation</th>
<th>Fraction of Ops</th>
<th>Total Ops per Pattern</th>
<th>55%</th>
<th>58%</th>
<th>60%</th>
<th>68%</th>
<th>73%</th>
<th>83%</th>
<th>85%</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A VFR Profile</td>
<td>1</td>
<td>2143</td>
<td>1.52770185</td>
<td>1.0454426</td>
<td>2.57545944</td>
<td>0.66856113</td>
<td>0.0661792</td>
<td>0.3602441</td>
<td>0.36626852</td>
</tr>
<tr>
<td>KC-46A IFR Profile</td>
<td>0</td>
<td>0</td>
<td>5.24755579</td>
<td>1.03333177</td>
<td>6.83322259</td>
<td>1.16386557</td>
<td>0.0661792</td>
<td>0.39455307</td>
<td>0.33222512</td>
</tr>
<tr>
<td>Total Ops</td>
<td></td>
<td></td>
<td>2143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table D3.5-24. KC-46A Aircraft Closed Pattern Operations - Fuel Use and Emission Factors

<table>
<thead>
<tr>
<th>Factor</th>
<th>Fuel Use, lbs/hr</th>
<th>Emission Factors, lbs/1000 lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>55%</td>
<td>58%</td>
</tr>
<tr>
<td>Fuel Use, lbs/hr</td>
<td>22572</td>
<td>23688.8</td>
</tr>
<tr>
<td>VOC</td>
<td>0.0920</td>
<td>0.0909</td>
</tr>
<tr>
<td>CO</td>
<td>1.2150</td>
<td>1.1435</td>
</tr>
<tr>
<td>SO2</td>
<td>1.0600</td>
<td>1.0600</td>
</tr>
<tr>
<td>PM10</td>
<td>0.0600</td>
<td>0.0610</td>
</tr>
<tr>
<td>PM2.5</td>
<td>0.0500</td>
<td>0.0510</td>
</tr>
<tr>
<td>CO2</td>
<td>3216</td>
<td>3216</td>
</tr>
<tr>
<td>CH4</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>N2O</td>
<td>0.1000</td>
<td>0.1000</td>
</tr>
</tbody>
</table>

Table D3.5-25. KC-46A Aircraft Closed Pattern Operations - Emissions Per Operation

<table>
<thead>
<tr>
<th>Emissions per operation, lbs</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A CA VFR Right Turns South Side</td>
<td>0.2531</td>
<td>2.8367</td>
<td>61.2648</td>
<td>3.0225</td>
<td>0.1809</td>
<td>0.1523</td>
<td>9170.2396</td>
<td>0.2538</td>
<td>0.2851</td>
</tr>
<tr>
<td>KC-46A CC IFR Right Turns Southwest Side</td>
<td>0.5579</td>
<td>6.6060</td>
<td>128.6396</td>
<td>6.8339</td>
<td>0.3876</td>
<td>0.3544</td>
<td>20010.1143</td>
<td>0.5538</td>
<td>0.6222</td>
</tr>
<tr>
<td>Emissions, closed pattern ops, tons/year</td>
<td>0.2711</td>
<td>3.0388</td>
<td>65.6297</td>
<td>3.2379</td>
<td>0.1937</td>
<td>0.1632</td>
<td>9823.6192</td>
<td>0.2719</td>
<td>0.3055</td>
</tr>
</tbody>
</table>
Table D3.5-26. Annual Air Emissions for KC-46A Aircraft Operations at Rickenbacker - Proposed Action

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A LTOs</td>
<td>21.40</td>
<td>74.33</td>
<td>48.79</td>
<td>3.78</td>
<td>0.31</td>
<td>0.27</td>
<td>11462.73</td>
<td>0.32</td>
<td>0.36</td>
</tr>
<tr>
<td>KC-46A T&G</td>
<td>0.27</td>
<td>3.04</td>
<td>65.63</td>
<td>3.24</td>
<td>0.19</td>
<td>0.16</td>
<td>9823.62</td>
<td>0.27</td>
<td>0.31</td>
</tr>
<tr>
<td>APU</td>
<td>0.05</td>
<td>0.45</td>
<td>9.16</td>
<td>0.76</td>
<td>0.07</td>
<td>0.03</td>
<td>1871.62</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total Proposed Action</td>
<td>21.73</td>
<td>77.82</td>
<td>123.58</td>
<td>7.78</td>
<td>0.57</td>
<td>0.49</td>
<td>23157.97</td>
<td>0.59</td>
<td>0.66</td>
</tr>
</tbody>
</table>

Table D3.5-27. Annual HAP Emissions for KC-46A Aircraft Operations at Rickenbacker - Proposed Action

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Formaldehyde</th>
<th>Acetaldehyde</th>
<th>Acrolein</th>
<th>Naphthalene</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Ethylbenzene</th>
<th>Xylenes</th>
<th>Styrene</th>
<th>Chloroform</th>
<th>Chloromethane</th>
<th>1,3-Dichloropropene</th>
<th>Methylene Chloride</th>
<th>Vinyl Acetate</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A LTOs</td>
<td>3.06</td>
<td>1.06</td>
<td>0.61</td>
<td>0.13</td>
<td>0.42</td>
<td>0.16</td>
<td>0.04</td>
<td>0.07</td>
<td>0.08</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.19</td>
<td>0.01</td>
</tr>
<tr>
<td>KC-46A Closed Pattern Ops</td>
<td>0.04</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.12</td>
<td>0.01</td>
</tr>
<tr>
<td>Total Proposed Action</td>
<td>3.10</td>
<td>1.07</td>
<td>0.62</td>
<td>0.14</td>
<td>0.42</td>
<td>0.16</td>
<td>0.04</td>
<td>0.07</td>
<td>0.08</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.31</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Table D3.5-28. JP-8 AGE Equipment Emissions, Rickenbacker, Proposed Action

<table>
<thead>
<tr>
<th>AGE Type</th>
<th>Sorties</th>
<th>Total Run Time (hrs/yr)</th>
<th>Fuel Use per Unit (gal/hr)</th>
<th>Fuel Use per Unit (gal/yr)</th>
<th>Engine Rating (hp)</th>
<th>NOx</th>
<th>CO</th>
<th>VOC</th>
<th>PM10</th>
<th>PM2.5</th>
<th>SO2</th>
<th>Annual Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A AGE</td>
<td>1286</td>
<td></td>
</tr>
<tr>
<td>House/Sortie</td>
<td></td>
</tr>
<tr>
<td>Generator AM25A-98</td>
<td>10</td>
<td>1286</td>
<td>10.11</td>
<td>107443.23</td>
<td>836.68</td>
<td>3.22E+01</td>
<td>5.91E+01</td>
<td>7.31E+01</td>
<td>1.91E+02</td>
<td>2.79E+02</td>
<td>7.72E+02</td>
<td>8.88E+02</td>
</tr>
<tr>
<td>Start Cart AM25A-98</td>
<td>0.1</td>
<td>1286</td>
<td>10.11</td>
<td>107443.23</td>
<td>836.68</td>
<td>3.22E+01</td>
<td>5.91E+01</td>
<td>7.31E+01</td>
<td>1.91E+02</td>
<td>2.79E+02</td>
<td>7.72E+02</td>
<td>8.88E+02</td>
</tr>
<tr>
<td>Generator AV-82-050-AC</td>
<td>10</td>
<td>1286</td>
<td>10.11</td>
<td>107443.23</td>
<td>836.68</td>
<td>3.22E+01</td>
<td>5.91E+01</td>
<td>7.31E+01</td>
<td>1.91E+02</td>
<td>2.79E+02</td>
<td>7.72E+02</td>
<td>8.88E+02</td>
</tr>
<tr>
<td>Start Cart AV-82-050-AC</td>
<td>0.1</td>
<td>1286</td>
<td>10.11</td>
<td>107443.23</td>
<td>836.68</td>
<td>3.22E+01</td>
<td>5.91E+01</td>
<td>7.31E+01</td>
<td>1.91E+02</td>
<td>2.79E+02</td>
<td>7.72E+02</td>
<td>8.88E+02</td>
</tr>
<tr>
<td>Generator AV-82-050-AC</td>
<td>10</td>
<td>1286</td>
<td>10.11</td>
<td>107443.23</td>
<td>836.68</td>
<td>3.22E+01</td>
<td>5.91E+01</td>
<td>7.31E+01</td>
<td>1.91E+02</td>
<td>2.79E+02</td>
<td>7.72E+02</td>
<td>8.88E+02</td>
</tr>
<tr>
<td>Start Cart AV-82-050-AC</td>
<td>0.1</td>
<td>1286</td>
<td>10.11</td>
<td>107443.23</td>
<td>836.68</td>
<td>3.22E+01</td>
<td>5.91E+01</td>
<td>7.31E+01</td>
<td>1.91E+02</td>
<td>2.79E+02</td>
<td>7.72E+02</td>
<td>8.88E+02</td>
</tr>
</tbody>
</table>

Table D3.5-29. AGE HAP Emissions, Rickenbacker, Proposed Action

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Turbine (lb/1000 gal)</th>
<th>Reciprocating (lb/1000 hp-hr)</th>
<th>Acetaldehyde</th>
<th>5.40E-03</th>
<th>3.29E+01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>1.96E+03</td>
<td>1.96E+03</td>
<td>Arsenic</td>
<td>6.49E+03</td>
<td>3.96E+03</td>
</tr>
<tr>
<td>Benene</td>
<td>7.69E+03</td>
<td>7.69E+03</td>
<td>Benene</td>
<td>6.49E+03</td>
<td>3.96E+03</td>
</tr>
<tr>
<td>Lead</td>
<td>2.00E+04</td>
<td>2.00E+04</td>
<td>Lead</td>
<td>6.49E+03</td>
<td>3.96E+03</td>
</tr>
<tr>
<td>Mercury</td>
<td>1.67E-04</td>
<td>1.67E-04</td>
<td>Mercury</td>
<td>6.49E+03</td>
<td>3.96E+03</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>4.87E-04</td>
<td>4.87E-04</td>
<td>Naphthalene</td>
<td>6.49E+03</td>
<td>3.96E+03</td>
</tr>
<tr>
<td>Nickel</td>
<td>6.34E-04</td>
<td>6.34E-04</td>
<td>Nickel</td>
<td>6.49E+03</td>
<td>3.96E+03</td>
</tr>
<tr>
<td>POM</td>
<td>5.96E-03</td>
<td>5.96E-03</td>
<td>POM</td>
<td>6.49E+03</td>
<td>3.96E+03</td>
</tr>
<tr>
<td>Toluene</td>
<td>2.90E-03</td>
<td>1.22E+01</td>
<td>Toluene</td>
<td>6.49E+03</td>
<td>3.96E+03</td>
</tr>
<tr>
<td>Xylenes</td>
<td>2.00E-03</td>
<td>1.22E+01</td>
<td>Xylenes</td>
<td>6.49E+03</td>
<td>3.96E+03</td>
</tr>
<tr>
<td>Total</td>
<td>1.49E-02</td>
<td></td>
<td>Total</td>
<td>6.49E+03</td>
<td>3.96E+03</td>
</tr>
</tbody>
</table>

Table D3.5-30. JP-8 AGE Equipment GHG Emissions, Rickenbacker, Proposed Action

<table>
<thead>
<tr>
<th>AGE Type</th>
<th>Sorties</th>
<th>Total Run Time (hrs/yr)</th>
<th>Fuel Use per Unit (gal/hr)</th>
<th>Fuel Use per Unit (gal/yr)</th>
<th>Engine Rating (hp)</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>Annual Emissions (tons/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A AGE</td>
<td>1286</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>House/Sortie</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generator AM25A-98</td>
<td>10</td>
<td>1286</td>
<td>10.11</td>
<td>107443.23</td>
<td>836.68</td>
<td>3.22E+01</td>
<td>5.91E+01</td>
<td>7.31E+01</td>
<td>2.79E+02</td>
</tr>
<tr>
<td>Start Cart AM25A-98</td>
<td>0.1</td>
<td>1286</td>
<td>10.11</td>
<td>107443.23</td>
<td>836.68</td>
<td>3.22E+01</td>
<td>5.91E+01</td>
<td>7.31E+01</td>
<td>1.91E+02</td>
</tr>
<tr>
<td>Generator AV-82-050-AC</td>
<td>10</td>
<td>1286</td>
<td>10.11</td>
<td>107443.23</td>
<td>836.68</td>
<td>3.22E+01</td>
<td>5.91E+01</td>
<td>7.31E+01</td>
<td>1.91E+02</td>
</tr>
<tr>
<td>Start Cart AV-82-050-AC</td>
<td>0.1</td>
<td>1286</td>
<td>10.11</td>
<td>107443.23</td>
<td>836.68</td>
<td>3.22E+01</td>
<td>5.91E+01</td>
<td>7.31E+01</td>
<td>1.91E+02</td>
</tr>
</tbody>
</table>

Emission estimation methodology based AFCEC 2013, assuming Sortie/LTO method per AFCEC guidance.
Equipment from AFCEC 2013, Table 3-3, Emission Factors from AFCEC 2013, Table 3-4.
Table D3.5-31. Aircraft Engine Emissions - Engine Tests, Rickenbacker, Proposed Action

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs fuel/hr)</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>Emission Factors (lb/1000 lbs fuel)</th>
<th>Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A</td>
<td>17 Id.</td>
<td>Idle</td>
<td>0.50</td>
<td>1</td>
<td>1063</td>
<td>32.5</td>
<td>42.8</td>
<td>3.8</td>
<td>1.1</td>
<td>0.1</td>
<td>0.1</td>
<td>176.8</td>
<td>962.39</td>
</tr>
<tr>
<td></td>
<td>50.44</td>
<td>14.99</td>
</tr>
<tr>
<td></td>
<td>1.59</td>
<td>1.41</td>
</tr>
<tr>
<td>Maintenance Run</td>
<td>68 Id.</td>
<td>Idle</td>
<td>0.33</td>
<td>2</td>
<td>1063</td>
<td>32.5</td>
<td>42.8</td>
<td>3.8</td>
<td>1.1</td>
<td>0.1</td>
<td>0.1</td>
<td>941.66</td>
<td>232.73</td>
</tr>
<tr>
<td></td>
<td>245.01</td>
<td>75.02</td>
</tr>
<tr>
<td></td>
<td>6.29</td>
<td>7.54</td>
</tr>
<tr>
<td>TRT Run 1 Engine</td>
<td>8 Id.</td>
<td>Id.</td>
<td>0.17</td>
<td>1</td>
<td>1063</td>
<td>32.5</td>
<td>42.8</td>
<td>3.8</td>
<td>1.1</td>
<td>0.1</td>
<td>0.1</td>
<td>27.70</td>
<td>94.49</td>
</tr>
<tr>
<td></td>
<td>8.38</td>
<td>2.35</td>
</tr>
<tr>
<td></td>
<td>0.24</td>
<td>0.22</td>
</tr>
<tr>
<td>TRT Run 2 Engine</td>
<td>8 80% RPM</td>
<td>Id.</td>
<td>0.17</td>
<td>2</td>
<td>1068.986</td>
<td>0.1</td>
<td>0.5</td>
<td>26.0</td>
<td>1.1</td>
<td>0.1</td>
<td>0.1</td>
<td>41.04</td>
<td>141.74</td>
</tr>
<tr>
<td></td>
<td>12.57</td>
<td>3.53</td>
</tr>
<tr>
<td></td>
<td>0.37</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>0.59</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>1.03</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>0.07</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Table D3.5-32. HAP Emissions, Engine Tests, Rickenbacker, Proposed Action

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs fuel/hr)</th>
<th>Form- aldehyde</th>
<th>Acetaldehyde</th>
<th>Acrolein</th>
<th>Naphthalene</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Emission Factor (lb/1000 lbs fuel)</th>
<th>Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A</td>
<td>17 Id.</td>
<td>Idle</td>
<td>0.50</td>
<td>1</td>
<td>1063</td>
<td>0.50</td>
<td>1</td>
<td>1,663</td>
<td>27.0</td>
<td>94.49</td>
<td>14.99</td>
<td>1.56</td>
<td>1.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>42.6</td>
<td>602.39</td>
<td>53.44</td>
<td>176.8</td>
<td>602.39</td>
<td>53.44</td>
<td>1.59</td>
<td>1.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75.02</td>
<td>6.29</td>
<td>7.54</td>
<td>6.29</td>
<td>7.54</td>
<td>6.29</td>
<td>7.54</td>
<td>6.29</td>
</tr>
</tbody>
</table>

Table D3.5-33. GHG Emissions, Engine Tests, Rickenbacker, Proposed Action

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs fuel/hr)</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>Emission Factor (lb/1000 lbs fuel)</th>
<th>Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A</td>
<td>17 Id.</td>
<td>Idle</td>
<td>0.50</td>
<td>1</td>
<td>1063</td>
<td>3,216.0</td>
<td>0.1</td>
<td>0.1</td>
<td>45,465.24</td>
<td>128.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.26</td>
<td>53.79</td>
<td>176.8</td>
<td>128.8</td>
<td>176.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.41</td>
<td>53.79</td>
<td>176.8</td>
<td>128.8</td>
<td>128.8</td>
</tr>
</tbody>
</table>

(1) CO2 emission factors obtained from AFCEC 2013. CH4 and N2O emission factors were derived from Table A-101 for jet fuel in EPA’s Inventory of U.S. Greenhouse Gas Emissions and Sinks, 1990-2005, using density of JP-8 as 6.8 lb/gallon.
Table D3.5-34. Rickenbacker Comparison of Emissions

<table>
<thead>
<tr>
<th></th>
<th>Baseline VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft Ops</td>
<td>4.63</td>
<td>68.57</td>
<td>64.35</td>
<td>6.38</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.02</td>
<td>0.15</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.11</td>
<td>1.55</td>
<td>0.42</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>POVs</td>
<td>4.56</td>
<td>67.35</td>
<td>3.56</td>
<td>0.05</td>
<td>0.15</td>
<td>0.07</td>
</tr>
<tr>
<td>Total</td>
<td>9.29</td>
<td>137.50</td>
<td>68.48</td>
<td>6.50</td>
<td>0.51</td>
<td>0.42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Proposed Action VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft Ops</td>
<td>21.73</td>
<td>77.82</td>
<td>123.58</td>
<td>7.78</td>
<td>0.57</td>
<td>0.49</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.02</td>
<td>0.15</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.59</td>
<td>2.03</td>
<td>0.54</td>
<td>0.07</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>POVs</td>
<td>4.09</td>
<td>60.59</td>
<td>2.68</td>
<td>0.05</td>
<td>0.15</td>
<td>0.07</td>
</tr>
<tr>
<td>Total</td>
<td>26.43</td>
<td>140.46</td>
<td>126.95</td>
<td>7.90</td>
<td>0.73</td>
<td>0.57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Net Increase VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17.13</td>
<td>2.96</td>
<td>58.47</td>
<td>1.40</td>
<td>0.23</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Table D3.5-35. Rickenbacker Comparison of HAP Emissions

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Formaldehyde</th>
<th>Acetaldehyde</th>
<th>Acrolein</th>
<th>Naphthalene</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Ethylbenzene</th>
<th>Xylenes</th>
<th>Styrene</th>
<th>Chloroform</th>
<th>Chloromethane</th>
<th>1,3-Dichloropropene</th>
<th>Methylene Chloride</th>
<th>Vinyl Acetate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft Ops</td>
<td>0.23</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.29</td>
<td>0.02</td>
</tr>
<tr>
<td>AGE</td>
<td>0.03</td>
<td>0.02</td>
<td>0.00</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>0.26</td>
<td>0.02</td>
<td>0.00</td>
<td>0.01</td>
<td>0.03</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.29</td>
<td>0.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Proposed Action</th>
<th>Formaldehyde</th>
<th>Acetaldehyde</th>
<th>Acrolein</th>
<th>Naphthalene</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Ethylbenzene</th>
<th>Xylenes</th>
<th>Styrene</th>
<th>Chloroform</th>
<th>Chloromethane</th>
<th>1,3-Dichloropropene</th>
<th>Methylene Chloride</th>
<th>Vinyl Acetate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft Ops</td>
<td>3.10</td>
<td>1.07</td>
<td>0.62</td>
<td>0.14</td>
<td>0.42</td>
<td>0.16</td>
<td>0.04</td>
<td>0.07</td>
<td>0.06</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.31</td>
<td>0.02</td>
</tr>
<tr>
<td>AGE</td>
<td>0.03</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.03</td>
<td>0.02</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>3.15</td>
<td>1.11</td>
<td>0.62</td>
<td>0.15</td>
<td>0.45</td>
<td>0.17</td>
<td>0.05</td>
<td>0.07</td>
<td>0.06</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.31</td>
<td>0.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Net Increase</th>
<th>Formaldehyde</th>
<th>Acetaldehyde</th>
<th>Acrolein</th>
<th>Naphthalene</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Ethylbenzene</th>
<th>Xylenes</th>
<th>Styrene</th>
<th>Chloroform</th>
<th>Chloromethane</th>
<th>1,3-Dichloropropene</th>
<th>Methylene Chloride</th>
<th>Vinyl Acetate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.89</td>
<td>1.08</td>
<td>0.62</td>
<td>0.14</td>
<td>0.42</td>
<td>0.13</td>
<td>0.04</td>
<td>0.06</td>
<td>0.07</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Table D3.5-36. Rickenbacker Comparison of GHG Emissions

