Multifunctional Protective Coatings for Land Vehicles

John A. Escarsega* and Dawn M. Crawford
DOD CARC Commodity Manager*
Camouflage, Coatings and Corrosion Team
Phone: 410-306-0693 JAE
410-306-0708 DMC
Email: jescarse@arl.army.mil
dcrawfor@arl.army.mil
Multifunctional Protective Coatings for Land Vehicles

U. S. Army Research Laboratory, Weapons & Materials Research Directorate, Aberdeen Proving Ground, MD, 21005

Approved for public release; distribution unlimited

ASSETSDefense 2009: Sustainable Surface Engineering for Aerospace and Defense Workshop, August 31 - September 3, 2009, Westminster, CO. Sponsored by SERDP/ESTCP.
Outline

• Who we are & What we do......
• Coatings Systems for Land Vehicles
 • Current and future
 • Low Solar Absorbing Coatings
 • UV Cure
 • Near Zero or Zero VOC
• GAPS to address and Considerations for Coatings Advancement
• ARL is the Lead DOD R&D Activity for CARC
 ➢ Innovative formulations approaches
 ➢ New raw materials selections
 ➢ Advanced characterization

• Maintains Ownership for all key specifications regarding pretreatments, primers and topcoats for all tactical and related support equipment and munition coatings.

 ❖ Elements above assist to implement and transition products
Guiding Principles for Coating Systems

Environmental Survivability

Durability

UNCLASSIFIED: Approved for public release; distribution unlimited.
What we do…

• Develop materials for military unique coatings including pretreatments, primers, and topcoats
 – Chemical Agent Resistant Coatings
 – Munitions coatings
 – Industrial coatings for vehicle interiors

• Produce materials and coatings that balance three critical requirements
 – Survivability (camouflage, chemical agent resistance)
 – Durability (appearance, corrosion, compatibility, etc.)
 – Environmental (compliance and pollution prevention)

• Implement and transition new products
 – Specifications and Standards
 – Troubleshooting, consulting, and problem solving

• Analyze and solve technical problems related to coatings systems used on Army Materiel
Characterization and Testing

Reflectance
- Specular (gloss)
- Spectral (color)
- IR Spectra

Microscopy
- Physical Changes At Surface
- Failure Analysis

SEM Coating X-section
- Fracture Surface of System
- Constituent Adhesion

EIS
- Equivalent Circuit Models of Corrosion Behavior

Accelerated Weathering
- Durability, thermal/irradiated degradation, moisture sensitivity

Adhesion Testing
- Durability, flexibility, strength

Chemical Structure and Transport Properties
- FTIR/ATR, Raman, GC-MS

SEM-EDX, SAM, XPS, UV-VIS
- Chromium concentrations
- Oxidation states

Accelerated Corrosion Testing
- Permeability, corrosion resistance

DMA, DSC
- \(T_g\), stiffness, cross-link density, extent of cure
Today

CARC as a System
Hierarchical Architecture of Multifunctional Coatings

- CARC Camouflage
 - Polyurethane Topcoat
 - (1.8 mil)
 - • Visible and NIR
 - • Silica extender
 - • Semitransparent binders

- CARC epoxy primer
 - (0.8 - 1.2 mils)

- Chemical Conversion Coating
 - (0.2-0.3 mil)

- Substrate
 - (ferrous or nonferrous)

Tomorrow

- Tailored CARC Coating
 - • Functional pigmentation
 - • Controlled Roughness

- Functional Primer
 - • Corrosion Protection
 - • Texture

- Advanced Corrosion Protection Layer

- Substrate
 - • Ferrous
 - • Nonferrous
 - • Polymer Composite
Chemical Agent Resistant Coatings (CARC) is mandated by AR-750-1 for all tactical equipment.

Every initial submission is fully tested and validated for Qualified Listing.

Each batch from the initial submission is tested for color, gloss, IR and decontamination resistance. Included in the batch submission is batch volume. Next slide total volumes*

Volume of coatings usage by Army is enormous: Several million gallons costing several hundred of millions of dollars annually will be reduce as developments are implemented and durability is improved.
Current Volume of Coatings

CARC Batch Volume

2,200,000
2,100,000
2,000,000
1,900,000
2,100,492
2,144,243
2,149,604
2,181,324
2,146,088
2,126,346
2,116,632
2,108,684
2,104,140
2,109,506
2,059,957

CARC Volume in Gallons

Jul-08 Aug-08 Sep-08 Oct-08 Nov-08 Dec-08 Jan-09 Feb-09 Mar-09 Apr-09 May-09 Jun-09 Jul-09

12 Month Totals Ending in Labeled Month

UNCLASSIFIED: Approved for public release; distribution unlimited.
Recent Coatings represent superior durability, environmental compliance

Stereotypes associated with Emulsions, Water Based or Hexavalent Chromium Free chemistries no longer hold true.

