Cadmium Alternatives:
Zinc-Nickel Electroplating &
Repair of Aluminum Coatings

Presented at:
SERDP/ESTCP Workshop
February 27, 2008

Presented By:
Stephen Gaydos
Technical Fellow – M&P
Boeing – St. Louis
Environmental Assurance
Cadmium Alternatives: Zinc-Nickel Electroplating & Repair of Aluminum Coatings

Surface Finishing and Repair Issues for Sustaining New Military Aircraft Workshop, February 26-28, 2008, Tempe, AZ. Sponsored by SERDP/ESTCP.
Zinc-Nickel Performance Update
LHE Alkaline Zn-Ni Plating Development

• **Project Goal**
 – Develop an LHE (Low Hydrogen Embrittlement) Version of Alkaline Zn-Ni Plating for HSS Aircraft Parts
 • Look at Different Zn-Ni Formulas
 • Remove Brighteners and Other Additives to Create Low Embrittling Plating Process

• Based on Successful Test Results an LHE Alkaline Zn-Ni Formula was Selected for Further Development
 – Identified as IZ-C17 (contains 13 to 17% Ni)
 – Has Good Corrosion Performance
 – Passes Hydrogen Embrittlement and Re-Embrittlement Testing with ASTM F 519 Ty 1a.1 and 2a Test Specimens
 • Re-Embrittlement Test Specimens Exposed to Distilled Water and 3.5% Salt Water
IZ-C17 Zn-Ni Plating Tank

- 60 L Plating Tank Installed in Laboratory
IZ-C17 Zn-Ni Plating Process

<table>
<thead>
<tr>
<th>IZ-C17 Zn-Ni Process</th>
<th>Cadmium Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Solvent Clean</td>
<td>• Solvent Clean</td>
</tr>
<tr>
<td>• Grit Blast</td>
<td>• Grit Blast</td>
</tr>
<tr>
<td>• Water Rinse</td>
<td>• Water Rinse</td>
</tr>
<tr>
<td>• IZ-C17 Zn-Ni Plate</td>
<td>• Cadmium Plate (Cd + CN⁻)</td>
</tr>
<tr>
<td>• Rinse</td>
<td>• Rinse</td>
</tr>
<tr>
<td>• Embrittlement Bake</td>
<td>• Chromic Acid Neutralize (Cr⁶⁺)</td>
</tr>
<tr>
<td>• Rinse</td>
<td>• Rinse</td>
</tr>
<tr>
<td>• Chromate Conversion Coat</td>
<td>• Embrittlement Bake</td>
</tr>
<tr>
<td></td>
<td>• Nitric Acid Activate (HNO₃)</td>
</tr>
<tr>
<td></td>
<td>• Rinse</td>
</tr>
<tr>
<td></td>
<td>• Chromate Conversion Coat</td>
</tr>
<tr>
<td></td>
<td>• Rinse</td>
</tr>
</tbody>
</table>

Zn-Ni Process is Easier and Less Hazardous Than Cadmium Plating
IZ-C17 Zinc-Nickel Corrosion Tests

• LHE Cadmium Plating (Top) and IZ-C17 Zinc-Nickel Plating (Bottom)
 – Scribed ASTM B 117 Salt Spray Test after 1000 Hours Exposure
 • No Red Rust in Scribed Areas
IZ-C17 Zn-Ni Adhesion and Thickness

IZ-C17 Has Good Adhesion and Uniform Thickness

Sample # 3061
Thickness = 0.45 +/- 0.02
DAC Adhesion = Pass

Sample # 3062
Thickness = 0.47 +/- 0.02
DAC Adhesion = Pass

Sample # 3063
Thickness = 0.44 +/- 0.04
Mil Spec Adhesion = Pass

LHE IZ-C17 Zinc-Nickel on Steel
JCAT Throwing Power Test

Hull Cell Test Panel Inserted In Plastic Tube

Tube with Hull Cell Test Panel Placed in Zn-Ni Plating Bath
2007 Testing of IZ-C17 Zn-Ni Plating

- Numerous Qualification Tests with IZ-C17 LHE Zn-Ni Plating Completed in 2007 – Report Issued to Air Force
 - Hydrogen Embrittlement (1a.1, 1a.2, 2a)
 - Adhesion and Metallurgy
 - Corrosion Testing (Salt Spray and Galvanic)
 - Fluid Immersion (ASTM F 483)
 - Lubricity (Fasteners)
 - Strippability
 - Ammonium Nitrate (pH 10)
 - Dilute Hydrochloric Acid
 - Throwing Power (JCAT Method)
 - Fatigue
Zinc-Nickel vs. Cadmium Score Sheet

