Chromium and Cadmium Replacement Options for Advanced Aircraft

Keith Legg

HCAT Program Review, KSC, Nov 2003
Title: Chromium and Cadmium Replacement Options for Advanced Aircraft

Author: Rowan Technology Group, 1590 S. Milwaukee Ave., Suite 205, Libertyville, IL, 60048

DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

ABSTRACT
23rd Replacement of Hard Chrome Plating Program Review Meeting, November 18-19, 2003, Cape Canaveral, FL. Sponsored by SERDP/ESTCP.

LIMITATION OF ABSTRACT
Same as Report (SAR)

NUMBER OF PAGES
72

CLASSIFICATION
- **REPORT:** unclassified
- **ABSTRACT:** unclassified
- **THIS PAGE:** unclassified
Chrome replacement
Summary of best options

<table>
<thead>
<tr>
<th>Technology</th>
<th>Applications</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal spray (HVOF)</td>
<td>Landing gear, hydraulics, flap tracks</td>
<td>>0.001” thick Not IDs</td>
</tr>
<tr>
<td>Electroless Ni (Ni-P, Ni-B)</td>
<td>IDs, other NLOS, TDC alt.</td>
<td>Adhesion, build-up, heat treat</td>
</tr>
<tr>
<td>Nano Co-P electroplate</td>
<td>IDs, TDC alt., carrier LG?</td>
<td>Heat treat</td>
</tr>
<tr>
<td>PVD</td>
<td>Gun barrel IDs, small components</td>
<td>Cost</td>
</tr>
<tr>
<td>Plasma spray</td>
<td>IDs>3” (> 1.5” with new gun)</td>
<td>ID>1.5” >0.001” thick</td>
</tr>
</tbody>
</table>

Qualified | In test

Keith Legg, klegg@rowantechnology.com
Niche options

- **Ion (Plasma) Nitride**
 - 500°C vacuum heat treat
 - Add oxide for corrosion resistance

- **Electrocomposites**
 - Electroplated Ni or Co with hard particles

- **Laser cladding**
 - Weld surfacing (also laser glazing, LISI, etc.)

- **Electrospark deposition (alloying)**
 - Localized repair and build-up

- **Explosive cladding**
 - Wide area bonding – IDs, gun tubes, etc.
Data available

Large quantity of detailed performance data available from HCAT, including rig and flight tests; also commercial flight experience
HVOF – available data
Reports available

HCAT

- Landing Gear
 - Joint Test Report
 - Cost and Performance Report
 - Final Report (NRL report)

- Propeller Hubs
 - Joint Test Report
 - Cost and Performance Report
 - Final Report (NRL report)

- JSF Reports
 - HVOF as a Cr replacement
 - ID Cr alternatives
 - Repair options for Cr and Cd

- Original DARPA Cr options report

C-HCAT (Landing Gear folder)

- Heroux Devtek
 - Fluid compatibility
 - Grinding
 - NDI
 - Stripping

- DND
 - Coupon testing

- Messier-Dowty
 - F-18 landing gear and drag brace rig tests (available shortly)

- Goodrich (available later)
 - Dash-8 rig test
 - Bend tests

Note: C-HCAT is all WC-CoCr

Keith Legg, klegg@rowantecnology.com
Applications - military

Qualified
- Landing gear components approved for HVOF coating at Hill AFB
 - A-10 MLG Piston
 - A-10 NLG Piston
 - B-1 MLG Axle
 - C-130 MLG Piston
 - C-141 MLG Bogie Beam
 - C-141 Outer Cylinder
 - C-5 MLG Roll Pin
 - C-5 MLG Ball Screw
 - C-5 MLG Outer Pitch
 - F-15 Drive Keys
 - KC-135 MLG Axles
- Messier-Dowty
 - CF-18 steering covers, piston heads, MLG hexagon repair
- F-22 (Raptor)
 - F-119 engine, convergent nozzle actuators

