Progress in Implementing Non-Cr6+ Surface Finishes for U.S. Navy and Marine Corps Aircraft

Craig Matzdorf
Materials Engineering Division
Naval Air Warfare Center
U.S. Navy
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUG 2012</td>
<td></td>
<td>00-00-2012 to 00-00-2012</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progress in Implementing Non-Cr6+ Surface Finishes for U.S. Navy and Marine Corps Aircraft</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5d. PROJECT NUMBER</th>
<th>5e. TASK NUMBER</th>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Air Warfare Center, Materials Engineering Division, 22347 Cedar Point Road, Patuxent River, MD, 20670-5304</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR'S ACRONYM(S)</th>
<th>11. SPONSOR/MONITOR'S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>Same as Report (SAR)</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>unclassified</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unclassified</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unclassified</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std Z39-18
Agenda

→ Navy and Marine Corps Aircraft Applications

→ Progress in Implementing Alternatives

→ R&D Efforts
Applications

Conversion coatings for Aluminum: MIL-PRF-81706/5541 Type IA (general use)

- Type II excludes hexavalent chromium (8 qualified products from 4 companies)
- Includes products for immersion, spray, wipe and applicator pen methods
- Only qualified products to date for Class 1A are based on trivalent chromium
- **Key aspect overlooked:** qualified products provide passivation to aluminum which lowers corrosion current densities 10-1000 fold in galvanic interfaces
 - ability to suppress current and potential is a possible new requirement
 - galvanic test is being considered as a new requirement
 - technical boundaries will be established through ONR-supported work on DC polarization measurements of protective coatings, corrosion modeling, and verification

Conversion coatings for Aluminum: MIL-PRF-81706/5541 Type 3 (electrical applications/unpainted)

- Type II excludes hexavalent chromium (7 qualified products from 5 companies)
- Qualified products to date are based on trivalent chromium except one non-Cr
- Similar passivation issues/potential changes as Class 1A coatings
Applications

➤ Aluminum Anodizing: MIL-A-8625
 • Process Types IC (boric-surfuric acid), IIB (thin-film sulfuric acid), and II (sulfuric acid) and III (sulfuric acid) do not contain chromium
 • No discrimination in sealer chemistry per current specification language
 • Draft revision includes separate seals for non-chromate options including water, nickel, cobalt, trivalent chromium, and duplex

➤ Conversion coatings and Anodizing for Magnesium: SAE-AMS-M-3141
 • Specification needs to be revised to include a Type for non-chromium conversion coating (current Type VIII specifically calls out chromate conversion coating) and Types for new anodize processes like Tagnite and Keranite
 • More challenging to change due to control by commercial entity

➤ Conversion coatings for Titanium:
 • Conversion coating needed for paint adhesion
 • No current specification
 • Unknown/undefined role of conversion coating in passivating Ti- may be important for galvanic couples
Related/Linked Applications

➔ Priming:

➔ MIL-PRF-23377: high solids epoxy primers
 • Class N in place for Types I and II (low IR reflection)
 • Two products qualified to Type I, one to Type II
 • Galvanic protection generally better than MIL-PRF-85582, long re-coat times (up to 4 hrs)

➔ MIL-PRF-85582: water reducible epoxy primers
 • Class N in place for Types I and II (low IR reflection)
 • One product qualified to each type
 • Preferred to -23377 by users due to short (1hr) re-coat times

➔ TT-P-2760: high solids polyurethane primers
 • Class N in place for Types I and II (low IR reflection)
 • No qualified products
Progress in Implementing Alternatives