Current efforts establishes solid foundation for present and future survivability enhancements and multifunctional capabilities

Services are moving rapidly to eliminate standard coatings used and are implementing a new generation of coating technology throughout DOD
Raw Material Selection and Design

Individual Coating Components

- **Resin**: 60% solids Part A, 100% solids Part B, reduced with TBA 25%
- **Pigments & Extenders**: 50%
 - Pigments & Extenders: 50%
 - V-12650 Cobalt Free
 - Extenders High density Polyethylene
- **Solvents**: Water & Tert Butyl Acetate
- **Extenders**: High density Polyethylene
- **Additives**: 2%

UNCLASSIFIED: Approved for public release; distribution unlimited.
Topcoat Formulations

- **New Polyols**
 - Completely water soluble, no cosolvent needed
- **Tert-butyl acetate (VOC exempt) to dissolve and disperse isocyanate**
- **Attempt to reduce NCO:OH indexing to reduce solvent content**

\[
\begin{align*}
\text{R} = & \text{N}=\text{C}=\text{O} + \text{R'}\text{OH} \rightarrow \text{R} = \text{NH}_2 + \text{CO}_2 \\
\text{R} = & \text{N}=\text{C}=\text{O} + \text{H}_2\text{O} \rightarrow \text{R} = \text{N}=\text{C}=\text{O} + \text{R}-\text{NH}_2 + \text{CO}_2 \\
\text{R} = & \text{N}=\text{C}=\text{O} + \text{R}-\text{N}=\text{C}=\text{O} \rightarrow \text{R} = \text{N}=\text{C}=\text{O} + \text{R}-\text{N}=\text{C}=\text{O}
\end{align*}
\]
Role of Polyurethane

- Unacceptable CAR at NCO:OH < 4
- Moisture Cure uses blocked Isocyanate chemistry
- 2K Solvent systems typically 1:1.1 Ratio
- Adjust additives, reaction conditions, etc.
 - to make more favorable distribution
Pigments/Extenders

• Polymeric beads
 - Reduce chalking effect
 - Improve UV resistance
 - Improve performance

Polymeric beads

• Integrated within Film

Diatomaceous silica Talc

UNCLASSIFIED: Approved for public release; distribution unlimited.
Objective:

Provide advance coatings technology that will increase the functionality and durability of Army materiel
Low Solar Absorbing CARC

- 8 year weathering excellent: Less than 1.5 color unit change
- Formulated Primary Colors
- IR requirements will shift from 380nm -900nm to 380nm-2000nm with emphasis on 750nm to 1700nm.
- Visible unchanged
- Key highlight: COST, cobalt spinal increase of 300% and availability erratic.
- Formulation will be cobalt free for 383 Green, AC Green, 383 Brown
- Specification is currently being reviewed by vendors and government agencies
- 383 Green to change to 808 Green to identify change
Visible & Infrared Spectrum

Sun’s Energy Primarily in Visible & Infrared Spectrum

This is the Energy, by Wavelength that reaches the Earths’ surface.
Solar Radiance

Visible Region

Infrared Absorption Region

Difference in % Reflectance

Titanium Dioxide

Carbon Black
Low Solar loading Coatings

- Visually identical colors
- Higher Reflectance lower Temperature
- Reduce current coatings surface temperatures 20 to 50 Fahrenheit
- Major reductions in sustainability cost with extended coating life and with lower operating temperatures
Low Solar Absorbing CARC

![Graph showing PCT. Reflectance vs. Wavelength (nm) for RS831-6 Non-Cobalt and RS 831-7 Cobalt]
UV Cure Topcoats

- ARL formulated hybrid of UV initiated and Cross linked system
- Reduce Dry through cure to 15 minutes
- Excellent MEK resistance 17hrs
- Can create current color palate
- Industrial low cost lamps as only additional capital cost
- Will include as new type in our topcoat specifications
- Move toward Primers for rapid field repair and touchup
UNCLASSIFIED: Approved for public release; distribution unlimited.