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft Ops</td>
<td>17562</td>
<td>0.49</td>
<td>0.55</td>
<td>17742</td>
<td></td>
</tr>
<tr>
<td>AGE</td>
<td>3206</td>
<td>0.09</td>
<td>0.11</td>
<td>3333</td>
<td></td>
</tr>
<tr>
<td>Engine Tests</td>
<td>183</td>
<td>0.01</td>
<td>0.01</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>POVs</td>
<td>2407</td>
<td>0.00</td>
<td>0.00</td>
<td>2407</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>23451</td>
<td>0.58</td>
<td>0.66</td>
<td>23667</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Proposed Action</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft Ops</td>
<td>21009</td>
<td>0.53</td>
<td>0.60</td>
<td>21206</td>
<td></td>
</tr>
<tr>
<td>AGE</td>
<td>3201</td>
<td>0.09</td>
<td>0.11</td>
<td>3326</td>
<td></td>
</tr>
<tr>
<td>Engine Tests</td>
<td>183</td>
<td>0.00</td>
<td>0.01</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>POVs</td>
<td>2407</td>
<td>0.00</td>
<td>0.00</td>
<td>2407</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>26909</td>
<td>0.63</td>
<td>0.71</td>
<td>27143</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Net Increase</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3459</td>
<td>0.05</td>
<td>0.05</td>
<td>3476</td>
<td></td>
</tr>
</tbody>
</table>
Appendix E

Special Status Species Lists
APPENDIX E SPECIAL STATUS SPECIES LISTS

Special Status Species Observed or Potentially Occurring in the Vicinity of Forbes ANGS

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Status</th>
<th>Occurrence on Forbes Field Airport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eskimo Curlew</td>
<td>Numenius borealis</td>
<td>FE, SE</td>
<td>U</td>
</tr>
<tr>
<td>Least Tern</td>
<td>Sternula antillarum</td>
<td>FE, SE</td>
<td>U</td>
</tr>
<tr>
<td>Piping Plover</td>
<td>Charadrius melanoleucus</td>
<td>FT, ST</td>
<td>U</td>
</tr>
<tr>
<td>Snowy Plover</td>
<td>Charadrius alexandrinus</td>
<td>ST</td>
<td>U</td>
</tr>
<tr>
<td>Whooping Crane</td>
<td>Grus americana</td>
<td>FE, SE</td>
<td>U</td>
</tr>
<tr>
<td>Mammals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern spotted skunk</td>
<td>Spilogale putorius</td>
<td>ST</td>
<td>U</td>
</tr>
<tr>
<td>Amphibians and Reptiles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smooth earth snake</td>
<td>Virginia valeriae</td>
<td>ST</td>
<td>U</td>
</tr>
<tr>
<td>Fish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver chub</td>
<td>Macrhybopsis storeriana</td>
<td>SE</td>
<td>U</td>
</tr>
<tr>
<td>Sturgeon chub</td>
<td>Macrhybopsis gelida</td>
<td>FC, ST</td>
<td>U</td>
</tr>
<tr>
<td>Topeka shiner</td>
<td>Notropis topeka</td>
<td>FE, ST</td>
<td>U</td>
</tr>
<tr>
<td>Invertebrates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American burying beetle</td>
<td>Nicrophorus americanus</td>
<td>FE, SE</td>
<td>U</td>
</tr>
</tbody>
</table>

Notes:
FT = Federal Threatened, FE = Federal Endangered, FC = Federal Candidate, ST = State Threatened, SE = State Endangered, U = Unlikely

Sources: 190th Air Refueling Wing 2004; Kansas Department of Wildlife, Parks and Tourism 2005, 2013.
Special Status Species Observed or Potentially Occurring in the Vicinity of JB MDL

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Federal Status/State Status</th>
<th>Occurrence On McGuire Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Bittern</td>
<td>Botaurus lentiginosus</td>
<td>SE P</td>
<td></td>
</tr>
<tr>
<td>American Kestrel</td>
<td>Falco sparverius</td>
<td>ST O</td>
<td></td>
</tr>
<tr>
<td>Bald Eagle</td>
<td>Haliaeetus leucocephalus</td>
<td>ST/SE P</td>
<td>P</td>
</tr>
<tr>
<td>Barred Owl</td>
<td>Strix varia</td>
<td>ST P</td>
<td></td>
</tr>
<tr>
<td>Black-crowned Night Heron</td>
<td>Nycticorax nycticorax</td>
<td>ST P</td>
<td></td>
</tr>
<tr>
<td>Grasshopper Sparrow</td>
<td>Ammodramus savannarum</td>
<td>ST O</td>
<td></td>
</tr>
<tr>
<td>Henslow’s Sparrow</td>
<td>Ammodramus henslowii</td>
<td>SE P</td>
<td></td>
</tr>
<tr>
<td>Horned Lark</td>
<td>Eremophila alpestris</td>
<td>ST P</td>
<td></td>
</tr>
<tr>
<td>Long-eared Owl</td>
<td>Asio otus</td>
<td>ST P</td>
<td></td>
</tr>
<tr>
<td>Northern Goshawk</td>
<td>Accipiter gentilis</td>
<td>SE P</td>
<td></td>
</tr>
<tr>
<td>Northern Harrier</td>
<td>Circus cyaneus</td>
<td>SE O</td>
<td></td>
</tr>
<tr>
<td>Osprey</td>
<td>Pandion haliaetus</td>
<td>ST P</td>
<td></td>
</tr>
<tr>
<td>Pied-billed Grebe</td>
<td>Podilymbus podiceps</td>
<td>SE O</td>
<td></td>
</tr>
<tr>
<td>Red-headed Woodpecker</td>
<td>Malanerpes erythrocephalus</td>
<td>ST P</td>
<td></td>
</tr>
<tr>
<td>Red-shouldered Hawk</td>
<td>Buteo lineatus</td>
<td>ST/SE P</td>
<td></td>
</tr>
<tr>
<td>Savannah Sparrow</td>
<td>Passerellus sandwichensis</td>
<td>ST O</td>
<td></td>
</tr>
<tr>
<td>Sedge Wren</td>
<td>Cistothorus platensis</td>
<td>SE P</td>
<td></td>
</tr>
<tr>
<td>Upland Sandpiper</td>
<td>Bartramia longicauda</td>
<td>SE O</td>
<td></td>
</tr>
<tr>
<td>Vesper Sparrow</td>
<td>Poecetes gramineus</td>
<td>SE P</td>
<td></td>
</tr>
<tr>
<td>Mammals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bobcat</td>
<td>Lynx rufus</td>
<td>SE P</td>
<td></td>
</tr>
<tr>
<td>Amphibians and Reptiles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bog turtle</td>
<td>Clemmys muhlenbergii</td>
<td>FT, SE P</td>
<td>P</td>
</tr>
<tr>
<td>Corn snake</td>
<td>Elaphe guttata</td>
<td>SE P</td>
<td></td>
</tr>
<tr>
<td>Eastern mud salamander</td>
<td>Pseudotriton montanus</td>
<td>ST P</td>
<td></td>
</tr>
<tr>
<td>Northern pine snake</td>
<td>Pituophis melanoleucus</td>
<td>ST P</td>
<td></td>
</tr>
<tr>
<td>Southern gray treefrog</td>
<td>Hyla chrysoscelis</td>
<td>SE P</td>
<td></td>
</tr>
<tr>
<td>Timber rattlesnake</td>
<td>Crotalus horridus</td>
<td>SE P</td>
<td></td>
</tr>
<tr>
<td>Pine Barrens treefrog</td>
<td>Hyla andersonii</td>
<td>ST P</td>
<td></td>
</tr>
<tr>
<td>Wood turtle</td>
<td>Glyptemys insculpta</td>
<td>ST P</td>
<td></td>
</tr>
<tr>
<td>Invertebrates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arogos skipper</td>
<td>Atrytone arogos</td>
<td>SE P</td>
<td></td>
</tr>
<tr>
<td>Frosted elfin</td>
<td>Callophrys irus</td>
<td>ST P</td>
<td></td>
</tr>
<tr>
<td>Silver-bordered fritillary</td>
<td>Boloria selene</td>
<td>ST P</td>
<td></td>
</tr>
<tr>
<td>Plants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American chaffseed</td>
<td>Schwalbea americana</td>
<td>FE, SE P</td>
<td>P</td>
</tr>
<tr>
<td>Bog (Yellow) asphodel</td>
<td>Narthecium americanum</td>
<td>C, SE P</td>
<td>P</td>
</tr>
<tr>
<td>Knieskern’s beaked-rush</td>
<td>Rhytchospora knieskernii</td>
<td>FT, SE P</td>
<td>P</td>
</tr>
<tr>
<td>Swamp pink</td>
<td>Helonias bullata</td>
<td>FT, SE P</td>
<td>P</td>
</tr>
</tbody>
</table>

Notes:
FE = Federally Endangered, FT = Federally Threatened, C = Candidate Species, SE = State Endangered, ST = State Threatened, P = Potential, O = Observed

Source: 87th Civil Engineer Squadron 2012, Air Mobility Command 2008, New Jersey Department of Environmental Protection 2013.
Special Status Species Observed or Potentially Occurring in the Vicinity of Pease ANGS

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Federal Status/State Status</th>
<th>Occurrence On Portsmouth International Airport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bald Eagle</td>
<td>Haliaeetus leucocephalus</td>
<td>ST</td>
<td>O</td>
</tr>
<tr>
<td>Common Loon</td>
<td>Gavia immer</td>
<td>ST</td>
<td>O</td>
</tr>
<tr>
<td>Common Nighthawk</td>
<td>Chordeiles minor</td>
<td>SE</td>
<td>O</td>
</tr>
<tr>
<td>Common Tern</td>
<td>Sternula antillarum</td>
<td>ST</td>
<td>O</td>
</tr>
<tr>
<td>Northern Harrier</td>
<td>Circus cyaneus</td>
<td>SE</td>
<td>O</td>
</tr>
<tr>
<td>Peregrine Falcon</td>
<td>Falco peregrinus</td>
<td>ST</td>
<td>O</td>
</tr>
<tr>
<td>Upland Sandpiper</td>
<td>Bartramia longicauda</td>
<td>SE</td>
<td>O</td>
</tr>
<tr>
<td>Mammals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New England cottontail</td>
<td>Sylvilagus transitionalis</td>
<td>C, SE</td>
<td>P</td>
</tr>
<tr>
<td>Amphibians and Reptiles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blanding's turtle</td>
<td>Emydoidea blandingii</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Plants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large bur-reed</td>
<td>Sparganium eurycarpum</td>
<td>ST</td>
<td>P</td>
</tr>
<tr>
<td>Northern blazing star</td>
<td>Liatris scariosa var. novae-angliae</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Seaside mallow</td>
<td>Hibiscus moscheutos</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Small whorled pogonia</td>
<td>Isotria medeoloides</td>
<td>FT, ST</td>
<td>U</td>
</tr>
</tbody>
</table>

Notes: FT = Federally Threatened, C = Candidate Species, SE = State Endangered, ST = State Threatened, O = Observed, P = Potential; U = Unlikely

Source: 157th Air Refueling Wing 2013, New Hampshire Fish and Game 2013, New Hampshire Natural Heritage Bureau 2013.
Special Status Species Observed or Potentially Occurring in the Vicinity of Pittsburgh ANGS

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Federal Status/State Status</th>
<th>Occurrence On Pittsburgh International Airport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-eared Owl</td>
<td>Asio flammeus</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Northern Harrier</td>
<td>Circus cyaneus</td>
<td>ST</td>
<td>P</td>
</tr>
<tr>
<td>Peregrine Falcon</td>
<td>Falco peregrinus</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Bald Eagle</td>
<td>Haliaeetus leucocephalus</td>
<td>ST</td>
<td>P</td>
</tr>
<tr>
<td>Migrant Loggerhead Shrike</td>
<td>Lanius ludovicianus migrans</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Mammals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indiana bat</td>
<td>Myotis sodalis</td>
<td>FE</td>
<td>P</td>
</tr>
<tr>
<td>Amphibians and Reptiles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern cricket frog</td>
<td>Acris crepitans</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Kirtland’s snake</td>
<td>Clonophis kirtlandii</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Eastern massasauga</td>
<td>Sistrurus catenatus catenatus</td>
<td>C, SE</td>
<td>P</td>
</tr>
<tr>
<td>Fish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warmouth</td>
<td>Chaenobryttus gulosus</td>
<td>SE</td>
<td>U</td>
</tr>
<tr>
<td>Ghost shiner</td>
<td>Notropis buchanani</td>
<td>SE</td>
<td>U</td>
</tr>
<tr>
<td>Bluebreast darter</td>
<td>Etheostoma camurum</td>
<td>ST</td>
<td>U</td>
</tr>
<tr>
<td>Tippecanoe darter</td>
<td>Etheostoma tippecanoe</td>
<td>ST</td>
<td>U</td>
</tr>
<tr>
<td>Southern redbelly dace</td>
<td>Phoxinus erythrogaster</td>
<td>ST</td>
<td>U</td>
</tr>
<tr>
<td>Plants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern water plantain</td>
<td>Alisma triviale</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Scarlet ammannia</td>
<td>Ammannia coecinea</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Carey’s sedge</td>
<td>Carex careyana</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Cattail sedge</td>
<td>Carex typhina</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Vasevine leather-flower</td>
<td>Clematis viorna</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Small yellow lady’s-slipper</td>
<td>Cypripedium parviflorum var. parviflorum</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Tall larkspur</td>
<td>Delphinium exaltatum</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Common shootingstar</td>
<td>Dodecatheon meadia</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Four-angled spike-rush</td>
<td>Eleocharis quadrangulata</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Cluster fescue</td>
<td>Festuca paradoxa</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Bicknell’s hoary rockrose</td>
<td>Helianthemum bicknellii</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Purple rocket</td>
<td>Iodanthus pinnatifidus</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Crested dwarf iris</td>
<td>Iris cristata</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Forked rush</td>
<td>Juncus dichotomus</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>American gromwell</td>
<td>Lithospermum latifolium</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Large-flowered marshallia</td>
<td>Marshallia grandiflora</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Oblique milkvine</td>
<td>Matelea obliqua</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Spotted beebalm</td>
<td>Monarda punctata</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Northern watermilfoil</td>
<td>Myriophyllum exalbescens</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Round hickorynut</td>
<td>Obovaria subrotunda</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>False gromwell</td>
<td>Onosmodium molle</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Passionflower</td>
<td>Passiflora lutea</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Balsam poplar</td>
<td>Populus balsamifera</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Tennessee pondweed</td>
<td>Potamogeton tennesseensis</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Crepis rattlesnake-root</td>
<td>Prenanthes crepidinea</td>
<td>SE</td>
<td>P</td>
</tr>
</tbody>
</table>
Special Status Species Observed or Potentially Occurring in the Vicinity of Pittsburgh ANGS

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Federal Status/State Status</th>
<th>Occurrence On Pittsburgh International Airport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern blue-eyed grass</td>
<td>Sisyrinchium atlanticum</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Wild hyacinth</td>
<td>Triteleia hyacinthina</td>
<td>ST</td>
<td>P</td>
</tr>
<tr>
<td>Harbinger of spring</td>
<td>Erigenia bulbosa</td>
<td>ST</td>
<td>P</td>
</tr>
<tr>
<td>Torrey’s rush</td>
<td>Juncus torreyi</td>
<td>ST</td>
<td>O</td>
</tr>
<tr>
<td>Common hoptree</td>
<td>Ptelea trifoliata</td>
<td>ST</td>
<td>P</td>
</tr>
<tr>
<td>Limestone petunia</td>
<td>Ruellia strepens</td>
<td>ST</td>
<td>P</td>
</tr>
</tbody>
</table>

Invertebrates

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Federal Status/State Status</th>
<th>Occurrence On Pittsburgh International Airport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheepnose mussel</td>
<td>Plethobasus cyphyus</td>
<td>FE, ST</td>
<td>U</td>
</tr>
<tr>
<td>Snuffbox</td>
<td>Epioblasma triqueta</td>
<td>SE</td>
<td>U</td>
</tr>
<tr>
<td>Gravel chub</td>
<td>Erimystax x-punctatus</td>
<td>SE</td>
<td>U</td>
</tr>
<tr>
<td>Rabbitsfoot</td>
<td>Quadrula cylindrica</td>
<td>C, SE</td>
<td>U</td>
</tr>
<tr>
<td>Pistolgrip mussel</td>
<td>Quadrula verrucosa</td>
<td>SE</td>
<td>U</td>
</tr>
</tbody>
</table>

Notes:
FE = Federally Endangered, C = Candidate Species, SE = State Endangered, ST = State Threatened, O = Observed, P = Potential; U = Unlikely

Source: Pennsylvania Natural Heritage Program 2013, 171st Air Refueling Wing 2012.
Special Status Species Observed or Potentially Occurring in the Vicinity of Rickenbacker ANGS

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Status</th>
<th>Occurrence on Rickenbacker International Airport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short-eared Owl</td>
<td>Asio flammeus</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Northern Harrier</td>
<td>Circus cyaneus</td>
<td>SE</td>
<td>O</td>
</tr>
<tr>
<td>Barn Owl</td>
<td>Tyto alba</td>
<td>ST</td>
<td>P</td>
</tr>
<tr>
<td>Peregrine Falcon</td>
<td>Falco peregrinus</td>
<td>FSC, ST</td>
<td>P</td>
</tr>
<tr>
<td>Upland Sandpiper</td>
<td>Bartramia longicauda</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Bald Eagle</td>
<td>Haliaeetus leucocephalus</td>
<td>ST</td>
<td>P</td>
</tr>
<tr>
<td>Migrant Loggerhead Shrike</td>
<td>Lanitis ludovicianus migrans</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Mammals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indiana bat</td>
<td>Myotis sodalis</td>
<td>FE, SE</td>
<td>P</td>
</tr>
<tr>
<td>Amphibians and Reptiles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kirtland’s snake</td>
<td>Clonophis kirtlandii</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Eastern massasauga</td>
<td>Sistrurus catenatus catenatus</td>
<td>C, SE</td>
<td>P</td>
</tr>
<tr>
<td>Fish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warmouth</td>
<td>Chaenobryttus gulosus</td>
<td>SE</td>
<td>U</td>
</tr>
<tr>
<td>Gravel chub</td>
<td>Erimystax x-punctatus</td>
<td>SE</td>
<td>U</td>
</tr>
<tr>
<td>Ghost shiner</td>
<td>Notropis buchanani</td>
<td>SE</td>
<td>U</td>
</tr>
<tr>
<td>Bluebreast darter</td>
<td>Etheostoma camurum</td>
<td>ST</td>
<td>U</td>
</tr>
<tr>
<td>Tippecanoe darter</td>
<td>Etheostoma tippecano</td>
<td>ST</td>
<td>U</td>
</tr>
<tr>
<td>Southern redbelly dace</td>
<td>Phoxinus erythrogaster</td>
<td>ST</td>
<td>U</td>
</tr>
<tr>
<td>Invertebrates</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snuffbox</td>
<td>Epioblasma triquetra</td>
<td>FE, SE</td>
<td>U</td>
</tr>
<tr>
<td>Rabbitsfoot</td>
<td>Quadrula cylindrica</td>
<td>C, SE</td>
<td>U</td>
</tr>
<tr>
<td>Pistolgrip mussel</td>
<td>Quadrula verrucosa</td>
<td>SE</td>
<td>U</td>
</tr>
<tr>
<td>Sheepnose mussel</td>
<td>Plethobasus cyphus</td>
<td>FE, ST</td>
<td>U</td>
</tr>
<tr>
<td>Plants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gattinger’s-foxflove</td>
<td>Acorus americanus</td>
<td>ST</td>
<td>P</td>
</tr>
<tr>
<td>Spreading rockcress</td>
<td>Arabis patens</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Northern water plantain</td>
<td>Alisma triviale</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Scarlet ammannia</td>
<td>Ammannia coccinea</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Carey’s sedge</td>
<td>Carex careyana</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Cattail sedge</td>
<td>Carex typhina</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Vasevine leather-flower</td>
<td>Clematis viorna</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Small yellow lady’s-slipper</td>
<td>Cypripedium parviflorum</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Tall larkspur</td>
<td>Delphinium exaltatum</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Common shootingstar</td>
<td>Dodecathion meadia</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Four-angled spike-rush</td>
<td>Eleocharis quadrangulata</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Cluster fescue</td>
<td>Festuca paradoxa</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Bicknell’s hoary rockrose</td>
<td>Helianthemum bicknelli</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Purple rocket</td>
<td>Iodanthus pinnatifidus</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Crested dwarf iris</td>
<td>Iris cristata</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Forked rush</td>
<td>Juncus dichotomus</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>American gromwell</td>
<td>Lithospermum latifolium</td>
<td>SE</td>
<td>P</td>
</tr>
</tbody>
</table>
Special Status Species Observed or Potentially Occurring in the Vicinity of Rickenbacker ANGS

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Status</th>
<th>Occurrence on Rickenbacker International Airport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large-flowered marshallia</td>
<td>Marshallia grandiflora</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Oblique milkvine</td>
<td>Matelea obliqua</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Spotted bee Balm</td>
<td>Monarda punctata</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Northern watermilfoil</td>
<td>Myriophyllum exalbescens</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Round hickory nut</td>
<td>Obovaria subrotunda</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>False gromwell</td>
<td>Onosmodium molle</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Passionflower</td>
<td>Passiflora lutea</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Balsam poplar</td>
<td>Populus balsamifera</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Tennessee pondweed</td>
<td>Potamogeton tennesseensis</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Crepis rattlesnakeroot</td>
<td>Prenanthes crepitinea</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Eastern blue-eyed grass</td>
<td>Sisyrinchium atlanticum</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Wild hyacinth</td>
<td>Tritellia hyacinthisa</td>
<td>ST</td>
<td>P</td>
</tr>
<tr>
<td>Harbinger of spring</td>
<td>Erigenia bulbosa</td>
<td>ST</td>
<td>P</td>
</tr>
<tr>
<td>Torrey’s rush</td>
<td>Juncus torreyi</td>
<td>ST</td>
<td>P</td>
</tr>
<tr>
<td>Common hoptree</td>
<td>Ptelea trifoliata</td>
<td>ST</td>
<td>P</td>
</tr>
<tr>
<td>Limestone petunia</td>
<td>Ruellia strepens</td>
<td>ST</td>
<td>P</td>
</tr>
</tbody>
</table>

Notes: FT = Federal Threatened, FE = Federal Endangered, FC = Federal Candidate, ST = State Threatened, SE = State Endangered, O = Observed, P = Potential, U = Unlikely; FSC = Federal Species of Concern

Sources: Ohio Department of Natural Resources 2012; United States Fish and Wildlife Service 2005, 2010.
REFERENCES

Ohio Department of Natural Resources. 2012. Ohio Division of Wildlife Natural Heritage Database State-listed Species for Franklin County. November 8.