Rig and flight test
- NADEP-CP, H-S, WR-ALC
 - EA-6B landing gear (flight)
 - P-3 bomb bay door actuators (flight)
 - E-2C, C-2, P-3, and C-130: prop tailshaft, low pitch stop lever sleeve, rocker land (rig)
- Lockheed
 - P-3 landing gear (rig)
- Messier-Dowty
 - F-18 landing gear (rig)
- TF-33 engine, (P&W)
 - Accelerated Mission Test (AMT)
- NAVAIR PAX, Greene Tweed
 - Hydraulic actuator rig tests

F-35 – Goodrich
WC-CoCr baselined for piston and axle journals

Keith Legg, klegg@rowantecnology.com
Applications - commercial

- **Commercial – OEM**
 - Boeing - >100 spot HVOF uses
 - B767-400 HVOF on landing gear (production)
 - Airbus 380 spec’d for HVOF WC-CoCr (Goodrich)
 - GEAE uses for GTE shafts
 - Bombardier flap tracks
 - Messier-Dowty installing HVOF for landing gear

- **Commercial – MRO**
 - Boeing permits HVOF for repair to 0.010”
 - Delta using HVOF landing gear repair in own maintenance shop
 - Similar moves at United and American
 - Flap and slat tracks, various aircraft
Advantages and Limitations

Advantages
- Much better wear resistance
- Lower seal wear (with proper superfinish)
- Takes a good finish (superfinish)
- Little or no fatigue debit
- Dry process, no embrittlement
- Easily stripped
- Widely available

Limitations
- Spalls at high cyclic bending load (close to yield)
- Spalls with high point or line load
- Coating can corrode (different mechanism)
- Cannot coat IDs
- Substrate heating (must control process)
- Must be done in booth (noise and dust, robotic)
Developments needed

- **More ductile HVOF coating**
 - Primarily needed for MRO (thick coatings)
 - Existing material fine for OEM use
 - Avoid spalling at high load
 - Will almost certainly have worse wear (softer)
 - But still better than EHC
 - Use only where high bending or contact stresses
 - May be a layered coating with ductile build and brittle overlay
 - Increased wear rate on breakthrough

- **Same grinding wheel for steel and HVOF**
 - Is being done commercially
 - Hill AFB tests under way – looks readily doable
Summary of HVOF implementation issues

- **Integrity at high stress**
 - Issue only for thick overhaul coatings on carrier-based aircraft
 - Sensitive to cyclic contact stress
 - Not seen in rig tests but should be watched

- **Masking**
 - Can be very personnel-intensive
 - Cannot use tapes
 - Hard masking needed – have to build up mask inventory

- **Grinding**
 - Need Al₂O₃ wheel for metal but diamond wheel for HVOF carbides
 - Machine resetting or different grinding procedures (feeds, speeds, lubricants)
 - Recent testing looks good

- **Corrosion**
 - EHC does not corrode – substrate corrodes and undercuts coating
 - HVOF matrix (Co) can corrode, causing roughening, leakage, but not undercuts coating
 - Slow increases in leakage rather than catastrophic flaking
 - Seen with one operator’s actuators in Europe – probably due to specific fluids or de-icers used only there

- **Embrittlement relief**
 - Hydrogen appears to diffuse slower through HVOF – may need longer H bake after Nital etch

Keith Legg, klegg@rowantecnology.com
Electroless Ni

Electroless Ni, being a Ni material, is next against the wall and is on the JSF Restricted Materials List.
Consider as an intermediate coating – a lot better than chrome, but likely to need replacement itself pretty soon.
Applications

- **Wide variety of industrial applications**
- **Aircraft**
 - GTE components – P&W uses Ni-B various parts
 - Compressor blades (erosion, corrosion)
 - Shaft rebuilding
 - Flap tracks
 - Bearing journals
Advantages and limitations

- **Advantages**
 - No electrodes
 - No edge build-up
 - Thin or thick
 - A variety of EN composites available
 - SiC
 - Diamond
 - Teflon

