Supersonic Particle Deposition for Repair and Corrosion Protection of Mg Gearboxes

ASETS Defense Work Shop
Sept. 2, 2009

Brian M. Gabriel, Phillip F. Leyman, Dennis J. Helfritch, and Victor K. Champagne*
ARL Center for Cold Spray

Before

After

*Program Manager and POC for ARL Center for Cold Spray
1. REPORT DATE
02 SEP 2009

2. REPORT TYPE

3. DATES COVERED
00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
Supersonic Particle Deposition for Repair and Corrosion Protection of Mg Gearboxes

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U. S. Army Research Laboratory, RDRL-WMM-C, Building 4600, Deer Creek Loop, Aberdeen Proving Ground, MD, 21005

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
ASETSDefense 2009: Sustainable Surface Engineering for Aerospace and Defense Workshop, August 31 - September 3, 2009, Westminster, CO. Sponsored by SERDP/ESTCP.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
33

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Core Team Members

- Victor Champagne - Program Manager – Cold Spray Center Primary Contact, Army Research Laboratory, Aberdeen Proving Ground, MD, 410-306-0822, vchampag@arl.army.mil
- Robert Kestler, NADEP-CP, Cherry Point, NC 252-464-9888, robert.kestler@navy.mil
- Robert Guillemette, Sikorsky Aircraft, Stratford, CT 203-386-7559, rguillemette@sikorsky.com
- George Liu, Army Aviation Missile Command, Huntsville, AL, 256-313-8762, george.g.liu@us.army.mil
- Timothy J. Eden, Applied Research Laboratory, The Pennsylvania State University, State College, PA, 814-865-5880, tje1@email.psu.edu
- Darren Gerrard, DSTO, Australia 61-396-267957, darren.gerrard@dsto.defence.gov.au
- Stacey Luker, JSF ESOH, Cherry Point, NC 252-444-2034, stacey.luker@wylelabs.com
- Keith Legg, Rowan Technology Group, Libertyville, IL 847-680-9420, klegg@rowantechology.com
Demonstrate and qualify SPD aluminum alloy coatings as a cost-effective, ESOH-acceptable technology to provide surface protection and a repair/rebuild methodology for Mg alloy components on Army and Navy helicopters and advanced fixed-wing aircraft such as the Joint Strike Fighter.
Cold spray, involves the introduction of a heated high-pressure gas such as He or N₂ together with 1 to 50 µm diameter particles of a metal, ceramic and/or polymer into a gun fitted with a De Laval rocket nozzle designed such that the particles exit at supersonic velocities ranging from 400 to 1500 meters-per-second and consolidate upon impacting a suitable surface to form a coating or free-standing structure.

- Gas temperature range from R.T. to 800°C
- No melting of particles
- Negligible oxidation
- No decomposition or phase changes of deposited particles
SPD Depot overhaul
CH-53 gearboxes

- SPD has little or no impact on repair cost
- Most of cost is setup – actual process cost is small (same as glue shims)
- Payback of capital and implementation cost is 15 yrs with CH-53 only
 - Depends on performance – reduced repair or condemnation
 - Faster payback over all FRC workload

CH-53 Foot repair - total cost
- Run powder: 3%
- Run electricity: 0%
- Run gas: 1%
- Run labor: 2%
- Setup/maintenance labor: 94%

SPD cost $418
(same as shim)

CH-53 only $\pm 2\sigma$

15 year NPV
- 0
- $(1,000,000)$
- $(2,000,000)$
- $(3,000,000)$
- $(4,000,000)$
- $(5,000,000)$
- $(6,000,000)$
- $(7,000,000)$

Condemnation rate as % of current
- 0%
- 20%
- 40%
- 60%
- 80%
- 100%
UH-60 sump flange repair

<table>
<thead>
<tr>
<th></th>
<th>SPD</th>
<th>HVOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup/maintenance labor</td>
<td>$392.50</td>
<td>$392.50</td>
</tr>
<tr>
<td>Run labor</td>
<td>$3.74</td>
<td>$2.64</td>
</tr>
<tr>
<td>Run powder</td>
<td>$9.71</td>
<td>$11.38</td>
</tr>
<tr>
<td>Run gas</td>
<td>$4.29</td>
<td>$6.49</td>
</tr>
<tr>
<td>Run electricity</td>
<td>$0.04</td>
<td>$0.00</td>
</tr>
<tr>
<td>Total cost</td>
<td>$410.28</td>
<td>$413.01</td>
</tr>
<tr>
<td>Run cost</td>
<td>$17.78</td>
<td>$20.51</td>
</tr>
</tbody>
</table>