- **Inorganic Metal Finishing Coatings and Processes**
 - Alternatives authorized and used for
 - Aluminum and magnesium anodizing
 - Hard Chrome Plating
 - Type II conversion coating on aluminum alloys under chromated primer: Class 1A applications
 - Type II conversion coating on Alumiplate under chromated primer
 - Sealing of Type IC, IIB, II and III anodize using Type II conversion coatings (TCP)
 - Alternatives pending authorization and use
 - Conversion coating titanium (TCP and Alodine 5700)
 - Sealing of phosphate coatings (ChromiPhos)
 - Alternatives being assessed in demonstration and validation projects
 - Type II conversion coating on aluminum alloys with non-chromate primers per MIL-PRF-23377 Class N and MIL-PRF-85582 Class N
 - Conversion coating magnesium
 - Post treatment of IVD aluminum
 - Post treatment of IZ-C17+ ZnNi
 - Type II conversion coatings on aluminum: Class 3 applications
Featured Effort: Mg Conversion Coating Dem/Val

- OSD Corrosion IPT funded effort to complete FRC validation of coating process and performance on representative alloys and scrap parts

- FRC SE (Jacksonville) has 730-gallon process tank for Mg conversion coating
- Operates near 200F
- Change to trivalent chromium process offers multiple benefits:
 - Energy savings (75-90F vs 200F)
 - EOSH improvement- non Cr\(^{6+}\) process and coating
 - common product- same TCP as being planned for Al anodize sealer and conversion coating
 - Equal or better paint adhesion and corrosion protection
Progress in Implementing Alternatives

• **Organic Coatings and Processes**
 – Alternatives authorized for
 • Priming of support equipment (MIL-DTL-53022)
 • Sealing- various specifications
 • Priming aircraft/components: scuff sand and overcoat applications
 – Alternatives pending authorization
 • None currently
 – Alternatives being assessed in R&D
 • Primer in coating systems with chromated or non-chromated conversion coatings or anodize
 • Galvanic (metal rich) primers in total NC systems
Research & Development and Implementation Progress

• Ongoing
 – Type II conversion coating touch up pens- qualifications completed, not being implemented at FRCs for now
 – TCP passivation of IVD Aluminum- field testing underway
 – Conversion coating Magnesium and Titanium- FRC testing underway
 – Metal rich primer- lab development

• New in FY12 and continuing
 – NC Primer Field Validation– Supports implementation of qualified Type I and Type II Class N primers at NAVAIR user sites. **Includes Type I and II conversion coatings.**
 – Type II, Class 3 Conversion Coatings; electronics requirements- linked with NASA effort
 – IZ- C17+ zinc-nickel, with trivalent chromium passivation(s)- FRC demo underway
 – Type II conversion coating assessment of Surtec 650V- lab assessment underway

• Planned for FY13
 – TCP process variable optimization- pH and temperature of deox and TCP rinses; TCP concentration, pH, immersion time, temperature; multiple TCP products; multiple metal processes- acid & base etch, mild deox
Featured Effort: Surtec 650V Process Optimization

- NISE/219 funded effort to optimize performance of Surtec 650V
- Sensitivity to operating variables slowing implementation of Type IIIs
- Minitab interaction plots show:
 - large effect due to bath operating temperature
 - large effect due to bath concentration
 - minor effect due to immersion time
 - minor effect due to pH
Featured Effort: Surtec 650V Process Optimization

- Focused interactions at 104 F immersion temperature show:
 - large effect due to bath concentration
 - moderate effect due to immersion time
 - moderate effect due to pH

FY13: plan to look at alternate surface preps (acid and base etch), temps around 104 F and lower concentration (5%) in effort to optimize for both alloys and corrosion and powder formation- share information with Surtec and users

FY13: plan to expand to other TCP products
Summary

- Top level strategy in place to systematically address Cr6+ in metal finishing (and painting)
- Alternatives partially implemented by FRCs, fleet and OEMs based on business cases-
 - incremental transition planned to continue
 - each user/location has different drivers due to mix of local/state/federal regulations and laws
- Heavy focus on spray applied products and coatings removed during maintenance due to higher exposure risks from mists and dusts
- R&D ongoing and focused on improved coatings
 - Improved corrosion properties for all
 - Additional Class N, Type II primers
 - 1-hr re-coat for high solids primers