- **Limitations**
 - Adhesion always a concern
 - Requires 300-400°C heat treat for max hardness
 - Hydrogen evolved during deposition
 - Does not seem to cause embrittlement
 - Bath must be dumped periodically
Data available

- Like EHC electroless Ni has been around for so long that little data is available
 - Especially need comparison to EHC
- Some data available from vendors
 - Concern over reliability, accuracy
- Beware – most data will be for heat treated state, but most airframe usage will be as-deposited
 - Wear not as good, corrosion better

- Studies of a number of electroless and electroplated Ni coatings being done by AFRL
 - Work ongoing
 - Typical hardness 700 – 850 HV
 - Good barrier corrosion, but no protection if breached (as with Cr)
 - http://www.materialoptions.com/w2g/cgi/kmcgi.exe?O=DIR0000000H8I&V=0
 - joseph.kolek@wpafb.af.mil

Keith Legg, klegg@rowantechology.com
Implementation issues

- Reliable adhesion is biggest production issue cited by aerospace users
- Requirement for heat treating for maximum hardness means that for many applications must be used as-deposited
 - Significantly lower wear resistance
 - Data needed for as-deposited and heat treated state
Nanophase Co-P

New coating developed by Integran of Toronto, Canada
SERDP Project #1152, almost completed
http://www.materialoptions.com/w2g/cgi/kmcqi.exe?O=GRP00000000H8F&V=0
Pulse Plating favors nucleation of new grains over growth of existing grains, resulting in an ultra-fine grain structure throughout the entire thickness of the coating, right from the substrate interface.

Typical deposition conditions
2ms pulses
125Hz, 25% duty cycle
2 – 3V, 150mA/cm²
Advantages and limitations

Advantages
- **Drop-in**
 - Wherever EHC can go Co-P can go
- Better corrosion than EHC
- Little or no embrittlement
 - May work for field repair
- Looks usable to replace EHC, TDC, brush Cr

Limitations
- **ESOH**
 - OSHA pel for Co (8hr TWA) = 0.1 mg(Co)/m³
 - OSHA pel for metallic Cr (8hr TWA) = 1 mg(Cr)/m³
 - Co not known carcinogen
 - No regs at this time
- Heat treat for best hardness
- Requires pulse power supplies
 - Capital cost

Keith Legg, klegg@rowantechnology.com
Data available

Info at
http://www.materialoptions.com/w2g/cgi/kmcgi.exe?O=GRP0000000H8F&V=0
nCo-P structure

Nano Co-P alloy coatings developed under SERDP project PP-1152 as an environmentally-benign replacement for hard Cr coatings for NLOS applications.

Synthesis of Nanocrystalline Co-P Alloys

- Electrodeposition parameters modified to yield deposits with average grain sizes below 100nm
- Pulsed Current Deposition
- Plating Efficiency >90%
- Deposition rate 2-8 mills/hr
- Consumable & nonconsumable anode

Coating Thickness and Integrity of Nano Co 2-3wt%P

Surface Morphology

- Nodular, cauliflower morphology
- No pits, cracks, pores

Cross-Section

- Thickness ~135µm
- No pits, cracks, pores

Keith Legg, klegg@rowantecnology.com
Implementation issues

- ESTCP program approved between HCAT, Lockheed, Curtiss-Wright, Smiths Aero, NADEP JAX, OO-ALC to validate for ID EHC and for TDC replacement
 - Will begin January 04
 - Primary issues:
 - Can it work as a TDC alternative?
 - Heat treat requirements to meet TDC requirements
 - Embrittlement – is it really non-embrittling?
 - Long term bath and process stability in depot environment (processing many different items)
Physical Vapor Deposition (PVD)

PVD involves deposition from a solid material source – evaporation, sputtering, arc
Applications

- Limited applications in aerospace
- Major application is TBCs
 - E-beam evaporated ZrO₂
- Wear resistance
 - TiN
 - Bearing races and retainers
- Blade erosion
 - MDS Prad coating
- Fretting
 - AlCu
- Low friction
 - Variations of MoS₂
Advantages and Limitations

