Evaluation of Zinc-Nickel Alloy Plating on Fasteners for Boeing Commercial Airplanes

Louie Tran
Chemical Technology — Corrosion & Inorganic Finishes

VJ Valeriano
Fasteners Engineering — Mechanical Parts Standards

August 30-31, 2011
ASETS-Defense FW on Cd Plating Alternatives, Baltimore, MD
1. REPORT DATE
JUL 2011

2. REPORT TYPE

3. DATES COVERED
00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Evaluation of Zinc-Nickel Alloy Plating on Fasteners for Boeing Commercial Airplanes

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Boeing, P. O. Box 3707, Seattle, WA, 98124

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Focused Workshop on Cadmium Plating Alternatives, August 30-31, 2011, Baltimore, MD. Sponsored by SERDP/ESTCP.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT unclassified
 b. ABSTRACT unclassified
 c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT Same as Report (SAR)

18. NUMBER OF PAGES 18

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Background - Cadmium Plating Replacement

- Cadmium plating has been used traditionally on fasteners for its
 - Corrosion protection (sacrificial anodic)
 - Lubricity (anti-galling)
 - Electrical properties
- US and EU Environmental Regulations are mandating the Aerospace Industry to eliminate Cadmium and other toxic materials
- Current BCA Engineering practice allows substitution or replacement of Cadmium with Zinc-Nickel plating except for use on threads
- Use of Cadmium on Boeing commercial aircraft are allowed by Exemptions
Background - Cadmium Plating Replacement

- BR&T Chemical Technology and Fasteners Engineering have been evaluating the performance of Zinc-Nickel plating
 - Five test programs (Phases I to V) have been conducted to-date to compare the performance of Zinc-Nickel to Cadmium plating
 - Testing to-date has shown that acid and alkaline Zn-Ni plating are an acceptable replacement for Cadmium on threaded parts
 - Additional work is planned for Phase VI for 2011
 - Optimize coating thickness on threads
 - Fasteners (standard parts) qualifications are planned post Phase VI
 - BCA Programs have been evaluating electrical properties of Zinc-Nickel and found it acceptable for Bonding/Grounding applications
Six Phases of Fastener Evaluation

- **Acid Zinc-Nickel plating**
 - **Phase I - on 3/8” fasteners**
 - Axial Tensile Strength
 - Corrosion and Fatigue
 - Torque-Tension
 - Torque Effectivity and Reusability (Locking and Break-Away Torque)
 - **Phase II & III - on 3/8” fasteners**
 - Torque-Tension

- **Alkaline Zinc-Nickel Plating**
 - **Phase IV - on 3/8” fasteners**
 - Corrosion and Fatigue
 - Torque-Tension, Torque Effectivity and Reusability
 - **Phase V - on 3/16, 3/8 and 3/4” fasteners**
 - Similar to testing performed in Phase IV
 - **Phase VI - on various size fasteners**
 - Corrosion and Fatigue
 - Torque-Tension
 - Torque Effectivity and Reusability
The following results are available with representative data shown in this presentation

- Corrosion
- Fatigue
- Tensile Strength
- Torque-Tension
- Torque Effectivity and Reusability (Locking and Break-away)
Corrosion Test Results (All A286 Substrates)
Fatigue Test Results (Acid Zinc-Nickel, Phase I)

- Nickel Alloy 718 Bolts – 3/8” diameter
 Cd or Zn-Ni plated
- Test Nuts – MIL-STD-1312 uncoated
- Test setup – Per NASM1312-11
- Test parameters
 - Cycle = 24 Hz, RT
 - Tension-tension at 1090 lbs (low) and 10900 lbs (high)
- Requirement
 - Acceptance = 100000 cycles or meets statistical criteria
- Results – Acid Zn-Ni plating on fasteners performed comparable to Cd

<table>
<thead>
<tr>
<th>TEST</th>
<th>CYCLES</th>
<th>LOCATION OF FAILURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130,000</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>130,000</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>130,000</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>130,000</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>130,000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>130,000</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>130,000</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>89,314</td>
<td>THREAD</td>
</tr>
<tr>
<td>9</td>
<td>130,000</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>130,000</td>
<td></td>
</tr>
<tr>
<td>AVG</td>
<td>125931</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TEST</th>
<th>CYCLES</th>
<th>LOCATION OF FAILURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>101,830</td>
<td>THREAD</td>
</tr>
<tr>
<td>2</td>
<td>73,749</td>
<td>THREAD</td>
</tr>
<tr>
<td>3</td>
<td>129,600</td>
<td>THREAD</td>
</tr>
<tr>
<td>4</td>
<td>130,000</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>130,000</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>130,000</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>122,318</td>
<td>THREAD</td>
</tr>
<tr>
<td>8</td>
<td>130,000</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>130,000</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>130,000</td>
<td></td>
</tr>
<tr>
<td>AVG</td>
<td>120750</td>
<td></td>
</tr>
</tbody>
</table>

Req. Accept if the life of each fastener exceeds 100,000 cycles. Reject entire lot if average life is less than 65,000 cycles, or if one or more individual fasteners fails in less than 45,000 cycles. Take second sample if lot is not accepted or rejected on first sample.
Fatigue Test Results
(Alkaline Zinc-Nickel, Phase IV)