<table>
<thead>
<tr>
<th>Properties</th>
<th>LHE Cadmium</th>
<th>IZ-C17 LHE Zinc-Nickel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corrosion - Salt Spray</td>
<td>1000 hours</td>
<td>+ 1000 hours</td>
</tr>
<tr>
<td>Hydrogen Embrittlement (1a.1)</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>Hydrogen Re-Embrittlement - Water</td>
<td>Marginal</td>
<td>Pass</td>
</tr>
<tr>
<td>Hydrogen Re-Embrittlement - Salt Water</td>
<td>Fail</td>
<td>Pass</td>
</tr>
<tr>
<td>Throwing Power</td>
<td>Poor</td>
<td>Good</td>
</tr>
<tr>
<td>Fatigue</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Lubricity</td>
<td>Good</td>
<td>Needs Lubricant</td>
</tr>
<tr>
<td>Electrical Properties</td>
<td>Good</td>
<td>TBD</td>
</tr>
<tr>
<td>Fluid Immersion</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Strippability</td>
<td>Good</td>
<td>Good*</td>
</tr>
</tbody>
</table>

* Dilute HCl Solution - Strips Zn-Ni in 10 seconds and is Non-Embrittling
Evaluation of IZ-C17+

- Dipsol has Improved the LHE Zinc-Nickel Plating Bath with Better Stability and Longer Plating Bath Life
 - IZ-C17+
- IZ-C17+ is Similar to IZ-C17 But Contains Better Stabilizers and Bath Life Extenders
- Preliminary Tests Have Shown that IZ-C17+ is Equivalent in Performance to IZ-C17
 - Tests Performed with Tri-Chrome Conversion Coating
- SBIR Project to Implement LHE Zn-Ni Plating at Air Force ALC
 - Boeing Partnered with ES3
 - IZ-C17 or IZ-C17+ Will Be Used for This Application
IZ-C17+ Zn-Ni Plating Process

IZ-C17+ Zn-Ni Process
- Solvent Clean
- Grit Blast
- Water Rinse
- IZ-C17+ Zn-Ni Plate
- Rinse
- TriCr Conversion Coat
- Rinse
- Embrittlement Bake

IZ-C17 Zn-Ni Process
- Solvent Clean
- Grit Blast
- Water Rinse
- IZ-C17 Zn-Ni Plate
- Rinse
- Embrittlement Bake
- Rinse
- Chromate Conversion Coat
- Rinse

TriCr CC on Zinc-Nickel Is Not Affected by the 375°F Baking Temperature

IZ-C17+ with TriCr CC Process is Easier and Less Hazardous Than IZ-C17 with HexCr CC
2008 Tasks to Implement Zn-Ni

- Issue DPS for LHE Zn-Ni Plating
- Set-Up Larger Tank (200 to 400 Gallon) for Production Process Control Testing
- Continue to Evaluate Tri-Chrome Conversion Coating on Zn-Ni
- Develop an Accelerated Hydrogen Embrittlement Test
- Perform Hydrogen Re-Embrittlement Tests with Maintenance Fluids (Cleaners and Paint Strippers)
- Perform Additional Fatigue Tests
- Evaluate Performance of Aircraft Paint Systems on Zn-Ni
- Develop Touch-Up Brush Plating to Repair Zn-Ni
- Evaluate Electrical Bonding and Grounding Performance
- Identify Lubricant System for Zn-Ni Plated Fasteners
Repair of Aluminum Coatings Update
Current IVD Al Repair Methods

- IVD Aluminum Repair Methods on HS Steel Alloys
 - Condition 1: Bare IVD Al on Steel
 - Touch-Up with Brush Cd Plating
 - Condition 2: Painted IVD on Steel
 - Remove rust and scratches
 - Apply two coats epoxy primer
 - Apply one coat sprayable or brushable sealant
 - Apply two coats polyurethane top coat

- IVD Al Repairs Shall Not Exceed 5% of Total Part Area or 0.5 in² per Individual Area
 - Repairs That Exceed Limits
 - IVD Al Shall Be Stripped and Reapplied
Alternative Al Coatings and Repairs

- IVD Aluminum Coating Alternatives Being Developed or Implemented for High Strength Steel
 - Sputter Aluminum
 - Electroplated Aluminum – Alumiplate
 - APCVD Aluminum