Advantages
- Very hard, wear resistant
- Reproducible, high quality
- Smooth
 - No finishing needed
- Probably good TDC alternative
- Many vendors
 - Esp. for TiN, DLC

Limitations
- Cost
- Thin (typically 3µm – 0.0001”)
 - Cannot be used for rebuild
- Lack of specs
- Vacuum requirements
 - Size limitations
 - Substrate temperature typically >250°C
 - Less reliable at low T
 - High cleanliness
 - Line of sight
Data available

- Large amounts of data available for many PVD coatings
 - Most in R&D journals
 - Little or no publicly available data for aerospace production use
Implementation issues

- Best applications for thin wear- or RCF-resistant items for max life (difficult to strip)
 - Items that will not be refurbished
 - Pins, gears, bearings
 - Niche applications
- Need data on wear and seal performance
- Easy to make components into cutting tools, esp with gears
- ID hard coatings under development
 - Marshall Labs, Paradigm Shift Techs
Plasma spray

Plasma spray guns can be small and the stand-off distance (gun-substrate) is much less than with HVOF
Applications

- Already specified for various repairs and build up in GTEs and airframes
 - Often used for same-material dimensional restoration

- In general new applications use HVOF rather than plasma spray
 - Plasma spray cheaper but quality lower

- Good method for coating IDs
 - Most guns only capable of coating >3” ID
 - New Sulzer Metco F-300 gun >1.6”
 - Makes most sense when already use HVOF for OD, so can do ID and OD with same spray booth, robot, etc.
CH-53 helicopter blade damper

- Approved for repair
- T400 plasma spray on ID
- Typical actuator coatings:
 - Rod – HVOF/D-gun WC-Co, WC-CoCr, WC-CrNi
 - Piston – HVOF/D-gun WC-Co, T400
 - ID – plasma spray T400

HVOF/D-gun WC-Co (rod)

Plasma spray Tribaloy 400 (ID, piston)
Advantages and limitations

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Similar to HVOF</td>
<td>Adhesion not as good as HVOF</td>
</tr>
<tr>
<td>Able to coat inside IDs down to 3” ID for most guns, 1.6” for Sulzer F-300 gun</td>
<td>3-7 ksi vs >10 ksi</td>
</tr>
<tr>
<td></td>
<td>Lower porosity than HVOF</td>
</tr>
<tr>
<td></td>
<td>10% vs 1 - 2%</td>
</tr>
<tr>
<td></td>
<td>Can allow leak-by in gas-over-fluid systems</td>
</tr>
<tr>
<td></td>
<td>Requires grind, superfinish</td>
</tr>
<tr>
<td></td>
<td>More difficult for ID than OD</td>
</tr>
</tbody>
</table>
Data available

Nowhere near the amount of data available for HVOF. ID coating data available from HCAT ID plasma spray program.

http://www.materialoptions.com/w2g/cgi/kmcgi.exe?O=GRP0000000GOW&V=0
Implementation issues

- May need to be sealed for some hydraulic applications
- Surface finish not well defined – likely to need superfinish
- Design of air sweep to take heat and overspray from ID
- Plunge-grinding specs for OEM pistons
 - Coat piston, then plunge-grind seal groove
Conclusions on Cr replacement options

- **HVOF is the method of choice for most ODs**
 - WC-CoCr wherever possible for better corrosion resistance
 - Where stress is too high we will need a more ductile coating
 - Maybe nCo-P, electro- or electroless Ni, or similar, trading wear life for coating integrity

- **For IDs standard HVOF not viable**
 - Electro- and electroless plating
 - Widest applications, including thin dense and flash Cr replacement
 - ID plasma spray
 - Most cost-effective when using HVOF or other thermal spray for OD
 - **PVD**
 - Niche applications because of cost and complexity
 - Could be broadened with reliable vendors, data, specs, especially for TDC replacement
Cadmium replacement options
Usage