• Nickel Alloy 718 Bolts – 3/8” diameter
 Cd or Zn-Ni plated
• Test Nuts – MIL-STD-1312 uncoated
• Test setup – Per NASM1312-11
• Test parameters
 • Cycle = 24 Hz, RT
 • Tension-tension at 1090 lbs (low) and 10900 lbs (high)
• Requirement
 • Acceptance = 100000 cycles or meets statistical requirement
• Results – Alkaline Zn-Ni plating on fasteners performed comparable to Cd
Fatigue Test Results
(Alkaline Zinc-Nickel, Phase V)

- A286 Hi-Loks – Cd or Zn-Ni plated
- A286 Collars – Cd or Zn-Ni plated
- Test setup – Per NASM1312-11
- Test parameters
 - Cycle = 24 Hz, RT
 - Size 5 – Tension-tension at 51 lbs (low) and 515 lbs (high)
 - Size 10 – Tension-tension at 192 lbs (low) and 1920 lbs (high)
- Requirement
 - Acceptance = 100000 cycles or meets statistical requirements
- Results – Alkaline Zn-Ni plating on fasteners performed comparable to Cd
Tensile Strength Test Set-up (Acid Zinc-Nickel)

• Tensile Test performed in accordance with NASM1312-8
Tensile Strength Results
(Acid Zinc-Nickel, Phase I)

Loads (lbs)

Bolts

- 220 ksi Nickel Alloy
- 180 ksi Alloy Steel
- 180 ksi CRES

Nuts

- 220 ksi CRES
- 220 ksi Alloy Steel
- 180 ksi CRES
- 180 ksi Alloy Steel

Cadmium Plating
Zinc-Nickel Plating

Copyright © 2009 Boeing. All rights reserved.
• Performed Torque-Tension Test in accordance with NASM1312-15
• Bolts - 3/8” Nickel Alloy 718 with BMS10-85 (Aluminum Pigmented Coating)
• Nuts - 3/8” A286 CRES with Cd or Zn-Ni plating and Solid Film Lubricant
• Washers - 3/8” A286 CRES with Cd or Zn-Ni plating
• Requirement – At 400 in-lb torque, target tension 30% to 60% of Ultimate Tensile Strength (BAC5009)
• Result - Zn-Ni plated nuts/washers performed comparable to Cd for both Acid and Alkaline processes
Locking Torque Test Results
(Alkaline Zinc-Nickel, Phase V)

- A286 Bolts – 3/8” diameter with BMS10-85 or Zn-Ni coating
- A286 Nuts – 3/8” diameter with Cd or Zn-Ni and Solid Film Lube
- A286 Washers – 3/8” diameter with Cd or Zn-Ni coating
- Test setup per BPS-N-70
- Requirement: 80 in-lbs MAX

Phase V Results – Meets requirement. Similar to Cd.

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Configuration</th>
<th>BMS + Cd + Cd</th>
<th>BMS + Cd + ZnNi</th>
<th>BMS + ZnNi + Cd</th>
<th>ZnNi + Cd + Cd</th>
<th>ZnNi + ZnNi + Cd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>29</td>
<td>26</td>
<td>28</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>29</td>
<td>29</td>
<td>34</td>
<td>34</td>
<td>40</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>31</td>
<td>30</td>
<td>36</td>
<td>43</td>
<td>44</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>31</td>
<td>30</td>
<td>30</td>
<td>44</td>
<td>48</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>29</td>
<td>30</td>
<td>28</td>
<td>44</td>
<td>34</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>29</td>
<td>27</td>
<td>27</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>29</td>
<td>27</td>
<td>26</td>
<td>49</td>
<td>43</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>28</td>
<td>27</td>
<td>24</td>
<td>49</td>
<td>43</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>28</td>
<td>27</td>
<td>22</td>
<td>50</td>
<td>44</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>27</td>
<td>26</td>
<td>24</td>
<td>42</td>
<td>46</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>28</td>
<td>27</td>
<td>24</td>
<td>49</td>
<td>47</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>39</td>
<td>27</td>
<td>26</td>
<td>48</td>
<td>51</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>39</td>
<td>27</td>
<td>26</td>
<td>49</td>
<td>51</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>39</td>
<td>28</td>
<td>26</td>
<td>49</td>
<td>55</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>30</td>
<td>29</td>
<td>26</td>
<td>49</td>
<td>47</td>
</tr>
</tbody>
</table>
Break-away Torque Test Results (Alkaline Zinc-Nickel, Phase V)

- **A286 Bolts – 3/8” diameter with BMS10-85 or Zn-Ni coating**
- **A286 Nuts – 3/8” diameter with Cd or Zn-Ni and Solid Film Lube**
- **A286 Washers - 3/8” diameter with Cd or Zn-Ni coating**
- Test setup per BPS-N-70
- Requirement: 9.5 in-lbs MIN
- Phase V Results – Meets requirement. Similar to Cd.

