1. REPORT DATE (DD-MM-YYYY)
March 2014

2. REPORT TYPE
Briefing Charts

3. DATES COVERED (From - To)
March 2014 - April 2014

4. TITLE AND SUBTITLE
Novel Methodology for the Highly-Efficient Separation of Oil and Water
(Briefing Charts)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

Q014

6. AUTHOR(S)
Joseph Mabry, Anish Tuteja, Andrew Guenthner, Josiah Reams, Arun Kota, Gibum Kwon, Wonjae Choi

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory (AFMC)
AFRL/RQRP
10 E. Saturn Blvd.
Edwards AFB CA 93524-7680

8. PERFORMING ORGANIZATION REPORT NO.

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory (AFMC)
AFRL/RQR
5 Pollux Drive
Edwards AFB CA 93524-7048

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
AFRL-RQ-ED-VG-2014-051

12. DISTRIBUTION / AVAILABILITY STATEMENT
Distribution A: Approved for Public Release; Distribution Unlimited.

13. SUPPLEMENTARY NOTES
Briefing charts presented at ACS National Meeting and Expo, Dallas, TX, 16 March 2014. PA#14128

14. ABSTRACT
Briefing Charts

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION OF ABSTRACT

18. NUMBER OF PAGES
37

19a. NAME OF RESPONSIBLE PERSON
Joseph Mabry

19b. TELEPHONE NO
661-275-5857

(include area code)
Novel Methodology for the Highly-Efficient Separation of Oil and Water

16 March 2014

Joseph Mabry, Anish Tuteja, Andrew Guenthner, Josiah Reams, Arun Kota, Gibum Kwon, Wonjae Choi
Air Force Research Laboratory
Aerospace Systems Directorate
joseph.mabry@us.af.mil
(661) 275-5857
Non-wetting surfaces

Contact angles with water:

- **Superhydrophilic**: $\theta \sim 0^\circ$
- **Hydrophilic**: $0^\circ < \theta < 90^\circ$
- **Hydrophobic**: $\theta > 90^\circ$
- **Superhydrophobic**: $\theta^* > 150^\circ$

Similarly, superoleophobic surfaces display contact angle $\theta^* > 150^\circ$ with oils or alkanes.
Nanocomposite Materials

POSS

Nanosilicas

Layered silicates

Linear silicates

Water
Methylene Iodide
Octane
Methanol

\[\gamma_v = 22.7 \, \text{mN/m} \]
\[\gamma_v = 27.5 \, \text{mN/m} \]
\[\gamma_v = 50.8 \, \text{mN/m} \]
\[\gamma_v = 72 \, \text{mN/m} \]
Fluorinated POSS Synthesis

\[R_f \text{Si}X_3 + \text{OH}^-/\text{H}_2\text{O} \rightarrow R_f \text{SiX}_3 \]

\[R_f = -\text{CH}_2\text{CH}_2(\text{CF}_2)_n\text{CF}_3 \]

\[n = 0, 3, 5, 7 \]

Angew Chem 2008

DISTRIBUTION A. Approved for public release; distribution unlimited.
Hydrophobic Materials

- Spin-cast surface of Fluorodecyl POSS
- $\sim 4 \, \mu m$ rms roughness by AFM
- 154° Water contact angle

DISTRIBUTION A. Approved for public release; distribution unlimited.
Zisman Analysis

Fluorodecyl:
\[R = -\text{CH}_2\text{-CH}_2\text{-}(\text{CF}_2)_7\text{-CF}_3 \]

GG analysis results in surface energy calculation of: \(\gamma_c = 8 \text{ mN/m} \)

Contacting liquids:
- hexadecane (\(\gamma_{lv} = 27.5 \text{ mN/m} \)), dodecane (25.3), decane (23.8),
- octane (21.6), heptane (20.1) and pentane (15.5)
The Lotus Leaf

Water, $\gamma_{LV} = 72.1 \text{ mN/m}$

Hexadecane, $\gamma_{LV} = 27.5 \text{ mN/m}$

On most surfaces, $\theta_{oil} < \theta_{water}$. This is because the surface tension (γ_{LV}) of water is significantly higher than that for oils.
Critical role of re-entrant texture ($\psi < 90^\circ$)

$\theta < 90^\circ$; $\psi < 90^\circ$

It is possible to support a composite interface even if $\theta < 90^\circ$

Re-entrant curvature : $180^\circ > \theta > 0^\circ$

Lotus Leaf

Cylinders / Fibers

• Constructing super-repellent surfaces
 – Three key ingredients

Surface Chemistry (θ_e)

