Cadmium Replacements for High Strength Steel Fasteners

Anthony Eng
NSWCCD-SSES
Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAR 2005</td>
<td></td>
<td>00-00-2005 to 00-00-2005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium Replacements for High Strength Steel Fasteners</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5d. PROJECT NUMBER</th>
<th>5e. TASK NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Surface Warfare Center Philadelphia, Carderock Division-Ship Systems Engineering Station, 5001 South Broad Street, Philadelphia, PA, 19112-1403</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
25th Replacement of Hard Chrome and Cadmium Plating Program Review Meeting, March 15-17, 2005, Greensboro, NC. Sponsored by SERDP/ESTCP.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT b. ABSTRACT c. THIS PAGE
 unclassified unclassified unclassified

17. LIMITATION OF ABSTRACT
 Same as Report (SAR)

18. NUMBER OF PAGES
 15

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Points of Contact

- Anthony Eng, DSN 443- or 215-897-7937, EngAT@nswccd.navy.mil
- James Jennings, DSN 443- or 215-897-7869, JenningsJC@nswccd.navy.mil
- James Soisson, DSN 443- or 215-897-1628, SoissonJP@nswccd.navy.mil
- Fredrick Kachle, DSN 443- or 215-897-7923, KacheleFR@nswccd.navy.mil
- John Allison, DSN 443- or 215-897-1236, AllisonJ@nswccd.navy.mil

Naval Surface Warfare Center
Carderock Division
Naval Ship Systems Engineering Station
Code 622, Bldg 619
1569 Constitution Ave
Philadelphia, PA 19112-1403
Background

• Cadmium commonly used on steel fasteners
 – easy deposition, corrosion resistance, low CoF, solderable
 – probable human carcinogen
 – can cause anemia, emphysema, and bone, kidney & liver diseases

• Chromium (VI) commonly used as a post treatment on Cd
 – enhances corrosion resistance of cadmium
 – human carcinogen
 – can cause ulcers and lung cancer

• Cd & Cr impact on life cycle costs
 – satisfactory performance
 – operator exposure, environmental emissions
 – waste related processing
Objectives

• Eliminate the use of electroplated Cadmium in high strength steel fastener applications

• Reduce and/or eliminate the use of Chromium in high strength steel fastener applications
JTP Tests

• General Properties
 – appearance (visual inspection)
 – coating thickness (ASTM B487)
 – max temperature (24 hr exposure-visual inspection)

• Corrosion
 – SO₂ salt fog w/ & w/o defect (500 hr ASTM G85-A4) [fastener & panel]
 – cyclic wet/dry corrosion w/ & w/o scribe (160 cy GM9540P) [fstnr & pnl]
 – galvanic bi-metallic (GM9540P)
 – fluid w/ & w/o scribe [coupon]

• Adhesion
 – water boil (modified ASTM D3359 - A)
 – bend (ASTM B571) [pnl]
 – paint (dry & water immersion) (ASTM D3359 - B) [pnl]
JTP Tests (continued)

• Assembly
 – breakaway torque w/ & w/o corr expos (ASTM G85-A4 & GM9540P)
 – fastener COF (1/3 & 2/3 YS, 3 cycles)
 – torque tension (30, 40, 50, 60, 70, 80, 90% YS, 5 cycles)

• Longevity
 – fatigue (NASM 1312-11) @ 70±30 ksi mean stress w/ & w/o corr expos
 – stress durability (ISO 15330) @ 96 hr w/ & w/o corr expos
 – slow strain rate (ASTM F606) @ 0.001”/min w/ & w/o corr expos
 – strippability (MIL-S-5002D) [fstnr & pnl]
 • bend test after coating reapplication
 • stress durability (ISO 15330) @ 96 hr before & after ctg reappl
<table>
<thead>
<tr>
<th>Test #</th>
<th>Test Name</th>
<th>Other Samples</th>
<th>Coated 4”x6” plate</th>
<th>Uncoated Fastener Systems</th>
<th>Coated Fastener Systems</th>
<th>GM 9540 Fastener Systems</th>
<th>ASTM G85 A4 Fastener Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.1</td>
<td>Appearance</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Coating Thickness</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Maximum Temp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Unscribed Corrosion Exposure</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Scribed Corrosion Exposure</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>20</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Galvanic Bi-Metallic Corrosion</td>
<td>45 washers</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Fluid Exposure</td>
<td>120 coupons</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Water Boil</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Bend Adhesion</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Paint Adhesion</td>
<td>-</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Water Immersion Paint Adhesion</td>
<td>27</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Breakaway Torque</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>3.4.2</td>
<td>COF</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10**</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Torque Tension</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10**</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Fatigue</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Stress Durability</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Slow Strain Rate</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Strippability</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
JTP Status