No cost impact (both processes vendor-supplied)
Problem is that HVOF does not really work
- Therefore SPD saves condemnation
- 85 gearboxes/year
 - $11k ea to replace
 - $1k ea to repair
- Cost analysis includes equipment installation and adoption cost
- Larger cost savings with more expensive gearbox housings

<table>
<thead>
<tr>
<th></th>
<th>-2 sigma</th>
<th>Value</th>
<th>+2 sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 yr NPV</td>
<td>$8,682,158</td>
<td>$9,229,033</td>
<td>$9,775,908</td>
</tr>
<tr>
<td>IRR</td>
<td>145%</td>
<td>111%</td>
<td>91%</td>
</tr>
<tr>
<td>ROI</td>
<td>82%</td>
<td>111%</td>
<td>140%</td>
</tr>
<tr>
<td>Payback period</td>
<td>1.2</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Sump Cost Recovery

UH-60 Sump Assembly Main Module-Main Gearbox Repair

Substrates:
ZE41A & AZ91C Magnesium

Coating Material:
CP-Aluminum and/or 6061 Al

Part Numbers:
70351-48141-041
70351-08141-047

• Cost of new component $11,000.00 DLA (Defense Logistics Agency)
• 85 sumps need repair per year based on a Sikorsky study over the last 3 years
• Total Replacement Cost Savings estimated to be $935,000.00/year
Substrate Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Heat Treat (tens. strength)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ91C-T6</td>
<td>34 ksi</td>
<td>Legacy systems</td>
</tr>
<tr>
<td>ZE41A-T5</td>
<td>29 ksi</td>
<td>Legacy systems</td>
</tr>
<tr>
<td>EV31-T6</td>
<td>36 ksi</td>
<td>New CH-53, AAAV</td>
</tr>
</tbody>
</table>

Candidate Coating Materials

- **Commercially Pure Al:**
 - Hardness similar to ZE41A (60 to 70 VHN), Good general corrosion resistance. Candidate for non-structural coatings.

- **High Purity Al:**
 - Best Galvanic compatibility with Mg alloys but at a cost of lower hardness (50 VHN).

- **6061 aluminum alloy:**
 - 90 to 110 VHN, good general corrosion resistance, future candidate for more structural or load bearing coatings.
Galvanic Corrosion

Galvanic Corrosion - Al-Mg Couple

Cathode slightly larger than anode
Full JTP Qualification Plan

1. 6061 Aluminum Alloy (He carrier gas)
2. HP-Al Bond Coat/CP-Al (N₂ carrier gas)

Mechanical Tests
- Adhesion Tensile Bond Test (ASTM C633)
- Almen Strips
- Flat Tensile Specimens
- R.R. Moore RB Fatigue
 - surface finished 125RA
- Fretting Fatigue – UTRC
- Impact - ASTM D5420
- Hardness
- Porosity
- ROSAN Insert Test
- Triple Lug Shear

Corrosion Tests
- Un-scribed ASTM B117
- Scribed ASTM B117
- GM9540 Scribed
- Galvanic Corrosion (G71)
- Crevice Corrosion (G78)
- Beach Corrosion
- G85 Annex 4-SO₂

UTRC Fretting Fatigue Specimen
Substrates: ZE41A & AZ91C Magnesium Alloys

Coating Material:
1.1. 6061 Aluminum Alloy (He carrier gas)
2. HP-Al Bond Coat/CP-Al (N₂ carrier gas)

- Porosity < 1%
- Almen Strips
- Adhesion Tensile Bond Strength Test
- Unscribed ASTM B117 Salt Spray Test
- Scribed ASTM B117 Salt Spray Test
- G85 SO₂
- Beach Corrosion
- Hardness –(Pre/Post 385F-6hrs)
- Machining Evaluation Coupons (1/2 coated) & ½” diameter rods (2” of 6” length)
Timeline

- Over 550 Coated Samples (JTP and Sump Qualification)
 - 6061 samples were started on July 25 and anticipated to be completed by September 1
 - HP-Al bond coat/CP-Al sprayed with N\textsubscript{2} should be completed by September 25

- Testing is being coordinated with Penn State, Pax River, Cherry Point, Westmoreland, L&M Machine Shop, TEC, and UTRC. December 2009 for most data!