Steel Components
- The “cure-all” corrosion coating
- Good salt spray and scribed corrosion protection
- No hydrogen embrittlement or stress corrosion cracking
- ODs and IDs
- Plate steel to protect Al

Fasteners
- Correct lubricity (avoid changes to torque-tension specs)
- No hydrogen embrittlement
- Retain thread profile

Connectors
- For electrical equipment
- Low contact resistance
- Non-insulating corrosion products
- Solderable a plus

Keith Legg, klegg@rowantechnology.com
Galvanic series

- Al and Al alloys
- Zn-Ni
- Al-Mn
- Zn
- Be!!

Mother Nature left us short on options!
Summary of Cd alternative options

Cd alternatives

Vacuum Al alternatives
- IVD aluminum (Ivadizing)
 - ID sputtered Al for IDs

Aqueous electroplated alloys
- Zn-Ni

Non-aqueous electroplates
- Electroplated Al (Alumiplate)
 - Molten salt bath Al-Mn

Niche alternatives
- SermeTel ceramic coatings
 - Metal-filled polymers
 - CVD Al (small IDs)

Alternative base alloys
- New high strength stainless

Al is the only “global” replacement
Almost everything needs chromate conversion

In use In test In development

Keith Legg, klegg@rowantecnology.com
JSF Cd Alternatives Report

- Requirements
- Alternatives
 - Zn-Ni, Sn-Zn electroplates
 - Alumiplate
 - Al-Mn molten salt bath
 - IVD and CVD Al
 - Sputtered Al
 - Thermal spray
 - SermeTels
 - Filled polymers
 - High strength stainless steel

http://www.materialoptions.com/w2g/cgi/kmci.exe?O=DIR0000000GK&P&V=0
Joint Test Report

- Cd alternatives report for low strength steels (<220 ksi)
 - Boeing, JGPP
 - Sn-Zn
 - Acid Zn-Ni (Boeing)
 - Alkaline Zn-Ni
 - IVD Al

http://www.materialoptions.com/w2g/cgi/kmcgi.exe?O=DIR000000016D&V=0

Engineering and Technical Services for Joint Group on Pollution Prevention (JG-PP) Projects

Joint Test Report
BD-R-1-1

for Validation of Alternatives to Electrodeposited Cadmium for Corrosion Protection and Threaded Part Lubricity Applications

October 1, 2002

Distribution Statement "A" applies. Approval for public release, distribution is unlimited.

Contract No. DAAE36-99-C-1050
Task No. N.272
CDRL A006

Prepared by:
National Defense Center for Environmental Excellence (NDCEE)

Submitted by:
Concurrent Technologies Corporation (CTC)
100 CTC Drive
Johnstown, PA 15904

Keith Legg, klegg@rowantechology.com
IVD Al

Vacuum PVD process
Fully qualified and quite widely used by OEMs and depots
Spec MIL-C-83488 for Al coating does not define deposition method
Applications

- **Military**
 - F-4
 - F-14
 - F-15
 - F-16
 - F-18
 - AV-8B
 - A-12
 - V-22
 - Apache

- **Commercial**
 - Boeing 737, 747, 757, 767
 - McDonnell-Douglas DC9, 10, MD-80, 90, 11
 - Bombardier Dash 7, 8
 - Airbus A300, A310
Advantages and limitations

Advantages
- Qualified commercial process
 - Commercial coating shops
 - IVD-coated fasteners available commercially
- Clean and safe
- Good performance
- No H embrittlement

Limitations
- Vacuum process
 - Expensive
 - Awkward
- Poor quality coating as-deposited
 - Peen and chromate
- Poor throwing power
- Soft and easily damaged
 - Cannot easily be repaired
- Dissolves in alkaline cleaners
 - MRO users may have to change cleaning process
Data available

Data available from Boeing, JGPP report
http://www.materialoptions.com/w2g/cgi/kmcgi.exe?O=DIR000000016D&V=0
PVD Al for IDs – sputtered Al