2010. Letter correspondence from Mary Knapp, Supervisor at the USFWS Regarding Lack of Federally Listed Species Present on Rickenbacker International Airport. August 23.
Appendix F

Final General Conformity Determination for KC-46A Alternative Beddown Location
Final General Conformity Determination for KC-46A Alternative Beddown Location

108th Wing, Joint Base McGuire-Dix-Lakehurst, New Jersey

May 2014
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>°F</td>
<td>degree Fahrenheit</td>
<td>NGB</td>
<td>National Guard Bureau</td>
</tr>
<tr>
<td>108 WG</td>
<td>108th Wing</td>
<td>NJANG</td>
<td>New Jersey Air National Guard</td>
</tr>
<tr>
<td>AAQS</td>
<td>Ambient Air Quality Standards</td>
<td>NJDEP</td>
<td>New Jersey Department of Environmental Protection</td>
</tr>
<tr>
<td>AFB</td>
<td>Air Force Base</td>
<td>NO2</td>
<td>Nitrogen Dioxide</td>
</tr>
<tr>
<td>AFCEC</td>
<td>Air Force Civil Engineering Center</td>
<td>NOx</td>
<td>Oxides of Nitrogen</td>
</tr>
<tr>
<td>AFI</td>
<td>Air Force Instruction</td>
<td>O3</td>
<td>Ozone</td>
</tr>
<tr>
<td>AGE</td>
<td>Aerospace Ground Equipment</td>
<td>PAA</td>
<td>Primary Aerospace Vehicles Authorized</td>
</tr>
<tr>
<td>AGL</td>
<td>Above Ground Level</td>
<td>Pb</td>
<td>Lead</td>
</tr>
<tr>
<td>ANGS</td>
<td>Air National Guard Station</td>
<td>PM10</td>
<td>Particulate Matter Less Than or Equal to 10 Microns in Diameter</td>
</tr>
<tr>
<td>ARW</td>
<td>Air Refueling Wing</td>
<td>PM2.5</td>
<td>Particulate Matter Less Than or Equal to 2.5 Microns in Diameter</td>
</tr>
<tr>
<td>CAA</td>
<td>Clean Air Act</td>
<td>POV</td>
<td>Privately-Owned Vehicle</td>
</tr>
<tr>
<td>CEQ</td>
<td>Council on Environmental Quality</td>
<td>ROI</td>
<td>Region of Influence</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
<td>SIP</td>
<td>State Implementation Plan</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon Monoxide</td>
<td>SO2</td>
<td>Sulfur Dioxide</td>
</tr>
<tr>
<td>CO2e</td>
<td>Carbon Dioxide Equivalent</td>
<td>SOx</td>
<td>Oxides of Sulfur</td>
</tr>
<tr>
<td>EDMS</td>
<td>Emissions and Dispersion Modeling System</td>
<td>tpy</td>
<td>Tons Per Year</td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental Impact Statement</td>
<td>tpy</td>
<td>Tons Per Year</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
<td>USAF</td>
<td>United States Air Force</td>
</tr>
<tr>
<td>JB MDL</td>
<td>Joint Base McGuire-Dix-Lakehurst</td>
<td>U.S.</td>
<td>United States</td>
</tr>
<tr>
<td>MOB</td>
<td>Main Operating Base</td>
<td>USEPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>MOB 2</td>
<td>Second Main Operating Base</td>
<td>USC</td>
<td>United States Code</td>
</tr>
<tr>
<td>NAAQS</td>
<td>National Ambient Air Quality Standards</td>
<td>USEPA</td>
<td>United States Environmental Protection Agency</td>
</tr>
<tr>
<td>NAS</td>
<td>Naval Air Station</td>
<td>VOC</td>
<td>Volatile Organic Compound</td>
</tr>
<tr>
<td>NEPA</td>
<td>National Environmental Policy Act</td>
<td>VOC</td>
<td>Volatile Organic Compound</td>
</tr>
</tbody>
</table>
APPENDICES

APPENDIX A EMISSION CALCULATIONS
APPENDIX B AGENCY COORDINATION

FIGURES

1 Regional Location, JB MDL.. 6

TABLES

ES-1 Annual Construction Emissions Under Alternative #2..........................ES-3
ES-2 Comparison of Baseline and Proposed Annual Operational Emissions of Non-
 Attainment and Maintenance Criteria Pollutants, 108 WG InstallationES-4
ES-3 Comparison of Baseline Actual Emissions and McGuire AFB SIP BudgetES-5
1 Ambient Air Quality Standards ..3
2 Changes to 108 WG Airfield Operations with Proposed KC-46A Aircraft7
3 De Minimis Thresholds ..8
4 108 WG Baseline Emissions at JB MDL..10
5 Annual Construction Emissions Under Alternative #2...............................11
6 Comparison of Baseline and Proposed Annual Operational Emissions, 108 WG
 Installation..12
7 Comparison of Baseline Actual Emissions and McGuire AFB SIP Budget13
EXECUTIVE SUMMARY

PROPOSED ACTION

The United States Air Force (USAF) plans to replace existing KC-135s with the KC-46A, which will be a new aircraft to the USAF’s fleet. This action would involve the beddown of one KC-46A squadron consisting of 12 Primary Aerospace Vehicles Authorized (PAA), and establishing a KC-46A Main Operating Base (MOB). The Secretary of the Air Force proposes to beddown KC-46A aircraft for the Second Main Operating Base (MOB 2) at one of five alternative locations:

- Alternative #1 – 190th Air Refueling Wing (ARW), Forbes Air National Guard Station (ANGS), Kansas;
- Alternative #2 – 108th Wing (108 WG), Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey;
- Alternative #3 – 157th ARW, Pease ANGS, New Hampshire;
- Alternative #4 – 171st ARW, Pittsburgh ANGS, Pennsylvania; and
- Alternative #5 – 121st ARW, Rickenbacker ANGS, Ohio.

As stated above, the Secretary of the Air Force proposes to beddown KC-46A aircraft for the MOB 2 at one of five alternative locations. One of these alternative locations is the 108 WG, located at JB MDL, New Jersey. Alternative #2 proposes to replace the existing KC-135 aircraft with the KC-46A at JB MDL, which is located in the central portion of the state of New Jersey, in Ocean and Burlington counties. If this location is chosen, the Proposed Action would contribute to regional air emissions at JB MDL, New Jersey.

CONFORMITY BACKGROUND

Air quality at a specific location is described by the concentration of various pollutants in the atmosphere, and is determined by local and regional emissions, the size and topography of the air basin, and local and regional meteorological influences. The significance of a pollutant concentration in a region or geographical area is determined by comparing it to federal and/or state ambient air quality standards (AAQS). Under the authority of the Clean Air Act (CAA) and subsequent amendments, the United States Environmental Protection Agency (USEPA) has established National Ambient Air Quality Standards (NAAQS) to protect public health and welfare, with an adequate margin of safety. These NAAQS represent the maximum allowable atmospheric concentrations and were established for seven “criteria” pollutants: ozone (O₃), nitrogen dioxide (NO₂), carbon monoxide (CO), sulfur dioxide (SO₂), particulate matter less than or equal to 10 microns in diameter (PM₁₀), particulate matter less than or equal to 2.5 microns in diameter (PM₂.₅), and lead (Pb). Oxides of nitrogen (NOₓ) include nitric oxide, NO₂, and other nitrogen compounds. Because volatile organic compounds (VOCs) and NOₓ are
precursors to the formation of O₃ in the atmosphere, control of these pollutants is the primary method of reducing O₃ concentrations in the atmosphere.

Should Alternative #2 be implemented, the KC-46A aircraft would be beddown at the 108 WG installation at JB MDL in New Jersey. The USEPA has classified the Philadelphia-Wilmington-Atlantic City area of the states of Pennsylvania, Delaware, and New Jersey as nonattainment for the 8-hour O₃ (marginal nonattainment) and PM₂.₅ NAAQS, and a maintenance area for CO. The region is designated as an attainment/unclassified area for all other pollutants. While General Conformity applicability analyses and determinations are not required for those criteria pollutants that are designated as being in attainment of the NAAQS, implementation of this alternative would be subject to the requirements of Section 176(c) of the CAA, as articulated in the USEPA General Conformity Rule. Implementing regulations were revised by the USEPA on April 5, 2010, and changed the existing regulations found in 40 Code of Federal Regulations (CFR) Part 51, Subpart W and Part 93, Subpart B (USEPA 2010).

Based on the nonattainment classification for the region, the de minimis emission thresholds for the General Conformity Rule for O₃ precursors (NOₓ and VOCs), PM₂.₅, and CO emissions are all 100 tons per year (tpy). According to the CAA general conformity rule, a federal agency (in this case, the National Guard Bureau [NGB]) must assess whether their Proposed Action would contribute to the further degradation of air quality or prevent attainment of air quality standards in areas that are designated as nonattainment or maintenance.

Therefore, the NGB is conducting this review to document whether the Proposed Action meets the conformity rule. There are two main components to this documentation of conformity: 1) an applicability analysis to determine whether a conformity determination is required, and if it is, 2) a conformity determination to evaluate whether the action conforms to the attainment plans in the applicable State Implementation Plan (SIP).

Under the General Conformity Rule, air emissions from a Proposed Action must be below de minimis levels for nonattainment or maintenance pollutants to be exempt from a formal conformity determination. Proposed Actions that equal or exceed these thresholds in any given year must undergo a detailed analysis, and a formal conformity determination is required. General Conformity applicability analyses and determinations are not required for those criteria pollutants that are designated as being in attainment of the NAAQS.

Emissions Evaluation

The 108 WG currently flies and maintains eight KC-135 refueler aircraft to support its air refueling mission. The primary support operations performed at the 108 WG include aircraft fueling, aircraft deicing, aircraft maintenance, aircraft support equipment maintenance, ground vehicle maintenance, fueling of ground vehicles, and facilities maintenance. These operations
involves activities such as corrosion control, non-destructive inspection, fuel cell maintenance, engine maintenance, hydraulics, and wheel and tire maintenance.

Alternative #2 involves both construction of new facilities to accommodate the KC-46A aircraft, and operational emissions associated with the KC-46A aircraft. The KC-46A beddown at JB MDL would require construction and renovation of existing airfield facilities, including hangars, buildings, and aprons and ramps. Air quality impacts resulting from the proposed construction activities would be below the applicable de minimis thresholds for all pollutants. Table ES-1 provides a summary of the construction emissions for the proposed action.

Table ES-1. Annual Construction Emissions Under Alternative #2

<table>
<thead>
<tr>
<th>Construction Project</th>
<th>CO</th>
<th>NO\textsubscript{x}</th>
<th>VOC</th>
<th>PM\textsubscript{2.5}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project #1 - Addition to Hangar 3333</td>
<td>1.43</td>
<td>2.28</td>
<td>0.40</td>
<td>1.77</td>
</tr>
<tr>
<td>Project #2 - Addition to Hangar 3336</td>
<td>1.46</td>
<td>2.32</td>
<td>0.41</td>
<td>1.80</td>
</tr>
<tr>
<td>Project #3 - Internal Renovations to Hangar 3322</td>
<td>0.30</td>
<td>0.47</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>Project #4 - New Simulator Building</td>
<td>0.54</td>
<td>0.85</td>
<td>0.15</td>
<td>0.63</td>
</tr>
<tr>
<td>Project #5 - Modifications to Existing Parking Ramp and Taxiway</td>
<td>4.28</td>
<td>10.18</td>
<td>1.06</td>
<td>3.00</td>
</tr>
<tr>
<td>Project #6 - New Hydrants and Fuel Lines and Demolition of Existing Hydrants</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total Option 1</td>
<td>8.01</td>
<td>16.11</td>
<td>2.08</td>
<td>7.23</td>
</tr>
</tbody>
</table>

De minimis Threshold | 100 | 100 | 100 | 100

Notes: Numbers may not add precisely due to rounding.

CO = carbon monoxide; NO\textsubscript{x} = oxides of nitrogen; VOC = volatile organic compound; SO\textsubscript{x} = oxides of sulfur; PM\textsubscript{10} = particulate matter less than or equal to 10 microns in diameter; PM\textsubscript{2.5} = particulate matter less than or equal to 2.5 microns in diameter; CO\textsubscript{2} = carbon dioxide.

Emissions sources associated with operation of the proposed KC-46A beddown at the 108 WG installation include (1) operations and engine maintenance/testing of aircraft; (2) on-site privately-owned vehicles (POVs); (3) off-site POV commutes; and (4) Aerospace Ground Equipment (AGE). It was assumed that other sources, including non-road mobile equipment, mobile fuel transfer, and stationary source emissions would be unchanged.

Table ES-2 summarizes the annual operational emissions that would result from KC-46A operations at the 108 WG installation. Table ES-2 also presents the net emissions increase associated with the beddown of the KC-46A aircraft at JB MDL. As shown in Table ES-2, the net emissions increases are below the de minimis thresholds for all pollutants except NO\textsubscript{x}. Emissions of NO\textsubscript{x} would exceed the de minimis threshold, and this alternative would therefore require a Conformity Determination under the General Conformity Rule.
Table ES-2. Comparison of Baseline and Proposed Annual Operational Emissions of Non-Attainment and Maintenance Criteria Pollutants, 108 WG Installation

<table>
<thead>
<tr>
<th></th>
<th>ANNUAL EMISSIONS, TONS/YEAR</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VOC</td>
<td>CO</td>
<td>NOx</td>
<td>PM2.5</td>
</tr>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KC-135 Aircraft Operations</td>
<td>3.21</td>
<td>49.03</td>
<td>83.34</td>
<td>0.39</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.01</td>
<td>0.09</td>
<td>0.00</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.14</td>
<td>2.01</td>
<td>0.55</td>
<td>0.01</td>
</tr>
<tr>
<td>POVs</td>
<td>5.12</td>
<td>110.72</td>
<td>5.20</td>
<td>0.12</td>
</tr>
<tr>
<td>Total</td>
<td>8.48</td>
<td>161.78</td>
<td>89.18</td>
<td>0.53</td>
</tr>
<tr>
<td>Proposed Action</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KC-46A Aircraft Operations</td>
<td>26.19</td>
<td>100.37</td>
<td>294.03</td>
<td>0.96</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.02</td>
<td>0.17</td>
<td>0.01</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>1.53</td>
<td>5.23</td>
<td>1.38</td>
<td>0.01</td>
</tr>
<tr>
<td>POVs</td>
<td>4.75</td>
<td>126.34</td>
<td>3.97</td>
<td>0.12</td>
</tr>
<tr>
<td>Total</td>
<td>32.48</td>
<td>231.97</td>
<td>299.54</td>
<td>1.11</td>
</tr>
<tr>
<td>Net Increase</td>
<td>24.01</td>
<td>70.19</td>
<td>210.36</td>
<td>0.58</td>
</tr>
<tr>
<td>De minimis Threshold</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding.
CO = carbon monoxide; CO2e = carbon dioxide equivalent; NOx = oxides of nitrogen; PM10 = particulate matter less than or equal to 10 microns in diameter; PM2.5 = particulate matter less than or equal to 2.5 microns in diameter; SO2 = sulfur dioxide; VOC = volatile organic compound; AGE = aerospace ground equipment; POV = privately-owned vehicle.

In accordance with 40 CFR Part 93, Subpart B, 40 CFR Part 51, Subpart W and the 2010 Air Force Conformity Guide, the incremental increase in emissions above the existing conditions due to Alternative #2 was considered and includes reasonable foreseeable direct and indirect emissions. The applicability analysis has found that this federal action is subject to general conformity, so the federal agency must demonstrate conformity to the SIP.

Based on the evaluation of the emissions associated with the implementation of Alternative #2, the estimated annual net increase in NOx emissions from operations would be 210.36 tpy. Therefore, a positive conformity determination is required. To demonstrate positive conformity, the NGB has reviewed the emissions budget in the applicable SIP.

The New Jersey Department of Environmental Protection (NJDEP) has included an emissions budget for McGuire Air Force Base (AFB) and Lakehurst Naval Air Station (NAS) within its currently approved SIP. The emission budget for NOx from the currently approved SIP for McGuire AFB is 1,534 tpy (NJDEP 2007). The USAF has calculated actual emissions for calendar year 2011 from McGuire AFB based on current operations using the Emissions and Dispersion Modeling System (EDMS) software (Federal Aviation Administration [FAA] 2013). Table ES-3 presents the actual emissions for 2011 in comparison with the SIP emissions budget.
Table ES-3. Comparison of Baseline Actual Emissions and McGuire AFB SIP Budget

<table>
<thead>
<tr>
<th>Emission Source</th>
<th>ANNUAL EMISSIONS, TONS/YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>McGuire Stationary Sources (Title V), CY2011</td>
<td>23.24</td>
</tr>
<tr>
<td>Air Operations (Based and Transient Aircraft, CY2011)</td>
<td>959.4</td>
</tr>
<tr>
<td>Non-road Vehicles (2005)</td>
<td>92.65</td>
</tr>
<tr>
<td>Other point sources</td>
<td>7.6</td>
</tr>
<tr>
<td>Capital Improvements Plan, annual</td>
<td>10.29</td>
</tr>
<tr>
<td>Total</td>
<td>1093.2</td>
</tr>
<tr>
<td>Remaining Emissions Budget</td>
<td>1534.0</td>
</tr>
<tr>
<td>Additional Emissions Budget</td>
<td>440.8</td>
</tr>
</tbody>
</table>

As shown in Table ES-3, the amount of NO\textsubscript{x} emissions accounted for in the SIP for McGuire AFB exceeds the actual emissions by 440.8 tpy; thus, the net emissions increase (210.36 tpy) that would be associated with Alternative #2 is accommodated within the existing SIP budget by 230.44 tpy. The net NO\textsubscript{x} emissions from the USAF action would therefore not exceed the emissions budgets in the applicable SIP, and Alternative #2 would conform to the SIP.

CONCLUSIONS OF THE GENERAL CONFORMANCE DETERMINATION

Based on the evaluation of the emissions associated with the implementation of Alternative #2, the estimated annual net increase in NO\textsubscript{x} emissions from operations would be 210.36 tpy. Therefore, a conformity determination was conducted, and it was found that the emissions increase in NO\textsubscript{x} associated with Alternative #2 is accounted for in the currently approved SIP emissions budget. Accordingly, Alternative #2 will conform to the currently approved SIP.

FINDING OF CONFORMITY

The USAF has reviewed and evaluated the conformity applicability analysis and documentation, and it has determined that a draft positive general conformity may be made based on the identification and accounting for the emissions within the McGuire AFB emissions budget in the SIP per 40 CFR § 93.158(a)(5)(i)(A).
1.0 INTRODUCTION

The United States Air Force (USAF) plans to replace existing KC-135s with the KC-46A, which will be a new aircraft to the USAF’s fleet. This action would involve the beddown of one KC-46A squadron consisting of 12 Primary Aerospace Vehicles Authorized (PAA), and establishing a KC-46A Main Operating Base (MOB). The Secretary of the Air Force proposes to beddown KC-46A aircraft for the Second Main Operating Base (MOB 2) at one of five alternative locations:

- Alternative #1 – 190th Air Refueling Wing (ARW), Forbes Air National Guard Station (ANGS), Kansas;
- Alternative #2 – 108th Wing (108 WG), Joint Base McGuire-Dix-Lakehurst (JB MDL), New Jersey;
- Alternative #3 – 157th ARW, Pease ANGS, New Hampshire;
- Alternative #4 – 171st ARW, Pittsburgh ANGS, Pennsylvania; and
- Alternative #5 – 121st ARW, Rickenbacker ANGS, Ohio.