<table>
<thead>
<tr>
<th>Cycle</th>
<th>BMS + Cd</th>
<th>BMS + Cd + ZnNi</th>
<th>BMS + ZnNi + Cd</th>
<th>BMS + ZnNi</th>
<th>ZnNi + Cd</th>
<th>ZnNi + Cd + ZnNi</th>
<th>ZnNi + Cd</th>
<th>ZnNi + ZnNi + ZnNi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21</td>
<td>21</td>
<td>19</td>
<td>25</td>
<td>37</td>
<td>43</td>
<td>31</td>
<td>33</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>20</td>
<td>24</td>
<td>25</td>
<td>36</td>
<td>34</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>23</td>
<td>22</td>
<td>28</td>
<td>37</td>
<td>32</td>
<td>38</td>
<td>25</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>23</td>
<td>21</td>
<td>24</td>
<td>32</td>
<td>32</td>
<td>38</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>5</td>
<td>26</td>
<td>20</td>
<td>21</td>
<td>26</td>
<td>32</td>
<td>33</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>24</td>
<td>19</td>
<td>18</td>
<td>24</td>
<td>34</td>
<td>32</td>
<td>27</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>23</td>
<td>20</td>
<td>23</td>
<td>20</td>
<td>32</td>
<td>31</td>
<td>27</td>
<td>26</td>
</tr>
<tr>
<td>8</td>
<td>24</td>
<td>20</td>
<td>17</td>
<td>19</td>
<td>32</td>
<td>40</td>
<td>29</td>
<td>27</td>
</tr>
<tr>
<td>9</td>
<td>24</td>
<td>20</td>
<td>16</td>
<td>18</td>
<td>34</td>
<td>33</td>
<td>38</td>
<td>37</td>
</tr>
<tr>
<td>10</td>
<td>21</td>
<td>20</td>
<td>17</td>
<td>21</td>
<td>34</td>
<td>34</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>11</td>
<td>26</td>
<td>20</td>
<td>20</td>
<td>19</td>
<td>37</td>
<td>32</td>
<td>32</td>
<td>33</td>
</tr>
<tr>
<td>12</td>
<td>27</td>
<td>20</td>
<td>16</td>
<td>19</td>
<td>34</td>
<td>31</td>
<td>31</td>
<td>30</td>
</tr>
<tr>
<td>13</td>
<td>22</td>
<td>18</td>
<td>17</td>
<td>19</td>
<td>35</td>
<td>37</td>
<td>33</td>
<td>32</td>
</tr>
<tr>
<td>14</td>
<td>23</td>
<td>18</td>
<td>17</td>
<td>18</td>
<td>48</td>
<td>36</td>
<td>33</td>
<td>32</td>
</tr>
<tr>
<td>15</td>
<td>19</td>
<td>19</td>
<td>16</td>
<td>20</td>
<td>36</td>
<td>35</td>
<td>33</td>
<td>31</td>
</tr>
</tbody>
</table>
Conclusions

- **Corrosion**
 - Performed comparable to Cd

- **Fatigue**
 - Performed comparable to Cd

- **Tensile Strength**
 - Performed similar to Cd. Does not affect tensile strength of fasteners

- **Torque-Tension**
 - Performed similar to Cd for the 3/8” fastener system
 - Higher preload with historical scatter is anticipated for Zn-Ni plating
 - Current method (stripping & replating) is not optimized to provide proper plating thickness.
 - Additional testing will be performed in Phase VI with fasteners fabricated by the traditional manufacturing process (not strip and re-plate)

- **Locking and Break-away Torque**
 - Performed Similar to Cd
• Torque-Tension
 – BACB30US (size 3, 6 and 16, Nickel Alloy w/ BMS10-85 or Zn-Ni)
 – BACB30NM (size 3, 6 and 12, Titanium Bolts)
 – BACB30LM (size 3, 6 and 16, A286 Bolts)
 – BACB30MR, BACN11Z, BACW10BP (size 3, 6, and 12)
 – Zip chem on bolts thread only
 – BACB30FM, BACC30AB (size 5 and 10)
 – Cetyl alcohol on Zn-Ni plated collars
 – Install on primed surface
• Corrosion and Torque Effectivity (Ground Stud)
 – BACJ40AC (35 Amp Jumper Ass’y), BACS12HNS (A286 Screws)
• Push-in Installation Force of Hi-Loks fasteners
 – BACB30FM (size 5 and 10, A286 Hi-Lok)
• Push-in Installation Force with Rivet Gun of Hi-Loks fasteners
 – BACB30FM, BACC30AB (size 5 and 10)
• High RPM Installation Force with nuts runners
Questions and Contact

• Questions????
• What about other Zn-Ni coating?

• Thank you for the opportunity to share these data and to be part of your on-going discussion and evaluation of Cadmium plating alternatives

 1. Louie Tran
 – Chemical Technology – Corrosion & Inorganic Finishes
 – Email: louie.tran@boeing.com
 – Phone 206-544-8313

 2. VJ Valeriano
 – Fastener Engineering – Mechanical Parts Standards
 – Email: voltaire.f.valeriano@boeing.com
 – Phone 206-544-4503