• Draft issued 17 Mar 2004 and sent to 39 technical stakeholders/contributors
• 291 comments received and adjudicated
 – Eric Brooman (AFRL)
 – Joe Osborne (Boeing)
 – Harry Archer (NSWCIHD)
 – Ralph Adler (ARL)
 – Tim Tenopir (PHD NSWC)
 – Michael Kane (AMCOM)
 – Patrick Doyle (NAWCADLKE)
• Selected Issues
 – Zn vs Cad as control
 – Grade 8 (150 ksi) vs 180 ksi or 220 ksi fasteners
 – Use of dry film lubricants
 – Mandatory and service specific tests/requirements
Preliminary Field Demo

- Fastener: 1.25” (length), 3/8” - 16 UNC grade 8, hex head cap screw
- Nuts installed/removed 5 times
- Fasteners torqued to 90% YS on 4142 plate
- 1 hr dwell, torque reapplication
- Installed on MTVR (Lejeune, NC; Kaneohe Bay, HI; Okinawa, Japan)
Candidate Coating Systems

- Zn with Cr post treatment
- Zn with proprietary non Cr treatment
 - Cd originally planned
- Zn/Al Flake in inorganic binder with friction control TC
- Zn/Al Flake with Cr in inorganic binder with friction control TC
- ZnNi per SAE AMS2417E
- ZnNi with silicate surface conversion and black UV TC
Materials Engineering Branch, Code 622

HCAT/JCAT Program Review
15-17 Mar 2005

KB #205
OK #201
KB #100
CL#118
Torque Data

<table>
<thead>
<tr>
<th>Material</th>
<th>DFT (mils)</th>
<th>COF</th>
<th>Initial Torque (ft-lb)</th>
<th>Unexpos BA Torque (ft-lb)</th>
<th>1 Yr Fld Expos BA Torque (ft-lb)</th>
<th>BA Torque % Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn w/Cr</td>
<td>~0.3</td>
<td>0.11</td>
<td>46</td>
<td>38</td>
<td>60</td>
<td>159</td>
</tr>
<tr>
<td>Zn w/NC</td>
<td>~0.3</td>
<td>>0.08</td>
<td>50</td>
<td>41</td>
<td>47</td>
<td>113</td>
</tr>
<tr>
<td>Zn/Al</td>
<td>0.4-0.6</td>
<td>0.11</td>
<td>46</td>
<td>21</td>
<td>28</td>
<td>137</td>
</tr>
<tr>
<td>Zn/Al/Cr</td>
<td>0.2-0.5</td>
<td>0.11</td>
<td>46</td>
<td>22</td>
<td>28</td>
<td>125</td>
</tr>
<tr>
<td>ZnNi</td>
<td>0.3-0.5</td>
<td>0.08</td>
<td>70</td>
<td>62</td>
<td>58</td>
<td>94</td>
</tr>
<tr>
<td>Modified ZnNi</td>
<td>0.25</td>
<td>0.13</td>
<td>53</td>
<td>32</td>
<td>30</td>
<td>96</td>
</tr>
</tbody>
</table>
Slow Strain Rate Data

<table>
<thead>
<tr>
<th></th>
<th>DFT (mils)</th>
<th>Initial Unexposed UTS (ksi)</th>
<th>1 Yr Field Exposure UTS (ksi)</th>
<th>UTS % Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn w/Cr</td>
<td>~0.3</td>
<td>166</td>
<td>164</td>
<td>98.4</td>
</tr>
<tr>
<td>Zn w/NC</td>
<td>~0.3</td>
<td>164</td>
<td>162</td>
<td>98.9</td>
</tr>
<tr>
<td>Zn/Al</td>
<td>0.4-0.6</td>
<td>170</td>
<td>169</td>
<td>99.3</td>
</tr>
<tr>
<td>Zn/Al/Cr</td>
<td>0.2-0.5</td>
<td>166</td>
<td>165</td>
<td>99.6</td>
</tr>
<tr>
<td>ZnNi</td>
<td>0.3-0.5</td>
<td>170</td>
<td>167</td>
<td>98.6</td>
</tr>
<tr>
<td>Mod ZnNi</td>
<td>0.25</td>
<td>170</td>
<td>161</td>
<td>94.6</td>
</tr>
</tbody>
</table>

Note: thread stress area based on ASTM F606, \(A_s = 0.7854 \cdot \frac{D-0.9743}{n} \)^2
Conclusions

- Draft JTP issued
- Draft JTP reviewed by technical stakeholders
- Draft JTP comments adjudicated
- Field exposure test on operational USMC vehicles initiated
- 1 yr field exposure samples collected (analysis ongoing)
- Based on data collected to date:
 - ZnNi and modified ZnNi coatings appear to maintain lubricity
 - Zn w/NC and Zn/Al coatings are displaying the most surface corrosion
 - Hydrogen embrittlement has not been detected wrt coating application nor during field service
- Further JTP coordination on hold until endorsement by DOD