First Generation Coatings
• New types to include 1.0, .5 and zero VOC (Lbs/gal) with zero HAPs flattened with non-silica based raw materials.
• Inclusion of 34201 color (Woodland Desert Sage) Currently used on CH-47 and Foilage Green 504 (used on Helmets).
• Elimination of reference to MIL-T-81772 Aircraft Thinner (100% VOCs)
• Allowing vendors to provide exempt solvent package and provide a universal exempt solvent
• New type to include Enhanced Corrosion Resistance and require cyclic corrosion evaluation.
• 700Hrs Neutral Salt Fog
 – ASTM D610 RATING OF 9
 – ASTM D1654 RATING OF NOT LESS THAN 6 FOR STEEL
 – ASTM D1654 RATING OF NOT LESS THAN 8 FOR AL.
• 40 Cycles
 – ASTM D1654 RATING OF NOT LESS THAN 7 FOR STEEL & AL.
• Open to novel corrosion inhibitors
• Allowing vendors to provide exempt solvent package and provide a universal exempt solvent
• Similar effort to occur for 53022
• MIL-DTL-53084 and Powder to include the color Black.
• Open to novel corrosion inhibitors
• Powder Specification to include both Primer and Topcoat within same document
• Coordination Date 12/09
Multi-Substrates:
- Steel 1010, 1008
- Galvanized steel
- Stainless steel
- Al 2000/5000/6000/7000 series
- Ceramic/Composite

- **Coating:** must be compatible with existing military topcoats and primers
 - Three vendors have responded with products
 - SERDP effort with PPG & ARL for Zinc Phosphate Alternative

- **Process:** Depot and Repair
Aluminum Alloy 5059 For Armor Applications Foreign Comparative Test Program

- Updated military Al armor specification MIL-DTL-46027K
- Over $14M to date in acquisition
 - $12M+ in direct procurement of AA5059 for RG-33 MRAP
 - Over $1.1M of acquisition by OEMs for internal testing, design, and prototyping
 - AA5059-H131 chosen as primary (100%) common hull material for all 8 variants of the PM FCS-BCT Manned Ground Vehicle (MGV) by Boeing (LSI), General Dynamics, and BAE Systems

- Related work - military specification MIL-DTL-32262 created for 6061 Al
Additional Efforts

• Current operations and future mission requirements have led to recent reassessments on Al for armor
 - AA5059-H131 (now in MIL-DTL-46027K)
 - AA2139-T8 (Under review for MIL SPEC addition)
 - Additional alloys & tempers

• Interest from U.S. Army and the USMC AA2139-T8 due to significantly improved mechanical properties and ballistics.
• The key hurdle is acquiring long term outdoor exposure data for platforms making current and near future decisions.

• Confidence that our accelerated screening processes are relevant to long term exposure results.

• Ensuring pretreatment and coating processes are followed accurately to enhance corrosion resistance and provide adequate adhesion/compatibility for subsequent coatings.
Multiple Step Approach

• Phase I: Manufacturer data, claims and performance parameters (acceptance based on environmental compliance, cost to include return on investment and process requirements)

• Phase II: ARL/TARDEC testing and evaluation of pretreatment or process using coupon panels to include accelerated and cyclic corrosion, EIS, and related adhesion type evaluations etc.

• Phase III: Application of component parts

• Phase IV: Outdoor exposure in corrosive environment of component parts (Items would be monitored for x years at 6 month intervals)

• This Phase type process would allow PMs to be aware of what items are currently being evaluated and also providing a certain level of confidence to select or use a particular new process. Baselines will be selected and used as standards for comparison. In this way new technologies can be evaluated and data acquired.
ARL Support

• Establish Baseline Coating System.

• Request other Services also establish Baseline Coating Systems.

• Assurance of film thickness and cure history.

• This would provide an opportunity to accurately compare data and perhaps support claims of “Better or Enhanced”
Increased Options for Balanced Requirements

Survivability Requirements

Coating Requirements

Environmental UV & Corrosion Resistance
Flexibility

Affordable Multifunctional Coating Solutions

Affordability

New coatings formulations
More Survivable and Durable Platforms

UNCLASSIFIED: Approved for public release; distribution unlimited.