Deposition of Wear and Corrosion Resistant Coatings onto Landing Gear Components Via Directed Vapor Deposition

D. Hass, B. Muszynski, B. Slawski
HCAT Meeting 2007
Deposition of Wear and Corrosion Resistant Coatings onto Landing Gear Components Via Directed Vapor Deposition

Directed Vapor Technologies International Inc, 2 Boar’s Head Lane, Charlottesville, VA, 22903

Approved for public release; distribution unlimited

Outline

- Directed Vapor Deposition: Background / Attributes
- Non Line-of-sight Coating Application onto Tubular Shapes
- Wear resistant DVD coatings for Cr Replacement
- Corrosion resistant DVD coatings for Cd Replacement
- Production Scale DVD Equipment

Acknowledgement:
Air Force SBIR Program; Craig Shaw and Ryan Josephson Hill AFB
Subcontractors: Battelle and Luna Innovations
Electron Beam – Directed Vapor Deposition

Concept

gas phase scattering of vapor (by collisions with background gas) enables the flux to be collimated

Rationale for DVD:

• increase deposition efficiency of EB-PVD process
• increase deposition rate
• non-line-of-sight coating
• soft vacuum – ease of use
• composition and morphology control

Directed Vapor Deposition

High pressure (0.1 – 1 Torr) deposition and plasma activation for morphology control

Multisource evaporation (at least 4 rod) for composition control (high speed (100kHz) beam scanning)

Nozzle axis in-line with the source

Focused vapor

High deposition efficiency

High deposition rates

Short pump down time

High pressure (0.1 – 1 Torr) deposition and plasma activation for morphology control

Combines four process technologies:

- advanced electron beam evaporation
- low-vacuum, flowing-gas vapor transport
- gas and vapor plasma ionization
- static or pulsed substrate biasing (0 - ±300V)

Applications:

- Thermal Barrier Coatings
- Cr and Cd replacement coating for aircraft landing gear
- Superconductivity Coatings
- Medical Device Coatings
- Lithium Ion Batteries
- Wire / Fiber Coatings

- Short pumpdown times (10 to 15 seconds)
- Small footprint
- Automated controls
- Easy to maintain vacuum
Electron Beam – Directed Vapor Deposition

Deposition Rate and Efficiency
- Supersonic gas jet focuses vapor flux onto substrate
- Materials utilization efficiencies approaching 80%
- Deposition rates >80 \(\mu\)m/min.

Compositional Control
- Multi-source evaporation enables precise composition control
- Gas jet controls degree of source intermixing
- Multilayer coatings
- Combinatorial synthesis
- Reactive deposition of oxides and nitrides

Non Line-of-Sight Deposition
- Vapor phase collisions between vapor and gas jet atoms enable NLOS deposition

Microstructural Control
- Dense and porous coatings
- Plasma activation for dense layers

![Image of YSZ with dimensions 6.5mm](image)

![Diagram of Electron Beam Deposition](image)
Landing Gear Coating (NLOS)

NLOS Deposition Approach

- Use supersonic gas jet to focus vapor atoms into internal regions of components
- Scatter vapor atoms onto NLOS surfaces either by controlling the speed and density of the gas jet
DVD Processing Approach for Landing Gear

Step 1: Focus vapor flux
- e-beam
- focused vapor flux
- gas jet
- choked nozzle
- carrier gas flow
- vapor source
- crucible

Step 2: Infiltrate into component
- Tube
- Vapor atom trajectories
- Focused Distance, D

Step 3: De-focus and deposit vapor
- De-focused Region

Process steps required to coat the interior of a component with a material.
Change in the location of the de-focused region of the vapor flux where NLOS deposition occurs when the gas jet pressure ratio and/or upstream pressure is increased.

De-focused region can reach different ID positions to enable control of thickness uniformity.

Position of de-focused region dependent on:

- Carrier gas flow rate
- Pressure ratio
- Chamber pressure
- Tube diameter
- Nozzle geometry
Internal Coatings on Tubes

Coating Uniformity (3” diameter tubes)

Tailor thickness uniformity by altering gas flow rate during deposition
Internal Coatings on Tubes

Dense Al coatings deposited at NLOS locations inside a tube

Substrate Temp. ~ 200°C
Internal / External Coating (single run)

The coating of both the interior and exterior of components with a desired composition using a single deposition step.

Dual-source configuration.
Controlling Compositional Distribution

Step 1:
- Movable vapor mask
- Carrier gas flow
- e-beam

Step 2:
- Directed Vapor Technologies International, Inc.
Controlling Compositional Distribution

- Tube
- Copper Coating
- Aluminum Coating
DVD Advantages for Landing Gear Coating

- Apply wear and corrosion resistant coatings onto **non line-of-sight** regions of components

- **Short** pumpdown times (10 to 15 sec); **soft vacuum** (0.1 to 0.5 Torr)

- Ability to apply both wear and corrosion resistant coatings with a single piece of equipment at high rate.
 - Potential to apply two different coating compositions in a **single deposition run**

- Ability to control the thickness uniformity on parts to **limit post-deposition grinding** steps

- Potential to deposit interior and exterior coatings simultaneously in a single processing step.

- Advanced compositional control enables the development of novel wear and corrosion resistant compositions
 - Replace current Cr and Cd coating
 - Specifically designed for use in a environmentally friendly physical vapor deposition approach.
Wear Resistant Coating Development
Wear Resistant Coatings

Approach

Specifically design coating composition to enable both wear performance and processability

- Coating compositions were developed that result in nanocomposite structures consisting of nanoscaled-grains. By precisely controlling the elements in the coating and their relative volume fractions, coatings that yielded a high \(\frac{H}{E} \) ratio and a relatively low modulus were achieved. Such coatings are anticipated to result in excellent wear performance and good coating adhesion.