Roughness (r)

Surface Geometry (ψ)

PMMA + 44 wt% POSS electrospun coating (beads on a string) morphology
The Dip-Coating Process

Before dip-coating with a solution of fluorodecyl POSS

Dip

Solution of fluorodecyl POSS in Asahiklin (30 mg/ml)

Dry (heat in oven at 60°C for 20 minutes)

Hexadecane ($\gamma_{lv} = 27.5$ mN/m) on an as-received commercial polyester fabric

After dip-coating with a solution of fluorodecyl POSS
Dip-Coated Polyester Fabric

Before coating

After coating with fluorodecyl POSS in Asahiklin (30 mg/ml)

Hexadecane

\[\gamma_v = 22.7 \text{ mN/m} \]
\[\gamma_v = 27.5 \text{ mN/m} \]
\[\gamma_v = 50.8 \text{ mN/m} \]
\[\gamma_v = 72 \text{ mN/m} \]

Methanol Hexadecane Methylene Iodide Water
Dip-coating process for conformal coating of textured surfaces

Rf = -CH$_2$-CH$_2$-(CF$_2$)$_7$-CF$_3$
Fluorodecyl POSS

$\gamma_{sv} \approx 8 \text{ mN/m}$

Tecnoflon° (BR9151)
Fluoro-elastomer from Solvay-Solexis

$\gamma_{sv} \approx 18 \text{ mN/m}$

50:50 mixture, total solids = 10 mg/ml

- Dip in Asahiklin solution for 5 minutes
- Air dry to remove solvent
- Heat treat at 60 °C for 30 minutes

Anticon 100 polyester fabric

EDAXS spectrum for fluorine
At low POSS concentrations many surfaces are both superhydrophobic and superoleophilic ($\theta^*_{\text{alkane}} \approx 0^\circ$). Thus, these porous surfaces form ideal membranes for separating mixtures / dispersions of alkanes (oils) and water.

DISTRIBUTION A. Approved for public release; distribution unlimited.
PEGDA + Fluorodecyl POSS

Can hydrogen bond with water

AFM Phase images of spin-coated PEGDA + POSS films

Photo-crosslinkable

Fluorodecyl POSS molecules preferentially segregate to the air interface and crystallize.

Fluorodecyl POSS

$R_f = -\text{CH}_2\text{-CH}_2\text{-} (\text{CF}_2)_7\text{-CF}_3$

$\gamma_{sv} \approx 8 \text{ mN/m}$
PEGDA + Fluorodecyl POSS
PEGDA + fluorodecyl POSS blends

Surfaces with inherent re-entrant curvature dip-coated with PEGDA + POSS blends

Stainless Steel Wire Mesh

Commercial Polyester Fabric

PEGDA surface reconfiguration leads to superhydrophilic behavior.
Free oil – water separation

Stainless steel mesh coated with PEGDA + 20 wt% fluorodecyl POSS.
Free oil – water separation
1-Liter scale separation
Separation of Oil-Water Emulsions

Water-in-Oil Emulsion

Composition: 93% Oil, 7% Water

Oil-in-Water Emulsion

Composition: 76% Oil, 24% Water

A simple, scalable, gravity-based system for the separation of both oil-in-water and water-in-oil emulsions. This is one of the first gravity-based systems to achieve such high emulsion separation efficiencies.
Gravity-driven, continuous-flow device
Oil-Water Emulsion Separation

Our system: PEGDA + 20% FPOSS

Flux (L/hr·m²)

Cycles
Separation Efficiency

Time (min)

Weight %

Feed
Permeate
Retentate

99% Oil
78% Oil
0.1% Oil

DISTRIBUTION A. Approved for public release; distribution unlimited.
Summary

• We have developed surfaces that for the first time are superhydrophilic and superoleophobic.

• Such surfaces are ideal for the separation of both free-oil and oil-water emulsions.

• The designed membranes, for the first time, allow continuous-flow oil-water emulsion separation.
Acknowledgements

Professor Anish Tuteja
Oil/Water Separation Membranes

Polymer Working Group
Fluorinated POSS

Financial Support

Air Force Office of Scientific Research

Air Force Research Laboratory, Propulsion Directorate
Impact of a Novel Fuel Processing Technique

Payload:
$0.5B - 2B
10-15 yr.