In accordance with the National Environmental Policy Act (NEPA) of 1969 (42 United States Code [USC] 4321-4347), Council on Environmental Quality (CEQ) Regulations for Implementing the Procedural Provisions of NEPA (40 Code of Federal Regulations [CFR] Parts 1500-1508), and 32 CFR Part 989 et seq., Environmental Impact Analysis Process (formerly promulgated as Air Force Instruction [AFI] 32-7061), the National Guard Bureau (NGB) has prepared an Environmental Impact Statement (EIS), which considers the potential consequences to the human and natural environment that may result from implementation of this action. This Conformity Determination is included as Appendix F of the EIS.

This document addresses the United States Environmental Protection Agency’s (USEPA) General Conformity Rule requirements and how they relate to implementation of the Proposed Action or alternatives. The Clean Air Act (CAA) requires any federal agency, such as the NGB, to assess whether their proposed action would contribute to further degradation of air quality or prevent the attainment of air quality standards. As an alternative to the Preferred Alternative analyzed in the EIS, the NGB would propose to implement a major federal action that would contribute to regional air emissions at JB MDL, New Jersey. JB MDL is located in the central portion of the state of New Jersey, in Ocean and Burlington counties. Therefore, the Region of Influence (ROI) for this alternative includes the Philadelphia-Wilmington-Atlantic City area of the states of Pennsylvania, Delaware, and New Jersey. The ROI is classified as nonattainment for the 8-hour ozone (O_3) (marginal nonattainment) National Ambient Air Quality Standards (NAAQS), and a maintenance area for carbon monoxide (CO) and particulate matter less than or equal to 2.5 microns in diameter ($PM_{2.5}$).
2.0 AIR QUALITY STANDARDS

Individual states are delegated the responsibility to regulate air quality in order to achieve or maintain air quality in attainment with regulatory standards. The New Jersey Department of Environmental Protection (NJDEP) is the agency responsible for the regulation of air quality within the state of New Jersey. The State of New Jersey regulates air quality through the New Jersey Administrative Code, Title 7:27A through 7:27D. The State of New Jersey has adopted additional ambient air quality standards (AAQS) that apply within the state. The NAAQS and state AAQS are summarized in Table 1.

2.1 AIR QUALITY DESIGNATIONS

As part of the CAA, the USEPA has established criteria for seven major pollutants of concern, called “criteria pollutants.” These criteria pollutants include CO, sulfur dioxide (SO2), nitrogen dioxide (NO2), O3, particulate matter less than or equal to 10 microns in diameter (PM10), PM2.5, and lead (Pb). Emissions of Pb are not addressed because the affected areas contain no significant sources of this criteria pollutant, and 108 WG operations would not result in substantial emissions of Pb. The criteria set for these pollutants, the NAAQS, represent maximum levels of background pollution that are considered safe, with an adequate margin of safety to protect the public health and welfare. Based on measured ambient criteria pollutant data, the USEPA designates areas in the United States (U.S.) as having air quality better than (attainment) or worse than (nonattainment) the NAAQS. Areas that lack monitoring data to demonstrate attainment or nonattainment status are designated as unclassified and are treated as attainment areas for regulatory purposes. Once a nonattainment area meets the standards and additional redesignation requirements in the CAA (Section 107(d)(3)(E), USEPA will designate the area as a “maintenance area.” Maintenance areas are subject to the requirements of maintenance plans that are designed to ensure that the area continues to meet the standards. A maintenance area remains subject to the General Conformity Rule. Varying levels of attainment have been established for O3, CO, and PM10 to indicate the severity of the air quality problem (i.e., the classification runs from moderate to serious for CO and PM10 and from marginal to extreme for O3). As stated in Chapter 1.0, the ROI is classified as nonattainment for the 8-hour O3 (marginal nonattainment) NAAQS, and a maintenance area for CO and PM2.5. Accordingly, this Conformity Determination addresses emissions of O3 precursors (oxides of nitrogen [NOx] and volatile organic compounds [VOCs]), and emissions of CO and PM2.5.
Table 1. Ambient Air Quality Standards

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Averaging Time</th>
<th>National Standards<sup>a</sup></th>
<th>New Jersey Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Primary<sup>b,c</sup></td>
<td>Secondary<sup>b,d</sup></td>
</tr>
<tr>
<td>O<sub>3</sub></td>
<td>8-hour</td>
<td>0.075 ppm (147 µg/m<sup>3</sup>)</td>
<td>Same as primary</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>CO</td>
<td>8-hour</td>
<td>35 ppm (40 mg/m<sup>3</sup>)</td>
<td>—</td>
</tr>
<tr>
<td>NO<sub>2</sub></td>
<td>Annual</td>
<td>0.100 ppm (188 µg/m<sup>3</sup>)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1-hour</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>SO<sub>2</sub></td>
<td>Annual</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3-hour</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Total Suspended Particulate</td>
<td>Annual</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>PM<sub>10</sub></td>
<td>Annual</td>
<td>—</td>
<td>Same as primary</td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>150 µg/m<sup>3</sup></td>
<td>Same as primary</td>
</tr>
<tr>
<td>PM<sub>2.5</sub></td>
<td>Annual</td>
<td>12 µg/m<sup>3</sup></td>
<td>15 µg/m<sup>3</sup></td>
</tr>
<tr>
<td></td>
<td>24-hour</td>
<td>35 µg/m<sup>3</sup></td>
<td>Same as primary</td>
</tr>
<tr>
<td>Pb</td>
<td>Rolling 3-month period</td>
<td>0.15 µg/m<sup>3</sup></td>
<td>Same as primary</td>
</tr>
</tbody>
</table>

Notes:

- a Standards other than the 1-hour ozone, 24-hour PM₁₀, 24-hour PM_{2.5}, and those based on annual averages are not to be exceeded more than once a year. The 8-hour ozone national standard has replaced the 1-hour ozone national standard.
- b Concentrations are expressed first in units in which they were promulgated. Equivalent units given in parenthesis.
- c Primary Standards: The levels of air quality necessary, with an adequate margin of safety to protect the public health. Each state must attain the primary standards no later than 3 years after that state’s implementation plan is approved by the USEPA.
- d Secondary Standards: The levels of air quality necessary to protect the public welfare from any known or anticipated adverse effects of a pollutant.

µg/m³ = micrograms per cubic meter; CO = carbon monoxide; mg/m³ = milligrams per cubic meter; NO₂ = nitrogen dioxide; O₃ = ozone; Pb = lead; PM_{2.5} = particulate matter less than or equal to 2.5 microns in diameter; PM₁₀ = particulate matter less than or equal to 10 microns in diameter; ppm = parts per million; SO₂ = sulfur dioxide
2.2 **FEDERAL REQUIREMENTS**

The CAA (42 USC §§ 7401-7671q, as amended) provided the authority for the USEPA to establish nationwide air quality standards to protect public health and welfare. Federal standards, known as the NAAQS, were developed for six criteria pollutants: O₃, NO₂, CO, SO₂, particulate matter (both coarse [PM₁₀] and fine inhalable particulate matter [PM₂.₅]), and Pb (refer to Table 1). The Act also requires that each state prepare a State Implementation Plan (SIP) for maintaining and improving air quality and eliminating violations of the NAAQS. In nonattainment and maintenance areas, the CAA requires federal agencies to determine whether their proposed actions conform with the applicable SIP and demonstrate that their actions will not (1) cause or contribute to a new violation of the NAAQS, (2) increase the frequency or severity of any existing violation, or (3) delay timely attainment of any standard, emission reduction, or milestone contained in the SIP.

2.3 **STATE REQUIREMENTS**

The CAA requires each state to develop, adopt, and implement a SIP to achieve, maintain, and enforce federal air quality standards throughout the state. States develop SIPs on a pollutant-by-pollutant basis whenever there is a violation of one or more air quality standards. New Jersey State standards are established by the NJDEP. The state standards must be at least as restrictive as the NAAQS (refer to Table 1).

2.4 **GENERAL CONFORMITY REGULATIONS**

The General Conformity Rule was promulgated by the USEPA on November 30, 1993 at 40 CFR Part 93, Subpart B “Determining Conformity of General Federal Actions to State or Federal Implementation Plans” for all federal activities except those covered under transportation conformity (USEPA 1993). The General Conformity Regulations were revised by the USEPA on April 5, 2010 (75 Federal Register 17253-17279) and changed the existing regulations found in 40 CFR Part 51, Subpart W, and Part 93, Subpart B (USEPA 2010). The USEPA’s modifications to 40 CFR Part 51, Subpart W, changed State or Tribal adoption and submittal of general conformity SIPs from a requirement to a voluntary measure in 40 CFR § 51.851(a). In addition, USEPA provided in 40 CFR § 51.851(b) that until such time as USEPA approves a State’s or Tribe’s revision to the conformity implementation plan permitted under this section, that federal agencies must meet the requirements of 40 CFR Part 93, Subpart B.

The General Conformity Rule requires any federal agency responsible for an action in a nonattainment or maintenance area to determine that the action conforms to the applicable SIP. Emissions of attainment pollutants are exempt from conformity analysis. Actions would conform to a SIP if their annual direct and indirect emissions would remain less than the applicable *de minimis* thresholds. Formal conformity determinations are required for any actions that would equal or exceed these thresholds.
General Conformity analyses focus on the net increase in air emissions from a Proposed Action compared to ongoing historical conditions. Existing SIPs are presumed to have accounted for routine, ongoing federal agency activities. Conformity analyses are further limited to those direct and indirect emissions over which the federal agency has continuing program responsibility and control. General conformity analyses are not required to analyze emission sources beyond the responsibility and control of the federal agency, nor are they required to address emissions that are not reasonably foreseeable or reasonably quantifiable.

2.5 GENERAL CONFORMITY ANALYSIS PROCEDURES

The USEPA General Conformity Regulations incorporate a stepwise process, beginning with an applicability analysis (USEPA 1993, 2010). According to USEPA guidance, before any approval is given for a federal action to go forward, the regulating federal agency must apply the applicability requirements found at 40 CFR § 93.153(b) to the federal action to evaluate whether, on a pollutant-by-pollutant basis, a determination of general conformity is required. If the regulating federal agency determines that the General Conformity Regulations do not apply to the federal action, no further analysis or documentation is required. However, if the General Conformity Regulations do apply to a federal action, the action proponent must make its own conformity determination in accordance with the criteria and procedures outlined in the implementing regulations, publish a draft determination of general conformity for public review, consider comments from interested parties, and then publish the final determination of general conformity.

3.0 SUMMARY OF ALTERNATIVE #2

3.1 LOCATION OF ALTERNATIVE #2

The 108 WG of the New Jersey Air National Guard (NJANG) is based at McGuire AFB in New Jersey, at JB MDL. JB MDL is located in the central portion of the state of New Jersey, in Ocean and Burlington counties (Figure 1).

3.2 ALTERNATIVE #2 DESCRIPTION

As an alternative to the Preferred Alternative analyzed in the EIS, the NGB would propose to implement an aircraft conversion for the 108 WG at JB MDL in the state of New Jersey. The 108 WG currently flies and maintains eight KC-135 refueler aircraft to support its air refueling mission. The primary support operations performed at the 108 WG include aircraft fueling, aircraft deicing, aircraft maintenance, aircraft support equipment maintenance, ground vehicle maintenance, fueling of ground vehicles, and facilities maintenance. These operations involve activities such as corrosion control, non-destructive inspection, fuel cell maintenance, engine maintenance, hydraulics, and wheel and tire maintenance.
Figure 1. Regional Location, JB MDL
Alternative #2 would involve the beddown of one KC-46A squadron consisting of 12 PAA, and establishing a MOB 2 at JB MDL. Alternative #2 would convert the existing KC-135 unit to the KC-46A aircraft. In addition, the 108 WG would implement construction projects associated with aircraft conversion at JB MDL. The 108 WG currently provides support for federal, state, and community interests by maintaining highly trained, well-equipped, military forces to provide combat-ready support elements in response to wartime and peacetime tasking; protecting life and property; and preserving peace, order, and public safety.

Should Alternative #2 be implemented, there would be a change to the type of aircraft based at JB MDL; a change to the type of aircraft using the associated airspace; changes to staffing and manpower at the 108 WG; as well as some proposed construction, building renovation, and facility demolition. There would be no new airspace required to implement Alternative #2. The proposed conversion is estimated to commence in 2018. It is likely that construction would begin as early as 2015 and be completed by the time the aircraft conversion takes place.

3.3 ELEMENTS OF ALTERNATIVE #2 RESULTING IN INCREASED EMISSIONS

Alternative #2 involves both construction of new facilities to accommodate the KC-46A aircraft, and operational emissions associated with the KC-46A aircraft.

Under Alternative #2 the 108 WG would convert from 8 KC-135 aircraft to 12 KC-46A aircraft. There would be an increase in the number of airfield operations for the KC-46A aircraft at JB MDL, which would result in an increase in air emissions. Table 2 provides a summary of the changes to 108 WG airfield operations under Alternative #2.

Table 2. Changes to 108 WG Airfield Operations with Proposed KC-46A Aircraft

<table>
<thead>
<tr>
<th>Operations</th>
<th>DEPARTURES</th>
<th>ARRIVALS</th>
<th>TOTALS¹</th>
<th>Grand Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day</td>
<td>Night²</td>
<td>Day</td>
<td>Night²</td>
</tr>
<tr>
<td>Current KC-135 Operations</td>
<td>3,346</td>
<td>815</td>
<td>3,325</td>
<td>854</td>
</tr>
<tr>
<td>Proposed KC-46A Operations</td>
<td>8,047</td>
<td>764</td>
<td>7,863</td>
<td>934</td>
</tr>
<tr>
<td>Net Change to Airfield Operations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹Includes Closed Patterns (which count as two airfield operations).
²Night – Between 10 p.m. and 7 a.m. for environmental night.

3.4 EXISTING CONDITIONS – CLIMATE

JB MDL is located in the central portion of the state of New Jersey, in Ocean and Burlington counties. The climate in the central portion of New Jersey is influenced by its vegetation, with moderation due to its proximity to the Atlantic Ocean. Scrub pine and oak forests dominate the interior southern portion of New Jersey, hence the name, Pine Barrens. Sandy soils, which are porous and not very fertile, have a major effect on the climate of this region. On clear nights, solar radiation absorbed during the day is quickly radiated back into space, resulting in remarkably low minimum temperatures. The porous soil permits any precipitation to rapidly
infiltrate and leave surfaces quite dry. Drier conditions allow for a wider range between the daily maximum and minimum temperatures, and make the area vulnerable to forest fires.

The warmest month of the year is July with an average maximum temperature of 87 degrees Fahrenheit (°F), while the coldest month of the year is January with an average minimum temperature of 22°F. Temperature variations between night and day tend to be moderate during summer with a difference that can reach 24°F, and during winter with an average difference of 20°F. The annual average precipitation at Fort Dix is 47.12 inches. Rainfall is fairly evenly distributed throughout the year. The wettest month of the year is August with an average rainfall of 5.16 inches (Northeast Regional Climate Center 2013). Prevailing winds in New Jersey are from the southwest in summer and from the northwest in winter.

3.5 Existing Air Quality Attainment Status

Should Alternative #2 be implemented, the KC-46A aircraft would be beddown at the 108 WG installation at JB MDL in New Jersey. The USEPA has classified the Philadelphia-Wilmington-Atlantic City area of the states of Pennsylvania, Delaware, and New Jersey as nonattainment for the 8-hour O₃ (marginal nonattainment) NAAQS, and a maintenance area for PM₂.₅ and CO. The region is designated attainment/unclassified area for all other criteria pollutants. Implementation of this alternative is therefore subject to the requirements of Section 176(c) of the CAA, as articulated in the USEPA General Conformity Rule. Based on the nonattainment classification for the region, the *de minimis* emission thresholds for the General Conformity Rule for O₃ precursors (oxides of nitrogen [NOₓ] and VOCs), PM₂.₅, and CO emissions are all 100 tons per year (tpy).

The applicable *de minimis* thresholds for the affected air basins are listed in Table 3.

<table>
<thead>
<tr>
<th>Affected Air Basin</th>
<th>CO</th>
<th>NOₓ</th>
<th>VOCs</th>
<th>PM₂.₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philadelphia-Wilmington-Atlantic City</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Notes: Based on the federal *de minimis* threshold for NOₓ, VOCs, CO, and PM₂.₅. CO = carbon monoxide; NOₓ = oxides of nitrogen; PM₂.₅ = particulate matter less than or equal to 2.5 microns in diameter; VOC = volatile organic compound.
4.0 GENERAL CONFORMITY DETERMINATION

4.1 APPLICABILITY ANALYSIS

The first step in a general conformity determination is an analysis of whether the requirements apply to the federal action that is proposed in a nonattainment or a maintenance area. Unless exempted by the regulations or otherwise presumed to conform, a federal action requires a general conformity determination for each pollutant where the total of direct and indirect emissions caused by the federal action would equal or exceed an annual de minimis emission rate for any given maintenance or nonattainment pollutant (or precursor). For Alternative #2, the pollutants that are evaluated in this General Conformity Determination are NOx, VOCs, CO, and PM$_{2.5}$. If a Proposed Action would result in emission increases less than the identified applicable de minimis thresholds, then no conformity determination is required.

4.2 EXEMPTIONS FROM GENERAL CONFORMITY REQUIREMENTS

The general conformity requirements apply to a federal action if the net project emissions equal or exceed certain de minimis emission rates established in the General Conformity Regulations. The de minimis thresholds differ based on the severity of the nonattainment status. The only exceptions to this applicability criterion include certain federal actions that are presumed to conform because of the thorough air quality analysis required to comply with other statutory requirements. Examples of these actions include those subject to the New Source Review program and remedial activities under the Comprehensive Environmental Response, Compensation, and Liability Act. Other federal actions exempt from the conformity process include those actions that would result in no increase in emissions, or an increase in emissions that is clearly de minimis. Examples include continuing or recurring activities, routine maintenance and repair, and administrative and planning actions; however, the emissions that would result from this federal action do not meet any of these exempt categories.

4.3 EMISSION ESTIMATES

Existing emissions quantified in the Air Emissions Inventory include emissions from the existing operations of the KC-135 aircraft, which would be replaced under Alternative #2 by the KC-46A aircraft. The emissions in the Air Emissions Inventory were not used for aircraft operations in the baseline analysis because they reflect existing emissions for all aircraft operating at the 108 WG (including transient aircraft) and therefore do not provide a baseline for Alternative #2. Further, the emissions estimates relied on default times in mode for aircraft operations rather than site-specific flight tracks used for the noise analysis in the EIS.

To provide a baseline for evaluating the net emissions increases/decreases associated with Alternative #2, emissions from the KC-135 aircraft operations, aircraft refueling, KC-135 engine testing, KC-135-related Aerospace Ground Equipment (AGE), and privately-owned vehicles
(POVs) associated with KC-135 flight operations were evaluated. Emissions from the KC-135 aircraft operations were calculated based on 2012 aircraft operations utilizing site-specific flight profiles to calculate aircraft operations below a default mixing height of 3,000 feet above ground level (AGL). A discussion of the methodology for quantifying emissions is provided in Appendix A of the EIS. Emissions associated with baseline operations of the KC-135 aircraft are provided in Table 4.

Table 4. 108 WG Baseline Emissions at JB MDL

<table>
<thead>
<tr>
<th>Emission Source</th>
<th>EMISSIONS, TONS/YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VOCs</td>
</tr>
<tr>
<td>KC-135 Baseline Aircraft Operations</td>
<td>3.21</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
</tr>
<tr>
<td>Engine Testing</td>
<td>0.14</td>
</tr>
<tr>
<td>POVs</td>
<td>5.12</td>
</tr>
<tr>
<td>Total Baseline Emissions</td>
<td>8.48</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding. CO = carbon monoxide; CO2e = carbon dioxide equivalent; NOx = oxides of nitrogen; PM10 = particulate matter less than or equal to 10 microns in diameter; PM2.5 = particulate matter less than or equal to 2.5 microns in diameter; SO2 = sulfur dioxide; VOC = volatile organic compound; AGE = aerospace ground equipment; POV = privately-owned vehicle.

Alternative #2 was assumed to commence in 2015 with construction activities. The following construction projects are proposed under this alternative:

1. **Addition to Hangar 3333** - 17,892 square foot addition to existing Maintenance Hangar 3333.
2. **Addition to Hangar 3336** - 18,206 square foot addition to existing Fuel Cell Hangar 3336.
4. **New Simulator Building** - Construction of a new 6,700 square foot simulator building.
5. **Modifications to Existing Parking Ramp and Taxiway** - Option 1 would add 160,074 square feet of concrete and asphalt to the existing parking ramp; Option 2 would add 14,091 square feet of concrete and asphalt to the existing parking ramp.