- Marshall Labs Plug and Coat
 - Works inside IVD chamber
 - Makes it possible to coat OD and ID simultaneously Plug & Coat
 - Add-on to existing IVD chamber
- Status
 - Being installed at Hill AFB
 - Commercially available
 - Meets MIL Spec.
- Note: All Al coatings require use of proper aqueous cleaners (avoid alkaline cleaners)
Developments needed

- Some additional environmental embrittlement data needed
- Plug and Coat miniaturization needed for smaller IDs
 - Under way at Marshall Labs
- Porosity and need for peening always an issue
 - Various approaches for better coating quality
 - Higher plasma density
 - Sputtering instead of IVD
 - Pulse biasing
Electroplated Al (Alumiplate™)

Alumiplate, Minneapolis
Deposited from organic solution
Alumiplate description

- **Organic electroplate**
 - Requires enclosed tank and plating line in inert environment
 - Similar to vacuum processing but less
 - Al salts in toluene solution
 - Reasonable throwing power
 - Needs conformal or secondary electrodes for complex shapes, IDs
 - Frequently uses Ni strike for adhesion
 - Recent development uses grit blasting and activation with no Ni strike
 - Equivalent adhesion
 - Metallic strike needed for insulators such as composites
 - Coating thickness 0.0001 – 0.001”
 - Usually 0.0003 – 0.0005”
 - Conversion coat (traditionally chromate) for best corrosion performance (as with all other Cd alternative)
Advantages and Limitations

Advantages
- “Drop-in” replacement
- Able to coat complex shapes
- Higher quality coating than as-deposited IVD AL
- Suitable for components, connectors, fasteners (with dry lube)
- Directly compatible with Al skins
- Can be anodized for better wear and abrasion

Limitations
- Size limited
 - Landing gear about 3’ long
 - Limited by current bath size
 - Appears scalable
- Requires dry lube for threads to prevent galling
- Sole source is Alumiplate, Minneapolis
 - Willing to license, but no current licensees
 - Not yet available in Europe
- High capital cost
- Toluene bath not suitable for DoD depot use
- Cannot brush plate Al repair
 - Can brush plate Sn-Zn to repair Al
Data available

A great deal of data becoming available as a result of ongoing JSF and Army testing. Rowan is currently putting together a report on the technology – available by year’s end.
Electrical connectors

- Meets all tests for qualification on connector shells (MIL-DTL-38999K testing)
 - Al and C-fiber/PEEK composite
 - Corrosion, conductivity stability in salt fog
 - Mate/unmate testing (wear, torque, conductivity)
 - No insulating corrosion products

- Amphenol has now assigned part numbers for commonly-used AlumiPlated aerospace connectors
Other issues

- **Repairability**
 - Al can be repaired by brush plating Sn-Zn after suitable activation (Boeing)
 - Can also be repaired with brush-on SermaTel

- **Anodizing**
 - Can be anodized, leaving Al layer beneath anodize layer
 - Will improve wear and abrasion, but hard coating on soft underlay not a good high load wear surface

- **Any form of Al avoids Cd embrittlement**
 - Very bad form of embrittlement
 - Can occur when aborted takeoff heats brake discs and nearby landing gear components
Developments needed

- Non-toluene solution needed for depot use
 - Present chemistry cannot be used in depots
- Additional sources for plating service
- Additional embrittlement testing
- Well-defined brush plate or other repair
 - Both for OEM and MRO use
Other ways to deposit Al

- **Arc or flame spray**
 - Used on some Bombardier aircraft
 - Thick coating (0.001 – 0.003”)
 - Rough
 - Al-Zn arc spray used on support equipment, radar towers, bombs

- **CVD**
 - Generally high temperature
 - Used for cooling passages in hot section blades
 - AFRL SERDP project approved for FY 04

- **Slurry Al – developed by Liburdi Engineering**
 - High temperature heat treat
 - For hot section turbine blades (oxidation resistance)
SermeTel®