Launch Vehicle:
$40M - 100M

Fuel
$100k

Price of fuel is influenced by many variables other than raw material cost

A novel fuel processing technique will enable:
Composition modification without the need of large refineries
Preparation of fuel in remote locations
Assured access
Reduced logistics costs

DISTRIBUTION A. Approved for public release; distribution unlimited.
Vision

To develop the capability to produce high-performance military fuels at reduced cost with increased availability.
Thesis: Use liquid/liquid extraction to provide improvements in several critical areas

Objective: Utilize liquid/liquid extraction process to improve performance, increase availability, and reduce cost of RP by producing these fuels from less expensive feed streams.

DISTRIBUTION A. Approved for public release; distribution unlimited.
Undesirables in RP-1

Oil Red B4 (ORB4)
Dye in RP-1
65 wt% Solvent Red 164

- 15-30 wt% xylene
- 5-10 wt% ethylbenzene

Sulfur Compounds
Present in RP-1
Concentration varies

- Mercaptans
- Sulfides
- Thiophenes

Aromatics
Present in RP-1
Concentration varies

Detrimental to Thermal Stability!

Catalysts for Coking Reactions

Detrimental to Performance

RP-2 is expensive and requires an additional supply chain, which also consumes resources and may be put at risk due to unforeseen circumstances.

Removal from less expensive feed streams will increase availability, reduce supply risk, reduce cost, and improve performance.
Visible spectroscopy was used to determine concentration of dye from 2-40 ppm.

Small scale extractions show IPA is the most efficient extraction solvent for dyes.

Higher IPA : Water ratio results in higher dye concentration.

Optimum IPA : Water ratio is ~13 : 1 based on small scale extractions.
Equilibrium curve for compounds extracted from dodecane with IPA:water 10:1 v:v ratio
Extraction Apparatus

IPA / Water Inlet Spray

Hydrophobic / Oleophillic Membrane (passes oil, not water)

RP Inlet Spray

Oleophobic / Hydrophillic Membrane (passes water, not oil)

RP Outlet

RP Phase

Emulsion Phase

IPA / Water Outlet

Water (IPA) Phase
Extraction of Sulfur from RP-1

<table>
<thead>
<tr>
<th>Sulfur Compounds by GC-SCD (Sulfur Speciation)</th>
<th>Concentration (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2 Thiophenes</td>
<td><0.1</td>
</tr>
<tr>
<td>C3-C4 Thiophenes</td>
<td>1.6</td>
</tr>
<tr>
<td>C5 Thiophenes</td>
<td>6.3</td>
</tr>
<tr>
<td>C6 Thiophenes</td>
<td>6.1</td>
</tr>
<tr>
<td>C7 Thiophenes</td>
<td>5.8</td>
</tr>
<tr>
<td>C8-C9 Thiophenes</td>
<td>4.9</td>
</tr>
<tr>
<td>C10 Thiophenes</td>
<td>1.3</td>
</tr>
<tr>
<td>C11 Thiophenes</td>
<td>0.9</td>
</tr>
<tr>
<td>C12+ Thiophenes</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Sulfur Compounds by GC-SCD (Sulfur Speciation)

<table>
<thead>
<tr>
<th>Concentration (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2 Thiophenes</td>
</tr>
<tr>
<td>C3-C4 Thiophenes</td>
</tr>
<tr>
<td>C5 Thiophenes</td>
</tr>
<tr>
<td>C6 Thiophenes</td>
</tr>
<tr>
<td>C7 Thiophenes</td>
</tr>
<tr>
<td>C8-C9 Thiophenes</td>
</tr>
<tr>
<td>C10 Thiophenes</td>
</tr>
<tr>
<td>C11 Thiophenes</td>
</tr>
<tr>
<td>C12+ Thiophenes</td>
</tr>
</tbody>
</table>

Standard Grade RP-1 (Errors are ±0.3 ppm)

Standard Grade RP-1 after extraction with 10:1 IPA water in extraction apparatus
Applied Materials Group

The Applied Materials Group at Edwards Air Force Base

Dr. Greg Yandek
Dr. Andrew Guenthner
Dr. Josiah Reams
Dr. Tim Haddad
Mr. Jason Lamb
Dr. Jeff Alston

Mr. Jacob Marcischak
Mr. Kevin Lamison
Dr. Joe Mabry
Lt Diane Fernandez
Mr. Michael Ford

AFRL/RQR
AFOSR
Acknowledgements

Professor Anish Tuteja
Oil/Water Separation Membranes

Polymer Working Group
Fluorinated POSS and Extraction Work

Financial Support

Air Force Office of Scientific Research

Air Force Research Laboratory, Aerospace Systems Directorate
QUESTIONS?

U.S. AIR FORCE