Construction emissions include emissions from heavy equipment, construction trucks, worker trips, and fugitive dust. The details of the construction emission calculations are provided in Appendix A. Table 5 summarizes the annual and total construction emissions associated with Alternative #2. The data in Table 5 show that annual emissions for proposed construction activities would not exceed the General Conformity Rule de minimis thresholds as set forth in the CAA.
Table 5. Annual Construction Emissions Under Alternative #2

<table>
<thead>
<tr>
<th>Construction Project</th>
<th>CO</th>
<th>NOx</th>
<th>VOC</th>
<th>PM$_{2.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project #1 - Addition to Hangar 3333</td>
<td>1.43</td>
<td>2.28</td>
<td>0.40</td>
<td>1.77</td>
</tr>
<tr>
<td>Project #2 - Addition to Hangar 3336</td>
<td>1.46</td>
<td>2.32</td>
<td>0.41</td>
<td>1.80</td>
</tr>
<tr>
<td>Project #3 - Internal Renovations to Hangar 3322</td>
<td>0.30</td>
<td>0.47</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>Project #4 - New Simulator Building</td>
<td>0.54</td>
<td>0.85</td>
<td>0.15</td>
<td>0.63</td>
</tr>
<tr>
<td>Project #5 - Modifications to Existing Parking Ramp and Taxiway</td>
<td>4.28</td>
<td>10.18</td>
<td>1.06</td>
<td>3.00</td>
</tr>
<tr>
<td>Project #6 - New Hydrants and Fuel Lines and Demolition of Existing Hydrants</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total Option 1</td>
<td>8.01</td>
<td>16.11</td>
<td>2.08</td>
<td>7.23</td>
</tr>
</tbody>
</table>

De minimis Threshold | 100 | 100 | 100 | 100 |

Notes: Numbers may not add precisely due to rounding.

CO = carbon monoxide; NO$_x$ = oxides of nitrogen; VOC = volatile organic compound; SO$_x$ = oxides of sulfur; PM$_{10}$ = particulate matter less than or equal to 10 microns in diameter; PM$_{2.5}$ = particulate matter less than or equal to 2.5 microns in diameter; CO$_2$ = carbon dioxide.

Sources associated with operation of the proposed KC-46A beddown at the 108 WG installation include (1) operations and engine maintenance/testing of aircraft; (2) onsite POVs; (3) offsite POV commuting; and (4) AGE. It was assumed that other sources, including non-road mobile equipment, mobile fuel transfer, and stationary source emissions would be unchanged. In the event that construction of additional facilities requires installation of a new stationary source such as a boiler, it was assumed that the stationary source would be subject to the New Source Review permitting requirements of the NJDEP and would therefore not be subject to the General Conformity Rule under §93.153(d)(1).

Operational data used to calculate projected KC-46A aircraft emissions were obtained from the data used in the project noise analysis. Factors used to calculate combustion emissions for the KC-46A aircraft are based on emissions data developed by Pratt and Whitney for the PW4062 engine (International Civil Aviation Organization 2013). The operational times in mode for the KC-46A engine are based on those currently used for the KC-135 aircraft (Air Force Civil Engineer Center [AFCEC] 2013). The analysis of proposed aircraft operations is limited to operations that occur within the lowest 3,000 feet of the atmosphere, as this is the typical depth of the atmospheric mixing layer where the release of aircraft emissions would affect ground-level pollutant concentrations.

Emissions from AGE were estimated based on the methodology recommended in the *Air Emissions Guide for Air Force Mobile Sources* (AFCEC 2013). Emissions from POVs were estimated based on total personnel for the existing and proposed scenarios, using emission factors for vehicles from this emissions guide.

Table 6 summarizes the annual operational emissions that would result from KC-46A operations at the 108 WG installation. Table 6 also presents the net emissions increase associated with the beddown of the KC-46A aircraft at JB MDL. As shown in Table 6, the net emissions increases
are below the de minimis thresholds for all pollutants except NO\textsubscript{x}. Emissions of NO\textsubscript{x} would exceed the de minimis threshold, and this alternative would therefore require a Conformity Determination under the General Conformity Rule.

Table 6. Comparison of Baseline and Proposed Annual Operational Emissions, 108 WG Installation

<table>
<thead>
<tr>
<th></th>
<th>ANNUAL EMISSIONS, TONS/YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VOC</td>
</tr>
<tr>
<td>Baseline</td>
<td></td>
</tr>
<tr>
<td>KC-135 Aircraft Operations</td>
<td>3.21</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.14</td>
</tr>
<tr>
<td>POVs</td>
<td>5.12</td>
</tr>
<tr>
<td>Total</td>
<td>8.48</td>
</tr>
<tr>
<td>Proposed Action</td>
<td></td>
</tr>
<tr>
<td>KC-46A Aircraft Operations</td>
<td>26.19</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>1.53</td>
</tr>
<tr>
<td>POVs</td>
<td>4.75</td>
</tr>
<tr>
<td>Total</td>
<td>32.48</td>
</tr>
<tr>
<td>Net Increase</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24.01</td>
</tr>
<tr>
<td>De minimis Threshold</td>
<td>100</td>
</tr>
</tbody>
</table>

Notes: Numbers may not add precisely due to rounding.
CO = carbon monoxide; CO\textsubscript{2e} = carbon dioxide equivalent; NO\textsubscript{x} = oxides of nitrogen; PM\textsubscript{10} = particulate matter less than or equal to 10 microns in diameter; PM\textsubscript{2.5} = particulate matter less than or equal to 2.5 microns in diameter; SO\textsubscript{2} = sulfur dioxide; VOC = volatile organic compound; AGE = aerospace ground equipment; POV = privately-owned vehicle.

4.4 Applicability of General Conformity to This Federal Action

The applicability of the General Conformity requirements to Alternative #2 was determined by comparing the federal action emissions to the conformity de minimis thresholds for all nonattainment and maintenance pollutants in the Philadelphia-Wilmington-Atlantic City area of the states of Pennsylvania, Delaware, and New Jersey. As shown in Table 5, construction emissions are below the applicable de minimis thresholds for all nonattainment and maintenance pollutants. As shown in Table 6, the net operational emissions increase of all pollutants, except for NO\textsubscript{x}, are below the applicable de minimis thresholds. Consequently, a conformity determination is only needed for NO\textsubscript{x}, as the estimated annual NO\textsubscript{x} emissions are projected to exceed the applicable 100 tpy de minimis threshold for that pollutant. This increase in NO\textsubscript{x} emissions is primarily due to increases in aircraft operations related to training activities. Therefore, the NGB must make a positive conformity determination for NO\textsubscript{x} using one of the criteria under 40 CFR § 93.158 should Alternative #2 be selected.

4.5 General Conformity Determination

In accordance with 40 CFR Part 93, Subpart B and the 2010 Air Force Conformity Guide, the incremental increase in emissions above the existing conditions due to Alternative #2 was considered and includes reasonable foreseeable direct and indirect emissions. The applicability
analysis has found that this federal action is subject to general conformity, so the federal agency must demonstrate conformity to the SIP.

SIP Baseline Emissions

Based on the evaluation of the emissions associated with the implementation of Alternative #2, the estimated annual net increase in NO\textsubscript{x} emissions from operations would equal 210.36 tpy. Therefore, a positive conformity determination is required. To demonstrate positive conformity, the NGB has reviewed the emissions budget in the applicable SIP.

The emission budget for NO\textsubscript{x} from the currently approved SIP for McGuire Air Force Base (AFB) is 1,534 tpy (NJDEP 2007). The USAF has calculated actual emissions for calendar year 2011 from McGuire AFB based on current operations using the Emissions and Dispersion Modeling System (EDMS) software (Federal Aviation Administration [FAA] 2013). Table 7 presents the actual emissions for 2011 in comparison with the SIP emissions budget.

<table>
<thead>
<tr>
<th>Emission Source</th>
<th>ANNUAL EMISSIONS, TONS/YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>McGuire Stationary Sources (Title V), CY2011</td>
<td>23.24</td>
</tr>
<tr>
<td>Air Operations (Based and Transient Aircraft, CY2011)</td>
<td>959.4</td>
</tr>
<tr>
<td>Non-road Vehicles (2005)</td>
<td>92.65</td>
</tr>
<tr>
<td>Other point sources</td>
<td>7.6</td>
</tr>
<tr>
<td>Capital Improvements Plan, annual</td>
<td>10.29</td>
</tr>
<tr>
<td>Total</td>
<td>1093.2</td>
</tr>
<tr>
<td>McGuire SIP Budget</td>
<td>1534.0</td>
</tr>
<tr>
<td>Remaining Emissions Budget</td>
<td>440.8</td>
</tr>
</tbody>
</table>

As shown in Table 7, the amount of NO\textsubscript{x} emissions accounted for in the SIP emissions budget for McGuire AFB exceeds the actual emissions by 440.8 tpy; thus, the net emissions increase (210.36 tpy) that would be associated with Alternative #2 is accommodated within the existing SIP budget by 230.44 tpy. The net NO\textsubscript{x} emissions from the USAF action would therefore not exceed the emissions budgets in the applicable SIP, and Alternative #2 would conform to the SIP.

JB MDL and the U.S. Army Corps of Engineers have entered into a Memorandum of Agreement that would allow temporary use of a portion of the NO\textsubscript{x} SIP emissions budget for calendar years 2014 through 2016 to allow the Corps to proceed with construction projects to repair, restore, and fortify the coastline in the state of New Jersey in response to damage during Hurricane Sandy (JBMDL-U.S. Army Corps of Engineers 2013). The Corps projects will be completed prior to implementation of Alternative 2 at JB MDL, should this alternative be selected; therefore, the temporary use of NO\textsubscript{x} emissions within the SIP would be complete by the time the emissions associated with Alternative 2 would occur, which is scheduled to commence in 2018.
Conclusion

Based on the evaluation of the emissions associated with the implementation of Alternative #2, the estimated annual net increase in NO$_x$ emissions from operations would be 210.36 tpy. Therefore, a conformity determination was conducted, and it was found that the emissions increase in NO$_x$ associated with Alternative #2 is accounted for in the currently approved SIP emissions budget. Accordingly, should Alternative #2 be selected, it would conform to the currently approved SIP.

5.0 FINDING OF CONFORMITY

The USAF has reviewed and evaluated the conformity applicability analysis and documentation, and it has determined that a draft positive general conformity may be made based on the identification and accounting for the emissions within the McGuire AFB emissions budget in the SIP per 40 CFR § 93.158(a)(5)(i)(A). The NGB has provided an opportunity for regulating agencies and the public to comment on the Draft Conformity Determination.

A copy of the Draft Conformity Determination was made available for a 30-day public and agency review. Regulatory agency and public comments provided on the Draft Conformity Determination will be reviewed and addressed appropriately in the Final Conformity Determination. All comments received on the Draft Conformity Determination will be included in the Final Conformity Determination.

6.0 LIST OF PREPARERS AND CONTRIBUTORS

Kevin Shupe, Air Conformity Determination Project Manager, National Guard Bureau/A7AM

Anne Rowe, Environmental Impact Statement Project Manager, NGB/A7AM

Kate L. Bartz, Project Manager, Cardno TEC

Valorie Thompson, Project Scientist/Air Quality Specialist, SRA

Amanda Kreider, Environmental Scientist, Cardno TEC

Christine Davis, Environmental Scientist, Cardno TEC

Kimberly Wilson, Production Manager, Cardno TEC

7.0 REFERENCES

New Jersey Department of Environmental Protection. 2007. State Implementation Plan Revision for the Attainment and Maintenance of the Ozone National Ambient Air Quality Standard. Table 10.2, Emission Budget for McGuire AFB and Lakehurst NAS.

Northeast Regional Climate Center. 2013. Climate Data for Burlington, New Jersey.

______. 2010. Revisions to the General Conformity Rule Regulations; Final Rule. 40 CFR Parts 51 and 93. 5 April.
APPENDIX A

Emission Calculations
Table A-1: Engine Emission Factors by Throttle Setting - KC-135 and KC-46A Aircraft

<table>
<thead>
<tr>
<th>Engine Type/Throttle Setting</th>
<th>Fuel Flow (Pounds/Hour)</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-108-CF-100 (2)</td>
<td></td>
</tr>
<tr>
<td>Idle</td>
<td>1013.76</td>
<td>2.1045</td>
<td>30.7</td>
<td>4</td>
<td>1.06</td>
<td>0.06</td>
<td>0.06</td>
<td>3216</td>
<td>8.90E-02</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>Approach</td>
<td>2463.12</td>
<td>0.090</td>
<td>4.2</td>
<td>8.2</td>
<td>1.06</td>
<td>0.06</td>
<td>0.06</td>
<td>3216</td>
<td>8.90E-02</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>Intermediate</td>
<td>6486.48</td>
<td>0.0575</td>
<td>0.09</td>
<td>16</td>
<td>1.06</td>
<td>0.06</td>
<td>0.06</td>
<td>3216</td>
<td>8.90E-02</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>Military</td>
<td>7801.2</td>
<td>0.046</td>
<td>0.09</td>
<td>18.5</td>
<td>1.06</td>
<td>0.07</td>
<td>0.07</td>
<td>3216</td>
<td>8.90E-02</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>P&W 4062 (3)</td>
<td></td>
</tr>
<tr>
<td>Idle</td>
<td>1663.2</td>
<td>12.489</td>
<td>42.61</td>
<td>3.78</td>
<td>1.06</td>
<td>0.11</td>
<td>0.1</td>
<td>3216</td>
<td>8.90E-02</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>Approach</td>
<td>5702.4</td>
<td>0.1035</td>
<td>1.90</td>
<td>12.17</td>
<td>1.06</td>
<td>0.05</td>
<td>0.04</td>
<td>3216</td>
<td>8.90E-02</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>Climbout</td>
<td>16869.6</td>
<td>0.895</td>
<td>25.98</td>
<td>1.06</td>
<td>0.07</td>
<td>0.06</td>
<td>3216</td>
<td>8.90E-02</td>
<td>1.00E-01</td>
<td></td>
</tr>
<tr>
<td>Take-Off</td>
<td>21621.6</td>
<td>0.062</td>
<td>0.61</td>
<td>34.36</td>
<td>1.06</td>
<td>0.08</td>
<td>0.07</td>
<td>3216</td>
<td>8.90E-02</td>
<td>1.00E-01</td>
</tr>
<tr>
<td>Notes:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1) Data are for one engine. The KC-135R has 4 engines and the KC-46A has 2 engines.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2) Data from Air Emissions Factor Guide to Air Force Mobile Sources (AFCEC 2013).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3) ICAO Engine Exhaust Emissions Data Bank - Subsonic Engines - (ICAO 2013).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table A-2: HAP Emission Factors - KC-135 and KC-46A Aircraft

<table>
<thead>
<tr>
<th>Engine Type</th>
<th>Formaldehyde</th>
<th>Acetaldehyde</th>
<th>Acrolein</th>
<th>Naphthalene</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Ethylbenzene</th>
<th>Xylenes</th>
<th>Styrene</th>
<th>Chloroform</th>
<th>Chloromethane</th>
<th>1,3-Dichloropropene</th>
<th>Methylene Chloride</th>
<th>Vinyl Acetate</th>
</tr>
</thead>
<tbody>
<tr>
<td>F108-CF-100</td>
<td></td>
</tr>
<tr>
<td>Idle</td>
<td>9.51E-02</td>
<td>0.00E+00</td>
<td>0.03E+00</td>
<td>2.90E-03</td>
<td>1.90E-03</td>
<td>8.97E-03</td>
<td>6.84E-04</td>
<td>1.65E-03</td>
<td>9.13E-04</td>
<td>9.66E-04</td>
<td>6.75E-02</td>
<td>4.85E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approach</td>
<td>1.50E-02</td>
<td>0.00E+00</td>
<td>0.03E+00</td>
<td>3.22E-03</td>
<td>6.23E-03</td>
<td>5.35E-04</td>
<td>1.61E-03</td>
<td>8.85E-04</td>
<td>7.63E-04</td>
<td>4.46E-02</td>
<td>3.81E-03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td>5.58E-03</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>4.25E-04</td>
<td>1.42E-03</td>
<td>0.00E+00</td>
<td>5.42E-04</td>
<td>0.00E+00</td>
<td>1.76E-03</td>
<td>7.94E-04</td>
<td>5.08E-03</td>
<td>5.08E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Military</td>
<td>7.01E-03</td>
<td>0.00E+00</td>
<td>0.00E+00</td>
<td>1.11E-03</td>
<td>1.11E-03</td>
<td>0.00E+00</td>
<td>3.30E-04</td>
<td>0.00E+00</td>
<td>1.16E-03</td>
<td>3.37E-04</td>
<td>4.84E-03</td>
<td>3.98E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P&W 4062 (3)</td>
<td></td>
</tr>
<tr>
<td>Idle</td>
<td>1.78E+00</td>
<td>6.14E-01</td>
<td>3.55E-01</td>
<td>7.84E-02</td>
<td>2.44E-01</td>
<td>9.30E-02</td>
<td>2.52E-02</td>
<td>4.06E-02</td>
<td>4.48E-02</td>
<td>3.31E-03</td>
<td>9.13E-04</td>
<td>9.66E-04</td>
<td>6.75E-02</td>
<td>4.85E-03</td>
</tr>
<tr>
<td>Approach</td>
<td>1.49E-02</td>
<td>5.13E-03</td>
<td>2.94E-03</td>
<td>6.50E-04</td>
<td>2.02E-03</td>
<td>7.71E-04</td>
<td>2.09E-04</td>
<td>3.33E-04</td>
<td>3.71E-04</td>
<td>1.86E-03</td>
<td>8.61E-04</td>
<td>7.63E-04</td>
<td>4.46E-02</td>
<td>3.81E-03</td>
</tr>
<tr>
<td>Intermediate</td>
<td>1.15E-02</td>
<td>3.99E-03</td>
<td>2.29E-03</td>
<td>5.05E-04</td>
<td>1.57E-03</td>
<td>6.08E-04</td>
<td>1.63E-04</td>
<td>2.63E-04</td>
<td>2.89E-04</td>
<td>1.76E-03</td>
<td>7.94E-04</td>
<td>5.06E-03</td>
<td>5.06E-02</td>
<td>2.54E-03</td>
</tr>
<tr>
<td>Military</td>
<td>1.31E-02</td>
<td>4.06E-03</td>
<td>2.16E-03</td>
<td>5.79E-04</td>
<td>1.79E-03</td>
<td>6.85E-04</td>
<td>1.80E-04</td>
<td>3.01E-04</td>
<td>3.30E-04</td>
<td>1.16E-03</td>
<td>3.37E-04</td>
<td>4.84E-04</td>
<td>1.98E-03</td>
<td>2.42E-03</td>
</tr>
</tbody>
</table>

Notes: (1) Data are for one engine. The KC-135R has 4 engines and the KC-46A has 2 engines.
(2) Data from Air Emissions Factor Guide to Air Force Mobile Sources (AFCEC 2013).
Table A-3. Land and Take-off/Touch and Go Times in Mode and Fuel Usages - KC-135 and KC-46A Aircraft

<table>
<thead>
<tr>
<th>Aircraft/Mode (Engine Throttle Setting)</th>
<th>LTO</th>
<th>Touch & Go</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time in Mode (TIM)</td>
<td>Fuel Usage</td>
<td>Time in Mode (TIM)</td>
</tr>
<tr>
<td>Minutes</td>
<td>Hours</td>
<td>Pounds</td>
</tr>
<tr>
<td>KC-135 (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxi Out (Idle)</td>
<td>32.8</td>
<td>0.55</td>
</tr>
<tr>
<td>Take-off (Military)</td>
<td>0.7</td>
<td>0.01</td>
</tr>
<tr>
<td>Climbout (Intermediate)</td>
<td>2.5</td>
<td>0.04</td>
</tr>
<tr>
<td>Approach</td>
<td>5.2</td>
<td>0.09</td>
</tr>
<tr>
<td>Taxi In (Idle)</td>
<td>14.9</td>
<td>0.25</td>
</tr>
<tr>
<td>Totals</td>
<td>56.1</td>
<td>0.94</td>
</tr>
<tr>
<td>KC-46A (2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxi Out (Idle)</td>
<td>32.8</td>
<td>0.55</td>
</tr>
<tr>
<td>Take-off (Military)</td>
<td>0.7</td>
<td>0.01</td>
</tr>
<tr>
<td>Climbout (Intermediate)</td>
<td>2.5</td>
<td>0.04</td>
</tr>
<tr>
<td>Approach</td>
<td>5.2</td>
<td>0.09</td>
</tr>
<tr>
<td>Taxi In (Idle)</td>
<td>14.9</td>
<td>0.25</td>
</tr>
<tr>
<td>Totals</td>
<td>56.1</td>
<td>0.94</td>
</tr>
<tr>
<td>APU Use, KC-46A (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-Flight - OBIGGS + Electric + Max ECS</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>Pre-Flight - Main Engine Start + Electric</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Post-Flight - Electric + Min ECS</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>Total Hours per LTO</td>
<td>2.12</td>
<td></td>
</tr>
</tbody>
</table>

Notes: (1) Fuel usage per aircraft.
(2) TIM Data from Table 2-4, Transport Aircraft (AFCEC 2013).
(3) APU use from FTU/MOB1 Draft EIS.
Table A-4. Land and Take-off/Touch and Go Total Fuel Usages and Emissions - KC-135 and KC-46A Aircraft