Metal-filled ceramics from SermaTech
SermeTel

- Al flakes in ceramic matrix
- Brush or spray on
- Older formulations contain Cr\(^{6+}\)
- Heat treat 375-700°F
 - Hard, glassy coating
- Grit blast to uncover Al

Figure 17. SermeTel aluminum-ceramic coating cross sections 500x. Left chromate-containing coating; right chromium-free coating.
Applications

- **Used in turbine engines**
 - Cases and discs

- **Landing gear in some older aircraft (commercial)**

- **F-22**
 - Extensive use of SermeTel coatings on landing gear and other systems
 - See Baltimore meeting on Materials Substitution for P2 in Advanced Aircraft (2002)
Advantages and limitations

Advantages
- Simple spray or paint
 - Can be used for repair
- Hard coating
 - Abrasion resistant

Limitations
- Sole source
 - Licensing to major users only (e.g. Goodrich)
 - Others (inc. depots) must send to SermaTech
 - Very high cost
- Requires heat treat
 - Can be low enough T for HSS
- Embrittlement from acids in formulation
 - When using 984/985 HE on A100 for F-22
 - New formulation, not yet tested or approved
- Contains chromates
 - New non-chromate formulations now available

Note: There are now some other similar coatings on the market

Keith Legg, klegg@rowantech.com
Data available

Little publicly available data
Zn-Ni electroplate
Applications

- Boeing uses acid Zn-Ni
 - Restricted to UTS<220 ksi because of embrittlement issues
- Oklahoma City ALC
 - Replaced Cd and TiCd with brush Cd, Zn-Ni and IVD in 1991
Advantages and limitations

Advantages
- Aqueous electroplate
 - Easier application in open tanks
- Qualified process
- Tank and brush plate

Limitations
- Alloy chemistry
 - Difficult to ensure reproducibility and uniformity, especially on complex shapes
- Embrittlement
Data available from Boeing, JGPP report

http://www.materialoptions.com/w2g/cgi/kmliği.exe?O=DIR00000016D&V=0
Developments needed

- Extension to high strength steels
 - New JTP for HSS under way – Boeing, JGPP
- Brush plating
 - Is Zn-Ni a good repair for IVD or electroplated Al?
High strength stainless steel

S-53 – new steel developed by QuesTek Innovations LLC
Advantages and limitations

Advantages
- No coating to come off
- Eliminates corrosion
 - Primary cause of landing gear overhaul and parts condemnation
- Avoids SCC
 - Primary mechanism for major landing gear failure

Limitations
- Cannot be used uncoated against Al
- More expensive than 300M
 - A bit less than cost of A100
Developments needed

- Full validation of properties and performance
- Development of materials database
- Licensing to steel producers so commercially available
 - QuesTek’s intent is licensing to several steel companies (QuesTek is a steel developer, not a producer)
Data available

Extensive data will become available over next 2 years from ESTCP program
HSSS properties

- HT + LN₂ + single temper
- HT + LN₂ + double temper
- HT + longer LN₂ + double temper
- HT + dry ice + double temper
Current status

- Appears to be mechanically equivalent to 300M but much better fracture strength and SCC
- Being tested and validated at Hill AFB
- Work to be complete in 3005
- Will obtain data needed for qualification
 - Not MIL Handbook 5 (requires 10 heats at $300,000/heat)
 - Will do three heats to 20,000 lb
 - Then use AIM method (Accelerated Insertion of Materials) to interpolate between and extend lab data using modeling data
Conclusion on Cd alternatives

- **Al** is the best overall option, but deposition methods are not straight “drop-in”
 - Electroplated Al looking increasingly good for OEMs
 - If adopted broadly, what about depot repair?
 - Non-toluene electroplate? IVD + sputtering?

- **High strength stainless** exciting new development
 - Will be 2 or 3 years before it is fully qualified at Ogden
 - Even then, no MIL Handbook 5 numbers
 - Modeling will tell us more about this steel than we know about most others

There are niche applications for other Cd alternatives