- Demonstration at Cherry Point by the end of 2009

- Qualification of ASB and Demonstration at their site by the end of 2009

- Possibility that DSTO, Rosebank, and the Australian Navy might sign off on the process by the end of 2009
- 47 kW system installed 6/2008 at APG (30 kW on floor and 17 kW on gun)
- Only high pressure/high temperature C.S. system currently on the market
 - Temperatures up to 800°C (1472°F)
 - Pressures up to 40 bar (580 PSI)

- 17 kW system installation at NADEP-CP
 - Larger heat to be installed in late 2009

- Ktech System at ARL:
 - Temperature limited to 500°C
 - Pressures up to 35 bar (500 PSI)
 - 25 kW heater on floor
 - Heated powder gas feed
Modeled deposition efficiencies appear to be close to experimental values while the calculated velocities are well above the critical velocities for Al (~500 m/s)
Valimet 6061 Cold Spray on 6061
Substrate: Optical Microscopy

50X

Before Etching

Coating

Substrate

Artifact

10-20 Seconds Kroll’s Etch
Valimet 6061 Cold Spray on 6061 Substrate: Optical Microscopy

Before Etching

10-20 Seconds Kroll’s Etch

Coating

Substrate

200X
- Improved D.E. from 34% to over 60% as compared to the K-Tech
- Adhesion values similar to K-Tech (10 KSI for CP-Al)
- Coating Densities >98.5%
 - Theoretical Density for CP-Al with N₂
 >99.3% for 6061AA with He

CP-Al Cold Spray Coatings entered Salt Fog on 3/4/09 (~1/2 yr.)

6061 Cold Spray Coatings entered Salt Fog on 3/9/09 (~1/2 yr.)
CP-Al Hardness

Vickers Hardness of CP Al (Valimet H-12) Sprayed with 20 bar He versus Gun Temperature

Impact Velocity, m/s

Vickers Hardness

- model
- cold sprayed
- work hardened

Gun Temperature (°C)

Vickers Hardness (500g)
Bond Bar Adhesion (ASTM C633)

6061 Results:
All Samples failed within the adhesive and not at the coating/substrate interface

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Average (ksi)</th>
<th>Stdev (ksi)</th>
<th>95% Confidence (ksi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZE41A-T5</td>
<td>11.1</td>
<td>0.8</td>
<td>10.5, 11.6</td>
</tr>
<tr>
<td>AZ91C-T6</td>
<td>10.8</td>
<td>1.1</td>
<td>9.9, 11.6</td>
</tr>
<tr>
<td>EV31-T6</td>
<td>11.2</td>
<td>0.7</td>
<td>10.8, 11.7</td>
</tr>
</tbody>
</table>

CP-Al Preliminary ESTCP Data and DSTO Data show 10 ksi+
AZ91C-T6 and EV31-T6 failed with a relatively clean break at coating the interface.

7 out of 12 ZE41A-T5 samples failed within the Mg.
Fatigue from DSTO Project

Fatigue Results – ZE41A-T5

Source – Australian Defense Science & Technology Organization
Fatigue Results – AA7075-T651

- **Uncoated**
- **Grit-Blasted**
- **Coated**

Source – Australian Defense Science & Technology Organization
Overview of 2008/Early 2009
Technical Progress: DSTO

Interior section of Intermediate Gearbox (IGB)

Exterior corroded area on one of the as-received IGB pads
Overview of 2008/Early 2009 Technical Progress: DSTO

Interior section of IGB pads coated with CP-aluminum

Pre-Cold Spray

CP Al Cold Spray
Repair Site:
Rubber O-ring insert
Blending of Corroded Sites on Flange

Cold Spray Repair of Inside Diameter of Flange
Repair Site:

Filter Bowl Mount

Cavities collect water
Cold Spray offers a cost effective and environmentally friendly method for repair and corrosion protection of Mg Components

- **Hardness**
 - ZE41A Magnesium alloy = 68 Vickers
 - Cold Spray CP-Al = 63 Vickers
 - 6061 = 105 Vickers

- **Bond Strength**
 - >6061 has >10,000 psi on ZE41, AZ91, and EV31 (CGT)
 - >6061 surpassed 15,000 PSI for Triple Lug Shear
 - >CP-Al/HP-Al has >=10,000 psi on ZE41 and AZ91 (K-Tech and CGT)

- **RCB Fatigue Strength**
 - Minimal effect on both 7075-T6 and ZE41A Magnesium Alloy

- **Salt Fog Corrosion**
 - >4000 hrs on CGT (on going) and 6000+ hrs for K-Tech