<table>
<thead>
<tr>
<th>Aircraft/Mode</th>
<th>Taxi Out (Idle)</th>
<th>Take-off (Military)</th>
<th>Taxi In (Idle)</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minutes</td>
<td>32.8</td>
<td>0.7</td>
<td>14.9</td>
<td>56.1</td>
</tr>
<tr>
<td>Hours</td>
<td>0.55</td>
<td>0.01</td>
<td>0.25</td>
<td>0.935</td>
</tr>
<tr>
<td>Pounds</td>
<td>2217</td>
<td>364</td>
<td>1007</td>
<td>5523</td>
</tr>
</tbody>
</table>

Fuel Usage
- **VOC**: 4.67
- **CO**: 6.78
- **HCO**: 4.06
- **SO2**: 1.01
- **PM10**: 0.13
- **PM2.5**: 0.13
- **CO2**: 7129.08
- **CH4**: 0.20
- **N2O**: 0.22

Emissions
- **VOC**: 4.67
- **CO**: 6.78
- **HCO**: 4.06
- **SO2**: 1.01
- **PM10**: 0.13
- **PM2.5**: 0.13
- **CO2**: 7129.08
- **CH4**: 0.20
- **N2O**: 0.22

Table A-5. Land and Take-off/Touch and Go Total Fuel Usages and HAP Emissions - KC-135 and KC-46A Aircraft

<table>
<thead>
<tr>
<th>Aircraft/Mode</th>
<th>Taxi Out (Idle)</th>
<th>Take-off (Military)</th>
<th>Taxi In (Idle)</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minutes</td>
<td>32.8</td>
<td>0.7</td>
<td>14.9</td>
<td>56.1</td>
</tr>
<tr>
<td>Hours</td>
<td>0.55</td>
<td>0.01</td>
<td>0.25</td>
<td>0.935</td>
</tr>
<tr>
<td>Pounds</td>
<td>2217</td>
<td>364</td>
<td>1007</td>
<td>5523</td>
</tr>
</tbody>
</table>

Fuel Usage
- **VOC**: 4.67
- **CO**: 6.78
- **HCO**: 4.06
- **SO2**: 1.01
- **PM10**: 0.13
- **PM2.5**: 0.13
- **CO2**: 7129.08
- **CH4**: 0.20
- **N2O**: 0.22

Emissions
- **VOC**: 4.67
- **CO**: 6.78
- **HCO**: 4.06
- **SO2**: 1.01
- **PM10**: 0.13
- **PM2.5**: 0.13
- **CO2**: 7129.08
- **CH4**: 0.20
- **N2O**: 0.22

Time in Mode (TIM) Emissions (Pounds)

<table>
<thead>
<tr>
<th>Aircraft/Mode</th>
<th>Touch and Go</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours</td>
<td>0.14</td>
</tr>
<tr>
<td>Pounds</td>
<td>2299</td>
</tr>
</tbody>
</table>

Fuel Usage
- **VOC**: 0.00
- **CO**: 0.00
- **HCO**: 0.00
- **SO2**: 0.00
- **PM10**: 0.00
- **PM2.5**: 0.00
- **CO2**: 0.00
- **CH4**: 0.00
- **N2O**: 0.00
Table A-6. Annual Air Operations for Aircraft at McGuire - Baseline

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>LTO</th>
<th>TGO</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135</td>
<td>834</td>
<td>3336</td>
<td>8340</td>
</tr>
</tbody>
</table>
Table A-7. KC-135 Aircraft Closed Pattern Operations at McGuire, Baseline
Operations/Year

Scenario/Operation
CR01 IFR to RWY06 on South Side
CR02 TACAN RWY06 VFR Circle
CR03 North Radar Track
CR04 Radar Track on 18C3
CR05 Radar Track on 18C4
CR06 Radar Track Continuous turn 150HDG to 90 HDG
CR07 Radar Track 150HDG for Crosswind
CR08 TACAN to Rwy 24 then VFR Circle to RWY 18
CR09 Radar track to North
CR10 Radar track on 36C3
CR11 TACAN approach to RWY 36 VFR Circle to RWY 6
CV01 - North VFR
CV02 - West VFR on 18C2
CV03 - North VFR Inside Housing
CV04 - North VFR Outside Housing
CV05 - VFR With Breakout
CV06 - West VFR on 36C2
Total Ops

Fraction of Total Ops
Ops
per Pattern
0.0530
177
0.0035
12
0.0141
47
0.0059
20
0.0059
20
0.0919
307
0.0141
47
0.0071
24
0.0283
94
0.0059
20
0.0059
20
0.2122
708
0.0353
118
0.0382
127
0.3775
1259
0.0657
219
0.0353
118
3336

Engine Setting/Time in Mode per Operation (Minutes)

48.5
2.1406
0.6319
2.1406
2.1406
2.1406
2.1406
2.1406
0.6319
2.1406
2.1406
0.6948
0.7645
0.7645
0.7645
0.7645
0.7645
0.7645

52.5

0.8238
1.1669
1.1669
1.1669
1.1669
1.1670
1.1669

55.0
8.5008
7.1268
5.0742
8.2663
6.8000
7.4803
7.6444
7.2052
6.5939
7.3686
7.2755
0.6817
0.6817
0.7397
0.9721
0.6680
0.7397

48.5
17295.696

52.5
18905.04

55.0
19910.88

0.0760
2.2991
11.8075
1.0600
0.0554
0.0554
3216
0.0890
0.1000

0.0726
1.8881
12.5875
1.0600
0.0544
0.0544
3216
0.0890
0.1000

0.0704
1.6313
13.0750
1.0600
0.0538
0.0538
3216
0.0890
0.1000

0.0683
1.3744
13.5625
1.0600
0.0531
0.0531
3216
0.0890
0.1000

0.0674
1.2716
13.7575
1.0600
0.0529
0.0529
3216
0.0890
0.1000

0.0661
1.1175
14.0500
1.0600
0.0525
0.0525
3216
0.0890
0.1000

0.0657
1.0661
14.1475
1.0600
0.0524
0.0524
3216
0.0890
0.1000

0.0640
0.8606
14.5375
1.0600
0.0519
0.0519
3216
0.0890
0.1000

0.0568
0.0900
16.1563
1.0600
0.0513
0.0513
3216
0.0890
0.1000

VOC
0.3671
0.3427
0.2770
0.3636
0.3293
0.3453
0.3491
0.3689
0.3694
0.3428
0.3550
0.1240
0.1240
0.1214
0.1451
0.1891
0.1240

CO
7.5825
6.7066
5.5592
7.4901
6.6684
7.0646
7.1534
7.3190
7.3426
6.9719
7.1003
2.4040
2.4040
2.3566
2.8224
3.1850
2.4092

NOx
73.0690
69.8701
56.0837
72.4847
66.3436
69.0735
69.7860
74.7264
74.7566
68.7658
71.6865
25.9387
25.9387
25.4126
30.2732
41.1481
25.9314

SO2
5.7050
5.3864
4.3399
5.6552
5.1472
5.3787
5.4364
5.7809
5.7858
5.3470
5.5544
1.9732
1.9732
1.9328
2.3061
3.0673
1.9733

PM10
0.2898
0.2727
0.2208
0.2872
0.2618
0.2732
0.2761
0.2927
0.2930
0.2715
0.2815
0.1017
0.1017
0.0997
0.1188
0.1550
0.1017

PM2.5
0.2898
0.2727
0.2208
0.2872
0.2618
0.2732
0.2761
0.2927
0.2930
0.2715
0.2815
0.1017
0.1017
0.0997
0.1188
0.1550
0.1017

CO2
17308.8124
16342.0124
13167.1627
17157.7017
15616.4405
16318.7065
16493.9067
17538.9678
17553.8740
16222.5155
16851.8535
5986.4890
5986.4890
5863.9644
6996.6470
9306.0728
5986.9753

CH4
0.4790
0.4523
0.3644
0.4748
0.4322
0.4516
0.4565
0.4854
0.4858
0.4489
0.4664
0.1657
0.1657
0.1623
0.1936
0.2575
0.1657

N2O
0.5382
0.5081
0.4094
0.5335
0.4856
0.5074
0.5129
0.5454
0.5458
0.5044
0.5240
0.1861
0.1861
0.1823
0.2176
0.2894
0.1862

0.3160

6.2145

65.0183

4.9886

0.2551

0.2551 15135.2626

0.4189

0.4706

0.8571

1.0058

57.5

1.6424

1.9866
0.9162
0.9162
0.7516
1.5196
0.8613

58.5
0.1362
0.1362
0.1362
0.1362
0.0681
0.1362
0.1362
0.1362
0.1362
0.1362
0.1362
0.1362
0.1362
0.1362
0.0681
0.1362
0.1362

60.0
2.0365
2.9128
1.6240
2.1209
2.1209
2.1209
2.1209
2.1650
3.9770
1.2953

0.6419

60.5
1.5710
1.5710
1.5710
1.5710
1.5710
1.5712
1.5710
1.5710
1.5710
3.6919
1.5710
0.7571
0.7571
0.7571
0.7571
0.7571
0.7571

62.5

70.5
0.7596
0.7596
0.7596
0.7596
0.7596
0.7594
0.7596
0.7596
0.7596
0.7596
0.7596
0.3668
0.3668
0.3668
0.3668
0.3668
0.3668

75.0
0.4919
0.4919
0.4919
0.4919
0.5567
0.4919
0.4919
0.4919
0.4919
0.4919
0.4919
0.4919
0.4919
0.4919
0.5567
0.4919
0.4919

62.5
22928.4

70.5
26274.6

75.0

2.9350

Table A-8. KC-135 Aircraft Closed Pattern Operations - Fuel Use and Emission Factors, Baseline
Factor
Fuel Use, lbs/hr
Emission Factors, lbs/1000 lbs fuel
VOC
CO
NOx
SO2
PM10
PM2.5
CO2
CH4
N2O
Table A-9. KC-135 Aircraft Closed Pattern Operations - Emissions Per Operation, Baseline
Emissions per operation, lbs
CR01 IFR to RWY06 on South Side
CR02 TACAN RWY06 VFR Circle
CR03 North Radar Track
CR04 Radar Track on 18C3
CR05 Radar Track on 18C4
CR06 Radar Track Continuous turn 150HDG to 90 HDG
CR07 Radar Track 150HDG for Crosswind
CR08 TACAN to Rwy 24 then VFR Circle to RWY 18
CR09 Radar track to North
CR10 Radar track on 36C3
CR11 TACAN approach to RWY 36 VFR Circle to RWY 6
CV01 - North VFR
CV02 - West VFR on 18C2
CV03 - North VFR Inside Housing
CV04 - North VFR Outside Housing
CV05 - VFR With Breakout
CV06 - West VFR on 36C2
Emissions, closed pattern ops, tons/year

Engine Setting/Time in Mode per Operation (Minutes)
57.5
58.5
60.0
60.5
20916.72 21319.056
21922.56 22123.728

A-5

29232.72
0.0503
0.0900
17.5625
1.0600
0.0625
0.0625
3216
0.0890
0.1000


Table A-10. Annual Air Emissions for KC-135 Aircraft Operations at McGuire - Baseline

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 LTOs</td>
<td>2.89</td>
<td>42.82</td>
<td>18.32</td>
<td>2.44</td>
<td>0.14</td>
<td>0.14</td>
<td>7406.44</td>
<td>0.20</td>
<td>0.23</td>
</tr>
<tr>
<td>KC-135 T&G</td>
<td>0.32</td>
<td>6.21</td>
<td>65.02</td>
<td>4.99</td>
<td>0.26</td>
<td>0.26</td>
<td>15135.26</td>
<td>0.42</td>
<td>0.47</td>
</tr>
<tr>
<td>Total Existing</td>
<td>3.21</td>
<td>49.03</td>
<td>83.34</td>
<td>7.43</td>
<td>0.39</td>
<td>0.39</td>
<td>22541.70</td>
<td>0.62</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Table A-11. Annual HAP Emissions for KC-135 Aircraft Operations at McGuire - Baseline

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Formaldehyde</th>
<th>Acetaldehyde</th>
<th>Acrolein</th>
<th>Naphthalene</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Ethylbenzene</th>
<th>Xylenes</th>
<th>Styrene</th>
<th>Chloroform</th>
<th>Chloromethane</th>
<th>1,3-Dichloropropene</th>
<th>Methylene Chloride</th>
<th>Vinyl Acetate</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135 LTOs</td>
<td>0.14</td>
<td>0.00</td>
<td>0.13</td>
<td>0.01</td>
</tr>
<tr>
<td>KC-135 Closed Pattern Ops</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.16</td>
<td>0.01</td>
</tr>
<tr>
<td>Total Existing</td>
<td>0.17</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.29</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Table A-12. JP-8 AGE Equipment Emissions, McGuire, Baseline

<table>
<thead>
<tr>
<th>AGE Type</th>
<th>Sorties</th>
<th>Total Run Time (hr/yr)</th>
<th>Fuel Use per Unit (gal/hr)</th>
<th>Fuel Use per Unit (gal/yr)</th>
<th>Engine Rating (hp)</th>
<th>Emission Factors, lbs/hr</th>
<th>Annual Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generator A/M32A-68</td>
<td>10</td>
<td>834.00</td>
<td>0.47</td>
<td>6967.30</td>
<td>180</td>
<td>6.12E+00</td>
<td>2.49E+00</td>
</tr>
<tr>
<td>Start Cart A/M32A-95</td>
<td>0.1</td>
<td>83.40</td>
<td>0.47</td>
<td>6967.30</td>
<td>180</td>
<td>6.12E+00</td>
<td>2.49E+00</td>
</tr>
<tr>
<td>Heaters/AC Ace 802-993 AC</td>
<td>10</td>
<td>834.00</td>
<td>0.47</td>
<td>6967.30</td>
<td>180</td>
<td>6.12E+00</td>
<td>2.49E+00</td>
</tr>
<tr>
<td>MA-3C Air Conditioner</td>
<td>2</td>
<td>1668.00</td>
<td>0.60</td>
<td>128059.35</td>
<td>272</td>
<td>4.54E+00</td>
<td>2.17E+00</td>
</tr>
<tr>
<td>Light Cart NF-2</td>
<td>2</td>
<td>1668.00</td>
<td>0.60</td>
<td>128059.35</td>
<td>272</td>
<td>4.54E+00</td>
<td>2.17E+00</td>
</tr>
<tr>
<td>Air Compressor MC-1A</td>
<td>0.33</td>
<td>3336.00</td>
<td>0.39</td>
<td>128059.35</td>
<td>272</td>
<td>4.54E+00</td>
<td>2.17E+00</td>
</tr>
<tr>
<td>Total JP-8 AGE, Tons/year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.80E-02</td>
</tr>
</tbody>
</table>

Emission estimation methodology based on AFCEC 2013, assuming Sortie/LTO method per AFCEC guidance. Equipment from AFCEC 2013, Table 3-3. Emission Factors from AFCEC 2013, Table 3-4.

Table A-13. AGE HAP Emissions, McGuire, Baseline

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Turbine (lb/1000 gal)</th>
<th>Reciprocating (lb/1000 hp-hr)</th>
<th>Actual Annual Emissions (lbs/yr)</th>
<th>Emission Factors (lb/MMBTU)</th>
<th>Annual Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>1.32E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asbestos</td>
<td>5.48E-03</td>
<td>2.13E+01</td>
<td>7.00E+01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia</td>
<td>6.43E-04</td>
<td>2.58E+01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>7.00E-04</td>
<td>6.94E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beryllium</td>
<td>4.3E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,3-Butadiene</td>
<td>2.23E+00</td>
<td>7.48E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>6.67E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>1.36E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>3.88E-02</td>
<td>6.30E-02</td>
<td>3.28E+00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>1.95E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manganese</td>
<td>1.16E+01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>1.68E+00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicotine</td>
<td>9.67E-02</td>
<td>2.35E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate</td>
<td>6.39E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>1.28E+01</td>
<td>4.74E+00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5.88E+00</td>
<td>2.21E+01</td>
<td>1.08E+01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table A-14. JP-8 AGE Equipment GHG Emissions, McGuire, Baseline

<table>
<thead>
<tr>
<th>AGE Type</th>
<th>Sorties</th>
<th>Total Run Time (hr/yr)</th>
<th>Fuel Use per Unit (gal/hr)</th>
<th>Fuel Use per Unit (gal/yr)</th>
<th>Engine Rating (hp)</th>
<th>Emission Factors, lbs/hr</th>
<th>Annual Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generator A/M32A-68</td>
<td>10</td>
<td>834.00</td>
<td>0.47</td>
<td>6967.30</td>
<td>180</td>
<td>6.12E+00</td>
<td>2.49E+00</td>
</tr>
<tr>
<td>Start Cart A/M32A-95</td>
<td>0.1</td>
<td>83.40</td>
<td>0.47</td>
<td>6967.30</td>
<td>180</td>
<td>6.12E+00</td>
<td>2.49E+00</td>
</tr>
<tr>
<td>Heaters/AC Ace 802-993 AC</td>
<td>10</td>
<td>834.00</td>
<td>0.47</td>
<td>6967.30</td>
<td>180</td>
<td>6.12E+00</td>
<td>2.49E+00</td>
</tr>
<tr>
<td>MA-3C Air Conditioner</td>
<td>2</td>
<td>1668.00</td>
<td>0.60</td>
<td>128059.35</td>
<td>272</td>
<td>4.54E+00</td>
<td>2.17E+00</td>
</tr>
<tr>
<td>Light Cart NF-2</td>
<td>2</td>
<td>1668.00</td>
<td>0.60</td>
<td>128059.35</td>
<td>272</td>
<td>4.54E+00</td>
<td>2.17E+00</td>
</tr>
<tr>
<td>Air Compressor MC-1A</td>
<td>0.33</td>
<td>3336.00</td>
<td>0.39</td>
<td>128059.35</td>
<td>272</td>
<td>4.54E+00</td>
<td>2.17E+00</td>
</tr>
<tr>
<td>Total JP-8 AGE, Metric Tons/year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.13E+00</td>
</tr>
</tbody>
</table>

Emission estimation methodology based on AFCEC 2013, assuming Sortie/LTO method per AFCEC guidance. Equipment from AFCEC 2013, Table 3-3. Emission Factors from AFCEC 2013, Table 3-4.
Table A-15. Aircraft Engine Emissions - Engine Tests, McGuire

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs fuel)</th>
<th>Emission Factors (lb/1000 lb fuel)</th>
<th>Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135</td>
<td>21 Idle</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
<td>1.044</td>
<td>2.1 30.2 4.0 1.1 0.1 0.1 2.14 329.7 40.78 11.26 1.30 1.30</td>
<td></td>
</tr>
<tr>
<td>Maintenance Run</td>
<td>83 Idle</td>
<td>0.33</td>
<td>4</td>
<td>1</td>
<td>1.044</td>
<td>2.1 30.2 4.0 1.1 0.1 0.1 2.14 344.76 41.87 13.67 13.67</td>
<td></td>
</tr>
<tr>
<td>TRT Run 2 Engine</td>
<td>10 Idle</td>
<td>0.17</td>
<td>2</td>
<td>1</td>
<td>1.044</td>
<td>2.1 30.2 4.0 1.1 0.1 0.1 0.1 1.17 360.54 13.78 1.43 1.43</td>
<td></td>
</tr>
<tr>
<td>TRT Run 4 Engine</td>
<td>7 Idle</td>
<td>0.17</td>
<td>4</td>
<td>1</td>
<td>1.044</td>
<td>2.1 30.2 4.0 1.1 0.1 0.1 0.1 1.17 145.24 16.02 0.58 0.58</td>
<td></td>
</tr>
<tr>
<td>7 80% RPM</td>
<td>0.08</td>
<td>4</td>
<td>7801.2</td>
<td>0.0 0.1</td>
<td>15.5 1.1 0.1 0.1 0.1 0.1 0.1 15.5 326.79 42.58 11.28 1.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maintenance Run</td>
<td>83 Idle</td>
<td>0.33</td>
<td>4</td>
<td>1</td>
<td>1.044</td>
<td>2.1 30.2 4.0 1.1 0.1 0.1 0.1 1.17 145.24 16.02 0.58 0.58</td>
<td></td>
</tr>
<tr>
<td>TRT Run 2 Engine</td>
<td>10 Idle</td>
<td>0.17</td>
<td>2</td>
<td>1</td>
<td>1.044</td>
<td>2.1 30.2 4.0 1.1 0.1 0.1 0.1 1.17 145.24 16.02 0.58 0.58</td>
<td></td>
</tr>
<tr>
<td>TRT Run 4 Engine</td>
<td>7 Idle</td>
<td>0.17</td>
<td>4</td>
<td>1</td>
<td>1.044</td>
<td>2.1 30.2 4.0 1.1 0.1 0.1 0.1 1.17 145.24 16.02 0.58 0.58</td>
<td></td>
</tr>
<tr>
<td>7 80% RPM</td>
<td>0.08</td>
<td>4</td>
<td>7801.2</td>
<td>0.0 0.1</td>
<td>15.5 1.1 0.1 0.1 0.1 0.1 0.1 15.5 326.79 42.58 11.28 1.30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table A-16. HAP Emissions, Engine Tests, McGuire