- An Environment Friendly Repair Method is Needed for These Environment Friendly Coating Processes
 - Sn-Zn Brush Plating
 - Zn-Ni Brush Plating
 - SermeTel 249/273
 - Cold Spray Aluminum
Brush Plating

- Potential Candidates Considered
 - LDC 5030 Sn-Zn and SIFCO 4018 Zn-Ni
- LDC 5030 Sn-Zn Selected Because of No-Bake Hydrogen Embrittlement Performance
- Aluminum Surface Preparation for Brush Plate
 - Bare Aluminum – Poor Adhesion
 - Zincate Brush Treat – Inconsistent Results
 - Nickel Strike – Good Adhesion
- Corrosion and Adhesion Tests Performed with Brush Sn-Zn and Cadmium Applied to Damaged IVD Aluminum Steel Test Panels
Repair Test Specimens

- Corrosion Test Specimen
 - Mask 1"
 - 4"
 - 6"

- Adhesion Test Specimen
 - Mask 3/4"
 - 1"
 - 4 or 6"

4130 Steel with IVD Aluminum Applied
Brush Tin-Zinc on IVD Al

Brush Cd Repair on IVD Al

Brush Tin-Zinc Repair on IVD Al
Brush Plating Properties

- Adhesion of LDC 5030 Brush Sn-Zn on IVD Aluminum is Good with the Nickel Strike
- Fatigue Test Results for Brush Sn-Zn are Similar to Brush Cd Plate
SermeTel 249/273

- Repair Specimens Prepared for JG-PP JTP Phase I
 - SermeTel 249/273 Applied to Bare Steel for Hydrogen Embrittlement and Adhesion Testing in Phase I
 - Failed Adhesion but Passed HE Tests
- Additional Type 1a.1, 1x4 and 4x6 Samples Prepared and Shipped to CTC for Phase II Testing
 - No Results to Report
Cold Spray Aluminum

- Cold Spray – Particles Impacting on Substrate Do Not Melt
- Process Adaptable to Wide Variety of Operating Conditions (Supply Gases, Gas Temperature, Powders, Feeder Designs, Nozzle Designs, Manual or Robotic Application)
Cold Spray Aluminum

- Need Robust and Easy to Operate Portable Cold Spray Equipment for Repair of Aluminum Coatings
- Equipment and Processes Available from Several Different Companies
 - Dymet
 - Centerline
 - K-Tech
 - ARL
 - Innovati
 - Delphi
 - ASB
 - CGT
 - Etc.
Dymet

- Steel Test Samples Sent to Obinsk Center for Powder Spray (OCPS) for Application of Cold Spray Al with Dymet Equipment
- Coating Appearance was Acceptable But System Did Not Seem to be Operator Friendly
Dymet Results

- Test Results for Steel Samples Received from OCPS with Dymet Cold Spray Al Coatings
 - Good Adhesion
 - Good Corrosion Performance (1000 Hr B 117 Scribed – No Rust)
 - Process is Non-Embrittling to HS Steel
 - Thickness 1.5 to 2 mil

CP11 - DYMET
Cold Spray Aluminum

Passed Bend to Break Adhesion Tests
Centerline SST

- Centerline SST Unit is Improved Version of Dymet Equipment

MEET YOUR NEW WINGMAN...
SST Results for Cold Sprayed Al

• Adhesion Testing Carried Out on Steel and IVD Aluminum
 – Passed Tape Adhesion Test
 – Passed Glass Bead Burnish Adhesion Test at 60 psig
 • This is the Adhesion Test Used for IVD Al
 – Some Flaking on Bend-to-Break Test

• Corrosion Test Results Carried Out on Damaged IVD Aluminum Steel Panels
 – Exceeded MIL-DTL-83488 Requirement
Corrosion Test of SST Cold Spray Al

Cold Sprayed Al
Applied Robotically

Cold Sprayed Al
Applied Manually

ASTM B 117 1008 Hours

0 Hours

1008 Hours
Cold Spray Test Plans

- Purchase Centerline SST Portable Unit
 - Develop Process to Repair Damaged Aluminum Coatings
 - Thickness
 - Adhesion
 - Corrosion
 - Fatigue
 - Hydrogen Embrittlement
- Continue to Work with Other Cold Spray Vendors and Laboratories to Repair
 - Damaged Alclad Aircraft Skins
 - Damaged Aluminum Aircraft Parts
Questions?