**PROJECT DOCUMENTATION PAGE**

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

**PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.**

1. **REPORT DATE (DD-MM-YYYY)**
   11-10-2013

2. **REPORT TYPE**
   Final Report

3. **DATES COVERED (From - To)**
   4-Sep-2012 - 3-Jun-2013

4. **TITLE AND SUBTITLE**
   Final Project – Modeling Interval Temporal Dependencies for Complex Activities Understanding

5. **ABSTRACT**
   Complex activity typically consists of temporally sequential or overlapping primitive events occurring over a time interval. The existing dynamic models are point-based and they cannot effectively model event temporal dependences. To overcome this limitation, we introduce the Interval Temporal Bayesian Network (ITBN), a novel graphical model that combines the Bayesian Network with the Interval Algebra, to explicitly model the temporal dependencies over time intervals. Furthermore, to handle the challenge with explicit primitive event detection and recognition, we present a novel method that integrates the ITBN with existing temporal models, enabling the modeling of complex activities in a more effective manner.

6. **AUTHORS**
   Qiang Ji

7. **PERFORMING ORGANIZATION NAMES AND ADDRESSES**
   Rensselaer Polytechnic Institute
   Office of Sponsored Research
   110 8th Street
   Troy, NY 12180-3522

8. **SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)**
   U.S. Army Research Office
   P.O. Box 12211
   Research Triangle Park, NC 27709-2211

9. **DISTRIBUTION AVAILABILITY STATEMENT**
   Approved for Public Release; Distribution Unlimited

10. **SPONSOR/MONITOR’S ACRONYM(S)**
    ARO

11. **SPONSOR/MONITOR’S REPORT NUMBER(S)**
    56583-CS-II.3

12. **NUMBER OF PAGES**
    10

13. **SUBJECT TERMS**
    Human activity modeling and recognition, Bayesian Network, and Interval Algebra

14. **SECURITY CLASSIFICATION OF**
    a. REPORT
       UU
    b. ABSTRACT
       UU
    c. THIS PAGE
       UU

15. **LIMITATION OF ABSTRACT**
    UU

16. **NUMBER OF PAGES**
    15

17. **NAME OF RESPONSIBLE PERSON**
    Qiang Ji

18. **TELEPHONE NUMBER**
    518-276-6440

Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std. Z39.18
ABSTRACT

Complex activity typically consists of temporally sequential or overlapping primitive events occurring over a time interval. The existing dynamic models are point-based and they cannot effectively model event temporal dependences. To overcome this limitation, we introduce the Interval Temporal Bayesian Network (ITBN), a novel graphical model that combines the Bayesian Network with the Interval Algebra, to explicitly model the temporal dependencies over time intervals. Furthermore, to handle the challenge with explicit primitive event detection and tracking in real world videos, we propose to use topic models to perform implicit event detection. Combining ITBN model with the topic models yields a powerful framework that can perform complex activity recognition without explicit primitive event detection and tracking. The proposed framework is evaluated on two computer vision applications: human body activity recognition and human facial activity recognition.

Enter List of papers submitted or published that acknowledge ARO support from the start of the project to the date of this printing. List the papers, including journal references, in the following categories:

(a) Papers published in peer-reviewed journals (N/A for none)

Received  Paper

TOTAL:

Number of Papers published in peer-reviewed journals:

(b) Papers published in non-peer-reviewed journals (N/A for none)

Received  Paper

TOTAL:

Number of Papers published in non peer-reviewed journals:

(c) Presentations

Number of Presentations:  0.00

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):
Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Peer-Reviewed Conference Proceeding publications (other than abstracts):

Received  Paper

10/10/2013  2.00  Ziheng Wang, Shangfei Wang, Qiang Ji. Capturing Complex Spatio-Temporal Relations among Facial Muscles for Facial Expression Recognition, IEEE Conference on Computer Vision and Pattern Recognition. 2013/06/20 00:00:00, . : ,

TOTAL: 1

Number of Peer-Reviewed Conference Proceeding publications (other than abstracts):

(d) Manuscripts

Received  Paper

10/10/2013  1.00  Yongmian Zhang, Yifan Zhang, Eran Swears, Natalia Larios, Ziheng Wang, Qiang Ji. Modeling Temporal Interactions with Interval Temporal Bayesian Networks for Complex Activity Recognition, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, (03 2012)

TOTAL: 1

Number of Manuscripts:

Books
TOTAL:

Patents Submitted

Patents Awarded

Awards
The PI was elected to a fellow of the International Association of Pattern Recognition, 2012

Graduate Students

<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT_SUPPORTED</th>
<th>Discipline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ziheng Wang</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

FTE Equivalent: 1.00
Total Number: 1

Names of Post Doctorates

<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT_SUPPORTED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FTE Equivalent:
Total Number:

Names of Faculty Supported

<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT_SUPPORTED</th>
<th>National Academy Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qiang Ji</td>
<td>0.10</td>
<td></td>
</tr>
</tbody>
</table>

FTE Equivalent: 0.10
Total Number: 1

Names of Under Graduate students supported

<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT_SUPPORTED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FTE Equivalent:
Total Number:
## Student Metrics

This section only applies to graduating undergraduates supported by this agreement in this reporting period

- The number of undergraduates funded by this agreement who graduated during this period: ....... 0.00
- The number of undergraduates funded by this agreement who graduated during this period with a degree in science, mathematics, engineering, or technology fields: ....... 0.00
- The number of undergraduates funded by your agreement who graduated during this period and will continue to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields: ....... 0.00
- Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale): ....... 0.00
- Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for Education, Research and Engineering: ....... 0.00
- The number of undergraduates funded by your agreement who graduated during this period and intend to work for the Department of Defense: ....... 0.00
- The number of undergraduates funded by your agreement who graduated during this period and will receive scholarships or fellowships for further studies in science, mathematics, engineering or technology fields: ....... 0.00

### Names of Personnel receiving masters degrees

<table>
<thead>
<tr>
<th>NAME</th>
<th>Total Number:</th>
</tr>
</thead>
</table>

### Names of personnel receiving PHDs

<table>
<thead>
<tr>
<th>NAME</th>
<th>Total Number:</th>
</tr>
</thead>
</table>

### Names of other research staff

<table>
<thead>
<tr>
<th>NAME</th>
<th>PERCENT SUPPORTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTE Equivalent:</td>
<td>Total Number:</td>
</tr>
</tbody>
</table>

### Sub Contractors (DD882)

### Inventions (DD882)
Through this project, our accomplishments can be summarized as follows:

1) we developed and implemented the proposed Interval Temporal Bayesian Network (ITBN) to model and capture complex spatiotemporal relationships among primitive events.

2) We further implemented a topic model to perform implicit primitive event detection and tracking, and integrated the topic model with the ITBN model to perform complex activity recognition without explicit event detection and tracking.

3) We demonstrated the integrated model for two computer vision applications: human activity recognition and facial activity recognition. The results demonstrate the superior performance of the proposed framework to the existing dynamic models.

4) We published the results from this research in top computer vision journal (IEEE PAMI) and conference (IEEE CVPR).

Technology Transfer