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs fuel)</th>
<th>Emission Factors (lb/1000 lb fuel)</th>
<th>Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135</td>
<td>21 Idle</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
<td>1.044</td>
<td>2.1 30.2 4.0 1.1 0.1 0.1 2.14 329.7 40.78 11.26 1.30 1.30</td>
<td></td>
</tr>
<tr>
<td>Maintenance Run</td>
<td>83 Idle</td>
<td>0.33</td>
<td>4</td>
<td>1</td>
<td>1.044</td>
<td>2.1 30.2 4.0 1.1 0.1 0.1 2.14 344.76 41.87 13.67 13.67</td>
<td></td>
</tr>
<tr>
<td>TRT Run 2 Engine</td>
<td>10 Idle</td>
<td>0.17</td>
<td>2</td>
<td>1</td>
<td>1.044</td>
<td>2.1 30.2 4.0 1.1 0.1 0.1 0.1 1.17 360.54 13.78 1.43 1.43</td>
<td></td>
</tr>
<tr>
<td>TRT Run 4 Engine</td>
<td>7 Idle</td>
<td>0.17</td>
<td>4</td>
<td>1</td>
<td>1.044</td>
<td>2.1 30.2 4.0 1.1 0.1 0.1 0.1 1.17 145.24 16.02 0.58 0.58</td>
<td></td>
</tr>
<tr>
<td>7 80% RPM</td>
<td>0.08</td>
<td>4</td>
<td>7801.2</td>
<td>0.0 0.1</td>
<td>15.5 1.1 0.1 0.1 0.1 0.1 0.1 15.5 326.79 42.58 11.28 1.30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table A-17. GHG Emissions, Engine Tests, McGuire

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs fuel)</th>
<th>Emission Factors (lb/1000 lb fuel)</th>
<th>Emissions (lbs/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-135</td>
<td>21 Idle</td>
<td>0.50</td>
<td>1</td>
<td>1</td>
<td>1.044</td>
<td>3.216 0.1 0.1 0.1 0.1 0.1 3.216 34.252 0.95 1.06</td>
<td></td>
</tr>
<tr>
<td>Maintenance Run</td>
<td>83 Idle</td>
<td>0.33</td>
<td>4</td>
<td>1</td>
<td>1.044</td>
<td>3.216 0.1 0.1 0.1 0.1 0.1 3.216 300.821 9.98 11.22</td>
<td></td>
</tr>
<tr>
<td>TRT Run 2 Engine</td>
<td>10 Idle</td>
<td>0.17</td>
<td>2</td>
<td>1</td>
<td>1.044</td>
<td>3.216 0.1 0.1 0.1 0.1 0.1 3.216 108.657 3.36 3.34</td>
<td></td>
</tr>
<tr>
<td>TRT Run 4 Engine</td>
<td>7 Idle</td>
<td>0.17</td>
<td>4</td>
<td>1</td>
<td>1.044</td>
<td>3.216 0.1 0.1 0.1 0.1 0.1 3.216 55.943 1.26 1.30</td>
<td></td>
</tr>
<tr>
<td>7 80% RPM</td>
<td>0.08</td>
<td>4</td>
<td>7801.2</td>
<td>0.0 0.1</td>
<td>15.5 1.1 0.1 0.1 0.1 0.1 0.1 15.5 326.79 42.58 11.28 1.30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. CO2 emission factors obtained from AFCEC 2013.
2. CH4 and N2O emission factors were derived from Table A-101 for jet fuel in EPA’s Inventory of U.S. Greenhouse Gas Emissions and Sinks, 1990-2005, using density of JP-8 as 6.8 lb/gallon.
Table A-18. Annual Worker Population and VMT at McGuire - KC-46A Project Scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Total # of Workers</th>
<th>Annual On-Base VMT</th>
<th>Annual Off-Base VMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing</td>
<td>1051</td>
<td>273260</td>
<td>456070</td>
</tr>
<tr>
<td>Proposed Action</td>
<td>1306</td>
<td>339560</td>
<td>566725</td>
</tr>
</tbody>
</table>

1. Off-Base mileage based on distance to downtown Burlington, 19.65 miles; assume 260 days/year

Table A-19. Annual Average On-Base Vehicle Emissions - McGuire

<table>
<thead>
<tr>
<th>Scenario/Vehicle Class</th>
<th>POV Mix (%)</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing (Year 2013)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDGV</td>
<td>37.55</td>
<td>0.95</td>
<td>8.92</td>
<td>0.79</td>
<td>0.06</td>
<td>0.11</td>
<td>38.1</td>
<td></td>
</tr>
<tr>
<td>LDDT</td>
<td>60.32</td>
<td>0.30</td>
<td>0.02</td>
<td>0.17</td>
<td>0.01</td>
<td>0.51</td>
<td>51.9</td>
<td></td>
</tr>
<tr>
<td>HDOV</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>SOV</td>
<td>1.9</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Total Existing, tons/year</td>
<td>0.25</td>
<td>3.32</td>
<td>0.33</td>
<td>0.00</td>
<td>0.01</td>
<td>0.00</td>
<td>120.31</td>
<td></td>
</tr>
</tbody>
</table>

Notes: (1) Emission factors from APGDC 2013, Table 5-13, for 2017 used to provide a conservative estimate of emissions for 2018

Table A-20. Annual Average On-Base Vehicle Emissions

<table>
<thead>
<tr>
<th>Scenario/Vehicle Class</th>
<th>VO</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing (Year 2013)</td>
<td>37.55</td>
<td>31.18</td>
<td>41329</td>
<td>94.39</td>
<td>37.76</td>
<td>94.39</td>
<td>41.53</td>
</tr>
<tr>
<td>LDDT</td>
<td>0.00</td>
<td>1.16</td>
<td>2.14</td>
<td>1.39</td>
<td>0.18</td>
<td>0.15</td>
<td>1.07</td>
</tr>
<tr>
<td>HDOV</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>SOV</td>
<td>1.9</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total Existing, tons/year</td>
<td>0.25</td>
<td>3.09</td>
<td>0.28</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>120.11</td>
</tr>
</tbody>
</table>

Table A-21. Annual Average Off-Base Vehicle Emissions

<table>
<thead>
<tr>
<th>Scenario/Vehicle Class</th>
<th>POV Mix (%)</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing (Year 2013)</td>
<td>37.55</td>
<td>31.18</td>
<td>41329</td>
<td>94.39</td>
<td>37.76</td>
<td>94.39</td>
<td>41.53</td>
<td>184655.27</td>
</tr>
<tr>
<td>LDDT</td>
<td>0.00</td>
<td>1.16</td>
<td>2.14</td>
<td>1.39</td>
<td>0.18</td>
<td>0.15</td>
<td>1.07</td>
<td>1897.13</td>
</tr>
<tr>
<td>HDOV</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>SOV</td>
<td>1.9</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total Existing, tons/year</td>
<td>0.25</td>
<td>3.09</td>
<td>0.28</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>120.11</td>
<td></td>
</tr>
</tbody>
</table>

Notes
1. Emission factors from AFCEC 2013, Table 5-13, for 2017 used to provide a conservative estimate of emissions for 2018
<table>
<thead>
<tr>
<th>Aircraft</th>
<th>LTO</th>
<th>TGO</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A</td>
<td>1508</td>
<td>7296</td>
<td>17608</td>
</tr>
</tbody>
</table>
Table A-23. KC-46A Aircraft Closed Pattern Operations at McGuire - KC-46A Proposed Scenarios

<table>
<thead>
<tr>
<th>Scenario/Operation</th>
<th>Fraction of Ops</th>
<th>Total Ops</th>
<th>Engine Setting/Time in Mode per Operation (Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR01 IFR on RWY06 on South Side</td>
<td>0.0785</td>
<td>408</td>
<td>2.1404</td>
</tr>
<tr>
<td>CR02 TACAN/RWY05 VFR Circle</td>
<td>0.0337</td>
<td>27</td>
<td>0.6319</td>
</tr>
<tr>
<td>CR03 North Radar Track</td>
<td>0.0150</td>
<td>110</td>
<td>2.1404</td>
</tr>
<tr>
<td>CR04 Radar Track on 19C3</td>
<td>0.0063</td>
<td>46</td>
<td>2.1404</td>
</tr>
<tr>
<td>CR05 Radar Track Continuous turn 150HDG to 90 HDG</td>
<td>0.0792</td>
<td>578</td>
<td>2.1404</td>
</tr>
<tr>
<td>CR06 Radar Track 150HDG for Crosswind</td>
<td>0.0150</td>
<td>110</td>
<td>2.1404</td>
</tr>
<tr>
<td>CR07 TACAN to Rwy 24 then VFR Circle to RWY 18</td>
<td>0.0075</td>
<td>55</td>
<td>0.6319</td>
</tr>
<tr>
<td>CR08 Radar track to North</td>
<td>0.0300</td>
<td>219</td>
<td>2.1404</td>
</tr>
<tr>
<td>CR10 Radar track on 36C3</td>
<td>0.0063</td>
<td>46</td>
<td>2.1404</td>
</tr>
<tr>
<td>CR11 TACAN approach to RWY 36 VFR Circle to RWY 6</td>
<td>0.0063</td>
<td>46</td>
<td>0.8948</td>
</tr>
<tr>
<td>CV01 - North VFR</td>
<td>0.2135</td>
<td>1557</td>
<td>0.7645</td>
</tr>
<tr>
<td>CV02 - West VFR on 18C2</td>
<td>0.0425</td>
<td>310</td>
<td>0.7645</td>
</tr>
<tr>
<td>CV03 - North VFR Inside Housing</td>
<td>0.0502</td>
<td>366</td>
<td>0.7645</td>
</tr>
<tr>
<td>CV04 - North VFR Outside Housing</td>
<td>0.3860</td>
<td>2816</td>
<td>0.7645</td>
</tr>
</tbody>
</table>

Table A-24. KC-46A Aircraft Closed Pattern Operations - Fuel Use and Emission Factors

<table>
<thead>
<tr>
<th>Scenario/Operation</th>
<th>Fuel Use, lbs/hr</th>
<th>Emission Factors, lbs/1000 lbs fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR01 IFR to RWY06 on South Side</td>
<td>19668.32</td>
<td>VOC 0.0950</td>
</tr>
<tr>
<td>CR02 TACAN/RWY05 VFR Circle</td>
<td>21455.2</td>
<td>CO 1.4009</td>
</tr>
<tr>
<td>CR03 North Radar Track</td>
<td>22572.0</td>
<td>NOx 17.2797</td>
</tr>
<tr>
<td>CR04 Radar Track on 19C3</td>
<td>23688.8</td>
<td>SO2 1.0600</td>
</tr>
<tr>
<td>CR05 Radar Track Continuous turn 150HDG to 90 HDG</td>
<td>24135.52</td>
<td>PM10 0.0574</td>
</tr>
<tr>
<td>CR06 Radar Track 150HDG for Crosswind</td>
<td>24805.6</td>
<td>PM2.5 0.0474</td>
</tr>
<tr>
<td>CR07 TACAN to Rwy 24 then VFR Circle to RWY 18</td>
<td>24894.944</td>
<td>CO2 3216.0</td>
</tr>
<tr>
<td>CR08 Radar track to North</td>
<td>25922.4</td>
<td>CH4 0.0890</td>
</tr>
<tr>
<td>CR10 Radar track on 36C3</td>
<td>29496.16</td>
<td>N2O 0.1000</td>
</tr>
<tr>
<td>CR11 TACAN approach to RWY 36 VFR Circle to RWY 6</td>
<td>31505.4</td>
<td>CO2 3216.0</td>
</tr>
<tr>
<td>CV01 - North VFR</td>
<td>19653.2901</td>
<td>CH4 0.0890</td>
</tr>
<tr>
<td>CV02 - West VFR on 18C2</td>
<td>18451.2142</td>
<td>N2O 0.1000</td>
</tr>
<tr>
<td>CV03 - North VFR Inside Housing</td>
<td>14859.1404</td>
<td>PM2.5 0.0474</td>
</tr>
<tr>
<td>CV04 - North VFR Outside Housing</td>
<td>18430.6441</td>
<td>CO2 3216.0</td>
</tr>
<tr>
<td>CV05 - VFR With Breakout</td>
<td>17088.5417</td>
<td>CH4 0.0890</td>
</tr>
<tr>
<td>CV06 - West VFR on 36C2</td>
<td>23567.2404</td>
<td>N2O 0.1000</td>
</tr>
</tbody>
</table>

Table A-25. KC-46A Aircraft Closed Pattern Operations - Emissions Per Operation

<table>
<thead>
<tr>
<th>Scenario/Operation</th>
<th>Emissions per operation, lbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR01 IFR to RWY06 on South Side</td>
<td>VOC 0.5528</td>
</tr>
<tr>
<td>CR02 TACAN/RWY05 VFR Circle</td>
<td>CO 6.9815</td>
</tr>
<tr>
<td>CR03 North Radar Track</td>
<td>NOx 51.8360</td>
</tr>
<tr>
<td>CR04 Radar Track on 19C3</td>
<td>PM10 0.4293</td>
</tr>
<tr>
<td>CR05 Radar Track Continuous turn 150HDG to 90 HDG</td>
<td>PM2.5 0.4293</td>
</tr>
<tr>
<td>CR06 Radar Track 150HDG for Crosswind</td>
<td>CO2 3216.0</td>
</tr>
<tr>
<td>CR07 TACAN to Rwy 24 then VFR Circle to RWY 18</td>
<td>CH4 0.0890</td>
</tr>
<tr>
<td>CR08 Radar track to North</td>
<td>N2O 0.1000</td>
</tr>
<tr>
<td>CR10 Radar track on 36C3</td>
<td>CO2 3216.0</td>
</tr>
<tr>
<td>CR11 TACAN approach to RWY 36 VFR Circle to RWY 6</td>
<td>CO2 3216.0</td>
</tr>
</tbody>
</table>

Emissions, closed pattern ops, tons/year 1.0238 | 12.6852 | 226.0694 | 11.9930 | 0.6937 | 0.5896 | 36366.3462 | 1.0070 | 1.1314 | 2926.42 |

Operations/Year Engine Setting/Time in Mode per Operation (Minutes)
Table A-26. Annual Air Emissions for KC-46A Aircraft Operations at McGuire - Proposed Action

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SO2</th>
<th>PM10</th>
<th>PM2.5</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A LTOs</td>
<td>25.10</td>
<td>87.16</td>
<td>57.22</td>
<td>4.43</td>
<td>0.36</td>
<td>0.32</td>
<td>13441.53</td>
<td>0.37</td>
<td>0.42</td>
</tr>
<tr>
<td>KC-46A T&G</td>
<td>1.02</td>
<td>12.69</td>
<td>226.07</td>
<td>11.99</td>
<td>0.69</td>
<td>0.58</td>
<td>36386.35</td>
<td>1.01</td>
<td>1.13</td>
</tr>
<tr>
<td>APU</td>
<td>0.00</td>
<td>0.53</td>
<td>10.74</td>
<td>0.90</td>
<td>0.06</td>
<td>0.00</td>
<td>2194.71</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total Proposed Action</td>
<td>26.19</td>
<td>100.37</td>
<td>294.03</td>
<td>17.32</td>
<td>1.13</td>
<td>0.96</td>
<td>52022.59</td>
<td>1.38</td>
<td>1.55</td>
</tr>
</tbody>
</table>

Table A-27. Annual HAP Emissions for KC-46A Aircraft Operations at McGuire - Proposed Action

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Formaldehyde</th>
<th>Acetaldehyde</th>
<th>Acrolein</th>
<th>Naphthalene</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Ethylbenzene</th>
<th>Xylenes</th>
<th>Styrene</th>
<th>Chloroform</th>
<th>Chloromethane</th>
<th>1,3-Dichloropropene</th>
<th>Methylene Chloride</th>
<th>Vinylacetate</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A LTOs</td>
<td>3.58</td>
<td>1.24</td>
<td>0.71</td>
<td>0.16</td>
<td>0.49</td>
<td>0.19</td>
<td>0.05</td>
<td>0.08</td>
<td>0.09</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.22</td>
<td>0.02</td>
</tr>
<tr>
<td>KC-46A Closed Pattern Ops</td>
<td>0.14</td>
<td>0.05</td>
<td>0.03</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>0.42</td>
<td>0.03</td>
</tr>
<tr>
<td>Total Proposed Action</td>
<td>3.72</td>
<td>1.29</td>
<td>0.74</td>
<td>0.16</td>
<td>0.51</td>
<td>0.19</td>
<td>0.05</td>
<td>0.09</td>
<td>0.09</td>
<td>0.03</td>
<td>0.01</td>
<td>0.01</td>
<td>0.65</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Table A-28. JP-8 AGE Equipment Emissions, Proposed Action, McGuire

<table>
<thead>
<tr>
<th>AGE Type</th>
<th>Sorties</th>
<th>Total Run Time (hr/yr)</th>
<th>Fuel Use per Unit (gal/hr)</th>
<th>Fuel Use per Unit (gal/yr)</th>
<th>Engine Rating (hp)</th>
<th>Emission Factors, lbs/yr</th>
<th>Annual Emissions, lbs/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NOx</td>
<td>CO</td>
</tr>
<tr>
<td>KC-46A AGE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorties</td>
<td>1508</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generator A/V/M3A-65</td>
<td>10</td>
<td>1000.00</td>
<td>6.47</td>
<td>12506.07</td>
<td>186</td>
<td>1.08E+01</td>
<td>3.57E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start Cont A/V/M3A-65</td>
<td>0.1</td>
<td>100.00</td>
<td>6.47</td>
<td>12506.07</td>
<td>186</td>
<td>1.08E+01</td>
<td>3.57E+01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Emission estimation methodology based AFCEC 2013, assuming Sortie/LTO method per AFCEC guidance.

Equipment from AFCEC 2013, Table 3-3. Emission Factors from AFCEC 2013, Table 3-4.

Table A-29. AGE HAP Emissions, Proposed Action, McGuire

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Turbine (lb/1000 gal)</th>
<th>Reciprocating (lb/1000 hp-hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>1.53E-03</td>
<td></td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td>5.61E+03</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>7.08E-03</td>
<td></td>
</tr>
<tr>
<td>Benzo[a]pyrene</td>
<td>3.98E-03</td>
<td></td>
</tr>
<tr>
<td>Nickel</td>
<td>6.39E-04</td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>3.48E-03</td>
<td></td>
</tr>
<tr>
<td>Head</td>
<td>1.60E-02</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>1.07E-04</td>
<td></td>
</tr>
<tr>
<td>Methylmercury</td>
<td>4.47E-05</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>2.90E-03</td>
<td></td>
</tr>
<tr>
<td>Xylenes</td>
<td>2.00E-03</td>
<td></td>
</tr>
</tbody>
</table>

Total 1.75E+02

Table A-30. JP-8 AGE Equipment GHG Emissions, Proposed Action, McGuire

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Turbine (lb/1000 gal)</th>
<th>Reciprocating (lb/1000 hp-hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2O</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total 3.86E+03

Emission estimation methodology based AFCEC 2013, assuming Sortie/LTO method per AFCEC guidance.

Equipment from AFCEC 2013, Table 3-3. Emission Factors from AFCEC 2013, Table 3-4.

Table A-31. JP-8 AGE Equipment GHG Emissions, Proposed Action, McGuire

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Turbine (lb/1000 gal)</th>
<th>Reciprocating (lb/1000 hp-hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2O</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total 3.86E+03

Emission estimation methodology based AFCEC 2013, assuming Sortie/LTO method per AFCEC guidance.