- This was achieved by creating coatings using two or more immiscible materials that can phase separate during processing resulting in nanocomposites.

- Low melting point materials were used to enable good processibility (Ease of use!)

- Combinatorial study used to quickly assess potential compositions.
Combinatorial Synthesis

High density / high velocity jets lead to concentration gradients along the substrate.

As a result individual samples containing a library of compositions can be created.

Approach can be used to accelerate the search for new coating compositions with improved properties.

Directed Vapor Technologies International, Inc.
Nanocomposites for Wear

Two phased ternary alloys having nano-sized grains have been developed as potential replacement of hard chrome coating on landing gear.

Appearance depends on position on substrate.
Hardness Testing (combinatorial sample)

Best pixel condition:

\[H = 16.4 \text{ GPa} \]
\[E = 83 \text{ GPa} \]
\[H^3/E^2 = 0.640 \]

Compositions of pixels of interest measured using EDS and WDS.
Hardness and Wear Testing (coupon level)

Wear Coating (coupon application)

<table>
<thead>
<tr>
<th>Sample Location</th>
<th>Hardness (GPa)</th>
<th>Hardness (Vickers)</th>
<th>Elastic Modulus (GPa)</th>
<th>H³/E²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>33.3</td>
<td>3087</td>
<td>189</td>
<td>1.03</td>
</tr>
<tr>
<td>2</td>
<td>35.2</td>
<td>3178</td>
<td>210</td>
<td>0.98</td>
</tr>
<tr>
<td>3</td>
<td>30.0</td>
<td>2586</td>
<td>171</td>
<td>0.92</td>
</tr>
<tr>
<td>4</td>
<td>35.4</td>
<td>3000</td>
<td>193</td>
<td>1.19</td>
</tr>
<tr>
<td>5</td>
<td>26.3</td>
<td>2319</td>
<td>136</td>
<td>0.98</td>
</tr>
</tbody>
</table>

DVTI - LG031

Area of Wear Track [microns²]: 523 ± 58
Wear Rate [10⁻⁴ mm³/Nm]: 2.74

DVTI - LG029

Area of Wear Track [microns²]: 304 ± 66
Wear Rate [10⁻⁴ mm³/Nm]: 1.59

Hard Chrome

Area of Wear Track [microns²]: 1558 ± 218
Wear Rate [10⁻⁴ mm³/Nm]: 8.16

>3X Cr

>40X Cr

3 to 5x reduction in wear rate over Cr

Directed Vapor Technologies International, Inc.
Objectives:

1) Demonstrate that the performance of DVTI-developed and deposited coatings is at least as good as that of the currently used EHC process in metal-to-metal wear.

2) Demonstrate that the directed vapor deposition (DVD) technique is viable for non-line-of-sight (NLOS) surfaces, where the hard chrome-alternative high velocity oxy-fuel (HVOF) process cannot be used.

3) Demonstrate that the coating is viable for sealing surfaces, where a surface finish of 8 to 12 micro-inches Ra may be required, either as-deposited, or after grinding, honing and/or polishing. It must also be demonstrated that abrasion of the elastomeric seal material is equivalent to, or less than that of EHC.

Tribological Testing (Component Level)

Battelle will test the DVD coatings with respect to metal-to-metal wear and sealing capability at a TRL 4 level.
Tribological Testing (Component Level)

Metal-on-metal test Based on loads from a C-5 gudgeon pin
Configuration: block-on-ring 10-14° motion @ 0.75 in/s (load to be determined)
Materials: DVD OD coatings and EHC

Analysis will be optically measured size of the wear zone

Seal wear Based on seals from the main landing gear (MLG) outer floating cylinder from the F-16
Configuration: sliding shaft with seals 1 Hz motion @ 1 in
Materials: DVD ID coatings and EHC
Seal to use will be 160 Nitrile compound rubber @ 12.8% compr.

Analysis will be wear measurements every 100-500 cycles and SEM / profilometry
Wear Coating on Tubes
Corrosion Resistant Coating Development
Corrosion Resistant Coating Development

Development of corrosion resistant coating composition for Cadmium replacement optimized for ease of use in vapor deposition systems.

- Use combinatorial approach to develop optimized coating

Materials Selection:

- An electrochemical potential close to and below that of high strength steel (or near that of cadmium)
- A relatively low melting point
- Investigating Al and Zn ternary alloys

Zero Resistance Ammetry

Gives the ability to accurately:
- Determine the electrochemical potential
- Determine corrosion rate

Can determine coating lifetime for a given thickness

Directed Vapor Technologies International, Inc.
Corrosion potentials for steel substrate, Cd electroplate and DVTI coatings.

DVTI coating has a lower electrochemical potential than steel and slightly higher than Cd.
Corrosion Testing (Component Level)

Testing by John Stropki @ Battelle presentation

1) Test No. 1. Neutral Salt Fog Corrosion Test (ASTM -B117-94)

2) Test No. 2. General Motors (GM) 9540P/B Cyclic Corrosion Test.

3) Test No. 3. SO₂ Salt Fog Corrosion Test (ASTM G85-85)

Testing in accordance with procedures and protocols referenced in Ch. 3 of the U.S. HCAT testing document
Corrosion Testing (Component Level)

Three bar heating and manipulation unit for corrosion test samples
Production Scale DVD Coater

DVD Coating Facility

3000 sq.ft. facility

Located in
Charlottesville, VA
Questions?

Directed Vapor Technologies International, Inc.