Equipment from AFCEC 2013, Table 3-3. Emission Factors from AFCEC 2013, Table 3-4.
Table A-31. Aircraft Engine Emissions - Engine Tests, Proposed Action, McGuire

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs/hr)</th>
<th>Emission Factors (lb/1000 lb fuel)</th>
<th>Emissions (lbs/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VOC</td>
<td>CO</td>
<td>NOx</td>
</tr>
<tr>
<td>KC-46A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defueling</td>
<td>44</td>
<td>Idle</td>
<td>0.50</td>
<td>1</td>
<td>1,663</td>
<td>12.5</td>
<td>42.6</td>
</tr>
<tr>
<td>Maintenance Run</td>
<td>175</td>
<td>Idle</td>
<td>0.33</td>
<td>2</td>
<td>1,663</td>
<td>12.5</td>
<td>42.6</td>
</tr>
<tr>
<td>TRT Run 1 Engine 1</td>
<td>20</td>
<td>Idle</td>
<td>0.17</td>
<td>1</td>
<td>1,663</td>
<td>12.5</td>
<td>42.6</td>
</tr>
<tr>
<td>TRT Run 2 Engine 1</td>
<td>20</td>
<td>60% RPM</td>
<td>0.38</td>
<td>2</td>
<td>1,663</td>
<td>12.5</td>
<td>42.6</td>
</tr>
<tr>
<td>TRT Run 3 Engine 1</td>
<td>15</td>
<td>Idle</td>
<td>0.17</td>
<td>1</td>
<td>1,663</td>
<td>12.5</td>
<td>42.6</td>
</tr>
<tr>
<td>TRT Run 4 Engine 1</td>
<td>15</td>
<td>60% RPM</td>
<td>0.08</td>
<td>2</td>
<td>1,663</td>
<td>12.5</td>
<td>42.6</td>
</tr>
</tbody>
</table>

Table A-32. HAP Emissions, Engine Tests, Proposed Action, McGuire

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs/hr)</th>
<th>Emission Factors (lb/1000 lb fuel)</th>
<th>Emissions (lbs/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Form aldehyde</td>
<td>Acetaldehyde</td>
<td>Acrolein</td>
</tr>
<tr>
<td>KC-46A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defueling</td>
<td>44</td>
<td>Idle</td>
<td>0.50</td>
<td>1</td>
<td>1,663</td>
<td>12.5</td>
<td>42.6</td>
</tr>
<tr>
<td>Maintenance Run</td>
<td>175</td>
<td>Idle</td>
<td>0.33</td>
<td>2</td>
<td>1,663</td>
<td>12.5</td>
<td>42.6</td>
</tr>
<tr>
<td>TRT Run 1 Engine 1</td>
<td>20</td>
<td>Idle</td>
<td>0.17</td>
<td>1</td>
<td>1,663</td>
<td>12.5</td>
<td>42.6</td>
</tr>
<tr>
<td>TRT Run 2 Engine 1</td>
<td>20</td>
<td>60% RPM</td>
<td>0.38</td>
<td>2</td>
<td>1,663</td>
<td>12.5</td>
<td>42.6</td>
</tr>
<tr>
<td>TRT Run 3 Engine 1</td>
<td>15</td>
<td>Idle</td>
<td>0.17</td>
<td>1</td>
<td>1,663</td>
<td>12.5</td>
<td>42.6</td>
</tr>
<tr>
<td>TRT Run 4 Engine 1</td>
<td>15</td>
<td>60% RPM</td>
<td>0.08</td>
<td>2</td>
<td>1,663</td>
<td>12.5</td>
<td>42.6</td>
</tr>
</tbody>
</table>

Table A-33. GHG Emissions, Engine Tests, Proposed Action, McGuire

<table>
<thead>
<tr>
<th>Aircraft/Test Type</th>
<th>Number of Engine Tests</th>
<th>Power Setting</th>
<th>Duration (hrs)</th>
<th>Number of Engines</th>
<th>Fuel Flow Rate per Engine (lbs/hr)</th>
<th>CO2</th>
<th>CH4</th>
<th>N2O</th>
<th>Total, tpy</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-46A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defueling</td>
<td>44</td>
<td>Idle</td>
<td>0.50</td>
<td>1</td>
<td>1,663</td>
<td>3,216</td>
<td>0.1</td>
<td>0.1</td>
<td>117.674</td>
</tr>
<tr>
<td>Maintenance Run</td>
<td>175</td>
<td>Idle</td>
<td>0.33</td>
<td>2</td>
<td>1,663</td>
<td>3,216</td>
<td>0.1</td>
<td>0.1</td>
<td>624.032</td>
</tr>
<tr>
<td>TRT Run 1 Engine 1</td>
<td>20</td>
<td>Idle</td>
<td>0.17</td>
<td>1</td>
<td>1,663</td>
<td>3,216</td>
<td>0.1</td>
<td>0.1</td>
<td>178.29</td>
</tr>
<tr>
<td>TRT Run 2 Engine 1</td>
<td>20</td>
<td>60% RPM</td>
<td>0.08</td>
<td>2</td>
<td>1,663</td>
<td>3,216</td>
<td>0.1</td>
<td>0.1</td>
<td>267.443</td>
</tr>
</tbody>
</table>

Table A-34. McGuire Comparison of Emissions

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Proposed Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VOC</td>
<td>CO</td>
</tr>
<tr>
<td>Aircraft Ops</td>
<td>3.21</td>
<td>49.03</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.14</td>
<td>2.01</td>
</tr>
<tr>
<td>POVs</td>
<td>5.12</td>
<td>110.72</td>
</tr>
<tr>
<td>Total</td>
<td>8.48</td>
<td>161.78</td>
</tr>
<tr>
<td></td>
<td>VOC</td>
<td>CO</td>
</tr>
<tr>
<td>Aircraft Ops</td>
<td>26.19</td>
<td>100.37</td>
</tr>
<tr>
<td>AGE</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>1.53</td>
<td>5.23</td>
</tr>
<tr>
<td>POVs</td>
<td>4.75</td>
<td>126.34</td>
</tr>
<tr>
<td>Total</td>
<td>32.48</td>
<td>231.97</td>
</tr>
<tr>
<td>Net Increase</td>
<td>24.01</td>
<td>70.19</td>
</tr>
</tbody>
</table>

Table A-35. McGuire Comparison of HAP Emissions

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Proposed Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Formaldehyde</td>
<td>Acetaldehyde</td>
</tr>
<tr>
<td>Aircraft Ops</td>
<td>0.17</td>
<td>0.00</td>
</tr>
<tr>
<td>AGE</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>0.20</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Formaldehyde</td>
<td>Acetaldehyde</td>
</tr>
<tr>
<td>Aircraft Ops</td>
<td>3.72</td>
<td>1.26</td>
</tr>
<tr>
<td>AGE</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>0.08</td>
<td>0.04</td>
</tr>
<tr>
<td>Total</td>
<td>3.83</td>
<td>1.35</td>
</tr>
<tr>
<td>Net Increase</td>
<td>3.63</td>
<td>1.34</td>
</tr>
</tbody>
</table>

Table A-36. McGuire Comparison of GHG Emissions

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Proposed Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO2</td>
<td>CH4</td>
</tr>
<tr>
<td>Aircraft Ops</td>
<td>20450</td>
<td>0.57</td>
</tr>
<tr>
<td>AGE</td>
<td>2134</td>
<td>0.06</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>237</td>
<td>0.01</td>
</tr>
<tr>
<td>POVs</td>
<td>3543</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>26363</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>CO2</td>
<td>CH4</td>
</tr>
<tr>
<td>Aircraft Ops</td>
<td>47195</td>
<td>1.25</td>
</tr>
<tr>
<td>AGE</td>
<td>3859</td>
<td>0.11</td>
</tr>
<tr>
<td>Engine Tests</td>
<td>459</td>
<td>0.01</td>
</tr>
<tr>
<td>POVs</td>
<td>4359</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>56872</td>
<td>1.37</td>
</tr>
<tr>
<td>Net Increase</td>
<td>29909</td>
<td>0.74</td>
</tr>
</tbody>
</table>
Table A-37. Emission Factors, AFCEC, 2015

<table>
<thead>
<tr>
<th>2015</th>
<th>VOC</th>
<th>CO</th>
<th>NOx</th>
<th>SOx</th>
<th>PM</th>
<th>CO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-Road Trucks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emission factor, heavy duty trucks, gm/mi</td>
<td>0.617</td>
<td>1.782</td>
<td>2.498</td>
<td>0.012</td>
<td>0.097</td>
<td>1243.4</td>
</tr>
</tbody>
</table>
Table A-38. Emission Source Data for Construction - McGuire
2015
Construction Activity/Equipment Type

Construction - Building Facilities
Air Compressor - 100 CFM
Concrete-Industrial Saw
Crane
Forklift
Generator
Concrete Trucks (1)
Supply Trucks (1)
Fugitive Dust (2)

HP Rating

Ave. Daily
Load Factor

Number
Active

Hours/
Day

50
84
190
94
45
NA
NA
NA

0.6
0.73
0.3
0.48
0.6
NA
NA
NA

1
1
1
1
1
60
60
2

6
6
6
6
8
15
20
8

(lb/day)
ROG

(lb/day)
CO

(lb/day)
NOX

(lb/day)
SOX

(lb/day)
PM

(lb/day)
CO2

0.09455048
0.27221926
0.14924225
0.09577876
0.11346058
1.22423334
1.63231112

0.47201897
2.35429505
0.37005106
0.80888051
0.56642277
3.53579224
4.71438965

1.59554327
2.68401671
1.71237822
0.9060315
1.91465192
4.95645848
6.6086113

0.044862233
0.094666023
0.074866893
0.060326098
0.053834679
0.023810049
0.031746732

236.289135
482.735755
399.946309
355.519511
283.546961
2467.11788
3289.49051

3.58179579 12.8218502 20.3776914

0.384112707

0.10062742
0.36896764
0.12148702
0.16169322
0.12075291
0.19246456
0.25661941
13.45
14.7726122

7.24234382 29.6497906 75.7847769
0.8617276 3.77851013 9.72207506
0.64270919 2.79649216 6.91528097

4.41365647
0.341440284
0.298821998

24979.5948
1735.73736
1560.29376

0.67778145
1.97248561
0.31360677
1.54745487
13.2581093

6.91240052
12.3406703
2.40202138
13.1352397
127.212465

0.366767542
0.353825785
0.183811512
0.351751219
6.31007481

8.47649254
0.96065309
0.80700086
13.45
0.73055537
1.55146662
0.31805625
1.07737943
27.3716042

7.24234382 29.6497906 75.7847769
0.8617276 3.77851013 9.72207506
0.3213546 1.39824608 3.45764049

4.41365647
0.341440284
0.149410999

0.33889073
0.9862428
0.31360677
1.54745487
11.6116212

3.45620026
6.17033515
2.40202138
13.1352397
114.128289

0.183383771
0.176912892
0.183811512
0.351751219
5.800367147

7.24234382 29.6497906 75.7847769
0.8617276 3.77851013 9.72207506
0.64270919 2.79649216 6.91528097

4.41365647
0.341440284
0.298821998

90

0.67778145
1.97248561
0.31360677
1.54745487
13.2581093

2.3514555
7.33701543
0.58021071
7.01107023
53.5045448

6.91240052
12.3406703
2.40202138
13.1352397
127.212465

250

0.09455048
0.27221926
0.14924225
0.09577876
0.11346058
1.22423334
1.63231112
3.58179579

0.47201897
2.35429505
0.37005106
0.80888051
0.56642277
3.53579224
4.71438965
12.8218502

0.09455048
0.27221926
0.09577876
0.11346058
0.81615556
1.39216464

0.47201897
2.35429505
0.80888051
0.56642277
2.35719482
6.55881212

Work Days

250
Construction - Taxiways/Runway
Haul Truck - 20 CY - Asphalt (1)
Asphalt Spreader - BG 240C
Compactive Roller
Fugitive Dust (2)
Grader - 14H
Loader - 938G
Oil Truck
Vibratory Compactor - CB 355D

489
153
165
NA
215
160
300
105

0.6
0.6
0.5
NA
0.5
0.5
0.4
0.75

4
2
2
2
2
2
1
2

18
8
8
8
8
8
8
8
250

Construction - Pad/Apron
Haul Truck - 20 CY - Asphalt (1)
Asphalt Spreader - BG 240C
Compactive Roller
Fugitive Dust (2)
Grader - 14H
Loader - 938G
Oil Truck
Vibratory Compactor - CB 355D

489
153
165
NA
215
160
300
105

0.6
0.6
0.5
NA
0.5
0.5
0.4
0.75

4
2
1
2
1
1
1
2

18
8
8
8
8
8
8
8
250

Construction - Road/Bridge/Van Pad
Haul Truck - 20 CY - Asphalt (1)
Asphalt Spreader - BG 240C
Compactive Roller
Fugitive Dust (2)
Grader - 14H
Loader - 938G
Oil Truck
Vibratory Compactor - CB 355D
Construction - Airfield Facilities - Other
Air Compressor - 100 CFM
Concrete-Industrial Saw
Crane
Forklift
Generator
Concrete Trucks (1)
Supply Trucks (1)
Construction - Building Renovations
Air Compressor - 100 CFM
Concrete-Industrial Saw
Forklift
Generator
Supply Trucks (1)

489
153
165
NA
215
160
300
105

50
84
190
94
45
NA
NA

50
84
94
45
NA

0.6
0.6
0.5
NA
0.5
0.5
0.4
0.75

0.6
0.73
0.3
0.48
0.6
NA
NA

0.6
0.73
0.48
0.6
NA

4
2
2
2
2
2
1
2

1
1
1
1
1
60
60

1
1
1
1
60

18
8
8
8
8
8
8
8

6
6
6
6
8
15
20

6
6
6
8
10

90
Renovations require 90 days
Assumptions: work days calculated based on assumption that 20,000 sf buildings require 250 days; 340,000 sf of paving/apron requires 250 days.
(1) Number Active - miles/round trip, Hours/Day are daily trips
(2) Number Active is acres disturbed at one time; lbs/day is lbs/acre-day
(3) HP Rating = cubic feet of demolished buildings; lbs/day is lbs/1000 cf

A-17

2.3514555
7.33701543
0.58021071
7.01107023
53.5045448

1.17572775
3.66850772
0.58021071
7.01107023
47.2620632

8.47649254
0.96065309
0.40350043
13.45
0.36527769
0.77573331
0.31805625
1.07737943
25.8270927

7514.64606

2033.594
1762.08909
1135.22529
1635.26332
34841.7976
24979.5948
1735.73736
780.14688
1016.797
881.044547
1135.22529
1635.26332
32163.8092

0.366767542
0.353825785
0.183811512
0.351751219
6.31007481

8.47649254
0.96065309
0.80700086
13.45
0.73055537
1.55146662
0.31805625
1.07737943
27.3716042

24979.5948
1735.73736
1560.29376
2033.594
1762.08909
1135.22529
1635.26332
34841.7976

1.59554327
2.68401671
1.71237822
0.9060315
1.91465192
4.95645848
6.6086113
20.3776914

0.044862233
0.094666023
0.074866893
0.060326098
0.053834679
0.023810049
0.031746732
0.384112707

0.10062742
0.36896764
0.12148702
0.16169322
0.12075291
0.19246456
0.25661941
1.32261218

236.289135
482.735755
399.946309
355.519511
283.546961
2467.11788
3289.49051
7514.64606

1.59554327
2.68401671
0.9060315
1.91465192
3.30430565
10.4045491

0.044862233
0.094666023
0.060326098
0.053834679
0.015873366
0.2695624

0.10062742
0.36896764
0.16169322
0.12075291
0.12830971
0.88035089

236.289135
482.735755
355.519511
283.546961
1644.74525
3002.83662


<table>
<thead>
<tr>
<th>Construction Project</th>
<th>Square feet of building/ square feet of paving</th>
<th>CO</th>
<th>NOx</th>
<th>VOC</th>
<th>SOx</th>
<th>PM10</th>
<th>PM2.5</th>
<th>Fugitive PM10</th>
<th>Fugitive PM2.5</th>
<th>Total PM10</th>
<th>Total PM2.5</th>
<th>Total CO2, Metric tons/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 1 - 2015</td>
<td></td>
</tr>
<tr>
<td>Project #1 - Addition to Hangar 3333</td>
<td>17,892</td>
<td>1.43</td>
<td>2.28</td>
<td>0.40</td>
<td>0.04</td>
<td>1.65</td>
<td>1.64</td>
<td>0.62</td>
<td>0.13</td>
<td>2.27</td>
<td>1.77</td>
<td>762.34</td>
</tr>
<tr>
<td>Project #2 - Addition to Hangar 3336</td>
<td>18,206</td>
<td>1.46</td>
<td>2.32</td>
<td>0.41</td>
<td>0.04</td>
<td>1.68</td>
<td>1.66</td>
<td>0.64</td>
<td>0.13</td>
<td>2.32</td>
<td>1.80</td>
<td>775.72</td>
</tr>
<tr>
<td>Project #3 - Internal Renovations to Hangar 3322</td>
<td>0</td>
<td>0.30</td>
<td>0.47</td>
<td>0.06</td>
<td>0.01</td>
<td>0.04</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.04</td>
<td>0.04</td>
<td>122.99</td>
</tr>
<tr>
<td>Project #4 - New Simulator Building</td>
<td>6,700</td>
<td>0.54</td>
<td>0.85</td>
<td>0.15</td>
<td>0.02</td>
<td>0.62</td>
<td>0.61</td>
<td>0.09</td>
<td>0.02</td>
<td>0.71</td>
<td>0.71</td>
<td>285.47</td>
</tr>
<tr>
<td>Project #5 - (Option 1) Modifications to Existing Parking Ramp and Taxiway</td>
<td>160,074</td>
<td>4.28</td>
<td>10.18</td>
<td>1.06</td>
<td>0.51</td>
<td>2.19</td>
<td>2.17</td>
<td>3.96</td>
<td>0.83</td>
<td>6.15</td>
<td>3.00</td>
<td>2,629.83</td>
</tr>
<tr>
<td>Project #6 - New Hydrants and Fuel Lines and Demolition of Existing Hydrants</td>
<td>1,137</td>
<td>0.01</td>
<td>0.01</td>
<td>0.05</td>
<td>0.00</td>
<td>0.03</td>
<td>0.03</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>3.88</td>
</tr>
<tr>
<td>Total Option 1</td>
<td></td>
<td>8.01</td>
<td>16.11</td>
<td>2.08</td>
<td>0.62</td>
<td>6.18</td>
<td>6.12</td>
<td>5.30</td>
<td>1.11</td>
<td>11.48</td>
<td>7.23</td>
<td>4,479.82</td>
</tr>
<tr>
<td>Option 2 - 2015</td>
<td></td>
</tr>
<tr>
<td>Project #1 - Addition to Hangar 3333</td>
<td>17,892</td>
<td>1.43</td>
<td>2.28</td>
<td>0.40</td>
<td>0.04</td>
<td>1.65</td>
<td>1.64</td>
<td>0.62</td>
<td>0.13</td>
<td>2.27</td>
<td>1.77</td>
<td>762.34</td>
</tr>
<tr>
<td>Project #2 - Addition to Hangar 3336</td>
<td>18,206</td>
<td>1.46</td>
<td>2.32</td>
<td>0.41</td>
<td>0.04</td>
<td>1.68</td>
<td>1.66</td>
<td>0.64</td>
<td>0.13</td>
<td>2.32</td>
<td>1.80</td>
<td>775.72</td>
</tr>
<tr>
<td>Project #3 - Internal Renovations to Hangar 3322</td>
<td>0</td>
<td>0.30</td>
<td>0.47</td>
<td>0.06</td>
<td>0.01</td>
<td>0.04</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.04</td>
<td>0.04</td>
<td>122.99</td>
</tr>
<tr>
<td>Project #4 - New Simulator Building</td>
<td>6,700</td>
<td>0.54</td>
<td>0.85</td>
<td>0.15</td>
<td>0.02</td>
<td>0.62</td>
<td>0.61</td>
<td>0.09</td>
<td>0.02</td>
<td>0.71</td>
<td>0.71</td>
<td>285.47</td>
</tr>
<tr>
<td>Project #5 - (Option 2) Modifications to Existing Parking Ramp and Taxiway</td>
<td>12,029</td>
<td>0.32</td>
<td>0.77</td>
<td>0.09</td>
<td>0.04</td>
<td>0.16</td>
<td>0.16</td>
<td>0.02</td>
<td>0.02</td>
<td>0.18</td>
<td>0.17</td>
<td>160.11</td>
</tr>
<tr>
<td>Project #6 - New Hydrants and Fuel Lines and Demolition of Existing Hydrants</td>
<td>1,137</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>3.88</td>
</tr>
<tr>
<td>Total Option 2</td>
<td></td>
<td>4.05</td>
<td>6.70</td>
<td>1.10</td>
<td>0.15</td>
<td>4.16</td>
<td>4.11</td>
<td>1.37</td>
<td>0.29</td>
<td>5.52</td>
<td>4.46</td>
<td>2,140.10</td>
</tr>
</tbody>
</table>
APPENDIX B

Agency Coordination
May 22, 2014

Kevin Shupe
Environmental Scientist
GS-13 National Guard Bureau
ANG Readiness Center NGB/A7AN Shepperd Hall
3501 Fetchet Ave Andrews AFB, MD 20762

Dear Mr. Shupe:

The purpose of this letter is to address the National Guard’s May 6, 2014 email to Angela Skowronek, of my staff, requesting concurrence from the New Jersey Department of Environmental Protection (Department) that the Federal General Conformity requirements have been met for the proposed KC46-A Alternative Beddown Location project at Joint Base McGuire-Dix-Lakehurst (JB M-D-L). The Department has reviewed the proposed project to ensure its emissions conform to New Jersey’s State Implementation Plan (SIP).

The Federal General Conformity regulations provide Federal agencies with the flexibility to establish General Conformity budgets with the State in order to meet the requirements of the regulation. General Conformity budgets for Volatile Organic Compounds (VOC’s) and Oxides of Nitrogen (NOx) were established for McGuire Airforce Base (McGuire) in New Jersey’s 8-hour Ozone State Implementation Plan (SIP) Revision dated October 29, 2007. The 2011 VOC and NOx General Conformity budgets included in the SIP for McGuire are in effect and will remain in effect until further notice. McGuire has confirmed that the VOC and NOx air emissions associated with the proposed KC46-A Alternative Beddown Location project at JB M-D-L will be included in the budget calculation for the base. Therefore, the Department concurs that the General Conformity requirements have been met for the proposed KC-46-A Alternative Beddown Location project at JB M-D-L.

If you have any questions concerning this matter, please contact Angela Skowronek, of my staff, at (609) 292-6722.

Sincerely,

Sharon Davis
Section Chief
Bureau of Air Quality Planning